1
|
Wang Y, Hou H, Dong G, Zhang H, Zhang X, Zhou Y, Xue M, Wang Z, Geng J, Liu L. Age-related distribution of human papillomavirus genotypes in women with cervical squamous cell carcinoma from Linyi, China, 2015-2023. Virol J 2025; 22:157. [PMID: 40405259 PMCID: PMC12100862 DOI: 10.1186/s12985-025-02790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 05/13/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Understanding the regional HPV genotype profile is critical for informing targeted vaccination strategies and optimizing cervical cancer screening programs to enhance their effectiveness. This study investigated the prevalence and distribution of human papillomavirus (HPV) genotypes among women with cervical squamous cell carcinoma (CSCC) in Linyi city, China, from 2015 to 2023. METHODS Data were obtained from 606 women histologically diagnosed with CSCC at Linyi Cancer Hospital between January 2015 and December 2023. DNA was extracted from paraffin-embedded tissue samples. HPV genotyping was performed via gene chip-based polymerase chain reaction (PCR) technology. Temporal trends and age-specific variations in HPV genotype distribution were analyzed to provide a comprehensive epidemiological assessment. RESULTS The overall prevalence of HPV infection was 94.7% among 606 women with CSCC. HPV 16 was the most prevalent genotype (80.5%), followed by HPV 18 (5.2%), HPV 33 (2.8%), HPV 31 (1.8%), and HPV 58 (1.8%). Single infections were predominant (95.5%), while coinfections were observed in 4.5% of the cases. Age-specific analysis revealed that non-HPV 16 infections were more prevalent in women aged > 45 years, with greater genotype diversity in older age groups. Temporal trends indicated a decline in the prevalence of younger CSCC patients (26-45 years), whereas the prevalence of older women significantly increased. CONCLUSION Our study revealed that HPV genotype diversity in CSCC patients varies with age, highlighting the need for age-stratified and personalized cervical cancer prevention strategies. Enhanced screening efforts for older women are essential because of the greater genotypes diversity in this group. Additionally, the observed trends in HPV prevalence over time suggest that HPV vaccination has effectively reduced the incidence of CSCC in women under 45 years of age. These findings emphasize the importance of expanding vaccination coverage and optimizing screening programs to further reduce the cervical cancer burden across different age groups.
Collapse
Affiliation(s)
- Yiming Wang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Haiyan Hou
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Guanzheng Dong
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Hanlin Zhang
- Department of Pathology, Linyi Cancer Hospital, Linyi, Shandong Province, China
| | - Xiaohong Zhang
- Department of Pathology, Linyi Cancer Hospital, Linyi, Shandong Province, China
| | - Yuxia Zhou
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Mei Xue
- Department of Pathology, Linyi Cancer Hospital, Linyi, Shandong Province, China
| | - Zhihui Wang
- Department of Pathology, Linyi Cancer Hospital, Linyi, Shandong Province, China
| | - Jianxiang Geng
- Nanjing Chinese Medicine Hospital, Nanjing, Jiangsu Province, China
| | - Lisai Liu
- Department of Pathology, Linyi Cancer Hospital, Linyi, Shandong Province, China.
| |
Collapse
|
2
|
Cheng J, Zheng J, Ma C, Li Y, Hao H. T-cell senescence: Unlocking the tumor immune "Dark Box" - A multidimensional analysis from mechanism to tumor immunotherapeutic intervention. Semin Cancer Biol 2025; 113:190-209. [PMID: 40381926 DOI: 10.1016/j.semcancer.2025.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Immunosenescence is the dysfunction of the immune system that occurs with age, a process that is complex and characterized by several features, of which T-cell senescence is one of the key manifestations. In the tumor microenvironment, senescent T cells lead to the inability of tumor cells to be effectively eliminated, triggering immunosuppression, which in turn affects the efficacy of immunotherapy. This is a strong indication that T-cell senescence significantly weakens the immune function of the body, making individuals, especially elderly patients with cancer, more vulnerable to cancer attacks. Despite the many challenges, T-cell senescence is important as a potential therapeutic target. This review provides insights into the molecular mechanisms of T-cell senescence and its research advances in patients with cancer, especially in older adults, and systematically analyzes potential intervention strategies, including molecular mechanism-based interventions, the use of immune checkpoint inhibitors, and CAR-T cell therapy. It is hoped that this will establish a theoretical framework for T-cell senescence in the field of tumor immunology and provide a scientific and prospective reference basis for subsequent in-depth research and clinical practice on senescent T cells.
Collapse
Affiliation(s)
- Jia Cheng
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361004, China; Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, China.
| | - Jian Zheng
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Chen Ma
- Department of Emergency Internal Medicine, Zibo Central Hospital, Zibo 255024, China
| | - Yongzhang Li
- Department of Urology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang 050017, China.
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China.
| |
Collapse
|
3
|
Amare GA, Wondmagegn YM, Setegn A, Belayneh M, Muche Y, Melkamu A, Misgana K, Ashagre A, Baylie T, Jemal M, Getinet M, Fenta A, Belew H, Adugna A. Effectiveness of Ivermectin treatment among adult patients infected with Strongyloides stercoralis in East Gojam zone, Northwest Ethiopia. BMC Infect Dis 2025; 25:691. [PMID: 40355823 PMCID: PMC12070724 DOI: 10.1186/s12879-025-11070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
INTRODUCTION Strongyloidiasis caused by the parasite Strongyloides stercoralis, is a significant public health issue, particularly in low-income countries with inadequate sanitation practices. Ivermectin is the recommended drug by the World Health Organization for treating S. stercoralis infection, but its efficacy in Ethiopia has not been extensively studied. This study aimed to assess the effectiveness of Ivermectin treatment for S. stercoralis infection in adult patients. METHODS A cross-sectional study was conducted in government hospitals in northwest Ethiopia from June 2022 to February 2024. A total of 190 patients confirmed to be infected with S. stercoralis were treated with Ivermectin (200 µg/kg) for two days. Stool samples were collected two weeks after treatment and analyzed using parasitological concentration techniques. RESULTS The cure rate was 90% among the treated individuals, demonstrating a significant reduction in the prevalence of S. stercoralis infection. Among the cases that were not cured, the majority were older individuals, with a higher proportion (66.8%) residing in rural areas. A small number of non-cured individuals experienced persistent symptoms after treatment. All individuals who successfully cleared the infection were asymptomatic. CONCLUSION The study found a 90% cure rate for the current 2-day Ivermectin treatment regimen (200 µg/kg) against Strongyloides stercoralis in Ethiopia, suggesting the recommended strategy is appropriate. Age, residential area, and other factors have been found to influence treatment outcomes, warranting further investigation into potential resistance factors and optimizing treatment for different populations.
Collapse
Affiliation(s)
- Gashaw Azanaw Amare
- Department of Medical Laboratory Science, Debre Markos University, Debre Markos, Ethiopia.
| | | | - Abebaw Setegn
- Department of Medical Parasitology, University of Gondar, Gondar, Ethiopia
| | - Mekuriaw Belayneh
- Department of Medical Laboratory Science, Debre Markos University, Debre Markos, Ethiopia
| | - Yalew Muche
- Department of Medical Laboratory Science, Debre Markos University, Debre Markos, Ethiopia
| | - Abateneh Melkamu
- Department of Medical Laboratory Science, Debre Markos University, Debre Markos, Ethiopia
| | - Kassahun Misgana
- Department of Medical Laboratory Science, Arba Minch University, Arba Minch, Ethiopia
| | - Agenagnew Ashagre
- Department of Medical Laboratory Science, Woldia University, Woldia, Ethiopia
| | - Temesgen Baylie
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mamaru Getinet
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Fenta
- Department of Medical Laboratory Science, Debre Markos University, Debre Markos, Ethiopia
| | - Habtamu Belew
- Department of Medical Laboratory Science, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Adugna
- Department of Medical Laboratory Science, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
4
|
Su QY, Zheng XX, Han XT, Li Q, Gao YR, Zhang SX, Li XF. The role of age-associated B cells in systemic lupus erythematosus. J Autoimmun 2025; 154:103433. [PMID: 40334618 DOI: 10.1016/j.jaut.2025.103433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
Age-associated B cells (ABCs) are a distinct subset of B cells. This B-cell population expands in the elderly but is also abnormally expanded in patients with autoimmune diseases like systemic lupus erythematosus (SLE). ABC differentiation requires unique signaling stimuli, including BCR stimulation, TLR7 and TLR9 signaling, and the action of cytokines. The role of ABCs in the pathogenesis and treatment strategies of SLE has been a research hotspot in recent years. Possible pathogenic mechanisms include the production of autoantibodies and cytokines, as well as stimulation of spontaneous germinal center. Specifically targeting ABCs is a promising strategy for treating SLE. This article reviews the role of ABCs in SLE. Understanding the origin and differentiation of ABCs and their role in SLE will facilitate the discovery of novel drug targets for the treatment of SLE.
Collapse
Affiliation(s)
- Qin-Yi Su
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Xin-Xin Zheng
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Xin-Ting Han
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Qian Li
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Ya-Ru Gao
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Sheng-Xiao Zhang
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Xiao-Feng Li
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
5
|
Chaumont A, Martin A, Flamaing J, Wiseman DJ, Vandermeulen C, Jongert E, Doherty TM, Buchy P, Varga SM, Warter L. Host immune response to respiratory syncytial virus infection and its contribution to protection and susceptibility in adults: a systematic literature review. Expert Rev Clin Immunol 2025:1-16. [PMID: 40278893 DOI: 10.1080/1744666x.2025.2494658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/26/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
INTRODUCTION Respiratory syncytial virus (RSV) is an important pathogen in infants, children, older adults, and those with comorbidities. Mechanisms involving viral proteins appear to underlie the ability of RSV to evade and modulate host immunity. We aimed to understand virus- and host-dependent factors regulating the development and severity of RSV infection, as related to the prevention and treatment of RSV-associated disease in adults, through a systematic literature review (SLR). METHODS An SLR was conducted to identify immune mechanisms involved in the protective response to RSV infection in adults, and responses that may contribute to the development of severe disease. Concurrent searches (MEDLINE/Embase) using embase.com identified relevant papers published between 1990 and 19 April 2023. RESULTS Of 1813 records identified, 113 were selected for review. Inclusion criteria were based on relevant patient populations, outcomes, and study methodologies. RSV is common, recurrent, and associated with high morbidity and mortality in older adults and people with underlying chronic diseases. Immune responses differ between younger and older adults. The approval of effective vaccines may protect older individuals from symptomatic RSV infection. CONCLUSIONS We established the complexities of RSV immune response, but further research is required to fully understand anti-RSV immunology.
Collapse
Affiliation(s)
| | | | - Johan Flamaing
- Department of Geriatric Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Dexter J Wiseman
- Department of Respiratory Medicine, Chelsea and Westminster Hospital, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | | | | | - Steven M Varga
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
6
|
Wu Z, Li B, Zhu W, Shang J, Yao J, Huang Y, Yin J, Zhou X. Immune biomarkers for predicting postoperative pneumonia following hip fracture surgery. Biomark Med 2025; 19:341-348. [PMID: 40222047 PMCID: PMC12051530 DOI: 10.1080/17520363.2025.2491302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 04/07/2025] [Indexed: 04/15/2025] Open
Abstract
OBJECTIVE Abnormalities of lymphocyte subsets have been observed in patients with pneumonia. This study investigated the diagnostic efficiency of lymphocyte subsets in the detection of early-stage postoperative pneumonia (POP) among older patients undergoing hip fracture surgery. METHODS A total of 576 patients with hip fracture were recruited and analyzed for lymphocyte subsets on the first postoperative day. RESULTS The incidence of POP was 10.6% (61/576) from March 2016 to December 2023. The area under the curve for the percentage of CD8+ HLA-DR+ T cells was higher than that of CD4+ T and CD4+ CD45RA+ T cells. A high percentage of CD8+ HLA-DR+ T cells was significantly associated with an increased occurrence of POP. The positive findings remained significant after adjusting for confounding factors. Among the multiple complications, patients with diabetes tended to have higher percentages of CD8+ HLA-DR+ T cells. CONCLUSIONS The percentage of CD8+ HLA-DR+ T cells had a good predictive value for detecting early-stage POP. Multi-center prospective studies with larger sample sizes are needed to verify this finding.
Collapse
Affiliation(s)
- Zemin Wu
- Department of Emergency, Wujin Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu, China
| | - Bing Li
- Department of Orthopedics, Wujin Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu, China
| | - Wenke Zhu
- Department of Orthopedics, Wujin Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu, China
| | - JingJing Shang
- Department of Pharmacy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Jiapei Yao
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yong Huang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Jiansong Yin
- Department of Neonatology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xindie Zhou
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
- Department of Orthopedics, Gonghe County Hospital of Traditional Chinese Medicine, Hainan Tibetan Autonomous Prefecture, Qinghai Province, China
| |
Collapse
|
7
|
Yang L, Wu W, Yang J, Xu M. Nanoparticle-mediated delivery of herbal-derived natural products to modulate immunosenescence-induced drug resistance in cancer therapy: a comprehensive review. Front Oncol 2025; 15:1567896. [PMID: 40356750 PMCID: PMC12066338 DOI: 10.3389/fonc.2025.1567896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/28/2025] [Indexed: 05/15/2025] Open
Abstract
Immunosenescence, the age-associated decline of the immune system, is pivotal in fostering drug resistance within the tumor microenvironment (TME). The accumulation of senescent immune cells and the release of pro-inflammatory senescence-associated secretory phenotype (SASP) factors create a milieu that supports tumor survival and undermines therapeutic efficacy. Traditional cancer treatments often fail to address this underlying issue, leading to suboptimal outcomes. This article proposes an innovative strategy to overcome immunosenescence-induced drug resistance through the nanoparticle-mediated delivery of herbal-derived natural products (HDNPs), which possess senolytic and immunomodulatory properties capable of clearing senescent cells and rejuvenating immune function. Nanoparticle delivery systems enhance these compounds' stability, bioavailability, and targeted delivery to the TME and senescent immune cells. By harnessing the synergistic effects of HDNPs and nanotechnology, this approach offers a novel and multifaceted solution to drug resistance in cancer therapy. It holds the potential to restore immune surveillance, reduce pro-survival signaling in cancer cells, and enhance the efficacy of conventional treatments. This paradigm shift emphasizes the importance of addressing immunosenescence as a therapeutic target and paves the way for more effective and personalized cancer interventions.
