1
|
Samant V, Prabhu A. Exercise, exerkines and exercise mimetic drugs: Molecular mechanisms and therapeutics. Life Sci 2024; 359:123225. [PMID: 39522716 DOI: 10.1016/j.lfs.2024.123225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Chronic diseases linked with sedentary lifestyles and poor dietary habits are increasingly common in modern society. Exercise is widely acknowledged to have a plethora of health benefits, including its role in primary prevention of various chronic conditions like type 2 diabetes mellitus, obesity, cardiovascular disease, and several musculoskeletal as well as degenerative disorders. Regular physical activity induces numerous physiological adaptations that contribute to these positive effects, primarily observed in skeletal muscle but also impacting other tissues. There is a growing interest among researchers in developing pharmaceutical interventions that mimic the beneficial effects of exercise for therapeutic applications. Exercise mimetic medications have the potential to be helpful aids in enhancing functional outcomes for patients with metabolic dysfunction, neuromuscular and musculoskeletal disorders. Some of the potential targets for exercise mimetics include pathways involved in metabolism, mitochondrial function, inflammation, and tissue regeneration. The present review aims to provide an exhaustive overview of the current understanding of exercise physiology, the role of exerkines and biomolecular pathways, and the potential applications of exercise mimetic drugs for the treatment of several diseases.
Collapse
Affiliation(s)
- Vedant Samant
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Arati Prabhu
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|
2
|
O'Shea TM, Ao Y, Wang S, Ren Y, Cheng AL, Kawaguchi R, Shi Z, Swarup V, Sofroniew MV. Derivation and transcriptional reprogramming of border-forming wound repair astrocytes after spinal cord injury or stroke in mice. Nat Neurosci 2024; 27:1505-1521. [PMID: 38907165 PMCID: PMC11303254 DOI: 10.1038/s41593-024-01684-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/15/2024] [Indexed: 06/23/2024]
Abstract
Central nervous system (CNS) lesions become surrounded by neuroprotective borders of newly proliferated reactive astrocytes; however, fundamental features of these cells are poorly understood. Here we show that following spinal cord injury or stroke, 90% and 10% of border-forming astrocytes derive, respectively, from proliferating local astrocytes and oligodendrocyte progenitor cells in adult mice of both sexes. Temporal transcriptome analysis, single-nucleus RNA sequencing and immunohistochemistry show that after focal CNS injury, local mature astrocytes dedifferentiate, proliferate and become transcriptionally reprogrammed to permanently altered new states, with persisting downregulation of molecules associated with astrocyte-neuron interactions and upregulation of molecules associated with wound healing, microbial defense and interactions with stromal and immune cells. These wound repair astrocytes share morphologic and transcriptional features with perimeningeal limitans astrocytes and are the predominant source of neuroprotective borders that re-establish CNS integrity around lesions by separating neural parenchyma from stromal and immune cells as occurs throughout the healthy CNS.
Collapse
Affiliation(s)
- Timothy M O'Shea
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | - Yan Ao
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Shinong Wang
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yilong Ren
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
| | - Amy L Cheng
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Riki Kawaguchi
- Departments of Psychiatry and Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Zechuan Shi
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA, USA
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Marangon D, Castro e Silva JH, Cerrato V, Boda E, Lecca D. Oligodendrocyte Progenitors in Glial Scar: A Bet on Remyelination. Cells 2024; 13:1024. [PMID: 38920654 PMCID: PMC11202012 DOI: 10.3390/cells13121024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) represent a subtype of glia, giving rise to oligodendrocytes, the myelin-forming cells in the central nervous system (CNS). While OPCs are highly proliferative during development, they become relatively quiescent during adulthood, when their fate is strictly influenced by the extracellular context. In traumatic injuries and chronic neurodegenerative conditions, including those of autoimmune origin, oligodendrocytes undergo apoptosis, and demyelination starts. Adult OPCs become immediately activated; they migrate at the lesion site and proliferate to replenish the damaged area, but their efficiency is hampered by the presence of a glial scar-a barrier mainly formed by reactive astrocytes, microglia and the deposition of inhibitory extracellular matrix components. If, on the one hand, a glial scar limits the lesion spreading, it also blocks tissue regeneration. Therapeutic strategies aimed at reducing astrocyte or microglia activation and shifting them toward a neuroprotective phenotype have been proposed, whereas the role of OPCs has been largely overlooked. In this review, we have considered the glial scar from the perspective of OPCs, analysing their behaviour when lesions originate and exploring the potential therapies aimed at sustaining OPCs to efficiently differentiate and promote remyelination.
Collapse
Affiliation(s)
- Davide Marangon
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (J.H.C.e.S.)
| | - Juliana Helena Castro e Silva
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (J.H.C.e.S.)
| | - Valentina Cerrato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126 Turin, Italy; (V.C.); (E.B.)
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126 Turin, Italy; (V.C.); (E.B.)
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (J.H.C.e.S.)
| |
Collapse
|
4
|
Amlerova Z, Chmelova M, Anderova M, Vargova L. Reactive gliosis in traumatic brain injury: a comprehensive review. Front Cell Neurosci 2024; 18:1335849. [PMID: 38481632 PMCID: PMC10933082 DOI: 10.3389/fncel.2024.1335849] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/01/2024] [Indexed: 01/03/2025] Open
Abstract
Traumatic brain injury (TBI) is one of the most common pathological conditions impacting the central nervous system (CNS). A neurological deficit associated with TBI results from a complex of pathogenetic mechanisms including glutamate excitotoxicity, inflammation, demyelination, programmed cell death, or the development of edema. The critical components contributing to CNS response, damage control, and regeneration after TBI are glial cells-in reaction to tissue damage, their activation, hypertrophy, and proliferation occur, followed by the formation of a glial scar. The glial scar creates a barrier in damaged tissue and helps protect the CNS in the acute phase post-injury. However, this process prevents complete tissue recovery in the late/chronic phase by producing permanent scarring, which significantly impacts brain function. Various glial cell types participate in the scar formation, but this process is mostly attributed to reactive astrocytes and microglia, which play important roles in several brain pathologies. Novel technologies including whole-genome transcriptomic and epigenomic analyses, and unbiased proteomics, show that both astrocytes and microglia represent groups of heterogenic cell subpopulations with different genomic and functional characteristics, that are responsible for their role in neurodegeneration, neuroprotection and regeneration. Depending on the representation of distinct glia subpopulations, the tissue damage as well as the regenerative processes or delayed neurodegeneration after TBI may thus differ in nearby or remote areas or in different brain structures. This review summarizes TBI as a complex process, where the resultant effect is severity-, region- and time-dependent and determined by the model of the CNS injury and the distance of the explored area from the lesion site. Here, we also discuss findings concerning intercellular signaling, long-term impacts of TBI and the possibilities of novel therapeutical approaches. We believe that a comprehensive study with an emphasis on glial cells, involved in tissue post-injury processes, may be helpful for further research of TBI and be the decisive factor when choosing a TBI model.
Collapse
Affiliation(s)
- Zuzana Amlerova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Miroslava Anderova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Janeckova L, Knotek T, Kriska J, Hermanova Z, Kirdajova D, Kubovciak J, Berkova L, Tureckova J, Camacho Garcia S, Galuskova K, Kolar M, Anderova M, Korinek V. Astrocyte-like subpopulation of NG2 glia in the adult mouse cortex exhibits characteristics of neural progenitor cells. Glia 2024; 72:245-273. [PMID: 37772368 DOI: 10.1002/glia.24471] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
Glial cells expressing neuron-glial antigen 2 (NG2), also known as oligodendrocyte progenitor cells (OPCs), play a critical role in maintaining brain health. However, their ability to differentiate after ischemic injury is poorly understood. The aim of this study was to investigate the properties and functions of NG2 glia in the ischemic brain. Using transgenic mice, we selectively labeled NG2-expressing cells and their progeny in both healthy brain and after focal cerebral ischemia (FCI). Using single-cell RNA sequencing, we classified the labeled glial cells into five distinct subpopulations based on their gene expression patterns. Additionally, we examined the membrane properties of these cells using the patch-clamp technique. Of the identified subpopulations, three were identified as OPCs, whereas the fourth subpopulation had characteristics indicative of cells likely to develop into oligodendrocytes. The fifth subpopulation of NG2 glia showed astrocytic markers and had similarities to neural progenitor cells. Interestingly, this subpopulation was present in both healthy and post-ischemic tissue; however, its gene expression profile changed after ischemia, with increased numbers of genes related to neurogenesis. Immunohistochemical analysis confirmed the temporal expression of neurogenic genes and showed an increased presence of NG2 cells positive for Purkinje cell protein-4 at the periphery of the ischemic lesion 12 days after FCI, as well as NeuN-positive NG2 cells 28 and 60 days after injury. These results suggest the potential development of neuron-like cells arising from NG2 glia in the ischemic tissue. Our study provides insights into the plasticity of NG2 glia and their capacity for neurogenesis after stroke.
