1
|
Liu C, Cheng L, Yang M, He Z, Jia Y, Xu L, Zhang Y. Screening for Safe and Efficient Monascus Strains with Functions of Lowering Blood Lipids, Blood Glucose, and Blood Pressure. Foods 2025; 14:835. [PMID: 40077539 PMCID: PMC11899137 DOI: 10.3390/foods14050835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Monascus is a fungus widely used in food fermentation. This study employed microbial technology, combined with microscopic morphological observations and ITS sequence analysis, to isolate, purify, and identify 10 strains of red yeast mold from various Monascus products. After the HPLC detection of metabolic products, the M8 strain containing the toxic substance citrinin was excluded. Using the EWM-TOPSIS model, the remaining nine safe Monascus strains were evaluated for their inhibitory activities against pancreatic lipase, α-glucosidase, α-amylase, and the angiotensin-converting enzyme. The M2 strain with the highest comprehensive scores for lowering blood sugar, blood lipids, and blood pressure was selected. Its fermentation product at a concentration of 3 mg/mL had inhibition rates of 96.938%, 81.903%, and 72.215%, respectively. The contents of the blood lipid-lowering active substance Monacolin K and the blood sugar and blood pressure-lowering active substance GABA were 18.078 mg/g and 5.137 mg/g, respectively. This strain can be utilized for the biosynthesis of important active substances such as Monacolin K and GABA, as well as for the fermentation production of safe and effective functional foods to address health issues like high blood lipids, high blood sugar, and high blood pressure in people. This study also provides insights into the use of natural fungi to produce healthy foods for combating chronic diseases in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuansong Zhang
- College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China; (C.L.); (L.C.); (M.Y.); (Z.H.); (Y.J.); (L.X.)
| |
Collapse
|
2
|
Lee HY, Kim HS, Kim MJ, Seo YH, Cho DY, Lee JH, Lee GY, Jeong JB, Jang MY, Lee JH, Lee J, Cho KM. Comparison of primary and secondary metabolites and antioxidant activities by solid-state fermentation of Apios americana Medikus with different fungi. Food Chem 2024; 461:140808. [PMID: 39151342 DOI: 10.1016/j.foodchem.2024.140808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/20/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
This study compared the nutritional components, isoflavones, and antioxidant activities by solid-sate fermentation of Apios americana Medikus (AAM) with seven different fungi. The total fatty acid contents increased from 120.5 mg/100 g (unfermented AAM, UFAAM) to 242.0 to 3167.5 mg/100 g (fermented AAM, FAAM) with all fungi. In particular, the values of total fatty acids were highest (26.3-fold increase) in the FAAM with Monascus purpureus. The amount of total free amino acids increased from 591.69 mg/100 g (UFAAM) to 664.38 to 1603.07 mg/100 g after fermentation except for Monascus pilosus and Lentinula edodes. The total mineral contents increased evidently after fermentation with M. purpureus, F. velutipes, and Tricholoma matsutake (347.36 → 588.29, 576.59, and 453.32 mg/100 g, respectively). The UFAAM predominated isoflavone glycosides, whereas glycoside forms were converted into aglycone forms after fermentation by fungi. The bioconversion rates of glycoside to aglycone were excellent in the FAAM with M. pilosus, M. purpureus, F. velutipes, and T. matsutake (0.01 → 0.69, 0.50, 0.27, and 0.31 mg/g, respectively). Furthermore, the total phenolic contents, total flavonoid contents, and antioxidant activities by the abovementioned FAAM were high except for L.edodes. This FAAM can be used as a potential food and pharmaceutical materials.
Collapse
Affiliation(s)
- Hee Yul Lee
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Naedong-ro 139-8, Jinju 52849, Republic of Korea
| | - Hyo Seon Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Geonjae-ro 111, Naju 58245, Republic of Korea
| | - Min Ju Kim
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Naedong-ro 139-8, Jinju 52849, Republic of Korea; Biological Resources Utilization Division, National Institute of Biological Resources (NIBR), Sangnam-ro 1008-11, Miryang 50452, Republic of Korea
| | - Young Hye Seo
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Geonjae-ro 111, Naju 58245, Republic of Korea
| | - Du Yong Cho
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Naedong-ro 139-8, Jinju 52849, Republic of Korea
| | - Ji Ho Lee
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Naedong-ro 139-8, Jinju 52849, Republic of Korea
| | - Ga Young Lee
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Naedong-ro 139-8, Jinju 52849, Republic of Korea
| | - Jong Bin Jeong
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Naedong-ro 139-8, Jinju 52849, Republic of Korea
| | - Mu Yeun Jang
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Naedong-ro 139-8, Jinju 52849, Republic of Korea
| | - Jin Hwan Lee
- Department of Life Resource Industry, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Jun Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Geonjae-ro 111, Naju 58245, Republic of Korea.
| | - Kye Man Cho
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Naedong-ro 139-8, Jinju 52849, Republic of Korea.
| |
Collapse
|
3
|
Luo X, Dong M, Liu J, Guo N, Li J, Shi Y, Yang Y. Fermentation: improvement of pharmacological effects and applications of botanical drugs. Front Pharmacol 2024; 15:1430238. [PMID: 39253373 PMCID: PMC11381286 DOI: 10.3389/fphar.2024.1430238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Fermentation is an important concoction technique for botanical drugs. Fermentation transforms and enhances the active ingredients of botanical drugs through specific microbiological processes, ultimately affecting their pharmacological effects. This review explores the use of fermented botanical drugs in areas such as anti-tumor, hypolipidemic, antioxidant, antimicrobial, cosmetology, and intestinal flora regulation. It elucidates the potential pharmacological mechanisms and discusses the benefits of fermentation technology for botanical drugs, including reducing toxic side effects, enhancing drug efficacy, and creating new active ingredients. This article also discussesdelves into the common strains and factors influencing the fermentation process, which are crucial for the successful transformation and enhancement of these drugs. Taken together, this study aimed to provide a reference point for further research and wider applications of botanical drug fermentation technology.
Collapse
Affiliation(s)
- Xinxin Luo
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Mosi Dong
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Juntong Liu
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Naifei Guo
- Department of Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jing Li
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yan Shi
- Department of Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yufeng Yang
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Department of College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
4
|
Yang T, Liu X, Xue L, Liu X, Zhang L, Lan L, Zhang H, Sun G. Quality assessment of Red Yeast Rice by fingerprint and fingerprint-effect relationship combined with antioxidant activity. Food Chem 2024; 438:137744. [PMID: 37995583 DOI: 10.1016/j.foodchem.2023.137744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 11/25/2023]
Abstract
Red Yeast Rice (RYR) is an important functional food ingredient that plays a critical role in promoting dietary guidance and maintaining health. To ensure its quality, four key compounds were quantified, and both HPLC fingerprint and electrochemical fingerprint (ECFP) were applied to assess quality. Additionally, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+•) scavenging test and ECFP were applied to assay the total antioxidant activity, with ascorbic acid as the positive control. The results showed that the holistic quality of samples was divided into 4 grades based on HPLC fingerprint analysis by the comprehensive linear quantitative fingerprint method. Additionally, the area of the total peak (Atp) in ECFP was found to be linearly correlated with the antioxidant activity (R > 0.99). A further fingerprint-efficacy relationship analysis determined the significant contributions to the antioxidant activity of peaks 20-Daidzein, 21-Glycitein, and 24-Genistein. Overall, this study suggested a comprehensive and reliable approach to the quality assessment of RYR.
Collapse
Affiliation(s)
- Ting Yang
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xiaoling Liu
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Lan Xue
- Beijing Peking University WBL Biotech Co. Ltd., Beijing 100094, China.
| | - Xi Liu
- Beijing Peking University WBL Biotech Co. Ltd., Beijing 100094, China.
| | - Limei Zhang
- Beijing Peking University WBL Biotech Co. Ltd., Beijing 100094, China.
| | - Lili Lan
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Hong Zhang
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Guoxiang Sun
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
5
|
Xu C, Yang Y, He L, Li C, Wang X, Zeng X. Flavor, physicochemical properties, and storage stability of P. lobata-coix seed fermented beverage produced by A. aegerita. Food Chem 2024; 434:137428. [PMID: 37716144 DOI: 10.1016/j.foodchem.2023.137428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Pueraria lobata and coix seeds have complementary nutritional profiles, and their nutritional value can be enhanced through biotransformation. Agrocybe aegerita (A. aegerita) is a highly nutritious mushroom with a rich enzyme content. This study investigated the flavor, physicochemical properties, and storage stability of P. lobata-coix seed fermented beverage (PCFB) by A. aegerita. Sixty volatile compounds were detected by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Compared to unfermented PCFB, fermentation with A. aegerita enhanced its physicochemical properties, with the contents of essential amino acids, γ-Aminobutyric acid, and soluble proteins increasing from 16.81%, 2.64 mg/100 mL, and 49.40% to 21.06%, 4.20 mg/100 mL, and 53.08%, respectively. Two efficient shelf-life prediction models of PCFB were established with the Arrhenius model using pH and sensory evaluation as indexes. These findings demonstrate that PCFB is a novel, high-quality beverage and provide a foundation for potential industrial production of PCFB using A. aegerita.
