1
|
Pabis K, Barardo D, Gruber J, Sirbu O, Malavolta M, Selvarajoo K, Kaeberlein M, Kennedy BK. The impact of short-lived controls on the interpretation of lifespan experiments and progress in geroscience - Through the lens of the "900-day rule". Ageing Res Rev 2024; 101:102512. [PMID: 39332712 DOI: 10.1016/j.arr.2024.102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/08/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Although lifespan extension remains the gold standard for assessing interventions proposed to impact the biology of aging, there are important limitations to this approach. Our reanalysis of lifespan studies from multiple sources suggests that short lifespans in the control group exaggerate the relative efficacy of putative longevity interventions. Results may be exaggerated due to statistical effects (e.g. regression to the mean) or other factors. Moreover, due to the high cost and long timeframes of mouse studies, it is rare that a particular longevity intervention will be independently replicated by multiple groups. To facilitate identification of successful interventions, we propose an alternative approach particularly suitable for well-characterized inbred and HET3 mice. In our opinion, the level of confidence we can have in an intervention is proportional to the degree of lifespan extension above the strain- and species-specific upper limit of lifespan, which we can estimate from comparison to historical controls. In the absence of independent replication, a putative mouse longevity intervention should only be considered with high confidence when control median lifespans are close to 900 days or if the final lifespan of the treated group is considerably above 900 days. Using this "900-day rule" we identified several candidate interventions from the literature that merit follow-up studies.
Collapse
Affiliation(s)
- Kamil Pabis
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Diogo Barardo
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; NOVOS Labs, 100 Park Avenue, 16th Fl, New York, NY 10017, USA
| | - Jan Gruber
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Science Divisions, Yale-NUS College, Singapore 138527, Singapore
| | - Olga Sirbu
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A⁎STAR), Singapore 138671, Singapore
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona 60121, Italy
| | - Kumar Selvarajoo
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A⁎STAR), Singapore 138671, Singapore; Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore (NUS), Singapore 117456, Singapore; School of Biological Sciences, Nanyang Technological University (NTU), 639798, Singapore
| | | | - Brian K Kennedy
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
2
|
Li M, Macro J, Huggins BJ, Meadows K, Mishra D, Martin D, Kannan K, Rogina B. Extended lifespan in female Drosophila melanogaster through late-life calorie restriction. GeroScience 2024; 46:4017-4035. [PMID: 38954128 PMCID: PMC11335708 DOI: 10.1007/s11357-024-01233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Calorie restriction has many beneficial effects on healthspan and lifespan in a variety of species. However, how late in life application of caloric restriction can extend fly life is not clear. Here we show that late-life calorie restriction increases lifespan in female Drosophila melanogaster aged on a high-calorie diet. This shift results in rapid decrease in mortality rate and extends fly lifespan. In contrast, shifting female flies from a low- to a high-calorie diet leads to a rapid increase in mortality and shorter lifespan. These changes are mediated by immediate metabolic and physiological adaptations. One of such adaptation is rapid adjustment in egg production, with flies directing excess energy towards egg production when shifted to a high diet, or away from reproduction in females shifted to low-caloric diet. However, lifelong female fecundity reveals no associated fitness cost due to CR when flies are shifted to a high-calorie diet. In view of high conservation of the beneficial effects of CR on physiology and lifespan in a wide variety of organisms, including humans, our findings could provide valuable insight into CR applications that could provide health benefits later in life.
Collapse
Affiliation(s)
- Michael Li
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Jacob Macro
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Billy J Huggins
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Kali Meadows
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Dushyant Mishra
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Dominique Martin
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Kavitha Kannan
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Blanka Rogina
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA.
- Institute for Systems Genomics, University of Connecticut Health, Farmington, CT, 06030, USA.
| |
Collapse
|
3
|
Austad SN, Smith JR, Hoffman JM. Amino acid restriction, aging, and longevity: an update. FRONTIERS IN AGING 2024; 5:1393216. [PMID: 38757144 PMCID: PMC11096585 DOI: 10.3389/fragi.2024.1393216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Various so-called dietary restriction paradigms have shown promise for extending health and life. All such paradigms rely on ad libitum (hereafter ad lib) feeding, something virtually never employed in animals whose long-term health we value, either as a control or, except for food restriction itself, for both control and treatment arms of the experiment. Even though the mechanism(s) remain only vaguely understood, compared to ad lib-fed animals a host of dietary manipulations, including calorie restriction, low protein, methionine, branched-chain amino acids, and even low isoleucine have demonstrable health benefits in laboratory species in a standard laboratory environment. The remaining challenge is to determine whether these health benefits remain in more realistic environments and how they interact with other health enhancing treatments such as exercise or emerging geroprotective drugs. Here we review the current state of the field of amino acid restriction on longevity of animal models and evaluate its translational potential.
Collapse
Affiliation(s)
- S. N. Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J. R. Smith
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J. M. Hoffman
- Department of Biological Sciences, Augusta University, Augusta, GA, United States
| |
Collapse
|
4
|
Thyne KM, Salmon AB. Sexually dimorphic effects of methionine sulfoxide reductase A (MsrA) on murine longevity and health span during methionine restriction. GeroScience 2023; 45:3003-3017. [PMID: 37391679 PMCID: PMC10643651 DOI: 10.1007/s11357-023-00857-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 07/02/2023] Open
Abstract
Methionine restriction (MR) extends lifespan in various model organisms, and understanding the molecular effectors of MR could expand the repertoire of tools targeting the aging process. Here, we address to what extent the biochemical pathway responsible for redox metabolism of methionine plays in regulating the effects of MR on lifespan and health span. Aerobic organisms have evolved methionine sulfoxide reductases to counter the oxidation of the thioether group contained in the essential amino acid methionine. Of these enzymes, methionine sulfoxide reductase A (MsrA) is ubiquitously expressed in mammalian tissues and has subcellular localization in both the cytosol and mitochondria. Loss of MsrA increases sensitivity to oxidative stress and has been associated with increased susceptibility to age-associated pathologies including metabolic dysfunction. We rationalized that limiting the available methionine with MR may place increased importance on methionine redox pathways, and that MsrA may be required to maintain available methionine for its critical uses in cellular homeostasis including protein synthesis, metabolism, and methylation. Using a genetic mutant mouse lacking MsrA, we tested the requirement for this enzyme in the effects of MR on longevity and markers of healthy aging late in life. When initiated in adulthood, we found that MR had minimal effects in males and females regardless of MsrA status. MR had minimal effect on lifespan with the exception of wild-type males where loss of MsrA slightly increased lifespan on MR. We also observed that MR drove an increase in body weight in wild-type mice only, but mice lacking MsrA tended to maintain more stable body weight throughout their lives. We also found that MR had greater benefit to males than females in terms of glucose metabolism and some functional health span assessments, but MsrA generally had minimal impact on these metrics. Frailty was also found to be unaffected by MR or MsrA in aged animals. We found that in general, MsrA was not required for the beneficial effects of MR on longevity and health span.
Collapse
Affiliation(s)
- Kevin M Thyne
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Adam B Salmon
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Geriatric Research Education and Clinical Center, Audie L. Murphy Hospital, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
5
|
Senior AM. Estimating Genetic Variance in Life-Span Response to Diet: Insights From Statistical Simulation. J Gerontol A Biol Sci Med Sci 2023; 78:392-396. [PMID: 36008106 PMCID: PMC9977232 DOI: 10.1093/gerona/glac172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 11/12/2022] Open
Abstract
Several studies demonstrate genetic variation in response to dietary restriction (DR) by replicating treatments across isogenic lines/strains from genetic reference panels. These studies typically quantify the response to DR as an effect size, estimated for each strain separately (eg, the difference in mean life span between groups). Such "no-pooling" analyses are expected to systematically overestimate variation in response DR, principally by overlooking sampling variance. In contrast, "partial-pooling" analyses using mixed-effects models are less prone to this bias. I demonstrate these issues using simulations, which also show that partial-pooling analyses can improve replicability among studies. Regardless of the analyses used, estimates of among-strain variation will have low precision when sample sizes are small. A worked example using survival data in mice is given. Life-span studies using genetic reference panels always have to trade-off within- and among-strain replication owing to logistical challenges. The simulation presented can also be used to help design such studies through power analysis.
Collapse
Affiliation(s)
- Alistair M Senior
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia.,School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia.,School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Dasgupta P, Halder S, Dari D, Nabeel P, Vajja SS, Nandy B. Evolution of a novel female reproductive strategy in Drosophila melanogaster populations subjected to long-term protein restriction. Evolution 2022; 76:1836-1848. [PMID: 35796749 DOI: 10.1111/evo.14560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 05/19/2022] [Indexed: 01/22/2023]
Abstract
Reproductive output is often constrained by availability of macronutrients, especially protein. Long-term protein restriction, therefore, is expected to select for traits maximizing reproduction even under nutritional challenge. We subjected four replicate populations of Drosophila melanogaster to a complete deprivation of yeast supplement, thereby mimicking a protein-restricted ecology. Following 24 generations, compared to their matched controls, females from experimental populations showed increased reproductive output early in life, both in presence and absence of yeast supplement. The observed increase in reproductive output was without associated alterations in egg size, development time, preadult survivorship, body mass at eclosion, and life span of the females. Further, selection was ineffective on lifelong cumulative fecundity. However, females from experiment regime were found to have a significantly faster rate of reproductive senescence following the attainment of the reproductive peak early in life. Therefore, adaptation to yeast deprivation ecology in our study involved a novel reproductive strategy whereby females attained higher reproductive output early in life followed by faster reproductive aging. To the best of our knowledge, this is one of the cleanest demonstrations of optimization of fitness by fine-tuning of reproductive schedule during adaptation to a prolonged nutritional deprivation.
Collapse
Affiliation(s)
- Purbasha Dasgupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| | - Subhasish Halder
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| | - Debapriya Dari
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| | - Poolakkal Nabeel
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India.,Central University of Kerala, Tejaswini Hills,Periye, Kasaragod, Kerala, 671316, India
| | - Sai Samhitha Vajja
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India.,Current Address: Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, 462066, India
| | - Bodhisatta Nandy
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| |
Collapse
|
7
|
Liu X, Jin Z, Summers S, Derous D, Li M, Li B, Li L, Speakman JR. Calorie restriction and calorie dilution have different impacts on body fat, metabolism, behavior, and hypothalamic gene expression. Cell Rep 2022; 39:110835. [PMID: 35584669 DOI: 10.1016/j.celrep.2022.110835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/14/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
Caloric restriction is a robust intervention to increase lifespan. Giving less food (calorie restriction [CR]) or allowing free access to a diluted diet with indigestible components (calorie dilution [CD]) are two methods to impose restriction. CD does not generate the same lifespan effect as CR. We compare responses of C57BL/6 mice with equivalent levels of CR and CD. The two groups have different responses in fat loss, circulating hormones, and metabolic rate. CR mice are hungrier, as assessed by behavioral assays. Although gene expression of Npy, Agrp, and Pomc do not differ between CR and CD groups, CR mice had a distinctive hypothalamic gene-expression profile with many genes related to starvation upregulated relative to CD. While both result in lower calorie intake, CR and CD are not equivalent procedures. Increased hunger under CR supports the hypothesis that hunger signaling is a key process mediating the benefits of CR.