Collapse
Affiliation(s)
- Lichang Yang
- Xuzhou Affiliated Hospital of Nanjing University of Chinese Medicine, Xuzhou, China
| | - Wei Wu
- Department of Geriatrics, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Yang
- Xuzhou Affiliated Hospital of Nanjing University of Chinese Medicine, Xuzhou, China
| | - Manman Xu
- Department of Geriatrics, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Zhang X, Tian S, Zhang X, Guo F, Chen B, Zhang D, Ren Z, Zhang J, Zhang X. Research and predictive analysis of the disease burden of bloodstream infectious diseases in China. BMC Infect Dis 2025; 25:578. [PMID: 40264014 PMCID: PMC12012979 DOI: 10.1186/s12879-025-10989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/16/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Bloodstream Infection(BSI) are one of the leading causes of infection-related mortality worldwide. However, epidemiological data related to BSI in China remain very limited. METHODS Based on the Global Burden of Disease(GBD) database, a systematic analysis was conducted on the epidemic trends, pathogen spectrum, and the current status of Antimicrobial Resistance(AMR) related to BSI in China for the year 2021. Additionally, an Autoregressive Integrated Moving Average(ARIMA) time series model was constructed to predict the trend of the disease burden associated with BSI in China from 2022 to 2035. RESULTS In terms of pathogens, the top five pathogens causing deaths due to BSI in China are as follows: Staphylococcus aureus, Escherichia coli, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. There are significant differences in the pathogens causing BSI across different age groups. The disease burden is heaviest in the elderly population aged 70 and above. Among children under five years old, Staphylococcus aureus, Streptococcus pneumoniae, and Candida species are predominant. From 1990 to 2021, although there has been a gradual decline in mortality rates due to BSI across different age groups (with an approximately 52.4% reduction in age-standardized rates), the disease burden of BSI increases with age. This is especially evident in the population aged 70 and above, where the burden of disease is significantly higher than in other age groups. For instance, in 2021, the mortality rate for individuals aged 70-74 was 149.29 (per 100 K), while for those aged 95 and older, the mortality rate reached as high as 896.71 (per 100 K). On a global scale, the disease burden caused by BSI in China is at a moderate level. According to time series model projections, the mortality burden of BSI in China shows a complex trend toward 2035: the crude mortality rate across all age groups is expected to increase by approximately 14.26%, whereas the age-standardized mortality rate and Disability-Adjusted Life Years(DALYs) are projected to decrease significantly. Notably, the mortality burden is expected to decline most prominently in the 70 + and under 5 age groups, while the 25-44 age group is projected to see minimal change. Conversely, the mortality rates for the 5-49 age group are anticipated to increase slightly. CONCLUSION Staphylococcus aureus and Escherichia coli are key pathogens contributing to the high mortality burden of BSI. Additionally, the heavy burden associated with AMR poses significant challenges to clinical treatment. From 1990 to 2021, the age-standardized mortality rate mortality of BSI patients is gradually decreasing, and the change in BSI mortality will be mainly affected by the changes in population size and age structure. The forecast analysis for 2022-2035 finds that the death burden of the elderly will be the heaviest, and the mortality of people aged 5-49 years will increase slightly. BSI and its related health problems are still major challenges and need continuous attention. CLINICAL TRIAL Inapplicability.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- First Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Sufei Tian
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xifan Zhang
- First Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Feng Guo
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang, China
| | - Baiyi Chen
- First Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Deng Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zhihui Ren
- Intensive Care Unit, Shenyang Fourth People's Hospital affiliated to China Medical University, Shenyang, China
| | - Jingping Zhang
- First Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Xin Zhang
- First Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
9
|
Huang Y, Li S, Ye W, Wang H, Su J, Gao L, Shi R, Mou X, Leng SX, Xiao C, Chen G. Viral Infections in Elderly Individuals: A Comprehensive Overview of SARS-CoV-2 and Influenza Susceptibility, Pathogenesis, and Clinical Treatment Strategies. Vaccines (Basel) 2025; 13:431. [PMID: 40333344 PMCID: PMC12031201 DOI: 10.3390/vaccines13040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/12/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
As age increases, the immune function of elderly individuals gradually decreases, increasing their susceptibility to infectious diseases. Therefore, further research on common viral infections in the elderly population, especially severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses, is crucial for scientific progress. This review delves into the genetic structure, infection mechanisms, and impact of coinfections with these two viruses and provides a detailed analysis of the reasons for the increased susceptibility of elderly individuals to dual viral infections. We evaluated the clinical manifestations in elderly individuals following coinfections, including complications in the respiratory, gastrointestinal, nervous, and cardiovascular systems. Ultimately, we have summarized the current strategies for the prevention, diagnosis, and treatment of SARS-CoV-2 and influenza coinfections in older adults. Through these studies, we aim to reduce the risk of dual infections in elderly individuals and provide a scientific basis for the prevention, diagnosis, and treatment of age-related viral diseases, thereby improving their health status.
Collapse
Affiliation(s)
- Yanhao Huang
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), School of Medicine, Jinan University, Dongguan 523000, China;
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (W.Y.); (H.W.); (L.G.); (R.S.); (X.M.)
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Shumin Li
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (W.Y.); (H.W.); (L.G.); (R.S.); (X.M.)
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Wenjie Ye
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (W.Y.); (H.W.); (L.G.); (R.S.); (X.M.)
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Haoyun Wang
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (W.Y.); (H.W.); (L.G.); (R.S.); (X.M.)
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jun Su
- First Affiliated Hospital, Jinan University, Guangzhou 510632, China;
| | - Lijuan Gao
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (W.Y.); (H.W.); (L.G.); (R.S.); (X.M.)
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ruohu Shi
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (W.Y.); (H.W.); (L.G.); (R.S.); (X.M.)
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xinyi Mou
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (W.Y.); (H.W.); (L.G.); (R.S.); (X.M.)
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Sean Xiao Leng
- Johns Hopkins Center on Aging and Immune Remodeling, Division of Geriatric Medicine and Gerontology, Departments of Medicine, Molecular Microbiology and Immunology, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Chanchan Xiao
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), School of Medicine, Jinan University, Dongguan 523000, China;
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (W.Y.); (H.W.); (L.G.); (R.S.); (X.M.)
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai 519070, China
| | - Guobing Chen
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), School of Medicine, Jinan University, Dongguan 523000, China;
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (W.Y.); (H.W.); (L.G.); (R.S.); (X.M.)
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai 519070, China
| |
Collapse
|
10
|
Ziogas DC, Theocharopoulos C, Aravantinou K, Boukouris AE, Stefanou D, Anastasopoulou A, Lialios PP, Lyrarakis G, Gogas H. Clinical benefit of immune checkpoint inhibitors in elderly cancer patients: Current evidence from immunosenescence pathophysiology to clinical trial results. Crit Rev Oncol Hematol 2025; 208:104635. [PMID: 39889861 DOI: 10.1016/j.critrevonc.2025.104635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025] Open
Abstract
The age-related decline in immunity appears to be associated not only with cancer development but also with differential responses to immune checkpoint inhibitors (ICIs). Despite their increasing utility across various malignancies and therapeutic settings, limited data -derived primarily from subgroup analyses of randomized controlled trials (RCTs), pooled meta-analyses, and retrospective studies- are available on the effects of aging on their efficacy and toxicity. Immunosenescence, characterized by the progressive decline of the function of the immune system, and inflammaging, a state of persistent low-grade sterile inflammation, may influence ICI outcomes. Additionally, the incidence, severity, and subtypes of immune-related adverse events (irAEs) may differ between older and younger individuals due to loss of immunotolerance. In the current review, starting from a a comprehensive discussion of the pathophysiology of immunosenescence, we proceed to critically review age-related retrospective and randomized evidence supporting FDA-approved ICIs. We highlight similarities or differences across age groups and the clinical benefit of ICIs in elderly versus younger cancer patients. The optimal integration of ICIs in geriatric oncology necessitates greater inclusion of this patient demographic in RCTs along with real-world data in order to acquire robust data which will guide evidence-based treatment decisions for this population.
Collapse
Affiliation(s)
- Dimitrios C Ziogas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Charalampos Theocharopoulos
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Katerina Aravantinou
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Aristeidis E Boukouris
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Dimitra Stefanou
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Amalia Anastasopoulou
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Panagiotis-Petros Lialios
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - George Lyrarakis
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| |
Collapse
|
11
|
Weinberg A, Vu T, Johnson MJ, Schmid DS, Levin MJ. The Reduced Immunogenicity of Zoster Vaccines in CMV-Seropositive Older Adults Correlates with T Cell Imprinting. Vaccines (Basel) 2025; 13:340. [PMID: 40333195 PMCID: PMC12031329 DOI: 10.3390/vaccines13040340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 05/09/2025] Open
Abstract
Background: Cytomegalovirus (CMV) infection and age impact immune responses to vaccines. The effect of sex remains controversial. We investigated the relationship between cytomegalovirus-seropositivity, age, and sex and the immunogenicity of the recombinant (RZV) and live (ZVL) zoster vaccines in adults ≥50 years of age. Methods: Varicella zoster virus (VZV) glycoprotein E (gE)-specific antibody, antibody avidity, and cell-mediated immunity (CMI) were measured pre-vaccination and at regular intervals over 5 years post-vaccination in 80 RZV and 79 ZVL recipients, including 91 cytomegalovirus-seropositive and 90 female participants. Results: Differences associated with CMV-seropositivity: lower VZV-gE-CMI in RZV recipients after the first dose of vaccine, but no differences after the 2nd dose; lower VZV-gE-specific antibody avidity in ZVL recipients; and more abundant Th1 and senescent T cells (Tsen) and less abundant regulatory (Treg) and tissue-resident memory T cells (Trm). Differences associated with older age: lower antibody responses in RZV recipients and lower Th1 cells. Differences associated with sex: none for immunogenicity of either vaccine. Differences associated with T cell subset abundance: higher Tsens and lower Tregs or Trms were associated with lower post-dose 1 VZV-gE-specific CMI in RZV recipients, and higher Th1s were associated with higher antibody concentrations. Conclusions: The correlation of CMV- and age-associated T cell subsets with the immunogenicity of ZVLs and RZVs suggests that T cell imprinting contributes to the effect of age and CMV on vaccine responses.
Collapse
Affiliation(s)
- Adriana Weinberg
- Department of Pediatrics, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (M.J.J.); (M.J.L.)
- Department of Medicine, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
- Department of Pathology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Thao Vu
- Department of Biostatistics, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA;
| | - Michael J. Johnson
- Department of Pediatrics, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (M.J.J.); (M.J.L.)
| | - D. Scott Schmid
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80302, USA;
| | - Myron J. Levin
- Department of Pediatrics, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (M.J.J.); (M.J.L.)
- Department of Medicine, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Ullah A, Liu L, Qi X, Liu H. A Flow Cytometric Approach to Assess RBC-Bound IgG Antibodies in Different Age Populations. Immunobiology 2025; 230:152896. [PMID: 40203504 DOI: 10.1016/j.imbio.2025.152896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND RBC-bound IgG antibody-mediated agglutination occurs when red blood cells (RBCs) cluster together due to the presence of antibodies or other contributing factors. This process could be favorable in the elderly population. Not only is it critical for blood typing procedures, but also plays a significant role in autoimmune hemolytic anemia, a condition characterized by escalated destruction of RBCs. Understanding these mechanisms are essential for precise diagnoses, ensuring the safety of blood transfusions, and facilitating laboratory testing protocols in clinical settings. OBJECTIVE This study explores to detect RBC-bound IgG antibodies in various age groups using flow cytometry method. MATERIALS AND METHODS A total of 120 Serum samples were taken from different age groups of healthy individuals. In addation, 30 samples were obtained from individuals with autoimmune diseases, and another 30 samples were collected from healthy elderly individuals of the same ages. Serum (100 μL) were added in eppendorf tube containing equal amount of normal saline and 50 μL of 2 % RBC, mixed well and then kept in water bath at 37 °C for 30 min. After incubation, antihuman globulin (AHG) was added and checked for the index of agglutination (IAG) using flow cytometry method. A control sample was also analyzed using the same method. RESULTS Flow cytometry analysis revealed significant differences in IAG between younger individuals and the elderly (P-value 0.003), demonstrating a positive linear relationship. Interestingly, no agglutination was observed in the younger group, whereas elderly healthy individuals exhibited agglutination. Furthermore, significant differences were found between autoimmune disease patients and elderly healthy individuals of the same age groups (P-value 0.0001), with strong IAG in autoimmune patients compared to relatively less agglutination in the elderly population. CONCLUSION Our study has successfully detected RBC-bound IgG antibodies in various age groups. Young age groups showed negative IAG while elderly individuals and patients with autoimmune diseases exhibited the presence of RBC-bound IgG antibodies.
