1
|
Zhou M, Liu D, Tan H, Wang C, Yu W, Xiong G, Wang L, Wu W, Qiao Y. Flavor formation and phospholipids degradation of crayfish meat treated by boiling combined air-frying during accelerated storage. Food Chem X 2025; 27:102406. [PMID: 40224346 PMCID: PMC11986982 DOI: 10.1016/j.fochx.2025.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Thermal treatment is an essential processing method in crayfish processing. This study analyzed the changes in lipids and volatile compounds in crayfish muscle subjected to three thermal processes: boiling (BO), air-frying (AF), and boiling combined air-frying (BO-AF). Aldehydes and heterocyclic compounds were found to be the predominant volatile compounds in crayfish muscle during thermal processing and storage. The intensity of lipid oxidation (POV, TBARS and p-AnV) was greatest in AF, and was notably lower in BO-AF. the total concentration of free fatty acids (FFAs) was highest in the AF group (4.14 mg/g) after processing, followed by BO (3.26 mg/g) and BO-AF (2.04 mg/g). During storage, the FFAs content gradually decreased, with generally lower levels observed at 65 °C compared to 45 °C. A total of 383 phospholipid species were identified, phosphatidylethanolamine being the primary difference lipid type in BO (26.7 %) and AF (36.7 %), while fatty acids were the main differential lipid types in BO-AF group, under the comparison between processed and stored. Overall, the BO-AF method improved the flavor sensory and decreased lipid oxidation, compared to the other two methods. These findings provide valuable insights into the effects of different thermal processing and storage methods on the quality and safety of crayfish muscle.
Collapse
Affiliation(s)
- Mingzhu Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Dongyin Liu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Hongyuan Tan
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Chao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Wei Yu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guangquan Xiong
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Wenjin Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yu Qiao
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
2
|
de Almeida Queiroz S, de Novais Junior LR, de Carvalho ABP, da Silva TV, de Souza Ramos S, Meneguzzo V, Mathias K, Tiscoski ADB, Piacentini N, de Souza Goldim MP, Iser BPM, Petronilho F, Inserra A, de Bitencourt RM. Cannabidiol reverses myeloperoxidase hyperactivity in the prefrontal cortex and striatum, and reduces protein carbonyls in the hippocampus in a ketamine-induced schizophrenia rat model. Schizophr Res 2025; 278:82-95. [PMID: 40132281 DOI: 10.1016/j.schres.2025.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/28/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Schizophrenia (SCZ) has limited treatment options, often with significant side effects. Cannabidiol (CBD), a non-euphoric phytocannabinoid, has shown potential as a novel therapeutic option in SCZ due to antipsychotic-like, anti-inflammatory, and antioxidant properties. We compared the therapeutic effects of CBD and risperidone (RISP) in a rat model of SCZ induced by sub-chronic ketamine (KET), focusing on inflammatory and oxidative stress, and behavioral phenotypes. METHODS Rats were pre-treated with KET or saline (SAL) for 10 days followed by CBD or RISP for 8 days. Locomotion, anxiety- and anhedonia-like behavior, and recognition memory were assessed. Oxidative damage as measured by protein carbonyls, thiobarbituric acid reactive substances, and catalase activity, and the inflammation markers myeloperoxidase (MPO) activity and nitrite/nitrate (N/N) concentration ratio were assessed in the prefrontal cortex (PFC), hypothalamus (HYP), hippocampus (HPC), and striatum, brain areas relevant to SCZ. RESULTS CBD restored the KET-induced decreased rearing behavior in the OFT, while RISP further decreased rearing. RISP treatment in control rats decreased rearing and elicited an anhedonic-like phenotype, while CBD did not. CBD, but not RISP restored the KET-induced increased levels of MPO activity in the PFC and the striatum, and protein carbonyls in the HPC. Post-KET treatment with RISP but not CBD decreased protein carbonyls in the PFC, and decreased the N/N concentration ratio in the HYP. CONCLUSION CBD restored the KET-induced decrease in rearing behavior without inducing an anhedonic-like phenotype as observed with RISP. CBD, and to a lesser extent RISP restored the oxidative stress and neuroinflammation elicited by KET in the striatum, HPC, and PFC. These findings support the possibility that the antipsychotic effects of CBD might be mediated by its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Sofia de Almeida Queiroz
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Linério Ribeiro de Novais Junior
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Anita Beatriz Pacheco de Carvalho
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Tiago Vicente da Silva
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Suelen de Souza Ramos
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Vicente Meneguzzo
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Khiany Mathias
- Laboratory of Experimental Neurology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Anita Dal Bó Tiscoski
- Laboratory of Experimental Neurology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Natália Piacentini
- Laboratory of Experimental Neurology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Mariana Pereira de Souza Goldim
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Betine Pinto Moehlecke Iser
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Antonio Inserra
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Rafael Mariano de Bitencourt
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil.
| |
Collapse
|
3
|
Zhang R, Yu D, Wang P, Liu Y, Zheng H, Sun L, Zheng J, Chi H. Effects of Hot-Air Drying Temperatures on Quality and Volatile Flavor Components of Cooked Antarctic krill ( Euphausia superba). Foods 2025; 14:1221. [PMID: 40238377 PMCID: PMC11988459 DOI: 10.3390/foods14071221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Hot-air drying is a key step for Antarctic krill (Euphausia superba) onboard processing; however, few studies have explored the effects of different drying temperatures on the quality and flavor alternations of Antarctic krill. In this study, we investigated the effects of hot-air drying temperatures on the physicochemical properties and flavor of Antarctic krill. Sensory evaluation, as well as physical and chemical property tests, revealed that Antarctic krill treated with hot-air drying exhibited substantial changes in moisture status, lipid oxidation indices, and b* value. The sensory evaluation of Antarctic krill under high temperatures (120 °C and 150 °C) showed higher scores (8.45 ± 0.05 and 8.58 ± 0.22, respectively) on smells, whereas the color changes caused by high temperatures also resulted in lower overall sensory evaluation scores. The POV and TBARS values reached the highest at 26.63 ± 0.28 mg/g and 1.45 ± 0.19 mg/100 g, respectively. The b* value decreased significantly to 22.32 ± 4.56 following 150 °C treatment. Furthermore, a total of 53 volatile compounds were identified by GC-IMS, and the results showed that aldehydes, alcohols, alkanes, ketones, pyrazines, and furans were the main flavor sources of Antarctic krill. At the same time, the GC-MS results showed that the thermal process had no significant effect on the nutrient content of Antarctic krill. The findings obtained in this study provide foundational information for future research on ship-borne processing and high-value utilization of Antarctic krill.
Collapse
Affiliation(s)
- Ruxin Zhang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (R.Z.); (P.W.); (H.Z.)
| | - Di Yu
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (D.Y.); (Y.L.); (J.Z.)
| | - Peng Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (R.Z.); (P.W.); (H.Z.)
| | - Yujun Liu
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (D.Y.); (Y.L.); (J.Z.)
| | - Hanfeng Zheng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (R.Z.); (P.W.); (H.Z.)
| | - Lechang Sun
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China;
| | - Jie Zheng
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (D.Y.); (Y.L.); (J.Z.)
| | - Hai Chi
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (R.Z.); (P.W.); (H.Z.)
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (D.Y.); (Y.L.); (J.Z.)
| |
Collapse
|
4
|
Skwarek P, Karwowska M. The Effect of Tomato Pomace on the Oxidative and Microbiological Stability of Raw Fermented Sausages With Reduced Addition of Nitrites. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:6146090. [PMID: 40170688 PMCID: PMC11961285 DOI: 10.1155/ijfo/6146090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
The aim of the study was to assess the impact of the addition of freeze-dried tomato pomace (TP) on the physicochemical parameters, oxidative changes, and microbiological stability of raw fermented sausages with reduced addition of nitrites. It was shown that the addition of TP reduced the pH value of experimental meat products. All analyzed meat products were characterized by similar low water activity in the range of 0.842-0.865. The addition of TP also increased the antioxidant activity of sausages, which effectively inhibited oxidative changes in lipids of meat products by reducing the TBARS values. The use of 1.5% and 2.5% TP also resulted in an increase of redness (a ∗) of the sausages, which may have a positive impact on its acceptance by consumers. Additionally, sausages containing TP were characterized by a higher heme iron content as well as higher carbonyl groups. The addition of TP did not affect the number of lactic acid bacteria in sausages. The most promising results were obtained for dry fermented sausage with 2.5% addition of TP. It can therefore be concluded that the use of TP as a natural antioxidant makes it possible to reduce nitrates in the production of meat products and additionally helps to reduce food waste.