Collapse
Affiliation(s)
- Changli Xu
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China
| | - Yun Yang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China
| | - Laping He
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China.
| | - Cuiqin Li
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China; School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China.
| | - Xiao Wang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China.
| | - Xuefeng Zeng
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China
| |
Collapse
|
6
|
Sun R, Niu H, Li Y, Sun M, Hua M, Miao X, Su Y, Wang J, Li D, Wang Y. Fermented natto powder alleviates obesity by regulating LXR pathway and gut microbiota in obesity rats. J Appl Microbiol 2024; 135:lxae003. [PMID: 38192042 DOI: 10.1093/jambio/lxae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/02/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
AIM This study aimed to investigate the positive effect of natto powder on obese rats fed with a high-fat diet (HFD). METHODS AND RESULTS Sprague-Dawley rats were fed with a HFD for 8 weeks continuously and gavaged with natto powder, respectively, for 8 weeks starting from the ninth week. The results showed that natto powder significantly reduced the body weight of rats and maintained the balance of cholesterol metabolism in the body by inhibiting the activity of liver X receptors (LXR) target genes, increasing the active expression of cholesterol 7 alpha-hydroxylase, and reducing the active expression of sterol-regulatory element-binding protein and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR). Furthermore, natto powder increased the relative abundance of potentially beneficial microbiota in gut and decreased the relative abundance of obesity-related harmful bacteria, and also increased the Bacteroidetes/Firmicutes ratio and improved the composition of gut microbiota. CONCLUSIONS Natto powder maintains the balance of cholesterol metabolism by inhibiting the LXR pathway and regulating the gut microbiota.
Collapse
Affiliation(s)
- Ruiyue Sun
- Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun 130033, Jilin, China
- Future Food (Bai Ma) Research Institute, Nanjing 211200, Jiangsu, China
| | - Honghong Niu
- Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun 130033, Jilin, China
| | - Yueqiao Li
- Science and Technology Exchange and Cooperation Division, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
| | - Mubai Sun
- Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun 130033, Jilin, China
| | - Mei Hua
- Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun 130033, Jilin, China
| | - Xinyu Miao
- Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun 130033, Jilin, China
| | - Ying Su
- Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun 130033, Jilin, China
| | - Jinghui Wang
- Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun 130033, Jilin, China
| | - Da Li
- Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun 130033, Jilin, China
| | - Ying Wang
- Institute of Agricultural Quality Standards and Testing Technology, Liaoning Academy of Agricultural Sciences, Shenyang 110000, Liaoning, China
| |
Collapse
|
7
|
Zhang X, Hu Y, Yang T, Qian X, Hu W, Li G. Penazaphilones J–L, Three New Hydrophilic Azaphilone Pigments from Penicillium sclerotiorum cib-411 and Their Anti-Inflammatory Activity. Molecules 2023; 28:molecules28073146. [PMID: 37049911 PMCID: PMC10095951 DOI: 10.3390/molecules28073146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Penazaphilones J–L (1–3), three new hydrophilic azaphilone pigments, as well as six known compounds, were discovered from the filamentous fungus Penicillium sclerotiorum cib-411. Compounds 1–3 were structurally elucidated by the detailed interpretation of their 1D and 2D NMR spectroscopic data. Compound 1 is an unprecedented hybrid of an azaphilone and a glycerophosphate choline. Compounds 2 and 3 each contain an intact amino acid moiety. The bioassay showed that compound 3 exhibited significant anti-inflammatory activity. Concretely, compound 3 significantly suppressed the NO production, the expression levels of COX-2, IL-6, IL-1β, and iNOS mRNA in LPS-stimulated RAW264.7 cells. Moreover, treatment of compound 3 prevented the translocation of NF-κB through inhibiting the phosphorylation of PI3K, PDK1, Akt, and GSK-3β. Thus, the inhibition of compound 3 against LPS-induced inflammation should rely on its inactivation on NF-κB.
Collapse
Affiliation(s)
- Xia Zhang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yeye Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Tao Yang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xueqing Qian
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Weicheng Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Guoyou Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
8
|
Efficient Extraction of Flavonoids from Lotus Leaves by Ultrasonic-Assisted Deep Eutectic Solvent Extraction and Its Evaluation on Antioxidant Activities. SEPARATIONS 2023. [DOI: 10.3390/separations10020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The discovery of a green extraction solvent for natural plants could promote related research. In this study, deep eutectic solvents (DES) were used as green solvents coupled with an ultrasound-assisted extraction method (UAE) to extract flavonoids from lotus leaves. Thirty-four different DES were performed and choline chloride/urea with 40% water was chosen as the most promising one, and the related parameters in the procedures were optimized, resulting in the highest extraction amount of flavonoids in lotus leaves. D-101 was selected from four macroporous resins to separate the flavonoids from DES. Moreover, DES could be recycled and efficiently reused four times with satisfactory performances. In addition, the lotus leaf flavonoids from the DES extract exhibited antioxidant activities in five kinds of assays including DPPH, ABTS, Fe3+ reducing, FRAP, and Fe2+ chelating. It also showed antibacterial activities on Staphylococcus aureus and Escherichia coli bacterial strains with minimal inhibitory concentrations at 1666 μg/mL and 208 μg/mL, respectively. In the HPLC analysis, the three main components in the DES extract were identified as astragalin, hyperoside, and isoquercitrin. In conclusion, the developed UAE-DES followed by macroporous resin treatment could become an efficient and environmentally friendly extraction and enrichment method for flavonoids from lotus leaves and other natural products.
Collapse
|
9
|
Combining Transcriptomics and Polyphenol Profiling to Provide Insights into Phenolics Transformation of the Fermented Chinese Jujube. Foods 2022; 11:foods11172546. [PMID: 36076732 PMCID: PMC9455259 DOI: 10.3390/foods11172546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
As an important medicine homologous food, Chinese jujube is rich in nutrition and medicinal value. To enhance the bioactive compounds level of Chinese jujube products, three kinds of fungi strains (Rhizopus oryzae, Aspergillus niger and Monascus purpureus) were firstly selected to evaluate their effects on total soluble phenolic compounds (TSPC) and total soluble flavonoids compounds (TSFC) contents during liquid state fermentation of Chinese jujube. As the best strain, the highest contents of TSPC and TSFC could increase by 102.1% (26.02 mg GAE/g DW) and 722.8% (18.76 mg RE/g DW) under M. purpureus fermentation when compared to the unfermented sample, respectively. Qualitative and quantitative analysis of individual polyphenol compounds indicated that proto-catechuic acid, p-hydroxybenzoic acid and chlorogenic acid showed the highest level in the fer-mented Chinese jujube at the 7th day, which was enhanced by 16.72-, 14.05- and 6.03-fold when compared to the control, respectively. Combining with RNA sequencing, function annotation of CAZymes database and polyphenol profiling, three potential transformation pathways of poly-phenol compounds were proposed in the fermented Chinese jujube by M. purpureus, such as the conversion of insoluble bound phenolic acids, rutin and anthocyanin degradation. These findings would be beneficial for better understanding of the biotransformation mechanism of polyphenol compounds in fungi fermentation.