Collapse
Affiliation(s)
- Xue Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PRC; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, PRC; Research Group Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg 85764, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Technische Universität München, Ismaningerstraße 22, 81675 München, Germany
| | - Zengguang Jin
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Stephanie Summers
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PRC
| | - Davina Derous
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PRC
| | - Min Li
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Baoguo Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PRC
| | - Li Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PRC
| | - John R Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK; Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PRC; CAS Center of Excellence in Animal Evolution and Genetics, Kunming, PRC.
| |
Collapse
|
8
|
Green CL, Pak HH, Richardson NE, Flores V, Yu D, Tomasiewicz JL, Dumas SN, Kredell K, Fan JW, Kirsh C, Chaiyakul K, Murphy ME, Babygirija R, Barrett-Wilt GA, Rabinowitz J, Ong IM, Jang C, Simcox J, Lamming DW. Sex and genetic background define the metabolic, physiologic, and molecular response to protein restriction. Cell Metab 2022; 34:209-226.e5. [PMID: 35108511 PMCID: PMC8865085 DOI: 10.1016/j.cmet.2021.12.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/26/2021] [Accepted: 12/20/2021] [Indexed: 02/03/2023]
Abstract
Low-protein diets promote metabolic health in humans and rodents. Despite evidence that sex and genetic background are key factors in the response to diet, most protein intake studies examine only a single strain and sex of mice. Using multiple strains and both sexes of mice, we find that improvements in metabolic health in response to reduced dietary protein strongly depend on sex and strain. While some phenotypes were conserved across strains and sexes, including increased glucose tolerance and energy expenditure, we observed high variability in adiposity, insulin sensitivity, and circulating hormones. Using a multi-omics approach, we identified mega-clusters of differentially expressed hepatic genes, metabolites, and lipids associated with each phenotype, providing molecular insight into the differential response to protein restriction. Our results highlight the importance of sex and genetic background in the response to dietary protein level, and the potential importance of a personalized medicine approach to dietary interventions.
Collapse
Affiliation(s)
- Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Heidi H Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nicole E Richardson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Victoria Flores
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Deyang Yu
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jay L Tomasiewicz
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Sabrina N Dumas
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Katherine Kredell
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Jesse W Fan
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Charlie Kirsh
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Krittisak Chaiyakul
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michaela E Murphy
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Joshua Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA; University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cholsoon Jang
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Judith Simcox
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
9
|
Williams EG, Pfister N, Roy S, Statzer C, Haverty J, Ingels J, Bohl C, Hasan M, Čuklina J, Bühlmann P, Zamboni N, Lu L, Ewald CY, Williams RW, Aebersold R. Multiomic profiling of the liver across diets and age in a diverse mouse population. Cell Syst 2022; 13:43-57.e6. [PMID: 34666007 PMCID: PMC8776606 DOI: 10.1016/j.cels.2021.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/12/2021] [Accepted: 09/14/2021] [Indexed: 01/21/2023]
Abstract
We profiled the liver transcriptome, proteome, and metabolome in 347 individuals from 58 isogenic strains of the BXD mouse population across age (7 to 24 months) and diet (low or high fat) to link molecular variations to metabolic traits. Several hundred genes are affected by diet and/or age at the transcript and protein levels. Orthologs of two aging-associated genes, St7 and Ctsd, were knocked down in C. elegans, reducing longevity in wild-type and mutant long-lived strains. The multiomics data were analyzed as segregating gene networks according to each independent variable, providing causal insight into dietary and aging effects. Candidates were cross-examined in an independent diversity outbred mouse liver dataset segregating for similar diets, with ∼80%-90% of diet-related candidate genes found in common across datasets. Together, we have developed a large multiomics resource for multivariate analysis of complex traits and demonstrate a methodology for moving from observational associations to causal connections.
Collapse
Affiliation(s)
- Evan G Williams
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Niklas Pfister
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Suheeta Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Cyril Statzer
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Jack Haverty
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jesse Ingels
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Casey Bohl
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Moaraj Hasan
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | - Jelena Čuklina
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | - Peter Bühlmann
- Department of Mathematics, Seminar for Statistics, ETH Zürich, Zurich, Switzerland
| | - Nicola Zamboni
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Collin Y Ewald
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland; Faculty of Science, University of Zürich, Zurich, Switzerland
| |
Collapse
|
10
|
Wilson KA, Chamoli M, Hilsabeck TA, Pandey M, Bansal S, Chawla G, Kapahi P. Evaluating the beneficial effects of dietary restrictions: A framework for precision nutrigeroscience. Cell Metab 2021; 33:2142-2173. [PMID: 34555343 PMCID: PMC8845500 DOI: 10.1016/j.cmet.2021.08.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Dietary restriction (DR) has long been viewed as the most robust nongenetic means to extend lifespan and healthspan. Many aging-associated mechanisms are nutrient responsive, but despite the ubiquitous functions of these pathways, the benefits of DR often vary among individuals and even among tissues within an individual, challenging the aging research field. Furthermore, it is often assumed that lifespan interventions like DR will also extend healthspan, which is thus often ignored in aging studies. In this review, we provide an overview of DR as an intervention and discuss the mechanisms by which it affects lifespan and various healthspan measures. We also review studies that demonstrate exceptions to the standing paradigm of DR being beneficial, thus raising new questions that future studies must address. We detail critical factors for the proposed field of precision nutrigeroscience, which would utilize individualized treatments and predict outcomes using biomarkers based on genotype, sex, tissue, and age.
Collapse
Affiliation(s)
| | - Manish Chamoli
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Tyler A Hilsabeck
- The Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Manish Pandey
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Sakshi Bansal
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Geetanjali Chawla
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India.
| | - Pankaj Kapahi
- The Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
11
|
Unnikrishnan A, Matyi S, Garrett K, Ranjo‐Bishop M, Allison DB, Ejima K, Chen X, Dickinson S, Richardson A. Reevaluation of the effect of dietary restriction on different recombinant inbred lines of male and female mice. Aging Cell 2021; 20:e13500. [PMID: 34713968 PMCID: PMC8590105 DOI: 10.1111/acel.13500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/16/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
Dietary restriction (DR) was reported to either have no effect or reduce the lifespan of the majority of the 41‐recombinant inbred (RI) lines studied by Liao et al. (Aging Cell, 2010, 9, 92). In an appropriately power longevity study (n > 30 mice/group), we measured the lifespan of the four RI lines (115‐RI, 97‐RI, 98‐RI, and 107‐RI) that were reported to have the greatest decrease in lifespan when fed 40% DR. DR increased the median lifespan of female RI‐115, 97‐RI, and 107‐RI mice and male 115‐RI mice. DR had little effect (<4%) on the median lifespan of female and male 98‐RI mice and male 97‐RI mice and reduced the lifespan of male 107‐RI mice over 20%. While our study was unable to replicate the effect of DR on the lifespan of the RI mice (except male 107‐RI mice) reported by Liao et al. (Aging Cell, 2010, 9, 92), we found that the genotype of a mouse had a major impact on the effect of DR on lifespan, with the effect of DR ranging from a 50% increase to a 22% decrease in median lifespan. No correlation was observed between the changes in either body composition or glucose tolerance induced by DR and the changes observed in lifespan of the four RI lines of male and female mice. These four RI lines of mice give the research community a unique resource where investigators for the first time can study the anti‐aging mechanism of DR by comparing mice in which DR increases lifespan to mice where DR has either no effect or reduces lifespan.
Collapse
Affiliation(s)
- Archana Unnikrishnan
- Department of Biochemistry & Molecular Biology University of Oklahoma Health Sciences Center Oklahoma City Oklahoma USA
- Oklahoma Center for Geroscience and Healthy Brain Aging University of Oklahoma Health Sciences Center Oklahoma City Oklahoma USA
- Harold Hamm Diabetic Center University of Oklahoma Health Sciences Center Oklahoma City Oklahoma USA
- Stephenson Cancer Center University of Oklahoma Health Sciences Center Oklahoma City Oklahoma USA
| | - Stephanie Matyi
- Department of Biochemistry & Molecular Biology University of Oklahoma Health Sciences Center Oklahoma City Oklahoma USA
| | - Karla Garrett
- Department of Biochemistry & Molecular Biology University of Oklahoma Health Sciences Center Oklahoma City Oklahoma USA
| | - Michelle Ranjo‐Bishop
- Department of Biochemistry & Molecular Biology University of Oklahoma Health Sciences Center Oklahoma City Oklahoma USA
| | - David B. Allison
- Department of Epidemiology & Biostatistics School of Public Health‐Bloomington Indiana University Bloomington Indiana USA
| | - Keisuke Ejima
- Department of Epidemiology & Biostatistics School of Public Health‐Bloomington Indiana University Bloomington Indiana USA
| | - Xiwei Chen
- Department of Epidemiology & Biostatistics School of Public Health‐Bloomington Indiana University Bloomington Indiana USA
| | - Stephanie Dickinson
- Department of Epidemiology & Biostatistics School of Public Health‐Bloomington Indiana University Bloomington Indiana USA
| | - Arlan Richardson
- Department of Biochemistry & Molecular Biology University of Oklahoma Health Sciences Center Oklahoma City Oklahoma USA
- Oklahoma Center for Geroscience and Healthy Brain Aging University of Oklahoma Health Sciences Center Oklahoma City Oklahoma USA
- Harold Hamm Diabetic Center University of Oklahoma Health Sciences Center Oklahoma City Oklahoma USA
- Stephenson Cancer Center University of Oklahoma Health Sciences Center Oklahoma City Oklahoma USA
- Oklahoma City VA Medical Center Oklahoma City Oklahoma USA
| |
Collapse
|
12
|
Mulvey L, Wilkie SE, Borland G, Griffiths K, Sinclair A, McGuinness D, Watson DG, Selman C. Strain-specific metabolic responses to long-term caloric restriction in female ILSXISS recombinant inbred mice. Mol Cell Endocrinol 2021; 535:111376. [PMID: 34246728 PMCID: PMC8417819 DOI: 10.1016/j.mce.2021.111376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
The role that genetic background may play in the responsiveness of organisms to interventions such as caloric restriction (CR) is underappreciated but potentially important. We investigated the impact of genetic background on a suite of metabolic parameters in female recombinant inbred ILSXISS mouse strains previously reported to show divergent lifespan responses to 40% CR (TejJ89-lifespan extension; TejJ48-lifespan unaffected; TejJ114-lifespan shortening). Body mass was reduced across all strains following 10 months of 40% CR, although this loss (relative to ad libitum controls) was greater in TejJ114 relative to the other strains. Gonadal white adipose tissue (gWAT) mass was similarly reduced across all strains following 40% CR, but brown adipose tissue (BAT) mass increased only in strains TejJ89 and TejJ48. Surprisingly, glucose tolerance was improved most notably by CR in TejJ114, while both strains TejJ89 and TejJ114 were hyperinsulinemic following CR relative to their AL controls. We subsequently undertook an unbiased metabolomic approach in gWAT and BAT tissue derived from strains TejJ89 and TejJ114 mice under AL and 40% CR. In gWAT from TejJ89 a significant reduction in several long chain unsaturated fatty acids was observed following 40% CR, but gWAT from TejJ114 appeared relatively unresponsive to CR with far fewer metabolites changing. Phosphatidylethanoloamine lipids within the BAT were typically elevated in TejJ89 following CR, while some phosphatidylglycerol lipids were decreased. However, BAT from strain TejJ114 again appeared unresponsive to CR. These data highlight strain-specific metabolic differences exist in ILSXISS mice following 40% CR. We suggest that precisely how different fat depots respond dynamically to CR may be an important factor in the variable longevity under 40% CR reported in these mice.
