1
|
Dutta B, Loo S, Kam A, Wang X, Wei N, Luo KQ, Liu CF, Tam JP. Cell-Permeable Microprotein from Panax Ginseng Protects Against Doxorubicin-Induced Oxidative Stress and Cardiotoxicity. Antioxidants (Basel) 2025; 14:493. [PMID: 40298878 PMCID: PMC12024455 DOI: 10.3390/antiox14040493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
(1) Background: Doxorubicin (DOX) is a frontline chemotherapeutic, but its side-effects from oxidative stress, leading to cardiotoxicity, pose significant challenges to its clinical use. We recently discovered a novel family of proteolysis-resistant, cystine-dense, and cell-penetrating microproteins from Panax ginseng that we term ginsentides. Ginsentides, such as the 31-residue TP1, coordinate multiple biological systems to prevent vascular dysfunction and endoplasmic reticulum stress induced by internal and external stressors. (2) Methods: We assessed the protective effects of ginsentide TP1 on DOX-induced cardiotoxicity using both in vitro functional studies on H9c2 cardiomyocytes and in vivo animal models by zebrafish and ICR mouse models. In these models, we examined oxidative stress, apoptosis, intracellular calcium levels, mitochondrial function, inflammatory responses, and cardiac function. (3) Results: We show that ginsentide TP1 protects against DOX-induced cytotoxicity in the mitochondria-rich H9c2 cardiomyocytes and reduces myocardial injury in zebrafish and mice by mitigating oxidative stress, inflammation, calcium, and mitochondrial dysfunction, as well as apoptosis-mediated cell death. Importantly, TP1 preserves cellular homeostasis without compromising the anticancer potency of DOX in breast cancer cells. (4) Conclusions: our findings highlight a specific antioxidative function of ginsentide TP1 in managing DOX-induced cardiotoxicity during cancer treatment and provide a promising lead for developing cardioprotective peptides and microproteins against oxidative stress.
Collapse
Affiliation(s)
- Bamaprasad Dutta
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (B.D.); (S.L.); (A.K.); (X.W.); (C.-F.L.)
- School of Pharmacy, The Neotia University, Sarisa, Diamond Harbour Road, 24 Parganas (South), West Bengal 743368, India
| | - Shining Loo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (B.D.); (S.L.); (A.K.); (X.W.); (C.-F.L.)
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Antony Kam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (B.D.); (S.L.); (A.K.); (X.W.); (C.-F.L.)
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Xiaoliang Wang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (B.D.); (S.L.); (A.K.); (X.W.); (C.-F.L.)
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Na Wei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore;
| | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China;
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao SAR, China
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (B.D.); (S.L.); (A.K.); (X.W.); (C.-F.L.)
| | - James P. Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (B.D.); (S.L.); (A.K.); (X.W.); (C.-F.L.)
| |
Collapse
|
2
|
Badr AM, Alotaibi HN, El-Orabi N. Dibenzazepine, a γ-Secretase Enzyme Inhibitor, Protects Against Doxorubicin-Induced Cardiotoxicity by Suppressing NF-κB, iNOS, and Hes1/Hey1 Expression. Inflammation 2025; 48:557-574. [PMID: 39078585 DOI: 10.1007/s10753-024-02046-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 07/31/2024]
Abstract
Doxorubicin (DOX) is an effective chemotherapeutic drug; however, its cardiotoxicity and resistance compromise its therapeutic index. The Notch pathway was reported to contribute to DOX cancer resistance. The role of Notch pathway in DOX cardiotoxicity has not been identified yet. Notch receptors are characterized by their extracellular (NECD) and intracellular (NICD) domains (NICD). The γ-secretase enzyme helps in the release of NICD. Dibenzazepine (DBZ) is a γ-secretase inhibitor. The present study investigated the effect of Notch pathway inhibition on DOX cardiotoxicity. Twenty-four male Wistar rats were divided into four groups: control group, DOX group, acute cardiotoxicity was induced by a single dose of DOX (20 mg/kg) i.p., DOX (20 mg/kg) plus DBZ group, and DBZ group. The third and fourth groups received i.p. injection of DBZ daily for 14 days at 2 mg/kg dose. DOX cardiotoxicity increased the level of serum creatine kinase-MB and cardiac troponin I, and it was confirmed by the histopathological examination. Moreover, the antioxidants glutathione peroxidase and superoxide dismutase levels were markedly decreased, and the inflammatory markers, inducible nitric oxide synthase, nuclear factor-ķB, and tumor necrosis factor-α were markedly increased. Furthermore, DOX increased BAX protein and downregulated BCL-2. In addition, DOX upregulated Notch pathway-related parameters: Hes1 and Hey1 mRNA levels, and increased Hes1 protein levels. DBZ ameliorated DOX-induced cardiotoxicity, evidenced by reducing the cardiac injury biomarkers, improving cardiac histopathological changes, correcting antioxidant levels, and reducing inflammatory and apoptotic proteins. Our study indicates the protective effect of Notch inhibitor against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Amira M Badr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Saud University, Riyadh, 11211, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Hind N Alotaibi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Saud University, Riyadh, 11211, Saudi Arabia
| | - Naglaa El-Orabi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
3
|
Prasad S, Patel B, Kumar P, Mitra P, Lall R. Cranberry: A Promising Natural Product for Animal Health and Performance. Curr Issues Mol Biol 2025; 47:80. [PMID: 39996801 PMCID: PMC11854524 DOI: 10.3390/cimb47020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
Cranberries are a distinctive source of bioactive compounds, containing polyphenols such as flavonoids, anthocyanins, phenolic acids, and triterpenoids. Cranberries are often associated with potential health benefits for the urinary tract and digestive system due to their high antioxidant, anti-inflammatory, antimicrobial, and immunomodulatory properties. Cranberry induces the production of antioxidant enzymes, suppresses lipid peroxidation, reduces inflammatory cytokines, modulates immune cells, maintains gut microbiota, and inhibits bacterial adhesion and growth. Cranberry polyphenols also have metal-binding motifs that bind with metals, particularly zinc and iron. The combination of cranberry polyphenols and metals displays increased biological activity. In this review, an attempt is made to describe the physiological properties and health benefits of cranberries for livestock, including poultry, swine, canine, feline, and ruminant animals, as either feed/food or as supplements. Cranberry, and/or its components, has the capability to potentially control infectious diseases like diarrhea, urinary tract infection, gut integrity, and intestinal probiotic health. Moreover, cranberries show efficacy in suppressing the growth of pathogenic microorganisms such as Salmonella species, Campylobacter species, Streptococcus species, and Enterococcus species bacteria. Thus, cranberry could be considered as a potential natural feed additive or food supplement for animal health improvement.
Collapse
Affiliation(s)
- Sahdeo Prasad
- R&D LifeSciences LLC, 8801 Enterprise Blvd, Largo, FL 33773, USA
| | - Bhaumik Patel
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Science Center, Abilene, TX 79601, USA
| | - Prafulla Kumar
- R&D LifeSciences LLC, 8801 Enterprise Blvd, Largo, FL 33773, USA
| | - Pranabendu Mitra
- Department of Kinesiology, Health, Food & Nutritional Sciences, University of Wisconsin-Stout, Menomonie, WI 54751, USA
| | - Rajiv Lall
- R&D LifeSciences LLC, 8801 Enterprise Blvd, Largo, FL 33773, USA
| |
Collapse
|
4
|
Obeid RA, Mohammed RA, Kaskoos RA, Zair A. Exploring the antioxidant potential of Moringa oleifera leaf extracts mitigating doxorubicin-induced cardiotoxicity in male rats. J Adv Pharm Technol Res 2024; 15:166-170. [PMID: 39290548 PMCID: PMC11404441 DOI: 10.4103/japtr.japtr_531_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 09/19/2024] Open
Abstract
Doxorubicin (DOX) is a commonly used drug in chemotherapy for cancer treatment. However, it can cause the threatening side effect of cardiotoxicity. This study investigates whether the hydro-alcoholic leaves of Moringa oleifera have any protective potential against DOX-induced cardiotoxicity. The phytochemical analysis showed that the plant extracts contained bioactive compounds with antioxidant activities. The DOX-treated group confirmed a significant increment in cardiac troponin I (cTnI) and proinflammatory cytokine interleukin-6 (IL-6) levels, which indicates damage to the cardiomyocytes and also inflammation. However, treatment with the M. oleifera extracts significantly inhibited DOX-induced cardiomyocyte damage, as indicated by the significantly low cTnI release. Furthermore, treatment with M. oleifera extracts further increased antioxidant activities, thereby decreasing oxidative stress and lipid peroxidation. Moreover, DOX was found to increase the IL-6 level, and treatment with M. oleifera extracts had a significant impact on the inhibition of IL-6 levels. These results indicate that the M. oleifera extracts have a cardioprotective effect and can play a role as an adjunct drug in mitigating DOX-induced cardiotoxicity, thus providing new prospects for the improvement of safety and efficacy in the treatment of cancer.
Collapse
Affiliation(s)
- Ruaa Ali Obeid
- Department of Chemistry and Biochemistry, Faculty of Medicine, University of Sousse, Sousse, Tunisia, Iraq
| | - Rusul Ahmed Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Mustaqbal University, Hillah, Iraq
| | - Raad A Kaskoos
- Department of Pharmacognosy and Phytochemistry, Pharmacy, Al-Manara College for Medical Sciences, Amarah, Iraq
| | - Amira Zair
- Department of Biochemistry, Faculty of Medicine, University of Sousse, Sousse, Tunisia, Iraq
| |
Collapse
|
5
|
Tonon CR, Monte MG, Balin PS, Fujimori ASS, Ribeiro APD, Ferreira NF, Vieira NM, Cabral RP, Okoshi MP, Okoshi K, Zornoff LAM, Minicucci MF, Paiva SAR, Gomes MJ, Polegato BF. Liraglutide Pretreatment Does Not Improve Acute Doxorubicin-Induced Cardiotoxicity in Rats. Int J Mol Sci 2024; 25:5833. [PMID: 38892020 PMCID: PMC11172760 DOI: 10.3390/ijms25115833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Doxorubicin is an effective drug for cancer treatment; however, cardiotoxicity limits its use. Cardiotoxicity pathophysiology is multifactorial. GLP-1 analogues have been shown to reduce oxidative stress and inflammation. In this study, we evaluated the effect of pretreatment with liraglutide on doxorubicin-induced acute cardiotoxicity. A total of 60 male Wistar rats were allocated into four groups: Control (C), Doxorubicin (D), Liraglutide (L), and Doxorubicin + Liraglutide (DL). L and DL received subcutaneous injection of liraglutide 0.6 mg/kg daily, while C and D received saline for 2 weeks. Afterwards, D and DL received a single intraperitoneal injection of doxorubicin 20 mg/kg; C and L received an injection of saline. Forty-eight hours after doxorubicin administration, the rats were subjected to echocardiogram, isolated heart functional study, and euthanasia. Liraglutide-treated rats ingested significantly less food and gained less body weight than animals that did not receive the drug. Rats lost weight after doxorubicin injection. At echocardiogram and isolated heart study, doxorubicin-treated rats had systolic and diastolic function impairment. Myocardial catalase activity was statistically higher in doxorubicin-treated rats. Myocardial protein expression of tumor necrosis factor alpha (TNF-α), phosphorylated nuclear factor-κB (p-NFκB), troponin T, and B-cell lymphoma 2 (Bcl-2) was significantly lower, and the total NFκB/p-NFκB ratio and TLR-4 higher in doxorubicin-treated rats. Myocardial expression of OPA-1, MFN-2, DRP-1, and topoisomerase 2β did not differ between groups (p > 0.05). In conclusion, doxorubicin-induced cardiotoxicity is accompanied by decreased Bcl-2 and phosphorylated NFκB and increased catalase activity and TLR-4 expression. Liraglutide failed to improve acute doxorubicin-induced cardiotoxicity in rats.
Collapse
Affiliation(s)
- Carolina R. Tonon
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Marina G. Monte
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Paola S. Balin
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Anderson S. S. Fujimori
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Ana Paula D. Ribeiro
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Natália F. Ferreira
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Nayane M. Vieira
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Ronny P. Cabral
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Marina P. Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Leonardo A. M. Zornoff
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Marcos F. Minicucci
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Sergio A. R. Paiva
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Mariana J. Gomes
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA;
| | - Bertha F. Polegato
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| |
Collapse
|
6
|
Soliman AG, Mahmoud B, Eldin ZE, El-Shahawy AAG, Abdel-Gabbar M. Optimized synthesis characterization and protective activity of quercetin and quercetin–chitosan nanoformula against cardiotoxicity that was induced in male Wister rats via anticancer agent: doxorubicin. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
AbstractThe study’s goal was to look into the protective properties of quercetin (QU) in natural form and QU nanoparticles-loaded chitosan nanoparticles (QU-CHSNPs) against cardiotoxicity. The ionotropic gelation approach was adopted to form QU-CHSNPs. The characterizations were performed using advanced techniques. In vitro, the release profile of QU was studied. Cardiotoxicity was induced by doxorubicin (DOX) and protected via concurrent administration of QU and QU-CHSNPs. The heart's preventive effects of QU and QU-CHSNPs were manifested by a decrease in elevated serum activities of cardiac enzymes, as well as an improvement in the heart's antioxidant defence system and histological changes. The findings substantiated QU-CHSNPs' structure with an entrapment efficiency of 92.56%. The mean of the zeta size distribution was 150 nm, the real average particle size was 50 nm, and the zeta potential value was − 27.9 mV, exhibiting low physical stability. The percent of the free QU-cumulative release was about 70% after 12 h, and QU-CHSNPs showed a 49% continued release with a pattern of sustained release, reaching 98% after 48 h. And as such, QU and QU-CHSNPs restrained the induced cardiotoxicity of DOX in male Wistar rats, with the QU-CHSNPs being more efficient.
