1
|
Zhang J, Wang J, Jiang T, Gong X, Gan Q, Teng Y, Zou Y, Dawadi AA, Yan Y. Engineering an Overflow-Responsive Regulation System for Balancing Cellular Redox and Optimizing Microbial Production. Biotechnol Bioeng 2025. [PMID: 40119535 DOI: 10.1002/bit.28976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/20/2025] [Accepted: 03/07/2025] [Indexed: 03/24/2025]
Abstract
Escherichia coli accumulates acetate as a byproduct in fast growth aerobic conditions when using glucose as carbon source. This phenomenon, known as overflow metabolism, has negative impacts on cell growth and protein expression, also causes carbon loss during biosynthesis in most microbial production scenarios. In this study, we regarded the "waste" metabolite as a useful metabolism indicator, constructed an overflow biosensor to monitor the change of acetate concentration and converted the signal into various regulation outputs. Phloroglucinol is a phenolic compound with several derivatives that exhibit various pharmacological activities. By applying the bifunctional dynamic regulation system on the phloroglucinol production, we released the cellular redox pressure in real-time and reduced the waste of carbon flux on overflow metabolism. Finally, carbon flux was redirected more favorably towards the desired product, resulting in a boosted phloroglucinol titer of 1.30 g/L, increased by 2.04-fold. Overall, this study explored the use of a central byproduct-responsive biosensor system on improving cellular metabolic status, providing a general approach for enhancing bioproduction.
Collapse
Affiliation(s)
- Jianli Zhang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia, USA
| | - Jian Wang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia, USA
| | - Tian Jiang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia, USA
| | - Xinyu Gong
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia, USA
| | - Qi Gan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia, USA
| | - Yuxi Teng
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia, USA
| | - Yusong Zou
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia, USA
| | - Ainoor Anwar Dawadi
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia, USA
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Goya L, Mateos R. Antioxidant and Anti-inflammatory Effects of Marine Phlorotannins and Bromophenols Supportive of Their Anticancer Potential. Nutr Rev 2025; 83:e1225-e1242. [PMID: 38894623 PMCID: PMC11819485 DOI: 10.1093/nutrit/nuae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Following the goal of optimizing nutrition, the food industry has been continuously working on food reformulation, nutritional patterns, functional foods development, and the general promotion of a healthy lifestyle. To this end, the scientific community has been increasingly investigating natural compounds that could prevent or treat chronic diseases. Phlorotannins and bromophenols are phenolic compounds particularly present in marine organisms. There is extensive evidence that shows their potential in the prevention of noncommunicable diseases, including cancer, the second cause of mortality worldwide. Numerous studies have demonstrated the anticarcinogenic activity of polyphenolic algae compounds both in cell culture and experimental animal models. Although recent reviews are also available, the present update focuses on the most recent findings related to the antioxidant/anti-inflammatory effect of seaweed phenolics, as well as their regulatory capacity for new molecular targets. Additionally, the review addresses and discusses the close link between inflammation and oxidative stress, along with their relationship with tumor onset and progression, including the most recent findings supporting this correlation. Although clinical studies are still needed to support this evidence, phlorotannins and bromophenols constitute an emerging bioactive group with high potential as chemopreventive agents and/or potential adjuvants for existing cancer therapies.
Collapse
Affiliation(s)
- Luis Goya
- Department of Metabolism and Nutrition, Institute of Food Science, Technology, and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Raquel Mateos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology, and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| |
Collapse
|
3
|
Graziano N, Arce-López B, Barbeyron T, Delage L, Gerometta E, Roullier C, Burgaud G, Poirier E, Martinelli L, Jany JL, Hymery N, Meslet-Cladiere L. Identification and Characterization of Two Aryl Sulfotransferases from Deep-Sea Marine Fungi and Their Implications in the Sulfation of Secondary Metabolites. Mar Drugs 2024; 22:572. [PMID: 39728146 DOI: 10.3390/md22120572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Sulfation plays a critical role in the biosynthesis of small molecules, regulatory mechanisms such as hormone signaling, and detoxification processes (phase II enzymes). The sulfation reaction is catalyzed by a broad family of enzymes known as sulfotransferases (SULTs), which have been extensively studied in animals due to their medical importance, but also in plant key processes. Despite the identification of some sulfated metabolites in fungi, the mechanisms underlying fungal sulfation remain largely unknown. To address this knowledge gap, we conducted a comprehensive search of available genomes, resulting in the identification of 174 putative SULT genes in the Ascomycota phylum. Phylogenetic analysis and structural modeling revealed that these SULTs belong to the aryl sulfotransferase family, and they are divided into two potential distinct clusters of PAPS-dependent SULTs within the fungal kingdom. SULT genes from two marine fungi isolated from deep-sea hydrothermal vents, Hortaea werneckii UBOCC-A-208029 (HwSULT) and Aspergillus sydowii UBOCC-A-108050 SULT (AsSULT), were selected as representatives of each cluster. Recombinant proteins were expressed in Escherichia coli and biochemically characterized. HwSULT demonstrated high and versatile activity, while AsSULT appeared more substrate-specific. Here, HwSULT was used to sulfate the mycotoxin zearalenone, enhancing its cytotoxicity toward healthy feline intestinal cells.
Collapse
Affiliation(s)
- Nicolas Graziano
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Beatriz Arce-López
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Tristan Barbeyron
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), CNRS, Sorbonne Université, F-29688 Roscoff, France
| | - Ludovic Delage
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), CNRS, Sorbonne Université, F-29688 Roscoff, France
| | - Elise Gerometta
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMER, UR 2160, F-44000 Nantes, France
| | - Catherine Roullier
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMER, UR 2160, F-44000 Nantes, France
| | - Gaëtan Burgaud
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Elisabeth Poirier
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Laure Martinelli
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Strasse 8, 07455 Jena, Germany
| | - Jean-Luc Jany
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Nolwenn Hymery
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Laurence Meslet-Cladiere
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| |
Collapse
|
4
|
Kim J, Won Choi J, Jeong Kim H, Kim B, Kim Y, Hwejin Lee E, Kim R, Kim J, Park J, Jeong Y, Park JH, Duk Park K. Phloroglucinol Derivatives Exert Anti-Inflammatory Effects and Attenuate Cognitive Impairment in LPS-Induced Mouse Model. ChemMedChem 2024; 19:e202400056. [PMID: 38757206 DOI: 10.1002/cmdc.202400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Neuroinflammation is an inflammatory immune response that arises in the central nervous system. It is one of the primary causes of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Phloroglucinol (PG) is a natural product contained in extracts of plant, algae and microbe and has been reported to have antioxidant and anti-inflammatory properties. In this study, we synthesized PG derivatives to enhance antioxidant and anti-inflammatory activity. Among PG derivatives, 6 a suppressed pro-oxidative and inflammatory molecule nitric oxide (NO) production more effectively than PG. Moreover, 6 a dose-dependently reduced the expression of proinflammatory cytokines such as IL-6, IL-1β, TNF-α, and NO producing enzyme iNOS in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Additionally, we confirmed that 6 a alleviated cognitive impairment and glial activation in mouse model of LPS-induced neuroinflammation. These findings suggest that novel PG derivative, 6 a, is a potential treatment for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jushin Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Department of Biotechnology, Yonsei University, 03722, Seoul, Republic of Korea
| | - Ji Won Choi
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
| | - Hyeon Jeong Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
| | - Byungeun Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Yoowon Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Department of Biotechnology, Yonsei University, 03722, Seoul, Republic of Korea
| | - Elijah Hwejin Lee
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Rium Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Jaehwan Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Jiwoo Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Yeeun Jeong
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Jong-Hyun Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Ki Duk Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Republic of Korea
| |
Collapse
|
5
|
Ahmed H, Fayyaz TB, Khatian N, Usman S, Nisar U, Abid M, Ali SA, Abbas G. Phloroglucinol inhibited glycation via entrapping carbonyl intermediates. PLoS One 2024; 19:e0307708. [PMID: 39052603 PMCID: PMC11271877 DOI: 10.1371/journal.pone.0307708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Advanced glycation end products (AGEs) play an important role in the pathogenesis of age-linked disorders and diabetes mellitus. The aim of this study was to assess the repurposing potential of Phloroglucinol (PHL the antispasmodic drug), as an anti-glycation agent using Fructose-BSA model. The ability of PHL to inhibit AGE formation was evaluated using AGEs formation (Intrinsic fluorescence), fructosamine adduct (NBT) and free lysine availability (TNBSA) assays. The BSA protein conformation was assessed through Thioflavin-T, Congo-Red and Circular Dichroism assays. The lysine blockade and carbonyl entrapment were explored as possible mode of action. Our data showed that PHL significantly decreased the formation of AGEs with an IC50 value of 0.3mM. The fructosamine adducts and free lysine load was found to be reduced. Additionally, the BSA conformation was preserved by PHL. Mechanistic assays did not reveal involvement of lysine blockade as underlying reason for reduction in AGEs load. This was also supported by computational data whereby PHL failed to engage any catalytic residue involved in early fructose-BSA interaction. However, it was found to entrap the carbonyl moieties. In conclusion, the PHL demonstrated anti-glycation potential, which can be attributed to its ability to entrap carbonyl intermediates. Hence, the clinically available antispasmodic drug, presents itself as a promising candidate to be repurposed as anti-glycation agent.
Collapse
Affiliation(s)
- Hammad Ahmed
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| | - Talha Bin Fayyaz
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| | - Najeeb Khatian
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| | - Shumaila Usman
- Department of Molecular Medicine, Ziauddin University, Karachi, Pakistan
| | - Uzair Nisar
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| | - Mohammad Abid
- H.E.J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syed Abid Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ghulam Abbas
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| |
Collapse
|
6
|
Marković ZM, Milivojević DD, Kovač J, Todorović Marković BM. Phloroglucinol-Based Carbon Quantum Dots/Polyurethane Composite Films: How Structure of Carbon Quantum Dots Affects Antibacterial and Antibiofouling Efficiency of Composite Films. Polymers (Basel) 2024; 16:1646. [PMID: 38931997 PMCID: PMC11207477 DOI: 10.3390/polym16121646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Nowadays, bacteria resistance to many antibiotics is a huge problem, especially in clinics and other parts of the healthcare system. This critical health issue requires a dynamic approach to produce new types of antibacterial coatings to combat various pathogen microbes. In this research, we prepared a new type of carbon quantum dots based on phloroglucinol using the bottom-up method. Polyurethane composite films were produced using the swell-encapsulation-shrink method. Detailed electrostatic force and viscoelastic microscopy of carbon quantum dots revealed inhomogeneous structure characterized by electron-rich/soft and electron-poor/hard regions. The uncommon photoluminescence spectrum of carbon quantum dots core had a multipeak structure. Several tests confirmed that carbon quantum dots and composite films produced singlet oxygen. Antibacterial and antibiofouling efficiency of composite films was tested on eight bacteria strains and three bacteria biofilms.