Collapse
Affiliation(s)
- Lorna Mulvey
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Stephen E Wilkie
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Gillian Borland
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kate Griffiths
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Amy Sinclair
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Dagmara McGuinness
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, The John Arbuthnott Building, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
13
|
Roy S, Sleiman MB, Jha P, Ingels JF, Chapman CJ, McCarty MS, Ziebarth JD, Hook M, Sun A, Zhao W, Huang J, Neuner SM, Wilmott LA, Shapaker TM, Centeno AG, Ashbrook DG, Mulligan MK, Kaczorowski CC, Makowski L, Cui Y, Read RW, Miller RA, Mozhui K, Williams EG, Sen S, Lu L, Auwerx J, Williams RW. Gene-by-environment modulation of lifespan and weight gain in the murine BXD family. Nat Metab 2021; 3:1217-1227. [PMID: 34552269 PMCID: PMC8478125 DOI: 10.1038/s42255-021-00449-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/06/2021] [Indexed: 02/07/2023]
Abstract
How lifespan and body weight vary as a function of diet and genetic differences is not well understood. Here we quantify the impact of differences in diet on lifespan in a genetically diverse family of female mice, split into matched isogenic cohorts fed a low-fat chow diet (CD, n = 663) or a high-fat diet (HFD, n = 685). We further generate key metabolic data in a parallel cohort euthanized at four time points. HFD feeding shortens lifespan by 12%: equivalent to a decade in humans. Initial body weight and early weight gains account for longevity differences of roughly 4-6 days per gram. At 500 days, animals on a HFD typically gain four times as much weight as control, but variation in weight gain does not correlate with lifespan. Classic serum metabolites, often regarded as health biomarkers, are not necessarily strong predictors of longevity. Our data indicate that responses to a HFD are substantially modulated by gene-by-environment interactions, highlighting the importance of genetic variation in making accurate individualized dietary recommendations.
Collapse
Affiliation(s)
- Suheeta Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pooja Jha
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jesse F Ingels
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Casey J Chapman
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Melinda S McCarty
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Jesse D Ziebarth
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Michael Hook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Anna Sun
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Wenyuan Zhao
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Jinsong Huang
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Sarah M Neuner
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Lynda A Wilmott
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Thomas M Shapaker
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Arthur G Centeno
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - David G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | | | - Liza Makowski
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yan Cui
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Robert W Read
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan Geriatrics Center, Ann Arbor, MI, USA
| | - Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Evan G Williams
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Saunak Sen
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA.
| |
Collapse
|
14
|
Abstract
Aging has largely been defined by analog measures of organ and organismal dysfunction. This has led to the characterization of aging processes at the molecular and cellular levels that underlie these gradual changes. However, current knowledge does not fully explain the growing body of data emerging from large epidemiological, systems biology, and single cell studies of entire organisms pointing to varied rates of aging between individuals (different functionality and lifespan), across lifespan (asynchronous aging), and within an organism at the tissue and organ levels (aging mosaicism). Here we consider these inhomogeneities in the broader context of the rate of aging and from the perspective of underlying cellular changes. These changes reflect genetic, environmental, and stochastic factors that cells integrate to adopt new homeostatic, albeit less functional, states, such as cellular senescence. In this sense, cellular aging can be viewed, at least in part, as a quantal process we refer to as "digital aging". Nevertheless, analog declines of tissue dysfunction and organ failure with age could be the sum of underlying digital events. Importantly, cellular aging, digital or otherwise, is not uniform across time or space within the organism or between organisms of the same species. Certain tissues may exhibit earliest signs of cellular aging, acting as drivers for organismal aging as signals from those driver cells within those tissues may accelerate the aging of other cells locally or even systemically. Advanced methodologies at the systems level and at the single cell level are likely to continue to refine our understanding to the processes of how cells and tissues age and how the integration of those processes leads to the complexities of individual, organismal aging.
Collapse
|
15
|
Thelen M, Brown-Borg HM. Does Diet Have a Role in the Treatment of Alzheimer's Disease? Front Aging Neurosci 2020; 12:617071. [PMID: 33424583 PMCID: PMC7785773 DOI: 10.3389/fnagi.2020.617071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022] Open
Abstract
The aging process causes many changes to the brain and is a major risk factor for the development of neurodegenerative diseases such as Alzheimer's Disease (AD). Despite an already vast amount of research on AD, a greater understanding of the disease's pathology and therapeutic options are desperately needed. One important distinction that is also in need of further study is the ability to distinguish changes to the brain observed in early stages of AD vs. changes that occur with normal aging. Current FDA-approved therapeutic options for AD patients have proven to be ineffective and indicate the need for alternative therapies. Aging interventions including alterations in diet (such as caloric restriction, fasting, or methionine restriction) have been shown to be effective in mediating increased health and lifespan in mice and other model organisms. Because aging is the greatest risk factor for the development of neurodegenerative diseases, certain dietary interventions should be explored as they have the potential to act as a future treatment option for AD patients.
Collapse
Affiliation(s)
- Mitchell Thelen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Holly M Brown-Borg
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
16
|
McCracken AW, Buckle E, Simons MJP. The relationship between longevity and diet is genotype dependent and sensitive to desiccation in Drosophila melanogaster. J Exp Biol 2020; 223:jeb230185. [PMID: 33109715 PMCID: PMC7725603 DOI: 10.1242/jeb.230185] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022]
Abstract
Dietary restriction (DR) is a key focus in ageing research. Specific conditions and genotypes were recently found to negate lifespan extension by DR, questioning its universal relevance. However, the concept of dietary reaction norms explains why the effects of DR might be obscured in some situations. We tested the importance of dietary reaction norms by measuring longevity and fecundity on five diets in five genotypes, with and without water supplementation in female Drosophila melanogaster (N>25,000). We found substantial genetic variation in the response of lifespan to diet. Flies supplemented with water rescued putative desiccation stress on the richest diets, suggesting that water availability can be an experimental confound. Fecundity declined on these richest diets, but was unaffected by water, and this reduction is thus most likely to be caused by nutritional toxicity. Our results demonstrate empirically that a range of diets need to be considered to conclude an absence of the DR longevity effect.
Collapse
Affiliation(s)
- Andrew W McCracken
- Department of Animal and Plant Sciences & Bateson Centre, The University of Sheffield, Sheffield S10 2TN, UK
| | - Eleanor Buckle
- Department of Animal and Plant Sciences & Bateson Centre, The University of Sheffield, Sheffield S10 2TN, UK
| | - Mirre J P Simons
- Department of Animal and Plant Sciences & Bateson Centre, The University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
17
|
Aon MA, Bernier M, Mitchell SJ, Di Germanio C, Mattison JA, Ehrlich MR, Colman RJ, Anderson RM, de Cabo R. Untangling Determinants of Enhanced Health and Lifespan through a Multi-omics Approach in Mice. Cell Metab 2020; 32:100-116.e4. [PMID: 32413334 PMCID: PMC8214079 DOI: 10.1016/j.cmet.2020.04.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/20/2019] [Accepted: 04/24/2020] [Indexed: 12/17/2022]
Abstract
The impact of chronic caloric restriction (CR) on health and survival is complex with poorly understood underlying molecular mechanisms. A recent study in mice addressing the diets used in nonhuman primate CR studies found that while diet composition did not impact longevity, fasting time and total calorie intake were determinant for increased survival. Here, integrated analysis of physiological and multi-omics data from ad libitum, meal-fed, or CR animals was used to gain insight into pathways associated with improved health and survival. We identified a potential involvement of the glycine-serine-threonine metabolic axis in longevity and related molecular mechanisms. Direct comparison of the different feeding strategies unveiled a pattern of shared pathways of improved health that included short-chain fatty acids and essential PUFA metabolism. These findings were recapitulated in the serum metabolome from nonhuman primates. We propose that the pathways identified might be targeted for their potential role in healthy aging.
Collapse
Affiliation(s)
- Miguel A Aon
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sarah J Mitchell
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Clara Di Germanio
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Margaux R Ehrlich
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ricki J Colman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Rozalyn M Anderson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53715, USA; Geriatric Research, Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
18
|
Wilson KA, Beck JN, Nelson CS, Hilsabeck TA, Promislow D, Brem RB, Kapahi P. GWAS for Lifespan and Decline in Climbing Ability in Flies upon Dietary Restriction Reveal decima as a Mediator of Insulin-like Peptide Production. Curr Biol 2020; 30:2749-2760.e3. [PMID: 32502405 DOI: 10.1016/j.cub.2020.05.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/17/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Abstract
Dietary restriction (DR) is the most robust means to extend lifespan and delay age-related diseases across species. An underlying assumption in the aging field is that DR enhances both lifespan and physical activity through similar mechanisms, but this has not been rigorously tested in different genetic backgrounds. Furthermore, nutrient response genes responsible for lifespan extension or age-related decline in functionality remain underexplored in natural populations. To address this, we measured nutrient-dependent changes in lifespan and age-related decline in climbing ability in the Drosophila Genetic Reference Panel fly strains. On average, DR extended lifespan and delayed decline in climbing ability, but there was a lack of correlation between these traits across individual strains, suggesting that distinct genetic factors modulate these traits independently and that genotype determines response to diet. Only 50% of strains showed positive response to DR for both lifespan and climbing ability, 14% showed a negative response for one trait but not both, and 35% showed no change in one or both traits. Through GWAS, we uncovered a number of genes previously not known to be diet responsive nor to influence lifespan or climbing ability. We validated decima as a gene that alters lifespan and daedalus as one that influences age-related decline in climbing ability. We found that decima influences insulin-like peptide transcription in the GABA receptor neurons downstream of short neuropeptide F precursor (sNPF) signaling. Modulating these genes produced independent effects on lifespan and physical activity decline, which suggests that these age-related traits can be regulated through distinct mechanisms.