Collapse
|
10
|
Chaudhary V, Katyal P, Panwar H, Kaur J, Aluko RE, Puniya AK, Poonia AK. Antioxidative, anti-inflammatory, and anticancer properties of the red biopigment extract from Monascus purpureus (MTCC 369). J Food Biochem 2022; 46:e14249. [PMID: 35615960 DOI: 10.1111/jfbc.14249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/19/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022]
Abstract
In this study, the Monascus purpureus (MTCC 369) extracted biopigment produced by solid-state fermentation was evaluated for its therapeutic potential using human prostate LNCaP cells. Antioxidant efficacy of the red biopigment determined using 2,2 diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid, and ferric reducing antioxidant power assays was found to be 53.16%, 86.27%, and 13.83%, respectively. In addition, expression studies of target gene superoxide dismutase 2 (SOD-2) showed that increasing concentrations (10-50 μg/ml) of the biopigment enhanced its expression from 0.91- to 1.905-fold. An inhibitory effect of 0.424-0.627-fold was observed in the expression of glutathione peroxidase (GPX) with a similar increase in biopigment concentration. Addition of quercetin (positive control) at 50 μg/ml led to 0.295-fold decrease in GPX expression. In contrast, the expression of SOD-2 increased by 1.026-fold in the presence of quercetin. The biopigment also showed an increased serological IL-10 expression (an anti-inflammatory agent) ranging from 1034.58 to 4657.89 pg/ml. Treatment of LNCaP cells with the red biopigment (10-100 μg/ml) resulted in significant (p < .05) reduction (upto 79.86%) in viability and 51.79%-89.86% reduction in cell metabolic activity. Fluorescent microscopy examination of red biopigment-treated cells showed significant inhibition of normal cellular morphology including condensed nuclei, membrane blebbing, and apoptotic bodies, thus confirming its cytotoxic potential. Results of this study revealed that the red biopigment has the potential to modulate the expression of antioxidative and anti-inflammatory markers in addition to being cytotoxic to the LNCaP cancer cells. PRACTICAL APPLICATIONS: These findings indicate that cell treatment with red biopigment has the potential to modulate anti-oxidative, pro-inflammatory and anti-inflammatory genes for therapeutic effects, which is further enhanced by its cytotoxic activity against cancer cells. Considering these cell-based observations, Monascus red biopigment has ample potential as a useful supplement to formulate therapeutic products that delay the development of inflammatory-related diseases and associated complications.
Collapse
Affiliation(s)
- Vishu Chaudhary
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| | - Priya Katyal
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| | - Harsh Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru AngadDev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jaspreet Kaur
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Anuj Kumar Poonia
- Department of Applied Sciences and Biotechnology, School of Biotechnology, Shoolini University, Solan, India
| |
Collapse
|
11
|
Feng SS, Li W, Hu YJ, Feng JX, Deng J. The biological activity and application of Monascus pigments: a mini review. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2021-0235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Monascus pigments (MPs), as secondary metabolites of Monascus, are microbial pigments which have been used for thousands of years. MPs are widely used in food industry as food pigments and preservatives, which have the stability of light resistance, high temperature resistance and acid-base change resistance. In addition, the antioxidant, antibacterial, antiviral and anti-tumor biological activities of MPs have also attracted people’s attention. Moreover, Due to the presence of citrinin, the safety of MPs still needs to be discussed and explored. In this paper, the production, biological activity, application in various fields and methods of detection and reduction of citrinin of MPs were reviewed, which provide new insights into the study and safe application related to human different diseases, medicines or health care products with MPs as active substances.
Collapse
Affiliation(s)
- Shan-Shan Feng
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization , National Engineering Research Center of Rice and Byproduct Deep Processing , College of Food Science and Engineering , Central South University of Forestry and Technology , Changsha , China
- College of Life Sciences and Chemistry , Hunan University of Technology, Zhuzhou , China
| | - Wen Li
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization , National Engineering Research Center of Rice and Byproduct Deep Processing , College of Food Science and Engineering , Central South University of Forestry and Technology , Changsha , China
- College of Life Sciences and Chemistry , Hunan University of Technology, Zhuzhou , China
| | - Yong-Jun Hu
- Department of Ultrasound , Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University , Changsha , Hunan 410002 , China
| | - Jian-Xiang Feng
- College of Life Sciences and Chemistry , Hunan University of Technology, Zhuzhou , China
| | - Jing Deng
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization , National Engineering Research Center of Rice and Byproduct Deep Processing , College of Food Science and Engineering , Central South University of Forestry and Technology , Changsha , China
- College of Life Sciences and Chemistry , Hunan University of Technology, Zhuzhou , China
| |
Collapse
|
12
|
Wang Z, Li C, He X, Xu K, Xue Z, Wang T, Xu Z, Liu X. Platycodon grandiflorum root fermentation broth reduces inflammation in a mouse IBD model through the AMPK/NF-κB/NLRP3 pathway. Food Funct 2022; 13:3946-3956. [PMID: 35293398 DOI: 10.1039/d1fo03969e] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The effect of Platycodon grandiflorum (PG) on colitis and its underlying mechanism were rarely studied. In this study, Lactobacillus rhamnosus 217-1 was used to ferment PG roots, and the concentrations of platycodin-D, flavonoids, and polyphenols and the DPPH free radical scavenging rate were significantly increased. Treatment with a PG root fermentation broth (PGRFB) could reduce dextran sulfate sodium (DSS) induced ulcerative colitis (UC) in mice. Meanwhile, the PGRFB significantly reduced the content of inflammatory factors in mouse serum and the expression of inflammatory factor mRNA in the intestinal tract, regulated the polarization of M1/M2 macrophages, and increased the expression of tight junction protein mRNA in intestinal epithelial cells. In summary, it was proved that the PGRFB could inhibit the nuclear factor kappa B (NF-κB) signaling pathway and the expression of Nod-like receptor protein 3 (NLRP3) inflammasomes by activating AMP-activated protein kinase (AMPK) and lowering the release of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Zhe Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China. .,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - Chunhai Li
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xi He
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China. .,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - Kang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China. .,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - Zhipeng Xue
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China. .,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China. .,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - Zhenshang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China. .,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - Xinli Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China. .,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| |
Collapse
|
13
|
Lu F, Alenyorege EA, Ouyang N, Zhou A, Ma H. Simulated natural and high temperature solid-state fermentation of soybean meal: A comparative study regarding microorganisms, functional properties and structural characteristics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Deng Y, Liu H, Huang Q, Tu L, Hu L, Zheng B, Sun H, Lu D, Guo C, Zhou L. Mechanism of Longevity Extension of Caenorhabditis elegans Induced by Schizophyllum commune Fermented Supernatant With Added Radix Puerariae. Front Nutr 2022; 9:847064. [PMID: 35360681 PMCID: PMC8963188 DOI: 10.3389/fnut.2022.847064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Schizophyllum commune (S. commune) fermented supernatant with added Radix Puerariae (SC-RP) showed significant antioxidant activity in our previous work. However, the possible lifespan and healthspan extending the capacity of Caenorhabditis elegans (C. elegans) and the underlying mechanism were not illuminated. In this study, the effect of SC-RP on extending the lifespan and improving stress resistance of C. elegans were examined. Additionally, the underlying lifespan extending molecular mechanisms of SC-RP were explored. Treated with SC-RP at 10 μg/mL, the lifespan of C. elegans increased by 24.89% (P < 0.01). Also, SC-RP prolonged the healthspan of the nematode, including reducing lipofuscin levels, improving mobility and enhancing resistance to oxidative stress and heat shock. Moreover, superoxide dismutase and catalase activities were increased for SC-RP treated C. elegans. Meantime the intracellular levels of thiobarbituric acid reactive substances (TBARS) and reactive oxygen species (ROS) were attenuated. Express levels of eight genes including daf-2, daf-16, sod-3, skn-1, gst-4, clk-1, age-1 and mev-1 were analyzed by RT-PCR method for possible C. elegan anti-aging mechanisms of SC-RP. Expression levels of key genes daf-2, gst-4 and sod-3 were up-regulated, while that of daf-16, skn-1, and clk-1 were down-regulated. The results suggest that SC-RP could extend the lifespan and healthspan of C. elegans significantly, and the IIS pathway, SKN-1/Nrf2 pathway and mitochondrial metabolism pathway were primarily considered associated. Thus, SC-RP is a potential component to improve aging and aging-related symptoms as new functional materials.
Collapse
Affiliation(s)
- Yongfei Deng
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou, China
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Han Liu
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou, China
| | - Qian Huang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lingyun Tu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou, China
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Lu Hu
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou, China
| | - Bisheng Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Huaiqing Sun
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou, China
| | - Dengjun Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Chaowan Guo
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou, China
| | - Lin Zhou
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
15
|
Polia F, Pastor-Belda M, Martínez-Blázquez A, Horcajada MN, Tomás-Barberán FA, García-Villalba R. Technological and Biotechnological Processes To Enhance the Bioavailability of Dietary (Poly)phenols in Humans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2092-2107. [PMID: 35156799 PMCID: PMC8880379 DOI: 10.1021/acs.jafc.1c07198] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 06/10/2023]
Abstract
The health effects of (poly)phenols (PPs) depend upon their bioavailability that, in general, is very low and shows a high interindividual variability. The low bioavailability of PPs is mainly attributed to their low absorption in the upper gastrointestinal tract as a result of their low water solubility, their presence in foods as polymers or in glycosylated forms, and their tight bond to food matrices. Although many studies have investigated how technological and biotechnological processes affect the phenolic composition of fruits and vegetables, limited information exists regarding their effects on PP bioavailability in humans. In the present review, the effect of food processing (mechanical, thermal, and non-thermal treatments), oral-delivery nanoformulations, enzymatic hydrolysis, fermentation, co-administration with probiotics, and generation of postbiotics in PP bioavailability have been overviewed, focusing in the evidence provided in humans.