Collapse
Affiliation(s)
- Anwar Ullah
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Lina Liu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Xia Qi
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| | - Hui Liu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
13
|
Francavilla F, Intranuovo F, La Spada G, Lacivita E, Catto M, Graps EA, Altomare CD. Inflammaging and Immunosenescence in the Post-COVID Era: Small Molecules, Big Challenges. ChemMedChem 2025; 20:e202400672. [PMID: 39651728 DOI: 10.1002/cmdc.202400672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/11/2024]
Abstract
Aging naturally involves a decline in biological functions, often triggering a disequilibrium of physiological processes. A common outcome is the altered response exerted by the immune system to counteract infections, known as immunosenescence, which has been recognized as a primary cause, among others, of the so-called long-COVID syndrome. Moreover, the uncontrolled immunoreaction leads to a state of subacute, chronic inflammatory state known as inflammaging, responsible in turn for the chronicization of concomitant pathologies in a self-sustaining process. Anti-inflammatory and immunosuppressant drugs are the current choice for the therapy of inflammaging in post-COVID complications, with contrasting results. The increasing knowledge of the biochemical pathways of inflammaging led to disclose new small molecules-based therapies directed toward different biological targets involved in inflammation, immunological response, and oxidative stress. Herein, paying particular attention to recent clinical data and preclinical literature, we focus on the role of endocannabinoid system in inflammaging, and the promising therapeutic option represented by the CB2R agonists, the role of novel ligands of the formyl peptide receptor 2 and ultimately the potential of newly discovered monoamine oxidase (MAO) inhibitors with neuroprotective activity in the treatment of immunosenescence.
Collapse
Affiliation(s)
- Fabio Francavilla
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Francesca Intranuovo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Gabriella La Spada
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Enza Lacivita
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Elisabetta Anna Graps
- ARESS Puglia - Agenzia Regionale strategica per la Salute ed il Sociale, Lungomare Nazario Sauro 33, 70121, Bari, Italy
| | - Cosimo Damiano Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
14
|
Xu L, Li C, Aiello AE, Langa KM, Dowd JB, Stebbins RC, Meier HCS, Jiang Z, Noppert GA, Li G. Compositional analysis of lymphocytes and their relationship with health outcomes: findings from the health and retirement study. Immun Ageing 2025; 22:12. [PMID: 40075474 PMCID: PMC11899731 DOI: 10.1186/s12979-025-00505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Immunosenescence, the gradual deterioration of the immune system, is critical for aging-related diseases. However, the lack of detailed population-level immune data has limited our understanding, underscoring the need for innovative analytical approaches. The Health and Retirement Study (HRS) in the United States provides a unique opportunity to examine T and B lymphocyte subsets using compositional data analysis and dimension reduction techniques. METHODS We constructed a hierarchical tree structure to map relationships among T and B subset cells in HRS. Network analysis examined conditional dependence across 16 immune subset cells, while stepwise redundancy analysis (SRDA) identified a subset of pairwise logratio measures that capture main variance in immune composition. We conducted two sets of supervised learning analyses: first, linear penalized log-contrast models to examine the associations between subset cells and three health outcomes (chronic disease index, self-reported health, and frailty level); second, linear regressions to examine the associations between the top selected logratios and health outcomes. FINDINGS Our study included 6,250 participants from the HRS with a median age of 68. Network analysis showed some dependence among 16 immune subset cells, including associations between central memory CD4 + T cells and both other CD4 + T cells and other lymphocytes, as well as between central memory CD8 + T cells and other CD8 + T cells. SRDA identified nine key log-ratio measures, explaining over 90% of the variance in immune composition. Linear penalized log-contrast models showed that a lower proportion of naïve CD4 + T cells and higher proportions of other CD4 + and central memory CD8 + T cells were significantly associated with greater chronic disease burden, poorer self-reported health, and higher frailty levels. Linear regression models using log-ratios reinforced these patterns, showing that a higher ratio of other lymphocytes over naïve CD4 + T cells and terminally differentiated effector memory CD4 + T cells over other CD8 + T cells were associated with greater chronic disease burden, poorer self-reported health, and higher frailty levels. In contrast, a higher ratio of other lymphocytes over central memory CD4 + T cells was associated with better health outcomes. INTERPRETATION Our findings highlight the value of a systems-based approach and compositional analysis in understanding immunosenescence and its impact on health. The identified subset cells and logratio measures provide meaningful insights into immune aging and warrant further investigation to explore their long-term relationships with health outcomes.
Collapse
Affiliation(s)
- Lantian Xu
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Chihua Li
- Institute of Chinese Medical Sciences, University of Macau, Macao, SAR, China.
- Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.
| | - Allison E Aiello
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
- Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Kenneth M Langa
- Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer B Dowd
- Leverhulme Centre for Demographic Science, University of Oxford, Oxford, UK
- Nuffield College, University of Oxford, Oxford, UK
| | - Rebecca C Stebbins
- Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Helen C S Meier
- Leverhulme Centre for Demographic Science, University of Oxford, Oxford, UK
| | - Ziman Jiang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Grace A Noppert
- Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Gen Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Zeamer AL, Lai Y, Sanborn V, Loew E, Tracy M, Jo C, Ward DV, Bhattarai SK, Drake J, McCormick BA, Bucci V, Haran JP. Microbiome functional gene pathways predict cognitive performance in older adults with Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641911. [PMID: 40161798 PMCID: PMC11952313 DOI: 10.1101/2025.03.06.641911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Disturbances in the gut microbiome is increasing correlated with neurodegenerative disorders, including Alzheimer's Disease. The microbiome may in fact influence disease pathology in AD by triggering or potentiating systemic and neuroinflammation, thereby driving disease pathology along the "microbiota-gut-brain-axis". Currently, drivers of cognitive decline and symptomatic progression in AD remain unknown and understudied. Changes in gut microbiome composition may offer clues to potential systemic physiologic and neuropathologic changes that contribute to cognitive decline. Here, we recruited a cohort of 260 older adults (age 60+) living in the community and followed them over time, tracking objective measures of cognition, clinical information, and gut microbiomes. Subjects were classified as healthy controls or as having mild cognitive impairment based on cognitive performance. Those with a diagnosis of Alzheimer's Diseases with confirmed using serum biomarkers. Using metagenomic sequencing, we found that relative species abundances correlated well with cognition status (MCI or AD). Furthermore, gene pathways analyses suggest certain microbial metabolic pathways to either be correlated with cognitive decline or maintaining cognitive function. Specifically, genes involved in the urea cycle or production of methionine and cysteine predicted worse cognitive performance. Our study suggests that gut microbiome composition may predict AD cognitive performance.
Collapse
Affiliation(s)
- Abigail L. Zeamer
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Yushuan Lai
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Ethan Loew
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Matthew Tracy
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cynthia Jo
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Doyle V. Ward
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shakti K. Bhattarai
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Beth A. McCormick
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Vanni Bucci
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - John P. Haran
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
16
|
Raza ML. The stress-immune system axis: Exploring the interplay between stress and immunity. PROGRESS IN BRAIN RESEARCH 2025; 291:289-317. [PMID: 40222784 DOI: 10.1016/bs.pbr.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The chapter talks about how our body and mind respond to stress and how it affects our immune system. Stress reactions, especially the fight-or-flight reaction, are helpful at first but can be harmful if they last too long. Long-term stress, caused by hormones like cortisol and adrenaline, weakens the immune system and makes people more likely to get sick. Important brain chemicals like serotonin and norepinephrine help control how our immune system works. Also, the connection between our gut and brain is an important way that mental health affects how our immune system functions. Getting older and experiencing stress early in life can affect how our immune system works. Inflammation caused by stress is connected to health issues like heart disease, depression, and autoimmune diseases. There are ways to manage stress, like being mindful and having support from friends, are important for keeping your immune system healthy and lessening harm caused by stress.
Collapse
Affiliation(s)
- Muhammad Liaquat Raza
- Department of Infection Prevention & Control, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| |
Collapse
|
17
|
Duchowny KA, Zhang Y, Clarke PJ, Aiello AE, Noppert GA. Examining the relationship between biomarkers of immune aging and prevalent physical disability in the health and retirement study. Brain Behav Immun 2025; 125:140-147. [PMID: 39701330 DOI: 10.1016/j.bbi.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/22/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION Large social inequities have been repeatedly observed in physical disability. While inflammation has been identified as a potential underlying biological mechanism to proxy immune processes, the general inflammatory measures available in many population health studies lack specificity in capturing the complex nature of immune function. Therefore, we sought to examine whether specific biomarkers of immune function are associated with the prevalence of physical disability. METHODS We leveraged data from 8,543 adults (mean age = 69 years, 54 % women) in the nationally-representative Health and Retirement Study and employed gender-stratified Poisson regression models to examine whether a more aged immune profile, indicated by higher values in each marker of immune aging (CD8+:CD4+, EMRA CD4+:Naïve CD4+, EMRA CD8+:Naïve CD8+, and CMV IgG), was associated with a higher prevalence of activities of daily living (ADL) disability. RESULTS After adjustment, among women, one standard deviation (SD) increase in CMV IgG was associated with 12 % higher prevalence of ADL disability (PR: 1.12; 95 % CI: 1.04, 1.21). Similarly each 1-SD increase in the CD8 + CD4 + ratio was associated with a 9 % higher prevalence of ADL disability (PR: 1.09; 95 % CI: 1.03, 1.16). No associations were observed among men across any of the immune measures. DISCUSSION Our findings provide initial support that biomarkers of immune aging may serve as an important mechanism in understanding physical disability, particularly among women.
Collapse
Affiliation(s)
- Kate A Duchowny
- Institute for Social Research, University of Michigan, United States.
| | - Yuan Zhang
- Department of Sociomedical Sciences, Mailman School of Public Health, Columbia University, United States; Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, United States
| | - Philippa J Clarke
- Institute for Social Research, University of Michigan, United States
| | - Allison E Aiello
- Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, United States
| | - Grace A Noppert
- Institute for Social Research, University of Michigan, United States
| |
Collapse
|
18
|
Schmieder H, Leischner C, Piotrowsky A, Marongiu L, Venturelli S, Burkard M. Exploring the link between fat-soluble vitamins and aging-associated immune system status: a literature review. Immun Ageing 2025; 22:8. [PMID: 39962579 PMCID: PMC11831837 DOI: 10.1186/s12979-025-00501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/31/2025] [Indexed: 02/21/2025]
Abstract
The importance of vitamin D for a well-functioning immune system is becoming increasingly evident. Nevertheless, the other fat-soluble vitamins A, E and K also seem to play a central role regarding the adequate function of immune cells and to counteract excessive immune reactions and inflammatory processes. However, recognizing hidden hunger, particularly micronutrient deficiencies in vulnerable groups like the elderly, is crucial because older adults often lack sufficient micronutrients for various reasons. This review summarizes the latest findings on the immune modulating functions of fat-soluble vitamins in a physiological and pathophysiological context, provides a graphical comparison of the Recommended Daily Allowances between Deutschland, Austria, Confoederatio Helvetica (D-A-CH; eng. GSA, Germany, Switzerland, Austria), Deutsche Gesellschaft für Ernährung (DGE; eng. German Nutrition Society) and National Institutes of Health (NIH) across all age groups and, in particular, addresses the question regarding the benefits of supplementation of the respective micronutrients for the aging population of industrialized nations to strengthen the immune system. The following review highlights the importance of fat-soluble vitamins A, D, E and K which play critical roles in maintaining immune system function and, in some cases, in preventing excessive immune activation. Therefore, a better understanding of the relevance of adequate blood levels and consequently potential supplementation strategies may contribute to the prevention and management of infectious diseases as well as better overall health of the elderly.
Collapse
Affiliation(s)
- Hendrik Schmieder
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany
| | - Christian Leischner
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany
| | - Alban Piotrowsky
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany.
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University of Tuebingen, Wilhelmstraße 56, Tuebingen, 72074, Germany.
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany.
| |
Collapse
|
19
|
Lin Z, Wang HF, Yu LY, Chen J, Kong CC, Zhang B, Wu X, Wang HN, Cao Y, Lin P. The relationship between biological aging and psoriasis: evidence from three observational studies. Immun Ageing 2025; 22:6. [PMID: 39934868 DOI: 10.1186/s12979-025-00500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND The relationship between psoriasis and aging remains unclear. Biological age is considered as a tool for strong association with aging, but there is a lack of reports on the relationship between biological age and psoriasis. Therefore, this study aimed to explore the relationship between biological age and psoriasis. METHODS Patients with psoriasis and non-psoriasis were recruited from National Health and Nutrition Examination Survey (NHANES) (12,973 cases), Medical Information Mart for Intensive Care (MIMIC-IV) (558 cases) and The First Clinical Medical College of Zhejiang Chinese Medical University (206 cases). Biological age was calculated using Klemera-Doubal method age (KDM-age) and phenotypic age (PhenoAge). Linear regression and logistic regression were used to explore the association between psoriasis and biological age advance. Cox regression was used to investigate the association between biological age advance and mortality. Finally, biological age advance was used to predict the death of psoriasis patients. RESULTS In NHANES, linear regression showed that psoriasis led to a 0.54 advance in PhenoAge (Adjust Beta: 0.54, 95CI: 0.12-0.97, p = 0.018). The KDM-age advance due to psoriasis was not statistically significant (p = 0.754). Using data from China, we came to the new conclusion that for every unit rise in Psoriasis Area and Severity Index, PhenoAge advance rose by 0.12 (Beta: 0.12, 95CI: 0.01-0.22, p = 0.031). Using NHANES data, cox regression shows for every unit rise in PhenoAge advance patients had an 8% rise in mortality (Adjust hazard ratio: 1.08, 95CI: 1.04-1.12, p < 0.001). Using MIMIC-IV, logistic regression showed a 13% increase in mortality within 28 days of admission for every 1 unit rise in PhenoAge advance (odds ratio: 1.13, 95CI: 1.09-1.18, P < 0.001). Finally, we used PhenoAge advance to predict death, with an AUC of 0.71 in the NHANES, an ACU of 0.79 for predicting death within 1 years in the general ward of MIMIC-IV. In the ICU of MIMIC-IV, the AUC for predicting death within 28 days was 0.71. CONCLUSION Psoriasis leads to accelerated biological aging in patients, which is associated with the severity of psoriasis and more comorbidities. In addition, PhenoAge has the potential to monitor the health status of patients with psoriasis.