Collapse
Affiliation(s)
- Kenneth A Wilson
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA 90007, USA
| | - Jennifer N Beck
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Room A-632, San Francisco, CA 94143, USA
| | | | - Tyler A Hilsabeck
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA 90007, USA
| | - Daniel Promislow
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA 90007, USA; Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720, USA.
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA 90007, USA; Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Room A-632, San Francisco, CA 94143, USA.
| |
Collapse
|
19
|
The importance of diversity and outreach in geroscience research: Insights from the Annual Biomedical Research Conference for Minority Students. GeroScience 2020; 42:1005-1012. [PMID: 32363429 PMCID: PMC7287005 DOI: 10.1007/s11357-020-00191-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 02/02/2023] Open
Abstract
US academic science lacks racial, ethnic, sex, gender, disability, and socioeconomic diversity. Addressing this problem is essential to drive scientific progress but is confounded by broad misunderstandings regarding diverse groups. Increasing representation in science is particularly relevant in geroscience, where our research to maximize healthy human lifespan must also address existing racial and socioeconomic health disparities. The American Aging Association (AGE) is committed to addressing these issues as part of its larger mission to advance and promote geroscience research. Over the last three years, AGE has sponsored an exhibition booth staffed by trainee leaders to promote our society and research at the Annual Biomedical Research Conference for Minority Students (ABRCMS), an ideal venue to interact with diverse students from across the country. Through our interactions with students, advocates, and representatives from other institutions and societies, we have learned a great deal about how to engage and promote the success of diverse students in the sciences. Here, we share these insights that are helping shape our own outreach efforts. In addition to interacting with ABRCMS attendees, we also learned a great deal about how societies like AGE can partner with other organizations to advance our shared goals and the importance of reaching students early in their academic journey to promote their success. Finally, we consider how to grow our outreach efforts beyond ABRCMS to reach those in disadvantaged areas and support students navigating academic science.
Collapse
|
20
|
Wilkie SE, Mulvey L, Sands WA, Marcu DE, Carter RN, Morton NM, Hine C, Mitchell JR, Selman C. Strain-specificity in the hydrogen sulphide signalling network following dietary restriction in recombinant inbred mice. GeroScience 2020; 42:801-812. [PMID: 32162209 PMCID: PMC7205779 DOI: 10.1007/s11357-020-00168-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Modulation of the ageing process by dietary restriction (DR) across multiple taxa is well established. While the exact mechanism through which DR acts remains elusive, the gasotransmitter hydrogen sulphide (H2S) may play an important role. We employed a comparative-type approach using females from three ILSXISS recombinant inbred mouse strains previously reported to show differential lifespan responses following 40% DR. Following long-term (10 months) 40% DR, strain TejJ89-reported to show lifespan extension under DR-exhibited elevated hepatic H2S production relative to its strain-specific ad libitum (AL) control. Strain TejJ48 (no reported lifespan effect following 40% DR) exhibited significantly reduced hepatic H2S production, while H2S production was unaffected by DR in strain TejJ114 (shortened lifespan reported following 40% DR). These differences in H2S production were reflected in highly divergent gene and protein expression profiles of the major H2S production and disposal enzymes across strains. Increased hepatic H2S production in TejJ89 mice was associated with elevation of the mitochondrial H2S-producing enzyme 3-mercaptopyruvate sulfurtransferase (MPST). Our findings further support the potential role of H2S in DR-induced longevity and indicate the presence of genotypic-specificity in the production and disposal of hepatic H2S in response to 40% DR in mice.
Collapse
Affiliation(s)
- Stephen E Wilkie
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Lorna Mulvey
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - William A Sands
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Diana E Marcu
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Roderick N Carter
- Molecular Metabolism Group, University/BHF Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Nicholas M Morton
- Molecular Metabolism Group, University/BHF Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Christopher Hine
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - James R Mitchell
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
21
|
Myostatin dysfunction is associated with lower physical activity and reduced improvements in glucose tolerance in response to caloric restriction in Berlin high mice. Exp Gerontol 2019; 128:110751. [DOI: 10.1016/j.exger.2019.110751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/06/2019] [Accepted: 10/13/2019] [Indexed: 12/16/2022]
|
22
|
Lee BP, Mulvey L, Barr G, Garratt J, Goodman E, Selman C, Harries LW. Dietary restriction in ILSXISS mice is associated with widespread changes in splicing regulatory factor expression levels. Exp Gerontol 2019; 128:110736. [DOI: 10.1016/j.exger.2019.110736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022]
|
23
|
Diaz-Ruiz A, Di Francesco A, Carboneau BA, Levan SR, Pearson KJ, Price NL, Ward TM, Bernier M, de Cabo R, Mercken EM. Benefits of Caloric Restriction in Longevity and Chemical-Induced Tumorigenesis Are Transmitted Independent of NQO1. J Gerontol A Biol Sci Med Sci 2019; 74:155-162. [PMID: 29733330 DOI: 10.1093/gerona/gly112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/02/2018] [Indexed: 12/22/2022] Open
Abstract
Caloric restriction (CR) is the most potent nonpharmacological intervention known to both protect against carcinogenesis and delay aging in laboratory animals. There is a growing number of anticarcinogens and CR mimetics that activate NAD(P)H:quinone oxidoreductase 1 (NQO1). We have previously shown that NQO1, an antioxidant enzyme that acts as an energy sensor through modulation of intracellular redox and metabolic state, is upregulated by CR. Here, we used NQO1-knockout (KO) mice to investigate the role of NQO1 in both the aging process and tumor susceptibility, specifically in the context of CR. We found that NQO1 is not essential for the beneficial effects of CR on glucose homeostasis, physical performance, metabolic flexibility, life-span extension, and (unlike our previously observation with Nrf2) chemical-induced tumorigenesis.
Collapse
Affiliation(s)
- Alberto Diaz-Ruiz
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland.,Nutritional Interventions Group, Precision Nutrition and Aging, Institute IMDEA Food, Madrid, Spain
| | - Andrea Di Francesco
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Bethany A Carboneau
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Sophia R Levan
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Kevin J Pearson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington
| | - Nathan L Price
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT
| | - Theresa M Ward
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland.,Nutritional Interventions Group, Precision Nutrition and Aging, Institute IMDEA Food, Madrid, Spain
| | - Evi M Mercken
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
24
|
Ng'oma E, Fidelis W, Middleton KM, King EG. The evolutionary potential of diet-dependent effects on lifespan and fecundity in a multi-parental population of Drosophila melanogaster. Heredity (Edinb) 2019; 122:582-594. [PMID: 30356225 PMCID: PMC6461879 DOI: 10.1038/s41437-018-0154-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 11/09/2022] Open
Abstract
The nutritional conditions experienced by a population have a major role in shaping trait evolution in many taxa. Constraints exerted by nutrient limitation or nutrient imbalance can influence the maximal value that fitness components such as reproduction and lifespan attains, and organisms may shift how resources are allocated to different structures and functions in response to changes in nutrition. Whether the phenotypic changes associated with changes in nutrition represent an adaptive response is largely unknown. Further, it is unclear whether the response of fitness components to diet even has the potential to evolve in most systems. In this study, we use an admixed multi-parental population of Drosophila melanogaster reared in three different diet conditions to estimate quantitative genetic parameters for lifespan and fecundity. We find significant genetic variation for both traits in our population and show that lifespan has moderate to high heritabilities within diets. Genetic correlations for lifespan between diets were significantly less than one, demonstrating a strong genotype by diet interaction. These findings demonstrate substantial standing genetic variation in our population that is comparable to natural populations and highlights the potential for adaptation to changing nutritional environments.
Collapse
Affiliation(s)
- Enoch Ng'oma
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Wilton Fidelis
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Kevin M Middleton
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Elizabeth G King
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
25
|
Hook M, Roy S, Williams EG, Bou Sleiman M, Mozhui K, Nelson JF, Lu L, Auwerx J, Williams RW. Genetic cartography of longevity in humans and mice: Current landscape and horizons. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2718-2732. [PMID: 29410319 PMCID: PMC6066442 DOI: 10.1016/j.bbadis.2018.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/24/2018] [Accepted: 01/28/2018] [Indexed: 12/14/2022]
Abstract
Aging is a complex and highly variable process. Heritability of longevity among humans and other species is low, and this finding has given rise to the idea that it may be futile to search for DNA variants that modulate aging. We argue that the problem in mapping longevity genes is mainly one of low power and the genetic and environmental complexity of aging. In this review we highlight progress made in mapping genes and molecular networks associated with longevity, paying special attention to work in mice and humans. We summarize 40 years of linkage studies using murine cohorts and 15 years of studies in human populations that have exploited candidate gene and genome-wide association methods. A small but growing number of gene variants contribute to known longevity mechanisms, but a much larger set have unknown functions. We outline these and other challenges and suggest some possible solutions, including more intense collaboration between research communities that use model organisms and human cohorts. Once hundreds of gene variants have been linked to differences in longevity in mammals, it will become feasible to systematically explore gene-by-environmental interactions, dissect mechanisms with more assurance, and evaluate the roles of epistasis and epigenetics in aging. A deeper understanding of complex networks-genetic, cellular, physiological, and social-should position us well to improve healthspan.
Collapse
Affiliation(s)
- Michael Hook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Suheeta Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Evan G Williams
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093, Switzerland
| | - Maroun Bou Sleiman
- Interfaculty Institute of Bioengineering, Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - James F Nelson
- Department of Cellular and Integrative Physiology and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Johan Auwerx
- Interfaculty Institute of Bioengineering, Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
26
|
Liao M, Wang J. Mechanisms of Hematopoietic Stem Cell Ageing and Targets for Hematopoietic Tumour Prevention. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1086:117-140. [PMID: 30232756 DOI: 10.1007/978-981-13-1117-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem cells represent a rare population in the bone marrow, with the capacity of generating all blood lineage and themselves at the same time. With aging, the reconstitution capacity of hematopoietic stem cells decreases accompanying with differentiation skewing wherein the myeloid branch dominates in both mouse and human. In recent years, various molecular mechanisms that induce functional decline of HSC during aging were disclosed including DNA damage accumulation, metabolic alteration, defects in protein homeostasis, and aging-induced changes in the blood circulatory environment. Deciphering the nature of HSC aging could improve our knowledge of HSC aging-related diseases and furthermore promote the developing of therapeutic interventions for human HSC aging and diseases.