Collapse
Affiliation(s)
- Lucie Janeckova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Knotek
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kubovciak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Linda Berkova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sara Camacho Garcia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Galuskova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Kolar
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimir Korinek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
6
|
Czyżewski W, Mazurek M, Sakwa L, Szymoniuk M, Pham J, Pasierb B, Litak J, Czyżewska E, Turek M, Piotrowski B, Torres K, Rola R. Astroglial Cells: Emerging Therapeutic Targets in the Management of Traumatic Brain Injury. Cells 2024; 13:148. [PMID: 38247839 PMCID: PMC10813911 DOI: 10.3390/cells13020148] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Traumatic Brain Injury (TBI) represents a significant health concern, necessitating advanced therapeutic interventions. This detailed review explores the critical roles of astrocytes, key cellular constituents of the central nervous system (CNS), in both the pathophysiology and possible rehabilitation of TBI. Following injury, astrocytes exhibit reactive transformations, differentiating into pro-inflammatory (A1) and neuroprotective (A2) phenotypes. This paper elucidates the interactions of astrocytes with neurons, their role in neuroinflammation, and the potential for their therapeutic exploitation. Emphasized strategies encompass the utilization of endocannabinoid and calcium signaling pathways, hormone-based treatments like 17β-estradiol, biological therapies employing anti-HBGB1 monoclonal antibodies, gene therapy targeting Connexin 43, and the innovative technique of astrocyte transplantation as a means to repair damaged neural tissues.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Leon Sakwa
- Student Scientific Society, Kazimierz Pulaski University of Radom, 26-600 Radom, Poland;
| | - Michał Szymoniuk
- Student Scientific Association, Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Jennifer Pham
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Barbara Pasierb
- Department of Dermatology, Radom Specialist Hospital, 26-600 Radom, Poland;
| | - Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Ewa Czyżewska
- Department of Otolaryngology, Mazovian Specialist Hospital, 26-617 Radom, Poland;
| | - Michał Turek
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Bartłomiej Piotrowski
- Institute of Automatic Control and Robotics, Warsaw University of Technology, 00-661 Warsaw, Poland;
| | - Kamil Torres
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Radosław Rola
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| |
Collapse
|
7
|
Benarroch E. What Are the Roles of Oligodendrocyte Precursor Cells in Normal and Pathologic Conditions? Neurology 2023; 101:958-965. [PMID: 37985182 PMCID: PMC10663025 DOI: 10.1212/wnl.0000000000208000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/22/2023] Open
|
8
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Perez-Gianmarco L, Kukley M. Understanding the Role of the Glial Scar through the Depletion of Glial Cells after Spinal Cord Injury. Cells 2023; 12:1842. [PMID: 37508505 PMCID: PMC10377788 DOI: 10.3390/cells12141842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Spinal cord injury (SCI) is a condition that affects between 8.8 and 246 people in a million and, unlike many other neurological disorders, it affects mostly young people, causing deficits in sensory, motor, and autonomic functions. Promoting the regrowth of axons is one of the most important goals for the neurological recovery of patients after SCI, but it is also one of the most challenging goals. A key event after SCI is the formation of a glial scar around the lesion core, mainly comprised of astrocytes, NG2+-glia, and microglia. Traditionally, the glial scar has been regarded as detrimental to recovery because it may act as a physical barrier to axon regrowth and release various inhibitory factors. However, more and more evidence now suggests that the glial scar is beneficial for the surrounding spared tissue after SCI. Here, we review experimental studies that used genetic and pharmacological approaches to ablate specific populations of glial cells in rodent models of SCI in order to understand their functional role. The studies showed that ablation of either astrocytes, NG2+-glia, or microglia might result in disorganization of the glial scar, increased inflammation, extended tissue degeneration, and impaired recovery after SCI. Hence, glial cells and glial scars appear as important beneficial players after SCI.
Collapse
Affiliation(s)
- Lucila Perez-Gianmarco
- Achucarro Basque Center for Neuroscience, 48940 Leioa, PC, Spain
- Department of Neurosciences, University of the Basque Country, 48940 Leioa, PC, Spain
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, 48940 Leioa, PC, Spain
- IKERBASQUE Basque Foundation for Science, 48009 Bilbao, PC, Spain
| |
Collapse
|
10
|
Shafqat A, Albalkhi I, Magableh HM, Saleh T, Alkattan K, Yaqinuddin A. Tackling the glial scar in spinal cord regeneration: new discoveries and future directions. Front Cell Neurosci 2023; 17:1180825. [PMID: 37293626 PMCID: PMC10244598 DOI: 10.3389/fncel.2023.1180825] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Axonal regeneration and functional recovery are poor after spinal cord injury (SCI), typified by the formation of an injury scar. While this scar was traditionally believed to be primarily responsible for axonal regeneration failure, current knowledge takes a more holistic approach that considers the intrinsic growth capacity of axons. Targeting the SCI scar has also not reproducibly yielded nearly the same efficacy in animal models compared to these neuron-directed approaches. These results suggest that the major reason behind central nervous system (CNS) regeneration failure is not the injury scar but a failure to stimulate axon growth adequately. These findings raise questions about whether targeting neuroinflammation and glial scarring still constitute viable translational avenues. We provide a comprehensive review of the dual role of neuroinflammation and scarring after SCI and how future research can produce therapeutic strategies targeting the hurdles to axonal regeneration posed by these processes without compromising neuroprotection.
Collapse
|
11
|
Yi C, Verkhratsky A, Niu J. Pathological potential of oligodendrocyte precursor cells: terra incognita. Trends Neurosci 2023:S0166-2236(23)00103-0. [PMID: 37183154 DOI: 10.1016/j.tins.2023.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/12/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023]
Abstract
Adult oligodendrocyte precursor cells (aOPCs), transformed from fetal OPCs, are idiosyncratic neuroglia of the central nervous system (CNS) that are distinct in many ways from other glial cells. OPCs have been classically studied in the context of their remyelinating capacity. Recent studies, however, revealed that aOPCs not only contribute to post-lesional remyelination but also play diverse crucial roles in multiple neurological diseases. In this review we briefly present the physiology of aOPCs and summarize current knowledge of the beneficial and detrimental roles of aOPCs in different CNS diseases. We discuss unique features of aOPC death, reactivity, and changes during senescence, as well as aOPC interactions with other glial cells and pathological remodeling during disease. Finally, we outline future perspectives for the study of aOPCs in brain pathologies which may instigate the development of aOPC-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China; Department of Pathology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PL, UK; Achucarro Centre for Neuroscience, Basque Foundation for Science (IKERBASQUE), Bilbao 48011, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Jianqin Niu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
12
|
Steliga A, Lietzau G, Wójcik S, Kowiański P. Transient cerebral ischemia induces the neuroglial proliferative activity and the potential to redirect neuroglial differentiation. J Chem Neuroanat 2023; 127:102192. [PMID: 36403746 DOI: 10.1016/j.jchemneu.2022.102192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Brain injury triggers a complex response involving morphological changes, cellular proliferation, and differentiation of newly formed neuroglial subpopulations. These processes have been extensively studied in animal stroke models with permanent large vessel occlusion. However, less is known about neuroglial response after transient cerebral ischemia. Herein, we aimed to determine an astrocytic and NG2 glial proliferative response, potential changes in expression of developmental neuroglial markers: vimentin, nestin, oligodendrocyte transcription marker (Olig2), and a role of neuroglial subpopulations as a source of cells replenishing structural deficiencies in the ischemic brain. Results showed an induction of a proliferative neuroglial response in the peri-infarct area reflected in an increased percentage of GFAP/Ki67 + and NG2/Ki67 + cells within 4 weeks after transient MCAO. The peak of GFAP+ astrocytes proliferation of 30.3 ± 10.3% was observed in the first week, and a peak of NG2 + cells proliferation of 23.1 ± 11.8% in the second week after stroke. The presence of GFAP/Vimentin+ and GFAP/Nestin+ cells, as well as GFAP/Olig2 + and NG2/Olig2 + cells indicated an induction of developmental phenotypes with a differentiation potential. Finally, observed between day 1 and week 3 transient GFAP/NG2 + colocalization suggests the heterogeneous source of the reactive neuroglia after transient MCAO. Altogether, one-hour MCAO is a sufficient pathological stimulus to trigger a strong proliferative response of GFAP+ and NG2 + neuroglial cells and induce their early developmental phenotype. Our results suggest that transient ischemia may initiate a change in the direction of differentiation within the neuroglia cell population.