Collapse
Affiliation(s)
- Patrycja Skwarek
- Department of Animal Food Technology, Sub-Department of Meat Technology and Food Quality, University of Life Sciences in Lublin, Lublin, Poland
| | - Małgorzata Karwowska
- Department of Animal Food Technology, Sub-Department of Meat Technology and Food Quality, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
5
|
Wei L, Liu X, Tan Z, Zhang B, Wen C, Tang Z, Zhou Y, Zhang H, Chen Y. Chlorogenic acid mitigates avian pathogenic Escherichia coli-induced intestinal barrier damage in broiler chickens via anti-inflammatory and antioxidant effects: CHLOROGENIC ACID AND BROILER CHICKENS. Poult Sci 2025; 104:105005. [PMID: 40086255 PMCID: PMC11953978 DOI: 10.1016/j.psj.2025.105005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
This study was conducted to investigate the protective effects of chlorogenic acid (CGA) on intestinal health in broilers challenged with avian pathogenic Escherichia coli (APEC). One hundred and eighty one-day-old male broiler chicks were divided into three groups with six replicates of ten chicks each for a 21-day trial. The birds in the control and APEC groups were fed a basal diet, while birds in the CGA-treated group received a basal diet supplemented with 1000 mg/kg of CGA. At 14 days, birds in the APEC and CGA groups were administered with an APEC suspension Compared with the APEC group, CGA incorporation decreased mortality and cecal Escherichia coli colonies in bacterially challenged broilers (P < 0.05). Additionally, CGA reduced the relative weight of the heart, liver, kidney, gizzard, proventriculus, and intestine, as well as serum triglyceride level and alanine aminotransferase activity in APEC-challenged broilers (P < 0.05). Supplementing CGA reduced the concentrations of interferon-γ, tumor necrosis factor-α, interleukin-1β, and/or interleukin-6 in serum, duodenum, jejunum, and/or ileum in APEC-challenged broilers presumably through the inactivation of the toll-like receptor 4/myeloid differentiation factor 88 pathway (P < 0.05). CGA administration reduced serum diamine oxidase activity and d-lactate and endotoxin concentrations, but increased the ratio between villus height and crypt depth in duodenum and jejunum of APEC-infected chickens, accompanied by the restored intestinal expression of tight junction proteins (claudin-1, claudin-2, occludin, and zonula occludens-1) and genes involved in apoptosis (B cell lymphoma-2 associated X protein, B cell lymphoma-2, and cysteine-requiring aspartate protease 9) (P < 0.05). Additionally, CGA increased superoxide dismutase, glutathione peroxidase, and catalase activities, and glutathione levels in serum and intestinal mucosa, but inhibited the accumulation of intestinal malondialdehyde in APEC-challenged broilers possibly via activating the nuclear factor-erythroid 2-related factor-2/heme oxygenase-1 pathway (P < 0.05). The results suggested that CGA alleviated APEC-induced intestinal damage in broilers by inhibiting inflammation and oxidative stress. However, its potential application in practical poultry production is contingent upon both its efficacy and cost-effectiveness.
Collapse
Affiliation(s)
- Leyi Wei
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xinghuo Liu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zichao Tan
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Bingying Zhang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Chao Wen
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhigang Tang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yanmin Zhou
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Hao Zhang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yueping Chen
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
6
|
Chou ST, Chen YH, Chen YH, Tsai YC, Chung YC, Li JP. Safety and antioxidant assessments of BLR-E50, 50% ethanolic extract from red beans co-fermented by Bacillus subtilis and Lactobacillus bulgaricus. Food Chem Toxicol 2025; 197:115261. [PMID: 39828121 DOI: 10.1016/j.fct.2025.115261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Since red beans have poor textural properties, fermentation is commonly used to help produce better pulse products. To obtain BLR-E50, red beans are fermented using a co-culture of Bacillus subtilis and Lactobacillus bulgaricus, followed by extraction with 50% ethanol. The present data demonstrate that BLR-E50 did not exhibit mutagenicity, genotoxicity, or subacute oral toxicity. BLR-E50 showed antioxidant abilities in vitro. Under H2O2-challenged conditions, the dietary addition of BLR-E50 extended the survival time of female Drosophila melanogaster (D. melanogaster). Meanwhile, BLR-E50 modulated the antioxidant system in H2O2-treated D. melanogaster. Oral administration of BLR-E50 also improved motor abilities and reduced tyrosine hydroxylase levels in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurodegeneration mouse model. Overall, this study presents that BLR-E50 is safe and possesses antioxidant, anti-aging, and neuroprotective capabilities, providing scientific evidence for the potential application of fermented red bean products as antioxidants in future dietary interventions.
Collapse
Affiliation(s)
- Su-Tze Chou
- Department of Food and Nutrition, Providence University, Taichung, 43301, Taiwan
| | - Yi-Hua Chen
- Department of Food and Nutrition, Providence University, Taichung, 43301, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40432, Taiwan
| | - Yu-Chen Tsai
- Department of Life Science, Tunghai University, Taichung, 40799, Taiwan
| | - Yun-Chin Chung
- Department of Food and Nutrition, Providence University, Taichung, 43301, Taiwan
| | - Ju-Pi Li
- Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan; Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan.
| |
Collapse
|
7
|
Hernández-Jaime AG, Castillo-Rangel F, Arévalos-Sánchez MM, Rentería-Monterrubio AL, Santellano-Estrada E, Tirado-Gallegos JM, Chávez-Martínez A. Antioxidant and Antimicrobial Activity of Ferulic Acid Added to Dried Meat: Shelf-Life Evaluation. Foods 2025; 14:708. [PMID: 40002151 PMCID: PMC11854104 DOI: 10.3390/foods14040708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Ferulic acid is an antimicrobial and antioxidant phenolic compound located in the cell walls of plants and therefore classified as a natural antioxidant. The objective of this study was to assess the antimicrobial and antioxidant potential of ferulic acid as a substitute for nitrites in the elaboration of dried meat. Four treatments were evaluated: dried meat without nitrites or ferulic acid, (control treatment), dried meat with nitrites, dried meat with 0.05% of ferulic acid, and dried meat with 0.1% of ferulic acid. The antioxidant activity, lipid oxidation, and microbiological quality were evaluated throughout the dried meat shelf life. The protein, fat, and ash content was not different between the treatments with nitrites and ferulic acid (p > 0.05) and all values were within the ranges established for these nutrients. Regarding the moisture content, although there was a difference between treatments (p < 0.05), the values found were within the reported range (5-15%) in dried meat. Treatment with nitrites had the highest sodium content (p < 0.05), although all treatments surpass the daily consumption of sodium recommended by the World Health Organization. In addition, color differences would not be noticeable to the human eye. Treatments with ferulic acid exhibited the highest (p < 0.05) antioxidant activity and the lowest lipid oxidation and total aerobic mesophile counts. Finally, the change in the formulation of dried meat using ferulic acid instead of nitrites was not perceptible to panelists in sensory evaluation. These findings suggest that the incorporation of ferulic acid, when added to dried meat, can improve its oxidative stability and increase its antioxidant activity. In conclusion, the use of ferulic acid at a concentration of 0.1% is recommended because, at this concentration, the antioxidant activity was greater, and the oxidation was below the threshold of perceived rancidity. However, further research is needed to study the effect of nitrite substitution using ferulic acid in combination with other potential natural antioxidants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - América Chávez-Martínez
- Facultad de Zootécnica y Ecología, Universidad Autónoma de Chihuahua, Periférico Francisco R. Almada, Km 1, Chihuahua 31453, Mexico; (A.G.H.-J.); (F.C.-R.); (M.M.A.-S.); (A.L.R.-M.); (E.S.-E.); (J.M.T.-G.)
| |
Collapse
|
8
|
Bora B, Yin T, Zhang B, Altan CO, Benjakul S. Comparison between Indian and commercial chamomile essential oils: Chemical compositions, antioxidant activities and preventive effect on oxidation of Asian seabass visceral depot fat oil. Food Chem X 2025; 26:102292. [PMID: 40104615 PMCID: PMC11914187 DOI: 10.1016/j.fochx.2025.102292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 03/20/2025] Open
Abstract
Antioxidant properties of indigenous Indian (ICO) and commercial (CCO) chamomile essential oils (EOs) and their application in preventing lipid oxidation of fish oil were investigated. Solid-phase micro-extraction gas chromatography-mass spectrometry (SPME-GCMS) revealed dominant compounds to be α-bisabolol and chamazulene in ICO, while α-farnesene and δ-cadinene in CCO. Both EOs exhibited similar 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and oxygen radical absorbance capacity (ORAC) values but ICO showed superior effect in β-carotene/linoleic system. When applied in Asian seabass visceral depot fat oil (SVDFO), ICO (400 mg/L) significantly reduced peroxide values after 15 days (30°C) and slightly lowered thiobarbituric acid reactive substances and anisidine values. ICO (400 mg/L) showed comparable efficacy in preventing the oxidation of polyunsaturated fatty acids (PUFAs) to 200 mg/L butylated hydroxytoluene (BHT) within 0-12 days. Fourier Transform Infrared (FTIR) analysis confirmed preservation of PUFA double bonds by ICO. Therefore, chamomile EOs, especially ICO, could prevent lipid peroxidation in PUFA-rich oils.