Collapse
Affiliation(s)
- Min Liao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
27
|
Lee MB, Kaeberlein M. Translational Geroscience: From invertebrate models to companion animal and human interventions. TRANSLATIONAL MEDICINE OF AGING 2018; 2:15-29. [PMID: 32368707 PMCID: PMC7198054 DOI: 10.1016/j.tma.2018.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Translational geroscience is an interdisciplinary field descended from basic gerontology that seeks to identify, validate, and clinically apply interventions to maximize healthy, disease-free lifespan. In this review, we describe a research pipeline for the identification and validation of lifespan extending interventions. Beginning in invertebrate model systems, interventions are discovered and then characterized using other invertebrate model systems (evolutionary translation), models of genetic diversity, and disease models. Vertebrate model systems, particularly mice, can then be utilized to validate interventions in mammalian systems. Collaborative, multi-site efforts, like the Interventions Testing Program (ITP), provide a key resource to assess intervention robustness in genetically diverse mice. Mouse disease models provide a tool to understand the broader utility of longevity interventions. Beyond mouse models, we advocate for studies in companion pets. The Dog Aging Project is an exciting example of translating research in dogs, both to develop a model system and to extend their healthy lifespan as a goal in itself. Finally, we discuss proposed and ongoing intervention studies in humans, unmet needs for validating interventions in humans, and speculate on how differences in survival among human populations may influence intervention efficacy.
Collapse
Affiliation(s)
- Mitchell B Lee
- Department of Pathology, University of Washington, Seattle, WA USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA USA
| |
Collapse
|
28
|
Mulvey L, Sands WA, Salin K, Carr AE, Selman C. Disentangling the effect of dietary restriction on mitochondrial function using recombinant inbred mice. Mol Cell Endocrinol 2017; 455:41-53. [PMID: 27597651 DOI: 10.1016/j.mce.2016.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/22/2016] [Accepted: 09/01/2016] [Indexed: 12/12/2022]
Abstract
Dietary restriction (DR) extends lifespan and healthspan in many species, but precisely how it elicits its beneficial effects is unclear. We investigated the impact of DR on mitochondrial function within liver and skeletal muscle of female ILSXISS mice that exhibit strain-specific variation in lifespan under 40% DR. Strains TejJ89 (lifespan increased under DR), TejJ48 (lifespan unaffected by DR) and TejJ114 (lifespan decreased under DR) were studied following 10 months of 40% DR (13 months of age). Oxygen consumption rates (OCR) within isolated liver mitochondria were unaffected by DR in TejJ89 and TejJ48, but decreased by DR in TejJ114. DR had no effect on hepatic protein levels of PGC-1a, TFAM, and OXPHOS complexes IV. Mitonuclear protein imbalance (nDNA:mtDNA ratio) was unaffected by DR, but HSP90 protein levels were reduced in TejJ114 under DR. Surprisingly hepatic mitochondrial hydrogen peroxide (H2O2) production was elevated by DR in TejJ89, with total superoxide dismutase activity and protein carbonyls increased by DR in both TejJ89 and TejJ114. In skeletal muscle, DR had no effect on mitochondrial OCR, OXPHOS complexes or mitonuclear protein imbalance, but H2O2 production was decreased in TejJ114 and nuclear PGC-1a increased in TejJ89 under DR. Our findings indicate that hepatic mitochondrial dysfunction associated with reduced lifespan of TejJ114 mice under 40% DR, but similar dysfunction was not apparent in skeletal muscle mitochondria. We highlight tissue-specific differences in the mitochondrial response in ILSXISS mice to DR, and underline the importance and challenges of exploiting genetic heterogeneity to help understand mechanisms of ageing.
Collapse
Affiliation(s)
- Lorna Mulvey
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - William A Sands
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Karine Salin
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Amanda E Carr
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
29
|
Protective effects of short-term dietary restriction in surgical stress and chemotherapy. Ageing Res Rev 2017; 39:68-77. [PMID: 28216454 DOI: 10.1016/j.arr.2017.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 01/09/2023]
Abstract
Reduced caloric intake including fasting, as well as the dietary composition or the timing of food intake, impact longevity, likely through a modification in the onset or the severity of chronic aging-related diseases such as cancer. As with pre- and post-operative dietary recommendations, evidence-based nutritional advice from healthcare professionals during and after cancer treatment is often vague or conflicting. We hypothesize that preventive dietary recommendations can help in the context of both chronic cancer treatment efficacy and the avoidance of development of secondary malignancies, as well as in the context of protection from the acute stress of surgery. In this perspective review, we will discuss the latest findings on the potential role of short-term dietary restriction in cancer treatment and improvement of surgical outcome.
Collapse
|
30
|
Calorie restriction in rodents: Caveats to consider. Ageing Res Rev 2017; 39:15-28. [PMID: 28610949 DOI: 10.1016/j.arr.2017.05.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 02/08/2023]
Abstract
The calorie restriction paradigm has provided one of the most widely used and most useful tools for investigating mechanisms of aging and longevity. By far, rodent models have been employed most often in these endeavors. Over decades of investigation, claims have been made that the paradigm produces the most robust demonstration that aging is malleable. In the current review of the rodent literature, we present arguments that question the robustness of the paradigm to increase lifespan and healthspan. Specifically, there are several questions to consider as follows: (1) At what age does CR no longer produce benefits? (2) Does CR attenuate cognitive decline? (3) Are there negative effects of CR, including effects on bone health, wound healing, and response to infection? (4) How important is schedule of feeding? (5) How long does CR need to be imposed to be effective? (6) How do genotype and gender influence CR? (7) What role does dietary composition play? Consideration of these questions produce many caveats that should guide future investigations to move the field forward.
Collapse
|
31
|
Bartley JM, Zhou X, Kuchel GA, Weinstock GM, Haynes L. Impact of Age, Caloric Restriction, and Influenza Infection on Mouse Gut Microbiome: An Exploratory Study of the Role of Age-Related Microbiome Changes on Influenza Responses. Front Immunol 2017; 8:1164. [PMID: 28979265 PMCID: PMC5611400 DOI: 10.3389/fimmu.2017.01164] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/01/2017] [Indexed: 12/17/2022] Open
Abstract
Immunosenescence refers to age-related declines in the capacity to respond to infections such as influenza (flu). Caloric restriction represents a known strategy to slow many aging processes, including those involving the immune system. More recently, some changes in the microbiome have been described with aging, while the gut microbiome appears to influence responses to flu vaccination and infection. With these considerations in mind, we used a well-established mouse model of flu infection to explore the impact of flu infection, aging, and caloric restriction on the gut microbiome. Young, middle-aged, and aged caloric restricted (CR) and ad lib fed (AL) mice were examined after a sublethal flu infection. All mice lost 10–20% body weight and, as expected for these early time points, losses were similar at different ages and between diet groups. Cytokine and chemokine levels were also similar with the notable exception of IL-1α, which rose more than fivefold in aged AL mouse serum, while it remained unchanged in aged CR serum. Fecal microbiome phyla abundance profiles were similar in young, middle-aged, and aged AL mice at baseline and at 4 days post flu infection, while increases in Proteobacteria were evident at 7 days post flu infection in all three age groups. CR mice, compared to AL mice in each age group, had increased abundance of Proteobacteria and Verrucomicrobia at all time points. Interestingly, principal coordinate analysis determined that diet exerts a greater effect on the microbiome than age or flu infection. Percentage body weight loss correlated with the relative abundance of Proteobacteria regardless of age, suggesting flu pathogenicity is related to Proteobacteria abundance. Further, several microbial Operational Taxonomic Units from the Bacteroidetes phyla correlated with serum chemokine/cytokines regardless of both diet and age suggesting an interplay between flu-induced systemic inflammation and gut microbiota. These exploratory studies highlight the impact of caloric restriction on fecal microbiome in both young and aged animals, as well as the many complex relationships between flu responses and gut microbiota. Thus, these preliminary studies provide the necessary groundwork to examine how gut microbiota alterations may be leveraged to influence declining immune responses with aging.
Collapse
Affiliation(s)
- Jenna M Bartley
- UConn Center on Aging, Farmington, CT, United States.,Department of Immunology, UConn Health, Farmington, CT, United States
| | - Xin Zhou
- Jackson Laboratory for Genomic Medicine, Farmington, CT, United States.,Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
| | - George A Kuchel
- UConn Center on Aging, Farmington, CT, United States.,Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
| | - George M Weinstock
- Jackson Laboratory for Genomic Medicine, Farmington, CT, United States.,Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
| | - Laura Haynes
- UConn Center on Aging, Farmington, CT, United States.,Department of Immunology, UConn Health, Farmington, CT, United States
| |
Collapse
|
32
|
Mitchell SE, Tang Z, Kerbois C, Delville C, Derous D, Green CL, Wang Y, Han JJD, Chen L, Douglas A, Lusseau D, Promislow DEL, Speakman JR. The effects of graded levels of calorie restriction: VIII. Impact of short term calorie and protein restriction on basal metabolic rate in the C57BL/6 mouse. Oncotarget 2017; 8:17453-17474. [PMID: 28193912 PMCID: PMC5392262 DOI: 10.18632/oncotarget.15294] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 12/26/2016] [Indexed: 11/25/2022] Open
Abstract
Under calorie restriction (CR) animals need to lower energy demands. Whether this involves a reduction in cellular metabolism is an issue of contention. We exposed C57BL/6 mice to graded CR for 3 months, measured BMR and dissected out 20 body compartments. From a separate age-matched group (n=57), we built 7 predictive models for BMR. Unadjusted BMR declined with severity of restriction. Comparison of measured and predicted BMR from the simple models suggested suppression occurred. The extent of 'suppression' was greater with increased CR severity. However, when models based on individual organ sizes as predictors were used, the discrepancy between the prediction and the observed BMR disappeared. This suggested 'metabolic suppression' was an artefact of not having a detailed enough model to predict the expected changes in metabolism. Our data have wide implications because they indicate that inferred 'metabolic' impacts of genetic and other manipulations may reflect effects on organ morphology.