Collapse
|
7
|
Nagoor Meeran MF, Arunachalam S, Azimullah S, Saraswathiamma D, Albawardi A, Almarzooqi S, Jha NK, Subramanya S, Beiram R, Ojha S. α-Bisabolol, a Dietary Sesquiterpene, Attenuates Doxorubicin-Induced Acute Cardiotoxicity in Rats by Inhibiting Cellular Signaling Pathways, Nrf2/Keap-1/HO-1, Akt/mTOR/GSK-3β, NF-κB/p38/MAPK, and NLRP3 Inflammasomes Regulating Oxidative Stress and Inflammatory Cascades. Int J Mol Sci 2023; 24:14013. [PMID: 37762315 PMCID: PMC10530367 DOI: 10.3390/ijms241814013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer chemotherapy with doxorubicin (DOX) may have multiorgan toxicities including cardiotoxicity, and this is one of the major limitations of its clinical use. The present study aimed to evaluate the cardioprotective role of α-Bisabolol (BSB) in DOX-induced acute cardiotoxicity in rats and the underlying pharmacological and molecular mechanisms. DOX (12.5 mg/kg, single dose) was injected intraperitoneally into the rats for induction of acute cardiotoxicity. BSB was given orally to rats (25 mg/kg, p.o. twice daily) for a duration of five days. DOX administration induced cardiac dysfunction as evidenced by altered body weight, hemodynamics, and release of cardio-specific diagnostic markers. The occurrence of oxidative stress was evidenced by a significant decline in antioxidant defense along with a rise in lipid peroxidation and hyperlipidemia. Additionally, DOX also increased the levels and expression of proinflammatory cytokines and inflammatory mediators, as well as activated NF-κB/MAPK signaling in the heart, following alterations in the Nrf2/Keap-1/HO-1 and Akt/mTOR/GSK-3β signaling. DOX also perturbed NLRP3 inflammasome activation-mediated pyroptosis in the myocardium of rats. Furthermore, histopathological studies revealed cellular alterations in the myocardium. On the contrary, treatment with BSB has been observed to preserve the myocardium and restore all the cellular, molecular, and structural perturbations in the heart tissues of DOX-induced cardiotoxicity in rats. Results of the present study clearly demonstrate the protective role of BSB against DOX-induced cardiotoxicity, which is attributed to its potent antioxidant, anti-inflammatory, and antihyperlipidemic effects resulting from favorable modulation of numerous cellular signaling regulatory pathways, viz., Nrf2/Keap-1/HO-1, Akt/mTOR/GSK-3β, NF-κB/p38/MAPK, and NLRP3 inflammasomes, in countering the cascades of oxidative stress and inflammation. The observations suggest that BSB can be a promising agent or an adjuvant to limit the cardiac injury caused by DOX. Further studies including the role in tumor-bearing animals as well as regulatory toxicology are suggested.
Collapse
Affiliation(s)
- Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.F.N.M.); (R.B.)
| | - Seenipandi Arunachalam
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.F.N.M.); (R.B.)
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.F.N.M.); (R.B.)
| | - Dhanya Saraswathiamma
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Alia Albawardi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Saeeda Almarzooqi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Sandeep Subramanya
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.F.N.M.); (R.B.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.F.N.M.); (R.B.)
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
8
|
Mohamed HE, Askar ME, Shaheen MA, Salama AE, Idris RA, Younis NN. Infliximab substantially re-silenced Wnt/β-catenin signaling and ameliorated doxorubicin-induced cardiomyopathy in rats. J Biochem Mol Toxicol 2023; 37:e23312. [PMID: 36636964 DOI: 10.1002/jbt.23312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/19/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023]
Abstract
The release of inflammatory cytokines, namely tumor necrosis factor-α (TNF-α), plays an important role in the pathogenesis of cardiomyopathy. TNF-α increases in plasma and in myocardium of heart failure patients. We aimed to investigate the role of TNF-α inhibitor (infliximab; IFX) in regulating dilated cardiomyopathy (DCM) induced in rats. DCM was induced in rats by doxorubicin (DOX; 3.5 mg. kg-1 , i.p) twice weekly for 3 weeks (21 mg. kg-1 cumulative dose). DCM rats were treated with RPL (1 mg. kg-1 orally, daily), IFX (5 mg. kg-1 ; i.p. once) or their combination for 4 weeks starting next day of last DOX dose. Echocardiography was conducted followed by a collection of blood and left ventricle (LV) for biochemical and histological investigations. DCM rats revealed deteriorated cardiac function (increased CK-MB activity, LVIDs, LVIDd, ESV, and EDV, while decreased EF% and FS%), hypertrophy (increased HW/TL, β-MHC, and α-actin), inflammation (increased IL-1β, IL-6, and TNF-α). The activation of Wnt/β-catenin along with increased gene expression of RAS components (RENIN, ACE, and AT1) were evident. LV architecture also revealed abnormalities and some degree of fibrosis. Treatment with RPL and/or IFX suppressed TNF-α and consequently improved most of these parameters suppressing Wnt/β-catenin/RAS axis. Combined RPL and IFX treatment was the best among all treatments. In conclusion, Wnt/β-catenin/RAS axis is implicated in DOX-induced cardiomyopathy. The upstream TNF-α was proved for the first time in-vivo to stimulate this axis where its inhibition by RPL or IFX prevented DCM. Targeting this axis at two points using RPL and IFX showed better therapeutic efficacy.
Collapse
Affiliation(s)
- Hoda E Mohamed
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mervat E Askar
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed A Shaheen
- Department of Histology and Cell Biology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Alaa E Salama
- Department of Cardiology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Reham A Idris
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Nahla N Younis
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Lalsangpuii F, Rokhum SL, Nghakliana F, Fakawmi L, Ruatpuia JVL, Laltlanmawii E, Lalfakzuala R, Siama Z. Green Synthesis of Silver Nanoparticles Using Spilanthes acmella Leaf Extract and its Antioxidant-Mediated Ameliorative Activity against Doxorubicin-Induced Toxicity in Dalton's Lymphoma Ascites (DLA)-Bearing Mice. ACS OMEGA 2022; 7:44346-44359. [PMID: 36506147 PMCID: PMC9730486 DOI: 10.1021/acsomega.2c05970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Green synthesis of metal nanoparticles is a rapidly growing research area in the field of nanotechnology because of their biomedical applications. This study describes the synthesis of silver nanoparticles (AgNPs) using Spilanthes acmella leaf extract and its ameliorative effects against doxorubicin-induced toxicity. The formation of AgNPs was confirmed by a ultraviolet-visible (UV-vis) spectrum that revealed an absorption band at 430 nm. A shift in the absorption bands in Fourier-transform infrared spectroscopy (FT-IR) confirmed the bioactive molecules of S. acmella leaf extract that acted as a reducing and capping agent. The spherical shape of AgNPs was confirmed by scanning electron microscope (SEM) analysis, and the presence of elemental silver was indicated by energy dispersive X-ray spectroscopy (EDS) analysis. X-ray diffraction (XRD) analysis revealed that the crystalline size of the synthesized AgNPs was 6.702 nm. Treatment of Dalton's lymphoma ascites (DLA) mice with 20 mg/kg of doxorubicin (DOX) significantly increased the activities of serum toxicity markers including aspartate amino-transferase (AST), alanine amino-transferase (ALT), and lactate dehydrogenase (LDH). However, compared to DOX alone treatment, the coadministration of DOX and AgNPs reduced AST, ALT, and LDH activities. DOX alone treatment reduced glutathione (GSH) contents and decreased the activities of glutathione-s-transferase (GST) and superoxide dismutase (SOD) in DLA mice. However, the administration of AgNPs to DOX-treated DLA mice increased GSH content and the activities of GST and SOD. Consistently, biosynthesized AgNPs were found to possess significantly higher free-radical scavenging activities when compared to the S. acmella leaf extract, as measured by ABTS, DPPH, and O2 •- assays. The biosynthesized AgNPs also showed significant inhibitory activities against erythrocyte hemolysis and lipid peroxidation in the liver homogenate.
Collapse
Affiliation(s)
- Fanai Lalsangpuii
- Department
of Botany, Mizoram University, Aizawl796004, Mizoram, India
| | | | - Fanai Nghakliana
- Department
of Zoology, Mizoram University, Aizawl796004, Mizoram, India
| | - Lal Fakawmi
- Department
of Zoology, Mizoram University, Aizawl796004, Mizoram, India
| | - Joseph V. L. Ruatpuia
- Department
of Chemistry, National Institute of Technology
Silchar, Silchar788010, Assam, India
| | | | - Ralte Lalfakzuala
- Department
of Botany, Mizoram University, Aizawl796004, Mizoram, India
| | - Zothan Siama
- Department
of Zoology, Mizoram University, Aizawl796004, Mizoram, India
| |
Collapse
|
10
|
Role of Nutrients and Foods in Attenuation of Cardiac Remodeling through Oxidative Stress Pathways. Antioxidants (Basel) 2022; 11:antiox11102064. [PMID: 36290787 PMCID: PMC9598077 DOI: 10.3390/antiox11102064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Cardiac remodeling is defined as a group of molecular, cellular, and interstitial changes that manifest clinically as changes in the heart’s size, mass, geometry, and function after different injuries. Importantly, remodeling is associated with increased risk of ventricular dysfunction and heart failure. Therefore, strategies to attenuate this process are critical. Reactive oxygen species and oxidative stress play critical roles in remodeling. Importantly, antioxidative dietary compounds potentially have protective properties against remodeling. Therefore, this review evaluates the role of nutrients and food as modulators of cardiac remodeling.