Collapse
Affiliation(s)
- Aleksandra Steliga
- Institute of Health Sciences, Pomeranian University in Słupsk, Bohaterów Westerplatte 64, 76-200 Słupsk, Poland
| | - Grazyna Lietzau
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Sławomir Wójcik
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Przemysław Kowiański
- Institute of Health Sciences, Pomeranian University in Słupsk, Bohaterów Westerplatte 64, 76-200 Słupsk, Poland; Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland.
| |
Collapse
|
13
|
Zawadzka M, Yeghiazaryan M, Niedziółka S, Miazga K, Kwaśniewska A, Bekisz M, Sławińska U. Forced Remyelination Promotes Axon Regeneration in a Rat Model of Spinal Cord Injury. Int J Mol Sci 2022; 24:ijms24010495. [PMID: 36613945 PMCID: PMC9820536 DOI: 10.3390/ijms24010495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
Spinal cord injuries result in the loss of motor and sensory functions controlled by neurons located at the site of the lesion and below. We hypothesized that experimentally enhanced remyelination supports axon preservation and/or growth in the total spinal cord transection in rats. Multifocal demyelination was induced by injection of ethidium bromide (EB), either at the time of transection or twice during transection and at 5 days post-injury. We demonstrated that the number of oligodendrocyte progenitor cells (OPCs) significantly increased 14 days after demyelination. Most OPCs differentiated into mature oligodendrocytes by 60-90 dpi in double-EB-injected rats; however, most axons were remyelinated by Schwann cells. A significant number of axons passed the injury epicenter and entered the distant segments of the spinal cord in the double-EB-injected rats. Moreover, some serotoninergic fibers, not detected in control animals, grew caudally through the injury site. Behavioral tests performed at 60-90 dpi revealed significant improvement in locomotor function recovery in double-EB-injected rats, which was impaired by the blockade of serotonin receptors, confirming the important role of restored serotonergic fibers in functional recovery. Our findings indicate that enhanced remyelination per se, without substantial inhibition of glial scar formation, is an important component of spinal cord injury regeneration.
Collapse
|
14
|
Molecular mechanisms of exercise contributing to tissue regeneration. Signal Transduct Target Ther 2022; 7:383. [PMID: 36446784 PMCID: PMC9709153 DOI: 10.1038/s41392-022-01233-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Physical activity has been known as an essential element to promote human health for centuries. Thus, exercise intervention is encouraged to battle against sedentary lifestyle. Recent rapid advances in molecular biotechnology have demonstrated that both endurance and resistance exercise training, two traditional types of exercise, trigger a series of physiological responses, unraveling the mechanisms of exercise regulating on the human body. Therefore, exercise has been expected as a candidate approach of alleviating a wide range of diseases, such as metabolic diseases, neurodegenerative disorders, tumors, and cardiovascular diseases. In particular, the capacity of exercise to promote tissue regeneration has attracted the attention of many researchers in recent decades. Since most adult human organs have a weak regenerative capacity, it is currently a key challenge in regenerative medicine to improve the efficiency of tissue regeneration. As research progresses, exercise-induced tissue regeneration seems to provide a novel approach for fighting against injury or senescence, establishing strong theoretical basis for more and more "exercise mimetics." These drugs are acting as the pharmaceutical alternatives of those individuals who cannot experience the benefits of exercise. Here, we comprehensively provide a description of the benefits of exercise on tissue regeneration in diverse organs, mainly focusing on musculoskeletal system, cardiovascular system, and nervous system. We also discuss the underlying molecular mechanisms associated with the regenerative effects of exercise and emerging therapeutic exercise mimetics for regeneration, as well as the associated opportunities and challenges. We aim to describe an integrated perspective on the current advances of distinct physiological mechanisms associated with exercise-induced tissue regeneration on various organs and facilitate the development of drugs that mimics the benefits of exercise.
Collapse
|
15
|
Yang R, Pan J, Wang Y, Xia P, Tai M, Jiang Z, Chen G. Application and prospects of somatic cell reprogramming technology for spinal cord injury treatment. Front Cell Neurosci 2022; 16:1005399. [PMID: 36467604 PMCID: PMC9712200 DOI: 10.3389/fncel.2022.1005399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/02/2022] [Indexed: 08/10/2023] Open
Abstract
Spinal cord injury (SCI) is a serious neurological trauma that is challenging to treat. After SCI, many neurons in the injured area die due to necrosis or apoptosis, and astrocytes, oligodendrocytes, microglia and other non-neuronal cells become dysfunctional, hindering the repair of the injured spinal cord. Corrective surgery and biological, physical and pharmacological therapies are commonly used treatment modalities for SCI; however, no current therapeutic strategies can achieve complete recovery. Somatic cell reprogramming is a promising technology that has gradually become a feasible therapeutic approach for repairing the injured spinal cord. This revolutionary technology can reprogram fibroblasts, astrocytes, NG2 cells and neural progenitor cells into neurons or oligodendrocytes for spinal cord repair. In this review, we provide an overview of the transcription factors, genes, microRNAs (miRNAs), small molecules and combinations of these factors that can mediate somatic cell reprogramming to repair the injured spinal cord. Although many challenges and questions related to this technique remain, we believe that the beneficial effect of somatic cell reprogramming provides new ideas for achieving functional recovery after SCI and a direction for the development of treatments for SCI.
Collapse
Affiliation(s)
- Riyun Yang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Yankai Wang
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Panhui Xia
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Mingliang Tai
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Zhihao Jiang
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
16
|
Intrinsic heterogeneity in axon regeneration. Biochem Soc Trans 2022; 50:1753-1762. [DOI: 10.1042/bst20220624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
The nervous system is composed of a variety of neurons and glial cells with different morphology and functions. In the mammalian peripheral nervous system (PNS) or the lower vertebrate central nervous system (CNS), most neurons can regenerate extensively after axotomy, while the neurons in the mammalian CNS possess only limited regenerative ability. This heterogeneity is common within and across species. The studies about the transcriptomes after nerve injury in different animal models have revealed a series of molecular and cellular events that occurred in neurons after axotomy. However, responses of various types of neurons located in different positions of individuals were different remarkably. Thus, researchers aim to find the key factors that are conducive to regeneration, so as to provide the molecular basis for solving the regeneration difficulties after CNS injury. Here we review the heterogeneity of axonal regeneration among different cell subtypes in different animal models or the same organ, emphasizing the importance of comparative studies within and across species.
Collapse
|
17
|
Sun J, Song Y, Chen Z, Qiu J, Zhu S, Wu L, Xing L. Heterogeneity and Molecular Markers for CNS Glial Cells Revealed by Single-Cell Transcriptomics. Cell Mol Neurobiol 2022; 42:2629-2642. [PMID: 34704168 PMCID: PMC11421601 DOI: 10.1007/s10571-021-01159-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022]
Abstract
Glial cells, including astrocytes, oligodendrocytes, and microglia, are the major components in the central nervous system (CNS). Studies have revealed the heterogeneity of each glial cell type and that they each may play distinct roles in physiological processes and/or neurological diseases. Single-cell sequencing (scRNA-seq) technology developed in recent years has extended our understanding of glial cell heterogeneity from the perspective of transcriptome profiling. This review summarizes the marker genes of major glial cells in the CNS and reveals their heterogeneity in different species, CNS regions, developmental stages, and pathological states (Alzheimer's disease and spinal cord injury), expanding our knowledge of glial cell heterogeneity on both molecular and functional levels.
Collapse
Affiliation(s)
- Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Yixing Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zhiheng Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Jiaying Qiu
- Department of Prenatal Screening and Diagnosis Center, Nantong Maternal and Child Health Hospital affiliated to Nantong University, Nantong, 226001, Jiangsu, China
| | - Shunxing Zhu
- Laboratory Animal Center, Nantong University, Nantong, 226001, China
| | - Liucheng Wu
- Laboratory Animal Center, Nantong University, Nantong, 226001, China.