Collapse
Affiliation(s)
- Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - ZhanHui Tang
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Celine Kerbois
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Camille Delville
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Davina Derous
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Cara L Green
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jackie J D Han
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - David Lusseau
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Daniel E L Promislow
- Department of Pathology, University of Washington, Seattle, Washington, USA.,Department of Biology, University of Washington, Seattle, Washington, USA
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Abstract
Cancer is the second leading cause of death in the USA and among the leading major diseases in the world. It is anticipated to continue to increase because of the growth of the aging population and prevalence of risk factors such as obesity, smoking, and/or poor dietary habits. Cancer treatment has remained relatively similar during the past 30 years with chemotherapy and/or radiotherapy in combination with surgery remaining the standard therapies although novel therapies are slowly replacing or complementing the standard ones. According to the American Cancer Society, the dietary recommendation for cancer patients receiving chemotherapy is to increase calorie and protein intake. In addition, there are no clear guidelines on the type of nutrition that could have a major impact on cancer incidence. Yet, various forms of reduced caloric intake such as calorie restriction (CR) or fasting demonstrate a wide range of beneficial effects able to help prevent malignancies and increase the efficacy of cancer therapies. Whereas chronic CR provides both beneficial and detrimental effects as well as major compliance challenges, periodic fasting (PF), fasting-mimicking diets (FMDs), and dietary restriction (DR) without a reduction in calories are emerging as interventions with the potential to be widely used to prevent and treat cancer. Here, we review preclinical and preliminary clinical studies on dietary restriction and fasting and their role in inducing cellular protection and chemotherapy resistance.
Collapse
|
34
|
Figueira I, Fernandes A, Mladenovic Djordjevic A, Lopez-Contreras A, Henriques CM, Selman C, Ferreiro E, Gonos ES, Trejo JL, Misra J, Rasmussen LJ, Xapelli S, Ellam T, Bellantuono I. Interventions for age-related diseases: Shifting the paradigm. Mech Ageing Dev 2016; 160:69-92. [DOI: 10.1016/j.mad.2016.09.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/18/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
|
35
|
Kõks S, Dogan S, Tuna BG, González-Navarro H, Potter P, Vandenbroucke RE. Mouse models of ageing and their relevance to disease. Mech Ageing Dev 2016; 160:41-53. [PMID: 27717883 DOI: 10.1016/j.mad.2016.10.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 09/26/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022]
Abstract
Ageing is a process that gradually increases the organism's vulnerability to death. It affects different biological pathways, and the underlying cellular mechanisms are complex. In view of the growing disease burden of ageing populations, increasing efforts are being invested in understanding the pathways and mechanisms of ageing. We review some mouse models commonly used in studies on ageing, highlight the advantages and disadvantages of the different strategies, and discuss their relevance to disease susceptibility. In addition to addressing the genetics and phenotypic analysis of mice, we discuss examples of models of delayed or accelerated ageing and their modulation by caloric restriction.
Collapse
Affiliation(s)
- Sulev Kõks
- University of Tartu, Tartu, Estonia and Estonian University of Life Sciences, Tartu, Estonia.
| | - Soner Dogan
- Yeditepe University, School of Medicine, Department of Medical Biology, Istanbul, Turkey.
| | - Bilge Guvenc Tuna
- Yeditepe University, School of Medicine, Department of Biophysics, Istanbul, Turkey.
| | - Herminia González-Navarro
- Institute of Health Research-INCLIVA, 46010 Valencia, Spain and CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), 28029 Madrid, Spain.
| | - Paul Potter
- Mammalian Genetics Unit, MRC Harwell, Oxfordshire, UK.
| | - Roosmarijn E Vandenbroucke
- Inflammation Research Center, VIB, Ghent, Belgium, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
36
|
Dowell R, Odell A, Richmond P, Malmer D, Halper-Stromberg E, Bennett B, Larson C, Leach S, Radcliffe RA. Genome characterization of the selected long- and short-sleep mouse lines. Mamm Genome 2016; 27:574-586. [PMID: 27651241 PMCID: PMC5110614 DOI: 10.1007/s00335-016-9663-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/22/2016] [Indexed: 01/29/2023]
Abstract
The Inbred Long- and Short-Sleep (ILS, ISS) mouse lines were selected for differences in acute ethanol sensitivity using the loss of righting response (LORR) as the selection trait. The lines show an over tenfold difference in LORR and, along with a recombinant inbred panel derived from them (the LXS), have been widely used to dissect the genetic underpinnings of acute ethanol sensitivity. Here we have sequenced the genomes of the ILS and ISS to investigate the DNA variants that contribute to their sensitivity difference. We identified ~2.7 million high-confidence SNPs and small indels and ~7000 structural variants between the lines; variants were found to occur in 6382 annotated genes. Using a hidden Markov model, we were able to reconstruct the genome-wide ancestry patterns of the eight inbred progenitor strains from which the ILS and ISS were derived, and found that quantitative trait loci that have been mapped for LORR were slightly enriched for DNA variants. Finally, by mapping and quantifying RNA-seq reads from the ILS and ISS to their strain-specific genomes rather than to the reference genome, we found a substantial improvement in a differential expression analysis between the lines. This work will help in identifying and characterizing the DNA sequence variants that contribute to the difference in ethanol sensitivity between the ILS and ISS and will also aid in accurate quantification of RNA-seq data generated from the LXS RIs.
Collapse
Affiliation(s)
- Robin Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80309, USA. .,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA. .,Department of Computer Science, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - Aaron Odell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Phillip Richmond
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80309, USA.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Daniel Malmer
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Eitan Halper-Stromberg
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Beth Bennett
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA
| | - Colin Larson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA
| | - Sonia Leach
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Richard A Radcliffe
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA.
| |
Collapse
|
37
|
Mitchell SJ, Madrigal-Matute J, Scheibye-Knudsen M, Fang E, Aon M, González-Reyes JA, Cortassa S, Kaushik S, Gonzalez-Freire M, Patel B, Wahl D, Ali A, Calvo-Rubio M, Burón MI, Guiterrez V, Ward TM, Palacios HH, Cai H, Frederick DW, Hine C, Broeskamp F, Habering L, Dawson J, Beasley TM, Wan J, Ikeno Y, Hubbard G, Becker KG, Zhang Y, Bohr VA, Longo DL, Navas P, Ferrucci L, Sinclair DA, Cohen P, Egan JM, Mitchell JR, Baur JA, Allison DB, Anson RM, Villalba JM, Madeo F, Cuervo AM, Pearson KJ, Ingram DK, Bernier M, de Cabo R. Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice. Cell Metab 2016; 23:1093-1112. [PMID: 27304509 PMCID: PMC4911707 DOI: 10.1016/j.cmet.2016.05.027] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/10/2023]
Abstract
Calorie restriction (CR) is the most robust non-genetic intervention to delay aging. However, there are a number of emerging experimental variables that alter CR responses. We investigated the role of sex, strain, and level of CR on health and survival in mice. CR did not always correlate with lifespan extension, although it consistently improved health across strains and sexes. Transcriptional and metabolomics changes driven by CR in liver indicated anaplerotic filling of the Krebs cycle together with fatty acid fueling of mitochondria. CR prevented age-associated decline in the liver proteostasis network while increasing mitochondrial number, preserving mitochondrial ultrastructure and function with age. Abrogation of mitochondrial function negated life-prolonging effects of CR in yeast and worms. Our data illustrate the complexity of CR in the context of aging, with a clear separation of outcomes related to health and survival, highlighting complexities of translation of CR into human interventions.
Collapse
Affiliation(s)
- Sarah J Mitchell
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Julio Madrigal-Matute
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Morten Scheibye-Knudsen
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA; Laboratory of Molecular Gerontology, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA; Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Evandro Fang
- Laboratory of Molecular Gerontology, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Miguel Aon
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - José A González-Reyes
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Agrifood Campus of International Excellence, ceiA3, 14071 Córdoba, Spain
| | - Sonia Cortassa
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marta Gonzalez-Freire
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Bindi Patel
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Devin Wahl
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Ahmed Ali
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Miguel Calvo-Rubio
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Agrifood Campus of International Excellence, ceiA3, 14071 Córdoba, Spain
| | - María I Burón
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Agrifood Campus of International Excellence, ceiA3, 14071 Córdoba, Spain
| | - Vincent Guiterrez
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Theresa M Ward
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Hector H Palacios
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Huan Cai
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - David W Frederick
- Department of Physiology, Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Hine
- Department of Genetics and Complex Diseases, Harvard University, Boston, MA 02115, USA
| | - Filomena Broeskamp
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, and BioTechMed Graz, 8010 Graz, Austria
| | - Lukas Habering
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, and BioTechMed Graz, 8010 Graz, Austria
| | - John Dawson
- Department of Biostatistics, University of Alabama, Birmingham, AL 35294, USA; GRECC, Birmingham/Atlanta Veterans Administration Hospital, Birmingham, AL 35294, USA
| | - T Mark Beasley
- Department of Biostatistics, University of Alabama, Birmingham, AL 35294, USA; GRECC, Birmingham/Atlanta Veterans Administration Hospital, Birmingham, AL 35294, USA
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Yuji Ikeno
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA
| | - Gene Hubbard
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA
| | - Kevin G Becker
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Dan L Longo
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Placido Navas
- Centro Andaluz de Biologia del Desarrollo, and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC, 41013 Sevilla, Spain
| | - Luigi Ferrucci
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - David A Sinclair
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Josephine M Egan
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - James R Mitchell
- Department of Genetics and Complex Diseases, Harvard University, Boston, MA 02115, USA
| | - Joseph A Baur
- Department of Physiology, Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David B Allison
- Department of Biostatistics, University of Alabama, Birmingham, AL 35294, USA; GRECC, Birmingham/Atlanta Veterans Administration Hospital, Birmingham, AL 35294, USA
| | - R Michael Anson
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - José M Villalba
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Agrifood Campus of International Excellence, ceiA3, 14071 Córdoba, Spain
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, and BioTechMed Graz, 8010 Graz, Austria
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kevin J Pearson
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA; Graduate Center for Nutritional Sciences, University of Kentucky, C.T. Wethington Building, Room 591, 900 South Limestone, Lexington, KY 40536, USA
| | - Donald K Ingram
- Pennington Biomedical Research Center, Baton Rouge, LA 70809, USA
| | - Michel Bernier
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|
38
|
Wood SH, van Dam S, Craig T, Tacutu R, O'Toole A, Merry BJ, de Magalhães JP. Transcriptome analysis in calorie-restricted rats implicates epigenetic and post-translational mechanisms in neuroprotection and aging. Genome Biol 2015; 16:285. [PMID: 26694192 PMCID: PMC4699360 DOI: 10.1186/s13059-015-0847-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/27/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Caloric restriction (CR) can increase longevity in rodents and improve memory function in humans. α-Lipoic acid (LA) has been shown to improve memory function in rats, but not longevity. While studies have looked at survival in rodents after switching from one diet to another, the underlying mechanisms of the beneficial effects of CR and LA supplementation are unknown. Here, we use RNA-seq in cerebral cortex from rats subjected to CR and LA-supplemented rats to understand how changes in diet can affect aging, neurodegeneration and longevity. RESULTS Gene expression changes during aging in ad libitum-fed rats are largely prevented by CR, and neuroprotective genes are overexpressed in response to both CR and LA diets with a strong overlap of differentially expressed genes between the two diets. Moreover, a number of genes are differentially expressed specifically in rat cohorts exhibiting diet-induced life extension. Finally, we observe that LA supplementation inhibits histone deacetylase (HDAC) protein activity in vitro in rat astrocytes. We find a single microRNA, miR-98-3p, that is overexpressed during CR feeding and LA dietary supplementation; this microRNA alters HDAC and histone acetyltransferase (HAT) activity, which suggests a role for HAT/HDAC homeostasis in neuroprotection. CONCLUSIONS This study presents extensive data on the effects of diet and aging on the cerebral cortex transcriptome, and also emphasises the importance of epigenetics and post-translational modifications in longevity and neuroprotection.