Collapse
|
11
|
Yi X, Wang F, Feng Y, Zhu J, Wu Y. Danhong injection attenuates doxorubicin-induced cardiotoxicity in rats via suppression of apoptosis: network pharmacology analysis and experimental validation. Front Pharmacol 2022; 13:929302. [PMID: 36071840 PMCID: PMC9441549 DOI: 10.3389/fphar.2022.929302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/18/2022] [Indexed: 12/06/2022] Open
Abstract
Doxorubicin (DOX) is a potent chemotherapeutic agent that is used against various types of human malignancies. However, the associated risk of cardiotoxicity has limited its clinical application. Danhong injection (DHI) is a Chinese medicine with multiple pharmacological activities and is widely used for treating cardiovascular diseases. The aim of the present study was to evaluate the potential protective effect of DHI on DOX-induced cardiotoxicity in vivo and to investigate the possible underlying mechanisms. First, a sensitive and reliable HPLC−ESI-Q-TOF-MS/MS method was developed to comprehensively analyze the chemical compositions of DHI. A total of 56 compounds were identified, including phenolic acids, tanshinones, and flavonoids. Then, a DOX-induced chronic cardiotoxicity rat model was established to assess the therapeutic effect of DHI. As a result, DHI administration prevented the reduction in body weight and heart weight, and improved electrocardiogram performance. Additionally, the elevated levels of serum biochemical indicators were reduced, and the activities of oxidative enzymes were restored in the DOX-DHI group. Network pharmacology analysis further revealed that these effects might be attributed to 14 active compounds (e.g., danshensu, salvianolic acid A, salvianolic acid B, rosmarinic acid, and tanshinone IIA) and 15 potential targets (e.g., CASP3, SOD1, NOS3, TNF, and TOP2A). The apoptosis pathway was highly enriched according to the KEGG analysis. Molecular docking verified the good binding affinities between the active compounds and the corresponding apoptosis targets. Finally, experimental validation demonstrated that DHI treatment significantly increased the Bcl-2 level and suppressed DOX-induced Bax and caspase-3 expression in rat heart tissue. Furthermore, DHI treatment obviously decreased the apoptosis rate of DOX-treated H9c2 cells. These results indicate that DHI attenuated DOX-induced cardiotoxicity via regulating the apoptosis pathway. The present study suggested that DHI is a promising agent for the prevention of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xiaojiao Yi
- Department of Pharmacy, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fugen Wang
- Department of Pharmacy, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Feng
- Department of Pharmacy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Junfeng Zhu
- Department of Pharmacy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- *Correspondence: Junfeng Zhu, ; Yongjiang Wu,
| | - Yongjiang Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Junfeng Zhu, ; Yongjiang Wu,
| |
Collapse
|
12
|
Zhang XY, Yang KL, Li Y, Zhao Y, Jiang KW, Wang Q, Liu XN. Can Dietary Nutrients Prevent Cancer Chemotherapy-Induced Cardiotoxicity? An Evidence Mapping of Human Studies and Animal Models. Front Cardiovasc Med 2022; 9:921609. [PMID: 35845064 PMCID: PMC9277029 DOI: 10.3389/fcvm.2022.921609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/06/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Chemotherapy has significantly improved cancer survival rates at the cost of irreversible and frequent cardiovascular toxicity. As the main dose-dependent adverse effect, cardiotoxic effects not only limit the usage of chemotherapeutic agents, but also cause the high risk of severe poor prognoses for cancer survivors. Therefore, it is of great significance to seek more effective cardioprotective strategies. Some nutrients have been reported to diminish cardiac oxidative damage associated with chemotherapy. However, the currently available evidence is unclear, which requires a rigorous summary. As such, we conducted a systematic review of all available evidence and demonstrated whether nutrients derived from food could prevent cardiotoxicity caused by chemotherapy. Methods We searched Medline (via PubMed), Embase and the Cochrane Library from inception to Nov 9, 2021 to identify studies reporting dietary nutrients against cancer chemotherapy-related cardiotoxicity. We performed descriptive summaries on the included studies, and used forest plots to demonstrate the effects of various dietary nutrients. Results Fifty-seven eligible studies were identified, involving 53 animal studies carried on rats or mice and four human studies in cancer patients. Seven types of dietary nutrients were recognized including polyphenols (mainly extracted from grapes, grape seeds, and tea), allicin (mainly extracted form garlic), lycopene (mainly extracted from tomatoes), polyunsaturated fatty acids, amino acids (mainly referring to glutamine), coenzyme Q10, and trace elements (mainly referring to zinc and selenium). Dietary nutrients ameliorated left ventricular dysfunctions and myocardial oxidative stress at varying degrees, which were caused by chemotherapy. The overall risk of bias of included studies was at moderate to high risk. Conclusion The results indicated that dietary nutrients might be a potential strategy to protect cardiovascular system exposed to the chemotherapeutic agents, but more human studies are urged in this field.Systematic Review Registration: https://inplasy.com/inplasy-2022-3-0015/.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- Ambulatory Surgery Center, Xijing Hospital, Air Force Military Medical University, Xi'an, China
- Nursing Department, Chengdu BOE Hospital, Chengdu, China
| | - Ke-Lu Yang
- Academic Center for Nursing and Midwifery, Department of Public Health and Primary Care, University of Leuven (KU Leuven), Leuven, Belgium
| | - Yang Li
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, China
| | - Yang Zhao
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Ke-Wei Jiang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, China
| | - Quan Wang
- Ambulatory Surgery Center, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Xiao-Nan Liu
- Ambulatory Surgery Center, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Chen Y, Wang L, Liu T, Qiu Z, Qiu Y, Liu D. Inhibitory effects of Panax ginseng glycoproteins in models of doxorubicin-induced cardiac toxicity in vivo and in vitro. Food Funct 2021; 12:10862-10874. [PMID: 34617939 DOI: 10.1039/d1fo01307f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Doxorubicin (DOX) is an effective antineoplastic drug; however, its clinical application is limited owing to the side effect of fatal heart dysfunction on its use. Panax ginseng glycoproteins have antioxidant, antiapoptotic, and anti-inflammatory properties. Thus, the aim of this study was to investigate the effects and possible action mechanisms of P. ginseng glycoproteins against DOX-induced cardiotoxicity. To this end, we used an in vitro model of DOX-treated H9C2 cells and an in vivo model of DOX-treated rats. We found that P. ginseng glycoproteins markedly increased H9C2 cell viability, decreased creatine kinase and lactate dehydrogenase levels, and improved histopathological and electrocardiogram changes in rats, protecting them from DOX-induced cardiotoxicity. Furthermore, P. ginseng glycoproteins significantly inhibited myocardial oxidative insult through adjusting the intracellular ROS, MDA, SOD, and GSH levels in vitro and in vivo. In conclusion, our data suggest that P. ginseng glycoproteins alleviated DOX-induced myocardial oxidative stress-related cardiotoxicity. This natural product could be developed as a new candidate for alleviating DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yajun Chen
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Lei Wang
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Tianjia Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Zhidong Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Da Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
14
|
Sharifiaghdam Z, Dalouchi F, Sharifiaghdam M, Shaabani E, Ramezani F, Nikbakht F, Azizi Y. Curcumin-coated gold nanoparticles attenuate doxorubicin-induced cardiotoxicity via regulating apoptosis in a mouse model. Clin Exp Pharmacol Physiol 2021; 49:70-83. [PMID: 34449914 DOI: 10.1111/1440-1681.13579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
Doxorubicin (DOX) is one of the most widely used chemotherapy agents; however, its nonselective effect causes cardiotoxicity. Curcumin (Cur), a well known dietary polyphenol, could exert a significant cardioprotective effect, but the biological application of this substance is limited by its chemical insolubility. To overcome this limitation, in this study, we synthesised gold nanoparticles based on Cur (Cur-AuNPs). Ultraviolet-visible (UV-Vis) absorbance spectroscopy and transmission electron microscopy (TEM) were performed for the characterisation of synthesised NPs, and Fourier transform infrared (FTIR) spectroscopy were applied to detect Cur on the surface of AuNPs. Its cytotoxicity effect on H9c2 cells was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The biological efficacy of Cur-AuNPs was assessed after acute cardiotoxicity induction in BALB/c mice with DOX injection. The serum biomarkers, myocardial histological changes, and cardiomyocyte apoptosis were then measured. The results revealed that the heart protection by Cur-AuNPs is more effective than Cur alone. Heart protective effect of Cur-AuNPs was evident both in the short-term (24 hours) and long-term (14 days) study. The results of Cur-AuNPs400 after 24 hours of toxicity induction displayed the reduction of the cardiac injury serum biomarkers (LDH, CK-MB, cTnI, ADT, and ALT) and apoptotic proteins (Bax and Caspase-3), as well as increase of Bcl-2 anti-apoptotic proteins without any sign of interfibrillar haemorrhage and intercellular spaces in the heart tissue microscopic images. Our long-term study signifies that Cur-AuNPs400 in DOX-intoxicated mice could successfully inhibit body and heart weight loss in comparison to DOX group.
Collapse
Affiliation(s)
- Zeynab Sharifiaghdam
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Dalouchi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sharifiaghdam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS, Tehran, Iran.,Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Elnaz Shaabani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS, Tehran, Iran.,Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farnaz Nikbakht
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaser Azizi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Ikewuchi JC, Ikewuchi CC, Ifeanacho MO, Jaja VS, Okezue EC, Jamabo CN, Adeku KA. Attenuation of doxorubicin-induced cardiotoxicity in Wistar rats by aqueous leaf-extracts of Chromolaena odorata and Tridax procumbens. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114004. [PMID: 33727109 DOI: 10.1016/j.jep.2021.114004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/02/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chromolaena odorata (L) King and Robinson and Tridax procumbens Linn are used in traditional medicine in the treatment of diabetes mellitus and hypertension. AIM OF THE STUDY This study investigated the potential protective role of aqueous leaf-extracts of Chromolaena odorata and Tridax procumbens against cardiotoxicity induced by doxorubicin. MATERIALS AND METHODS To this end, their impact on plasma markers of cardiac integrity, cardiac markers of oxidative stress, cardiac lipids and electrolyte profiles, and activities of cardiac ATPases, lactate dehydrogenase and creatine kinase, were monitored in doxorubicin treated rats. Metformin (250 mg/kg body weight, orally) and both extracts (50, 75 and 100 mg/kg, orally) were daily administered for 14 days; while cardiotoxicity was induced with doxorubicin (15 mg/kg, intra-peritioneally, once on the 12th day of study). RESULTS The plasma activities of creatine kinase, lactate dehydrogenase and AST of Test control were significantly (p < 0.05) higher than those of the other groups. Also, the cardiac malondialdehyde, calcium, chloride, sodium, cholesterol and triglyceride concentrations of Test control were significantly (p < 0.05) higher than those of the others. However, the cardiac concentrations of ascorbic acid, reduced glutathione, magnesium and potassium, and cardiac activities of catalase, glutathione peroxidase, superoxide dismutase, Ca2+-ATPase, Mg2+-ATPase, Na+,K+-ATPase, creatine kinase and lactate dehydrogenase of Test control were significantly (p < 0.05) lower than those of the others. CONCLUSIONS Pre-treatment with the extracts and metformin elicited a cardioprotective effect, as indicated by the prevention of doxorubicin-induced cardiac oxidative stress and prevention of adverse alterations in plasma cardiac markers, cardiac lipids and electrolyte profiles, as well as improvement of the activities of cardiac ATPases, creatine kinase and lactate dehydrogenase.
Collapse
Affiliation(s)
- Jude C Ikewuchi
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| | - Catherine C Ikewuchi
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| | - Mercy O Ifeanacho
- Department of Food Science, Faculty of Agriculture, University of Port Harcourt, Nigeria.
| | - Victoria S Jaja
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| | - Esther C Okezue
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| | - Caius N Jamabo
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| | - Kehinde A Adeku
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| |
Collapse
|
16
|
Rahbardar MG, Eisvand F, Rameshrad M, Razavi BM, Hosseinzadeh H. In Vivo and In Vitro Protective Effects of Rosmarinic Acid against Doxorubicin-Induced Cardiotoxicity. Nutr Cancer 2021; 74:747-760. [PMID: 34085575 DOI: 10.1080/01635581.2021.1931362] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/22/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Doxorubicin (DOX) is an anticancer medicine that may trigger cardiomyopathy. Rosmarinic acid (RA) has shown antioxidant, anti-inflammatory, and anticancer effects. This investigation assessed the cardioprotective effect of RA on DOX-induced-toxicity in both in vivo and in vitro experiments. Male rats were randomized on 7 groups: (1) control, (2) DOX (2 mg/kg, per 48 h, 12d, i.p), (3) RA (40 mg/kg, 12d, i.p.), (4-6) RA (10, 20, 40 mg/kg, 16d, i.p.)+ DOX, (7) Vitamin E (200 mg/kg, per 48 h, 16d, i.p.) + DOX and then indices of cardiac function were estimated. Also, DOX and rosmarinic acid effects were examined on MCF7 cells (breast cancer cells line) to clarify that both cardiotoxicity and anticancer effects were analyzed. DOX increased heart to body weight ratio, RRI, QA, STI, QRS duration and voltage, attenuated HR, blood pressure, Max dP/dt, Min dP/dt, LVDP, enhanced MDA, declined GSH amount, and caused fibrosis and necrosis in cardiac tissue. Administration of RA ameliorated the toxic effects of DOX. In vitro studies showed that RA did not affect the cytotoxic effect of DOX. RA as an antioxidant, anti-inflammatory, and cardioprotective compound could be a promising compound to help minimize DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rameshrad
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Hekmat AS, Navabi Z, Alipanah H, Javanmardi K. Alamandine significantly reduces doxorubicin-induced cardiotoxicity in rats. Hum Exp Toxicol 2021; 40:1781-1795. [PMID: 33882726 DOI: 10.1177/09603271211010896] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic. Despite its unwanted side effects, it has been successfully used in tumor therapy. Given that oxidative stress and inflammatory factors are essential to cardiotoxicity caused by DOX, we assumed that alamandine, which enhances endogenous antioxidants and has anti-inflammatory effects, may prevent DOX-induced cardiotoxicity. Rats received DOX (3.75 mg/kg) i.p on days 14, 21, 28, and 35 (total cumulative dose = 15 mg/kg) and alamandine (50 μg/kg/day) via mini-osmotic pumps for 42 days. At the end of the 42-day period, we evaluated hemodynamic parameters, electrocardiogram, cardiac troponin I (cTnI), superoxidase dismutase (SOD), total antioxidant capacity (TAC), malondialdehyde (MDA), inflammatory cytokines (tumor necrosis factor-α (TNF-α), IL-1β, NF-κB), apoptosis markers (caspase 3), and histopathology of haemotoxylin- and eosin-stained cardiac muscle fibers were evaluated. DOX significantly increased QT, corrected QT (QTc), and RR intervals. Alamandine co-therapy prevented ECG changes. Alamandine administration restored DOX-induced disruptions in the cardiac muscle architecture and vascular congestion. Alamandine co-therapy also alleviated other effects of DOX, including cardiac contractility, decreased systolic and diastolic blood pressure, and increased left ventricular end-diastolic pressure. Moreover, alamandine co-therapy substantially decreased the elevation of oxidative stress markers, inflammatory cytokines, and caspase 3 in DOX-treated rats. The results suggest that alamandine reduced DOX-induced cardiotoxicity via antioxidant, anti-inflammatory, and anti-apoptotic activities.