Collapse
Affiliation(s)
- Zheng Lin
- Dermatology Department, The First Clinical Medical College, Zhejiang Chinese Medical University, Post and Circuit Road, Shangcheng District, Hangzhou, ZheJiang, 310006, China
| | - Hong-Fei Wang
- Dermatology Department, The First Clinical Medical College, Zhejiang Chinese Medical University, Post and Circuit Road, Shangcheng District, Hangzhou, ZheJiang, 310006, China
| | - Lu-Yan Yu
- Dermatology Department, The First Clinical Medical College, Zhejiang Chinese Medical University, Post and Circuit Road, Shangcheng District, Hangzhou, ZheJiang, 310006, China
| | - Jia Chen
- Dermatology Department, The First Clinical Medical College, Zhejiang Chinese Medical University, Post and Circuit Road, Shangcheng District, Hangzhou, ZheJiang, 310006, China
| | - Cheng-Cheng Kong
- Geriatric department, The Third Hospital of Hangzhou, Zhejiang Chinese Medical University, Xi Hu Avenue, Shangchenq Distinct, Hangzhou, ZheJiang, 310009, China
| | - Bin Zhang
- Geriatric department, The Third Hospital of Hangzhou, Zhejiang Chinese Medical University, Xi Hu Avenue, Shangchenq Distinct, Hangzhou, ZheJiang, 310009, China
| | - Xuan Wu
- Dermatology Department, The First Clinical Medical College, Zhejiang Chinese Medical University, Post and Circuit Road, Shangcheng District, Hangzhou, ZheJiang, 310006, China
| | - Hao-Nan Wang
- Dermatology Department, The First Clinical Medical College, Zhejiang Chinese Medical University, Post and Circuit Road, Shangcheng District, Hangzhou, ZheJiang, 310006, China
| | - Yi Cao
- Dermatology Department, The First Clinical Medical College, Zhejiang Chinese Medical University, Post and Circuit Road, Shangcheng District, Hangzhou, ZheJiang, 310006, China.
| | - Ping Lin
- Geriatric department, The Third Hospital of Hangzhou, Zhejiang Chinese Medical University, Xi Hu Avenue, Shangchenq Distinct, Hangzhou, ZheJiang, 310009, China.
| |
Collapse
|
20
|
Zhou H, Zheng Z, Fan C, Zhou Z. Mechanisms and strategies of immunosenescence effects on non-small cell lung cancer (NSCLC) treatment: A comprehensive analysis and future directions. Semin Cancer Biol 2025; 109:44-66. [PMID: 39793777 DOI: 10.1016/j.semcancer.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Non-small cell lung cancer (NSCLC), the most prevalent form of lung cancer, remains a leading cause of cancer-related mortality worldwide, particularly among elderly individuals. The phenomenon of immunosenescence, characterized by the progressive decline in immune cell functionality with aging, plays a pivotal role in NSCLC progression and contributes to the diminished efficacy of therapeutic interventions in older patients. Immunosenescence manifests through impaired immune surveillance, reduced cytotoxic responses, and increased chronic inflammation, collectively fostering a pro-tumorigenic microenvironment. This review provides a comprehensive analysis of the molecular, cellular, and genetic mechanisms of immunosenescence and its impact on immune surveillance and the tumor microenvironment (TME) in NSCLC. We explore how aging affects various immune cells, including T cells, B cells, NK cells, and macrophages, and how these changes compromise the immune system's ability to detect and eliminate tumor cells. Furthermore, we address the challenges posed by immunosenescence to current therapeutic strategies, particularly immunotherapy, which faces significant hurdles in elderly patients due to immune dysfunction. The review highlights emerging technologies, such as single-cell sequencing and CRISPR-Cas9, which offer new insights into immunosenescence and its potential as a therapeutic target. Finally, we outline future research directions, including strategies for rejuvenating the aging immune system and optimizing immunotherapy for older NSCLC patients, with the goal of improving treatment efficacy and survival outcomes. These efforts hold promise for the development of more effective, personalized therapies for elderly patients with NSCLC.
Collapse
Affiliation(s)
- Huatao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China
| | - Zilong Zheng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China.
| | - Zijing Zhou
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China.
| |
Collapse
|
21
|
Grzeczka A, Graczyk S, Kordowitzki P. Involvement of TGF-β, mTOR, and inflammatory mediators in aging alterations during myxomatous mitral valve disease in a canine model. GeroScience 2025:10.1007/s11357-025-01520-0. [PMID: 39865135 DOI: 10.1007/s11357-025-01520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Inflammaging, a state of chronic low-grade inflammation associated with aging, has been linked to the development and progression of various disorders. Cellular senescence, a state of irreversible growth arrest, is another characteristic of aging that contributes to the pathogenesis of cardiovascular pathology. Senescent cells accumulate in tissues over time and secrete many inflammatory mediators, further exacerbating the inflammatory environment. This senescence-associated secretory phenotype can promote tissue dysfunction and remodeling, ultimately leading to the development of age-related cardiovascular pathologies, such as mitral valve myxomatous degeneration. The species-specific form of canine myxomatous mitral valve disease (MMVD) provides a unique opportunity to investigate the early causes of induction of ECM remodeling in mitral valve leaflets in the human form of MMVD. Studies have shown that in both humans and dogs, the microenvironment of the altered leaflets is inflammatory. More recently, the focus has been on the mechanisms leading to the transformation of resting VICs (qVICs) to myofibroblast-like VICs (aVICs). Cells affected by stress fall into a state of cell cycle arrest and become senescent cells. aVICs, under the influence of TGF-β signaling pathways and the mTOR complex, enhance ECM alteration and accumulation of systemic inflammation. This review aims to create a fresh new view of the complex interaction between aging, inflammation, immunosenescence, and MMVD in a canine model, as the domestic dog is a promising model of human aging and age-related diseases.
Collapse
Affiliation(s)
- Arkadiusz Grzeczka
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Szymon Graczyk
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Pawel Kordowitzki
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland.
| |
Collapse
|
22
|
Rodríguez IJ, Parra-López CA. Markers of immunosenescence in CMV seropositive healthy elderly adults. FRONTIERS IN AGING 2025; 5:1436346. [PMID: 39916725 PMCID: PMC11798936 DOI: 10.3389/fragi.2024.1436346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/31/2024] [Indexed: 02/09/2025]
Abstract
A significant increase in life expectancy has accompanied the growth of the world's population. Approximately 10% of the global population are adults over 60, and it is estimated that 2050 this figure will double. This increase in the proportion of older adults leads to a more significant burden of age-related diseases. Immunosenescence predisposes elderly individuals to a higher incidence of infectious and chronic non-communicable diseases with higher mortality rates. Despite advances in research, it is necessary to evaluate the cellular characteristics of the aging immune system in populations with a high incidence of latent viruses such as cytomegalovirus (CMV). In this sense, this work aimed to identify senescence markers in cells of the innate and adaptive immune system in healthy older adults with CMV infection. We observed that older adults present an increase in the population of CD14+CD16+ intermediate monocytes, an expansion of CD56neg NK cells with an increase in the expression of CD57, as well as a decrease in the naïve CD4+ and CD8+ T cells, accompanied by an increased expression of senescence markers CD57 and KLRG1 in effector CD8+ T cells.
Collapse
Affiliation(s)
- Ivón Johanna Rodríguez
- Grupo de profundización en Kinesioterapia, Departamento de Movimiento Corporal Humano, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos Alberto Parra-López
- Grupo de Inmunología y Medicina Traslacional, Departamento de Microbiología, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
23
|
Alavimanesh S, Nayerain Jazi N, Choubani M, Saeidi F, Afkhami H, Yarahmadi A, Ronaghi H, Khani P, Modarressi MH. Cellular senescence in the tumor with a bone niche microenvironment: friend or foe? Clin Exp Med 2025; 25:44. [PMID: 39849183 PMCID: PMC11759293 DOI: 10.1007/s10238-025-01564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025]
Abstract
Cellular senescence is understood to be a biological process that is defined as irreversible growth arrest and was originally recognized as a tumor-suppressive mechanism that prevents further propagation of damaged cells. More recently, cellular senescence has been shown to have a dual role in prevention and tumor promotion. Senescent cells carry a senescence-associated secretory phenotype (SASP), which is altered by secretory factors including pro-inflammatory cytokines, chemokines, and other proteases, leading to the alteration of the tissue microenvironment. Though senescence would eventually halt the growth of cancerous potential cells, SASP contributes to the tumor environment by promoting inflammation, matrix remodeling, and tumor cell invasion. The paradox of tumor prevention/promotion is particularly relevant to the bone niche tumor microenvironment, where longer-lasting, chronic inflammation promotes tumor formation. Insights into a mechanistic understanding of cellular senescence and SASP provide the basis for targeted therapies, such as senolytics, which aim to eliminate senescent cells, or SASP inhibitors, which would eliminate the tumor-promoting effects of senescence. These therapeutic interventions offer significant clinical implications for treating cancer and healthy aging.
Collapse
Affiliation(s)
- Sajad Alavimanesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Negar Nayerain Jazi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Choubani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzane Saeidi
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hossein Ronaghi
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
24
|
Tsoneva DK, Napoli A, Teneva M, Mazza T, Vinciguerra M. Downregulation of Aging-Associated Gene SUCLG1 Marks the Aggressiveness of Liver Disease. Cancers (Basel) 2025; 17:339. [PMID: 39941711 PMCID: PMC11815819 DOI: 10.3390/cancers17030339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/10/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
INTRODUCTION The most common liver disease is nonalcoholic fatty liver disease, characterized by an intrahepatic accumulation of lipids that most often accompanies obesity. Fatty liver can evolve, in the presence of oxidative stress and inflammation, into disabling and deadly liver diseases such as cirrhosis, hepatocellular carcinoma (HCC), and cholangiocarcinoma (CC). Old age seems to favor HCC and CC, in agreement with the inflammaging theory, according to which aging accrues inflammation. Cancer, in general, is an age-related disease, as incidence and mortality for most types of cancer increase with age. However, how molecular drivers in tumors differ or are mutated more frequently among patients of different ages remains scarcely investigated. A recent integrative analysis of the age-associated multi-omic landscape across cancers and healthy tissues demonstrated that age-related gene expression changes are linked to numerous biological processes. HCC and CC have among the lowest five-year survival estimates due to their aggressive progression. MATERIALS AND METHODS In this study, we extracted top gene candidates from the above-mentioned pan-analyses (i.e., B2M, C1qA, SUCLG1) and tested by qPCR their expression and their correlation with disease progression in 48 tissue samples covering liver disease stages (fatty liver, hepatitis, cirrhosis, HCC and CC) and normal tissues. RESULTS Here, we report a significant downregulation in the expression of the age-associated gene SUCLG1 during the progression of liver disease toward HCC and CC, which also associates with poor patient survival. CONCLUSION SUCGL1, a mitochondrial enzyme gene that catalyzes the conversion of succinyl CoA to succinate, might be therapeutically targeted for the development and progression of age-associated liver cancers with low survival rates.
Collapse
Affiliation(s)
- Desislava K. Tsoneva
- Department of Medical Genetics, Medical University of Varna, 9002 Varna, Bulgaria
- Department of Stem Cell Biology and Transplantology, Research Institute of the Medical University of Varna, 9002 Varna, Bulgaria
| | - Alessandro Napoli
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 S. Giovanni Rotondo, FG, Italy
| | - Mariya Teneva
- Department of Medical Genetics, Medical University of Varna, 9002 Varna, Bulgaria
- Department of Stem Cell Biology and Transplantology, Research Institute of the Medical University of Varna, 9002 Varna, Bulgaria
| | - Tommaso Mazza
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 S. Giovanni Rotondo, FG, Italy
| | - Manlio Vinciguerra
- Department of Stem Cell Biology and Transplantology, Research Institute of the Medical University of Varna, 9002 Varna, Bulgaria
- Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
25
|
Shao F, Wang Z, Ye L, Wu R, Wang J, Yu QX, Wusiman D, Tuo Z, Yoo KH, Shu Z, Wei W, Li D, Cho WC, Liu Z, Feng D. Basic helix-loop-helix ARNT like 1 regulates the function of immune cells and participates in the development of immune-related diseases. BURNS & TRAUMA 2025; 13:tkae075. [PMID: 39830193 PMCID: PMC11741524 DOI: 10.1093/burnst/tkae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 01/22/2025]
Abstract
The circadian clock is an internal timekeeper system that regulates biological processes through a central circadian clock and peripheral clocks controlling various genes. Basic helix-loop-helix ARNT-like 1 (BMAL1), also known as aryl hydrocarbon receptor nuclear translocator-like protein 1 (ARNTL1), is a key component of the circadian clock. The deletion of BMAL1 alone can abolish the circadian rhythms of the human body. BMAL1 plays a critical role in immune cell function. Dysregulation of BMAL1 is linked to immune-related diseases such as autoimmune diseases, infectious diseases, and cancer, and vice versa. This review highlights the significant role of BMAL1 in governing immune cells, including their development, differentiation, migration, homing, metabolism, and effector functions. This study also explores how dysregulation of BMAL1 can have far-reaching implications and potentially contribute to the onset of immune-related diseases such as autoimmune diseases, infectious diseases, cancer, sepsis, and trauma. Furthermore, this review discusses treatments for immune-related diseases that target BMAL1 disorders. Understanding the impact of BMAL1 on immune function can provide insights into the pathogenesis of immune-related diseases and help in the development of more effective treatment strategies. Targeting BMAL1 has been demonstrated to achieve good efficacy in immune-related diseases, indicating its promising potential as a targetable therapeutic target in these diseases.