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
18
|
Savya SP, Li F, Lam S, Wellman SM, Stieger KC, Chen K, Eles JR, Kozai TDY. In vivo spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation. Biomaterials 2022; 289:121784. [PMID: 36103781 PMCID: PMC10231871 DOI: 10.1016/j.biomaterials.2022.121784] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
Abstract
Brain computer interfaces (BCIs), including penetrating microelectrode arrays, enable both recording and stimulation of neural cells. However, device implantation inevitably causes injury to brain tissue and induces a foreign body response, leading to reduced recording performance and stimulation efficacy. Astrocytes in the healthy brain play multiple roles including regulating energy metabolism, homeostatic balance, transmission of neural signals, and neurovascular coupling. Following an insult to the brain, they are activated and gather around the site of injury. These reactive astrocytes have been regarded as one of the main contributors to the formation of a glial scar which affects the performance of microelectrode arrays. This study investigates the dynamics of astrocytes within the first 2 weeks after implantation of an intracortical microelectrode into the mouse brain using two-photon microscopy. From our observation astrocytes are highly dynamic during this period, exhibiting patterns of process extension, soma migration, morphological activation, and device encapsulation that are spatiotemporally distinct from other glial cells, such as microglia or oligodendrocyte precursor cells. This detailed characterization of astrocyte reactivity will help to better understand the tissue response to intracortical devices and lead to the development of more effective intervention strategies to improve the functional performance of neural interfacing technology.
Collapse
Affiliation(s)
- Sajishnu P Savya
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Northwestern University, USA
| | - Fan Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Computational Modeling & Simulation PhD Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephanie Lam
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven M Wellman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin C Stieger
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Hemati-Gourabi M, Cao T, Romprey MK, Chen M. Capacity of astrocytes to promote axon growth in the injured mammalian central nervous system. Front Neurosci 2022; 16:955598. [PMID: 36203815 PMCID: PMC9530187 DOI: 10.3389/fnins.2022.955598] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/15/2022] [Indexed: 01/02/2023] Open
Abstract
Understanding the regulation of axon growth after injury to the adult central nervous system (CNS) is crucial to improve neural repair. Following acute focal CNS injury, astrocytes are one cellular component of the scar tissue at the primary lesion that is traditionally associated with inhibition of axon regeneration. Advances in genetic models and experimental approaches have broadened knowledge of the capacity of astrocytes to facilitate injury-induced axon growth. This review summarizes findings that support a positive role of astrocytes in axon regeneration and axon sprouting in the mature mammalian CNS, along with potential underlying mechanisms. It is important to recognize that astrocytic functions, including modulation of axon growth, are context-dependent. Evidence suggests that the local injury environment, neuron-intrinsic regenerative potential, and astrocytes’ reactive states determine the astrocytic capacity to support axon growth. An integrated understanding of these factors will optimize therapeutic potential of astrocyte-targeted strategies for neural repair.
Collapse
Affiliation(s)
| | - Tuoxin Cao
- Spinal Cord and Brain Injury Research Center, Lexington, KY, United States
| | - Megan K. Romprey
- Spinal Cord and Brain Injury Research Center, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Meifan Chen
- Spinal Cord and Brain Injury Research Center, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- *Correspondence: Meifan Chen,
| |
Collapse
|
20
|
Ribeiro M, Ayupe AC, Beckedorff FC, Levay K, Rodriguez S, Tsoulfas P, Lee JK, Nascimento-Dos-Santos G, Park KK. Retinal ganglion cell expression of cytokine enhances occupancy of NG2 cell-derived astrocytes at the nerve injury site: Implication for axon regeneration. Exp Neurol 2022; 355:114147. [PMID: 35738417 PMCID: PMC10648309 DOI: 10.1016/j.expneurol.2022.114147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/27/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022]
Abstract
Following injury in the central nervous system, a population of astrocytes occupy the lesion site, form glial bridges and facilitate axon regeneration. These astrocytes originate primarily from resident astrocytes or NG2+ oligodendrocyte progenitor cells. However, the extent to which these cell types give rise to the lesion-filling astrocytes, and whether the astrocytes derived from different cell types contribute similarly to optic nerve regeneration remain unclear. Here we examine the distribution of astrocytes and NG2+ cells in an optic nerve crush model. We show that optic nerve astrocytes partially fill the injury site over time after a crush injury. Viral mediated expression of a growth-promoting factor, ciliary neurotrophic factor (CNTF), in retinal ganglion cells (RGCs) promotes axon regeneration without altering the lesion size or the degree of lesion-filling GFAP+ cells. Strikingly, using inducible NG2CreER driver mice, we found that CNTF overexpression in RGCs increases the occupancy of NG2+ cell-derived astrocytes in the optic nerve lesion. An EdU pulse-chase experiment shows that the increase in NG2 cell-derived astrocytes is not due to an increase in cell proliferation. Lastly, we performed RNA-sequencing on the injured optic nerve and reveal that CNTF overexpression in RGCs results in significant changes in the expression of distinct genes, including those that encode chemokines, growth factor receptors, and immune cell modulators. Even though CNTF-induced axon regeneration has long been recognized, this is the first evidence of this procedure affecting glial cell fate at the optic nerve crush site. We discuss possible implication of these results for axon regeneration.
Collapse
Affiliation(s)
- Marcio Ribeiro
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA; Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN 37232, USA
| | - Ana C Ayupe
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Felipe C Beckedorff
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, University of Miami Miller School of Medicine, Room 715, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Konstantin Levay
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Sara Rodriguez
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Pantelis Tsoulfas
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Jae K Lee
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Gabriel Nascimento-Dos-Santos
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Kevin K Park
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
| |
Collapse
|
21
|
Wang R, Zhou R, Chen Z, Gao S, Zhou F. The Glial Cells Respond to Spinal Cord Injury. Front Neurol 2022; 13:844497. [PMID: 35599739 PMCID: PMC9120539 DOI: 10.3389/fneur.2022.844497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/08/2022] [Indexed: 12/24/2022] Open
Abstract
It is been over 100 years since glial cells were discovered by Virchow. Since then, a great deal of research was carried out to specify these further roles and properties of glial cells in central nervous system (CNS). As it is well-known that glial cells, such as astrocytes, microglia, oligodendrocytes (OLs), and oligodendrocyte progenitor cells (OPCs) play an important role in supporting and enabling the effective nervous system function in CNS. After spinal cord injury (SCI), these glial cells play different roles in SCI and repair. In this review, we will discuss in detail about the role of glial cells in the healthy CNS and how they respond to SCI.
Collapse
|
22
|
Kabdesh IM, Mukhamedshina YO, Arkhipova SS, Sabirov DK, Kuznecov MS, Vyshtakalyuk AB, Rizvanov AA, James V, Chelyshev YA. Cellular and Molecular Gradients in the Ventral Horns With Increasing Distance From the Injury Site After Spinal Cord Contusion. Front Cell Neurosci 2022; 16:817752. [PMID: 35221924 PMCID: PMC8866731 DOI: 10.3389/fncel.2022.817752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
To identify cellular and molecular gradients following spinal cord injury (SCI), a rat contusion model of severe SCI was used to investigate the expression of NG2 and molecules that identify astrocytes and axons of the ventral horns (VH) at different distances on 7 and 30 days post-injury (dpi). A gradient of expression of NG2+/Olig2+ cells was determined, with the highest concentrations focused close to the injury site. A decrease in NG2 mean intensity correlates with a decrease in the number of NG2+ cells more distally. Immunoelectron microscopy subsequently revealed the presence of NG2 in connection with the membrane and within the cytoplasm of NG2+ glial cells and in large amounts within myelin membranes. Analysis of the astrocyte marker GFAP showed increased expression local to injury site from 7 dpi, this increase in expression spread more distally from the injury site by 30 dpi. Paradoxically, astrocyte perisynaptic processes marker GLT-1 was only increased in expression in areas remote from the epicenter, which was traced both at 7 and 30 dpi. Confocal microscopy showed a significant decrease in the number of 5-HT+ axons at a distance from the epicenter in the caudal direction, which is consistent with a decrease in β3-tubulin in these areas. The results indicate significant cellular and molecular reactions not only in the area of the gray matter damage but also in adjacent and remote areas, which is important for assessing the possibility of long-distance axonal growth.