Collapse
Affiliation(s)
- Ava Soltani Hekmat
- Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran
| | - Zahra Navabi
- Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran
| | - Hiva Alipanah
- Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran
| | - Kazem Javanmardi
- Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
18
|
Kurpik M, Zalewski P, Kujawska M, Ewertowska M, Ignatowicz E, Cielecka-Piontek J, Jodynis-Liebert J. Can Cranberry Juice Protect against Rotenone-Induced Toxicity in Rats? Nutrients 2021; 13:1050. [PMID: 33805023 PMCID: PMC8063919 DOI: 10.3390/nu13041050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/12/2022] Open
Abstract
The high polyphenols content of cranberry accounts for its strong antioxidant activity underlying the beneficial health effects of this fruit. Rotenone (ROT) is a specific inhibitor of mitochondrial complex I in the brain which leads to the generation of oxidative stress. To date, there are few data indicating that toxicity of ROT is not limited to the brain but can also affect other tissues. We aimed to examine whether ROT-induced oxidative stress could be counteracted by cranberry juice not only in the brain but also in the liver and kidney. Wistar rats were given the combined treatment with ROT and cranberry juice (CJ) for 35 days. Parameters of antioxidant status were determined in the organs. ROT enhanced lipid peroxidation solely in the brain. The increase in the DNA damage was noticed in all organs examined and in leukocytes. The beneficial effect of CJ on these parameters appeared only in the brain. Additionally, CJ decreased the activity of serum hepatic enzymes. The effect of CJ on antioxidant enzymes was not consistent, however, in some organs, CJ reversed changes evoked by ROT. Summing up, ROT can cause oxidative damage not only in the brain but also in other organs. CJ demonstrated a protective effect against ROT-induced toxicity.
Collapse
Affiliation(s)
- Monika Kurpik
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (M.E.); (J.J.-L.)
| | - Przemysław Zalewski
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland; (P.Z.); (J.C.-P.)
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (M.E.); (J.J.-L.)
| | - Małgorzata Ewertowska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (M.E.); (J.J.-L.)
| | - Ewa Ignatowicz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland; (P.Z.); (J.C.-P.)
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (M.E.); (J.J.-L.)
| |
Collapse
|
19
|
Hussain Lodhi A, Ahmad FUD, Furwa K, Madni A. Role of Oxidative Stress and Reduced Endogenous Hydrogen Sulfide in Diabetic Nephropathy. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1031-1043. [PMID: 33707940 PMCID: PMC7943325 DOI: 10.2147/dddt.s291591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/15/2021] [Indexed: 12/15/2022]
Abstract
Purpose Persistent hyperglycemia lead towards depletion of hydrogen sulfide (H2S) resulting in generation of oxidative stress and diabetic nephropathy. The aim of the current study was to explore the antioxidant potential of H2S and captopril, a -SH containing compound in streptozotocin (STZ)-induced diabetic nephropathy. Methods Fifty four Wistar-Kyoto (WKY) rats male (200-250g) were divided into nine groups (n=6) with each group injected once with STZ (60mg/kg i.p) except normal control. After 3 weeks of induction of diabetes, groups were assigned as normal control, diabetic control, diabetic-captopril, diabetic-NaHS, diabetic-captopril-NaHS, diabetic-spironolactone, diabetic-metformin, diabetic-metformin-NaHS and diabetic-vitamin-c. All the animals were served with normal saline (N/S 4mL/kg p.o), captopril (50mg/kg/day p.o), sodium hydrosulfide (NaHS) (56µmol/kg i.p), spironolactone (50mg/kg/day s.c), metformin (500mg/kg/day p.o) and vitamin-c (50mg/kg p.o) on daily basis for next 4 weeks, respectively. Metabolic studies, H2S levels, renal hemodynamics and oxidative stress markers were analyzed at 0, 14 and 28 days followed by histopathological analysis of renal tissues. Results The results showed decreased H2S levels, body weight, sodium to potassium ratio, glutathione (GSH), superoxide dismutase (SOD), total antioxidant assay (T-AOC) with malondialdehyde (MDA) and blood glucose levels significantly increased among diabetic rats. Treatment with captopril, NaHS, metformin, spironolactone and vitamin C showed significant improvement among renal hemodynamics and oxidative stress markers, respectively. But treatment groups like NaHS in combination with captopril and metformin showed more pronounced effects. Conclusion The observations suggest that H2S mediated protective effects on STZ-induced diabetic nephropathy may be associated with reduced oxidative stress via augmenting the antioxidant effect.
Collapse
Affiliation(s)
- Arslan Hussain Lodhi
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fiaz-Ud-Din Ahmad
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Kainat Furwa
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
20
|
Sun S, Li S, Du Y, Wu C, Zhang M, Li J, Zhang X. Anti-inflammatory effects of the root, stem and leaf extracts of Chloranthus serratus on adjuvant-induced arthritis in rats. PHARMACEUTICAL BIOLOGY 2020; 58:528-537. [PMID: 32503379 PMCID: PMC8641675 DOI: 10.1080/13880209.2020.1767159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Context: Chloranthus serratus [(Thunb.) Roem. et Schult, (Chloranthaceae)] is a folk medicine used for the treatment of rheumatoid arthritis.Objective: The aim of this study was to investigate anti-arthritic effects of the ethanol extracts of the roots (ER), stems (ES) and leaves (EL) of C. serratus on adjuvant arthritis rats and related mechanisms.Materials and methods: The rats were immunized by intradermal injection of complete Freund's adjuvant (CFA, 0.18 mL) into the right hind feet, and received intragastric administrations of the ER, ES and EL (2.07, 1.61 and 0.58 g/kg/d, respectively) for 14 days. The anti-arthritic activity was assessed by swelling rates, serum indicators, antioxidant capacity, histopathological and immunohistochemical analyses.Results: The LD50 of the ER, ES and EL was higher than 10.35, 8.05 and 2.90 g/kg/p.o., respectively. Extract treatments decreased swelling rates, tumour necrosis factor-alpha (TNF-α), vascular endothelial growth factor (VEGF), interleukin 1 beta (IL-1β), migration inhibitory factor 1 (MIF-1), immunoglobulin G (IgG) and immunoglobulin M (IgM) levels and positive expression of VEGF in the arthritic rats (p < 0.01 or p < 0.05). The ER significantly decreased NO (3.91 ± 0.61 µmol/L), IL-6 (75.67 ± 16.83 pg/mL) and malondialdehyde (MDA) (2.28 ± 0.32 nmol/mL) contents and clearly increased IFN-γ (2082 ± 220.93 pg/mL) and superoxide dismutase (SOD) (601.98 ± 38.40 U/mL) levels. The ES and EL did not reverse the changes in some indicators. All the extracts alleviated inflammatory cell infiltration and synovial cell proliferation. Among them, the ER was the most pronounced.Discussion and conclusions: ER exerts the most promising effects, as shown by inhibiting the releases of inflammatory cytokines and enhancing antioxidant capacity, which provides a scientific basis for further research on C. serratus and its clinical applications.
Collapse
Affiliation(s)
- Shuping Sun
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
- College of Life Science, Anhui Normal University, Wuhu, Anhui, China
- Institute of Natural Daily Chemistry, Wannan Medical College, Wuhu, Anhui, China
- CONTACT Shuping Sun College of Pharmacy, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, Anhui Province, China
| | - Shengli Li
- The Fifth People’s Hospital of Wuhu, Wuhu, Anhui, China
| | - Yunyan Du
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Chenguang Wu
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Mengyuan Zhang
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Jiarong Li
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Xiaoping Zhang
- College of Life Science, Anhui Normal University, Wuhu, Anhui, China
- Xiaoping Zhang College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|
21
|
Nasr AY, Alshali RA. Cytoprotective and antioxidant effects of aged garlic extract against adriamycin-induced cardiotoxicity in adult male rats. Anat Cell Biol 2020; 53:201-215. [PMID: 32647088 PMCID: PMC7343569 DOI: 10.5115/acb.19.236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/27/2019] [Accepted: 01/04/2020] [Indexed: 12/28/2022] Open
Abstract
Adriamycin (ADR) efficacy in cancer chemotherapy is well-established. However, ADR-induced cardiotoxicity remains a significant challenge. Aged garlic extract (AGE) is a natural polyphenol with high antioxidant potential. This study was planned to determine the cytoprotective and antioxidant actions of AGE against the cardiotoxic effect of ADR in rats. Six equal groups, control, ADR-treated (single dose of 10 mg/kg on day 8); AGE-treated (one dose of 250 mg/kg for 14 days); AGE plus ADR-treated (one dose of 250 mg/kg AGE for one week plus ADR injection of 10 mg/kg on day 8); ADR plus AGE-treated (single ADR injection of 10 mg/kg on day 8 plus AGE of 250 mg/kg once from 8th to 14th day); combined AGE plus ADR plus AGE-treated (one dose of 250 mg/kg AGE for 14 days plus single ADR injection of 10 mg/kg on day 8). Sera and cardiac samples were collected on day 15 and prepared for histological, ultrastructural and biochemical study. Disorganization, focal degeneration and necrosis with apoptotic changes of the cardiac myofibrils were observed in ADR-treated rats. Also, reduction in level of total creatine kinase, lactic dehydrogenase, alkaline phosphatase enzymes, glutathione, glutathione- peroxidase, superoxide dismutase, and catalase activities and elevation in malondialdehyde concentration were detected in ADR-treated rats. However, combination of AGE attenuated most of the histopathological, ultrastructural, and biochemical changes induced by ADR. Combination of AGE attenuated the cardiotoxic effects-induced by ADR through its antioxidant and cytoprotective potentials. Therefore, AGE can use as adjunct during administration of ADR in cancer therapy.
Collapse
Affiliation(s)
- Ashraf Youssef Nasr
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha A. Alshali
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Modulation of Nrf2 by quercetin in doxorubicin-treated rats. Heliyon 2020; 6:e03803. [PMID: 32337383 PMCID: PMC7177035 DOI: 10.1016/j.heliyon.2020.e03803] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/24/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Doxorubicin (DOXO), a potent and widely used chemotherapeutic agent, causes irreversible heart failure by increasing oxidative stress, which limits its clinical utility. Nuclear factor erythroid-derived 2 -like 2 (Nrf2) is a prominent central regulator of cellular impenetrable to oxidants. The purpose of the study is to assess the ameliorative outcome of quercetin in cardiomyopathic rats induced by doxorubicin. Cardiomyopathy was produced in rats by single intraperitoneal weekly with DOXO (2 mg/kg) for 4 weeks. The rats were divided into five groups: (I) control group; (II) DOXO (2 mg/kg, i.p.) group; (III-V) DOXO + quercetin (10 mg/kg, 25 mg/kg and 50 mg/kg, orally), and were treated for 7 weeks. At the end of the treatment duration, cardiac function and biochemical parameters were assessed. Quercetin (10 mg/kg, 25 mg/kg and 50 mg/kg, orally) treatment reduced the raised blood pressure (BP) and left ventricular dysfunction. Withal, it prevented the rise in CKMB and LDH, suggesting the effect of quercetin in the maintaining the integrity of the cell membrane Besides, it also prevented the alteration in electrolyte levels, the activity of ATPase, and antioxidant status. Quercetin increased Nrf2 mRNA expression and reduced histological abnormalities compared to the DOXO control group. In conclusion, quercetin protected against DOXO- induced cardiomyopathy, by increasing expression of NRF2, and thereby increasing antioxidant defense and restoring biochemical and histological abnormalities.
Collapse
|
23
|
Faheem SA, Saeed NM, El-Naga RN, Ayoub IM, Azab SS. Hepatoprotective Effect of Cranberry Nutraceutical Extract in Non-alcoholic Fatty Liver Model in Rats: Impact on Insulin Resistance and Nrf-2 Expression. Front Pharmacol 2020; 11:218. [PMID: 32256346 PMCID: PMC7093716 DOI: 10.3389/fphar.2020.00218] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a pathological accumulation of triglycerides (TGs) in the hepatocyte in the absence of alcohol intake. Untreated NAFLD is expected to progress into liver fibrosis. Cranberry is rich in polyphenols with antioxidant and anti-inflammatory activities. Hypothesis The present study was performed to evaluate our hypothesis of the possible anti-fibrotic effect of cranberry nutraceuticals in a high fat cholesterol diet induced (HFCD)-NAFLD in rats, focusing on improving insulin sensitivity and modulating the expression of nuclear factor erythroid-2-related factor-2 (Nrf2) (a transcription factor responsible for regulating cellular redox balance). Method Male albino wistar rats (12 weeks) received HFCD and/or cranberry (50 and 100 mg/kg/day, three times/week) orally for 8 consecutive weeks. Results In comparison to the HFCD group, cranberry treated groups (50 and 100 mg/kg) showed marked hepatoprotection, where it significantly decreased liver enzymes (alanine transaminases by 49 and 64% and aspartate transaminases by 45 and 64%; respectively), TGs, and ameliorated the histopathological alterations (such as inflammatory cells infiltration and ballooning degeneration) induced by HFCD. Cranberry also alleviated oxidative stress (malondialdehyde, glutathione, catalase and superoxide dismutase) and inflammation (tumor necrosis factor- alpha, interleukine-6 and nuclear factor kappa-b) and significantly reduced the HOMA-IR and TyG index. On the other hand, cranberry treated groups (50 and 100 mg/kg) showed a marked increase in the expression of adiponectin, by 8 and 13-fold, insulin receptor substrate-2 by 21 and 79%, and Nrf2 by 13 and 61%, respectively. Notably, cranberry significantly reduced the fibrotic markers, TGF–β and α-SMA expression and collagen deposition. Conclusion The present study showed that cranberry significantly attenuated NAFLD, in a dose dependent manner, which could be partially recognized by its antioxidant, anti-inflammatory activities, and its ability to improve insulin sensitivity. Notably, our study proves for the first time that the anti-fibrotic activity of cranberry is promising.