Collapse
Affiliation(s)
- Zoran M. Marković
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11158 Belgrade, Serbia;
| | - Dušan D. Milivojević
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11158 Belgrade, Serbia;
| | - Janez Kovač
- Department of Surface Engineering, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia;
| | - Biljana M. Todorović Marković
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11158 Belgrade, Serbia;
| |
Collapse
|
7
|
Polez RT, Ajiboye MA, Österberg M, Horn MM. Chitosan hydrogels enriched with bioactive phloroglucinol for controlled drug diffusion and potential wound healing. Int J Biol Macromol 2024; 265:130808. [PMID: 38490386 DOI: 10.1016/j.ijbiomac.2024.130808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
We report a facile strategy to prepare chitosan (CS) hydrogels that eliminates the need for chemical crosslinking for advanced biomedical therapies. This approach gives controlled properties to the hydrogels by incorporating a natural bioactive phenolic compound, phloroglucinol (PG), into their microstructure. The adsorption of PG onto CS chains enhanced the hydrogels' antioxidant activity by up to 25 % and resulted in a denser, more entangled structure, reducing the pore size by 59 μm while maintaining porosity above 94 %. This allowed us to finely adjust pore size and swelling capacity. These structural properties make these hydrogels well-suited for wound healing dressings, promoting fibroblast proliferation and exhibiting excellent hemocompatibility. Furthermore, to ensure the versatility of these hydrogels, herein, we demonstrate their potential as drug delivery systems, particularly for dermal infections. The drug release can be controlled by a combination of drug diffusion through the swollen hydrogel and relaxation of the CS chains. In summary, our hydrogels leverage the synergistic effects of CS's antibacterial and antifungal properties with PG's antimicrobial and anti-inflammatory attributes, positioning them as promising candidates for biomedical and pharmaceutical applications, more specifically in advanced wound healing therapies with local drug delivery.
Collapse
Affiliation(s)
- Roberta Teixeira Polez
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland
| | - Margaret A Ajiboye
- Physical Chemistry of Nanomaterials, Institute of Chemistry, University of Kassel, 34109 Kassel, Germany
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland
| | - Marilia M Horn
- Physical Chemistry of Nanomaterials, Institute of Chemistry, University of Kassel, 34109 Kassel, Germany.
| |
Collapse
|
8
|
Ghallab DS, Ibrahim RS, Mohyeldin MM, Shawky E. Marine algae: A treasure trove of bioactive anti-inflammatory compounds. MARINE POLLUTION BULLETIN 2024; 199:116023. [PMID: 38211540 DOI: 10.1016/j.marpolbul.2023.116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024]
Abstract
This comprehensive review examines the diverse classes of pharmacologically active compounds found in marine algae and their promising anti-inflammatory effects. The review covers various classes of anti-inflammatory compounds sourced from marine algae, including phenolic compounds, flavonoids, terpenoids, caretenoids, alkaloids, phlorotannins, bromophenols, amino acids, peptides, proteins, polysaccharides, and fatty acids. The anti-inflammatory activities of marine algae-derived compounds have been extensively investigated using in vitro and in vivo models, demonstrating their ability to inhibit pro-inflammatory mediators, such as cytokines, chemokines, and enzymes involved in inflammation. Moreover, marine algae-derived compounds have exhibited immunomodulatory properties, regulating immune cell functions and attenuating inflammatory responses. Specific examples of compounds with notable anti-inflammatory activities are highlighted. This review provides valuable insights for researchers in the field of marine anti-inflammatory pharmacology and emphasizes the need for further research to harness the pharmacological benefits of marine algae-derived compounds for the development of effective and safe therapeutic agents.
Collapse
Affiliation(s)
- Dina S Ghallab
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Reham S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Mohamed M Mohyeldin
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
9
|
Yang J, Lin J, Gu T, Sun Q, Xu W, Peng Y. Chicoric Acid Effectively Mitigated Dextran Sulfate Sodium (DSS)-Induced Colitis in BALB/c Mice by Modulating the Gut Microbiota and Fecal Metabolites. Int J Mol Sci 2024; 25:841. [PMID: 38255916 PMCID: PMC10815209 DOI: 10.3390/ijms25020841] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Chicoric acid (CA) has been reported to exhibit biological activities; it remains unclear, however, whether CA could regulate colitis via modulation of the gut microbiota and metabolites. This study aimed to assess CA's impact on dextran sulfate sodium (DSS)-induced colitis, the gut microbiota, and metabolites. Mice were induced with 2.5% DSS to develop colitis over a 7-day period. CA was administered intragastrically one week prior to DSS treatment and continued for 14 days. The microbial composition in the stool was determined using 16S rRNA sequencing, while non-targeted metabolomics was employed to analyze the metabolic profiles of each mouse group. The results show that CA effectively alleviated colitis, as evidenced by an increased colon length, lowered disease activity index (DAI) and histological scores, and decreased tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) expression levels. CA intervention restored the structure of gut microbiota. Specifically, it decreased the abundance of Bacteroidetes and Cyanobacteria at the phylum level and Bacteroides, Rosiarcus, and unclassified Xanthobacteraceae at the genus level, and increased the abundance of unclassified Lachnospiraceae at the genus level. Metabolomic analysis revealed that CA supplementation reversed the up-regulation of asymmetric dimethylarginine, N-glycolylneuraminic acid, and N-acetylneuraminic acid, as well as the down-regulation of phloroglucinol, thiamine, 4-methyl-5-thiazoleethanol, lithocholic acid, and oxymatrine induced by DSS. Our current research provides scientific evidence for developing CA into an anti-colitis functional food ingredient. Further clinical trials are warranted to elucidate the efficacy and mechanism of CA in treating human inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Jiani Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Y.); (T.G.)
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Jie Lin
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA; (J.L.); (Q.S.)
| | - Ting Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Y.); (T.G.)
| | - Quancai Sun
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA; (J.L.); (Q.S.)
| | - Weidong Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
10
|
Martínez-López R, Tuohy MG. Rapid and cost-efficient microplate assay for the accurate quantification of total phenolics in seaweeds. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 6:100166. [PMID: 36875799 PMCID: PMC9982613 DOI: 10.1016/j.fochms.2023.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 12/02/2022] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Brown seaweeds (Phaeophyceae) are a rich source of polyphenols (up to 20% dry weight) with a structure based on phloroglucinol (1,3,5-trihydroxybenzene). To-date the determination of total phenolics content (TPC) involves a redox reaction with the Folin-Ciocalteu (FC) reagent. However, side reactions with other reducing substances preclude accurate, direct measurement of TPC. This research reports a novel microplate assay involving a coupling reaction between phloroglucinol with Fast Blue BB (FBBB) diazonium salt, at basic pH, to form a stable tri-azo complex with maximum absorbance at 450 nm. Linear regression correlation values (R2) were ≥0.99 with phloroglucinol as standard. Direct quantification of TPCs (phloroglucinol equivalents, PGEs) in crude aqueous and ethanolic extracts from A. nodosum demonstrated that the new FBBB assay is not subject to side-redox interference and provides a more accurate estimate of TPC (1.2-3.9-fold lower than with the FC assay) in a relatively rapid (30 min), cost-effective (0.24€/test) microplate format.
Collapse
Affiliation(s)
| | - Maria G. Tuohy
- Corresponding authors at: University of Galway, Ireland (Rosalía Martínez-López).
| |
Collapse
|
11
|
Mirata S, Asnaghi V, Chiantore M, Salis A, Benvenuti M, Damonte G, Scarfì S. Photoprotective and Anti-Aging Properties of the Apical Frond Extracts from the Mediterranean Seaweed Ericaria amentacea. Mar Drugs 2023; 21:306. [PMID: 37233500 PMCID: PMC10224410 DOI: 10.3390/md21050306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
There is a growing interest in using brown algal extracts thanks to the bioactive substances they produce for adaptation to the marine benthic environment. We evaluated the anti-aging and photoprotective properties of two types of extracts (50%-ethanol and DMSO) obtained from different portions, i.e., apices and thalli, of the brown seaweed, Ericaria amentacea. The apices of this alga, which grow and develop reproductive structures during summer when solar radiation is at its peak, were postulated to be rich in antioxidant compounds. We determined the chemical composition and pharmacological effects of their extracts and compared them to the thallus-derived extracts. All the extracts contained polyphenols, flavonoids and antioxidants and showed significant biological activities. The hydroalcoholic apices extracts demonstrated the highest pharmacological potential, likely due to the higher content of meroditerpene molecular species. They blocked toxicity in UV-exposed HaCaT keratinocytes and L929 fibroblasts and abated the oxidative stress and the production of pro-inflammatory cytokines, typically released after sunburns. Furthermore, the extracts showed anti-tyrosinase and anti-hydrolytic skin enzyme activity, counteracting the collagenase and hyaluronidase degrading activities and possibly slowing down the formation of uneven pigmentation and wrinkles in aging skin. In conclusion, the E. amentacea apices derivatives constitute ideal components for counteracting sunburn symptoms and for cosmetic anti-aging lotions.
Collapse
Affiliation(s)
- Serena Mirata
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, 16132 Genova, Italy; (S.M.); (A.S.); (M.B.); (G.D.)
- Centro 3R, Interuniversity Center for the Promotion of the Principles of the 3Rs in Teaching and Research, 56122 Pisa, Italy
| | - Valentina Asnaghi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy; (V.A.); (M.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Mariachiara Chiantore
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy; (V.A.); (M.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Annalisa Salis
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, 16132 Genova, Italy; (S.M.); (A.S.); (M.B.); (G.D.)
| | - Mirko Benvenuti
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, 16132 Genova, Italy; (S.M.); (A.S.); (M.B.); (G.D.)
| | - Gianluca Damonte
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, 16132 Genova, Italy; (S.M.); (A.S.); (M.B.); (G.D.)
| | - Sonia Scarfì
- Centro 3R, Interuniversity Center for the Promotion of the Principles of the 3Rs in Teaching and Research, 56122 Pisa, Italy
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy; (V.A.); (M.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
12
|
Rocha DHA, Pinto DCGA, Silva AMS. Macroalgae Specialized Metabolites: Evidence for Their Anti-Inflammatory Health Benefits. Mar Drugs 2022; 20:md20120789. [PMID: 36547936 PMCID: PMC9783307 DOI: 10.3390/md20120789] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammation is an organism's response to chemical or physical injury. It is split into acute and chronic inflammation and is the last, most significant cause of death worldwide. Nowadays, according to the World Health Organization (WHO), the greatest threat to human health is chronic disease. Worldwide, three out of five people die from chronic inflammatory diseases such as stroke, chronic respiratory diseases, heart disorders, and cancer. Nowadays, anti-inflammatory drugs (steroidal and non-steroidal, enzyme inhibitors that are essential in the inflammatory process, and receptor antagonists, among others) have been considered as promising treatments to be explored. However, there remains a significant proportion of patients who show poor or incomplete responses to these treatments or experience associated severe side effects. Seaweeds represent a valuable resource of bioactive compounds associated with anti-inflammatory effects and offer great potential for the development of new anti-inflammatory drugs. This review presents an overview of specialized metabolites isolated from seaweeds with in situ and in vivo anti-inflammatory properties. Phlorotannins, carotenoids, sterols, alkaloids, and polyunsaturated fatty acids present significant anti-inflammatory effects given that some of them are involved directly or indirectly in several inflammatory pathways. The majority of the isolated compounds inhibit the pro-inflammatory mediators/cytokines. Studies have suggested an excellent selectivity of chromene nucleus towards inducible pro-inflammatory COX-2 than its constitutive isoform COX-1. Additional research is needed to understand the mechanisms of action of seaweed's compounds in inflammation, given the production of sustainable and healthier anti-inflammatory agents.