Collapse
Affiliation(s)
- Ilyas M Kabdesh
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Yana O Mukhamedshina
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia.,Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| | - Svetlana S Arkhipova
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Davran K Sabirov
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Maxim S Kuznecov
- Department of Epidemiology and Evidence Based Medicine, Kazan State Medical University, Kazan, Russia
| | - Alexandra B Vyshtakalyuk
- FRC Kazan Scientific Center of RAS, A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan, Russia.,Department of Zoology and General Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Albert A Rizvanov
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Victoria James
- Biodiscovery Institute, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Yuri A Chelyshev
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| |
Collapse
|
23
|
Loss-of-function manipulations to identify roles of diverse glia and stromal cells during CNS scar formation. Cell Tissue Res 2022; 387:337-350. [PMID: 34164732 PMCID: PMC8975763 DOI: 10.1007/s00441-021-03487-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/09/2021] [Indexed: 01/30/2023]
Abstract
Scar formation is the replacement of parenchymal cells by stromal cells and fibrotic extracellular matrix. Until as recently as 25 years ago, little was known about the major functional contributions of different neural and non-neural cell types in the formation of scar tissue and tissue fibrosis in the CNS. Concepts about CNS scar formation are evolving rapidly with the availability of different types of loss-of-function technologies that allow mechanistic probing of cellular and molecular functions in models of CNS disorders in vivo. Such loss-of-function studies are beginning to reveal that scar formation and tissue fibrosis in the CNS involves complex interactions amongst multiple types of CNS glia and non-neural stromal cells. For example, attenuating functions of the CNS resident glial cells, astrocytes or microglia, can disrupt the formation of limitans borders that form around stromal cell scars, which leads to increased spread of inflammation, increased loss of neural tissue, and increased fibrosis. Insights are being gained into specific neuropathological mechanisms whereby specific dysfunctions of different types of CNS glia could cause or contribute to disorder-related tissue pathology and dysfunction. CNS glia, as well as fibrosis-producing stromal cells, are emerging as potential major contributors to diverse CNS disorders either through loss- or gain-of-functions, and are thereby emerging as important potential targets for interventions. In this article, we will review and discuss the effects on CNS scar formation and tissue repair of loss-of-function studies targeted at different specific cell types in various disorder models in vivo.
Collapse
|
24
|
Mira RG, Lira M, Cerpa W. Traumatic Brain Injury: Mechanisms of Glial Response. Front Physiol 2021; 12:740939. [PMID: 34744783 PMCID: PMC8569708 DOI: 10.3389/fphys.2021.740939] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) is a heterogeneous disorder that involves brain damage due to external forces. TBI is the main factor of death and morbidity in young males with a high incidence worldwide. TBI causes central nervous system (CNS) damage under a variety of mechanisms, including synaptic dysfunction, protein aggregation, mitochondrial dysfunction, oxidative stress, and neuroinflammation. Glial cells comprise most cells in CNS, which are mediators in the brain’s response to TBI. In the CNS are present astrocytes, microglia, oligodendrocytes, and polydendrocytes (NG2 cells). Astrocytes play critical roles in brain’s ion and water homeostasis, energy metabolism, blood-brain barrier, and immune response. In response to TBI, astrocytes change their morphology and protein expression. Microglia are the primary immune cells in the CNS with phagocytic activity. After TBI, microglia also change their morphology and release both pro and anti-inflammatory mediators. Oligodendrocytes are the myelin producers of the CNS, promoting axonal support. TBI causes oligodendrocyte apoptosis, demyelination, and axonal transport disruption. There are also various interactions between these glial cells and neurons in response to TBI that contribute to the pathophysiology of TBI. In this review, we summarize several glial hallmarks relevant for understanding the brain injury and neuronal damage under TBI conditions.
Collapse
Affiliation(s)
- Rodrigo G Mira
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Matías Lira
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
25
|
Dias DO, Kalkitsas J, Kelahmetoglu Y, Estrada CP, Tatarishvili J, Holl D, Jansson L, Banitalebi S, Amiry-Moghaddam M, Ernst A, Huttner HB, Kokaia Z, Lindvall O, Brundin L, Frisén J, Göritz C. Pericyte-derived fibrotic scarring is conserved across diverse central nervous system lesions. Nat Commun 2021; 12:5501. [PMID: 34535655 PMCID: PMC8448846 DOI: 10.1038/s41467-021-25585-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/17/2021] [Indexed: 12/04/2022] Open
Abstract
Fibrotic scar tissue limits central nervous system regeneration in adult mammals. The extent of fibrotic tissue generation and distribution of stromal cells across different lesions in the brain and spinal cord has not been systematically investigated in mice and humans. Furthermore, it is unknown whether scar-forming stromal cells have the same origin throughout the central nervous system and in different types of lesions. In the current study, we compared fibrotic scarring in human pathological tissue and corresponding mouse models of penetrating and non-penetrating spinal cord injury, traumatic brain injury, ischemic stroke, multiple sclerosis and glioblastoma. We show that the extent and distribution of stromal cells are specific to the type of lesion and, in most cases, similar between mice and humans. Employing in vivo lineage tracing, we report that in all mouse models that develop fibrotic tissue, the primary source of scar-forming fibroblasts is a discrete subset of perivascular cells, termed type A pericytes. Perivascular cells with a type A pericyte marker profile also exist in the human brain and spinal cord. We uncover type A pericyte-derived fibrosis as a conserved mechanism that may be explored as a therapeutic target to improve recovery after central nervous system lesions.
Collapse
Affiliation(s)
- David O Dias
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jannis Kalkitsas
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yildiz Kelahmetoglu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Cynthia P Estrada
- Department of Clinical Neuroscience, Karolinska University Hospital, Solna, Sweden
| | | | - Daniel Holl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Linda Jansson
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Shervin Banitalebi
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Mahmood Amiry-Moghaddam
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Aurélie Ernst
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Group Genome Instability in Tumors, German Cancer Research Center, Heidelberg, Germany
| | - Hagen B Huttner
- Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Zaal Kokaia
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Olle Lindvall
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Lou Brundin
- Department of Clinical Neuroscience, Karolinska University Hospital, Solna, Sweden
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christian Göritz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
26
|
Petersen MA, Tognatta R, Meyer-Franke A, Bushong EA, Mendiola AS, Yan Z, Muthusamy A, Merlini M, Meza-Acevedo R, Cabriga B, Zhou Y, Thomas R, Ryu JK, Lassmann H, Ellisman MH, Akassoglou K. BMP receptor blockade overcomes extrinsic inhibition of remyelination and restores neurovascular homeostasis. Brain 2021; 144:2291-2301. [PMID: 34426831 PMCID: PMC8418337 DOI: 10.1093/brain/awab106] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/24/2023] Open
Abstract
Extrinsic inhibitors at sites of blood–brain barrier disruption and neurovascular damage contribute to remyelination failure in neurological diseases. However, therapies to overcome the extrinsic inhibition of remyelination are not widely available and the dynamics of glial progenitor niche remodelling at sites of neurovascular dysfunction are largely unknown. By integrating in vivo two-photon imaging co-registered with electron microscopy and transcriptomics in chronic neuroinflammatory lesions, we found that oligodendrocyte precursor cells clustered perivascularly at sites of limited remyelination with deposition of fibrinogen, a blood coagulation factor abundantly deposited in multiple sclerosis lesions. By developing a screen (OPC-X-screen) to identify compounds that promote remyelination in the presence of extrinsic inhibitors, we showed that known promyelinating drugs did not rescue the extrinsic inhibition of remyelination by fibrinogen. In contrast, bone morphogenetic protein type I receptor blockade rescued the inhibitory fibrinogen effects and restored a promyelinating progenitor niche by promoting myelinating oligodendrocytes, while suppressing astrocyte cell fate, with potent therapeutic effects in chronic models of multiple sclerosis. Thus, abortive oligodendrocyte precursor cell differentiation by fibrinogen is refractory to known promyelinating compounds, suggesting that blockade of the bone morphogenetic protein signalling pathway may enhance remyelinating efficacy by overcoming extrinsic inhibition in neuroinflammatory lesions with vascular damage.