Collapse
Affiliation(s)
- Birinchi Bora
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China
| | - Bin Zhang
- College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Can Okan Altan
- Department of Seafood Processing Technology, Faculty of Fisheries, Sinop University, Sinop, 57000, Türkiye
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- b BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
9
|
da Silveira TFF, Echegaray N, Guimarães R, Lemos A, Pires TCSP, Ferreira ICFR, Alves MJ, Barros L. Unveiling the impact of thermal water in German chamomile infusions: effects on phenolic compounds, antimicrobial and antioxidant properties. Food Chem 2025; 463:141481. [PMID: 39366097 DOI: 10.1016/j.foodchem.2024.141481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
German chamomile (GC) and thermal water (TW) are widely known for their biological properties. This study explored whether combining GC with TW could promote an improvement in the bioactivities of GC infusions compared to using drinking water (DW). DW was tested at 100 °C (GC-100DW) and TW at both 100 °C (GC-100TW) and 60 °C (GC-60TW). The use of TW for preparing infusions was associated with the reduction of the number and concentration of extracted phenolic compounds, with GC-60TW showing the lowest levels. It was also associated with a decrease in the antioxidant activity of the samples, as indicated by lower ORAC values and higher EC50 levels for TBARS. However, GC infusions prepared with TW, particularly GC-100TW, exhibited higher antibacterial and antifungal activities. These findings suggest that while TW's high mineral content affected phenolic extraction and antioxidant potential, it was associated with enhanced antimicrobial activity, partially confirming our hypothesis.
Collapse
Affiliation(s)
- Tayse F F da Silveira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Noemí Echegaray
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Viñas, Avd. Galicia N° 4, 32900 Ourense, Spain
| | - Rafaela Guimarães
- AquaValor - Centro de Valorização e Transferência de Tecnologia da Água - Associação, Rua Doutor Júlio Martins n°1, 5400-342 Chaves, Portugal
| | - André Lemos
- AquaValor - Centro de Valorização e Transferência de Tecnologia da Água - Associação, Rua Doutor Júlio Martins n°1, 5400-342 Chaves, Portugal
| | - Tânia C S P Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria José Alves
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; AquaValor - Centro de Valorização e Transferência de Tecnologia da Água - Associação, Rua Doutor Júlio Martins n°1, 5400-342 Chaves, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
10
|
Wilson VC, Kerr BJ. Feeding nursery pigs diets containing peroxidized soybean oil has minimal effects on oxidative status but dramatically reduces serum vitamin E concentrations. J Anim Sci 2025; 103:skaf016. [PMID: 39864064 DOI: 10.1093/jas/skaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/23/2025] [Indexed: 01/28/2025] Open
Abstract
A subgroup of pigs from two experiments (EXP) was selected to evaluate the impact of pigs fed diets containing peroxidized soybean oil (SO) on plasma-based measures of oxidative stress and vitamin E. Pigs were fed diets containing SO that was either unprocessed (23 °C; peroxide value (PV) of 3 meq/kg and an anisidine value of 4) or thermally processed at 135 °C for 42 h (PV of 30 meq/kg and an anisidine value of 501). The corn-soybean meal-based diets contained either 10% SO (EXP 1) or 8% SO (EXP 2). Pigs were fed the experimental diets for 22 d (EXP 1, 13.5 to 24.0 kg, 2 pigs/pen) or 27 d (EXP 2, 21.3 to 37.5 kg, 1 pig/pen), each with 10 replications per dietary treatment. Pigs fed diets containing the peroxidized SO had reduced ADG, ADFI, and GF compared to pigs fed diets containing the unheated SO (P ≤ 0.01). Pigs fed diets containing peroxidized SO had increased plasma concentrations of F2-isoprostanes and reactive oxygen metabolites compared to pigs fed diets containing unheated SO (P ≤ 0.01). In contrast, plasma thiobarbituric acid reactive substances concentrations tended to decrease in pigs fed diets containing peroxidized SO compared to pigs fed diets containing unheated SO (P = 0.10). There was no apparent effect of pigs consuming diets containing peroxidized SO on plasma antioxidant adsorbent capacity or an oxidative stress index (P ≥ 0.19). Pigs fed diets containing peroxidized SO resulted in a reduction in plasma vitamin E compared to pigs fed diets containing unheated SO (P ≤ 0.01). Results indicate that adding SO that has been thermally processed thereby containing high concentrations of aldehydes resulted in inconsistent changes of markers of oxidative stress, but dramatically reduced plasma vitamin E concentrations.
Collapse
Affiliation(s)
- Victoria C Wilson
- Department of Animal Sciences, Iowa State University, Ames, IA 50011, USA
| | - Brian J Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA 50011, USA
| |
Collapse
|
11
|
Wang H, Chen X, Yang H, Wu K, Guo M, Wang X, Fang Y, Li L. A novel gelatin composite film with melt extrusion for walnut oil packaging. Food Chem 2025; 462:141021. [PMID: 39226644 DOI: 10.1016/j.foodchem.2024.141021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/07/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
Gelatin have excellent film-forming and barrier properties, but its lack of biological activity limits its application in packaging. In this study, fish gelatin incorporated with apple polyphenol/cumin essential oil composite films were successfully prepared by melt extrusion. The cross-linking existed in gelatin and apple polyphenol improved the thermal stability and oxidation resistance of the film. The synergistic effect of apple polyphenols and cumin essential oil decreased the sensitivity of the film to water, especially the water solubility decreased from 41.60 % to 26.07 %. The plasticization of essential oil nearly doubled the elongation at break while maintaining the tensile strength of the film (11.45 MPa). Furthermore, the FG-CEO-AP film can inhibit peroxide value to extend the shelf life about 20 days in the walnut oil preservation. In summary, the apple polyphenol/cumin essential oil of FG film exhibits excellent comprehensive properties and high preparation efficiency for utilization as an active packaging material.
Collapse
Affiliation(s)
- Hao Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal Processing Technology, Shanghai 201306, China
| | - Xiaohan Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal Processing Technology, Shanghai 201306, China
| | - Hui Yang
- Xinyang Vocational and Technical College, Xinyang 464000, China
| | - Kuo Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal Processing Technology, Shanghai 201306, China
| | - Min Guo
- COFCO Nutrition and Health Research Institute, Beijing 102209, China.
| | - Xuliang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal Processing Technology, Shanghai 201306, China
| | - Yuxuan Fang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal Processing Technology, Shanghai 201306, China.
| |
Collapse
|
12
|
Durand E, Laguerre M, Bourlieu-Lacanal C, Lecomte J, Villeneuve P. Navigating the complexity of lipid oxidation and antioxidation: A review of evaluation methods and emerging approaches. Prog Lipid Res 2025; 97:101317. [PMID: 39694099 DOI: 10.1016/j.plipres.2024.101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Lipid oxidative degradation contributes to the deterioration of food quality and poses potential health risks. A promising approach to counteract this is the use of plant-based antioxidants. However, accurately evaluating the antioxidant capacity and effectiveness of these compounds remains a challenge. While many rapid in vitro tests are available, they must be categorized according to their specific responses to avoid overinterpreting results. This review opens with an overview of current knowledge on lipid autoxidation and recent findings that highlight the challenges in measuring antioxidant capacity. We then examine various methods, addressing their limitations in accurately anticipating outcomes in complex compartmentalized lipid systems. The aim is to clarify the gap between predictions and real-world efficacy in final products. Additionally, the review compares the strengths and weaknesses of methods used to evaluate antioxidant capacity and assess oxidation degrees in complex environments, such as those found in food and cosmetics. Finally, new analytical techniques for multiproduct detection are introduced, paving the way for a more 'omic' and spatiotemporally defined approach.
Collapse
Affiliation(s)
- Erwann Durand
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Mickael Laguerre
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | | | - Jérôme Lecomte
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Pierre Villeneuve
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France.
| |
Collapse
|
13
|
Da Silva RDCS, Camponogara JA, Farias CAA, Dos Reis AR, Dos Santos BA, Pinton MB, Corrêa LP, Campagnol PCB, Dantas GA, Santos RCV, Ballus CA, Barcia MT. Synergistic effects evaluation of jabuticaba and strawberry extracts on oxidative stability of pork burgers. Meat Sci 2025; 219:109685. [PMID: 39413692 DOI: 10.1016/j.meatsci.2024.109685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
This study aimed to verify whether the combined application of jabuticaba and strawberry extracts at five different concentrations could enhance oxidative stability and microbiological quality of pork burgers over 12 days of storage at 4 °C. The anthocyanins in these extracts were quantified by HPLC-DAD and identified by LC-MS/MS. Pelargonidin-3-glucoside was highlighted as the predominant anthocyanin in jabuticaba extract, while cyanidin-3-glucoside was the main constituent in strawberry extract. The extracts did not exhibit antimicrobial activity but demonstrated significant antioxidant activity. The treatment with the 0.75:0.25 (jabuticaba:strawberry extract) level showed a pH evolution during storage similar to the control (without extract). Additionally, the combination of jabuticaba and strawberry extracts, particularly at the 75:25 levels, indicated lower TBARS values, characterized by the decreased presence of rancid aroma at the end of the storage period. This extract combination level also preserved the burgers' color, evidenced by the lower ΔE values during storage.