Collapse
|
13
|
Tung YT, Wu CH, Chen WC, Pan CH, Chen YW, Tsao SP, Chen CJ, Huang HY. Ascophyllum nodosum and Fucus vesiculosus Extracts Improved Lipid Metabolism and Inflammation in High-Energy Diet-Induced Hyperlipidemia Rats. Nutrients 2022; 14:4665. [PMID: 36364926 PMCID: PMC9658475 DOI: 10.3390/nu14214665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
Ascophyllum nodosum and Fucus vesiculosus both contain unique polyphenols called phlorotannins. Phlorotannins reportedly possess various pharmacological activities. A previous study reported that the activity of phlorotannin is strongly correlated with the normalization of metabolic function, and phlorotannins are extremely promising nutrients for use in the treatment of metabolic syndrome. To date, no study has explored the antihyperlipidemic effects of phlorotannins from A. nodosum and F. vesiculosus in animal models. Therefore, in the present study, we investigated the effects of phlorotannins using a rat model of high-energy diet (HED)-induced hyperlipidemia. The results showed that the rats that were fed an HED and treated with phlorotannin-rich extract from A. nodosum and F. vesiculosus had significantly lower serum fasting blood sugar (FBS), aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol (TC), triacylglyceride (TG) and free fatty acids (FFAs) levels and hepatic TG level and had higher serum insulin, high-density lipoprotein cholesterol (HDL-C) levels and lipase activity in their fat tissues than in the case with the rats that were fed the HED alone. A histopathological analysis revealed that phlorotannin-rich extract could significantly reduce the size of adipocytes around the epididymis. In addition, the rats treated with phlorotannin-rich extract had significantly lowered interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) levels and increased superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities than did those in the HED group. These results suggested that the phlorotannin-rich extract stimulated lipid metabolism and may have promoted lipase activity in rats with HED-induced hyperlipidemia. Our results indicated that A. nodosum and F. vesiculosus, marine algae typically used as health foods, have strong antihyperlipidemic effects and may, therefore, be useful for preventing atherosclerosis. These algae may be incorporated into antihyperlipidemia pharmaceuticals and functional foods.
Collapse
Affiliation(s)
- Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Chieh-Hsi Wu
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Wen-Chao Chen
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Chun-Hsu Pan
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
| | - Shu-Ping Tsao
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Chia-Jung Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Hui-Yu Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
- Research Center for Digestive Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
14
|
Cheon J, Kim M. Comprehensive effects of various nutrients on sleep. Sleep Biol Rhythms 2022; 20:449-458. [PMID: 38468613 PMCID: PMC10899959 DOI: 10.1007/s41105-022-00408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/16/2022] [Indexed: 10/16/2022]
Abstract
Sleep problems have become common among people today. Sleep disorders are closely associated with physiological and psychological diseases. Among the ways of improving objective or subjective sleep quality, controlling elements associated with food intake can be more efficient than other methods in terms of time and cost. Therefore, the purpose of this study was to understand the effects of nutrients and natural products on sleep. An extensive literature search was conducted, and related articles were identified through online databases, such as Elsevier, Google Scholar, PubMed, Springer, and Web of Science. Expert opinion, conference abstracts, unpublished studies, and studies published in languages other than English were excluded from this review. The effects of macronutrients and diet adjustment on sleep differed. Although not all nutrients independently affect sleep, they comprehensively affect it through tryptophan metabolism. Furthermore, natural foods related to GABA have an effect on sleep similar to that of sleeping pills. Taken together, our results suggest that humans can control both their objective and subjective sleep quality based on their lifestyle and food consumption. However, until now, direct studies on the relationship between human sleep and nutrition, such as clinical trials, have been insufficient. As both objective and subjective sleep quality are the factors determining the quality of life of individuals, further studies on those are needed to improve it.
Collapse
Affiliation(s)
- Jaehwan Cheon
- Department of Chemistry & Life Science, BioScience Research Institute, Sahmyook University, Hwarangro 815, Nowongu, 01795 Seoul, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry & Life Science, BioScience Research Institute, Sahmyook University, Hwarangro 815, Nowongu, 01795 Seoul, Republic of Korea
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Hwarangro 815, Nowongu, Seoul, 01795 Republic of Korea
| |
Collapse
|
15
|
Aati HY, Anwar M, Al-Qahtani J, Al-Taweel A, Khan KUR, Aati S, Usman F, Ghalloo BA, Asif HM, Shirazi JH, Abbasi A. Phytochemical Profiling, In Vitro Biological Activities, and In-Silico Studies of Ficus vasta Forssk.: An Unexplored Plant. Antibiotics (Basel) 2022; 11:antibiotics11091155. [PMID: 36139935 PMCID: PMC9495161 DOI: 10.3390/antibiotics11091155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 12/31/2022] Open
Abstract
Ficus vasta Forssk. (Moraceae family) is an important medicinal plant that has not been previously investigated for its phytochemical and biological potential. Phytochemical screening, total bioactive content, and GCMS analysis were used to determine its phytoconstituents profile. Antioxidant, antibacterial, antifungal, anti-viral, cytotoxicity, thrombolytic, and enzyme inhibition activities were examined for biological evaluation. The plant extract exhibited the maximum total phenolic (89.47 ± 3.21 mg GAE/g) and total flavonoid contents (129.2 ± 4.14 mg QE/g), which may be related to the higher antioxidant potential of the extract. The extract showed strong α-amylase (IC50 5 ± 0.21 µg/mL) and α-glucosidase inhibition activity (IC50 5 ± 0.32 µg/mL). Significant results were observed in the case of antibacterial, antifungal, and anti-viral activities. The F. vasta extract inhibited the growth of HepG2 cells in a dose-dependent manner. The GCMS analysis of the extract provided the preliminary identification of 28 phytocompounds. In addition, the compounds identified by GCMS were subjected to in silico molecular docking analysis in order to identify any interactions between the compounds and enzymes (α-amylase and α-glucosidase). After that, the best-docked compounds were subjected to ADMET studies which provide information on pharmacokinetics, drug-likeness, physicochemical properties, and toxicity. The present study highlighted that the ethanol extract of F. vasta has antidiabetic, antimicrobial, anti-viral, and anti-cancer potentials that can be further explored for novel drug development.
Collapse
Affiliation(s)
- Hanan Y. Aati
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
- Correspondence: (H.Y.A.); (K.-u.-R.K.)
| | - Mariyam Anwar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jawaher Al-Qahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Areej Al-Taweel
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Kashif-ur-Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Correspondence: (H.Y.A.); (K.-u.-R.K.)
| | - Sultan Aati
- UWA, University of Western Australia, Nedland, WA 6009, Australia
| | - Faisal Usman
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Bilal Ahmad Ghalloo
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hafiz Muhammad Asif
- Faculty of Medicine and Allied Health Sciences, University College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jafir Hussain Shirazi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Aliza Abbasi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
16
|
Khan F, Jeong GJ, Khan MSA, Tabassum N, Kim YM. Seaweed-Derived Phlorotannins: A Review of Multiple Biological Roles and Action Mechanisms. Mar Drugs 2022; 20:384. [PMID: 35736187 PMCID: PMC9227776 DOI: 10.3390/md20060384] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 12/31/2022] Open
Abstract
Phlorotannins are a group of phenolic secondary metabolites isolated from a variety of brown algal species belonging to the Fucaceae, Sargassaceae, and Alariaceae families. The isolation of phlorotannins from various algal species has received a lot of interest owing to the fact that they have a range of biological features and are very biocompatible in their applications. Phlorotannins have a wide range of therapeutic biological actions, including antimicrobial, antidiabetic, antioxidant, anticancer, anti-inflammatory, anti-adipogenesis, and numerous other biomedical applications. The current review has extensively addressed the application of phlorotannins, which have been extensively investigated for the above-mentioned biological action and the underlying mechanism of action. Furthermore, the current review offers many ways to use phlorotannins to avoid certain downsides, such as low stability. This review article will assist the scientific community in investigating the greater biological significance of phlorotannins and developing innovative techniques for treating both infectious and non-infectious diseases in humans.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea;
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia;
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea;
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea;
| |
Collapse
|
17
|
El-Beltagi HS, Mohamed AA, Mohamed HI, Ramadan KMA, Barqawi AA, Mansour AT. Phytochemical and Potential Properties of Seaweeds and Their Recent Applications: A Review. Mar Drugs 2022; 20:md20060342. [PMID: 35736145 PMCID: PMC9227187 DOI: 10.3390/md20060342] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
Since ancient times, seaweeds have been employed as source of highly bioactive secondary metabolites that could act as key medicinal components. Furthermore, research into the biological activity of certain seaweed compounds has progressed significantly, with an emphasis on their composition and application for human and animal nutrition. Seaweeds have many uses: they are consumed as fodder, and have been used in medicines, cosmetics, energy, fertilizers, and industrial agar and alginate biosynthesis. The beneficial effects of seaweed are mostly due to the presence of minerals, vitamins, phenols, polysaccharides, and sterols, as well as several other bioactive compounds. These compounds seem to have antioxidant, anti-inflammatory, anti-cancer, antimicrobial, and anti-diabetic activities. Recent advances and limitations for seaweed bioactive as a nutraceutical in terms of bioavailability are explored in order to better comprehend their therapeutic development. To further understand the mechanism of action of seaweed chemicals, more research is needed as is an investigation into their potential usage in pharmaceutical companies and other applications, with the ultimate objective of developing sustainable and healthier products. The objective of this review is to collect information about the role of seaweeds on nutritional, pharmacological, industrial, and biochemical applications, as well as their impact on human health.
Collapse
Affiliation(s)
- Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Correspondence: (H.S.E.-B.); (A.A.M.); (H.I.M.)
| | - Amal A. Mohamed
- Chemistry Department, Al-Leith University College, Umm Al-Qura University, Makkah 24831, Saudi Arabia;
- Plant Biochemistry Department, National Research Centre, Cairo 12622, Egypt
- Correspondence: (H.S.E.-B.); (A.A.M.); (H.I.M.)
| | - Heba I. Mohamed
- Biological and Geological Science Department, Faculty of Education, Ain Shams University, Cairo 11757, Egypt
- Correspondence: (H.S.E.-B.); (A.A.M.); (H.I.M.)
| | - Khaled M. A. Ramadan
- Central Laboratories, Department of Chemistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Aminah A. Barqawi
- Chemistry Department, Al-Leith University College, Umm Al-Qura University, Makkah 24831, Saudi Arabia;
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| |
Collapse
|
18
|
Lomartire S, Gonçalves AMM. An Overview of Potential Seaweed-Derived Bioactive Compounds for Pharmaceutical Applications. Mar Drugs 2022; 20:141. [PMID: 35200670 PMCID: PMC8875101 DOI: 10.3390/md20020141] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Nowadays, seaweeds are widely involved in biotechnological applications. Due to the variety of bioactive compounds in their composition, species of phylum Ochrophyta, class Phaeophyceae, phylum Rhodophyta and Chlorophyta are valuable for the food, cosmetic, pharmaceutical and nutraceutical industries. Seaweeds have been consumed as whole food since ancient times and used to treat several diseases, even though the mechanisms of action were unknown. During the last decades, research has demonstrated that those unique compounds express beneficial properties for human health. Each compound has peculiar properties (e.g., antioxidant, antimicrobial, antiviral activities, etc.) that can be exploited to enhance human health. Seaweed's extracted polysaccharides are already involved in the pharmaceutical industry, with the aim of replacing synthetic compounds with components of natural origin. This review aims at a better understanding of the recent uses of algae in drug development, with the scope of replacing synthetic compounds and the multiple biotechnological applications that make up seaweed's potential in industrial companies. Further research is needed to better understand the mechanisms of action of seaweed's compounds and to embrace the use of seaweeds in pharmaceutical companies and other applications, with the final scope being to produce sustainable and healthier products.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Ana M. M. Gonçalves
- University of Coimbra, MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
19
|
Kongdang P, Dukaew N, Pruksakorn D, Koonrungsesomboon N. Biochemistry of Amaranthus polyphenols and their potential benefits on gut ecosystem: A comprehensive review of the literature. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114547. [PMID: 34425138 DOI: 10.1016/j.jep.2021.114547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Amaranthus is phytonutrients-rich plant distributed worldwide and has been recognized as having medicinal value in traditional use against several diseases and conditions. There are a large amount of research data on the polyphenol profiles of Amaranthus plants and their links with potential benefits against gastrointestinal disorders. AIM OF THE REVIEW This review article aims to provide a comprehensive review of Amaranthus phenolic compounds and their microbial metabolites, as well as the biological and/or pharmacological effects of those compounds/metabolites. METHODOLOGY The relevant information about the genus Amaranthus was collected from various sources and databases, including Google Scholar, Google Books, PubMed, Web of Science, Scopus, Science Direct, and other internet sources. The World Flora Online (2021) database was used to verify the scientific names of the plants. RESULTS Comprehensive review of identified compounds in Amaranthus plants revealed the presence of phenolic acids, flavonoids, and coumarins in each part of the plants. The biotransformation by gut microbiota enzymes prominently produces diverse bioactive metabolites that are potentially active than their precursors. Lines of the evidence support the beneficial roles of Amaranthus extracts in several gastrointestinal diseases, particularly with the polar extracts of several plant parts. Dietary fibers in Amaranthus plants also coordinate the alteration of gut microbiota-related metabolisms and may be beneficial to certain gastrointestinal disorders in particular, such as constipation. CONCLUSIONS Amaranthus plants are rich in polyphenols and dietary fibers. Several microbial metabolites are biologically active, so alteration of gut microbiota is largely linked to the metabolic feature of the plants. Based on the evidence available to date, several Amaranthus plants containing a combination of phytonutrients, particularly polyphenols and dietary fibers, may be a promising candidate that is of interest to be further developed for use in the treatment of certain gastrointestinal conditions/disorders.