Collapse
Affiliation(s)
- Mark A Petersen
- Gladstone UCSF Center for Neurovascular Brain Immunology, San Francisco, CA 94158, USA.,Gladstone Institutes, University of California, San Francisco, CA 94158, USA.,Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Reshmi Tognatta
- Gladstone UCSF Center for Neurovascular Brain Immunology, San Francisco, CA 94158, USA.,Gladstone Institutes, University of California, San Francisco, CA 94158, USA
| | - Anke Meyer-Franke
- Gladstone UCSF Center for Neurovascular Brain Immunology, San Francisco, CA 94158, USA.,Gladstone Institutes, University of California, San Francisco, CA 94158, USA
| | - Eric A Bushong
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew S Mendiola
- Gladstone UCSF Center for Neurovascular Brain Immunology, San Francisco, CA 94158, USA.,Gladstone Institutes, University of California, San Francisco, CA 94158, USA
| | - Zhaoqi Yan
- Gladstone UCSF Center for Neurovascular Brain Immunology, San Francisco, CA 94158, USA.,Gladstone Institutes, University of California, San Francisco, CA 94158, USA
| | - Abinaya Muthusamy
- Gladstone Institutes, University of California, San Francisco, CA 94158, USA
| | - Mario Merlini
- Gladstone Institutes, University of California, San Francisco, CA 94158, USA
| | - Rosa Meza-Acevedo
- Gladstone UCSF Center for Neurovascular Brain Immunology, San Francisco, CA 94158, USA.,Gladstone Institutes, University of California, San Francisco, CA 94158, USA
| | - Belinda Cabriga
- Gladstone UCSF Center for Neurovascular Brain Immunology, San Francisco, CA 94158, USA.,Gladstone Institutes, University of California, San Francisco, CA 94158, USA
| | - Yungui Zhou
- Gladstone UCSF Center for Neurovascular Brain Immunology, San Francisco, CA 94158, USA.,Gladstone Institutes, University of California, San Francisco, CA 94158, USA
| | - Reuben Thomas
- Gladstone Institutes, University of California, San Francisco, CA 94158, USA
| | - Jae Kyu Ryu
- Gladstone UCSF Center for Neurovascular Brain Immunology, San Francisco, CA 94158, USA.,Gladstone Institutes, University of California, San Francisco, CA 94158, USA.,Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, University of California, San Diego, La Jolla, CA 92093, USA.,Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katerina Akassoglou
- Gladstone UCSF Center for Neurovascular Brain Immunology, San Francisco, CA 94158, USA.,Gladstone Institutes, University of California, San Francisco, CA 94158, USA.,Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
27
|
Diversity of Adult Neural Stem and Progenitor Cells in Physiology and Disease. Cells 2021; 10:cells10082045. [PMID: 34440814 PMCID: PMC8392301 DOI: 10.3390/cells10082045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Adult neural stem and progenitor cells (NSPCs) contribute to learning, memory, maintenance of homeostasis, energy metabolism and many other essential processes. They are highly heterogeneous populations that require input from a regionally distinct microenvironment including a mix of neurons, oligodendrocytes, astrocytes, ependymal cells, NG2+ glia, vasculature, cerebrospinal fluid (CSF), and others. The diversity of NSPCs is present in all three major parts of the CNS, i.e., the brain, spinal cord, and retina. Intrinsic and extrinsic signals, e.g., neurotrophic and growth factors, master transcription factors, and mechanical properties of the extracellular matrix (ECM), collectively regulate activities and characteristics of NSPCs: quiescence/survival, proliferation, migration, differentiation, and integration. This review discusses the heterogeneous NSPC populations in the normal physiology and highlights their potentials and roles in injured/diseased states for regenerative medicine.
Collapse
|
28
|
Kirdajova D, Valihrach L, Valny M, Kriska J, Krocianova D, Benesova S, Abaffy P, Zucha D, Klassen R, Kolenicova D, Honsa P, Kubista M, Anderova M. Transient astrocyte-like NG2 glia subpopulation emerges solely following permanent brain ischemia. Glia 2021; 69:2658-2681. [PMID: 34314531 PMCID: PMC9292252 DOI: 10.1002/glia.24064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022]
Abstract
NG2 glia display wide proliferation and differentiation potential under physiological and pathological conditions. Here, we examined these two features following different types of brain disorders such as focal cerebral ischemia (FCI), cortical stab wound (SW), and demyelination (DEMY) in 3‐month‐old mice, in which NG2 glia are labeled by tdTomato under the Cspg4 promoter. To compare NG2 glia expression profiles following different CNS injuries, we employed single‐cell RT‐qPCR and self‐organizing Kohonen map analysis of tdTomato‐positive cells isolated from the uninjured cortex/corpus callosum and those after specific injury. Such approach enabled us to distinguish two main cell populations (NG2 glia, oligodendrocytes), each of them comprising four distinct subpopulations. The gene expression profiling revealed that a subpopulation of NG2 glia expressing GFAP, a marker of reactive astrocytes, is only present transiently after FCI. However, following less severe injuries, namely the SW and DEMY, subpopulations mirroring different stages of oligodendrocyte maturation markedly prevail. Such injury‐dependent incidence of distinct subpopulations was also confirmed by immunohistochemistry. To characterize this unique subpopulation of transient astrocyte‐like NG2 glia, we used single‐cell RNA‐sequencing analysis and to disclose their basic membrane properties, the patch‐clamp technique was employed. Overall, we have proved that astrocyte‐like NG2 glia are a specific subpopulation of NG2 glia emerging transiently only following FCI. These cells, located in the postischemic glial scar, are active in the cell cycle and display a current pattern similar to that identified in cortical astrocytes. Astrocyte‐like NG2 glia may represent important players in glial scar formation and repair processes, following ischemia.
Collapse
Affiliation(s)
- Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic.,Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Vestec, Czech Republic
| | - Martin Valny
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Daniela Krocianova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Vestec, Czech Republic.,Faculty of Chemical Technology, Laboratory of Informatics and Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Vestec, Czech Republic
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Vestec, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Ruslan Klassen
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Vestec, Czech Republic
| | - Denisa Kolenicova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic.,Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Honsa
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Vestec, Czech Republic
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic.,Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
29
|
Du X, Zhang Z, Zhou H, Zhou J. Differential Modulators of NG2-Glia Differentiation into Neurons and Glia and Their Crosstalk. Cell Mol Neurobiol 2021; 41:1-15. [PMID: 32285247 PMCID: PMC11448640 DOI: 10.1007/s10571-020-00843-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
Abstract
As the fifth main cell population in the brain, NG2-glia are also known as oligodendrocyte precursor cells. NG2-glia express receptors and ion channels for fast modulation of neuronal activities and signaling with neuronal synapses, which are of functional significance in both physiological and pathological states. NG2-glia also participate in fast signaling with peripheral neurons via direct synaptic contacts in the brain. These distinctive glia have the unique capability of proliferating and differentiating into oligodendrocytes, which are critical for axonal myelination in the early developing brain. In neurodegenerative diseases, NG2-glia play an important role and undergo morphological modification, adapt the expression of their membrane receptors and ion channels, and display gene-modulated cell reprogramming and excitotoxicity-caused cell death. These modifications directly and indirectly influence populations of neurons and other glial cells. NG2-glia regulate their action and dynamics in response to neuronal behavior and disease, indicating a critical function to preserve and remodel myelin in physiological states and to repair it in pathological states. Here, we review in detail the differential modulators of NG2-glia into neurons and astrocytes, as well as interactions of NG2-glia with neurons, astrocytes, and microglia. We will also summarize a future potential exploitation of NG2-glia.
Collapse
Affiliation(s)
- Xiaohuang Du
- Department of Scientific Research, Army Medical University, Chongqing, 400037, China
| | - Zuo Zhang
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Hongli Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Jiyin Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
30
|
Spatiotemporal dynamic changes, proliferation, and differentiation characteristics of Sox9-positive cells after severe complete transection spinal cord injury. Exp Neurol 2020; 337:113556. [PMID: 33326799 DOI: 10.1016/j.expneurol.2020.113556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 11/21/2022]
Abstract
Studying the spatiotemporal dynamic changes of various cells following spinal cord injury (SCI) is of great significance for understanding the pathological processes of SCI. Changes in the characteristics of Sox9-positive cells, which are widely present in the spinal cord, have rarely been studied following SCI. We found that Sox9-positive cells were widely distributed in the central canal and parenchyma of the uninjured adult spinal cord, with the greatest distribution in the central spinal cord and relatively few cells in the dorsal and ventral sides. Ranging between 14.20% ± 1.61% and 15.60% ± 0.36% of total cells in the spinal cord, almost all Sox9-positive cells were in a quiescent state. However, Sox9-positive cells activated following SCI exhibited different characteristics according to their distance from the lesion area. In the reactive region, Sox9-positive cells highly expressed nestin and exhibited a single-branching structure, whereas in the non-reactive region, cells showed low nestin expression and a multi-branching structure. In response to SCI, a large number of Sox9-positive cells in the spinal cord parenchyma proliferated to participate in the formation of glial scars, whereas Sox9-positive cells in the central canal located near the lesion site accumulated at its broken ends through proliferation. Finally, we found that approximately 6.30% ± 0.35% of Sox9-positive cells differentiated into oligodendrocytes within two weeks after SCI. By examining the spatiotemporal dynamic changes, proliferation and differentiation characteristics of Sox9-positive cells after SCI, our findings provide a theoretical basis for understanding the pathological process of SCI.