Collapse
Affiliation(s)
- Rita D C S Da Silva
- Department of Food Technology and Science, Rural Sciences Center, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Juliana A Camponogara
- Department of Food Technology and Science, Rural Sciences Center, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Carla A A Farias
- Department of Food Technology and Science, Rural Sciences Center, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Andreara R Dos Reis
- Department of Food Technology and Science, Rural Sciences Center, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Bibiana A Dos Santos
- Department of Food Technology and Science, Rural Sciences Center, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Mariana B Pinton
- Department of Food Technology and Science, Rural Sciences Center, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Leticia P Corrêa
- Department of Food Technology and Science, Rural Sciences Center, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Paulo C B Campagnol
- Department of Food Technology and Science, Rural Sciences Center, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Gabrielle A Dantas
- Department of Microbiology and Parasitology, Health Sciences Center, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Roberto C V Santos
- Department of Microbiology and Parasitology, Health Sciences Center, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Cristiano A Ballus
- Department of Food Technology and Science, Rural Sciences Center, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Milene T Barcia
- Department of Food Technology and Science, Rural Sciences Center, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
14
|
Wu Y, Zhao M, Li S, Liu S, Gao S, Liu R, Wu M, Yu H, Ge Q. Storage Stability Enhancement of Lactic Acid Beverage Using Anti-MDA Lactiplantibacillus plantarum NJAU-01: The Antioxidant's Role. Foods 2024; 14:52. [PMID: 39796342 PMCID: PMC11720519 DOI: 10.3390/foods14010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
This study evaluated the inhibitory efficacy of Lactiplantibacillus plantarum NJAU-01 (NJAU-01) on oxidation associated with malondialdehyde (MDA) and utilized the bacteria in a functional lactic acid beverage. The antioxidant capacity of the bacteria was measured in vitro, the production conditions (inoculum, fermentation time, and sugar addition) of the lactic acid beverage were optimized, and the effects of NJAU-01 on antioxidant, flavor profile, and storage stability of lactic acid beverages were investigated. The results revealed that NJAU-01 exhibited a high tolerance towards MDA at 40 mM, and that it also exhibited outstanding antioxidant capacity in vitro and antioxidant enzyme activity throughout its growth stage. The beverage demonstrated an elevated antioxidant capacity and efficiently eliminated MDA. Additionally, the NJAU-01 lactic acid beverage could be stored at 4 °C for 21 days, exhibiting stable sensory attributes and strong resistance against lipid peroxidation. The study yielded insights into the role of NJAU-01 in improving the storage stability of lactic acid beverages thereby contributing to a deeper understanding of the specific mechanisms by which probiotics enhance beverage quality. These findings can facilitate a more effective utilization of this knowledge in the food industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qingfeng Ge
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China (S.G.); (R.L.); (M.W.); (H.Y.)
| |
Collapse
|
15
|
Ali A, de Almeida IM, Magalhães EP, Guedes JM, Cajazeiras FFM, Marinho MM, Marinho ES, de Menezes RRPPB, Sampaio TL, Santos HSD, da Silva Júnior GB, Martins AMC. Bioprospecting hydroxylated chalcones in in vitro model of ischemia-reoxygenation and probing NOX4 interactions via molecular docking. Biol Chem 2024; 405:727-743. [PMID: 39705087 DOI: 10.1515/hsz-2024-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/18/2024] [Indexed: 12/22/2024]
Abstract
Ischemia/reperfusion injury (I/R) is a leading cause of acute kidney injury (AKI) in conditions like kidney transplants, cardiac surgeries, and nephrectomy, contributing to high global mortality and morbidity. This study aimed to analyze the protective effects of 2'-hydroxychalcones in treating I/R-induced AKI by targeting key pathological pathways. Considering strong antioxidant action along with other pharmacological roles of chalcone derivatives, six 2'-hydroxychalcones were synthesized via Claisen-Schmidt condensation and analyzed for their protective effects in an I/R induced AKI model using HK-2 cells. Among six 2'-hydroxychalcones, chalcone A4 significantly increased the HK-2 cells viability compared to I/R group. Chalcone A4 reduced the cell death events by reducing generation of cytoplasmic ROS and mitochondrial transmembrane potential. It also increased GSH and SOD activity while reducing TBARS levels, indicating strong antioxidant action. Scanning electron microscope images showed that chalcone A4 reversed I/R-induced morphological changes in HK-2 cells, including apoptotic blebbing and cytoplasmic fragmentation. Furthermore, in silico studies revealed interactions with NADPH oxidase 4, further supporting its protective role in I/R-induced AKI. These results showed that chalcone A4 possess potential protective action against I/R induced cellular damage possibly due to its strong antioxidant action and potential interaction with NOX4 subunit of NADPH oxidase.
Collapse
Affiliation(s)
- Arif Ali
- Postgraduate Program in Pharmacology, 28121 Federal University of Ceara , Fortaleza, CE, Brazil
| | - Igor Moreira de Almeida
- Postgraduate Program in Pharmacology, 28121 Federal University of Ceara , Fortaleza, CE, Brazil
| | - Emanuel Paula Magalhães
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Jesyka Macedo Guedes
- State University of Vale do Acaraú, Center for Exact Sciences and Technology, Sobral, CE, Brazil
| | | | - Marcia Machado Marinho
- State University of Vale do Acaraú, Center for Exact Sciences and Technology, Sobral, CE, Brazil
| | | | | | - Tiago Lima Sampaio
- Department of Clinical and Toxicological Analysis, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Hélcio Silva Dos Santos
- State University of Vale do Acaraú, Center for Exact Sciences and Technology, Sobral, CE, Brazil
| | | | - Alice Maria Costa Martins
- Postgraduate Program in Pharmacology, 28121 Federal University of Ceara , Fortaleza, CE, Brazil
- Department of Clinical and Toxicological Analysis, Federal University of Ceara, Fortaleza, CE, Brazil
| |
Collapse
|
16
|
Bibi M, Baboo I, Majeed H, Kumar S, Lackner M. Molecular Docking of Key Compounds from Acacia Honey and Nigella sativa Oil and Experimental Validation for Colitis Treatment in Albino Mice. BIOLOGY 2024; 13:1035. [PMID: 39765702 PMCID: PMC11673436 DOI: 10.3390/biology13121035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Colitis, an inflammatory condition of the colon that encompasses ulcerative colitis (UC) and Crohn's disease, presents significant challenges due to the limitations and side effects of current treatments. This study investigates the potential of natural products, specifically AH and NSO, as organic therapeutic agents for colitis. Molecular docking studies were conducted to identify the binding affinities and interaction mechanisms between the bioactive compounds in AH and NSO and proteins implicated in colitis, such as those involved in inflammation and oxidative stress pathways. An in vivo experiment was performed using an albino mouse model of colitis, with clinical symptoms, histopathological assessments, and biochemical analyses conducted to evaluate the therapeutic effects of the compounds both individually and in combination. Results from the molecular docking studies revealed promising binding interactions between fructose and Prostaglandin G/H synthase 2 (Ptgs2) and between fructose and cellular tumor antigen p53, with docking energy measured at -6.0 kcal/mol and -5.1 kcal/mol, respectively. Meanwhile, the presence of glucose molecule glucokinase chain A (-6.3 kcal/mol) and chain B (-5.8 kcal/mol) indicated potential efficacy in modulating inflammatory pathways. Experimental data demonstrated that treatment with AH and NSO significantly reduced inflammation, improved gut health, and ameliorated colitis symptoms. Histopathological evaluations confirmed reduced mucosal damage and immune cell infiltration, while biochemical analyses showed normalization of inflammatory markers and oxidative stress levels. This study provides compelling evidence for the potential of AH and NSO as natural, complementary treatments for colitis, suggesting their future role in integrative therapeutic strategies. However, further research into long-term safety, optimal dosing, and mechanisms of action is warranted to translate these findings into clinical applications.
Collapse
Affiliation(s)
- Mehwish Bibi
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.B.); (S.K.)
| | - Irfan Baboo
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.B.); (S.K.)
| | - Hamid Majeed
- Department of Food Science and Technology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan;
| | - Santosh Kumar
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.B.); (S.K.)
| | - Maximilian Lackner
- Department of Industrial Engineering, University of Applied Sciences Technikum Wien, 17 Hoechstaedtplatz 6, 1200 Vienna, Austria
| |
Collapse
|
17
|
Anuradha U, Bhavana V, Chary PS, Kalia NP, Mehra NK. Exploration of the Topical Nanoemulgel Bearing with Ferulic Acid and Essential Oil for Diabetic Wound Healing. PATHOPHYSIOLOGY 2024; 31:680-698. [PMID: 39728684 DOI: 10.3390/pathophysiology31040049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/18/2024] [Accepted: 11/23/2024] [Indexed: 12/28/2024] Open
Abstract
Aim: To investigate the anti-inflammatory, antioxidant, and diabetic wound healing properties of the novel topical formulation [Ferulic acid-loaded nanoemulgel (DLMGO-G)]. Methods: Ferulic acid nanoemulsion developed with lemongrass oil is investigated in diabetic wound healing. Further nanoemulsion is incorporated into 1% carbopol® 934 to obtain the DLMGO-G. Nanoemulsion was characterized for particle size, and polydispersity index (PDI) was obtained by Malvern Zetasizer (Zetasizer Nano ZS, Malvern, AL, USA), and morphology by TEM (JEM 1400, JOEL, Akishima, Japan). Furthermore, in vitro cell line and in vivo studies were carried out. Results: The developed nanoemulsion showed a globule size of 28.04 ± 0.23 nm and PDI of 0.07 ± 0.01. The morphology of nanoformulations by TEM confirmed the spherical and uniform nature. Further, the nanoformulation in in vitro cell line experiments revealed that the IC50 value was increased by 1.52 times compared to the drug solution. The treatment groups have shown that fibroblast morphologies were spindle-shaped, suggesting that nanoformulation was compatible with the cells and developed normally on nanoformulation. It also reduced ROS with improved internalization more than the control group. The in vitro wound healing model also revealed that nanoformulation had better wound healing activity. In the in vivo diabetic wound studies on male SD rats, the levels of inflammatory markers such as TNF-α, IL-6, IL-22, and IL-1β declined significantly when treated with DLMGO-G. IL-10 levels significantly increased compared to the diseased group, and MMP-9 levels were remarkably decreased compared to the diseased group. Furthermore, histopathological studies showed the regeneration and granulation of tissues. Conclusions: Thus, these findings indicate that FA-loaded nanoemulgel greatly accelerates the healing of wounds in diabetic rats.