Collapse
Affiliation(s)
- Patiwat Kongdang
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Nahathai Dukaew
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand.
| | - Nut Koonrungsesomboon
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
20
|
Tong T, Liu X, Yu C. Extraction and Nano-Sized Delivery Systems for Phlorotannins to Improve Its Bioavailability and Bioactivity. Mar Drugs 2021; 19:625. [PMID: 34822496 PMCID: PMC8622035 DOI: 10.3390/md19110625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/24/2023] Open
Abstract
This review aims to provide an informative summary of studies on extraction and nanoencapsulation of phlorotannins to improve their bioavailability and bioactivity. The origin, structure, and different types of phlorotannins were briefly discussed, and the extraction/purification/characterization methods for phlorotannins were reviewed, with a focus on techniques to improve the bioactivities and bioavailability of phlorotannins via nano-sized delivery systems. Phlorotannins are promising natural polyphenol compounds that have displayed high bioactivities in several areas: anticancer, anti-inflammation, anti-HIV, antidiabetic, and antioxidant. This review aims to provide a useful reference for researchers working on developing better utilization strategies for phlorotannins as pharmaceuticals, therapeuticals, and functional food supplements.
Collapse
Affiliation(s)
- Tianjian Tong
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Xiaoyang Liu
- National Engineering Research Center for Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Chenxu Yu
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
21
|
Drygalski K, Fereniec E, Zalewska A, Krętowski A, Żendzian-Piotrowska M, Maciejczyk M. Phloroglucinol prevents albumin glycation as well as diminishes ROS production, glycooxidative damage, nitrosative stress and inflammation in hepatocytes treated with high glucose. Biomed Pharmacother 2021; 142:111958. [PMID: 34333287 DOI: 10.1016/j.biopha.2021.111958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
The treatment of diabetes mellitus aftermaths became one of medicine's most significant therapeutical and financial issues in the XXI century. Most of which are related to protein glycation and oxidative stress caused by long lasting periods of hyperglycemia. Thus, even within a venerable one, searching for new drugs, displaying anti-glycation and anti-oxidative properties seem useful as an additive therapy of diabetes. In this paper, we assessed the anti-glycating properties of phloroglucinol, a drug discovered in the XIX century and still used in many countries for its antispasmodic action. Herewith, we present its effect on protein glycation, glycoxidation, and oxidative damage in an albumin glycation/oxidation model and HepG2 cells treated with high glucose concentrations. The phloroglucinol showed the strongest and the widest protective effect within all analyzed antiglycating (aminoguanidine, pioglitazone) and anti-oxidative (vitamin C, GSH) agents. To the very best of our knowledge, this is the first study showing the properties of phloroglucinol in vitro what once is proven in other models might deepen its clinical applications.
Collapse
Affiliation(s)
- Krzysztof Drygalski
- Clinical Research Center, Medical University of Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Poland.
| | | | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, Poland
| | - Adam Krętowski
- Clinical Research Center, Medical University of Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Poland
| | | | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Poland.
| |
Collapse
|
22
|
Jung JI, Kim S, Baek SM, Choi SI, Kim GH, Imm JY. Ecklonia cava Extract Exerts Anti-Inflammatory Effect in Human Gingival Fibroblasts and Chronic Periodontitis Animal Model by Suppression of Pro-Inflammatory Cytokines and Chemokines. Foods 2021; 10:foods10071656. [PMID: 34359526 PMCID: PMC8304037 DOI: 10.3390/foods10071656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022] Open
Abstract
Periodontitis is one of the most common chronic inflammatory diseases. The anti-inflammatory effect of the extract from brown algae Ecklonia cava was analyzed in lipopolysaccharide (LPS)-stimulated human gingival fibroblasts (HGF-1), the most abundant cells in gingival tissue. The gene expressions of cyclooxygenase-2 and interleukin-6 were decreased by 78 and 50%, respectively, at 100 μg/mL Ecklonia cava extract (ECE) treatment. The gene expressions of matrix metalloproteases (MMP-2 and MMP-8) and chemokines (macrophage inflammatory protein 1-alpha and stromal cell-derived factor 1) were also significantly down-regulated by ECE treatment (p < 0.05). The increased reactive oxygen species (ROS) production in HGF-1 cells by LPS stimulation was decreased by 30% at 100 μg/mL ECE treatment. The mitogen-activated protein kinase pathway and the nuclear factor-kappa B (NF-κB) signal activated by ROS were suppressed by ECE in a dose-dependent manner. ECE treatment (400 mg/kg, 8 weeks) significantly improved alveolar bone resorption in the ligature-induced chronic periodontitis rat model. ECE supplementation also lowered elevated mRNA expression of the receptor activator of nuclear factor-kappa B (RANKL)/osteoprotegerin (OPG) in the gingival tissue (p < 0.05). Therefore, ECE mitigated gingival tissue destruction and bone resorption associated with chronic periodontitis condition.
Collapse
Affiliation(s)
- Jae-In Jung
- Department of Foods and Nutrition, Kookmin University, Seoul 02707, Korea; (J.-I.J.); (S.K.); (S.-M.B.)
| | - Seonyoung Kim
- Department of Foods and Nutrition, Kookmin University, Seoul 02707, Korea; (J.-I.J.); (S.K.); (S.-M.B.)
| | - Seung-Min Baek
- Department of Foods and Nutrition, Kookmin University, Seoul 02707, Korea; (J.-I.J.); (S.K.); (S.-M.B.)
| | - Soo-Im Choi
- Plant Resources Research Institute, Duksung Women’s University, Seoul 10326, Korea; (S.-I.C.); (G.-H.K.)
| | - Gun-Hee Kim
- Plant Resources Research Institute, Duksung Women’s University, Seoul 10326, Korea; (S.-I.C.); (G.-H.K.)
| | - Jee-Young Imm
- Department of Foods and Nutrition, Kookmin University, Seoul 02707, Korea; (J.-I.J.); (S.K.); (S.-M.B.)
- Correspondence: ; Tel.: +82-10-2526-1219
| |
Collapse
|
23
|
Catarino MD, Amarante SJ, Mateus N, Silva AMS, Cardoso SM. Brown Algae Phlorotannins: A Marine Alternative to Break the Oxidative Stress, Inflammation and Cancer Network. Foods 2021; 10:foods10071478. [PMID: 34202184 PMCID: PMC8307260 DOI: 10.3390/foods10071478] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 02/07/2023] Open
Abstract
According to the WHO, cancer was responsible for an estimated 9.6 million deaths in 2018, making it the second global leading cause of death. The main risk factors that lead to the development of this disease include poor behavioral and dietary habits, such as tobacco use, alcohol use and lack of fruit and vegetable intake, or physical inactivity. In turn, it is well known that polyphenols are deeply implicated with the lower rates of cancer in populations that consume high levels of plant derived foods. In this field, phlorotannins have been under the spotlight in recent years since they have shown exceptional bioactive properties, with great interest for application in food and pharmaceutical industries. Among their multiple bioactive properties, phlorotannins have revealed the capacity to interfere with several biochemical mechanisms that regulate oxidative stress, inflammation and tumorigenesis, which are central aspects in the pathogenesis of cancer. This versatility and ability to act either directly or indirectly at different stages and mechanisms of cancer growth make these compounds highly appealing for the development of new therapeutical strategies to address this world scourge. The present manuscript revises relevant studies focusing the effects of phlorotannins to counteract the oxidative stress-inflammation network, emphasizing their potential for application in cancer prevention and/or treatment.
Collapse
Affiliation(s)
- Marcelo D. Catarino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.D.C.); (S.J.A.); (A.M.S.S.)
| | - Sónia J. Amarante
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.D.C.); (S.J.A.); (A.M.S.S.)
| | - Nuno Mateus
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.D.C.); (S.J.A.); (A.M.S.S.)
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.D.C.); (S.J.A.); (A.M.S.S.)
- Correspondence: ; Tel.: +351-234-370-360; Fax: +351-234-370-084
| |
Collapse
|
24
|
Abstract
More than 50% of the UK coastline is situated in Scotland under legislative jurisdiction; therefore, there is a great opportunity for regionally focused economic development by the rational use of sustainable marine bio-sources. We review the importance of seaweeds in general, and more specifically, wrack brown seaweeds which are washed from the sea and accumulated in the wrack zone and their economic impact. Rules and regulations governing the harvesting of seaweed, potential sites for harvesting, along with the status of industrial application are discussed. We describe extraction and separation methods of natural products from these seaweeds along with their phytochemical profiles. Many potential applications for these derivatives exist in agriculture, energy, nutrition, biomaterials, waste treatment (composting), pharmaceuticals, cosmetics and other applications. The chemical diversity of the natural compounds present in these seaweeds is an opportunity to further investigate a range of chemical scaffolds, evaluate their biological activities, and develop them for better pharmaceutical or biotechnological applications. The key message is the significant opportunity for the development of high value products from a seaweed processing industry in Scotland, based on a sustainable resource, and locally regulated.
Collapse
|
25
|
Cytotoxicity of Seaweed Compounds, Alone or Combined to Reference Drugs, against Breast Cell Lines Cultured in 2D and 3D. TOXICS 2021; 9:toxics9020024. [PMID: 33572635 PMCID: PMC7912033 DOI: 10.3390/toxics9020024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
Seaweed bioactive compounds have shown anticancer activities in in vitro and in vivo studies. However, tests remain limited, with conflicting results, and effects in combination with anticancer drugs are even scarcer. Here, the cytotoxic effects of five seaweed compounds (astaxanthin, fucoidan, fucosterol, laminarin, and phloroglucinol) were tested alone and in combination with anticancer drugs (cisplatin-Cis; and doxorubicin-Dox), in breast cell lines (three breast cancer (BC) subtypes and one non-tumoral). The combinations revealed situations where seaweed compounds presented potentiation or inhibition of the drugs' cytotoxicity, without a specific pattern, varying according to the cell line, concentration used for the combination, and drug. Fucosterol was the most promising compound, since: (i) it alone had the highest cytotoxicity at low concentrations against the BC lines without affecting the non-tumoral line; and (ii) in combination (at non-cytotoxic concentration), it potentiated Dox cytotoxicity in the triple-negative BC cell line. Using a comparative approach, monolayer versus 3D cultures, further investigation assessed effects on cell viability and proliferation, morphology, and immunocytochemistry targets. The cytotoxic and antiproliferative effects in monolayer were not observed in 3D, corroborating that cells in 3D culture are more resistant to treatments, and reinforcing the use of more complex models for drug screening and a multi-approach that should include histological and ICC analysis.