Collapse
Affiliation(s)
- Fanglin Shao
- Chengdu Basebio Company, Tianfu Third Street, High-Tech Zone, Chengdu 610041, China
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, First Ring Road, Qingyang District, Chengdu 610041, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, West Gate Street, Linhai City 317000, Zhejiang Province, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Qing-Xin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Huancheng North Road, Jiangbei District, Ningbo, Zhejiang Province, 315211, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, Purdue University, 615 W. State Street, West Lafayette, IN 47907, USA
| | - Zhouting Tuo
- Chengdu Basebio Company, Tianfu Third Street, High-Tech Zone, Chengdu 610041, China
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Jinzhai South Road, Shushan District, Hefei, Anhui 230032, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, South Korea
| | - Ziyu Shu
- Department of Earth Science and Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Shapingba Street, Shapingba District, Chongqing 400044, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Gascoigne Road, Yau Ma Tei, Kowloon, Hong Kong SAR, China
| | - Zhihong Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
- Division of Surgery & Interventional Science, University College London, Gower Street, London W1T 6JF, London W1W 7TS, UK
| |
Collapse
|
26
|
Fang S, Jiang M, Jiao J, Zhao H, Liu D, Gao D, Wang T, Yang Z, Yuan H. Unraveling the ROS-Inflammation-Immune Balance: A New Perspective on Aging and Disease. Aging Dis 2025:AD.2024.1253. [PMID: 39812539 DOI: 10.14336/ad.2024.1253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
Increased entropy is a common cause of disease and aging. Lifespan entropy is the overall increase in disorder caused by a person over their lifetime. Aging leads to the excessive production of reactive oxygen species (ROS), which damage the antioxidant system and disrupt redox balance. Organ aging causes chronic inflammation, disrupting the balance of proinflammatory and anti-inflammatory factors. Inflammaging, which is a chronic low-grade inflammatory state, is activated by oxidative stress and can lead to immune system senescence. During this process, entropy increases significantly as the body transitions from a state of low order to high disorder. However, the connection among inflammation, aging, and immune system activity is still not fully understood. This review introduces the idea of the ROS-inflammation-immune balance for the first time and suggests that this balance may be connected to aging and the development of age-related diseases. We also explored how the balance of these three factors controls and affects age-related diseases. Moreover, imbalance in the relationship described above disrupts the regular structures of cells and alters their functions, leading to cellular damage and the emergence of a disorganized state marked by increased entropy. Maintaining a low entropy state is crucial for preventing and reversing aging processes. Consequently, we examined the current preclinical evidence for antiaging medications that target this balance. Ultimately, comprehending the intricate relationships between these three factors and the risk of age-related diseases in organisms will aid in the development of clinical interventions that promote long-term health.
Collapse
Affiliation(s)
- Sihang Fang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Mingjun Jiang
- Respiratory Department, Beijing Children's Hospital, Capital Medical University, China National Clinical Research Center of Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Juan Jiao
- Department of Clinical Laboratory, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Hongye Zhao
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dizhi Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Danni Gao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Tenger Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Huiping Yuan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| |
Collapse
|
27
|
Abidi MZ, Belga S, Limaye A, McAdams-DeMarco MA. Aging and Infections in Solid Organ Transplantation: Unchartered Territory. Transpl Infect Dis 2025; 27:e14431. [PMID: 39731625 PMCID: PMC11855033 DOI: 10.1111/tid.14431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024]
Affiliation(s)
- Maheen Z. Abidi
- Division of Infectious Diseases, Department of Medicine, University of Colorado, Denver, Colorado, USA
| | - Sara Belga
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ajit Limaye
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Mara A. McAdams-DeMarco
- Department of Surgery, NYU Grossman School of Medicine and Langone Health, New York, New York, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
28
|
Wang Z, Chen C, Ai J, Gao Y, Wang L, Xia S, Jia Y, Qin Y. The crosstalk between senescence, tumor, and immunity: molecular mechanism and therapeutic opportunities. MedComm (Beijing) 2025; 6:e70048. [PMID: 39811803 PMCID: PMC11731108 DOI: 10.1002/mco2.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Cellular senescence is characterized by a stable cell cycle arrest and a hypersecretory, proinflammatory phenotype in response to various stress stimuli. Traditionally, this state has been viewed as a tumor-suppressing mechanism that prevents the proliferation of damaged cells while activating the immune response for their clearance. However, senescence is increasingly recognized as a contributing factor to tumor progression. This dual role necessitates a careful evaluation of the beneficial and detrimental aspects of senescence within the tumor microenvironment (TME). Specifically, senescent cells display a unique senescence-associated secretory phenotype that releases a diverse array of soluble factors affecting the TME. Furthermore, the impact of senescence on tumor-immune interaction is complex and often underappreciated. Senescent immune cells create an immunosuppressive TME favoring tumor progression. In contrast, senescent tumor cells could promote a transition from immune evasion to clearance. Given these intricate dynamics, therapies targeting senescence hold promise for advancing antitumor strategies. This review aims to summarize the dual effects of senescence on tumor progression, explore its influence on tumor-immune interactions, and discuss potential therapeutic strategies, alongside challenges and future directions. Understanding how senescence regulates antitumor immunity, along with new therapeutic interventions, is essential for managing tumor cell senescence and remodeling the immune microenvironment.
Collapse
Affiliation(s)
- Zehua Wang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chen Chen
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiaoyu Ai
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yaping Gao
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Lei Wang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shurui Xia
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yongxu Jia
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yanru Qin
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
29
|
McNair BD, Yusifov A, Thornburg JP, Hoopes CR, Satyanarayana SB, Roy T, Gigley JP, Bruns DR. Molecular and physiological mechanisms of aging are distinct in the cardiac right and left ventricles. Aging Cell 2025; 24:e14339. [PMID: 39297345 PMCID: PMC11709097 DOI: 10.1111/acel.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 01/11/2025] Open
Abstract
Aging is the primary risk factor for heart disease, the leading global cause of death. Right ventricular (RV) function predicts survival in several age-related clinical contexts, yet no therapies directly improve RV function, in large part due to a poor mechanistic understanding of RV aging and how it is distinct from the widely studied left ventricle (LV). To address this gap, we comprehensively quantified RV functional and morphological remodeling with age. We further aimed to identify molecular mechanisms of RV aging thus we performed RNAseq on RV and LV from male and female young (4 months) and aged (19-21 months) C57BL6 mice. Contrary to the concentric hypertrophic remodeling and diastolic dysfunction that occurs in the LV, the aging RV underwent eccentric remodeling with significant dilation and impaired systolic function. Transcriptomic data were also consistent with ventricle-specific aging, with few genes (13%) similarly shared between ventricles with aging. KEGG analysis identified shared aging genes in inflammatory and immune cell pathways that were confirmed by flow cytometry that demonstrated higher percent of GR1+ myeloid cells in both ventricles. Unique RV aging genes enriched in the biosynthesis of saturated fatty acids, PPAR signaling, and butanoate metabolism, and we identified putative novel RV-specific aging genes. Together, we suggest that the RV and LV are unique cardiac chambers that undergo distinct remodeling with age. These robust differences may explain why therapies designed from LV-based studies fail to improve RV function and suggest that future efforts emphasizing ventricular differences may elucidate new therapies for healthy cardiac aging.
Collapse
Affiliation(s)
| | - Aykhan Yusifov
- Kinesiology and HealthUniversity of WyomingLaramieWyomingUSA
| | | | - Caleb R. Hoopes
- WWAMI Medical EducationUniversity of Washington School of MedicineSeattleWashingtonUSA
| | | | - Tathagato Roy
- Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | | | - Danielle R. Bruns
- Kinesiology and HealthUniversity of WyomingLaramieWyomingUSA
- WWAMI Medical EducationUniversity of Washington School of MedicineSeattleWashingtonUSA
| |
Collapse
|
30
|
Poscia A, Paolorossi G, Collamati A, Costantino C, Fiacchini D, Angelini C, Bernabei R, Cimini D, Icardi G, Siddu A, Silenzi A, Spadea A, Vetrano DL. Enhancing routine immunization efforts for older adults and frail individuals: Good practices during the SARS-CoV-2 pandemic in Italy. Hum Vaccin Immunother 2024; 20:2330152. [PMID: 38533904 PMCID: PMC10978021 DOI: 10.1080/21645515.2024.2330152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
Infectious diseases pose a significant burden on the general population, particularly older adults who are more susceptible to severe complications. Immunization plays a crucial role in preventing infections and securing a healthier aging, but actual vaccination rates among older adults and frail individuals (OAFs) remains far from recommended targets. This study aims to collect and share good practices implemented in several Italian local health districts during the SARS-CoV-2 pandemic to ease routine immunization for OAFs. A 28-items questionnaire has been developed to collect information on organization aspect of immunization services and local good practices implemented before and during the SARS-CoV-2 pandemic. Twelve Public Health managers representative of 9 Italian Regions were further interviewed between January and March 2021. Despite literature suggests several effective interventions to increase vaccine demand, improve vaccine access, and enhance healthcare providers' performance, our survey highlighted substantial heterogeneity in their implementation at local level. Seven good local practices have been identified and described: mass vaccination centers; vaccination mobile units; drive-through vaccination; co-administration; tailored pathways; cooperation among providers involved in vaccination; digitization. Our survey pointed out valuable strategies for enhancing routine immunization for OAFs. Providers should combine effective interventions adequate to their specific context and share good practices.
Collapse
Affiliation(s)
| | - Giulia Paolorossi
- Department of Biomedical Sciences and Public Health, Section of Hygiene, Preventive Medicine and Public Health, Polytechnic University of the Marche Region, Ancona, Italy
| | | | - Claudio Costantino
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | | | - Claudio Angelini
- Public Health Department, AST Ascoli Piceno, Ascoli Piceno, Italy
| | - Roberto Bernabei
- Department of Geriatrics and Orthopaedics, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Giancarlo Icardi
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Andrea Siddu
- General Directorate for Health Prevention, Ministry of Health, Ministero della Salute, Rome, Italy
| | - Andrea Silenzi
- General Directorate for Health Prevention, Ministry of Health, Ministero della Salute, Rome, Italy
| | - Antonietta Spadea
- UOC Vaccinations, Department of Prevention, Local Health Authority Roma1, Rome, Italy
| | - Davide Liborio Vetrano
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Stockholm Gerontology Research Centre, Stockholm, Sweden
| |
Collapse
|
31
|
Li W, Liu H, Gao L, Hu Y, Zhang A, Li W, Liu G, Bai W, Xu Y, Xiao C, Deng J, Lei W, Chen G. In-depth human immune cellular profiling from newborn to frail. J Leukoc Biol 2024; 117:qiae046. [PMID: 38447557 DOI: 10.1093/jleuko/qiae046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/20/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Immune functional decline and remodeling accompany aging and frailty. It is still largely unknown how changes in the immune cellular composition differentiate healthy individuals from those who become frail at a relatively early age. Our aim in this exploratory study was to investigate immunological changes from newborn to frailty and the association between health statute and various immune cell subtypes. The participants analyzed in this study covered human cord blood cells and peripheral blood cells collected from young adults and healthy and frail old individuals. A total of 30 immune cell subsets were performed by flow cytometry based on the surface markers of immune cells. Furthermore, frailty was investigated for its relations with various leukocyte subpopulations. Frail individuals exhibited a higher CD4/CD8 ratio; a higher proportion of CD4+ central memory T cells, CD8+ effector memory T cells, CD27- switched memory B (BSM) cells, CD27+ BSM cells, age-associated B cells, and CD38-CD24- B cells; and a lower proportion of naïve CD8+ T cells and progenitor B cells. The frailty index score was found to be associated with naïve T cells, CD4/CD8 ratio, age-associated B cells, CD27- BSM cells, and CD4+ central memory T cells. Our findings conducted a relatively comprehensive and extensive atlas of age- and frailty-related changes in peripheral leukocyte subpopulations from newborn to frailty. The immune phenotypes identified in this study can contribute to a deeper understanding of immunosenescence in frailty and may provide a rationale for future interventions and diagnosis.