Collapse
Affiliation(s)
- Shona H Wood
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sipko van Dam
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Thomas Craig
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Robi Tacutu
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Amy O'Toole
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Brian J Merry
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
39
|
Abstract
Aging is the major risk factor for a constellation of multifactorial diseases, including insulin resistance, diabetes and cardiovascular complications. Dietary restriction has been shown to delay or prevent the manifestation of age-related health decline, extending lifespan in most species tested to date. Given the scarce willingness of human subjects to adhere to chronic dietary restriction exercises, there has been an interest in deciphering the molecular mechanisms triggering the adaptations to dietary restriction. In this context, Sirtuin 1 (SIRT1), a NAD+-dependent deacetylase enzyme, has been proposed to act as a key mediator of the adaptations to nutrient deprivation in eukaryotes, and SIRT1 activating compounds have been often referred to as 'dietary restriction mimetic' molecules. Here, we will discuss the convergences and divergences between the effects of dietary restriction and SIRT1 activation, based on the recent advances in the field. As of now, most evidences indicate that SIRT1 is required, but not sufficient to trigger dietary-restriction induced adaptations.
Collapse
|
40
|
Gilmore KM, Greer KA. Why is the dog an ideal model for aging research? Exp Gerontol 2015; 71:14-20. [PMID: 26325590 DOI: 10.1016/j.exger.2015.08.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 12/22/2022]
Abstract
With many caveats to the traditional vertebrate species pertaining to biogerontology investigations, it has been suggested that a most informative model is the one which: 1) examines closely related species, or various members of the same species with naturally occurring lifespan variation, 2) already has adequate medical procedures developed, 3) has a well annotated genome, 4) does not require artificial housing, and can live in its natural environment while being investigated, and 5) allows considerable information to be gathered within a relatively short period of time. The domestic dog unsurprisingly fits each criterion mentioned. The dog has already become a key model system in which to evaluate surgical techniques and novel medications because of the remarkable similarity between human and canine conditions, treatments, and response to therapy. The dog naturally serves as a disease model for study, obviating the need to construct artificial genetically modified examples of disease. Just as the dog offers a natural model for human conditions and diseases, simple observation leads to the conclusion that the canine aging phenotype also mimics that of the human. Genotype information, biochemical information pertaining to the GH/IGF-1 pathway, and some limited longitudinal investigations have begun the establishment of the domestic dog as a model of aging. Although we find that dogs indeed are a model to study aging and there are many independent pieces of canine aging data, there are many more "open" areas, ripe for investigation.
Collapse
Affiliation(s)
- Keiva M Gilmore
- Prairie View A&M University, PO Box 512, MS 2210, Prairie View, TX 77446, United States
| | - Kimberly A Greer
- Prairie View A&M University, PO Box 512, MS 2210, Prairie View, TX 77446, United States.
| |
Collapse
|
41
|
Arum O, Dawson JA, Smith DL, Kopchick JJ, Allison DB, Bartke A. Do altered energy metabolism or spontaneous locomotion 'mediate' decelerated senescence? Aging Cell 2015; 14:483-90. [PMID: 25720347 PMCID: PMC4406677 DOI: 10.1111/acel.12318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2015] [Indexed: 12/01/2022] Open
Abstract
That one or multiple measures of metabolic rate may be robustly associated with, or possibly even causative of, the progression of aging-resultant phenotypes such as lifespan is a long-standing, well-known mechanistic hypothesis. To broach this hypothesis, we assessed metabolic function and spontaneous locomotion in two genetic and one dietary mouse models for retarded aging, and subjected the data to mediation analyses to determine whether any metabolic or locomotor trait could be identified as a mediator of the effect of any of the interventions on senescence. We do not test the hypothesis of causality (which would require some experiments), but instead test whether the correlation structure of certain variables is consistent with one possible pathway model in which a proposed mediating variable has a causal role. Results for metabolic measures, including oxygen consumption and respiratory quotient, failed to support this hypothesis; similar negative results were obtained for three behavioral motion metrics. Therefore, our mediation analyses did not find support that any of these correlates of decelerated senescence was a substantial mediator of the effect of either of these genetic alterations (with or without caloric restriction) on longevity. Further studies are needed to relate the examined phenotypic characteristics to mechanisms of aging and control of longevity.
Collapse
Affiliation(s)
- Oge Arum
- Department of Internal Medicine Southern Illinois University‐School of Medicine Springfield IL 62794 USA
| | - John Alexander Dawson
- Section on Statistical Genetics Department of Biostatistics School of Public Health University of Alabama at Birmingham 1665 University Blvd RPHB 140J Birmingham AL 35294‐0022 USA
| | - Daniel Larry Smith
- Nutrition Obesity Research Center Department of Nutrition Sciences University of Alabama at Birmingham Birmingham AL 35294‐0022 USA
| | - John J. Kopchick
- Department of Biomedical Sciences Edison Biotechnology Institute Heritage College of Osteopathic Medicine Ohio University Athens OH 45701 USA
| | - David B. Allison
- Section on Statistical Genetics Department of Biostatistics School of Public Health University of Alabama at Birmingham 1665 University Blvd RPHB 140J Birmingham AL 35294‐0022 USA
- Nutrition Obesity Research Center Department of Nutrition Sciences University of Alabama at Birmingham Birmingham AL 35294‐0022 USA
| | - Andrzej Bartke
- Department of Internal Medicine Southern Illinois University‐School of Medicine Springfield IL 62794 USA
| |
Collapse
|
42
|
Newell BL, Kechris K, McQueen MB, Johnson TE. Genetic analysis of a murine QTL for diet restriction on chromosome 15. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9740. [PMID: 25651884 PMCID: PMC4317404 DOI: 10.1007/s11357-014-9740-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 12/17/2014] [Indexed: 06/02/2023]
Abstract
Diet restriction (DR), the implementation of a reduced calorie diet, without starvation, increases lifespan in a number of model organisms including mammals. How DR extends lifespan remains unclear. Genetic studies have shown that life extension is not a universal response to DR; instead, the effects of DR are strain dependent. We previously mapped a quantitative trait locus (QTL) specifying differential response to DR to chromosome 15 in the inbred long-sleep (ILS) × inbred short-sleep (ISS) recombinant inbred panel of mice. This QTL named Fedr2 (fuel efficiency response to DR)-2 modifies body weight (BW) and hair growth (HG) in response to DR. The QTL has been previously mapped using the ISS.Lore5(LA) (5LA) congenic strain. Here, we have used the reciprocal congenic strain ILS.Lore5(SA) (5SA) to further investigate Fedr2. The 5LA congenic showed increased ability to maintain BW and HG under DR. For the reciprocal congenic, 5SA, we expected the reciprocal response that the 5SA congenic would have a lesser ability to maintain BW and HG under DR. This expectation was mostly met. The Fedr2 (S) allele conferred lower BW maintenance under DR in both females and males. For females, the difference in BW was significant for the entirety of DR, and for males, the difference became significant at week 17 of DR. For HG, the Fedr2 (S) allele conferred decreased HG ability under DR in males, but not for females. These results highlight the genetic basis for variation in DR response and support the previous observations that Fedr2 mediates BW and HG during DR.
Collapse
Affiliation(s)
- Breanne L Newell
- Institute for Behavioral Genetics, University of Colorado, 1480 30th St., Boulder, CO, 80303, USA,
| | | | | | | |
Collapse
|
43
|
Allison DB, Antoine LH, Ballinger SW, Bamman MM, Biga P, Darley-Usmar VM, Fisher G, Gohlke JM, Halade GV, Hartman JL, Hunter GR, Messina JL, Nagy TR, Plaisance EP, Powell ML, Roth KA, Sandel MW, Schwartz TS, Smith DL, Sweatt JD, Tollefsbol TO, Watts SA, Yang Y, Zhang J, Austad SN. Aging and energetics' 'Top 40' future research opportunities 2010-2013. F1000Res 2014; 3:219. [PMID: 25324965 PMCID: PMC4197746 DOI: 10.12688/f1000research.5212.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/08/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND As part of a coordinated effort to expand our research activity at the interface of Aging and Energetics a team of investigators at The University of Alabama at Birmingham systematically assayed and catalogued the top research priorities identified in leading publications in that domain, believing the result would be useful to the scientific community at large. OBJECTIVE To identify research priorities and opportunities in the domain of aging and energetics as advocated in the 40 most cited papers related to aging and energetics in the last 4 years. DESIGN The investigators conducted a search for papers on aging and energetics in Scopus, ranked the resulting papers by number of times they were cited, and selected the ten most-cited papers in each of the four years that include 2010 to 2013, inclusive. RESULTS Ten research categories were identified from the 40 papers. These included: (1) Calorie restriction (CR) longevity response, (2) role of mTOR (mechanistic target of Rapamycin) and related factors in lifespan extension, (3) nutrient effects beyond energy (especially resveratrol, omega-3 fatty acids, and selected amino acids), 4) autophagy and increased longevity and health, (5) aging-associated predictors of chronic disease, (6) use and effects of mesenchymal stem cells (MSCs), (7) telomeres relative to aging and energetics, (8) accretion and effects of body fat, (9) the aging heart, and (10) mitochondria, reactive oxygen species, and cellular energetics. CONCLUSION The field is rich with exciting opportunities to build upon our existing knowledge about the relations among aspects of aging and aspects of energetics and to better understand the mechanisms which connect them.