Collapse
|
26
|
Pereira STS, Vendrame WA, Pivetta KFL, Sorgato JC, Faria RTD. Efficiency of cryoprotectors for cryopreservation of two orchid species from Americas. RODRIGUÉSIA 2021. [DOI: 10.1590/2175-7860202172123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract The objective of this study was to evaluate the efficiency of cryoprotective solution (PVS2) combined with phloroglucinol for the cryopreservation of seeds of two orchid species, Encyclia cordigera and Epidendrum ciliare. Seeds of Encyclia cordigera had 91.03% initial viability and 91.99% germination. The treatment of the seeds with PVS2 at 0 °C with 1% phloroglucinol for 60 min returned 93.79% viability and 91.01% germination after recovery from LN, consequently resulting in faster development of protocorms. For Epidendrum ciliare, seed viability was 85.65% and germination was 85.90%. Seed exposure to the PVS2 at 0 °C with 1% phloroglucinol for 180 min showed viability of 39.23% and germination of 37.88%. Despite lower germination, 78.90% of the protocorms reached stage P3 of development, when evaluated 45 days after sowing, not significantly different from the control 1, and showed normal development. These results indicate that PVS2 cryoprotective solution is efficient when combined with phloroglucinol for the cryopreservation and successful recovery of seeds of Encyclia cordigera and Epidendrum ciliare. The present study also indicates that response to cryopreservation and success of recovery after cold storage is species-specific and requires adjustments in exposure time to PVS2 at 0 °C prior to immersion in LN.
Collapse
|
27
|
Piao MJ, Kim KC, Kang KA, Fernando PDSM, Herath HMUL, Hyun JW. Phloroglucinol Attenuates Ultraviolet B-Induced 8-Oxoguanine Formation in Human HaCaT Keratinocytes through Akt and Erk-Mediated Nrf2/Ogg1 Signaling Pathways. Biomol Ther (Seoul) 2021; 29:90-97. [PMID: 32587122 PMCID: PMC7771840 DOI: 10.4062/biomolther.2020.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Ultraviolet B (UVB) radiation causes DNA base modifications. One of these changes leads to the generation of 8-oxoguanine (8-oxoG) due to oxidative stress. In human skin, this modification may induce sunburn, inflammation, and aging and may ultimately result in cancer. We investigated whether phloroglucinol (1,3,5-trihydroxybenzene), by enhancing the expression and activity of 8-oxoG DNA glycosylase 1 (Ogg1), had an effect on the capacity of UVB-exposed human HaCaT keratinocytes to repair oxidative DNA damage. Here, the effects of phloroglucinol were investigated using a luciferase activity assay, reverse transcription-polymerase chain reactions, western blot analysis, and a chromatin immunoprecipitation assay. Phloroglucinol restored Ogg1 activity and decreased the formation of 8-oxoG in UVB-exposed cells. Moreover, phloroglucinol increased Ogg1 transcription and protein expression, counteracting the UVB-induced reduction in Ogg1 levels. Phloroglucinol also enhanced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) as well as Nrf2 binding to an antioxidant response element located in the Ogg1 gene promoter. UVB exposure inhibited the phosphorylation of protein kinase B (PKB or Akt) and extracellular signal-regulated kinase (Erk), two major enzymes involved in cell protection against oxidative stress, regulating the activity of Nrf2. Akt and Erk phosphorylation was restored by phloroglucinol in the UVB-exposed keratinocytes. These results indicated that phloroglucinol attenuated UVB-induced 8-oxoG formation in keratinocytes via an Akt/Erk-dependent, Nrf2/Ogg1-mediated signaling pathway.
Collapse
Affiliation(s)
- Mei Jing Piao
- Department of Biochemistry, College of Medicine, Jeju National University and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | - Ki Cheon Kim
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, Jeongeup 56212, Republic of Korea
| | - Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, Jeju National University and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | | | | | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| |
Collapse
|
28
|
Pradhan B, Nayak R, Patra S, Jit BP, Ragusa A, Jena M. Bioactive Metabolites from Marine Algae as Potent Pharmacophores against Oxidative Stress-Associated Human Diseases: A Comprehensive Review. Molecules 2020; 26:E37. [PMID: 33374738 PMCID: PMC7793479 DOI: 10.3390/molecules26010037] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
In addition to cancer and diabetes, inflammatory and ROS-related diseases represent one of the major health problems worldwide. Currently, several synthetic drugs are used to reduce oxidative stress; nevertheless, these approaches often have side effects. Therefore, to overcome these issues, the search for alternative therapies has gained importance in recent times. Natural bioactive compounds have represented, and they still do, an important source of drugs with high therapeutic efficacy. In the ''synthetic'' era, terrestrial and aquatic photosynthetic organisms have been shown to be an essential source of natural compounds, some of which might play a leading role in pharmaceutical drug development. Marine organisms constitute nearly half of the worldwide biodiversity. In the marine environment, algae, seaweeds, and seagrasses are the first reported sources of marine natural products for discovering novel pharmacophores. The algal bioactive compounds are a potential source of novel antioxidant and anticancer (through modulation of the cell cycle, metastasis, and apoptosis) compounds. Secondary metabolites in marine Algae, such as phenolic acids, flavonoids, and tannins, could have great therapeutic implications against several diseases. In this context, this review focuses on the diversity of functional compounds extracted from algae and their potential beneficial effects in fighting cancer, diabetes, and inflammatory diseases.
Collapse
Affiliation(s)
- Biswajita Pradhan
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Brahmapur 760007, India; (B.P.); (R.N.)
| | - Rabindra Nayak
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Brahmapur 760007, India; (B.P.); (R.N.)
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769001, India;
| | - Bimal Prasad Jit
- Department of Biochemistry, All India Institute of Medical Science, Ansari Nagar, New Delhi 110023, India;
| | - Andrea Ragusa
- Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, via Monteroni, 73100 Lecce, Italy
- CNR-Nanotec, Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Brahmapur 760007, India; (B.P.); (R.N.)
| |
Collapse
|
29
|
Hakim MM, Patel IC. A review on phytoconstituents of marine brown algae. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00147-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
Background
From the last few years, the development and discovery of bioactive compounds and their potential properties from marine algae have been enhanced significantly. The coastal area is a huge storehouse for propitious algae. It has been the genuine reality that the consequence of marine algae as a source of different compounds is increasing.
Main body
Numerous advanced research devices are available for the discovery of synthetic compounds but still many researchers are working on natural bioactive compounds to discover their biological properties, which are useful to society. Marine algae are taking the preponderance of consideration from investigators owing to its phenomenon of biological activity like anti-cancer, anti-viral, cholesterol-reducing, and many more. A variety of compounds are collected from algae with specific purposes as they remain in an extremely ambitious and hard state; this condition is responsible for the synthesis of very particularly effective bioactive compounds. The present article is concentrating on the brown algae of the Gujarat coast, phlorotannins, polyphenol, phytosterol from brown algae, and their various applications. The main importance has been given to the secondary metabolites and various applications of marine brown algae.
Conclusion
From this review, it can be concluded that the prominent bioactive compounds from brown algae can cure many serious diseases. Besides, the potential biological activities of a special bioactive compound may represent the interest in the industry of pharmaceuticals, cosmeceutical, and functional foods.
Collapse
|
30
|
Phenolic-Enriched Collagen Fibrillar Coatings on Titanium Alloy to Promote Osteogenic Differentiation and Reduce Inflammation. Int J Mol Sci 2020; 21:ijms21176406. [PMID: 32899166 PMCID: PMC7504673 DOI: 10.3390/ijms21176406] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 12/13/2022] Open
Abstract
The adsorption of biomolecules on biomaterial surfaces can promote their integration with surrounding tissue without changing their bulk properties. For biomaterials in bone reconstruction, the promotion of osteogenic differentiation and reduction of inflammation are desirable. Fibrillar coatings are interesting because of fibrils’ high surface area-volume ratio, aiding adsorption and adhesion. Fibrils also serve as a matrix for the immobilization of biomolecules with biological activity, such as the phenolic compound phloroglucinol (PG), the subunit of marine polyphenols. The aim of this work was to investigate the influence of PG coatings on fibroblast- and osteoblast-like cells to increase the osseointegration of titanium implants. Collagen fibril coatings, containing PG at low and high concentrations, were produced on titanium alloy (Ti6Al4V) scaffolds generated by additive manufacturing (AM). These coatings, especially PG-enriched coatings, reduced hydrophobicity and modulated the behavior of human osteosarcoma SaOS-2 and mouse embryonic fibroblast 3T3 cell lines. Both osteoblastic and fibroblastic cells spread and adhered well on PG-enriched coatings. Coatings significantly reduced the inflammatory response. Moreover, osteogenic differentiation was promoted by collagen coatings with a high PG concentration. Thus, the enrichment of collagen fibril coatings with PG is a promising strategy to improve Ti6Al4V implants for bone contact in orthopedics and dentistry and is worthy of further investigation.
Collapse
|
31
|
Farrokhnia M. Density Functional Theory Studies on the Antioxidant Mechanism and Electronic Properties of Some Bioactive Marine Meroterpenoids: Sargahydroquionic Acid and Sargachromanol. ACS OMEGA 2020; 5:20382-20390. [PMID: 32832791 PMCID: PMC7439385 DOI: 10.1021/acsomega.0c02354] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/22/2020] [Indexed: 05/09/2023]
Abstract
Certain meroterpenoids isolated from brown alga of the genus Sargassum are known to be antioxidant agents. Herein, density functional theory has been performed to analyze the preferred antioxidant mechanism of the two reactive antioxidant compounds derived from the Sargassum genus, that is, Sargahydroquinoic acid and Sargachromanol and some of their derivatives. Their global reactivity descriptors have been calculated to reveal their reactivity as an antioxidant. Molecule 1 is the most reactive antioxidant according to calculated descriptors. The results of molecule 1 are comparable to that of Trolox, suggesting their similar activity. The calculated descriptors are closely matched with experimental pieces of evidence. It has been found that hydrogen atom transfer (HAT) is more favored in gas media. Also, the effect of solvent polarity on the antioxidant activity has been explored for molecule 1. The results disclose that the polarity of the solvent increases the contribution of two other mechanisms, that is, single-electron transfer, followed by proton transfer and sequential proton loss electron transfer.
Collapse
Affiliation(s)
- Maryam Farrokhnia
- The Persian Gulf Marine Biotechnology
Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 0098, Iran
| |
Collapse
|
32
|
Metabolic engineering of E. coli for producing phloroglucinol from acetate. Appl Microbiol Biotechnol 2020; 104:7787-7799. [PMID: 32737536 DOI: 10.1007/s00253-020-10591-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Phloroglucinol is a three-hydroxyl phenolic compound and has diverse physiological and pharmacological activities such as antivirus and anti-inflammatory activities. Chemical synthesis of phloroglucinol suffered from many drawbacks such as high cost and environmental pollution. To avoid the above issues, microbial phloroglucinol biosynthesis was successfully accomplished in this study, while the abundant and low-cost acetate was used as the main carbon source. Firstly, the toxicity of phloroglucinol was tested, and E. coli BL21(DE3) could tolerate 5 g/L phloroglucinol. The ability of phloroglucinol synthase (PhlD) for catalyzing malonyl-CoA to phloroglucinol was confirmed, and E. coli BL21(DE3) expressing PhlD and acetyl-CoA carboxylase (ACCase) could produce 1107 ± 12 mg/L phloroglucinol from glucose. Then, E. coli BL21(DE3) was engineered to utilize acetate to produce 228 ± 15 mg/L phloroglucinol. Then, the endogenous citrate synthase (GltA) which could catalyze oxaloacetate and acetyl-CoA generated from acetate to citrate was knocked down by CRISPRi system in order to enhance the carbon flux for phloroglucinol production, and the titer was improved to 284 ± 8 mg/L. This work demonstrated that acetate could be used as low-cost substrate to achieve the biosynthesis of phloroglucinol and provided an example of effective utilization of acetate.