Collapse
|
31
|
Glial Metabolic Rewiring Promotes Axon Regeneration and Functional Recovery in the Central Nervous System. Cell Metab 2020; 32:767-785.e7. [PMID: 32941799 PMCID: PMC7642184 DOI: 10.1016/j.cmet.2020.08.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/07/2020] [Accepted: 08/26/2020] [Indexed: 12/25/2022]
Abstract
Axons in the mature central nervous system (CNS) fail to regenerate after axotomy, partly due to the inhibitory environment constituted by reactive glial cells producing astrocytic scars, chondroitin sulfate proteoglycans, and myelin debris. We investigated this inhibitory milieu, showing that it is reversible and depends on glial metabolic status. We show that glia can be reprogrammed to promote morphological and functional regeneration after CNS injury in Drosophila via increased glycolysis. This enhancement is mediated by the glia derived metabolites: L-lactate and L-2-hydroxyglutarate (L-2HG). Genetically/pharmacologically increasing or reducing their bioactivity promoted or impeded CNS axon regeneration. L-lactate and L-2HG from glia acted on neuronal metabotropic GABAB receptors to boost cAMP signaling. Local application of L-lactate to injured spinal cord promoted corticospinal tract axon regeneration, leading to behavioral recovery in adult mice. Our findings revealed a metabolic switch to circumvent the inhibition of glia while amplifying their beneficial effects for treating CNS injuries.
Collapse
|
32
|
Potokar M, Morita M, Wiche G, Jorgačevski J. The Diversity of Intermediate Filaments in Astrocytes. Cells 2020; 9:E1604. [PMID: 32630739 PMCID: PMC7408014 DOI: 10.3390/cells9071604] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 01/02/2023] Open
Abstract
Despite the remarkable complexity of the individual neuron and of neuronal circuits, it has been clear for quite a while that, in order to understand the functioning of the brain, the contribution of other cell types in the brain have to be accounted for. Among glial cells, astrocytes have multiple roles in orchestrating neuronal functions. Their communication with neurons by exchanging signaling molecules and removing molecules from extracellular space takes place at several levels and is governed by different cellular processes, supported by multiple cellular structures, including the cytoskeleton. Intermediate filaments in astrocytes are emerging as important integrators of cellular processes. Astrocytes express five types of intermediate filaments: glial fibrillary acidic protein (GFAP); vimentin; nestin; synemin; lamins. Variability, interactions with different cellular structures and the particular roles of individual intermediate filaments in astrocytes have been studied extensively in the case of GFAP and vimentin, but far less attention has been given to nestin, synemin and lamins. Similarly, the interplay between different types of cytoskeleton and the interaction between the cytoskeleton and membranous structures, which is mediated by cytolinker proteins, are understudied in astrocytes. The present review summarizes the basic properties of astrocytic intermediate filaments and of other cytoskeletal macromolecules, such as cytolinker proteins, and describes the current knowledge of their roles in normal physiological and pathological conditions.
Collapse
Affiliation(s)
- Maja Potokar
- Laboratory of Neuroendocrinology – Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Celica BIOMEDICAL, 1000 Ljubljana, Slovenia;
| | - Mitsuhiro Morita
- Department of Biology, Kobe University Graduate School of Science, Kobe 657-8501, Japan;
| | - Gerhard Wiche
- Celica BIOMEDICAL, 1000 Ljubljana, Slovenia;
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology – Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Celica BIOMEDICAL, 1000 Ljubljana, Slovenia;
| |
Collapse
|
33
|
Sutherland TC, Geoffroy CG. The Influence of Neuron-Extrinsic Factors and Aging on Injury Progression and Axonal Repair in the Central Nervous System. Front Cell Dev Biol 2020; 8:190. [PMID: 32269994 PMCID: PMC7109259 DOI: 10.3389/fcell.2020.00190] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
In the aging western population, the average age of incidence for spinal cord injury (SCI) has increased, as has the length of survival of SCI patients. This places great importance on understanding SCI in middle-aged and aging patients. Axon regeneration after injury is an area of study that has received substantial attention and made important experimental progress, however, our understanding of how aging affects this process, and any therapeutic effort to modulate repair, is incomplete. The growth and regeneration of axons is mediated by both neuron intrinsic and extrinsic factors. In this review we explore some of the key extrinsic influences on axon regeneration in the literature, focusing on inflammation and astrogliosis, other cellular responses, components of the extracellular matrix, and myelin proteins. We will describe how each element supports the contention that axonal growth after injury in the central nervous system shows an age-dependent decline, and how this may affect outcomes after a SCI.
Collapse
Affiliation(s)
- Theresa C Sutherland
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States
| | - Cédric G Geoffroy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States
| |
Collapse
|
34
|
Kato K, Orihara-Ono M, Awasaki T. Multiple lineages enable robust development of the neuropil-glia architecture in adult Drosophila. Development 2020; 147:dev184085. [PMID: 32051172 DOI: 10.1242/dev.184085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/29/2020] [Indexed: 12/16/2022]
Abstract
Neural remodeling is essential for the development of a functional nervous system and has been extensively studied in the metamorphosis of Drosophila Despite the crucial roles of glial cells in brain functions, including learning and behavior, little is known of how adult glial cells develop in the context of neural remodeling. Here, we show that the architecture of neuropil-glia in the adult Drosophila brain, which is composed of astrocyte-like glia (ALG) and ensheathing glia (EG), robustly develops from two different populations in the larva: the larval EG and glial cell missing-positive (gcm+ ) cells. Whereas gcm+ cells proliferate and generate adult ALG and EG, larval EG dedifferentiate, proliferate and redifferentiate into the same glial subtypes. Each glial lineage occupies a certain brain area complementary to the other, and together they form the adult neuropil-glia architecture. Both lineages require the FGF receptor Heartless to proliferate, and the homeoprotein Prospero to differentiate into ALG. Lineage-specific inhibition of gliogenesis revealed that each lineage compensates for deficiency in the proliferation of the other. Together, the lineages ensure the robust development of adult neuropil-glia, thereby ensuring a functional brain.
Collapse
Affiliation(s)
- Kentaro Kato
- Department of Biology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka 181-8611, Tokyo, Japan
| | - Minako Orihara-Ono
- Department of Biology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka 181-8611, Tokyo, Japan
| | - Takeshi Awasaki
- Department of Biology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka 181-8611, Tokyo, Japan
| |
Collapse
|
35
|
Pous L, Deshpande SS, Nath S, Mezey S, Malik SC, Schildge S, Bohrer C, Topp K, Pfeifer D, Fernández-Klett F, Doostkam S, Galanakis DK, Taylor V, Akassoglou K, Schachtrup C. Fibrinogen induces neural stem cell differentiation into astrocytes in the subventricular zone via BMP signaling. Nat Commun 2020; 11:630. [PMID: 32005867 PMCID: PMC6994610 DOI: 10.1038/s41467-020-14466-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/09/2020] [Indexed: 12/30/2022] Open
Abstract
Neural stem/progenitor cells (NSPCs) originating from the subventricular zone (SVZ) contribute to brain repair during CNS disease. The microenvironment within the SVZ stem cell niche controls NSPC fate. However, extracellular factors within the niche that trigger astrogliogenesis over neurogenesis during CNS disease are unclear. Here, we show that blood-derived fibrinogen is enriched in the SVZ niche following distant cortical brain injury in mice. Fibrinogen inhibited neuronal differentiation in SVZ and hippocampal NSPCs while promoting astrogenesis via activation of the BMP receptor signaling pathway. Genetic and pharmacologic depletion of fibrinogen reduced astrocyte formation within the SVZ after cortical injury, reducing the contribution of SVZ-derived reactive astrocytes to lesion scar formation. We propose that fibrinogen is a regulator of NSPC-derived astrogenesis from the SVZ niche via BMP receptor signaling pathway following injury.
Collapse
Affiliation(s)
- Lauriane Pous
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Sachin S Deshpande
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Suvra Nath
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Szilvia Mezey
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Subash C Malik
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Sebastian Schildge
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Christian Bohrer
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Könül Topp
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, University of Freiburg, 79106, Freiburg, Germany
| | - Francisco Fernández-Klett
- Department of Neuropsychiatry & Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Soroush Doostkam
- Institute of Neuropathology, University Medical Center Freiburg, University of Freiburg, 79104, Freiburg, Germany
| | - Dennis K Galanakis
- Department of Pathology, State University of New York, Stony Brook, NY, 11794, USA
| | - Verdon Taylor
- Department of Biomedicine, Embryology and Stem Cell Biology, University of Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland
| | - Katerina Akassoglou
- Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Christian Schachtrup
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
36
|
Pearson CS, Solano AG, Tilve SM, Mencio CP, Martin KR, Geller HM. Spatiotemporal distribution of chondroitin sulfate proteoglycans after optic nerve injury in rodents. Exp Eye Res 2019; 190:107859. [PMID: 31705897 DOI: 10.1016/j.exer.2019.107859] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/16/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023]
Abstract
The accumulation of chondroitin sulfate proteoglycans (CSPGs) in the glial scar following acute damage to the central nervous system (CNS) limits the regeneration of injured axons. Given the rich diversity of CSPG core proteins and patterns of GAG sulfation, identifying the composition of these CSPGs is essential for understanding their roles in injury and repair. Differential expression of core proteins and sulfation patterns have been characterized in the brain and spinal cord of mice and rats, but a comprehensive study of these changes following optic nerve injury has not yet been performed. Here, we show that the composition of CSPGs in the optic nerve and retina following optic nerve crush (ONC) in mice and rats exhibits an increase in aggrecan, brevican, phosphacan, neurocan and versican, similar to changes following spinal cord injury. We also observe an increase in inhibitory 4-sulfated (4S) GAG chains, which suggests that the persistence of CSPGs in the glial scar opposes the growth of CNS axons, thereby contributing to the failure of regeneration and recovery of function.