Collapse
Affiliation(s)
- Urati Anuradha
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ministry of Chemicals and Fertilizers, Government of India, Hyderabad 500037, Telangana, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ministry of Chemicals and Fertilizers, Government of India, Hyderabad 500037, Telangana, India
| | - Nitin Pal Kalia
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ministry of Chemicals and Fertilizers, Government of India, Hyderabad 500037, Telangana, India
| |
Collapse
|
18
|
Alam MR, Dobhal V, Singh S. Neuroprotective potential of solanesol against tramadol induced zebrafish model of Parkinson's disease: insights from neurobehavioral, molecular, and neurochemical evidence. Drug Chem Toxicol 2024; 47:1241-1256. [PMID: 38938099 DOI: 10.1080/01480545.2024.2355542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 05/10/2024] [Indexed: 06/29/2024]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and subsequent depletion of dopamine in the striatum. Solanesol, an alcohol that acts as a precursor to coenzyme Q10, possesses potential applications in managing neurological disorders with antioxidant, anti-inflammatory, and neuromodulatory potential. In this study, a zebrafish model was employed to investigate the effects of solanesol in tramadol induced PD like symptoms. Zebrafish were administered tramadol injections (50 mg/kg) over a 20-day period. Solanesol was administered at doses of 25, 50, and 100 mg/kg, three hours prior to tramadol administration from day 11 to day 20. Behavioral tests assessing motor coordination were conducted on a weekly basis using open field and novel diving tank apparatus. On day 21, the zebrafish were euthanized, and brain tissues were examined for markers of oxidative stress, inflammation, and neurotransmitters level. Chronic tramadol treatment resulted in motor impairment, reduced antioxidant enzyme levels, enhanced release of proinflammatory cytokines in the striatum, and disrupted neurotransmitter balance. However, solanesol administration mitigated these effects and exhibited a neuroprotective effect against neurodegenerative alterations in the zebrafish model of PD. This was evident through improvements in behavior, modulation of biochemical markers, attenuation of neuroinflammation, restoration of neurotransmitters level, and enhancement of mitochondrial activity. The histopathological study also confirmed that solanesol dose dependently restored neuronal cell density which confirmed its neuroprotective potential. Further investigations are required to elucidate the underlying mechanisms of solanesol neuroprotective effects and evaluate its efficacy in human patients.
Collapse
Affiliation(s)
- Md Reyaz Alam
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, India
| | - Vaishali Dobhal
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, India
| | - Shamsher Singh
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, India
| |
Collapse
|
19
|
Abdelalim LR, Elnaggar YSR, Abdallah OY. Lactoferrin, chitosan double-coated oleosomes loaded with clobetasol propionate for remyelination in multiple sclerosis: Physicochemical characterization and in-vivo assessment in a cuprizone-induced demyelination model. Int J Biol Macromol 2024; 277:134144. [PMID: 39053824 DOI: 10.1016/j.ijbiomac.2024.134144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Multiple sclerosis is a chronic inflammatory demyelinating disorder of the CNS characterized by continuous myelin damage accompanied by deterioration in functions. Clobetasol propionate (CP) is the most potent topical corticosteroid with serious side effects related to systemic absorption. Previous studies introduced CP for remyelination without considering systemic toxicity. This work aimed at fabrication and optimization of double coated nano-oleosomes loaded with CP to achieve brain targeting through intranasal administration. The optimized formulation was coated with lactoferrin and chitosan for the first time. The obtained double-coated oleosomes had particle size (220.07 ± 0.77 nm), zeta potential (+30.23 ± 0.41 mV) along with antioxidant capacity 9.8 μM ascorbic acid equivalents. Double coating was well visualized by TEM and significantly decreased drug release. Three different doses of CP were assessed in-vivo using cuprizone-induced demyelination in C57Bl/6 mice. Neurobehavioral tests revealed improvement in motor and cognitive functions of mice in a dose-dependent manner. Histopathological examination of the brain showed about 2.3 folds increase in corpus callosum thickness in 0.3 mg/kg CP dose. Moreover, the measured biomarkers highlighted the significant antioxidant and anti-inflammatory capacity of the formulation. In conclusion, the elaborated biopolymer-integrating nanocarrier succeeded in remyelination with 6.6 folds reduction in CP dose compared to previous studies.
Collapse
Affiliation(s)
- Lamiaa R Abdelalim
- Department of Pharmaceutics and pharmaceutical technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics and pharmaceutical technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
20
|
Drapal M, Ovalle Rivera TM, Luna Meléndez JL, Perez-Fons L, Tran T, Dufour D, Becerra Lopez-Lavalle LA, Fraser PD. Biochemical characterisation of a cassava (Manihot esculenta crantz) diversity panel for post-harvest physiological deterioration; metabolite involvement and environmental influence. JOURNAL OF PLANT PHYSIOLOGY 2024; 301:154303. [PMID: 38959754 DOI: 10.1016/j.jplph.2024.154303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Cassava (Manihot esculenta Crantz) produces edible roots, a major carbohydrate source feeding more than 800 million people in Africa, Latin America, Oceania and Asia. Post-harvest physiological deterioration (PPD) renders harvested cassava roots unpalatable and unmarketable. Decades of research on PPD have elucidated several genetic, enzymatic and metabolic processes involved. Breeding populations were established to enable verification of robust biomarkers for PPD resistance. For comparison, these PPD populations have been cultivated concurrently with diversity population for carotenoid (β-carotene) content. Results highlighted a significant variation of the chemotypes due to environmental factors. Less than 3% of the detected molecular features showed consistent trends between the two harvest years and were putatively identified as phenylpropanoid derived compounds (e.g. caffeoyl rutinoside). The data corroborated that ∼20 μg β-carotene/g DW can reduced the PPD response of the cassava roots to a score of ∼1. Correlation analysis showed a significant correlation of β-carotene content at harvest to PPD response (R2 -0.55). However, the decrease of β-carotene over storage was not significantly correlated to initial content or PPD response. Volatile analysis observed changes of apocarotenoids derived from β-carotene, lipid oxidation products (alkanes, alcohols and carbonyls and esters) and terpenes. The majority of these volatiles (>90%) showed no significant correlation to β-carotene or PPD. Observed data indicated an increase (∼2-fold) of alkanes in varieties with β-carotene >10 μg/g DW and a decrease (∼60%) in varieties with less β-carotene. Fatty acid methyl esters with a chain length > C9 were detected solely after storage and show lower levels in varieties with higher β-carotene content. In combination with correlation values to PPD (R2 ∼0.3; P-value >0.05), the data indicated a more efficient ROS quenching mechanism in PPD resistant varieties.
Collapse
Affiliation(s)
- Margit Drapal
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | | | | | - Laura Perez-Fons
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | - Thierry Tran
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Dominique Dufour
- International Center for Tropical Agriculture (CIAT), Cali, Colombia; CIRAD, UMR QualiSud, F-34398, Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | | | - Paul D Fraser
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
21
|
Gouaref I, Otmane A, Makrelouf M, Abderrhmane SA, Haddam AEM, Koceir EA. Crucial Interactions between Altered Plasma Trace Elements and Fatty Acids Unbalance Ratio to Management of Systemic Arterial Hypertension in Diabetic Patients: Focus on Endothelial Dysfunction. Int J Mol Sci 2024; 25:9288. [PMID: 39273236 PMCID: PMC11395650 DOI: 10.3390/ijms25179288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
The coexistence of SAH with T2DM is a common comorbidity. In this study, we investigated the link between altered plasma antioxidant trace elements (ATE: manganese, selenium, zinc, and copper) and fatty acids ratio (FAR: polyunsaturated/saturated) imbalance as transition biomarkers between vascular pathology (SAH) to metabolic pathology (T2DM). Our data revealed strong correlation between plasma ATE and FAR profile, which is modified during SAH-T2DM association compared to the healthy group. This relationship is mediated by lipotoxicity (simultaneously prominent visceral adipose tissue lipolysis, significant flow of non-esterified free fatty acids release, TG-Chol-dyslipidemia, high association of total SFA, palmitic acid, arachidonic acid, and PUFA ω6/PUFA ω3; drop in tandem of PUFA/SFA and EPA + DHA); oxidative stress (lipid peroxidation confirmed by TAS depletion and MDA rise, concurrent drop of Zn/Cu-SOD, GPx, GSH, Se, Zn, Se/Mn, Zn/Cu; concomitant enhancement of Cu, Mn, and Fe); endothelial dysfunction (endotheline-1 increase); athero-thrombogenesis risk (concomitant rise of ApoB100/ApoA1, Ox-LDL, tHcy, and Lp(a)), and inflammation (higher of Hs-CRP, fibrinogen and ferritin). Our study opens to new therapeutic targets and to better dietary management, such as to establishing dietary ATE and PUFA ω6/PUFA ω3 or PUFA/SFA reference values for atherosclerotic risk prevention in hypertensive/diabetic patients.