Collapse
|
33
|
Ramachandra CJA, Ja KPMM, Chua J, Cong S, Shim W, Hausenloy DJ. Myeloperoxidase As a Multifaceted Target for Cardiovascular Protection. Antioxid Redox Signal 2020; 32:1135-1149. [PMID: 31847538 DOI: 10.1089/ars.2019.7971] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Significance: Myeloperoxidase (MPO) is a heme peroxidase that is primarily expressed by neutrophils. It has the capacity to generate several reactive species, essential for its inherent antimicrobial activity and innate host defense. Dysregulated MPO release, however, can lead to tissue damage, as seen in several diseases. Increased MPO levels in circulation are therefore widely associated with conditions of increased oxidative stress and inflammation. Recent Advances: Several studies have shown a strong correlation between MPO and cardiovascular disease (CVD), through which elevated levels of circulating MPO are linked to poor prognosis with increased risk of CVD-related mortality. Accordingly, circulating MPO is considered a "high-risk" biomarker for patients with acute coronary syndrome, atherosclerosis, heart failure, hypertension, and stroke, thereby implicating MPO as a multifaceted target for cardiovascular protection. Consistently, recent studies that target MPO in animal models of CVD have demonstrated favorable outcomes with regard to disease progression. Critical Issues: Although most of these studies have established a critical link between circulating MPO and worsening cardiac outcomes, the mechanisms by which MPO exerts its detrimental effects in CVD remain unclear. Future Directions: Elucidating the mechanisms by which elevated MPO leads to poor prognosis and, conversely, investigating the beneficial effects of therapeutic MPO inhibition on alleviating disease phenotype will facilitate future MPO-targeted clinical trials for improving CVD-related outcomes.
Collapse
Affiliation(s)
- Chrishan J A Ramachandra
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - K P Myu Mai Ja
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Jasper Chua
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore.,Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Shuo Cong
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Winston Shim
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Derek J Hausenloy
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, United Kingdom.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| |
Collapse
|
34
|
Keramaris KE, Konstantopoulos K, Margaritis LH, Velentzas AD, Papassideri IS, Stravopodis DJ. Exploitation of Drosophila Choriogenesis Process as a Model Cellular System for Assessment of Compound Toxicity: the Phloroglucinol Paradigm. Sci Rep 2020; 10:242. [PMID: 31937877 PMCID: PMC6959335 DOI: 10.1038/s41598-019-57113-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Phloroglucinol (1,3,5 tri-hydroxy-benzene) (PGL), a natural phenolic substance, is a peroxidase inhibitor and has anti-oxidant, anti-diabetic, anti-inflammatory, anti-thrombotic, radio-protective, spasmolytic and anti-cancer activities. PGL, as a medicine, is administered to patients to control the symptoms of irritable bowel syndrome and acute renal colic, in clinical trials. PGL, as a phenolic substance, can cause cytotoxic effects. Administration of PGL up to 300 mg/kg (bw) is well tolerated by animals, while in cell lines its toxicity is developed at concentrations above the dose of 10 μg/ml. Furthermore, it seems that tumor or immortalized cells are more susceptible to the toxic power of PGL, than normal cells. However, studies of its cytotoxic potency, at the cellular level, in complex, differentiated and meta-mitotic biological systems, are still missing. In the present work, we have investigated the toxic activity of PGL in somatic epithelial cells, constituting the follicular compartment of a developing egg-chamber (or, follicle), which directs the choriogenesis (i.e. chorion assembly) process, during late oogenesis of Drosophila melanogaster. Our results reveal that treatment of in vitro growing Drosophila follicles with PGL, at a concentration of 0.2 mM (or, 25.2 μg/ml), does not lead to follicle-cell toxicity, since the protein-synthesis program and developmental pattern of choriogenesis are normally completed. Likewise, the 1 mM dose of PGL was also characterized by lack of toxicity, since the chorionic proteins were physiologically synthesized and the chorion structure appeared unaffected, except for a short developmental delay, being observed. In contrast, concentrations of 10, 20 or 40 mM of PGL unveiled a dose-dependent, increasing, toxic effect, being initiated by interruption of protein synthesis and disassembly of cell-secretory machinery, and, next, followed by fragmentation of the granular endoplasmic reticulum (ER) into vesicles, and formation of autophagic vacuoles. Follicle cells enter into an apoptotic process, with autophagosomes and large vacuoles being formed in the cytoplasm, and nucleus showing protrusions, granular nucleolus and condensed chromatin. PGL, also, proved able to induce disruption of nuclear envelope, activation of nucleus autophagy (nucleophagy) and formation of a syncytium-like pattern being produced by fusion of plasma membranes of two or more individual follicle cells. Altogether, follicle cell-dependent choriogenesis in Drosophila has been herein presented as an excellent, powerful and reliable multi-cellular, differentiated, model biological (animal) system for drug-cytotoxicity assessment, with the versatile compound PGL serving as a characteristic paradigm. In conclusion, PGL is a substance that may act beneficially for a variety of pathological conditions and can be safely used for differentiated somatic -epithelial- cells at clinically low concentrations. At relatively high doses, it could potentially induce apoptotic and autophagic cell death, thus being likely exploited as a therapeutic agent against a number of pathologies, including human malignancies.
Collapse
Affiliation(s)
- Konstantinos E Keramaris
- Department of Hematology and Bone Marrow Transplantation, Medical School, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Konstantinos Konstantopoulos
- Department of Hematology and Bone Marrow Transplantation, Medical School, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Lukas H Margaritis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Athanassios D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Issidora S Papassideri
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Dimitrios J Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece.
| |
Collapse
|
35
|
Lee Y, Kim H, Hong N, Ahn J, Kang HW. Combined treatment of low‐level laser therapy and phloroglucinol for inhibition of fibrosis. Lasers Surg Med 2019; 52:276-285. [DOI: 10.1002/lsm.23131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Yeachan Lee
- Interdisciplinary Program of Biomedical Mechanical & Electrical EngineeringPukyong National UniversityBusan 48513 South Korea
| | - Hyejin Kim
- Interdisciplinary Program of Biomedical Mechanical & Electrical EngineeringPukyong National UniversityBusan 48513 South Korea
| | - Namgue Hong
- Department of Biomedical Science, College of MedicineDankook UniversityCheonan 31116 Republic of Korea
| | - Jin‐Chul Ahn
- Department of Biomedical Science, College of MedicineDankook UniversityCheonan 31116 Republic of Korea
| | - Hyun Wook Kang
- Interdisciplinary Program of Biomedical Mechanical & Electrical EngineeringPukyong National UniversityBusan 48513 South Korea
- Department of Biomedical Engineering and Center for Marine‐Integrated Biomedical TechnologyPukyong National UniversityBusan 48513 South Korea
| |
Collapse
|
36
|
Barbosa M, Lopes G, Andrade PB, Valentão P. Bioprospecting of brown seaweeds for biotechnological applications: Phlorotannin actions in inflammation and allergy network. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
37
|
Inhibitory effect of phloroglucinol on α-glucosidase: Kinetics and molecular dynamics simulation integration study. Int J Biol Macromol 2019; 124:771-779. [DOI: 10.1016/j.ijbiomac.2018.11.268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/22/2018] [Accepted: 11/28/2018] [Indexed: 11/24/2022]
|
38
|
|
39
|
Baldrick FR, McFadden K, Ibars M, Sung C, Moffatt T, Megarry K, Thomas K, Mitchell P, Wallace JMW, Pourshahidi LK, Ternan NG, Corona G, Spencer J, Yaqoob P, Hotchkiss S, Campbell R, Moreno-Rojas JM, Cuevas FJ, Pereira-Caro G, Rowland I, Gill CIR. Impact of a (poly)phenol-rich extract from the brown algae Ascophyllum nodosum on DNA damage and antioxidant activity in an overweight or obese population: a randomized controlled trial. Am J Clin Nutr 2018; 108:688-700. [PMID: 30321272 DOI: 10.1093/ajcn/nqy147] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 06/15/2018] [Indexed: 12/14/2022] Open
Abstract
Background Epidemiologic evidence suggests that a diet rich in (poly)phenols has beneficial effects on many chronic diseases. Brown seaweed is a rich source of (poly)phenols. Objective The aim of this study was to investigate the bioavailability and effect of a brown seaweed (Ascophyllum nodosum) (poly)phenol extract on DNA damage, oxidative stress, and inflammation in vivo. Design A randomized, double-blind, placebo-controlled crossover trial was conducted in 80 participants aged 30-65 y with a body mass index (in kg/m2) ≥25. The participants consumed either a 400-mg capsule containing 100 mg seaweed (poly)phenol and 300 mg maltodextrin or a 400-mg maltodextrin placebo control capsule daily for an 8-wk period. Bioactivity was assessed with a panel of blood-based markers including lymphocyte DNA damage, plasma oxidant capacity, C-reactive protein (CRP), and inflammatory cytokines. To explore the bioavailability of seaweed phenolics, an untargeted metabolomics analysis of urine and plasma samples after seaweed consumption was determined by ultra-high-performance liquid chromatography-high-resolution mass spectrometry. Results Consumption of the seaweed (poly)phenols resulted in a modest decrease in DNA damage but only in a subset of the total population who were obese. There were no significant changes in CRP, antioxidant status, or inflammatory cytokines. We identified phlorotannin metabolites that are considered potential biomarkers of seaweed consumption including pyrogallol/phloroglucinol-sulfate, hydroxytrifurahol A-glucuronide, dioxinodehydroeckol-glucuronide, diphlorethol sulfates, C-O-C dimer of phloroglucinol sulfate, and C-O-C dimer of phloroglucinol. Conclusions To the best of our knowledge, this work represents the first comprehensive study investigating the bioactivity and bioavailability of seaweed (poly)phenolics in human participants. We identified several potential biomarkers of seaweed consumption. Intriguingly, the modest improvements in DNA damage were observed only in the obese subset of the total population. The subgroup analysis should be considered exploratory because it was not preplanned; therefore, it was not powered adequately. Elucidation of the biology underpinning this observation will require participant stratification according to weight in future studies. This trial was registered at clinicaltrials.gov as NCT02295878.