Collapse
Affiliation(s)
- Wangchun Li
- Intensive Care Unit, Affiliated Shunde Hospital, Jinan University, No.50, East Guizhou Avenue, Foshan 528000, China
| | - Hangyu Liu
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Lijuan Gao
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Yang Hu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, No.17, Meidong Road, Yuexiu District, Guangzhou 510632, China
| | - Anna Zhang
- Intensive Care Unit, Affiliated Shunde Hospital, Jinan University, No.50, East Guizhou Avenue, Foshan 528000, China
| | - Wenfeng Li
- Intensive Care Unit, Affiliated Shunde Hospital, Jinan University, No.50, East Guizhou Avenue, Foshan 528000, China
| | - Guolong Liu
- Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, No.1, Panfu Road, Yuexiu District, Guangzhou 510180, China
| | - Weibin Bai
- Department of Food Science and Engineering, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Institute of Food Safety and Nutrition, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Yudai Xu
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Chanchan Xiao
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Jieping Deng
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Wen Lei
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, No.466, Xingang Middle Road, Haizhu District, Guangzhou 510632, China
| | - Guobing Chen
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control, Jinan University, Ministry of Education, No.601, West Huangpu Avenue, Tianhe District, Guangzhou, 510632, China
| |
Collapse
|
32
|
Pangrazzi L, Meryk A. Molecular and Cellular Mechanisms of Immunosenescence: Modulation Through Interventions and Lifestyle Changes. BIOLOGY 2024; 14:17. [PMID: 39857248 PMCID: PMC11760833 DOI: 10.3390/biology14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
Immunosenescence, the age-related decline in immune function, is a complex biological process with profound implications for health and longevity. This phenomenon, characterized by alterations in both innate and adaptive immunity, increases susceptibility to infections, reduces vaccine efficacy, and contributes to the development of age-related diseases. At the cellular level, immunosenescence manifests as decreased production of naive T and B cells, accumulation of memory and senescent cells, thymic involution, and dysregulated cytokine production. Recent advances in molecular biology have shed light on the underlying mechanisms of immunosenescence, including telomere attrition, epigenetic alterations, mitochondrial dysfunction, and changes in key signaling pathways such as NF-κB and mTOR. These molecular changes lead to functional impairments in various immune cell types, altering their proliferative capacity, differentiation, and effector functions. Emerging research suggests that lifestyle factors may modulate the rate and extent of immunosenescence at both cellular and molecular levels. Physical activity, nutrition, stress management, and sleep patterns have been shown to influence immune cell function, inflammatory markers, and oxidative stress in older adults. This review provides a comprehensive analysis of the molecular and cellular mechanisms underlying immunosenescence and explores how lifestyle interventions may impact these processes. We will examine the current understanding of immunosenescence at the genomic, epigenomic, and proteomic levels, and discuss how various lifestyle factors can potentially mitigate or partially reverse aspects of immune aging. By integrating recent findings from immunology, gerontology, and molecular biology, we aim to elucidate the intricate interplay between lifestyle and immune aging at the molecular level, potentially informing future strategies for maintaining immune competence in aging populations.
Collapse
Affiliation(s)
- Luca Pangrazzi
- Institute for Biomedical Aging Research, Faculty of Biology, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Andreas Meryk
- Department of Pediatrics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
33
|
Albery GF, Hasik AZ, Morris S, Morris A, Kenyon F, McBean D, Pemberton JM, Nussey DH, Firth JA. Divergent age-related changes in parasite infection occur independently of behaviour and demography in a wild ungulate. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230508. [PMID: 39463254 PMCID: PMC11513643 DOI: 10.1098/rstb.2023.0508] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/15/2024] [Accepted: 05/22/2024] [Indexed: 10/29/2024] Open
Abstract
As animals age, they exhibit a suite of phenotypic changes, often including reductions in movement and social behaviour ('behavioural ageing'). By altering an individual's exposure to parasites, behavioural ageing may influence infection status trajectories over the lifespan. However, these processes could be confounded by age-related changes in other phenotypic traits, or by selective disappearance of certain individuals owing to parasite-induced mortality. Here, we uncover contrasting age-related patterns of infection across three helminth parasites in wild adult female red deer (Cervus elaphus). Counts of strongyle nematodes (order: Strongylida) increased with age, while counts of liver fluke (Fasciola hepatica) and tissue worm (Elaphostrongylus cervi) decreased, and lungworm (Dictyocaulus) counts did not change. These relationships could not be explained by socio-spatial behaviours, spatial structuring, or selective disappearance, suggesting behavioural ageing is unlikely to be responsible for driving age trends. Instead, social connectedness and strongyle infection were positively correlated, such that direct age-infection trends were directly contrasted with the effects implied by previously documented behavioural ageing. This suggests that behavioural ageing may reduce parasite exposure, potentially countering other age-related changes. These findings demonstrate that different parasites can show contrasting age trajectories depending on diverse intrinsic and extrinsic factors, and that behaviour's role in these processes is likely to be complex and multidirectional.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Gregory F. Albery
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
- Department of Biology, Georgetown University, Washington, DC20057, USA
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin12587, Germany
- School of Natural Sciences, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Adam Z. Hasik
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Sean Morris
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Alison Morris
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Fiona Kenyon
- Moredun Research Institute, PenicuikEH26 0PZ, UK
| | - David McBean
- Moredun Research Institute, PenicuikEH26 0PZ, UK
| | | | - Daniel H. Nussey
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Josh A. Firth
- Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
- School of Biology, University of Leeds, LeedsLS2 9JT, UK
| |
Collapse
|
34
|
Ciprandi G, Marseglia GL. Pidotimod in pediatrics: new evidence and future perspectives. Multidiscip Respir Med 2024; 19. [PMID: 39665764 DOI: 10.5826/mrm.2024.986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/25/2024] [Indexed: 12/13/2024] Open
Abstract
Pidotimod is a synthetic dipeptide that exerts immunomodulatory activity, modifying innate and adaptive immunity. Pidotimod firstly acts on Toll-like receptors, then on antigen-presenting cells and other immunocompetent cells. Pidotimod also affects immunoglobulin production and their switching. Evidence shows that pidotimod effectively and safely prevents respiratory infections, mainly in children with recurrent and frequent infectious episodes. In addition, pidotimod may be helpful as an add-on strategy in managing children with infections. Finally, there is evidence that pidotimod, thanks to its immunomodulatory activity and preventing respiratory infections (the main trigger for asthma exacerbation), may be beneficial in managing subjects with asthma and allergic diseases. The present review presents and discusses the most recent studies conducted in children with asthma, allergic rhinitis, recurrent respiratory infections and acute infections. Lastly, pidotimod is safe and well-tolerated in children.
Collapse
|
35
|
Kordowitzki P. Eastern Equine Encephalitis Virus: The Importance of Metabolism and Aging. Int J Mol Sci 2024; 25:13318. [PMID: 39769082 PMCID: PMC11680025 DOI: 10.3390/ijms252413318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Eastern equine encephalitis virus (EEEV) is a mosquito-transmitted alphavirus that, among humans, can cause a severe and often fatal illness. The zoonotic EEEV enzootic cycle involves a cycle of transmission between Culiseta melanura and avian hosts, frequently resulting in spillover to dead-end vertebrate hosts such as humans and horses. Interestingly, it has been described that the W132G mutation of the very low-density lipoprotein receptor (VLDLR), the receptor of EEEV, significantly enhanced the VLDLR-mediated cell attachment of EEEV. The patient's metabolism plays a pivotal role in shaping the complex landscape of viral zoonosis. EEEV represents a significant public health concern due to its severe clinical outcomes, challenging epidemiological characteristics, and certain risk factors that heighten susceptibility among specific populations or age groups. Age is one of several predictors that can impact the outcome of EEEV infection; juvenile animals appear to be particularly vulnerable to severe disease. This has also been observed in natural infections, as children are often the most severely impacted humans. The aim of this piece is to shed light on the intricate relationship between human metabolism and the Eastern equine encephalitis virus.
Collapse
Affiliation(s)
- Pawel Kordowitzki
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
36
|
Wang S, Yan J, Song M, Xue Z, Wang Z, Diao R, Liu Q, Ruan Q, Yao C. Development of a nomogram for high antibody titre of COVID-19 convalescent plasma. Epidemiol Infect 2024; 152:e167. [PMID: 39659202 PMCID: PMC11696598 DOI: 10.1017/s0950268824001638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
This study aimed to develop a predictive tool for identifying individuals with high antibody titers crucial for recruiting COVID-19 convalescent plasma (CCP) donors and to assess the quality and storage changes of CCP. A convenience sample of 110 plasma donors was recruited, of which 75 met the study criteria. Using univariate logistic regression and random forest, 6 significant factors were identified, leading to the development of a nomogram. Receiver operating characteristic curves, calibration plots, and decision curve analysis (DCA) evaluated the nomogram's discrimination, calibration, and clinical utility. The nomogram indicated that females aged 18 to 26, blood type O, receiving 1 to 2 COVID-19 vaccine doses, experiencing 2 symptoms during infection, and donating plasma 41 to 150 days after symptom onset had higher likelihoods of high antibody titres. Nomogram's AUC was 0.853 with good calibration. DCA showed clinical benefit within 9% ~ 90% thresholds. CCP quality was qualified, with stable antibody titres over 6 months (P > 0.05). These findings highlight developing predictive tools to identify suitable CCP donors and emphasize the stability of CCP quality over time, suggesting its potential for long-term storage.
Collapse
Affiliation(s)
- Shichun Wang
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Jie Yan
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Min Song
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Zhenrui Xue
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Zerong Wang
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Ronghua Diao
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Qi Liu
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Qianying Ruan
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Chunyan Yao
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, P.R China
| |
Collapse
|
37
|
Müller L, Di Benedetto S. The impact of COVID-19 on accelerating of immunosenescence and brain aging. Front Cell Neurosci 2024; 18:1471192. [PMID: 39720706 PMCID: PMC11666534 DOI: 10.3389/fncel.2024.1471192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/29/2024] [Indexed: 12/26/2024] Open
Abstract
The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has profoundly impacted global health, affecting not only the immediate morbidity and mortality rates but also long-term health outcomes across various populations. Although the acute effects of COVID-19 on the respiratory system have initially been the primary focus, it is increasingly evident that the virus can have significant impacts on multiple physiological systems, including the nervous and immune systems. The pandemic has highlighted the complex interplay between viral infection, immune aging, and brain health, that can potentially accelerate neuroimmune aging and contribute to the persistence of long COVID conditions. By inducing chronic inflammation, immunosenescence, and neuroinflammation, COVID-19 may exacerbate the processes of neuroimmune aging, leading to increased risks of cognitive decline, neurodegenerative diseases, and impaired immune function. Key factors include chronic immune dysregulation, oxidative stress, neuroinflammation, and the disruption of cellular processes. These overlapping mechanisms between aging and COVID-19 illustrate how the virus can induce and accelerate aging-related processes, leading to an increased risk of neurodegenerative diseases and other age-related conditions. This mini-review examines key features and possible mechanisms of COVID-19-induced neuroimmune aging that may contribute to the persistence and severity of long COVID. Understanding these interactions is crucial for developing effective interventions. Anti-inflammatory therapies, neuroprotective agents, immunomodulatory treatments, and lifestyle interventions all hold potential for mitigating the long-term effects of the virus. By addressing these challenges, we can improve health outcomes and quality of life for millions affected by the pandemic.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development Center for Lifespan Psychology, Berlin, Germany
| | | |
Collapse
|
38
|
Ullrich F, Bröckelmann PJ, Turki AT, Khan AM, Chiru ED, Vetter M, von Tresckow B, Wirth R, Cordoba R, Ortiz-Maldonado V, Fülöp T, Neuendorff NR. Impact of immunological aging on T cell-mediated therapies in older adults with multiple myeloma and lymphoma. J Immunother Cancer 2024; 12:e009462. [PMID: 39622581 PMCID: PMC11624774 DOI: 10.1136/jitc-2024-009462] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/24/2024] [Indexed: 12/09/2024] Open
Abstract
The treatment landscape for lymphoma and multiple myeloma, which disproportionally affect older adults, has been transformed by the advent of T cell-mediated immunotherapies, including immune checkpoint inhibition, T cell-engaging bispecific antibodies, and chimeric antigen receptor (CAR) T cell therapy, during the last decade. These treatment modalities re-enable the patient's own immune system to combat malignant cells and offer the potential for sustained remissions and cure for various diseases.Age profoundly affects the physiological function of the immune system. The process of biological aging is largely driven by inflammatory signaling, which is reciprocally fueled by aging-related alterations of physiology and metabolism. In the T cell compartment, aging contributes to T cell senescence and exhaustion, increased abundance of terminally differentiated cells, a corresponding attrition in naïve T cell numbers, and a decrease in the breadth of the receptor repertoire. Furthermore, inflammatory signaling drives aging-related pathologies and contributes to frailty in older individuals. Thus, there is growing evidence of biological aging modulating the efficacy and toxicity of T cell-mediated immunotherapies.Here, we review the available evidence from biological and clinical studies focusing on the relationship between T cell-mediated treatment of hematologic malignancies and age. We discuss biological features potentially impacting clinical outcomes in various scenarios, and potential strategies to improve the safety and efficacy of immune checkpoint inhibitors, T cell-engaging bispecific antibodies, and CAR-T cell therapy in older patients.