Collapse
Affiliation(s)
- Franck Polia
- Laboratory
of Food & Health, Research Group on Quality, Safety and Bioactivity
of Plant Foods, Centro de Edafología
y Biología Aplicada del Segura−Consejo Superior de Investigaciones
Científicas (CEBAS−CSIC), Campus de Espinardo 25, 30100 Murcia, Spain
| | - Marta Pastor-Belda
- Department
of Analytical Chemistry, Faculty of Chemistry, Regional Campus of
International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
| | - Alberto Martínez-Blázquez
- Laboratory
of Food & Health, Research Group on Quality, Safety and Bioactivity
of Plant Foods, Centro de Edafología
y Biología Aplicada del Segura−Consejo Superior de Investigaciones
Científicas (CEBAS−CSIC), Campus de Espinardo 25, 30100 Murcia, Spain
| | | | - Francisco A. Tomás-Barberán
- Laboratory
of Food & Health, Research Group on Quality, Safety and Bioactivity
of Plant Foods, Centro de Edafología
y Biología Aplicada del Segura−Consejo Superior de Investigaciones
Científicas (CEBAS−CSIC), Campus de Espinardo 25, 30100 Murcia, Spain
| | - Rocío García-Villalba
- Laboratory
of Food & Health, Research Group on Quality, Safety and Bioactivity
of Plant Foods, Centro de Edafología
y Biología Aplicada del Segura−Consejo Superior de Investigaciones
Científicas (CEBAS−CSIC), Campus de Espinardo 25, 30100 Murcia, Spain
| |
Collapse
|
16
|
Zhao YS, Eweys AS, Zhang JY, Zhu Y, Bai J, Darwesh OM, Zhang HB, Xiao X. Fermentation Affects the Antioxidant Activity of Plant-Based Food Material through the Release and Production of Bioactive Components. Antioxidants (Basel) 2021; 10:2004. [PMID: 34943107 PMCID: PMC8698425 DOI: 10.3390/antiox10122004] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
This review reports on the effects of fermentation on the chemical constituents and antioxidant activity of plant-based food materials. Fermentation involves a series of reactions that modify the chemical components of the substrate. It could be considered a tool to increase the bioactive compounds and functional properties of food plant materials. Oxidative damage is key to the progression of many human diseases, and the production of antioxidant compounds by fermentation will be helpful to reduce the risk of these diseases. Fermentation also can improve antioxidant activity given its association with increased phytochemicals, antioxidant polysaccharides, and antioxidant peptides produced by microbial hydrolysis or biotransformation. Additionally, fermentation can encourage the breakdown of plant cell walls, which helps to liberate or produce various antioxidant compounds. Overall, results indicated that fermentation in many cases contributed to enhancing antioxidants' content and antioxidant capacity, supporting the fermentation use in the production of value-added functional food. This review provides an overview of the factors that impact the effects of fermentation on bioactive compound composition and antioxidant activity. The impacts of fermentation are summarized as a reference to its effects on food plant material.
Collapse
Affiliation(s)
- Yan-Sheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.-S.Z.); (A.S.E.); (J.-Y.Z.); (Y.Z.); (J.B.)
| | - Aya Samy Eweys
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.-S.Z.); (A.S.E.); (J.-Y.Z.); (Y.Z.); (J.B.)
- Food Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Jia-Yan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.-S.Z.); (A.S.E.); (J.-Y.Z.); (Y.Z.); (J.B.)
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.-S.Z.); (A.S.E.); (J.-Y.Z.); (Y.Z.); (J.B.)
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.-S.Z.); (A.S.E.); (J.-Y.Z.); (Y.Z.); (J.B.)
| | - Osama M. Darwesh
- Agricultural Microbiology Department, National Research Centre, Cairo 12622, Egypt;
| | - Hai-Bo Zhang
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd., Yichang 443004, China;
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.-S.Z.); (A.S.E.); (J.-Y.Z.); (Y.Z.); (J.B.)
| |
Collapse
|
17
|
Pei Y, Cheng F, Li W, Yu Q, Ma C, Zou Y, Xu T, Liu S, Zhang S, Wang Q. Enhancement of anti-inflammatory effect of cattle bile by fermentation and its inhibition of neuroinflammation on microglia by inhibiting NLRP3 inflammasome. J Biosci Bioeng 2021; 133:146-154. [PMID: 34887181 DOI: 10.1016/j.jbiosc.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022]
Abstract
As a kind of animal medicine, cattle bile has anti-inflammatory, antipyretic and cholagogic effects. The fermentation process of cattle bile is included in the application of many traditional Chinese medicines. In this study, we fermented cattle bile singly and investigated the impact of fermentation on the anti-inflammatory effect of cattle bile, as well as the mechanism of fermented cattle bile on microglia cells. After high temperature sterilization, cattle bile was fermented with Massa Medicata Fermentata (medicated leaven, Shen Qu). We used ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UHPLC-MS/MS) to analyze the bile acids of cattle bile and fermented cattle bile. The results showed that 3-dehydrocholic acid, 7-ketolithocholic acid, 12-dehydrocholic acid, 12-Ketolithocholic acid, ursodeoxycholic acid and dehydrolithocholic acid increased more significantly than others; glycocholic acid and glycochenodeoxycholic acid decreased more significantly than others. After fermentation, cattle bile significantly reduced the release of NO and inflammatory factors (TNF-α and IL-1β). Furthermore, the protein expression of TNF-α, IL-1β and iNOS were decreased. In addition, we found that fermented cattle bile could have an anti-inflammatory effect through attenuating the activation of NLRP3 inflammasome. Thus, fermentation can enhance the anti-inflammatory effect of cattle bile. Fermented cattle bile has an anti-inflammatory effect by inhibiting the NLRP3 inflammasome pathway, which can expand the clinical application of cattle bile and provide new thoughts and methods for the application of cattle bile.
Collapse
Affiliation(s)
- Yuying Pei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qiaoyu Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chongyang Ma
- School of Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yan Zou
- Shineway Pharmaceutical Group Ltd., Shijiazhuang 051430, China
| | - Tian Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shuling Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shuang Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
18
|
Deng Y, Huang Q, Hu L, Liu T, Zheng B, Lu D, Guo C, Zhou L. Enhanced exopolysaccharide yield and antioxidant activities of Schizophyllum commune fermented products by the addition of Radix Puerariae. RSC Adv 2021; 11:38219-38234. [PMID: 35498081 PMCID: PMC9044015 DOI: 10.1039/d1ra06314f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
To increase the production of exopolysaccharides (EPS) and expand the application of Schizophyllum commune (S. commune) fermentation liquid, the traditional Chinese medicine Radix Puerariae (RP) with outstanding biological activity was selected as a culture additive to improve the EPS yield and enhance the antioxidant activity of fermented products from S. commune. The effects of three independent factors: A: initial pH (5.0-6.0), B: concentration of RP (10-14 g L-1), and C: inoculum size (8-12%, v/v) on the EPS yield were evaluated. The results of response surface methodology (RSM) showed that the optimal fermentation conditions were: A: 5.40, B: 12.80 g L-1, and C: 10.0%. The optimal yield of EPS was 8.41 ± 0.12 mg mL-1, which showed an insignificant (p > 0.05) difference with the predicted value (8.45 mg mL-1). The fermented supernatants cultured from RP-supplemented medium (SC-RP) or regular medium (SC) were collected for further study. FT-IR analysis of EPS-1 (purified from SC) and EPS-2 (purified from SC-RP) showed that their structures were consistent, indicating that the addition of RP did not affect the structure of schizophyllan (SPG). In addition, compared with SC, the in vitro antioxidant activities of SC-RP were significantly improved with ORAC values and FRAP values increasing by 11.56-fold and 14.69-fold, respectively. There was a significant correlation among the phenolic compounds, flavonoids, and antioxidant activity of SC-RP in this study. Besides, SC-RP was detected to contain more than 25 bioactive ingredients compared with that of SC, which may play a key role in its antioxidant activities. Thus, these results indicated that RP enhanced the yield of SPG and improved the antioxidant activity of the fermented products by S. commune. Accordingly, the fermentation liquid of S. commune with the addition of RP may have potential application in food, cosmetics, and pharmaceutical industries.