Collapse
Affiliation(s)
- Francina R Baldrick
- Nutrition Innovation Centre for Food and Health, University of Ulster, Coleraine, United Kingdom
| | - Kevin McFadden
- Nutrition Innovation Centre for Food and Health, University of Ulster, Coleraine, United Kingdom
| | - Maria Ibars
- Nutrition Innovation Centre for Food and Health, University of Ulster, Coleraine, United Kingdom
| | - Chris Sung
- Nutrition Innovation Centre for Food and Health, University of Ulster, Coleraine, United Kingdom
| | - Tanya Moffatt
- Nutrition Innovation Centre for Food and Health, University of Ulster, Coleraine, United Kingdom
| | - Kate Megarry
- Nutrition Innovation Centre for Food and Health, University of Ulster, Coleraine, United Kingdom
| | - Keith Thomas
- School of Biomedical Sciences, Centre for Molecular Biosciences, University of Ulster, Coleraine, United Kingdom
| | - Peter Mitchell
- Nutrition Innovation Centre for Food and Health, University of Ulster, Coleraine, United Kingdom
| | - Julie M W Wallace
- Nutrition Innovation Centre for Food and Health, University of Ulster, Coleraine, United Kingdom
| | - L Kirsty Pourshahidi
- Nutrition Innovation Centre for Food and Health, University of Ulster, Coleraine, United Kingdom
| | - Nigel G Ternan
- Nutrition Innovation Centre for Food and Health, University of Ulster, Coleraine, United Kingdom
| | - Giulia Corona
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
- Health Sciences Research Centre, University of Roehampton, London, United Kingdom
| | - Jeremy Spencer
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Parveen Yaqoob
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Sarah Hotchkiss
- CyberColloids Ltd., Carrigaline Industrial Estate, Carrigaline, Ireland
| | - Ross Campbell
- CyberColloids Ltd., Carrigaline Industrial Estate, Carrigaline, Ireland
| | | | | | - Gema Pereira-Caro
- Department of Food Science and Health, IFAPA-Alameda del Obispo, Córdoba, Spain
| | - Ian Rowland
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health, University of Ulster, Coleraine, United Kingdom
| |
Collapse
|
40
|
Abdelhamid A, Jouini M, Bel Haj Amor H, Mzoughi Z, Dridi M, Ben Said R, Bouraoui A. Phytochemical Analysis and Evaluation of the Antioxidant, Anti-Inflammatory, and Antinociceptive Potential of Phlorotannin-Rich Fractions from Three Mediterranean Brown Seaweeds. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:60-74. [PMID: 29344826 DOI: 10.1007/s10126-017-9787-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
Phlorotannins, phenolic compounds produced exclusively by seaweeds, have been reported to possess various pharmacological properties. However, there have been few works on these compounds from Mediterranean seaweeds. In this study, we investigated the phytochemical analysis and pharmacological potential of phlorotannin-rich fractions from three brown seaweeds collected along the Tunisia coast: Cystoseira sedoides (PHT-SED), Cladostephus spongeosis (PHT-CLAD), and Padina pavonica (PHT-PAD). Phytochemical determinations showed considerable differences in total phenolic content (TPC) and phlorotannin content (PHT). The highest TPC level (26.45 mg PGE/g dry material (Dm)) and PHT level (873.14 μg PGE/g Dm) were observed in C. sedoides. The antioxidant properties of these three fractions assessed by three different methods indicated that C. sedoides displayed the highest total antioxidant activity among the three species (71.30 mg GAE/g Dm), as well as the free radical scavenging activity with the lowest IC50 value in both DPPH (27.7 μg/mL) and ABTS (19.1 μg/mL) assays. Furthermore, the pharmacological screening of the anti-inflammatory potential of these fractions using in vivo models, in comparison to reference drugs, established a remarkable activity of PHT-SED at the dose of 100 mg/kg; the inhibition percentages of ear edema in mice model and paw edema in rats model were of 82.55 and 81.08%, respectively. The content of malondialdehyde (MDA) in liver tissues has been quantified, and PHT-SED was found to remarkably increase the lipid peroxidation in rat liver tissues. In addition, in two pain mice models, PHT-SED displayed a profound antinociceptive activity at 100 mg/kg and has proved a better analgesic activity when used in combination with the opioid drug, tramadol.
Collapse
Affiliation(s)
- Amal Abdelhamid
- Laboratory of Chemical, Galenic and Pharmacological Development of Drugs, Faculty of Pharmacy of Monastir, University of Monastir, 5000, Monastir, Tunisia.
| | - Meriem Jouini
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity, Medicinal Chemistry and Natural Products Team, Faculty of Sciences of Monastir, University of Monastir, 5019, Monastir, Tunisia
| | - Haifa Bel Haj Amor
- Laboratory of Chemical, Galenic and Pharmacological Development of Drugs, Faculty of Pharmacy of Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Zeineb Mzoughi
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Mehdi Dridi
- Laboratory of Chemical, Galenic and Pharmacological Development of Drugs, Faculty of Pharmacy of Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Rafik Ben Said
- National Institute of Marine Sciences and Technologies, Salambôo, Tunis, Tunisia
| | - Abderrahman Bouraoui
- Laboratory of Chemical, Galenic and Pharmacological Development of Drugs, Faculty of Pharmacy of Monastir, University of Monastir, 5000, Monastir, Tunisia
| |
Collapse
|
41
|
Catarino MD, Silva AMS, Cardoso SM. Fucaceae: A Source of Bioactive Phlorotannins. Int J Mol Sci 2017; 18:E1327. [PMID: 28635652 PMCID: PMC5486148 DOI: 10.3390/ijms18061327] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 02/07/2023] Open
Abstract
Fucaceae is the most dominant algae family along the intertidal areas of the Northern Hemisphere shorelines, being part of human customs for centuries with applications as a food source either for humans or animals, in agriculture and as remedies in folk medicine. These macroalgae are endowed with several phytochemicals of great industrial interest from which phlorotannins, a class of marine-exclusive polyphenols, have gathered much attention during the last few years due to their numerous possible therapeutic properties. These compounds are very abundant in brown seaweeds such as Fucaceae and have been demonstrated to possess numerous health-promoting properties, including antioxidant effects through scavenging of reactive oxygen species (ROS) or enhancement of intracellular antioxidant defenses, antidiabetic properties through their acarbose-like activity, stimulation of adipocytes glucose uptake and protection of β-pancreatic cells against high-glucose oxidative stress; anti-inflammatory effects through inhibition of several pro-inflammatory mediators; antitumor properties by activation of apoptosis on cancerous cells and metastasis inhibition, among others. These multiple health properties render phlorotannins great potential for application in numerous therapeutical approaches. This review addresses the major contribution of phlototannins for the biological effects that have been described for seaweeds from Fucaceae. In addition, the bioavailability of this group of phenolic compounds is discussed.
Collapse
Affiliation(s)
- Marcelo D Catarino
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs Research Unit (QOPNA), University of Aveiro, Aveiro 3810-193, Portugal.
| | - Artur M S Silva
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs Research Unit (QOPNA), University of Aveiro, Aveiro 3810-193, Portugal.
| | - Susana M Cardoso
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs Research Unit (QOPNA), University of Aveiro, Aveiro 3810-193, Portugal.
| |
Collapse
|
42
|
LoPachin RM, Geohagen BC, Nordstrøm LU, Gavin T. Enolate-Forming Compounds as a Novel Approach to Cytoprotection. Chem Res Toxicol 2016; 29:2096-2107. [PMID: 27989140 DOI: 10.1021/acs.chemrestox.6b00300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Evidence from laboratory studies and clinical trials suggests that plant-derived polyphenolic compounds such as curcumin, resveratrol, or phloretin might be useful in the treatment of certain diseases (e.g., Alzheimer's disease) and acute tissue injury states (e.g., spinal cord trauma). However, despite this potential, the corresponding chemical instability, toxic potential, and low bioavailability of these compounds could limit their ultimate clinical relevance. We have shown that pharmacophores of curcumin (e.g., 2-acetylcyclopentanone) and phloretin (e.g., 2',4',6'-trihydroxyacetophenone; THA) can provide cytoprotection in cell culture and animal models of oxidative stress injury. These pharmacophores are 1,3-dicarbonyl and polyphenol derivatives, the enol groups of which can ionize in biological solutions to form an enolate. This carbanionic moiety can chelate metal ions and, as a nucleophile, can scavenge toxic electrophiles (e.g., acrolein, 4-hydroxy-2-nonenal, and N-acetyl-p-benzoquinone imine) involved in many pathogenic conditions. Aromatic derivatives such as THA can also trap free oxygen and nitrogen radicals and thereby provide another layer of cytoprotection. The multifunctional character of these enolate-forming compounds suggests an ability to block pathogenic processes (e.g., oxidative stress) at several steps. The purpose of this review is to discuss research supporting our theory that enolate formation is a significant cytoprotective property that represents a platform for development of pharmacotherapeutic approaches to a variety of toxic and pathogenic conditions. Our discussion will focus on mechanism and structure-activity studies that define enolate chemistry and their corresponding relationships to cytoprotection.
Collapse
Affiliation(s)
- Richard M LoPachin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Brian C Geohagen
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Lars Ulrik Nordstrøm
- Chemical Synthesis & Biology Core Facility, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Terrence Gavin
- Department of Chemistry, Iona College , New Rochelle, New York 10801, United States
| |
Collapse
|
43
|
Pinteus S, Silva J, Alves C, Horta A, Fino N, Rodrigues AI, Mendes S, Pedrosa R. Cytoprotective effect of seaweeds with high antioxidant activity from the Peniche coast (Portugal). Food Chem 2016; 218:591-599. [PMID: 27719954 DOI: 10.1016/j.foodchem.2016.09.067] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 08/25/2016] [Accepted: 09/09/2016] [Indexed: 12/13/2022]
Abstract
Screening of antioxidant potential of dichloromethane and methanolic extracts of twenty-seven seaweeds from the Peniche coast was performed by: total phenolic contents (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Seaweeds revealing the highest antioxidant activity were screened for cytoprotective potential in MCF-7 cells, including the mitochondrial membrane potential analysis and the caspase-9 activity. High correlation was found between TPC of seaweed extracts and their scavenging capacity on DPPH and peroxyl radicals. The highest antioxidant activity was displayed by the methanolic fraction of brown seaweeds belonging to Fucales, however Ulva compressa presented the highest cytoprotective effect by blunting the apoptosis process. These results suggest that high antioxidant activity may not be directly related with high cytoprotective potential. Thus, seaweeds reveal to be a promising source of compounds with potential against oxidative stress.
Collapse
Affiliation(s)
- Susete Pinteus
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | - Joana Silva
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | - Celso Alves
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | - André Horta
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | - Nádia Fino
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | - Ana Inês Rodrigues
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | - Susana Mendes
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | - Rui Pedrosa
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| |
Collapse
|
44
|
Sanjeewa KKA, Kim EA, Son KT, Jeon YJ. Bioactive properties and potentials cosmeceutical applications of phlorotannins isolated from brown seaweeds: A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:100-105. [PMID: 27362368 DOI: 10.1016/j.jphotobiol.2016.06.027] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 01/05/2023]
Abstract
Currently, natural ingredients are becoming more attractive for the industries such as functional food, nutraceuticals, cosmeceutical and pharmaceutical industries as people starting to believe naturally occurring compounds are safer to humans than artificial compounds. Seaweeds are one of the most interesting organisms found in oceans around the earth, which are carrying great ecological importance and contribute to increase the biodiversity of ecosystems where they were originated and habitat. Within last few decades, discovery of secondary metabolites with biological activities from seaweeds has been significantly increased. Further, the unique secondary metabolites isolated from seaweeds including polysaccharides, carotenoids and polyphenols possess range of bioactive properties that make them potential ingredient for many industrial applications. Among those groups of compounds phlorotannins isolated from brown seaweeds have shown interesting bioactive properties including anti-cancer, anti-inflammation, anti-oxidant, anti-allergic, anti-wrinkling and hair growth promotion properties. Moreover, these properties associated with phlorotannins make them an ideal compounds to use as a functional ingredient in cosmeceutical products. Up to now no report has been reviewed about discuss properties of phlorotannins related to the cosmeceutical application. In the present review primary attention is given to the collect scientific data published about bioactive properties of brown algal phlorotannins related to the cosmeceutical industry.