Collapse
Affiliation(s)
- Safaa A Faheem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Noha M Saeed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Iriny M Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
24
|
Aziz MM, Abd El Fattah MA, Ahmed KA, Sayed HM. Protective effects of olmesartan and l-carnitine on doxorubicin-induced cardiotoxicity in rats. Can J Physiol Pharmacol 2019; 98:183-193. [PMID: 31665614 DOI: 10.1139/cjpp-2019-0299] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Doxorubicin (DOX), an anthracycline antibiotic, is an important antineoplastic agent due to its high antitumor efficacy in hematological as well as in solid malignancies. The clinical use of DOX is limited due to its cardiotoxic effects. The present study aimed to investigate the possible protective effect of olmesartan (Olm), l-carnitine (L-CA), and their combination in cardiotoxicity induced by DOX in rats. Male albino rats were randomly divided into seven experimental groups (n = 8): group I: normal control, group II: L-CA, group III: Olm, group IV: DOX. The other three groups were treated with Olm (10 mg/kg), L-CA (300 mg/kg), and their combination for 2 weeks after induction of cardiotoxicity by a single dose of DOX (20 mg/kg). In the results, DOX showed a significant elevation in serum troponin I, creatine kinase-MB (CK-MB), and lactate dehydrogenase (LDH) together with increased inflammation manifested by the rise of tumor necrosis factor-alpha (TNF-α), intercellular adhesion molecules-1 (ICAM-1), interleukin IL-1β (IL-1β), myeloperoxidase (MPO), nuclear factor-kappa B (NF-κB), and transforming growth factor beta (TGF-β) in cardiac tissues as well as DOX-induced oxidative stress by increasing in malondialdehyde (MDA) and decreasing in superoxide dismutase (SOD) and glutathione (GSH) in heart tissues. In addition, caspase-3 activity was boosted as indication of increased apoptosis. On the other hand, administration of L-CA and Olm attenuated the DOX-evoked disturbances in the abovementioned parameters. In addition, DOX exhibited echocardiographic changes and severe histopathological changes, which were significantly reversed by L-CA and Olm treatment. In conclusion, the present study data confirm the protective role of L-CA and Olm in DOX-induced cardiotoxicity, which may be related to its antioxidant, antiinflammatory, and antiapoptotic agents.
Collapse
Affiliation(s)
- Malek M Aziz
- Faculty of Medicine and Health Science, Thamar University, Yemen
| | - Mai A Abd El Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr Al-Aini St., Cairo 11562, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Helmy M Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr Al-Aini St., Cairo 11562, Egypt
| |
Collapse
|
25
|
Galal SM, Hasan HF, Abdel-Rafei MK, El Kiki SM. Synergistic effect of cranberry extract and losartan against aluminium chloride-induced hepatorenal damage associated cardiomyopathy in rats. Arch Physiol Biochem 2019; 125:357-366. [PMID: 29685075 DOI: 10.1080/13813455.2018.1465437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The present study was designed to evaluate the effect of cranberry extract (CRAN) and/or losartan (LOS) against aluminium chloride (AlCl3) induced hepatorenal damage associated cardiomyopathy in rats. To induce hepatorenal and cardiotoxicity, animals were received (AlCl3; 70 mg/kg i.p.) for 8 weeks day after day and treated with CRAN (100 mg/kg b.wt.) orally daily for 4 weeks started after 4 weeks from AlCl3 injection accompanied with an administration of LOS (5 mg/kg i.p.) three times weekly for 4 weeks. Our data revealed that, compared to AlCl3, administration of CRAN extract and LOS produced a significant improvement which was evidenced by a significant amelioration in myocardial and vascular indices, kidney and liver markers, lipid profile and oxidative stress indices. Furthermore, histopathological and immunohistochemical examination reinforced the previous results. It could be concluded that combination of CRAN extract and LOS hindered AlCl3 induced hepatorenal damage complicated cardiomyopathy in rats.
Collapse
Affiliation(s)
- Shereen Mohamed Galal
- a Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority , Nasr City, Cairo , Egypt
| | - Hesham Farouk Hasan
- b Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority , Nasr City, Cairo , Egypt
| | - Mohamed Khairy Abdel-Rafei
- b Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority , Nasr City, Cairo , Egypt
| | - Shereen Mohamed El Kiki
- a Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority , Nasr City, Cairo , Egypt
| |
Collapse
|
26
|
Zhang QL, Yang JJ, Zhang HS. Carvedilol (CAR) combined with carnosic acid (CAA) attenuates doxorubicin-induced cardiotoxicity by suppressing excessive oxidative stress, inflammation, apoptosis and autophagy. Biomed Pharmacother 2018; 109:71-83. [PMID: 30396094 DOI: 10.1016/j.biopha.2018.07.037] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 07/07/2018] [Accepted: 07/07/2018] [Indexed: 01/10/2023] Open
Abstract
Doxorubicin (DOX) is a wide spectrum antitumor drug. However, its clinical application is limited due to the cardiotoxicity. Carvedilol (CAR) is a β-blocker used to treat high blood pressure and heart failure. Accordingly, supplementation with natural antioxidants or plant extracts exerts protective effects against various injury in vivo. Carnosic acid (CAA), the principal constituent of rosemary, has various biological activities, including antioxidant, antitumor, and anti-inflammatory. Here, heart injury mouse model was established using DOX (20 mg/kg) in vivo. And cardiac muscle cell line of H9C2 was subjected to 0.5 μM of DOX for 24 h in vitro. Then, the protective effects of CAA and CAR alone, or the two in combination on DOX-induced cardiotoxicity in vivo and in vitro were explored. The results indicated that both CAA and CAR, when used alone, were moderately effective in attenuating DOX-induced cardiotoxicity. The combination of two drugs functioned synergistically to ameliorate cardiac injury caused by DOX, as evidenced by the significantly reduced collagen accumulation and improved dysfunction of heart. CAA and CAR exhibited stronger anti-oxidative role in DOX-treated mice partly by augmenting the expression and activities of the anti-oxidative enzymes. In addition, inflammatory response was significantly suppressed by the two in combination, proved by the decreased pro-inflammatory cytokines (COX2, TNF-α, IL-6, IL-1β and IL-18), which was associated with the inactivation of nuclear factor κB (NF-κB). Furthermore, DOX-stirred apoptosis and autophagy were dramatically attenuated by the co-treatments of CAA and CAR through down-regulating cleaved Caspase-3 and LC3B signaling pathways. The effects of CAA and CAR combination against cardiotoxicity were observed in H9C2 cells with DOX stimulation. Our findings above suggested that the use of CAR and CAA in combination could be expected to have synergistic efficacy and significant potential against cardiotoxicity induced by DOX.
Collapse
Affiliation(s)
- Qiu-Lan Zhang
- Department of Cardiology, Jining Second People's Hospital, Jining 272000, China
| | - Jing-Jie Yang
- Department of Emergency, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Hong-Sheng Zhang
- Department of Cardiology, Affiliated Hospital of Jining Medical University, 272000, China.
| |
Collapse
|
27
|
Ameliorating oxidative stress and inflammation by Hesperidin and vitamin E in doxorubicin induced cardiomyopathy. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/tjb-2018-0156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abstract
Background
Doxorubicin (DOX) is a common chemotherapeutic drug. However, it causes cardiomyopathy which reduces its clinical use in human cancer therapy.
Objective
The purpose of our study was to assess the cardioprotective effect of hesperidin (HSP) and vitamin E (VIT.E) against DOX-induced cardiomyopathy.
Material and methods
Seventy rats were allocated into seven groups: control, HSP (50 mg/kg, orally), VIT.E (100 mg/kg orally), DOX [4 mg/kg, intraperitoneally (i.p.)], DOX+HSP, DOX+VIT.E and DOX+HSP+VIT.E.
Results
Our findings showed that serum lactate dehydrogenase (LDH), creatine kinase (CK), myeloperoxidase (MPO), cardiac catalase and caspase activities as well as cardiac malondialdehyde (MDA) and serum nitric oxide (NO) concentrations were reduced DOX+HSP or DOX+VIT.E or DOX+VIT.E+HSP groups compared to DOX group. Whereas, cardiac reduced glutathione (GSH) level, serum arylesterase, and paraoxonase activities were higher in rats injected with DOX and administrated with HSP and VIT.E than that of rats injected with DOX only. Cardiac histopathology of DOX group showed some changes that were improved during administration with HSP and VIT.E.
Conclusion
HSP and VIT.E possess a protective effect against DOX-induced cardiomyopathy via inhibiting oxidative stress, inflammation, and apoptosis.
Collapse
|
28
|
Guazuma ulmifolia Lam. Decreases Oxidative Stress in Blood Cells and Prevents Doxorubicin-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2935051. [PMID: 30050650 PMCID: PMC6046128 DOI: 10.1155/2018/2935051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/19/2018] [Accepted: 04/01/2018] [Indexed: 02/07/2023]
Abstract
Doxorubicin (DOX) is an efficient chemotherapeutic agent, but its clinical application is limited by its cardiotoxicity associated with increased oxidative stress. Thus, the combination of DOX and antioxidants has been encouraged. In this study, we evaluated (I) the chemical composition and antioxidant capacity of aqueous extracts from Guazuma ulmifolia stem bark (GUEsb) and leaves (GUEl) in 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, 2,2′-azobis(2-amidinopropane) dihydrochloride- (AAPH-) or DOX-induced lipid peroxidation inhibition in human blood cells, and intracellular reactive oxygen species (ROS) quantification using the fluorescent probe dichloro-dihydro-fluorescein diacetate (DCFH-DA) in K562 erythroleukemia cells incubated with GUEsb and stimulated with hydrogen peroxide; (II) the viability of K562 cells and human leukocytes treated with GUEsb in the absence or presence of DOX using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay; (III) the acute toxicity of GUEsb; and (IV) the cardioprotective effect of GUEsb in C57Bl/6 mice treated with DOX. The chemical composition indicated the presence of flavan-3-ol derivatives and condensed tannins in GUEsb and glycosylated flavonoids in GUEl. GUEsb and GUEl showed free-radical scavenging antioxidant activity, antihemolytic activity, and AAPH- as well as DOX-induced malondialdehyde content reduction in human erythrocytes. Based on its higher antioxidant potential, GUEsb was selected and subsequently showed intracellular ROS reduction without impairing the chemotherapeutic activity of DOX in K562 cells or inducing leukocyte cell death, but protected them against DOX-induced cell death. Yet, GUEsb did not show in vivo acute toxicity, and it prevented MDA generation in the cardiac tissue of DOX-treated mice, thus demonstrating its cardioprotective effect. Taken together, the results show that GUEsb and GUEl are natural alternatives to treat diseases associated with oxidative stress and that, in particular, GUEsb may play an adjuvant role in DOX chemotherapy.
Collapse
|
29
|
Zhao L, Tao X, Qi Y, Xu L, Yin L, Peng J. Protective effect of dioscin against doxorubicin-induced cardiotoxicity via adjusting microRNA-140-5p-mediated myocardial oxidative stress. Redox Biol 2018; 16. [PMID: 29524841 PMCID: PMC5953242 DOI: 10.1016/j.redox.2018.02.026 10.1016/j.redox.2019.101303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Clinical application of doxorubicin (DOX) is limited because of its cardiotoxicity. Thus, exploration of effective lead compounds against DOX-induced cardiotoxicity is necessary. The aim of the present study was to investigate the effects and possible mechanisms of dioscin against DOX-induced cardiotoxicity. The in vitro model of DOX- treated H9C2 cells and the in vivo models of DOX-treated rats and mice were used in this study. The results showed that discoin markedly increased H9C2 cell viability, decreased the levels of CK, LDH, and improved histopathological and electrocardio- gram changes in rats and mice to protect DOX-induced cardiotoxicity. Furthermore, dioscin significantly inhibited myocardial oxidative insult through adjusting the levels of intracellular ROS, MDA, SOD, GSH and GSH-Px in vitro and in vivo. Our data also indicated that dioscin activated Nrf2 and Sirt2 signaling pathways, and thereby affected the expression levels of HO-1, NQO1, Gst, GCLM, Keap1 and FOXO3a through decreasing miR-140-5p expression level. In addition, the level of intracellular ROS was significantly increased in H9C2 cells treated by DOX after miR-140-5p mimic transfection, as well as the down-regulated expression levels of Nrf2 and Sirt2, which were markedly reversed by dioscin. In conclusion, our data suggested that dioscin alleviated DOX-induced cardiotoxicity through modulating miR-140-5p-mediated myocardial oxidative stress. This natural product should be developed as a new candidate to alleviate cardiotoxicity caused by DOX in the future.