Collapse
Affiliation(s)
- Fabian Ullrich
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center and German Cancer Consortium (DKTK partner site Essen), University Duisburg-Essen, University Hospital Essen, Essen, Nordrhein-Westfalen, Germany
| | - Paul J Bröckelmann
- Faculty of Medicine and University Hospital of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD) and German Hodgkin Study Group (GHSG), University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Nordrhein-Westfalen, Germany
| | - Amin T Turki
- Department of Hematology and Oncology, University Hospital Marien Hospital Herne, Herne, Nordrhein-Westfalen, Germany
- Institute for Artificial Intelligence in Medicine, University Duisburg-Essen, University Hospital Essen, Essen, Nordrhein-Westfalen, Germany
| | - Abdullah M Khan
- Division of Hematology, The Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Elena-Diana Chiru
- Cancer Center Baselland, University of Basel Faculty of Medicine, Basel, Liestal, Switzerland
| | - Marcus Vetter
- Cancer Center Baselland, University of Basel Faculty of Medicine, Basel, Liestal, Switzerland
| | - Bastian von Tresckow
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center and German Cancer Consortium (DKTK partner site Essen), University Duisburg-Essen, University Hospital Essen, Essen, Nordrhein-Westfalen, Germany
| | - Rainer Wirth
- Department of Geriatrics, Ruhr University Bochum, University Hospital Marien Hospital Herne, Herne, Germany
| | - Raul Cordoba
- Department of Hematology, Lymphoma Unit, Hospital Universitario Fundacion Jimenez Diaz, Madrid, Spain
| | - Valentín Ortiz-Maldonado
- Department of Hematology, Oncoimmunotherapy Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Tamas Fülöp
- Department of Medicine, Division of Geriatrics, Research Center on Aging, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nina Rosa Neuendorff
- Department of Geriatrics, Ruhr University Bochum, University Hospital Marien Hospital Herne, Herne, Germany
| |
Collapse
|
39
|
Konikoff T, Loebl N, Yanai H, Libchik D, Kopylov U, Albshesh A, Weisshof R, Ghersin I, Bendersky AG, Avni-Biron I, Snir Y, Banai H, Broytman Y, Perl L, Dotan I, Ollech JE. Precision medicine: Externally validated explainable AI support tool for predicting sustainability of infliximab and vedolizumab in ulcerative colitis. Dig Liver Dis 2024; 56:2069-2076. [PMID: 38960819 DOI: 10.1016/j.dld.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE Drug sustainability (DS), a surrogate marker for drug efficacy, is important, especially when aiming for precision medicine. However, it lacks reliable prediction methods. AIMS To develop and externally validate a web-based artificial intelligence(AI)-derived tool for predicting DS of infliximab and vedolizumab in patients with moderate-to-severe Ulcerative Colitis (UC). METHODS Data from three Israeli centers included infliximab or vedolizumab patients treated for >54 weeks. Sustainability meant no corticosteroids, hospitalizations or surgeries. Machine learning techniques predicted >54-week and overall DS using baseline clinical data. RESULTS The model was developed using data from 246 patients from Rabin Medical Center and externally validated on 67 patients from Rambam Health Care Campus and Sheba Medical Center. No significant difference in DS was observed across the datasets. Most patients were biologic-naïve and primarily treated with vedolizumab. The model performed well, with an area under the ROC curve of 0.86, and showed good accuracy (65.5 %-76.9 %) across the test sets. CONCLUSIONS The study introduces a novel, AI-based tool for predicting >54-week DS of infliximab and vedolizumab in moderate-to-severe UC, using baseline parameters. This can aid clinical decision-making in the framework of precision medicine, promising to optimize disease management while maintaining physician autonomy.
Collapse
Affiliation(s)
- Tom Konikoff
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel; Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nadav Loebl
- Rabin Medical Center Innovation Lab, Rabin Medical Center, Petah Tikva, Israel
| | - Henit Yanai
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel; Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dror Libchik
- Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Uri Kopylov
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel; Division of Gastroenterology, Sheba Medical Center, Ramat Gan, Israel
| | - Ahmad Albshesh
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel; Division of Gastroenterology, Sheba Medical Center, Ramat Gan, Israel
| | - Roni Weisshof
- Division of Gastroenterology, Rambam Healthcare campus, Haifa, Israel; Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Itai Ghersin
- Division of Gastroenterology, Rambam Healthcare campus, Haifa, Israel; Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ahinoam Glusman Bendersky
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel; Internal Medicine "D", Rabin Medical Center, Petah Tikva, Israel
| | - Irit Avni-Biron
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel; Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yifat Snir
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel; Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hagar Banai
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel; Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yelena Broytman
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel; Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Leor Perl
- Rabin Medical Center Innovation Lab, Rabin Medical Center, Petah Tikva, Israel
| | - Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel; Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jacob E Ollech
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel; Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
40
|
Li H, Lin S, Wang Y, Shi Y, Fang X, Wang J, Cui H, Bian Y, Qi X. Immunosenescence: A new direction in anti-aging research. Int Immunopharmacol 2024; 141:112900. [PMID: 39137628 DOI: 10.1016/j.intimp.2024.112900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
The immune system is a major regulatory system of the body, that is composed of immune cells, immune organs, and related signaling factors. As an organism ages, observable age-related changes in the function of the immune system accumulate in a process described as 'immune aging. Research has shown that the impact of aging on immunity is detrimental, with various dysregulated responses that affect the function of immune cells at the cellular level. For example, increased aging has been shown to result in the abnormal chemotaxis of neutrophils and decreased phagocytosis of macrophages. Age-related diminished functionality of immune cell types has direct effects on host fitness, leading to poorer responses to vaccination, more inflammation and tissue damage, as well as autoimmune disorders and the inability to control infections. Similarly, age impacts the function of the immune system at the organ level, resulting in decreased hematopoietic function in the bone marrow, a gradual deficiency of catalase in the thymus, and thymic atrophy, resulting in reduced production of related immune cells such as B cells and T cells, further increasing the risk of autoimmune disorders in the elderly. As the immune function of the body weakens, aging cells and inflammatory factors cannot be cleared, resulting in a cycle of increased inflammation that accumulates over time. Cumulatively, the consequences of immune aging increase the likelihood of developing age-related diseases, such as Alzheimer's disease, atherosclerosis, and osteoporosis, among others. Therefore, targeting the age-related changes that occur within cells of the immune system might be an effective anti-aging strategy. In this article, we summarize the relevant literature on immune aging research, focusing on its impact on aging, in hopes of providing new directions for anti-aging research.
Collapse
Affiliation(s)
- Hanzhou Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Union Medical Center, Tianjin, China
| | - Shan Lin
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuming Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuexuan Shi
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xixing Fang
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Jida Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huantian Cui
- Yunnan University of Chinese Medicine, Yunnan, China.
| | - Yuhong Bian
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xin Qi
- Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Union Medical Center, Tianjin, China.
| |
Collapse
|
41
|
Sealy MJ, van Vliet IMY, Jager-Wittenaar H, Navis GJ, Zhu Y. The association of multidimensional frailty with metabolic syndrome and low-grade inflammation in community-dwelling older adults in the Netherlands: a Lifelines cohort study. Immun Ageing 2024; 21:78. [PMID: 39538284 PMCID: PMC11558828 DOI: 10.1186/s12979-024-00484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Preventing metabolic syndrome (MetS) and frailty in older adults is crucial for healthy aging. The association between MetS and physical frailty is well-documented, with low-grade inflammation as potential explanation. However, the association between MetS and frailty as a multidimensional concept, and the association of low-grade inflammation with presence of MetS and frailty, is yet unclear. Therefore, we examined these associations low-grade inflammation in a large cohort of community-dwelling older adults. METHODS This cross-sectional study was performed among adults aged ≥ 65 years enrolled in the Dutch Lifelines population cohort. MetS was defined according to the Joint Interim Statement of 2009. Frailty was measured by the Groningen Frailty Indicator (GFI), which consists of 15 self-reported items on both physical and psychosocial functioning, with a score ≥ 4 indicating presence of frailty. The association between MetS and its five components and frailty was assessed using logistic regression models. Low-grade inflammation was represented by high-sensitivity C-reactive protein (hsCRP) level. The association of hsCRP level with presence of MetS and frailty was assessed using multinomial logistic regression in a sub-cohort with available hsCRP measurements. RESULTS Of 11,552 adults (52.1% women) included, the prevalences of MetS and frailty were 28% and 15%, respectively. MetS was positively associated with frailty after adjusting for relevant covariates (OR: 1.37; 95% CI: 1.22-1.53). MetS components elevated blood pressure was most strongly associated with frailty. In the sub-cohort of 3896 participants, high hsCRP was associated with presence of MetS and frailty (OR: 1.31; 95% CI: 1.15-1.51), and MetS alone (OR: 1.44; 95% CI: 1.33-1.56), but not to frailty alone. A higher hsCRP level was associated with a higher score on the physical domain of frailty (b: 0.06; 95% CI: 0.03-0.08). CONCLUSIONS Presence of MetS is associated with presence of frailty indicated by a multidimensional index in a large group of Dutch older adults. Low-grade inflammation, indicated by plasma hsCRP level, was found to be associated with both presence of MetS and frailty and presence of MetS alone. Increased hsCRP levels were associated with the physical component of frailty, but not with frailty as a multidimensional concept.
Collapse
Affiliation(s)
- Martine J Sealy
- Research Group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences, Groningen, 9714 CA, The Netherlands
- Department of Gastroenterology and Hepatology, Dietetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris M Y van Vliet
- Research Group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences, Groningen, 9714 CA, The Netherlands
- Department of Dietetics, University Medical Centre Groningen, Hanzeplein 1, Groningen, 9713 GZ, The Netherlands
| | - Harriët Jager-Wittenaar
- Research Group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences, Groningen, 9714 CA, The Netherlands
- Department of Gastroenterology and Hepatology, Dietetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Faculty of Physical Education and Physiotherapy, Department Physiotherapy and Human Anatomy, Research Unit Experimental Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Gerjan J Navis
- Department of Internal Medicine, University Medical Centre Groningen, Hanzeplein 1, Groningen, 9713 GZ, The Netherlands
| | - Yinjie Zhu
- Department of Internal Medicine, University Medical Centre Groningen, Hanzeplein 1, Groningen, 9713 GZ, The Netherlands.
- Chair Group Consumption and Healthy Lifestyles, Wageningen University & Research, Hollandseweg 1, Wageningen, 6706 KN, The Netherlands.
| |
Collapse
|
42
|
Motyl JA, Gromadzka G, Czapski GA, Adamczyk A. SARS-CoV-2 Infection and Alpha-Synucleinopathies: Potential Links and Underlying Mechanisms. Int J Mol Sci 2024; 25:12079. [PMID: 39596147 PMCID: PMC11593367 DOI: 10.3390/ijms252212079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Alpha-synuclein (α-syn) is a 140-amino-acid, intrinsically disordered, soluble protein that is abundantly present in the brain. It plays a crucial role in maintaining cellular structures and organelle functions, particularly in supporting synaptic plasticity and regulating neurotransmitter turnover. However, for reasons not yet fully understood, α-syn can lose its physiological role and begin to aggregate. This altered α-syn disrupts dopaminergic transmission and causes both presynaptic and postsynaptic dysfunction, ultimately leading to cell death. A group of neurodegenerative diseases known as α-synucleinopathies is characterized by the intracellular accumulation of α-syn deposits in specific neuronal and glial cells within certain brain regions. In addition to Parkinson's disease (PD), these conditions include dementia with Lewy bodies (DLBs), multiple system atrophy (MSA), pure autonomic failure (PAF), and REM sleep behavior disorder (RBD). Given that these disorders are associated with α-syn-related neuroinflammation-and considering that SARS-CoV-2 infection has been shown to affect the nervous system, with COVID-19 patients experiencing neurological symptoms-it has been proposed that COVID-19 may contribute to neurodegeneration in PD and other α-synucleinopathies by promoting α-syn misfolding and aggregation. In this review, we focus on whether SARS-CoV-2 could act as an environmental trigger that facilitates the onset or progression of α-synucleinopathies. Specifically, we present new evidence on the potential role of SARS-CoV-2 in modulating α-syn function and discuss the causal relationship between SARS-CoV-2 infection and the development of parkinsonism-like symptoms.
Collapse
Affiliation(s)
- Joanna Agata Motyl
- Department of Hybrid Microbiosystems Engineering, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4 St., 02-109 Warsaw, Poland;
| | - Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego 1/3, 01-938 Warsaw, Poland;
| | - Grzegorz Arkadiusz Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| |
Collapse
|
43
|
Manzo C, Isetta M, Castagna A. Infective agents and polymyalgia rheumatica: key discussion points emerging from a narrative review of published literature. Reumatologia 2024; 62:360-367. [PMID: 39677882 PMCID: PMC11635615 DOI: 10.5114/reum/194687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/16/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction The aetiology of polymyalgia rheumatica (PMR) is unknown. Recently, reports on cases of PMR following the coronavirus disease 2019 (COVID-19) have revived the role of infection as an aetiological or triggering factor. It is estimated that patients with PMR have manifestations of giant cell arteritis (GCA) in < 20% of cases. To date, little is known on the potential role of infectious agents in facilitating this association. Given this background, we performed a review of published literature. Our first aim was to review and discuss the relationship between PMR and infective agents. Secondly, we compared data of PMR-only patients with PMR and overlapping GCA to seek any commonalities or differences regarding the type of infectious agent in these two subgroups. Material and methods We performed a non-systematic literature search on Embase and Medline (COVID interface) with the following search terms: "polymyalgia rheumatica" AND "infections" OR "infectious agents", both MESH headings and free-text (in each language they were written). Each paper's reference list was scanned for additional publications meeting this study's aim. When papers reported data partially presented in previous articles, we referred to the most recent published data. Abstracts submitted at conferences or from non-peer-reviewed sources were not included. Polymyalgia rheumatica following vaccinations was an additional exclusion criterion. Results Several infectious agents have been held responsible for PMR. However, no definite causal link has been identified so far. According to our review, the search for a specific infectious agent, however intriguing, appears to be stagnating. Genetic background and epigenetic regulation probably play a key role. However, topical studies are lacking. Polymyalgia rheumatica as an adverse event following immunization should be kept methodologically distinct from PMR following an acute infection, as the adjuvants in the vaccine can make a significant difference. Conclusions Finally, some infectious agents are able to replicate in human arteries or have an endothelium tropism. Whilst these can theoretically trigger GCA, their role in isolated PMR seems minimal.