Collapse
Affiliation(s)
- Ines Gouaref
- Bioenergetics and Intermediary Metabolism Team, Laboratory of Biology and Organism Physiology, Biological Sciences Faculty, Nutrition and Pathologies Post Graduate School, Houari Boumediene University of Sciences and Technology (USTHB), Bab Ezzouar, Algiers 16123, Algeria
- Tamayouz Laboratory, Centre de Recherche en Biotechnologie (CRBT), Ali Mendjli Nouvelle Ville UV 03 BP E73, Constantine 25000, Algeria
| | - Amel Otmane
- Biochemistry and Genetics Laboratory, University Hospital Center, Mohamed Lamine Debaghine, Bab El Oued, Algiers 16000, Algeria
| | - Mohamed Makrelouf
- Biochemistry and Genetics Laboratory, University Hospital Center, Mohamed Lamine Debaghine, Bab El Oued, Algiers 16000, Algeria
| | - Samir Ait Abderrhmane
- Diabetology Unit, University Hospital Center, Mohamed Seghir Nekkache (ex. HCA de Aïn Naâdja), Algiers 16208, Algeria
| | - Ali El Mahdi Haddam
- Diabetology Unit, University Hospital Center, Mohamed Lamine Debaghine, Algiers I-University, Bab El Oued, Algiers 16000, Algeria
| | - Elhadj-Ahmed Koceir
- Bioenergetics and Intermediary Metabolism Team, Laboratory of Biology and Organism Physiology, Biological Sciences Faculty, Nutrition and Pathologies Post Graduate School, Houari Boumediene University of Sciences and Technology (USTHB), Bab Ezzouar, Algiers 16123, Algeria
- Tamayouz Laboratory, Centre de Recherche en Biotechnologie (CRBT), Ali Mendjli Nouvelle Ville UV 03 BP E73, Constantine 25000, Algeria
| |
Collapse
|
22
|
Diksha, Singh L. Glycitein prevents reserpine-induced depression and associated comorbidities in mice: modulation of lipid peroxidation and TNF-α levels. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6153-6163. [PMID: 38430231 DOI: 10.1007/s00210-024-03007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/11/2024] [Indexed: 03/03/2024]
Abstract
Depression is a debilitating mood disorder affecting millions worldwide and continues to pose a significant global health burden. Due to the multifaceted nature of depression, the current treatment regimens are not up to mark in terms of their multitargeting potential and least side effect profile. Molecules within the isoflavone class demonstrate promising potential in alleviating depression and associated conditions, offering a multifaceted approach to manage mental health concerns. Therefore, the current study was designed to explore the potential of glycitein, an isoflavone in managing reserpine-induced depression and associated comorbidities in mice. Reserpine (0.5 mg/kg; i.p.) administration for the first 3 days induced depression and associated comorbidities as evidenced by increased immobility time in forced swim test (FST) and tail suspension test (TST), along with reduced locomotor activity in the open field test (OFT) and increased latency to reach the platform in the Morris water maze (MWM) test. Reserpine treatment also upregulated and downregulated the brain thiobarbituric acid reactive substance (TBARS) and glutathione (GSH) levels, respectively. Furthermore, reserpine administration also uplifted the level of TNF-α in the serum samples. Glycitein (3 mg/kg and 6 mg/kg; p.o.) treatment for 5 days prevented the depressive effect of reserpine. It also improved the spatial memory at both dose levels. Moreover, in biochemical analysis, glycitein also reduced the brain TBARS and serum tumor necrosis factor-alpha (TNF-α) levels. Whereas, no significant effect was seen on the brain GSH level. Glycitein (6 mg/kg) was found to be more effective than the 3 mg/kg dose of glycitein. Overall results delineate that glycitein has the potential to manage depression and impaired memory by inhibiting lipid peroxidation and inflammatory stress.
Collapse
Affiliation(s)
- Diksha
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| |
Collapse
|
23
|
Aodah AH, Alkholifi FK, Alharthy KM, Devi S, Foudah AI, Yusufoglu HS, Alam A. Effects of kaempherol-3-rhamnoside on metabolic enzymes and AMPK in the liver tissue of STZ-induced diabetes in mice. Sci Rep 2024; 14:16167. [PMID: 39003280 PMCID: PMC11246446 DOI: 10.1038/s41598-024-66426-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by persistent hyperglycemia. It involves disturbances in carbohydrate, fat, and protein metabolism due to defects in insulin secretion, insulin action, or both. Novel therapeutic approaches are continuously being explored to enhance metabolic control and prevent complications associated with the disease. This study investigates the therapeutic potential of kaempherol-3-rhamnoside, a flavonoid, in managing diabetes by modulating the AMP-activated protein kinase (AMPK) pathway and improving metabolic enzyme activities in streptozotocin (STZ) -induced diabetic mice. Diabetic mice were treated with varying doses of kaempherol-3-rhamnoside and/or insulin over a 28-day period. Glycolytic and gluconeogenesis enzyme activities in the liver, fasting blood glucose levels, serum insulin levels, lipid profiles and oxidative stress markers were assessed. Treatment with kaempherol-3-rhamnoside significantly improved glycolytic enzyme activities, reduced fasting blood glucose, and enhanced insulin levels compared to diabetic controls. The compound also normalized lipid profiles and reduced oxidative stress in the liver, suggesting its potential in reversing diabetic dyslipidemia and oxidative damage. Furthermore, kaempherol-3-rhamnoside activated the AMPK pathway, indicating a mechanism through which it could exert its effects. Kaempherol-3-rhamnoside exhibits promising antidiabetic properties, potentially through AMPK pathway activation and metabolic enzyme modulation. These findings support its potential use as an adjunct therapy for diabetes management. Further clinical studies are warranted to validate these results in human subjects.
Collapse
Affiliation(s)
- Alhussain H Aodah
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - Faisal K Alkholifi
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - Khalid M Alharthy
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Ahmed I Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - Hasan S Yusufoglu
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Private Colleges, 51418, Buraydah, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia.
| |
Collapse
|
24
|
Moorthy H, Ramesh M, Padhi D, Baruah P, Govindaraju T. Polycatechols inhibit ferroptosis and modulate tau liquid-liquid phase separation to mitigate Alzheimer's disease. MATERIALS HORIZONS 2024; 11:3082-3089. [PMID: 38647314 DOI: 10.1039/d4mh00023d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that affects learning, memory, and cognition. Current treatments targeting amyloid-β (Aβ) and tau have shown limited effectiveness, necessitating further research on the aggregation and toxicity mechanisms. One of these mechanisms involves the liquid-liquid phase separation (LLPS) of tau, contributing to the formation of pathogenic tau aggregates, although their conformational details remain elusive. Another mechanism is ferroptosis, a type of iron-dependent lipid peroxidation-mediated cell death, which has been implicated in AD. There is a lack of therapeutic strategies that simultaneously target amyloid toxicity and ferroptosis. This study aims to explore the potential of polycatechols, PDP and PLDP, consisting of dopamine and L-Dopa, respectively, as multifunctional agents to modulate the pathological nexus between ferroptosis and AD. Polycatechols were found to sequester the labile iron pool (LIP), inhibit Aβ and tau aggregation, scavenge free radicals, protect mitochondria, and prevent ferroptosis, thereby rescuing neuronal cell death. Interestingly, PLDP promotes tau LLPS, and modulates their intermolecular interactions to inhibit the formation of toxic tau aggregates, offering a conceptually innovative approach to tackle tauopathies. This is a first-of-its-kind polymer-based integrative approach that inhibits ferroptosis, counteracts amyloid toxicity, and modulates tau LLPS to mitigate the multifaceted toxicity of AD.
Collapse
Affiliation(s)
- Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India.
| | - Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India.
| | - Dikshaa Padhi
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India.
| | - Prayasee Baruah
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India.
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India.
| |
Collapse
|
25
|
Papaefthimiou M, Kontou PI, Bagos PG, Braliou GG. Integration of Antioxidant Activity Assays Data of Stevia Leaf Extracts: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2024; 13:692. [PMID: 38929131 PMCID: PMC11201069 DOI: 10.3390/antiox13060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Stevia rebaudiana Bertoni, a no-calorie natural sweetener, contains a plethora of polyphenols that exert antioxidant properties with potential medicinal significance. Due to the variety of functional groups, polyphenols exhibit varying solubility depending on the nature of the extraction solvents (water, organic, or their mixtures, defined further on as hydroalcoholic extracts). In the present study, we performed a systematic review, following PRISMA guidelines, and meta-analysis, synthesizing all available data from 45 articles encompassing 250 different studies. Our results showed that the total phenolic content (TPC) of hydroalcoholic and aqueous extracts presents higher values (64.77 and 63.73 mg GAE/g) compared to organic extracts (33.39). Total flavonoid content (TFC) was also higher in aqueous and hydroalcoholic extracts; meta-regression analysis revealed that outcomes in different measuring units (mg QE/g, mg CE/g, and mg RUE/g) do not present statistically significant differences and can be synthesized in meta-analysis. Using meta-regression analysis, we showed that outcomes from the chemical-based ABTS, FRAP, and ORAC antioxidant assays for the same extract type can be combined in meta-analysis because they do not differ statistically significantly. Meta-analysis of ABTS, FRAP, and ORAC assays outcomes revealed that the antioxidant activity profile of various extract types follows that of their phenolic and flavonoid content. Using regression meta-analysis, we also presented that outcomes from SOD, CAT, and POX enzymatic antioxidant assays are independent of the assay type (p-value = 0.905) and can be combined. Our study constitutes the first effort to quantitatively and statistically synthesize the research results of individual studies using all methods measuring the antioxidant activity of stevia leaf extracts. Our results, in light of evidence-based practice, uncover the need for a broadly accepted, unified, methodological strategy to perform antioxidant tests, and offer documentation that the use of ethanol:water 1:1 mixtures or pure water can more efficiently extract stevia antioxidant compounds.