Collapse
Affiliation(s)
- Yongfei Deng
- School of Light Industry and Food Engineering, Guangxi University Nanning 530004 People's Republic of China
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd Guangzhou 510700 People's Republic of China
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China +86-20-39352151 +86-20-39352151
| | - Qian Huang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China +86-20-39352151 +86-20-39352151
| | - Lu Hu
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd Guangzhou 510700 People's Republic of China
| | - Tao Liu
- School of Light Industry and Food Engineering, Guangxi University Nanning 530004 People's Republic of China
| | - Bisheng Zheng
- School of Food Science and Engineering, South China University of Technology Guangzhou 510641 People's Republic of China
| | - Dengjun Lu
- School of Light Industry and Food Engineering, Guangxi University Nanning 530004 People's Republic of China
| | - Chaowan Guo
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd Guangzhou 510700 People's Republic of China
| | - Lin Zhou
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China +86-20-39352151 +86-20-39352151
| |
Collapse
|
19
|
Wang T, Wang Z, Yang Z, Cui X, Yan L, Xu Z, Liu X. Effect of the Fermentation Broth of the Mixture of Pueraria lobata, Lonicera japonica, and Crataegus pinnatifida by Lactobacillus rhamnosus 217-1 on Liver Health and Intestinal Flora in Mice With Alcoholic Liver Disease Induced by Liquor. Front Microbiol 2021; 12:722171. [PMID: 34484163 PMCID: PMC8416100 DOI: 10.3389/fmicb.2021.722171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
In this work, we discovered a new fermentation broth that can prevent and regulate alcoholic liver disease (ALD) and intestinal flora, which fermented the mixture of Pueraria lobata, Lonicera japonica, and Crataegus pinnatifida by Lactobacillus rhamnosus 217-1. The contents of polyphenols, puerarin, total isoflavones, and amino acids were significantly increased. Animal experiments showed that the fermentation broth could improve the liver indexes of ALD mice model, increase the activity of superoxide dismutase and glutathione in liver tissue, and reduce the level of malondialdehyde (MDA). Furthermore, the fermentation broth can reduce the levels of serum lipopolysaccharide (LPS), inflammatory factors interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Importantly, intestinal flora analysis showed that the fermentation broth could increase the abundance of Lactobacillales and reduce the production of Gram-negative bacteria, thereby reducing the abnormal increase in bacterial diversity caused by alcohol. In conclusion, we may have discovered a new functional food raw material with great application potential. The above findings indicate that the fermentation broth can actively regulate the intestinal flora and improve liver inflammation. The underlying mechanism might be that the fermentation broth could enhance intestinal permeability and reduce the inflammatory signals and LPS transmitted through the gut-liver axis, thereby reducing the oxidative stress and inflammation of the liver caused by alcohol.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Zhe Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Zhipeng Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Xin Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Liang Yan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Zhenshang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Xinli Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| |
Collapse
|
20
|
Liu F, Song M, Wang X, Sun Y, Liu X, Zhou F, Guo Q. Optimizing the liquid‐state fermentation conditions used to prepare a new Shan‐Zha‐Ge‐Gen formula‐derived probiotic. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fuyu Liu
- College of Pharmacy Shandong University of Traditional Chinese Medicine Jinan China
| | - Min Song
- College of Pharmacy Shandong University of Traditional Chinese Medicine Jinan China
| | - Xinke Wang
- College of Pharmacy Shandong University of Traditional Chinese Medicine Jinan China
| | - Yizheng Sun
- College of Pharmacy Shandong University of Traditional Chinese Medicine Jinan China
| | - Xiaoyun Liu
- College of Pharmacy Shandong University of Traditional Chinese Medicine Jinan China
| | - Fengqin Zhou
- College of Pharmacy Shandong University of Traditional Chinese Medicine Jinan China
| | - Qingmei Guo
- College of Pharmacy Shandong University of Traditional Chinese Medicine Jinan China
| |
Collapse
|
21
|
Evaluation of Chemical Compositions, Antioxidant Capacity and Intracellular Antioxidant Action in Fish Bone Fermented with Monascus purpureus. Molecules 2021; 26:molecules26175288. [PMID: 34500721 PMCID: PMC8434028 DOI: 10.3390/molecules26175288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/15/2023] Open
Abstract
Fish bones (FBs) are aquatic by-products that are sources of antioxidant-active peptides, calcium dietary supplements, and biomedical materials. Usually, fermentation of these by-products via microorganisms brings desirable changes, enhancing their value. This study investigates the value addition of FB when fermented with Monascus purpureus (MP) for different time intervals, such as 3 days (F3) and 6 days (F6). The results indicate that the soluble protein, peptide, amino acid and total phenol content, as well as the antioxidant capacity (DPPH, ABTS+ radical scavenging activity, and relative reducing power), of F3 and F6 were significantly increased after fermentation. Furthermore, the ROS contents of F3 and F6 were reduced to a greater extent than that of hydrogen peroxide (H2O2) in Clone-9 cells. The MMP integrity, as well as the SOD, CAT, and GPx activity, of F3 and F6 were also increased significantly compared to the H2O2 in Clone-9 cells. Notably, F3 and F6 displayed significant reductions in ROS content, as well as elevate, SOD activity and MMP integrity in Clone-9 cells, when compared with the native FB. These results indicate that the FBs fermented with MP for 3 days (F3), and 6 days (F6) have antioxidant capacity, with possible applications as natural food supplements.
Collapse
|
22
|
In Vitro Antibacterial Effect of the Methanolic Extract of the Korean Soybean Fermented Product Doenjang against Staphylococcus aureus. Animals (Basel) 2021; 11:ani11082319. [PMID: 34438775 PMCID: PMC8388408 DOI: 10.3390/ani11082319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The emergence of bacterial antibiotic resistance is a negative phenomenon occurring worldwide in both animals and humans. The EU banned the use of antibiotic growth promoters in animal production, as their administration to livestock is assumed to substantially contribute to the spread of bacterial resistance. Therefore, alternatives to antibiotic substances are needed to maintain the quality and quantity of animal products. Certain plant materials, such as fermented soybean products, can serve as a source of substances with potential to decrease the growth of resistant bacteria, such as Staphylococcus aureus. Fermented soybean products, including doenjang, are known to contain natural phytoestrogens called isoflavones, which are especially interesting due to their antimicrobial activity; these products can also be utilized in animal feed. Thus, the antibacterial activity of the methanolic extract of the Korean soybean fermented product doenjang was evaluated using standardized microbiological methods against nine strains of resistant and sensitive S. aureus, including those occurring in animals. The extract has been shown to be active at a concentration range of 2048–4096 µg/mL against all tested S. aureus strains and can therefore serve as a promising alternative to antibiotics in animal feed after additional testing in the laboratory and on living animals. Abstract Ultra-high performance liquid chromatography/mass spectrometry showed soyasaponin I and the isoflavones daidzein, genistein, and glycitein to be the main components of the methanolic extract of the Korean soybean fermented product doenjang, which is known to be a rich source of naturally occurring bioactive substances, at average contents of 515.40, 236.30, 131.23, and 29.00 ng/mg, respectively. The antimicrobial activity of the methanolic extract of doenjang against nine Staphylococcusaureus strains was determined in vitro by the broth microdilution method to investigate its potential to serve as an alternative antibacterial compound. The results suggest that the extract is an effective antistaphylococcal agent at concentrations of 2048–4096 µg/mL. Moreover, the tested extract also showed the ability to inhibit the growth of both methicillin-sensitive and methicillin-resistant animal and clinical S. aureus isolates. The growth kinetics of the chosen strains of S. aureus at the minimum inhibitory concentration of the methanolic extract of doenjang support the idea that the tested extract acts as an antibacterial compound. To the best of our knowledge, this is the first report on the antistaphylococcal action of the methanolic extract of doenjang thus, additional studies including in vivo testing are necessary to confirm this hypothesis.