Collapse
Affiliation(s)
- Lisha Zhao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
30
|
Zhao L, Tao X, Qi Y, Xu L, Yin L, Peng J. Protective effect of dioscin against doxorubicin-induced cardiotoxicity via adjusting microRNA-140-5p-mediated myocardial oxidative stress. Redox Biol 2018; 16:189-198. [PMID: 29524841 PMCID: PMC5953242 DOI: 10.1016/j.redox.2018.02.026] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 12/21/2022] Open
Abstract
Clinical application of doxorubicin (DOX) is limited because of its cardiotoxicity. Thus, exploration of effective lead compounds against DOX-induced cardiotoxicity is necessary. The aim of the present study was to investigate the effects and possible mechanisms of dioscin against DOX-induced cardiotoxicity. The in vitro model of DOX- treated H9C2 cells and the in vivo models of DOX-treated rats and mice were used in this study. The results showed that discoin markedly increased H9C2 cell viability, decreased the levels of CK, LDH, and improved histopathological and electrocardio- gram changes in rats and mice to protect DOX-induced cardiotoxicity. Furthermore, dioscin significantly inhibited myocardial oxidative insult through adjusting the levels of intracellular ROS, MDA, SOD, GSH and GSH-Px in vitro and in vivo. Our data also indicated that dioscin activated Nrf2 and Sirt2 signaling pathways, and thereby affected the expression levels of HO-1, NQO1, Gst, GCLM, Keap1 and FOXO3a through decreasing miR-140-5p expression level. In addition, the level of intracellular ROS was significantly increased in H9C2 cells treated by DOX after miR-140-5p mimic transfection, as well as the down-regulated expression levels of Nrf2 and Sirt2, which were markedly reversed by dioscin. In conclusion, our data suggested that dioscin alleviated DOX-induced cardiotoxicity through modulating miR-140-5p-mediated myocardial oxidative stress. This natural product should be developed as a new candidate to alleviate cardiotoxicity caused by DOX in the future.
Collapse
Affiliation(s)
- Lisha Zhao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
31
|
Li F, Lang F, Wang Y, Zhai C, Zhang C, Zhang L, Hao E. Cyanidin ameliorates endotoxin-induced myocardial toxicity by modulating inflammation and oxidative stress through mitochondria and other factors. Food Chem Toxicol 2018; 120:104-111. [PMID: 29803697 DOI: 10.1016/j.fct.2018.05.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022]
Abstract
Cyanidin, an anthocyanin pigment, demonstrates anti-oxidant and anti-inflammatory properties. Here, we examined the mechanistic role of cyanidin in endotoxin induced myocardial injury in inflammation and oxidative stress. In lipopolysaccharide (LPS) induced myocardial injury model, cyanidin ameliorated cardiac injury (Lactate dehydrogenase or LDH, Creatine Kinase or CK, cardiac troponin I or cTnI and cardiac myosin light chains 1 or cMLC1), cell death (caspase 3 activity and PARP activity), and improved cardiac function (ejection fraction or EF and end diastolic left ventricular inner dimension or LVID). Cyanidin also attenuated endotoxin induced myocardial injury by modulating inflammatory cytokines (Tumor necrosis factor alpha or TNFα, Interleukin-1 beta or IL-1β, macrophage inflammatory protein 2 or MIP-2 and chemokine (C-C motif) ligand 2 also known as monocyte chemoattractant protein 1 or MCP1) and oxidative stress (protein nitration). Cyanidin modulated redox homeostasis through intracellular oxidized/reduced glutathione. The most striking properties of cyanidin in endotoxin induced mediated myocardial injury was the modulation of mitochondria, its oxidative damage and associated factor Opa1 and Trx1. Thus, our study demonstrated that cyanidin as a constituent of our food chain may be beneficial and has therapeutic potential in sepsis treatment or other myocardial oxidative and/or inflammation induced injuries.
Collapse
Affiliation(s)
- Fang Li
- Department of Health, Jinan Central Hospital, Affiliated with Shandong University, Jinan, China
| | - Fangfang Lang
- Department of Obstetrics and Gynecology, Jinan Central Hospital, Affiliated with Shandong University, China
| | - Yidan Wang
- Department of Cardiology, Qianfoshan Hospital, Affiliated with Shandong University, Jinan, China
| | - Chunxiao Zhai
- Department of Cardiology, Qianfoshan Hospital, Affiliated with Shandong University, Jinan, China
| | - Chuanbei Zhang
- Department of Cardiology, Qianfoshan Hospital, Affiliated with Shandong University, Jinan, China
| | - Liping Zhang
- Intensive Care Unit of Neurosurgery Linyi People's Hospital, China
| | - Enkui Hao
- Department of Cardiology, Qianfoshan Hospital, Affiliated with Shandong University, Jinan, China.
| |
Collapse
|
32
|
Zhao L, Qi Y, Xu L, Tao X, Han X, Yin L, Peng J. MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2. Redox Biol 2018; 15:284-296. [PMID: 29304479 PMCID: PMC5975069 DOI: 10.1016/j.redox.2017.12.013] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/27/2017] [Accepted: 12/27/2017] [Indexed: 01/25/2023] Open
Abstract
Clinical application of doxorubicin (DOX), an anthracycline antibiotic with potent anti- tumor effects, is limited because of its cardiotoxicity. However, its pathogenesis is still not entirely understood. The aim of this paper was to explore the mechanisms and new drug targets to treat DOX-induced cardiotoxicity. The in vitro model on H9C2 cells and the in vivo models on rats and mice were developed. The results showed that DOX markedly decreased H9C2 cell viability, increased the levels of CK, LDH, caused histopathological and ECG changes in rats and mice, and triggered myocardial oxidative damage via adjusting the levels of intracellular ROS, MDA, SOD, GSH and GSH-Px. Total of 18 differentially expressed microRNAs in rat heart tissue caused by DOX were screened out using microRNA microarray assay, especially showing that miR-140-5p was significantly increased by DOX which was selected as the target miRNA. Double-luciferase reporter assay showed that miR-140-5p directly targeted Nrf2 and Sirt2, as a result of affecting the expression levels of HO-1, NQO1, Gst, GCLM, Keap1 and FOXO3a, and thereby increasing DOX-caused myocardial oxidative damage. In addition, the levels of intracellular ROS were significantly increased or decreased in H9C2 cells treated with DOX after miR-140-5p mimic or miR-140-5p inhibitor transfection, respectively, as well as the changed expression levels of Nrf2 and Sirt2. Furthermore, DOX- induced myocardial oxidative damage was worsened in mice treated with miR-140-5p agomir, and however the injury was alleviated in the mice administrated with miR-140-5p antagomir. Therefore, miR-140-5p plays an important role in DOX-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2. Our data provide novel insights for investigating DOX-induced heart injury. In addition, miR-140-5p/ Nrf2 and miR-140-5p/Sirt2 may be the new targets to treat DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Lisha Zhao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
33
|
Mohajeri M, Sahebkar A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit Rev Oncol Hematol 2018; 122:30-51. [PMID: 29458788 DOI: 10.1016/j.critrevonc.2017.12.005] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/28/2017] [Accepted: 12/11/2017] [Indexed: 02/08/2023] Open
Abstract
Doxorubicin (DOX)-induced toxicity and resistance are major obstacles in chemotherapeutic approaches. Despite effective in the treatment of numerous malignancies, some clinicians have voiced concern that DOX has the potential to cause debilitating consequences in organ tissues, especially the heart. The mechanisms of toxicity and resistance are respectively related to induction of reactive oxygen species (ROS) and up-regulation of ATP-binding cassette (ABC) transporter. Curcumin (CUR) with several biological and pharmacological properties is expected to restore DOX-mediated impairments to tissues. This review is intended to address the current knowledge on DOX adverse effects and CUR protective actions in the heart, kidneys, liver, brain, and reproductive organs. Coadministration of CUR and DOX is capable of ameliorating DOX toxicity pertained to antioxidant, apoptosis, autophagy, and mitochondrial permeability.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
34
|
Omóbòwálé TO, Oyagbemi AA, Folasire AM, Ajibade TO, Asenuga ER, Adejumobi OA, Ola-Davies OE, Oyetola O, James G, Adedapo AA, Yakubu MA. Ameliorative effect of gallic acid on doxorubicin-induced cardiac dysfunction in rats. J Basic Clin Physiol Pharmacol 2018; 29:19-27. [PMID: 29016351 DOI: 10.1515/jbcpp-2016-0194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 07/23/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The use of doxorubicin (DOX) as an antineoplastic agent has been greatly limited because of the myriad of toxic sequelae associated with it. The aim of this study was to assess the protective effects of gallic acid (GA) on DOX-induced cardiac toxicity in rats. METHODS Sixty male rats (Wistar strain) were used in this study. They were divided into six groups (A-F) each containing 10 animals. Group A was the control. Rats in Groups B, C, and D were treated with DOX at the dosage of 15 mg/kg body weight i.p. Prior to this treatment, rats in Groups C and D had been treated orally with GA for 7 days at the dosage of 60 and 120 mg/kg, respectively. Animals from Groups E and F received only 60 and 120 mg/kg GA, respectively, which were administered orally for 7 days. RESULTS The exposure of rats to DOX led to a significant (p<0.05) decrease in the cardiac antioxidant defence system and elevation of creatine kinase myocardial band and lactate dehydrogenase. The electrocardiography results showed a significant decrease in heart rate, QRS, and QT-segment prolongation. GA alone improved the antioxidant defence system. CONCLUSIONS The GA pretreatment significantly alleviated GA-associated ECG abnormalities, restored the antioxidant status and prevented cardiac damage.
Collapse
Affiliation(s)
| | - Ademola A Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ayorinde M Folasire
- Department of Radiation Oncology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitayo O Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebunoluwa R Asenuga
- Department of Veterinary Physiology, Pharmacology and Biochemistry, University of Benin, Benin City, Nigeria
| | | | - Olufunke E Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Orotusin Oyetola
- Department of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Gana James
- Department of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu A Adedapo
- Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Ibadan, Nigeria
| | - Momoh A Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science, Engineering and Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, TX, USA
| |
Collapse
|
35
|
Shaker RA, Abboud SH, Assad HC, Hadi N. Enoxaparin attenuates doxorubicin induced cardiotoxicity in rats via interfering with oxidative stress, inflammation and apoptosis. BMC Pharmacol Toxicol 2018; 19:3. [PMID: 29321061 PMCID: PMC5763526 DOI: 10.1186/s40360-017-0184-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/23/2017] [Indexed: 02/06/2023] Open
Abstract
Background Doxorubicin (DOX) is commonly used in the treatment of many types of cancers but its cardiotoxicity is limiting its clinical use. Beyond its anticoagulant action, enoxaparin (ENX), a low molecular weight heparin, has been shown to exert multiple pharmacological actions including antioxidant, anti-inflammatory and antiapoptotic effects. Therefore, the current study aimed to assess if ENX could ameliorate cardiotoxicity induced by DOX. Methods Twenty-one adult male Wistar albino rats were randomly allocated into three groups (n = 7 each) of control, receiving 0.9% saline (i.p.), DOX, receiving 2.5 mg/kg of DOX (i.p.) thrice weekly; and DOX + ENX, receiving ENX (250 IU/kg/day i.p.) and a DOX dose equivalent to that of the DOX only group. Results DOX-induced cardiotoxicity was indicated by marked increases in cardiac troponin I (cTnI) and severe histological lesions, which significantly correlated with cardiotoxicity, oxidative stress, inflammation and apoptosis markers, compared to controls. DOX group also showed elevations in malondialdehyde (MDA), a marker of oxidative stress, and reductions in total antioxidant capacity (TAC). Cardiac inflammatory markers including tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) and caspase-3, an apoptotic marker, were also elevated in the DOX group. DOX, however, did not significantly alter brain natriuretic peptide (BNP) levels. ENX significantly attenuated, but not completely reversed, DOX-induced cardiotoxicity through lowering cTnI and improving cardiomyopathy histopathological scores as compared to the DOX group. ENX also decreased MDA, increased TAC of rats’ heart to levels relatively comparable to control. Significant reductions in TNF-α, IL-1β and caspase-3 were also observed following ENX treatment relative to the DOX only group. Conclusions Collectively, these results describe a cardioprotective effect for ENX against DOX-induced cardiotoxicity which is likely facilitated via suppression of oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Reem Ali Shaker
- Najaf Health Directorate, Ministry of Health, Najaf Governorate, Iraq
| | | | - Hayder Chasib Assad
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, University of Kufa, Najaf Governorate, Iraq.
| | - Najah Hadi
- Faculty of Medicine, University of Kufa, Najaf Governorate, Iraq
| |
Collapse
|
36
|
Benzer F, Kandemir FM, Ozkaraca M, Kucukler S, Caglayan C. Curcumin ameliorates doxorubicin-induced cardiotoxicity by abrogation of inflammation, apoptosis, oxidative DNA damage, and protein oxidation in rats. J Biochem Mol Toxicol 2018; 32. [PMID: 29315967 DOI: 10.1002/jbt.22030] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/10/2017] [Accepted: 12/16/2017] [Indexed: 12/11/2022]
Abstract
Doxorubicin (DXR) is a highly effective drug for chemotherapy. However, cardiotoxicity reduces its clinical utility in humans. The present study aimed to assess the ameliorative effect of curcumin against DXR-induced cardiotoxicity in rats. Rats were subjected to oral treatment of curcumin (100 and 200 mg/kg body weight) for 7 days. Cardiotoxicity was induced by single intraperitoneal injection of DXR (40 mg/kg body weight) on the 5th day and the rats sacrificed on 8th day. Curcumin ameliorated DXR-induced lipid peroxidation, glutathione depletion, decrease in antioxidant (superoxide dismutase, catalase, and glutathione peroxidase) enzyme activities, and cardiac toxicity markers (CK-MB, LDH, and cTn-I). Curcumin also attenuated activities of Caspase-3, cyclooxygenase-2, inducible nitric oxide synthase, and levels of nuclear factor kappa-B, tumor necrosis factor-α, and interleukin-1β, and cardiac tissue damages that were induced by DXR. Moreover, curcumin decreased the expression of 8-OHdG and 3,3'-dityrosine. This study demonstrated that curcumin has a multi-cardioprotective effect due to its antioxidant, anti-inflammatory, and antiapoptotic properties.