Collapse
Affiliation(s)
- Maria Papaefthimiou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (M.P.); (P.G.B.)
| | | | - Pantelis G. Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (M.P.); (P.G.B.)
| | - Georgia G. Braliou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (M.P.); (P.G.B.)
| |
Collapse
|
26
|
Yu PR, Tseng CY, Hsu CC, Chen JH, Lin HH. In vitro and in vivo protective potential of quercetin-3-glucuronide against lipopolysaccharide-induced pulmonary injury through dual activation of nuclear factor-erythroid 2 related factor 2 and autophagy. Arch Toxicol 2024; 98:1415-1436. [PMID: 38436694 DOI: 10.1007/s00204-024-03691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
In vitro and in vivo models of lipopolysaccharide (LPS)-induced pulmonary injury, quercetin-3-glucuronide (Q3G) has been previously revealed the lung-protective potential via downregulation of inflammation, pyroptotic, and apoptotic cell death. However, the upstream signals mediating anti-pulmonary injury of Q3G have not yet been clarified. It has been reported that concerted dual activation of nuclear factor-erythroid 2 related factor 2 (Nrf2) and autophagy may prove to be a better treatment strategy in pulmonary injury. In this study, the effect of Q3G on antioxidant and autophagy were further investigated. Noncytotoxic doses of Q3G abolished the LPS-caused cell injury, and reactive oxygen species (ROS) generation with inductions in Nrf2-antioxidant signaling. Moreover, Q3G treatment repressed Nrf2 ubiquitination, and enhanced the association of Keap1 and p62 in the LPS-treated cells. Q3G also showed potential in inducing autophagy, as demonstrated by formation of acidic vesicular organelles (AVOs) and upregulation of autophagy factors. Next, the autolysosomes formation and cell survival were decreased by Q3G under pre-treatment with a lysosome inhibitor, chloroquine (CQ). Furthermore, mechanistic assays indicated that anti-pulmonary injury effects of Q3G might be mediated via Nrf2 signaling, as confirmed by the transfection of Nrf2 siRNA. Finally, Q3G significantly alleviated the development of pulmonary injury in vivo, which may result from inhibiting the LPS-induced lung dysfunction and edema. These findings emphasize a toxicological perspective, providing new insights into the mechanisms of Q3G's protective effects on LPS-induced pulmonary injury and highlighting its role in dual activating Nrf2 and autophagy pathways.
Collapse
Affiliation(s)
- Pei-Rong Yu
- Department of Nutrition, Chung Shan Medical University, Taichung City, 40201, Taiwan
| | - Chiao-Yun Tseng
- Department of Nutrition, Chung Shan Medical University, Taichung City, 40201, Taiwan
| | - Cheng-Chin Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung City, 40201, Taiwan
| | - Jing-Hsien Chen
- Department of Nutrition, Chung Shan Medical University, Taichung City, 40201, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City, 40201, Taiwan
| | - Hui-Hsuan Lin
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City, 40201, Taiwan.
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Road, Taichung City, 40201, Taiwan.
| |
Collapse
|
27
|
Lin LY, Chen CW, Chen HC, Chen TL, Yang KM. Developing the procedure-enhanced model of ginger-infused sesame oil based on its flavor and functional properties. Food Chem X 2024; 21:101227. [PMID: 38420504 PMCID: PMC10900433 DOI: 10.1016/j.fochx.2024.101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 03/02/2024] Open
Abstract
Ginger-infused sesame oil enriches the nutrition and provides enhanced flavor for the foods. An original processing procedure and module for evaluation were established in this study, using different raw materials (Guangdong and Chu ginger) and treatments (ginger powder, extract, and both). The quality, functionality, and flavor of the infused oils were evaluated. Ginger-infused sesame oil contained 0.58-3.22 µg/g of 6-gingerol, 0.21-0.88 µg/g of 6-shogaol. The number range of volatile compounds from 48 to 55 identified by gas chromatography-mass spectrometry varies depending on different process procedures. Agglomerative hierarchical clustering analysis revealed the flavor profiles were clustered by different varieties, while gingerol and phytosterol was by different treatments. In conclusion, sesame oil was an appropriate carrier for gingerol and phytosterol, which are characterized by higher antioxidant capacities (p < 0.05). These results show the benefits of developing infused oil products with enhanced functional and sensory properties.
Collapse
Affiliation(s)
- Li-Yun Lin
- Department of Food Science and Technology, Hung Kuang University, Taichung 433, Taiwan
| | - Chih-Wei Chen
- Bachelor Degree Program in Food Safety/Hygiene and Laboratory Science, Chang Jung Christian University, Tainan City 711, Taiwan
| | - Hsin-Chun Chen
- Department of Cosmeceutics, China Medical University, Taichung 406, Taiwan
| | - Tai-Liang Chen
- Department of Food Science and Technology, Hung Kuang University, Taichung 433, Taiwan
| | - Kai-Min Yang
- Department of Food Science, National Quemoy University, Kinmen 892, Taiwan
| |
Collapse
|
28
|
Lasek P, Kosikowska U, Kołodziej P, Kubiak-Tomaszewska G, Krzyżanowska N, Szostek T, Struga M, Feldo M, Bogucka-Kocka A, Wujec M. New Thiosemicarbazide Derivatives with Multidirectional Biological Action. Molecules 2024; 29:1529. [PMID: 38611813 PMCID: PMC11013662 DOI: 10.3390/molecules29071529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Over the years, several new medicinal substances have been introduced for the treatment of diseases caused by bacteria and parasites. Unfortunately, due to the production of numerous defense mechanisms by microorganisms and parasites, they still pose a serious threat to humanity around the world. Therefore, laboratories all over the world are still working on finding new, effective methods of pharmacotherapy. This research work aimed to synthesize new compounds derived from 3-trifluoromethylbenzoic acid hydrazide and to determine their biological activity. The first stage of the research was to obtain seven new compounds, including six linear compounds and one derivative of 1,2,4-triazole. The PASS software was used to estimate the potential probabilities of biological activity of the newly obtained derivatives. Next, studies were carried out to determine the nematocidal potential of the compounds with the use of nematodes of the genus Rhabditis sp. and antibacterial activity using the ACCT standard strains. To determine the lack of cytotoxicity, tests were performed on two cell lines. Additionally, an antioxidant activity test was performed due to the importance of scavenging free radicals in infections with pathogenic microorganisms. The conducted research proved the anthelmintic and antibacterial potential of the newly obtained compounds. The most effective were two compounds with a 3-chlorophenyl substituent, both linear and cyclic derivatives. They demonstrated higher efficacy than the drugs used in treatment.
Collapse
Affiliation(s)
- Patryk Lasek
- Doctoral School, Medical University of Lublin, Chodzki 7, 20-093 Lublin, Poland;
| | - Urszula Kosikowska
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University, 20-093 Lublin, Poland;
| | - Przemysław Kołodziej
- Department of Biology and Genetics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland; (P.K.); (N.K.); (A.B.-K.)
| | - Grażyna Kubiak-Tomaszewska
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Poland; (G.K.-T.); (T.S.); (M.S.)
| | - Natalia Krzyżanowska
- Department of Biology and Genetics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland; (P.K.); (N.K.); (A.B.-K.)
| | - Tomasz Szostek
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Poland; (G.K.-T.); (T.S.); (M.S.)
| | - Marta Struga
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Poland; (G.K.-T.); (T.S.); (M.S.)
| | - Marcin Feldo
- Department of Vascular Surgery, Medical University of Lublin, Staszica 11 St., 20-081 Lublin, Poland;
| | - Anna Bogucka-Kocka
- Department of Biology and Genetics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland; (P.K.); (N.K.); (A.B.-K.)