Collapse
|
23
|
Wu L, Zhou K, Chen F, Chen G, Yu Y, Lv X, Zhang W, Rao P, Ni L. Comparative Study on the Antioxidant Activity of Monascus Yellow Pigments From Two Different Types of Hongqu-Functional Qu and Coloring Qu. Front Microbiol 2021; 12:715295. [PMID: 34408740 PMCID: PMC8365423 DOI: 10.3389/fmicb.2021.715295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
This study is the first to investigate the difference in the composition of Monascus azaphilone pigments (MonAzPs) between functional Qu (FQ) and coloring Qu (CQ) and analyze their relationships with antioxidant activity. The composition of key active components and antioxidant activity of the ethanol extracts of FQ and CQ were analyzed by Uv-vis, HPLC, and chemical antioxidant tests. The composition of MonAzPs of the ethanol extracts was further analyzed by HPLC-MS. Seven Monascus yellow pigments (MYPs) with high abundance were successfully purified for the antioxidation evaluation in vitro and in the cell. Correlation analysis between the metabolites and the antioxidant activity of Hongqu indicated that MonAzPs might play an essential role in the antioxidant activity (r > 0.80). By contrast, the monacolin K (MK), polysaccharide, ergosterol, and γ-aminobutyric acid (GABA) were not significantly correlated with the antioxidant activity. Orthogonal partial least squares discriminant analysis (OPLS-DA) based on the composition of MonAzPs revealed that the abundance of MYPs is significantly different between FQ and CQ (P < 0.05 and VIP > 1.0). Seven MYPs (monasfluore A, monaphilone B, monascuspilion, monascin, monaphilone A, ankaflavin, and new yellow pigment) with high abundance were successfully purified for the antioxidation evaluation. Chemical antioxidant tests revealed that the antioxidant activities of monaphilone A, ankaflavin, and new yellow pigment only from CQ were significantly more potent than monasfluore A and monascuspilion only separated from FQ. The cellular antioxidant assay (CAA) showed that the new yellow pigment had the best antioxidant activity (quercetin equivalent 7.23 μM), followed by monasfluore A and monaphilone B, all of which were significantly better than monascin and ankaflavin, the two most frequently reported MYPs. Research on the structure-activity relationship demonstrated that alterations of the hydroxyl that occurred on C-3' or C-11 obviously affected the antioxidant activities of MYPs. Our findings provide evidence that MYPs may be the key active components for CQ to have a more potent antioxidant capacity than FQ. The alterations of the hydroxyl that occurred on C-3' or C-11 obviously affected the antioxidant activities of MYPs.
Collapse
Affiliation(s)
- Li Wu
- College of Chemistry, Fuzhou University, Fuzhou, China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Research Institute of Agri-Engineering and Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Kangxi Zhou
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Feng Chen
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Guimei Chen
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Ying Yu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xucong Lv
- College of Chemistry, Fuzhou University, Fuzhou, China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Wen Zhang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Pingfan Rao
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Li Ni
- College of Chemistry, Fuzhou University, Fuzhou, China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
24
|
Thermal Inactivation Kinetics of Kudzu ( Pueraria lobata) Polyphenol Oxidase and the Influence of Food Constituents. Foods 2021; 10:foods10061320. [PMID: 34201165 PMCID: PMC8226850 DOI: 10.3390/foods10061320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022] Open
Abstract
The thermal inactivation kinetics of kudzu (Pueraria lobata) polyphenol oxidase (PPO) were investigated in model and food systems. PPO in kudzu tissue (tPPO) showed a higher thermostability than that of PPO in crude extract (cPPO) and purification fractions (pPPO). The PPO inactivation rate constant (k) increased with an increase in temperature, and tPPO showed the lowest k value, followed by that of cPPO and pPPO at the same temperature, indicating that PPO in the food system was more resistant to thermal treatment. Food constituents (pectin, starch, sucrose, and bovine serum albumin) in the food system decreased the activity of PPO but increased the thermostability of PPO, among which pectin exhibited the strongest protective effect against thermal inactivation, and the influence of sucrose was much slighter than that of other macromolecules. Fluorescence emission spectra indicated that pPPO exhibited stronger interactions with pectin than sucrose, and pPPO with pectin showed a more stable conformation under thermal treatment.
Collapse
|
25
|
Jang HH, Noh H, Kim HW, Cho SY, Kim HJ, Lee SH, Lee SH, Gunter MJ, Ferrari P, Scalbert A, Freisling H, Kim JB, Choe JS, Kwon O. Metabolic tracking of isoflavones in soybean products and biosamples from healthy adults after fermented soybean consumption. Food Chem 2020; 330:127317. [PMID: 32569934 DOI: 10.1016/j.foodchem.2020.127317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022]
Abstract
Fermentation may enhance the nutritional properties of foods by increasing metabolite bioactivity or bioavailability. This study explored the effect of fermentation on isoflavone bioavailability and metabolism. Isoflavone metabolites were tracked in foods and biospecimens of healthy adults after fermented soybean (FS) or non-fermented soybean (NFS) consumption in a randomized, controlled, crossover intervention study. The change in soybean isoflavones caused by fermentation resulted in faster absorption and higher bioavailability after consumption of FS. Although the urinary level of total isoflavone metabolites was similar after the consumption of the two diets, urinary genistein 7-O-sulfate was derived as a discriminant metabolite for the FS diet by partial least squares discriminant analysis. This study suggests that an isoflavone conjugate profile might be a more appropriate marker than total isoflavone levels for discriminating between the consumption of FS and NFS diets.
Collapse
Affiliation(s)
- Hwan-Hee Jang
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea; Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, South Korea
| | - Hwayoung Noh
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Heon-Woong Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Su-Yeon Cho
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Hyeon-Jeong Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Seon-Hye Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Sung-Hyen Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Marc J Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Pietro Ferrari
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Augustin Scalbert
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Heinz Freisling
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Jung-Bong Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Jeong-Sook Choe
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea.
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
26
|
Yan Y, Fu C, Cui X, Pei X, Li A, Qin X, Du C, Du H. Metabolic profile and underlying antioxidant improvement of Ziziphi Spinosae Folium by human intestinal bacteria. Food Chem 2020; 320:126651. [DOI: 10.1016/j.foodchem.2020.126651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
|
27
|
Zhang X, Liu C, Tian W, Zhang H, Li P, Wang J, He W. Theoretical and experimental investigation of the antioxidative activity of monascin. Food Funct 2020; 11:5915-5923. [PMID: 32584351 DOI: 10.1039/c9fo02410g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monascin, a specific type of monascus pigments, exhibits many bioactivities. In this study, the antioxidative activity of monascin was investigated by theoretical and experimental methods. First, the antioxidant potential of six monascus pigments was predicted by density functional theory (DFT) and time-dependent density functional theory (TDDFT) at the B3LYP/6-31+G (d, p) level, and monascus yellow pigments were predicted to have strong antioxidant capacity, as they can transfer hydrogen to free radicals and accept electrons from radicals. Then, the free radical-scavenging capacity of monascin for 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide, and hydroxyl radicals was experimentally validated by electron spin resonance (ESR) measurement. Monascin exhibited a quenching effect on DPPH, superoxide, and hydroxyl radicals in a dose-dependent manner. Specifically, the scavenging activity of monascin for DPPH, superoxide, and hydroxyl radicals was 97.5%, 59.5%, and 68.6%, respectively, when 0.1 mg mL-1 monascin was present. Our study provides theoretical evidence for the strong antioxidative activity of monascin and offers a simple and reliable strategy to determine the antioxidative activity.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Food and Bioengineering College, Xuchang University, Henan 461000, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
28
|
Structural characterisation and immunomodulatory activity of exopolysaccharides from liquid fermentation of Monascus purpureus (Hong Qu). Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105636] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Khosravi A, Razavi SH. The role of bioconversion processes to enhance bioaccessibility of polyphenols in rice. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
Chen T, Piao M, Ehsanur Rahman SM, Zhang L, Deng Y. Influence of fermentation on antioxidant and hypolipidemic properties of maifanite mineral water-cultured common buckwheat sprouts. Food Chem 2020; 321:126741. [PMID: 32276146 DOI: 10.1016/j.foodchem.2020.126741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/10/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
Buckwheat sprouts (BS) becomes popular due to its' health-promoting properties as food product. The effects of fermentation with Saccharomyces cerevisiae and Lactobacillus plantarum on antioxidant and hypolipidemic activities as well as functional composition in common BS cultivated in maifanite mineral water were investigated here. DPPH and ·OH results showed higher antioxidant potential in fermented BS compared to unfermented BS, due to the higher rutin, orientin, isoorientin, vitexin, isovitexin, and total phenolic and flavonoid contents. The S. cerevisiae-fermented BS also exhibited 113% and 110% higher DPPH and ·OH scavenging activities than the L. plantarum-fermented BS, respectively. In hyperlipidemic mice, blood lipid parameters were improved as dose-dependent manner when supplemented the food with S. cerevisiae-fermented BS. Fermented BS also restored liver antioxidant levels significantly. The fermented BS had greater effect on different parameters than those of unfermented BS. Therefore, fermentation is a valuable method to enhance the bioactive potential of BS.