Collapse
Affiliation(s)
- David B. Allison
- Office of Energetics, University of Alabama at Birmingham, Birmingham, USA
- School of Public Health, University of Alabama at Birmingham, Birmingham, USA
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, USA
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Lisa H. Antoine
- Office of Energetics, University of Alabama at Birmingham, Birmingham, USA
- School of Engineering, University of Alabama at Birmingham, Birmingham, USA
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, USA
| | - Scott W. Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, USA
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Marcas M. Bamman
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Cell, Developmental, & Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, USA
- Birmingham VA Medical Center, Birmingham, USA
| | - Peggy Biga
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Victor M. Darley-Usmar
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Pathology, University of Alabama at Birmingham, Birmingham, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Gordon Fisher
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, USA
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Julia M. Gohlke
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, USA
| | - Ganesh V. Halade
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Medicine – Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, USA
| | - John L. Hartman
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, USA
| | - Gary R. Hunter
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, USA
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Joseph L. Messina
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Pathology, University of Alabama at Birmingham, Birmingham, USA
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, USA
- Birmingham VA Medical Center, Birmingham, USA
| | - Tim R. Nagy
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, USA
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, USA
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Eric P. Plaisance
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, USA
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Mickie L. Powell
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Kevin A. Roth
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Michael W. Sandel
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, USA
| | - Tonia S. Schwartz
- School of Public Health, University of Alabama at Birmingham, Birmingham, USA
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
| | - Daniel L. Smith
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, USA
| | - J. David Sweatt
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Trygve O. Tollefsbol
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Stephen A. Watts
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Yongbin Yang
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, USA
| | - Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Steven N. Austad
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, USA
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
44
|
Sohal RS, Forster MJ. Caloric restriction and the aging process: a critique. Free Radic Biol Med 2014; 73:366-82. [PMID: 24941891 PMCID: PMC4111977 DOI: 10.1016/j.freeradbiomed.2014.05.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 01/06/2023]
Abstract
The main objective of this review is to provide an appraisal of the current status of the relationship between energy intake and the life span of animals. The concept that a reduction in food intake, or caloric restriction (CR), retards the aging process, delays the age-associated decline in physiological fitness, and extends the life span of organisms of diverse phylogenetic groups is one of the leading paradigms in gerontology. However, emerging evidence disputes some of the primary tenets of this conception. One disparity is that the CR-related increase in longevity is not universal and may not even be shared among different strains of the same species. A further misgiving is that the control animals, fed ad libitum (AL), become overweight and prone to early onset of diseases and death, and thus may not be the ideal control animals for studies concerned with comparisons of longevity. Reexamination of body weight and longevity data from a study involving over 60,000 mice and rats, conducted by a National Institute on Aging-sponsored project, suggests that CR-related increase in life span of specific genotypes is directly related to the gain in body weight under the AL feeding regimen. Additionally, CR in mammals and "dietary restriction" in organisms such as Drosophila are dissimilar phenomena, albeit they are often presented to be the very same. The latter involves a reduction in yeast rather than caloric intake, which is inconsistent with the notion of a common, conserved mechanism of CR action in different species. Although specific mechanisms by which CR affects longevity are not well understood, existing evidence supports the view that CR increases the life span of those particular genotypes that develop energy imbalance owing to AL feeding. In such groups, CR lowers body temperature, rate of metabolism, and oxidant production and retards the age-related pro-oxidizing shift in the redox state.
Collapse
Affiliation(s)
- Rajindar S Sohal
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Michael J Forster
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
45
|
Brett JO, Rando TA. Alive and well? Exploring disease by studying lifespan. Curr Opin Genet Dev 2014; 26:33-40. [PMID: 25005743 DOI: 10.1016/j.gde.2014.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/10/2014] [Accepted: 05/26/2014] [Indexed: 12/11/2022]
Abstract
A common concept in aging research is that chronological age is the most important risk factor for the development of diverse diseases, including degenerative diseases and cancers. The mechanistic link between the aging process and disease pathogenesis, however, is still enigmatic. Nevertheless, measurement of lifespan, as a surrogate for biological aging, remains among the most frequently used assays in aging research. In this review, we examine the connection between 'normal aging' and age-related disease from the point of view that they form a continuum of aging phenotypes. This notion of common mechanisms gives rise to the converse postulate that diseases may be risk factors for accelerated aging. We explore the advantages and caveats associated with using lifespan as a metric to understand cell and tissue aging, focusing on the elucidation of molecular mechanisms and potential therapies for age-related diseases.
Collapse
Affiliation(s)
- Jamie O Brett
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas A Rando
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Neurology Service and Rehabilitation Research and Development Center of Excellence, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
46
|
Mulvey L, Sinclair A, Selman C. Lifespan modulation in mice and the confounding effects of genetic background. J Genet Genomics 2014; 41:497-503. [PMID: 25269675 PMCID: PMC4257991 DOI: 10.1016/j.jgg.2014.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 02/04/2023]
Abstract
We are currently in the midst of a revolution in ageing research, with several dietary, genetic and pharmacological interventions now known to modulate ageing in model organisms. Excitingly, these interventions also appear to have beneficial effects on late-life health. For example, dietary restriction (DR) has been shown to slow the incidence of age-associated cardiovascular disease, metabolic disease, cancer and brain ageing in non-human primates and has been shown to improve a range of health indices in humans. While the idea that DR's ability to extend lifespan is often thought of as being universal, studies in a range of organisms, including yeast, mice and monkeys, suggest that this may not actually be the case. The precise reasons underlying these differential effects of DR on lifespan are currently unclear, but genetic background may be an important factor in how an individual responds to DR. Similarly, recent findings also suggest that the responsiveness of mice to specific genetic or pharmacological interventions that modulate ageing may again be influenced by genetic background. Consequently, while there is a clear driver to develop interventions to improve late-life health and vitality, understanding precisely how these act in response to particular genotypes is critical if we are to translate these findings to humans. We will consider of the role of genetic background in the efficacy of various lifespan interventions and discuss potential routes of utilising genetic heterogeneity to further understand how particular interventions modulate lifespan and healthspan.
Collapse
Affiliation(s)
- Lorna Mulvey
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medicine, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Amy Sinclair
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medicine, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medicine, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
47
|
A key role for neuropeptide Y in lifespan extension and cancer suppression via dietary restriction. Sci Rep 2014; 4:4517. [PMID: 24682105 PMCID: PMC3970128 DOI: 10.1038/srep04517] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/13/2014] [Indexed: 02/07/2023] Open
Abstract
Knowledge of genes essential for the life-extending effect of dietary restriction (DR) in mammals is incomplete. In this study, we found that neuropeptide Y (Npy), which mediates physiological adaptations to energy deficits, is an essential link between DR and longevity in mice. The lifespan-prolonging effect of lifelong 30% DR was attenuated in Npy-null mice, as was the effect on the occurrence of spontaneous tumors and oxidative stress responses in comparison to wild-type mice. In contrast, the physiological processes activated during adaptation to DR, including inhibition of anabolic signaling molecules (insulin and insulin-like growth factor-1), modulation of adipokine and corticosterone levels, and preferential fatty acid oxidation, were unaffected by the absence of Npy. These results suggest a key role for Npy in mediating the effects of DR. We also provide evidence that most of the physiological adaptations to DR could be achieved in mice without Npy.
Collapse
|
48
|
Szafranski K, Mekhail K. The fine line between lifespan extension and shortening in response to caloric restriction. Nucleus 2014; 5:56-65. [PMID: 24637399 PMCID: PMC4028356 DOI: 10.4161/nucl.27929] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Caloric restriction (CR) is generally linked to lifespan extension in various organisms and may limit age-associated diseases. Processes through which caloric restriction promotes lifespan include obesity-countering weight loss, increased DNA repair, control of ribosomal and telomeric DNA repeats, mitochondrial regulation, activation of antioxidants, and protective autophagy. Several of these protective cellular processes are linked to the suppression of TOR (target of rapamycin) or the activation of sirtuins. In stark contrast, CR fails to extend or even shortens lifespan in certain settings. CR-dependent lifespan shortening is linked to weight loss in the non-obese, mitochondrial hyperactivity, genomic inflexibility, and several other processes. Deciphering the balance between positive and negative effects of CR is critical to understanding its ultimate impact on aging. This knowledge is especially needed in order to fulfil the promise of using CR or its mimetic drugs to counteract age-associated diseases and unhealthy aging.
Collapse
Affiliation(s)
- Kirk Szafranski
- Department of Laboratory Medicine and Pathobiology; Faculty of Medicine, University of Toronto; Toronto, ON Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology; Faculty of Medicine, University of Toronto; Toronto, ON Canada; Canada Research Chairs Program; Faculty of Medicine, University of Toronto; Toronto, ON Canada
| |
Collapse
|
49
|
Abstract
Dietary restriction (DR) has been shown to extend both median and maximum lifespan in a range of animals, although recent findings suggest that these effects are not universally enjoyed across all animals. In particular, the lifespan effect following DR in mice is highly strain-specific and there is little current evidence that DR induces a positive effect on all-cause mortality in non-human primates. However, the positive effects of DR on health appear to be highly conserved across the vast majority of species, including human subjects. Despite these effects on health, it is highly unlikely that DR will become a realistic or popular life choice for most human subjects given the level of restraint required. Consequently significant research is focusing on identifying compounds that will bestow the benefits of DR without the obligation to adhere to stringent reductions in daily food intake. Several such compounds, including rapamycin, metformin and resveratrol, have been identified as potential DR mimetics. Although these compounds show significant promise, there is a need to properly understand the mechanisms through which these drugs act. This review will discuss the importance in understanding the role that genetic background and heterogeneity play in mediating the lifespan and healthspan effects of DR. It will also provide an overview of the most promising current DR mimetics and their effects on healthy lifespan.
Collapse
|
50
|
Mazzoccoli G, Tevy MF, Borghesan M, Delle Vergini MR, Vinciguerra M. Caloric restriction and aging stem cells: the stick and the carrot? Exp Gerontol 2013; 50:137-48. [PMID: 24211426 DOI: 10.1016/j.exger.2013.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/03/2013] [Accepted: 10/28/2013] [Indexed: 12/24/2022]
Abstract
Adult tissue stem cells have the ability to adjust to environmental changes and affect also the proliferation of neighboring cells, with important consequences on tissue maintenance and regeneration. Stem cell renewal and proliferation is strongly regulated during aging of the organism. Caloric restriction is the most powerful anti-aging strategy conserved throughout evolution in the animal kingdom. Recent studies relate the properties of caloric restriction to its ability in reprogramming stem-like cell states and in prolonging the capacity of stem cells to self-renew, proliferate, differentiate, and replace cells in several adult tissues. However this general paradigm presents with exceptions. The scope of this review is to highlight how caloric restriction impacts on diverse stem cell compartments and, by doing so, might differentially delay aging in the tissues of lower and higher organisms.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo, FG, Italy.
| | - Maria Florencia Tevy
- Genomics and Bioinformatics Centre, Major University of Santiago, Santiago, Chile
| | - Michela Borghesan
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo, FG, Italy; University College London, Institute for Liver and Digestive Health, Division of Medicine, Royal Free Campus, London, United Kingdom
| | - Maria Rita Delle Vergini
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo, FG, Italy
| | - Manlio Vinciguerra
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo, FG, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy; University College London, Institute for Liver and Digestive Health, Division of Medicine, Royal Free Campus, London, United Kingdom.
| |
Collapse
|