Collapse
Affiliation(s)
- Fulya Benzer
- Department of Food Engineering, Faculty of Engineering, Munzur University, Tunceli, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Mustafa Ozkaraca
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| |
Collapse
|
37
|
All-trans-retinoic acid ameliorates doxorubicin-induced cardiotoxicity: in vivo potential involvement of oxidative stress, inflammation, and apoptosis via caspase-3 and p53 down-expression. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2017; 391:59-70. [DOI: 10.1007/s00210-017-1437-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/23/2017] [Indexed: 10/18/2022]
|
38
|
Rocha PDSD, Campos JF, Nunes-Souza V, Vieira MDC, Boleti APDA, Rabelo LA, Dos Santos EL, de Picoli Souza K. Antioxidant and Protective Effects of Schinus terebinthifolius Raddi Against Doxorubicin-Induced Toxicity. Appl Biochem Biotechnol 2017; 184:869-884. [PMID: 28889333 DOI: 10.1007/s12010-017-2589-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/29/2017] [Indexed: 12/13/2022]
Abstract
Doxorubicin is an anticancer drug whose toxic effects on non-cancer cells are associated with increased oxidative stress. This study investigated the chemical composition, antioxidant activity of the methanolic extract of Schinus terebinthifolius Raddi leaves (MESL) as well as effects against doxorubicin-induced toxicity in human erythrocytes, K562 human erythroleukemia cells, and mouse hearts. The chemical composition indicated the presence of phenolic compounds, flavonoids, tannins, and ascorbic acid. MESL showed antioxidant activity by scavenging free radicals and inhibiting hemolysis and lipid peroxidation in human erythrocytes incubated with an oxidizing agent, and was able to increase the enzymatic activity of superoxide dismutase and glutathione peroxidase in human erythrocytes, without influencing the activity of enzyme catalase. The increase of oxidative hemolysis and malondialdehyde levels in erythrocytes incubated with doxorubicin was reduced by treatment with MESL. The cytotoxic activity of doxorubicin in erythroleukemia cells treated with MESL was unmodified. Additionally, the extract protected mice against the doxorubicin-induced cardiotoxicity. In conclusion, the MESL exhibits antioxidant activity, reducing doxorubicin-induced oxidative stress without changing the anticancer action of the drug, and protects against doxorubicin-induced cardiotoxicity. Hence, these findings suggest that these effects are via anti-oxidative by inhibiting free radicals, decreased oxidative stress, and increased antioxidant enzyme activity.
Collapse
Affiliation(s)
- Paola Dos Santos da Rocha
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Dourados, MS, 79804-970, Brazil
| | - Jaqueline Ferreira Campos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Dourados, MS, 79804-970, Brazil
| | - Valéria Nunes-Souza
- Federal University of Pernambuco, Av. Professor Moraes Rêgo, Recife, PE, 50670-901, Brazil
| | - Maria do Carmo Vieira
- Agricultural Sciences, Federal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Dourados, Brazil
| | - Ana Paula de Araújo Boleti
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Dourados, MS, 79804-970, Brazil
| | - Luiza Antas Rabelo
- Laboratório de Reatividade Cardiovascular, Federal University of Alagoas, Av. Lourival Melo Mota, Maceió, AL, 57072-900, Brazil
| | - Edson Lucas Dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Dourados, MS, 79804-970, Brazil
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Dourados, MS, 79804-970, Brazil.
| |
Collapse
|
39
|
Abushouk AI, Ismail A, Salem AMA, Afifi AM, Abdel-Daim MM. Cardioprotective mechanisms of phytochemicals against doxorubicin-induced cardiotoxicity. Biomed Pharmacother 2017; 90:935-946. [PMID: 28460429 DOI: 10.1016/j.biopha.2017.04.033] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 12/14/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic, which is effectively used in the treatment of different malignancies, such as leukemias and lymphomas. Its most serious side effect is dose-dependent cardiotoxicity, which occurs through inducing oxidative stress apoptosis. Due to the myelosuppressive effect of dexrazoxane, a commonly-used drug to alleviate DOX-induced cardiotoxicity, researchers investigated the potential of phytochemicals for prophylaxis and treatment of this condition. Phytochemicals are plant chemicals that have protective or disease preventive properties. Preclinical trials have shown antioxidant properties for several plant extracts, such as those of Aerva lanata, Aronia melanocarpa, Astragalus polysaccharide, and Bombyx mori plants. Other plant extracts showed an ability to inhibit apoptosis, such as those of Astragalus polysaccharide, Azadirachta indica, Bombyx mori, and Allium stavium plants. Unlike synthetic agents, phytochemicals do not impair the clinical activity of DOX and they are particularly safe for long-term use. In this review, we summarized the results of preclinical trials that investigated the cardioprotective effects of phytochemicals against DOX-induced cardiotoxicity. Future human trials are required to translate these cardioprotective mechanisms into practical clinical implications.
Collapse
Affiliation(s)
| | - Ammar Ismail
- NovaMed Medical Research Association, Cairo, Egypt; Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Amr Muhammad Abdo Salem
- Faculty of Medicine, Ain Shams University, Cairo, Egypt; NovaMed Medical Research Association, Cairo, Egypt
| | - Ahmed M Afifi
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt; Pharmacology Department, Dr. D.Y. Patil Medical College, Pune, Maharashtra, India.
| |
Collapse
|
40
|
Petroni K, Trinei M, Fornari M, Calvenzani V, Marinelli A, Micheli LA, Pilu R, Matros A, Mock HP, Tonelli C, Giorgio M. Dietary cyanidin 3-glucoside from purple corn ameliorates doxorubicin-induced cardiotoxicity in mice. Nutr Metab Cardiovasc Dis 2017; 27:462-469. [PMID: 28428026 DOI: 10.1016/j.numecd.2017.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/01/2017] [Accepted: 02/11/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Anthracyclines are effective anticancer drugs that have improved prognosis of hundred thousand cancer patients worldwide and are currently the most common chemotherapeutic agents used for the treatment of blood, breast, ovarian and lung cancers. However, their use is limited because of a cumulative dose-dependent and irreversible cardiotoxicity that can cause progressive cardiomyopathy and congestive heart failure. Aim of the present study was to determine the cardioprotective activity of a dietary source of cyanidin 3-glucoside (C3G), such as purple corn, against doxorubicin (DOX)-induced cardiotoxicity in mice. METHODS AND RESULTS In vitro studies on murine HL-1 cardiomyocytes showed that pretreatment with both pure C3G and purple corn extract improved survival upon DOX treatment. However, C3G and purple corn extract did not affect the cytotoxic effect of DOX on human cancer cell lines. We then validated in vivo the protective role of a C3G-enriched diet against DOX-induced cardiotoxicity by comparing the effect of dietary consumption of corn isogenic lines with high levels of anthocyanins (purple corn - Red diet - RD) or without anthocyanins (yellow corn - Yellow diet - YD) incorporated in standard rodent diets. Results showed that mice fed RD survived longer than mice fed YD upon injection of a toxic amount of DOX. In addition, ultrastructural analysis of hearts from mice fed RD showed reduced histopathological alterations. CONCLUSION Dietary intake of C3G from purple corn protects mice against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- K Petroni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.
| | - M Trinei
- Istituto Europeo di Oncologia, Milan, Italy
| | - M Fornari
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - V Calvenzani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - A Marinelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - L A Micheli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - R Pilu
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Milan, Italy
| | - A Matros
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - H-P Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - C Tonelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.
| | - M Giorgio
- Istituto Europeo di Oncologia, Milan, Italy.
| |
Collapse
|
41
|
Jiao J, Wei Y, Chen J, Chen X, Zhang Y. Anti-aging and redox state regulation effects of A-type proanthocyanidins-rich cranberry concentrate and its comparison with grape seed extract in mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
42
|
Skarpańska-Stejnborn A, Basta P, Trzeciak J, Michalska A, Kafkas ME, Woitas-Ślubowska D. Effects of cranberry ( Vaccinum macrocarpon) supplementation on iron status and inflammatory markers in rowers. J Int Soc Sports Nutr 2017; 14:7. [PMID: 28261001 PMCID: PMC5330006 DOI: 10.1186/s12970-017-0165-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/21/2017] [Indexed: 12/21/2022] Open
Abstract
Background The aim of this study was to analyze the effect of supplementation with cranberry (Vaccinum macrocarpon) on the levels of pro-inflammatory cytokines, hepcidin and selected markers of iron metabolism in rowers subjected to exhaustive exercise. Methods This double-blind study included 16 members of the Polish Rowing Team. The subjects were randomly assigned to the supplemented group (n = 9), receiving 1200 mg of cranberry extract for 6 weeks, or to the placebo group (n = 7). The participants performed a 2000-m test on a rowing ergometer at the beginning and at the end of the preparatory camp. Blood samples were obtained from the antecubital vein prior to each exercise test, one minute after completing the test, and after a 24-h recovery period. The levels of hepcidin, interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-alpha), ferritin, iron, soluble transferrin receptor (sTfR) and myoglobin were determined, along with total iron-binding capacity (TIBC), unbound iron-binding capacity (UIBC) and total antioxidant capacity (TAC). Results Both prior and after the supplementation, a significant post-exercise increase in the concentration of IL-6 was observed in both groups. At the end of the study period, cranberry-supplemented athletes presented with significantly higher resting, post-exercise and post-recovery levels of TAC than the controls. However, a significant exercise-induced increase in the concentrations of TNF-alpha, myoglobin and hepcidin was observed solely in the control group. Conclusion Supplementation with cranberry extract contributed to a significant strengthening of antioxidant potential in individuals exposed to strenuous physical exercise. However, supplementation did not exert direct effects on other analyzed parameters: inflammatory markers and indices of iron metabolism (TNF-alpha, hepcidin and myoglobin).
Collapse
Affiliation(s)
- Anna Skarpańska-Stejnborn
- Department of Morphological and Health Sciences, Faculty of Physical Culture in Gorzów Wlkp. Poland, 13 Estkowskiego Str. 66 - 400, Gorzów Wlkp., Poland
| | - Piotr Basta
- University School of Physical Education in Poznañ, Branch in Gorzów Wlkp., Faculty of Physical Culture, Water Sports, Gorzów Wlkp., Poland
| | - Jerzy Trzeciak
- University School of Physical Education in Poznań, Branch in Gorzów Wlkp., Gorzów Wlkp., Poland
| | - Alicja Michalska
- Department of Morphological and Health Sciences, Faculty of Physical Culture in Gorzów Wlkp. Poland, 13 Estkowskiego Str. 66 - 400, Gorzów Wlkp., Poland
| | - M Emin Kafkas
- Department of Coaching Education, Inonu University, School of Physical Education and Sport, Malatya, Turkey
| | - Donata Woitas-Ślubowska
- Kazimierz Wielki University Faculty of Physical Education, Health and Tourism, Bydgoszcz, Poland
| |
Collapse
|
43
|
UVRAG Deficiency Exacerbates Doxorubicin-Induced Cardiotoxicity. Sci Rep 2017; 7:43251. [PMID: 28225086 PMCID: PMC5320807 DOI: 10.1038/srep43251] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
Doxorubicin (DOX) is an effective chemotherapeutic drug in the treatment of various types of cancers. However, its clinical application has been largely limited by potential development of cardiotoxicity. Previously we have shown that ultra-violet radiation resistance-associated gene (UVRAG), an autophagy-related protein, is essential for the maintenance of autophagic flux in the heart under physiological conditions. Here, we sought to determine the role of UVRAG-mediated autophagy in DOX-induced cardiotoxicity. Mouse models of acute or chronic DOX-induced cardiotoxicity were established. UVRAG deficiency exacerbated DOX-induced mortality and cardiotoxicity manifested by increased cytoplasmic vacuolization, enhanced collagen accumulation, elevated serum activities of lactate dehydrogenase and myocardial muscle creatine kinase, higher ROS levels, aggravated apoptosis and more depressed cardiac function. Autophagic flux was impaired in DOX-induced cardiotoxicity. UVRAG deficiency aggravated impaired autophagic flux in DOX-induced cardiotoxicity. Intermittent fasting restored autophagy and ameliorated pathological alterations of DOX-induced cardiotoxicity. Collectively, our data suggest that UVRAG deficiency exacerbates DOX-induced cardiotoxicity, at least in part, through aggravation of DOX-induced impaired autophagic flux. Intermittent fasting, which restores blunted autophagic flux and ameliorates pathology in the mouse models of DOX-induced cardiotoxicity, may be used as a potential preventive or therapeutic approach for DOX cardiotoxicity.