Collapse
Affiliation(s)
- Tiejun Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Meizi Piao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Syed Md Ehsanur Rahman
- Interdisciplinary Institute of Food Security, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Lehong Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yang Deng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
31
|
A Promising View of Kudzu Plant, Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep: Flavonoid Phytochemical Compounds, Taxonomic Data, Traditional Uses and Potential Biological Activities for Future Cosmetic Application. COSMETICS 2020. [DOI: 10.3390/cosmetics7010012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pueraria montana var. lobata is widely known as kudzu especially in Japan, China, Korea, and other Asian countries. This plant is an ingredient for traditional food and an herbal ingredient for traditional medicines, particular in Japan and China. There are a few reports on its cosmetic uses. Interestingly, many phytochemical compounds from this plant have been continuously reported, particularly flavonoid compounds, which are well-known as potential bioactive ingredients for cosmetics. This work aims to illustrate promising views of kudzu plant, focusing on the diversity of flavonoid phytochemical compounds, taxonomic data, traditional uses, and potential biological activities for future cosmetic applications, i.e., antioxidant, antiglycation, skin regeneration, and melanogenesis inhibitory activities.
Collapse
|
32
|
Ma J, Zhu X, Shi L, Ni C, Hou J, Cheng J. Enhancement of soluble protein, polypeptide production and functional properties of heat-denatured soybean meal by fermentation of Monascus purpureus 04093. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1695677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jiage Ma
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiuqing Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Lin Shi
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chunlei Ni
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Juncai Hou
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
33
|
Huang Z, Zhang L, Gao H, Wang Y, Li X, Huang X, Huang T. Soybean isoflavones reduce citrinin production by Monascus aurantiacus Li AS3.4384 in liquid state fermentation using different media. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4772-4780. [PMID: 30953365 DOI: 10.1002/jsfa.9723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/05/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Monascus, a filamentous fungus, produces many bioactive substances. However, in the process of fermentation, Monascus also produces the mycotoxin citrinin. Owing to the presence of citrinin, the safety of Monascus products has been questioned and their wide application limited. Using soybean isoflavones (SI) as exogenous additives, alterations in citrinin production by Monascus aurantiacus Li AS3.4384 (MALA) in different media used for liquid state fermentation were investigated. RESULTS Results showed that the citrinin concentration was 95.98% lower than that of the control group after 16-days fermentation when 20.0 g L-1 SI were added to rice powder and inorganic salt medium. Citrinin production was reduced by 97.24% after 12-days fermentation with 10.0 g L-1 SI in starch inorganic salt medium; 82.52% after 20-days fermentation with 20.0 g L-1 SI in starch peptone medium with high starch content; 45.07% after 14-days fermentation with 5.0 g L-1 SI in starch peptone medium with low starch content; and 82.21% after 14-days fermentation with 20.0 g L-1 SI in yeast extract sucrose medium. CONCLUSION The developed method of removing citrinin is simple, safe, and effective, and it can be applied to reduce the citrinin content of Monascus products. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhibing Huang
- State Key Laboratory of Food Science and Technology, and Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Lijuan Zhang
- State Key Laboratory of Food Science and Technology, and Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Heng Gao
- State Key Laboratory of Food Science and Technology, and Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Yanling Wang
- State Key Laboratory of Food Science and Technology, and Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xiujiang Li
- The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xinyu Huang
- State Key Laboratory of Food Science and Technology, and Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Ting Huang
- State Key Laboratory of Food Science and Technology, and Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
34
|
Huang Q, Zhang H, Xue D. Enhancement of the antioxidant and hypolipidemic activities of Puerariae radix by fermentation with Aspergillus niger. Food Sci Biotechnol 2019; 28:1117-1124. [DOI: 10.1007/s10068-018-0540-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 11/13/2018] [Accepted: 12/11/2018] [Indexed: 11/29/2022] Open
|
35
|
Suraiya S, Jang WJ, Cho HJ, Choi YB, Park HD, Kim JM, Kong IS. Immunomodulatory Effects of Monascus spp.-Fermented Sacccharina japonica Extracts on the Cytokine Gene Expression of THP-1 Cells. Appl Biochem Biotechnol 2019; 188:498-513. [PMID: 30536032 DOI: 10.1007/s12010-018-02930-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/30/2018] [Indexed: 12/21/2022]
Abstract
The immunomodulatory effects of Monascus-fermented Saccharina japonica extract on anti- and pro-inflammatory cytokines gene expression of THP-1 cells were evaluated. Extracts of fermented samples showed higher phenolic, flavonoid, protein, and reducing sugar contents than unfermented one. Fermented samples were rich in many bioactive compounds determined by GC-MS analyses and showed cell viability greater than 85% in MTS assay. Regarding the anti-inflammatory and pro-inflammatory activities of the different samples, Q-PCR analyses revealed that IL-10 gene expression in THP-1 cells was significantly higher (p < 0.05) in cells treated with the SjMp or SjMk sample than those treated with the unfermented sample. Cells treated with the SjMp extract or lipopolysaccharide (LPS) showed significantly (p < 0.05) higher relative gene expression of IL-4 cytokine than cells treated with SjMk or SjU extracts. The relative gene expression of IFN-α was higher in cells treated with SjMp followed by LPS, SjMk, and SjU. TGF-β expression was higher in LPS-stimulated cells followed by SjMk and other samples. Cells treated with SjMp exhibited significantly higher pro-inflammatory (IL-6, IL-8, TNF-α, and NF-κB) cytokine gene expression than cells treated with SjU. These results revealed that extracts from S. japonica fermented with Monascus spp. regulate cytokine gene expression. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Sharmin Suraiya
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
- Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Won Je Jang
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Hwa Jin Cho
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Yu Bin Choi
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Hae Dae Park
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Jin-Man Kim
- Department of Biotechnology, Chonnam National University, 50, Daehak-ro, Yeosu, 59626, Republic of Korea
| | - In-Soo Kong
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
36
|
Increased Phenolic Content and Enhanced Antioxidant Activity in Fermented Glutinous Rice Supplemented with Fu Brick Tea. Molecules 2019; 24:molecules24040671. [PMID: 30769776 PMCID: PMC6412323 DOI: 10.3390/molecules24040671] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/10/2019] [Accepted: 02/10/2019] [Indexed: 12/29/2022] Open
Abstract
Glutinous rice-based foods have a long history are consumed worldwide. They are also in great demand for the pursuit of novel sensory and natural health benefits. In this study, we developed a novel fermented glutinous rice product with the supplementation of Fu brick tea. Using in vitro antioxidant evaluation and phenolic compounds analysis, fermentation with Fu brick tea increased the total phenolic content and enhanced the antioxidant activity of glutinous rice, including scavenging of 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) radical, 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical, and hydroxyl radical, ferric-reducing antioxidant power, and ferric ion reducing power and iron chelating capability. Besides, compared with traditional fermented glutinous rice, this novel functional food exhibited a stronger activity for protecting DNA against hydroxyl radical-induced oxidation damage. Quantitative analysis by HPLC identified 14 compounds covering catechins and phenolic acids, which were considered to be positively related to the enhanced antioxidant capability. Furthermore, we found that 80% ethanol was a suitable extract solvent compared with water, because of its higher extraction efficiency and stronger functional activities. Our results suggested that this novel fermented glutinous rice could serve as a nutraceutical food/ingredient with special sensory and functional activities.
Collapse
|
37
|
Red yeast rice fermentation with Bacillus subtilis B2 under blue light-emitting diodes increases antioxidant secondary products (Manuscript ID: BPBSE-18-0387). Bioprocess Biosyst Eng 2018; 42:529-539. [DOI: 10.1007/s00449-018-2056-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/04/2018] [Indexed: 01/22/2023]
|
38
|
Tan H, Xing Z, Chen G, Tian X, Wu Z. Evaluating Antitumor and Antioxidant Activities of Yellow Monascus Pigments from Monascus ruber Fermentation. Molecules 2018; 23:molecules23123242. [PMID: 30544614 PMCID: PMC6321613 DOI: 10.3390/molecules23123242] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
Yellow Monascus pigments can be of two kinds: Natural and reduced, in which natural yellow Monascus pigments (NYMPs) attract widespread attention for their bioactivities. In this study, the antioxidative and antibreast cancer effects of the water-soluble NYMPs fermented by Monascus ruber CGMCC 10910 were evaluated. Results showed that water-soluble NYMPs had a significantly improved antioxidative activities compared to the reduced yellow Monascus pigments (RYMPs) that were chemically derived from orange or red Monascus pigments. Furthermore, NYMPs exhibited a concentration-dependent inhibition activity on MCF-7 cell growth (p < 0.001). After a 48-h incubation, a 26.52% inhibition yield was determined with 32 μg/mL of NYMPs. NYMPs also significantly inhibited the migration and invasion of MCF-7 cells. Mechanisms of the activities were associated with a down-regulation of the expression of matrix metalloproteinases and vascular endothelial growth factor. Rather than being alternatively used as natural colorants or antioxidants, this work suggested that NYMPs could be selected as potential functional additives in further test of breast cancer prevention and adjuvant therapy.