Collapse
Affiliation(s)
- Craig S Pearson
- Laboratory of Developmental Neurobiology, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, USA; Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Andrea G Solano
- Laboratory of Developmental Neurobiology, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharada M Tilve
- Laboratory of Developmental Neurobiology, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Caitlin P Mencio
- Laboratory of Developmental Neurobiology, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keith R Martin
- Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
37
|
Baaklini CS, Rawji KS, Duncan GJ, Ho MFS, Plemel JR. Central Nervous System Remyelination: Roles of Glia and Innate Immune Cells. Front Mol Neurosci 2019; 12:225. [PMID: 31616249 PMCID: PMC6764409 DOI: 10.3389/fnmol.2019.00225] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/04/2019] [Indexed: 12/31/2022] Open
Abstract
In diseases such as multiple sclerosis (MS), inflammation can injure the myelin sheath that surrounds axons, a process known as demyelination. The spontaneous regeneration of myelin, called remyelination, is associated with restoration of function and prevention of axonal degeneration. Boosting remyelination with therapeutic intervention is a promising new approach that is currently being tested in several clinical trials. The endogenous regulation of remyelination is highly dependent on the immune response. In this review article, we highlight the cell biology of remyelination and its regulation by innate immune cells. For the purpose of this review, we discuss the roles of microglia, and also astrocytes and oligodendrocyte progenitor cells (OPCs) as they are being increasingly recognized to have immune cell functions.
Collapse
Affiliation(s)
- Charbel S. Baaklini
- Department of Medicine, Division of Neurology, Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Khalil S. Rawji
- Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Greg J. Duncan
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, United States
| | - Madelene F. S. Ho
- Department of Medicine, Division of Neurology, Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
38
|
Duncan GJ, Manesh SB, Hilton BJ, Assinck P, Plemel JR, Tetzlaff W. The fate and function of oligodendrocyte progenitor cells after traumatic spinal cord injury. Glia 2019; 68:227-245. [PMID: 31433109 DOI: 10.1002/glia.23706] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022]
Abstract
Oligodendrocyte progenitor cells (OPCs) are the most proliferative and dispersed population of progenitor cells in the adult central nervous system, which allows these cells to rapidly respond to damage. Oligodendrocytes and myelin are lost after traumatic spinal cord injury (SCI), compromising efficient conduction and, potentially, the long-term health of axons. In response, OPCs proliferate and then differentiate into new oligodendrocytes and Schwann cells to remyelinate axons. This culminates in highly efficient remyelination following experimental SCI in which nearly all intact demyelinated axons are remyelinated in rodent models. However, myelin regeneration comprises only one role of OPCs following SCI. OPCs contribute to scar formation after SCI and restrict the regeneration of injured axons. Moreover, OPCs alter their gene expression following demyelination, express cytokines and perpetuate the immune response. Here, we review the functional contribution of myelin regeneration and other recently uncovered roles of OPCs and their progeny to repair following SCI.
Collapse
Affiliation(s)
- Greg J Duncan
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, Oregon
| | - Sohrab B Manesh
- Graduate Program in Neuroscience, International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Brett J Hilton
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Peggy Assinck
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Jason R Plemel
- Department of Medicine, Division of Neurology, Neuroscience and Mental Health Institute, University of Alberta, Calgary, Alberta, Canada
| | - Wolfram Tetzlaff
- Graduate Program in Neuroscience, International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, British Columbia, Canada.,Departments of Zoology and Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
39
|
Wellman SM, Li L, Yaxiaer Y, McNamara I, Kozai TDY. Revealing Spatial and Temporal Patterns of Cell Death, Glial Proliferation, and Blood-Brain Barrier Dysfunction Around Implanted Intracortical Neural Interfaces. Front Neurosci 2019; 13:493. [PMID: 31191216 PMCID: PMC6546924 DOI: 10.3389/fnins.2019.00493] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Improving the long-term performance of neural electrode interfaces requires overcoming severe biological reactions such as neuronal cell death, glial cell activation, and vascular damage in the presence of implanted intracortical devices. Past studies traditionally observe neurons, microglia, astrocytes, and blood-brain barrier (BBB) disruption around inserted microelectrode arrays. However, analysis of these factors alone yields poor correlation between tissue inflammation and device performance. Additionally, these studies often overlook significant biological responses that can occur during acute implantation injury. The current study employs additional histological markers that provide novel information about neglected tissue components-oligodendrocytes and their myelin structures, oligodendrocyte precursor cells, and BBB -associated pericytes-during the foreign body response to inserted devices at 1, 3, 7, and 28 days post-insertion. Our results reveal unique temporal and spatial patterns of neuronal and oligodendrocyte cell loss, axonal and myelin reorganization, glial cell reactivity, and pericyte deficiency both acutely and chronically around implanted devices. Furthermore, probing for immunohistochemical markers that highlight mechanisms of cell death or patterns of proliferation and differentiation have provided new insight into inflammatory tissue dynamics around implanted intracortical electrode arrays.
Collapse
Affiliation(s)
- Steven M. Wellman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Lehong Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yalikun Yaxiaer
- Eberly College of Science, Pennsylvania State University, University Park, PA, United States
| | - Ingrid McNamara
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Takashi D. Y. Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, United States
| |
Collapse
|
40
|
Microglial Depletion with Clodronate Liposomes Increases Proinflammatory Cytokine Levels, Induces Astrocyte Activation, and Damages Blood Vessel Integrity. Mol Neurobiol 2019; 56:6184-6196. [PMID: 30734229 DOI: 10.1007/s12035-019-1502-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/18/2019] [Indexed: 01/22/2023]
Abstract
Investigators are increasingly interested in using microglial depletion to study the role of microglia under pathologic conditions. Liposome-encapsulated clodronate is commonly used to eliminate macrophage populations because it causes functionally irreversible inhibition and apoptosis once phagocytized by macrophages. Recent studies have shown that microglia can be depleted in disease models by injecting clodronate liposomes into the brain parenchyma. However, it is unclear whether intracerebral administration of clodronate liposomes is a practical method of eliminating microglia under physiologic conditions or whether microglial depletion induces damage to other brain cells. In this study, injecting 1 μL of clodronate liposomes (7 μg/μL) into the striatum of mice caused ablation of microglia at 1 day that persisted for 3 days. Microglia reappeared in the boundary regions of microglia elimination after 5 days. Importantly, we observed an increase in proinflammatory cytokine levels and an increase in neural/glial antigen 2 and glial fibrillary acidic protein expression in the perilesional region. In contrast, expression levels of myelin basic protein, microtubule-associated protein 2, and postsynaptic protein-95 decreased in the periphery of regions where microglia were depleted. Moreover, clodronate liposome administration decreased the density and integrity of blood vessels in the perilesional regions. In cultured primary neurons, clodronate liposome exposure also attenuated ATP synthesis. Together, these findings suggest that intracerebral administration of clodronate liposomes into brain parenchyma can deplete microglia, but can also damage other brain cells and blood vessel integrity.
Collapse
|
41
|
Li X, Li J, Xiao Z, Dai J. [The role of glial scar on axonal regeneration after spinal cord injury]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:973-978. [PMID: 30238720 DOI: 10.7507/1002-1892.201806093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The 'glial scar' has been widely studied in the regeneration of spinal cord injury (SCI). For decades, mainstream scientific concept considers glial scar as a 'physical barrier' to impede axonal regeneration after SCI. Moreover, some extracellular molecules produced by glial scar are also regarded as axonal growth inhibitors. With the development of technology and the progress of research, multiple lines of new evidence challenge the pre-existing traditional notions in SCI repair, including the role of glial scar. This review briefly reviewed the history, advance, and controversy of glial scar research in SCI repair since 1930s, hoping to recognize the roles of glial scar and crack the international problem of SCI regeneration.
Collapse
Affiliation(s)
- Xing Li
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, P.R.China
| | - Jiayin Li
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, P.R.China
| | - Zhifeng Xiao
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, P.R.China
| | - Jianwu Dai
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101,
| |
Collapse
|