Collapse
|
44
|
Shen JM, Li XX, Fan LL, Zhou X, Han JM, Jia MK, Wu LF, Zhang XX, Chen J. Heterogeneous dimer peptide-conjugated polylysine dendrimer-Fe 3O 4 composite as a novel nanoscale molecular probe for early diagnosis and therapy in hepatocellular carcinoma. Int J Nanomedicine 2017; 12:1183-1200. [PMID: 28243083 PMCID: PMC5315215 DOI: 10.2147/ijn.s126887] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A novel nanoscale molecular probe is formulated in order to reduce toxicity and side effects of antitumor drug doxorubicin (DOX) in normal tissues and to enhance the detection sensitivity during early imaging diagnosis. The mechanism involves a specific targeting of Arg-Gly-Asp peptide (RGD)-GX1 heterogeneous dimer peptide-conjugated dendrigraft poly-l-lysine (DGL)-magnetic nanoparticle (MNP) composite by αvβ3-integrin/vasculature endothelium receptor-mediated synergetic effect. The physicochemical properties of the nanoprobe were characterized by using transmission electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, dynamic light scattering (DLS), and vibrating sample magnetometer. The average diameter of the resulting MNP-DGL-RGD-GX1-DOX nanoparticles (NPs) was ~150-160 nm by DLS under simulate physiological medium. In the present experimental system, the loading amount of DOX on NPs accounted for 414.4 mg/g for MNP-DGL-RGD-GX1-DOX. The results of cytotoxicity, flow cytometry, and cellular uptake consistently indicated that the MNP-DGL-RGD-GX1-DOX NPs were inclined to target HepG2 cells in selected three kinds of cells. In vitro exploration of molecular mechanism revealed that cell apoptosis was associated with the overexpression of Fas protein and the significant activation of caspase-3. In vivo magnetic resonance imaging and biodistribution study showed that the MNP-DGL-RGD-GX1-DOX formulation had high affinity to the tumor tissue, leading to more aggregation of NPs in the tumor. In vivo antitumor efficacy research verified that MNP-DGL-RGD-GX1-DOX NPs possessed significant antitumor activity and the tumor inhibitory rate reached 78.5%. These results suggested that NPs could be promising in application to early diagnosis and therapy in hepatocellular carcinoma as a specific nanoprobe.
Collapse
Affiliation(s)
| | | | - Lin-Lan Fan
- School of Basic Medical Sciences, Lanzhou University
| | - Xing Zhou
- The People's Hospital of Gansu Province, Lanzhou, Gansu, China
| | | | | | | | | | | |
Collapse
|
45
|
Mansour HH, Eid M, El-Arnaouty MB. Effect of silver nanoparticles synthesized by gamma radiation on the cytotoxicity of doxorubicin in human cancer cell lines and experimental animals. Hum Exp Toxicol 2017; 37:38-50. [DOI: 10.1177/0960327116689717] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- HH Mansour
- Health Radiation Research Department, Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - M Eid
- Polymer Chemistry Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - MB El-Arnaouty
- Health Radiation Research Department, Atomic Energy Authority, Nasr City, Cairo, Egypt
| |
Collapse
|
46
|
Elshazly SM, Mahmoud AA, Barakat W. Pentoxifylline abrogates cardiotoxicity induced by the administration of a single high dose or multiple low doses of doxorubicin in rats. Can J Physiol Pharmacol 2016; 94:1170-1177. [DOI: 10.1139/cjpp-2016-0115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Doxorubicin (DOX) possesses a broad-spectrum antineoplastic activity; however, its clinical application is impeded by cardiotoxicity. This study aimed to investigate the protective effect of pentoxifylline (PXF), which possesses antioxidant and anti-inflammatory properties against cardiotoxicity induced by a single high dose (15 mg/kg, i.p.) or multiple low doses (2.5 mg/kg, i.p., three times per week for 2 weeks) of DOX. At the end of the experimental period, the serum creatine kinase (CK)-MB and lactate dehydrogenase (LDH) activities were measured. The hearts were then removed for evaluating TNF-α, NO, malondialdehyde (MDA), and reduced glutathione (GSH) levels, superoxide dismutase (SOD) and catalase (CAT) activities, and the expression of iNOS, NF-κB, Fas ligand (FasL), and caspase-3. The administration of DOX in both dose regimens caused increases in serum CK-MB and LDH activities, in cardiac TNF-α, NO and MDA levels, as well as in the cardiac expression of iNOS, NF-κB, FasL and caspase-3, whereas it significantly reduced the cardiac GSH level, as well as SOD and CAT activities (P < 0.05). Prophylactic treatment of rats with PXF diminished DOX-induced alterations in theses parameters. Our results warrant the clinical use of PXF as an adjuvant therapy to abrogate cardiotoxicity of DOX and extend its clinical applications.
Collapse
Affiliation(s)
- Shimaa M. Elshazly
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Amr A.A. Mahmoud
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Waleed Barakat
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Department of Pharmacology, Faculty of Pharmacy, Tabuk University, Tabuk 71491, Kingdom of Saudi Arabia
| |
Collapse
|
47
|
Doxorubicin loaded gold nanoparticles: Implication of passive targeting on anticancer efficacy. Pharmacol Res 2016; 113:547-556. [DOI: 10.1016/j.phrs.2016.09.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/18/2016] [Accepted: 09/27/2016] [Indexed: 11/22/2022]
|
48
|
Kihara M, Kaiya H, Win ZP, Kitajima Y, Nishikawa M. Protective Effect of Dietary Ghrelin-Containing Salmon Stomach Extract on Mortality and Cardiotoxicity in Doxorubicin-Induced Mouse Model of Heart Failure. J Food Sci 2016; 81:H2858-H2865. [PMID: 27736040 DOI: 10.1111/1750-3841.13526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/04/2016] [Accepted: 09/10/2016] [Indexed: 01/11/2023]
Abstract
Ghrelin exhibits a cardioprotective effect. We examined whether orally administered ghrelin-containing salmon stomach extract (sSE) instead of chemically synthesized ghrelin protects against doxorubicin (DOX)-induced cardiotoxicity in mice. Mice were divided into four groups: (i) the control, (ii) DOX groups were fed a control diet (AIN-93G), (iii) the sSE, and (iv) DOX + sSE groups were fed a 10% sSE diet (AIN-93G + 10% sSE). After a 4-week pretreatment of sSE, DOX or saline was administered to the corresponding groups by intraperitoneal injection. The groups fed the 10% sSE diet consumed significantly more food than the groups fed the control diet before the DOX injection. No mortality was observed in the DOX + sSE group, whereas 40% (2 of 5) mortality was observed in the DOX group. Compared with the DOX group, levels of ascites and plasma cardiac troponin I improved in the DOX + sSE group. Significantly lesser DOX-induced collagen accumulation was observed in the left heart ventricle of the DOX group than in that of the DOX + sSE group. These results suggest that the dietary ghrelin contained in sSE mimics synthetic ghrelin in cardioprotective effect. Ghrelin in sSE (45 pmol/g) and the food intake-stimulating effect of sSE may explain, at least in part, the protective effect of orally administered teleost ghrelin.
Collapse
Affiliation(s)
- Minoru Kihara
- Dept. of Marine Biology and Sciences, School of Biological Sciences, Tokai Univ, Sapporo, 005-8601, Japan
| | - Hiroyuki Kaiya
- Dept. of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, 565-8565, Japan
| | - Zin Phyu Win
- Dept. of Marine Biology and Sciences, School of Biological Sciences, Tokai Univ, Sapporo, 005-8601, Japan
| | - Yuta Kitajima
- Dept. of Food Management, School of Food, Agricultural and Environmental Sciences, Miyagi University, Sendai, 982-0215, Japan
| | - Masazumi Nishikawa
- Dept. of Food Management, School of Food, Agricultural and Environmental Sciences, Miyagi University, Sendai, 982-0215, Japan
| |
Collapse
|
49
|
Giampieri F, Alvarez-Suarez JM, Gasparrini M, Forbes-Hernandez TY, Afrin S, Bompadre S, Rubini C, Zizzi A, Astolfi P, Santos-Buelga C, González-Paramás AM, Quiles JL, Mezzetti B, Battino M. Strawberry consumption alleviates doxorubicin-induced toxicity by suppressing oxidative stress. Food Chem Toxicol 2016; 94:128-37. [PMID: 27286747 DOI: 10.1016/j.fct.2016.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 01/01/2023]
Abstract
Doxorubicin (Dox), one of the most used chemotherapeutic agents, is known to generate oxidative stress and block DNA synthesis, which result in severe dose-limiting toxicity. A strategy to protect against Dox toxic effects could be to use dietary antioxidants of which fruits and vegetable are a rich source. In this context, strawberry consumption is associated with the maintenance of good health and the prevention of several diseases, thanks to the antioxidant capacities of its bioactive compounds. The aim of the present study was to evaluate the protective effects of strawberry consumption against oxidative stress induced by Dox in rats. Animals were fed with strawberry enriched diet (15% of the total calories) for two months and Dox (10 mg/kg; i.p.) was injected at the end of the experimental period. Strawberry consumption significantly inhibited ROS production and oxidative damage biomarkers accumulation in plasma and liver tissue and alleviated histopathological changes in rat livers treated with Dox. The reduction of antioxidant enzyme activities was significantly mitigated after strawberry consumption. In addition, strawberry enriched diet ameliorated liver mitochondrial antioxidant levels and functionality. In conclusion, strawberry intake protects against Dox-induced toxicity, at plasma, liver and mitochondrial levels thanks to its high contents of bioactive compounds.
Collapse
Affiliation(s)
- Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy
| | - Jose M Alvarez-Suarez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy; Escuela de Medicina Veterinaria y Zootecnia, Facultad de Ciencias de la Salud. Universidad de Las Américas, Campus Queri, Quito, Ecuador
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy
| | - Tamara Y Forbes-Hernandez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy; Area de Nutrición y Salud, Universidad Internacional Iberoamericana (UNINI), Campeche, Mexico
| | - Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy
| | - Stefano Bompadre
- Dipartimento Scienze Biomediche e Sanita' Pubblica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy
| | - Corrado Rubini
- Dipartimento Scienze Biomediche e Sanita' Pubblica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Zizzi
- Dipartimento Scienze Biomediche e Sanita' Pubblica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy
| | - Paola Astolfi
- Dipartimento Scienze e Ingegneria della Materia, dell'Ambiente ed Urbanistica, Università Politecnica delle Marche, Ancona, Italy
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Faculty of Pharmacy, Salamanca University, Campus Miguel de Unamuno, E37007, Salamanca, Spain
| | - Ana M González-Paramás
- Grupo de Investigación en Polifenoles (GIP-USAL), Faculty of Pharmacy, Salamanca University, Campus Miguel de Unamuno, E37007, Salamanca, Spain
| | - Josè L Quiles
- Departamento de Fisiologia, Instituto de Nutrición y Tecnología de los Alimentos ''José Mataix", Centro de Investigaciones Biomedicas, Universidad de Granada, Granada, Spain
| | - Bruno Mezzetti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy; Centre for Nutrition & Health, Universidad Europea del Atlantico (UEA), Santander, Spain.
| |
Collapse
|
50
|
El-Agamy DS, Abo-Haded HM, Elkablawy MA. Cardioprotective effects of sitagliptin against doxorubicin-induced cardiotoxicity in rats. Exp Biol Med (Maywood) 2016; 241:1577-87. [PMID: 27037281 DOI: 10.1177/1535370216643418] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/14/2016] [Indexed: 01/01/2023] Open
Abstract
There is a large body of evidence suggesting that inhibitors of dipeptidyl peptidase-4, such as sitagliptin, may exhibit beneficial effects against different inflammatory disorders. This investigation was conducted to elucidate the potential ability of sitagliptin to counteract the injurious effects of doxorubicin in cardiac tissue. Male Wistar rats were pretreated with sitagliptin for 10 days then treated with a single dose of doxorubicin (20 mg/kg, i.p). Electrocardiography, biochemical estimation of serum and tissue markers, and histo- and immunopathological examinations were done. Results have shown that supplementation with sitagliptin resulted in significant improvement of cardiac function with contaminant decrease in serum markers of doxorubicin-induced cardiotoxicity. These results were supported by the histopathological results. Furthermore, a marked protection against oxidative stress was evident through reduction of lipid peroxidation and prevention of reduced glutathione content depletion and superoxide dismutase activity reduction in cardiac tissue of rats pretreated with sitagliptin in combination with doxorubicin. Moreover, sitagliptin ameliorated the activation of nuclear factor kappa-B and the release of inflammatory cytokines, tumour necrosis factor-alpha and nitric oxide. Finally, sitagliptin attenuated doxorubicin-induced increase in the expression of pro-apoptotic protein Bax and in the apoptotic marker, caspase-3. Collectively, these data indicate that sitagliptin pretreatment could alleviate doxorubicin-induced cardiotoxicity via reducing oxidative damage and its subsequent inflammation and apoptosis.
Collapse
Affiliation(s)
- Dina S El-Agamy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hany M Abo-Haded
- Pediatric Cardiology Unit, Department Of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed A Elkablawy
- Department of Pathology, Faculty of Medicine, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia 35516, Egypt
| |
Collapse
|