Collapse
Affiliation(s)
- Hailing Tan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
- Pan Asia (Jiangmen) Institute of Biological Engineering and Health, Jiangmen 529080, China.
| | - Ziyi Xing
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Gong Chen
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Xiaofei Tian
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Zhenqiang Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
39
|
Yan Y, Du C, Li Z, Zhang M, Li J, Jia J, Li A, Qin X, Song Q. Comparing the antidiabetic effects and chemical profiles of raw and fermented Chinese Ge-Gen-Qin-Lian decoction by integrating untargeted metabolomics and targeted analysis. Chin Med 2018; 13:54. [PMID: 30386417 PMCID: PMC6204051 DOI: 10.1186/s13020-018-0208-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/24/2018] [Indexed: 12/23/2022] Open
Abstract
Background Microbial fermentation has been widely applied in traditional Chinese medicine (TCM) for thousands of years in China. Various beneficial effects of fermentation for applications in TCM or herbals have been reported, such as enhanced anti-ovarian cancer, antioxidative activity, and neuroprotective effects. Ge-Gen-Qin-Lian decoction (GQD), a classic TCM formula, has been used to treat type 2 diabetes mellitus in China. In this study, GQD was fermented with Saccharomyces cerevisiae, and the antidiabetic activities and overall chemical profiles of raw and fermented GQD (FGQD) were systematically compared. Methods First, the antidiabetic effects of GQD and FGQD on high-fat diet and streptozotocin (STZ)-induced diabetic rats were compared. Then, high-performance liquid chromatography Q Exactive MS was applied for rapid characterization of the chemical components of GQD. Additionally, we proposed an integrated chromatographic technique based untargeted metabolomics identifying differential chemical markers between GQD and FGQD and targeted analysis determining the fermenting-induced quantitative variation tendencies of chemical marker strategy for overall chemical profiling of raw and fermented GQD. Results Both GQD and FGQD displayed effects against HFD and STZ-induced diabetes, and FGQD showed a better recovery trend associated with profound changes in the serum lipoprotein profile and body weight gain. In addition, 133 compounds were characterized from GQD. It was demonstrated that the integrated strategy holistically illuminated 30 chemical markers contributed to the separation of GQD and FGQD, and further elucidated the fermenting-induced chemical transformation mechanisms and inherent chemical connections of secondary metabolites. Although there were no new secondary metabolites in FGQD compared with GQD, the amounts of secondary metabolites, which were mostly deglycosylated, were redistributed in FGQD. Conclusion The anti-diabetic activities of GQD could be improved by applying fermentation technology. Moreover, the proposed strategy could serve as a powerful tool for systematically exploring the chemical profiles of raw and fermented formulas. Electronic supplementary material The online version of this article (10.1186/s13020-018-0208-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Yan
- 1Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006 Shanxi China
| | - Chenhui Du
- 2School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, No. 121, Daxue Street, Taiyuan, 030619 Shanxi China
| | - Zhenyu Li
- 1Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006 Shanxi China
| | - Min Zhang
- 1Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006 Shanxi China.,3College of Chemistry and Chemical Engineering of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006 Shanxi China
| | - Jin Li
- 2School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, No. 121, Daxue Street, Taiyuan, 030619 Shanxi China
| | - Jinping Jia
- 1Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006 Shanxi China
| | - Aiping Li
- 1Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006 Shanxi China
| | - Xuemei Qin
- 1Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006 Shanxi China
| | - Qiang Song
- 2School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, No. 121, Daxue Street, Taiyuan, 030619 Shanxi China
| |
Collapse
|
40
|
Wang GH, Lin YM, Kuo JT, Lin CP, Chang CF, Hsieh MC, Cheng CY, Chung YC. Comparison of biofunctional activity of Asparagus cochinchinensis (Lour.) Merr. Extract before and after fermentation with Aspergillus oryzae. J Biosci Bioeng 2018; 127:59-65. [PMID: 30097404 DOI: 10.1016/j.jbiosc.2018.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/06/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022]
Abstract
Asparagus cochinchinensis root (ACR) is used in traditional Chinese medicine. In this study, ACR was first extracted with 25% ethyl acetate (EA) and then fermented by Aspergillus oryzae to enhance its antioxidant activity and evaluate its potential antityrosinase activity. The physiological activity and cytotoxicity of A. oryzae-fermented ACR extract, along with its antityrosinase activity and effects on melanogenic factor levels in human epidermal melanocytes (HEMs), were analyzed and compared with those of the unfermented extract. The results showed that the physiological activity of the fermented extract in vitro or in cells was significantly higher than that of the unfermented extract. The IC50 values for 2,2-diphenyl-1-picrylhydrazine radical scavenging activity, reducing power, and antityrosinase activity in vitro for the fermented extract were 250.6 ± 32.5, 25.7 ± 3.5, and 50.6 ± 3.1 mg/L, respectively. The fermented extract favored cellular antityrosinase activity with low melanin production in human melanoma cells compared with the unfermented extract. The inhibitory mechanism of melanin synthesis by unfermented extract was independent of the tested melanogenesis-related proteins. However, the inhibitory mechanism of the fermented extract was possibly caused by synergistic inhibition of these proteins. Thus, A. oryzae-fermented ACR extract may be used for developing new health food or cosmetic ingredients.
Collapse
Affiliation(s)
- Guey-Horng Wang
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, No. 1999, Guankou Middle Rd., Jimei Dist., Xiamen City 361023, China.
| | - Yi-Min Lin
- Department of Biological Science and Technology, China University of Science and Technology, No. 245, Sec. 3, Academia Rd., Nangang Dist., Taipei City 11581, Taiwan.
| | - Jong-Tar Kuo
- Department of Biological Science and Technology, China University of Science and Technology, No. 245, Sec. 3, Academia Rd., Nangang Dist., Taipei City 11581, Taiwan.
| | - Chia-Pei Lin
- Department of Biological Science and Technology, China University of Science and Technology, No. 245, Sec. 3, Academia Rd., Nangang Dist., Taipei City 11581, Taiwan.
| | - Chin-Feng Chang
- Department of Biological Science and Technology, China University of Science and Technology, No. 245, Sec. 3, Academia Rd., Nangang Dist., Taipei City 11581, Taiwan.
| | - Min-Chi Hsieh
- Department of Biological Science and Technology, China University of Science and Technology, No. 245, Sec. 3, Academia Rd., Nangang Dist., Taipei City 11581, Taiwan.
| | - Chiu-Yu Cheng
- Department of Biological Science and Technology, China University of Science and Technology, No. 245, Sec. 3, Academia Rd., Nangang Dist., Taipei City 11581, Taiwan.
| | - Ying-Chien Chung
- Department of Biological Science and Technology, China University of Science and Technology, No. 245, Sec. 3, Academia Rd., Nangang Dist., Taipei City 11581, Taiwan.
| |
Collapse
|
41
|
Sun Y, Zhang H, Cheng M, Cao S, Qiao M, Zhang B, Ding L, Qiu F. New hepatoprotective isoflavone glucosides from Pueraria lobata (Willd.) Ohwi. Nat Prod Res 2018; 33:3485-3492. [PMID: 29968479 DOI: 10.1080/14786419.2018.1484461] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Two new isoflavone glucosides, 3'-methoxyneopuerarin A (1) and 3'-methoxyneopuerarin B (2), together with nine known isoflavones including puerarin (3), neopuerarin A (4), neopuerarin B (5), daidzin (6), daidzein (7), 3'-methoxypuerarin (PG-3) (8), puerarin xyloside (9), mirificin (10), 3'-hydroxypuerarin (11) were isolated from the water extraction of the dried roots of Pueraria lobata (Willd.) Ohwi. Their structures were elucidated by the means of spectroscopic and chromatographic analysis methods. All compounds were evaluated for their hepatoprotective activity on HepG2 cells. All of them showed statistically significant hepatoprotective effect.
Collapse
Affiliation(s)
- Yingjie Sun
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China.,School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China
| | - Hongmin Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China.,School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China
| | - Ming Cheng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China.,School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China
| | - Shijie Cao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China
| | - Miao Qiao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China.,School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China
| | - Boli Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China
| | - Liqin Ding
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China
| | - Feng Qiu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China.,School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China
| |
Collapse
|
42
|
Suraiya S, Lee JM, Cho HJ, Jang WJ, Kim DG, Kim YO, Kong IS. Monascus spp. fermented brown seaweeds extracts enhance bio-functional activities. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2017.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|