Collapse
Affiliation(s)
- Kalu Kapuge Asanka Sanjeewa
- Laboratory of Marine Bioresource Technology, Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Eun-A Kim
- Laboratory of Marine Bioresource Technology, Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Kwang-Tae Son
- National Institute of Fisheries Science, Food Safety and Processing Research Division 216, Gijang-Haeanro, Gijang-eup, Busan 46083, Republic of Korea.
| | - You-Jin Jeon
- Laboratory of Marine Bioresource Technology, Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 690-756, Republic of Korea.
| |
Collapse
|
45
|
Geohagen BC, Vydyanathan A, Kosharskyy B, Shaparin N, Gavin T, LoPachin RM. Enolate-Forming Phloretin Pharmacophores: Hepatoprotection in an Experimental Model of Drug-Induced Toxicity. J Pharmacol Exp Ther 2016; 357:476-86. [PMID: 27029584 PMCID: PMC4885508 DOI: 10.1124/jpet.115.231001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/22/2016] [Indexed: 12/12/2022] Open
Abstract
Drug-induced toxicity is often mediated by electrophilic metabolites, such as bioactivation of acetaminophen (APAP) to N-acetyl-p-benzoquinone imine (NAPQI). We have shown that APAP hepatotoxicity can be prevented by 2-acetylcyclopentanone (2-ACP). This 1,3-dicarbonyl compound ionizes to form an enolate nucleophile that scavenges NAPQI and other electrophilic intermediates. In this study, we expanded our investigation of enolate-forming compounds to include analyses of the phloretin pharmacophores, 2',4',6'-trihydroxyacetophenone (THA) and phloroglucinol (PG). Studies in a mouse model of APAP overdose showed that THA provided hepatoprotection when given either by intraperitoneal injection or oral administration, whereas PG was hepatoprotective only when given intraperitoneally. Corroborative research characterized the molecular pharmacology (efficacy, potency) of 2-ACP, THA, and PG in APAP-exposed isolated mouse hepatocytes. For comparative purposes, N-acetylcysteine (NAC) cytoprotection was also evaluated. Measurements of multiple cell parameters (e.g., cell viability, mitochondrial membrane depolarization) indicated that THA and, to a lesser extent, PG provided concentration-dependent protection against APAP toxicity, which exceeded that of 2-ACP or NAC. The enolate-forming compounds and NAC truncated ongoing APAP exposure and thereby returned intoxicated hepatocytes toward normal viability. The superior ability of THA to protect is related to multifaceted modes of action that include metal ion chelation, free radical trapping, and scavenging of NAPQI and other soft electrophiles involved in oxidative stress. The rank order of potency for the tested cytoprotectants was consistent with that determined in a parallel mouse model. These data suggest that THA or a derivative might be useful in treating drug-induced toxicities and other conditions that involve electrophile-mediated pathogenesis.
Collapse
Affiliation(s)
- Brian C Geohagen
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (B.C.G., A.V., B.K., N.S., R.M.L.); and Department of Chemistry, Iona College, New Rochelle, New York (T.G.)
| | - Amaresh Vydyanathan
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (B.C.G., A.V., B.K., N.S., R.M.L.); and Department of Chemistry, Iona College, New Rochelle, New York (T.G.)
| | - Boleslav Kosharskyy
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (B.C.G., A.V., B.K., N.S., R.M.L.); and Department of Chemistry, Iona College, New Rochelle, New York (T.G.)
| | - Naum Shaparin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (B.C.G., A.V., B.K., N.S., R.M.L.); and Department of Chemistry, Iona College, New Rochelle, New York (T.G.)
| | - Terrence Gavin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (B.C.G., A.V., B.K., N.S., R.M.L.); and Department of Chemistry, Iona College, New Rochelle, New York (T.G.)
| | - Richard M LoPachin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (B.C.G., A.V., B.K., N.S., R.M.L.); and Department of Chemistry, Iona College, New Rochelle, New York (T.G.)
| |
Collapse
|
46
|
Al-Sabahi BN, Fatope MO, Essa MM, Subash S, Al-Busafi SN, Al-Kusaibi FSM, Manivasagam T. Pomegranate seed oil: Effect on 3-nitropropionic acid-induced neurotoxicity in PC12 cells and elucidation of unsaturated fatty acids composition. Nutr Neurosci 2016; 20:40-48. [DOI: 10.1179/1476830514y.0000000155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Bushra N. Al-Sabahi
- Department of Chemistry, Natural Products Research Laboratory, College of Science, Sultan Qaboos University, Al-Khod, Muscat, Oman
| | - Majekodunmi O. Fatope
- Department of Chemistry, Natural Products Research Laboratory, College of Science, Sultan Qaboos University, Al-Khod, Muscat, Oman
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Al-Khod, Muscat, Oman
| | - Selvaraju Subash
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Al-Khod, Muscat, Oman
| | - Saleh N. Al-Busafi
- Department of Chemistry, Natural Products Research Laboratory, College of Science, Sultan Qaboos University, Al-Khod, Muscat, Oman
| | - Fatma S. M. Al-Kusaibi
- Department of Chemistry, Natural Products Research Laboratory, College of Science, Sultan Qaboos University, Al-Khod, Muscat, Oman
| | | |
Collapse
|
47
|
He YQ, Zhang WT, Shi CH, Wang FM, Tian XJ, Ma LL. Phloroglucinol protects the urinary bladder via inhibition of oxidative stress and inflammation in a rat model of cyclophosphamide-induced interstitial cystitis. Chin Med J (Engl) 2015; 128:956-62. [PMID: 25836618 PMCID: PMC4834014 DOI: 10.4103/0366-6999.154316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: Phloroglucinol plays an important role in oxidative stress and inflammatory responses. The effects of phloroglucinol have been proven in various disease models. The aim of the present study was to investigate the efficacy and possible mechanisms of phloroglucinol in the treatment of interstitial cystitis (IC). Methods: Thirty-two female Sprague-Dawley (SD) rats were used in this study. IC was induced by intraperitoneal injection of cyclophosphamide (CYP). Rats were randomly allocated to one of four groups (n = 8 per group): A control group, which was injected with saline (75 mg/kg; i.p.) instead of CYP on days 1, 4, and 7; a chronic IC group, which was injected with CYP (75 mg/kg; i.p.) on days 1, 4, and 7; a high-dose (30 mg/kg) phloroglucinol-treated group; and a low-dose (15 mg/kg) phloroglucinol-treated group. On day 8, the rats in each group underwent cystometrography (CMG), and the bladders were examined for evidence of oxidative stress and inflammation. Statistical analysis was performed by analysis of variance (ANOVA) followed by least square difference multiple comparison post-hoc test. Results: Histological evaluation showed that bladder inflammation in CYP-treated rats was suppressed by phloroglucinol. CMG revealed that the CYP treatment induced overactive bladder in rats that was reversed by phloroglucinol. Up-regulated tumor necrosis factor-α and interleukin-6 expression in the CYP-treated rats were also suppressed in the phloroglucinol treated rats. CYP treatment significantly increased myeloperoxidase activity as well as the decreased activities of catalase of the bladder, which was reversed by treatment with phloroglucinol. Conclusions: The application of phloroglucinol suppressed oxidative stress, inflammation, and overactivity in the bladder. This may provide a new treatment strategy for IC.
Collapse
Affiliation(s)
| | | | | | | | | | - Lu-Lin Ma
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
48
|
Lišková J, Douglas TE, Beranová J, Skwarczyńska A, Božič M, Samal SK, Modrzejewska Z, Gorgieva S, Kokol V, Bačáková L. Chitosan hydrogels enriched with polyphenols: Antibacterial activity, cell adhesion and growth and mineralization. Carbohydr Polym 2015; 129:135-42. [DOI: 10.1016/j.carbpol.2015.04.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 02/13/2015] [Accepted: 04/18/2015] [Indexed: 12/13/2022]
|
49
|
Rajamani K, Renju VC, Sethupathy S, Thirugnanasambandan SS. Ameliorative effect of polyphenols from Padina boergesenii against ferric nitrilotriacetate induced renal oxidative damage: With inhibition of oxidative hemolysis and in vitro free radicals. ENVIRONMENTAL TOXICOLOGY 2015; 30:865-76. [PMID: 24458998 DOI: 10.1002/tox.21951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/28/2013] [Accepted: 01/08/2014] [Indexed: 06/03/2023]
Abstract
The aim of this study was to evaluate the antioxidant activities of diethyl ether (DEE) and methanol (M) extracts from brown alga Padina boergesenii using in vitro and in vivo antioxidant assay, which may help to relate the antioxidant properties with the possible outline of its ameliorative effect. M extract showed higher radical scavenging activity through ferric reducing antioxidant power 139.11 µmol tannic acid equivalent/g; DPPH 71.32 ± 0.56%; deoxyribose radical 88.31 ± 0.47%, and total antioxidant activity 0.47 ± 0.02 mg ascorbic acid equivalents/g. Oxidative red blood cell (RBC) hemolysis inhibition rate was significantly higher in M extract (150 mg/kg body weight) in reference to total phenolic content (r = 0.935). Rats administered with DEE and M extracts (150 mg/kg body weight) for seven days before the administration of ferric nitrilotriacetate (9 mg of Fe/mg/kg bodyweight). Rats pretreated with extracts significantly changed the level of renal microsomal lipid peroxidation, glutathione, and antioxidant enzymes in post-mitochondrial supernatant (P < 0.05). Ameliorative effect of extracts against renal oxidative damage was evident in rat kidney through changes in necrotic and epithelial cells. HPTLC technique has identified the presence of rutin with reference to retardation factor (Rf ) in both the extracts. These findings support the source of polyphenols (rutin) from P. boergesenii had potent antioxidant activity; further work on isolation of bioactive compounds can be channeled to develop as a natural antioxidant.
Collapse
Affiliation(s)
- Karthikeyan Rajamani
- Department of Marine Sciences, Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
- Department of Pathology and Laboratory Medicine, UBC James Hogg Research Centre, St. Paul's Hospital, Vancouver-V6Z 1Y6, British Columbia, Canada
| | - V C Renju
- Department of Medical Biochemistry, Rajah Muthiah Medical College, Annamalai University, Annamalainagar, 608 002, Tamil Nadu, India
| | - S Sethupathy
- Department of Medical Biochemistry, Rajah Muthiah Medical College, Annamalai University, Annamalainagar, 608 002, Tamil Nadu, India
| | - Somasundaram S Thirugnanasambandan
- Department of Marine Sciences, Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| |
Collapse
|
50
|
Ban JO, Kim DH, Lee HP, Hwang CJ, Shim JH, Kim DJ, Kim TM, Jeong HS, Nah SS, Chen H, Dong Z, Ham YW, Kim Y, Han SB, Hong JT. Anti-arthritis effects of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal are mediated by inhibition of the STAT3 pathway. Br J Pharmacol 2014; 171:2900-12. [PMID: 24520814 DOI: 10.1111/bph.12619] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/16/2013] [Accepted: 01/28/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Products of Maillard reactions between aminoacids and reducing sugars are known to have anti-inflammatory properties. Here we have assessed the anti-arthritis effects of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal and its possible mechanisms of action. EXPERIMENTAL APPROACH We used cultures of LPS-activated macrophages (RAW264.7 cells) and human synoviocytes from patients with rheumatoid arthritis for in vitro assays and the collagen-induced arthritis model in mice. NO generation, iNOS and COX2 expression, and NF-κB/IKK and STAT3 activities were measured in vitro and in joint tissues of arthritic mice, along with clinical scores and histopathological assessments. Binding of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal to STAT3 was evaluated by a pull-down assay and its binding site was predicted using molecular docking studies with Autodock VINA. KEY RESULTS (E)-2,4-bis(p-hydroxyphenyl)-2-butenal (2.5-10 μg·mL(-1) ) inhibited LPS-inducedNO generation, iNOS and COX2 expression, and NF-κB/IKK and STAT3 activities in macrophage and human synoviocytes. This compound also suppressedcollagen-induced arthritic responses in mice by inhibiting expression of iNOS and COX2, and NF-κB/IKK and STAT3 activities; it also reduced bone destruction and fibrosis in joint tissues. A pull-down assay showed that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal interfered with binding of ATP to STAT3. Docking studies suggested that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal bound to the DNA-binding interface of STAT3 possibly inhibiting ATP binding to STAT3 in an allosteric manner. CONCLUSIONS AND IMPLICATIONS (E)-2,4-bis(p-hydroxyphenyl)-2-butenal exerted anti-inflammatory and anti-arthritic effects through inhibition of the NF-κB/STAT3 pathway by direct binding to STAT3. This compound could be a useful agent for the treatment of arthritic disease.
Collapse
Affiliation(s)
- Jung Ok Ban
- College of Pharmacy, Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|