Collapse
Affiliation(s)
- Ciro Manzo
- Department of Internal and Geriatric Medicine, Azienda Sanitaria Locale Napoli 3 sud, Rheumatologic Outpatient Clinic, Health District No. 59, Naples, Sant’Agnello, Italy
| | - Marco Isetta
- Central and North West London NHS Trust, England
| | - Alberto Castagna
- Department of Primary Care, Health District of Soverato, Azienda Sanitaria Provinciale Catanzaro, Italy
| |
Collapse
|
44
|
Rice MC, Imun M, Jung SW, Park CY, Kim JS, Lai RW, Barr CR, Son JM, Tor K, Kim E, Lu RJ, Cohen I, Benayoun BA, Lee C. The Human Mitochondrial Genome Encodes for an Interferon-Responsive Host Defense Peptide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.02.530691. [PMID: 39553971 PMCID: PMC11565950 DOI: 10.1101/2023.03.02.530691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The mitochondrial DNA (mtDNA) can trigger immune responses and directly entrap pathogens, but it is not known to encode for active immune factors. The immune system is traditionally thought to be exclusively nuclear-encoded. Here, we report the identification of a mitochondrial-encoded host defense peptide (HDP) that presumably derives from the primordial proto-mitochondrial bacteria. We demonstrate that MOTS-c (mitochondrial open reading frame from the twelve S rRNA type-c) is a mitochondrial-encoded amphipathic and cationic peptide with direct antibacterial and immunomodulatory functions, consistent with the peptide chemistry and functions of known HDPs. MOTS-c targeted E. coli and methicillin-resistant S. aureus (MRSA), in part, by targeting their membranes using its hydrophobic and cationic domains. In monocytes, IFNγ, LPS, and differentiation signals each induced the expression of endogenous MOTS-c. Notably, MOTS-c translocated to the nucleus to regulate gene expression during monocyte differentiation and programmed them into macrophages with unique transcriptomic signatures related to antigen presentation and IFN signaling. MOTS-c-programmed macrophages exhibited enhanced bacterial clearance and shifted metabolism. Our findings support MOTS-c as a first-in-class mitochondrial-encoded HDP and indicates that our immune system is not only encoded by the nuclear genome, but also by the co-evolved mitochondrial genome.
Collapse
|
45
|
Ellis J, Marziani E, Aziz C, Brown CM, Cohn LA, Lea C, Moore GE, Taneja N. 2022 AAHA Canine Vaccination Guidelines (2024 Update). J Am Anim Hosp Assoc 2024; 60:1-19. [PMID: 39480742 DOI: 10.5326/jaaha-ms-7468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Vaccination is a cornerstone of canine preventive healthcare and one of the most cost-effective ways of maintaining a dog's health, longevity, and quality of life. Canine vaccination also serves a public health function by forming a barrier against several zoonotic diseases affecting dogs and humans. Canine vaccines are broadly categorized as containing core and noncore immunizing antigens, with administration recommendations based on assessment of individual patient risk factors. The guidelines include a comprehensive table listing canine core and noncore vaccines and a recommended vaccination and revaccination schedule for each vaccine. The guidelines explain the relevance of different vaccine formulations, including those containing modified-live virus, inactivated, and recombinant immunizing agents. Factors that potentially affect vaccine efficacy are addressed, including the patient's prevaccination immune status and vaccine duration of immunity. Because animal shelters are one of the most challenging environments for prevention and control of infectious diseases, the guidelines also provide recommendations for vaccination of dogs presented at or housed in animal shelters, including the appropriate response to an infectious disease outbreak in the shelter setting. The guidelines explain how practitioners can interpret a patient's serological status, including maternally derived antibody titers, as indicators of immune status and suitability for vaccination. Other topics covered include factors associated with postvaccination adverse events, vaccine storage and handling to preserve product efficacy, interpreting product labeling to ensure proper vaccine use, and using client education and healthcare team training to raise awareness of the importance of vaccinations.
Collapse
Affiliation(s)
- John Ellis
- University of Saskatchewan, Department of Veterinary Microbiology, Saskatoon, Saskatchewan (J.E.)
| | | | - Chumkee Aziz
- Association of Shelter Veterinarians, Houston, Texas (C.A.)
| | - Catherine M Brown
- Massachusetts Department of Public Health, Boston, Massachusetts (C.M.B.)
| | - Leah A Cohn
- University of Missouri, Columbia, Missouri (L.A.C.)
| | | | - George E Moore
- Purdue University, College of Veterinary Medicine, West Lafayette, Indiana (G.E.M.)
| | - Neha Taneja
- A Paw Partnership, Veterinary Well-being Advocate, Centreville, Virginia (N.T.)
| |
Collapse
|
46
|
Ajoolabady A, Pratico D, Tang D, Zhou S, Franceschi C, Ren J. Immunosenescence and inflammaging: Mechanisms and role in diseases. Ageing Res Rev 2024; 101:102540. [PMID: 39395575 DOI: 10.1016/j.arr.2024.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Age-related changes initiate a cascade of cellular and molecular alterations that lead to immune system dysfunction or abnormal activation, predisposing individuals to age-related diseases. This phenomenon, commonly referred to as immunosenescence, highlighting aging-associated progressive decline of the immune system. Moreover, mounting evidence suggests that immunosenescence contributes to a related pathological phenomenon known as inflammaging. Inflammaging refers to chronic, low-grade, and systemic inflammation associated with aging, occurring despite the absence of overt stimuli. In the body, inflammation is typically activated in response to overt stimuli such as bacterial/microbial invasion or a pathological state, however, inflammaging occurrence and its underpinning mechanisms seem to be independent and in the absence of such stimuli. Despite recent advancements in molecular characterization and the scrutiny of disease relevance, these two interconnected concepts have remained largely unexplored and unrecognized. In this comprehensive review, we aim to shed light on the mechanistic and cellular aspects of immunosenescence and inflammaging, as well as their pivotal roles in the pathogenesis of aging-related diseases, including cancer, infections, dementia, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL 35294, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuqin Zhou
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Applied Mathematics and Laboratory of Systems Biology of Aging, Lobachevsky University, Nizhny Novgorod, Russia.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
47
|
Zhang Q, Liang XY, Wang ZS, Sun A, Cao TB, Zhang YP, Li N, Yi TY, Qu KP. Efficacy of immune checkpoint inhibitors for NSCLC in patients with different age: A systematic review and meta-analysis. Asian J Surg 2024; 47:4691-4698. [PMID: 38641539 DOI: 10.1016/j.asjsur.2024.03.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/21/2024] Open
Abstract
OBJECTIVE This article is a Meta-analysis aiming to systematically evaluate the difference in efficacy of immune checkpoint inhibitor in patients with non-small cell lung cancer (NSCLC) by age. METHODS We performed a Meta-analysis of published randomized controlled trials concerning for patients with NSCLC by age. We compared overall survival among three groups (age <65 years, age 65-75 years, age ≥75 years). Hazard ratios (HRs) and 95% confidence intervals (CIs) were collected and pooled. RESULTS A total of 10,291 patients from 17 RCTs were included. In the group under age 65 years, immune checkpoint inhibitor can significantly prolong the overall survival of patients with NSCLC (HR = 0.73, 95% CI: 0.66∼0.81, P < 0.00001). In the age 65-75 years group, immune checkpoint inhibitors prolonged overall survival in patients with NSCLC (HR = 0.78, 95% CI:0.71∼0.84, P < 0.00001). However, it has no significant effect on the overall survival of NSCLC patients (HR = 0.88, 95% CI:0.72∼1.08, P > 0.05) in the group older than 75 years. CONCLUSIONS Immune checkpoint inhibitors prolonged the overall survival of NSCLC patients in the age <65 years group and the age 65-75 years group, but in the age ≥75 years group, there was no significant effect on overall survival. This may be related to innate immune and adaptive immune dysregulation due to "immunosenescence" in older patients.
Collapse
Affiliation(s)
- Qi Zhang
- Gansu Provincial Central Hospital, Lanzhou, China
| | | | | | - An Sun
- Gansu Provincial Central Hospital, Lanzhou, China
| | - Tin-Bao Cao
- Gansu Provincial Central Hospital, Lanzhou, China
| | | | - Nan Li
- Gansu Provincial Central Hospital, Lanzhou, China
| | - Tong-Ying Yi
- Gansu Provincial Central Hospital, Lanzhou, China
| | - Kun-Peng Qu
- Gansu Provincial Central Hospital, Lanzhou, China.
| |
Collapse
|
48
|
Wu H, Li J, Zhang Z, Zhang Y. Characteristics and mechanisms of T-cell senescence: A potential target for cancer immunotherapy. Eur J Immunol 2024; 54:e2451093. [PMID: 39107923 DOI: 10.1002/eji.202451093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 11/08/2024]
Abstract
Immunosenescence, the aging of the immune system, leads to functional deficiencies, particularly in T cells, which undergo significant changes. While numerous studies have investigated age-related T-cell phenotypes in healthy aging, senescent T cells have also been observed in younger populations during pathological conditions like cancer. This review summarizes the recent advancements in age-associated alterations and markers of T cells, mechanisms, and the relationship between senescent T cells and the tumor microenvironment. We also discuss potential strategies for targeting senescent T cells to prevent age-related diseases and enhance tumor immunotherapy efficacy.
Collapse
Affiliation(s)
- Han Wu
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junru Li
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zhang
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
49
|
Carey AE, Weeraratna AT. Entering the TiME machine: How age-related changes in the tumor immune microenvironment impact melanoma progression and therapy response. Pharmacol Ther 2024; 262:108698. [PMID: 39098769 DOI: 10.1016/j.pharmthera.2024.108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Melanoma is the deadliest form of skin cancer in the United States, with its incidence rates rising in older populations. As the immune system undergoes age-related changes, these alterations can significantly influence tumor progression and the effectiveness of cancer treatments. Recent advancements in understanding immune checkpoint molecules have paved the way for the development of innovative immunotherapies targeting solid tumors. However, the aging tumor microenvironment can play a crucial role in modulating the response to these immunotherapeutic approaches. This review seeks to examine the intricate relationship between age-related changes in the immune system and their impact on the efficacy of immunotherapies, particularly in the context of melanoma. By exploring this complex interplay, we hope to elucidate potential strategies to optimize treatment outcomes for older patients with melanoma, and draw parallels to other cancers.
Collapse
Affiliation(s)
- Alexis E Carey
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
50
|
Martínez de Toda I, Félix J, Díaz-Del Cerro E, De la Fuente M. Intracellular cytokines in peritoneal leukocytes relate to lifespan in aging and long-lived female mice. Biogerontology 2024; 25:837-849. [PMID: 38748335 PMCID: PMC11374870 DOI: 10.1007/s10522-024-10110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/24/2024] [Indexed: 09/05/2024]
Abstract
Peritoneal immune cell function is a reliable indicator of aging and longevity in mice and inflammaging is associated with a shorter lifespan. Nevertheless, it is unknown if the content of cytokines in these immune cells is linked to individual differences in lifespan. Therefore, this work aimed to investigate different peritoneal leukocyte populations and their content in intracellular pro-inflammatory (TNF and IL-6) and anti-inflammatory (IL-10) cytokines by flow cytometry in adult (10 months-old, n = 8) and old (18 months-old, n = 20) female Swiss/ICR mice. In addition, old mice were monitored longitudinally throughout their aging process, and the same markers were analyzed at the very old (24 months-old, n = 8) and long-lived (30 months-old, n = 4) ages. The longitudinal follow-up allowed us to relate the investigated parameters to individual lifespans. The results show that long-lived female mice exhibit an adult-like profile in most parameters investigated but also display specific immune adaptations, such as increased CD4+ and CD8+ T cells containing the pro-inflammatory TNF cytokine and CD4+ T cells and macrophages containing the anti-inflammatory cytokine IL-10. These adaptations may underlie their exceptional longevity. In addition, a negative correlation was obtained between the percentage of cytotoxic T cells, KLRG-1/CD4, large peritoneal macrophages, and the percentage of CD4+ T cells containing IL-6 and macrophages containing IL-10 in old age and lifespan, whereas a positive correlation was found between the CD4/CD8 ratio and the longevity of the animals at the same age. These results highlight the crucial role of peritoneal leukocytes in inflammaging and longevity.
Collapse
Affiliation(s)
- Irene Martínez de Toda
- Unit of Animal Physiology, Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040, Madrid, Spain.
- Institute of Investigation Hospital 12 Octubre (imas12), 28041, Madrid, Spain.
| | - Judith Félix
- Unit of Animal Physiology, Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040, Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041, Madrid, Spain
| | - Estefanía Díaz-Del Cerro
- Unit of Animal Physiology, Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040, Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041, Madrid, Spain
| | - Mónica De la Fuente
- Unit of Animal Physiology, Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040, Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041, Madrid, Spain
| |
Collapse
|