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
29
|
Lee HL, Kim JM, Go MJ, Joo SG, Kim TY, Lee HS, Kim JH, Son JS, Heo HJ. Fermented Protaetia brevitarsis Larvae Ameliorates Chronic Ethanol-Induced Hepatotoxicity in Mice via AMPK and TLR-4/TGF-β1 Pathways. J Microbiol Biotechnol 2024; 34:606-621. [PMID: 38111317 PMCID: PMC11016765 DOI: 10.4014/jmb.2310.10003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/20/2023]
Abstract
This study evaluated the hepatoprotective effect of fermented Protaetia brevitarsis larvae (FPB) in ethanol-induced liver injury mice. As a result of amino acids in FPB, 18 types of amino acids including essential amino acids were identified. In the results of in vitro tests, FPB increased alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities. In addition, FPB treatment increased cell viability on ethanol- and H2O2-induced HepG2 cells. FPB ameliorated serum biomarkers related to hepatoxicity including glutamic oxaloacetic transaminase, glutamine pyruvic transaminase, total bilirubin, and lactate dehydrogenase and lipid metabolism including triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. Also, FPB controlled ethanol metabolism enzymes by regulating the protein expression levels of ADH, ALDH, and cytochrome P450 2E1 in liver tissue. FPB protected hepatic oxidative stress by improving malondialdehyde content, reduced glutathione, and superoxide dismutase levels. In addition, FPB reversed mitochondrial dysfunction by regulating reactive oxygen species production, mitochondrial membrane potential, and ATP levels. FPB protected ethanol-induced apoptosis, fatty liver, and hepatic inflammation through p-AMP-activated protein kinase and TLR-4/NF-κB signaling pathways. Furthermore, FPB prevented hepatic fibrosis by decreasing TGF-β1/Smad pathway. In summary, these results suggest that FPB might be a potential prophylactic agent for the treatment of alcoholic liver disease via preventing liver injury such as fatty liver, hepatic inflammation due to chronic ethanol-induced oxidative stress.
Collapse
Affiliation(s)
- Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung Gyum Joo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tae Yoon Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Han Su Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ju Hui Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jin-Sung Son
- HMO Health Dream Agricultural Association Corporation, Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
30
|
Santos Filho JRD, Santos ÉDS, Mandim F, Molina AK, Barros L, Correia Gonçalves RA, Braz de Oliveira AJ, Ferreira ICP. Evaluation of antitumoral and antioxidant activities of the hydroalcoholic extract and fractions obtained from the fruit pericarp of Sapindus saponaria L. Nat Prod Res 2024; 38:1002-1006. [PMID: 37194675 DOI: 10.1080/14786419.2023.2211214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
The fruits of Sapindus saponaria L., popularly known as 'saboeiro', have been used in medicine. This study evaluated the antioxidant and antitumor activities of the hydroethanolic extract (HAE) and fractions obtained from the fruit pericarp of S. saponaria. The HAE was obtained from the S. saponaria fruit pericarp by maceration; this was followed by fractionation using reversed-phase solid-phase extraction, resulting in fractions enriched with acyclic sesquiterpenic oligoglycosides (ASOG) and saponins (SAP1, and SAP2), confirmed by mass spectrometry with electrospray ionization (ESI-QTOF-MS). The greatest citotoxic activity was observed with the SAP1 fraction against the CaCo2 cell line with a GI50 of 8.1 µg mL-1, while the SAP2 fraction had a GI50 of 13.6 µg mL-1 against CaCo2. The HAE demonstrated the greatest antioxidant activity. S. saponaria has potential therapeutic use in the pharmaceutical industry as a natural anti-oxidant or antitumor product.
Collapse
Affiliation(s)
| | - Éverton da Silva Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, Paraná, Brasil
| | - Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Adriana K Molina
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Regina Aparecida Correia Gonçalves
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, Paraná, Brasil
- Departamento de Farmácia, Universidade Estadual de Maringá, Maringá, Paraná, Brasil
| | - Arildo José Braz de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, Paraná, Brasil
- Departamento de Farmácia, Universidade Estadual de Maringá, Maringá, Paraná, Brasil
| | - Izabel Cristina Piloto Ferreira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, Paraná, Brasil
- Departamento de Farmácia, Universidade Estadual de Maringá, Maringá, Paraná, Brasil
| |
Collapse
|
31
|
Duan Y, Liu Z, Liao YF, Wang M, Yao Y, Zhu HL. Fluorescence probe for real-time malonaldehyde detection in epilepsy model. Analyst 2023; 149:196-204. [PMID: 38013467 DOI: 10.1039/d3an01583a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Oxidative stress, a condition involving an imbalance between reactive oxygen species (ROS) and antioxidants, is closely linked to epilepsy, contributing to abnormal neuronal excitability. This study introduces a novel fluorescent probe, the MDP probe, designed for the efficient detection of malondialdehyde (MDA), a critical biomarker associated with oxidative stress. The MDP probe offers several key advantages, including high sensitivity with a low detection limit of 0.08 μM for MDA, excellent selectivity for MDA even in the presence of interfering substances, and biocompatibility, making it suitable for cell-based experiments. The probe allows for real-time monitoring of MDA levels, enabling dynamic studies of oxidative stress. In vivo experiments in mice demonstrate its potential for monitoring MDA levels, particularly in epilepsy models, which could have implications for disease research and diagnosis. Overall, the MDP probe represents a promising tool for studying oxidative stress, offering sensitivity and specificity in cellular and in vivo settings. Its development opens new avenues for exploring the role of oxidative stress in various biological processes and diseases, contributing to advancements in healthcare and biomedical research.
Collapse
Affiliation(s)
- Yongtao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| | - Zhenling Liu
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| | - Yi-Fan Liao
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Mingzhu Wang
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| | - Yongfang Yao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Hai-Liang Zhu
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
32
|
Ueda JM, Griebler KR, Finimundy TC, Rodrigues DB, Veríssimo L, Pires TCSP, Gonçalves J, Fernandes IP, Pereira E, Barros L, Heleno SA, Calhelha RC. Polyphenol Composition by HPLC-DAD-(ESI-)MS/MS and Bioactivities of Extracts from Grape Agri-Food Wastes. Molecules 2023; 28:7368. [PMID: 37959787 PMCID: PMC10649058 DOI: 10.3390/molecules28217368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Grape agri-food wastes, such as skin, seeds, and other discarded by-products, contain phytochemical compounds that offer potential health benefits. METHODS This study aimed to investigate the polyphenol composition and bioactivities of different extracts obtained from grape marc and seeds, with the goal of exploring their potential for application as natural food additives. RESULTS Regardless of the extraction method used (dynamic maceration, ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE)), all extracts exhibited relatively high concentrations of phenolic compounds. The chemical characterization of the extracts revealed the presence of specific compounds and chemical groups associated with each extraction methodology. Moreover, the extracts displayed satisfactory antioxidant activities, especially in inhibiting lipoperoxidation as assessed by the TBARS assay. Additionally, the extracts demonstrated effective inhibition against different strains of bacteria and fungi known as food contaminants. Taken together, these findings indicate that those extracts have the potential to be tested as natural antioxidants and preservatives with sustainable origins in food and beverage systems. Among the extraction methods evaluated, traditional maceration and UAE provided extracts with the highest antioxidant and antimicrobial activities. CONCLUSIONS Our results suggest the opportunity to explore grape marc and seeds discarded by the winery industry in Portugal as natural sources of bioactive compounds, which could be employed as functional food ingredients or technological additives. The valorization of grape biowastes offers a promising strategy to reduce waste and harness their potential health benefits.
Collapse
Affiliation(s)
- Jonata M. Ueda
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (J.M.U.); (K.R.G.); (T.C.F.); (D.B.R.); (L.V.); (T.C.S.P.P.); (E.P.); (L.B.); (R.C.C.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Alameda Santa Apolónia, 5300-253 Bragança, Portugal
| | - Karoline Ribeiro Griebler
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (J.M.U.); (K.R.G.); (T.C.F.); (D.B.R.); (L.V.); (T.C.S.P.P.); (E.P.); (L.B.); (R.C.C.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Alameda Santa Apolónia, 5300-253 Bragança, Portugal
| | - Tiane C. Finimundy
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (J.M.U.); (K.R.G.); (T.C.F.); (D.B.R.); (L.V.); (T.C.S.P.P.); (E.P.); (L.B.); (R.C.C.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Alameda Santa Apolónia, 5300-253 Bragança, Portugal
| | - Daniele B. Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (J.M.U.); (K.R.G.); (T.C.F.); (D.B.R.); (L.V.); (T.C.S.P.P.); (E.P.); (L.B.); (R.C.C.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Alameda Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lavínia Veríssimo
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (J.M.U.); (K.R.G.); (T.C.F.); (D.B.R.); (L.V.); (T.C.S.P.P.); (E.P.); (L.B.); (R.C.C.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Alameda Santa Apolónia, 5300-253 Bragança, Portugal
| | - Tânia C. S. P. Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (J.M.U.); (K.R.G.); (T.C.F.); (D.B.R.); (L.V.); (T.C.S.P.P.); (E.P.); (L.B.); (R.C.C.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Alameda Santa Apolónia, 5300-253 Bragança, Portugal
| | - João Gonçalves
- Tree Flowers Solution, Lda, Edificio Brigantia Ecopark, Av. Cidade de Léon, 5300-358 Bragança, Portugal; (J.G.); (I.P.F.)
| | - Isabel P. Fernandes
- Tree Flowers Solution, Lda, Edificio Brigantia Ecopark, Av. Cidade de Léon, 5300-358 Bragança, Portugal; (J.G.); (I.P.F.)
| | - Eliana Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (J.M.U.); (K.R.G.); (T.C.F.); (D.B.R.); (L.V.); (T.C.S.P.P.); (E.P.); (L.B.); (R.C.C.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Alameda Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (J.M.U.); (K.R.G.); (T.C.F.); (D.B.R.); (L.V.); (T.C.S.P.P.); (E.P.); (L.B.); (R.C.C.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Alameda Santa Apolónia, 5300-253 Bragança, Portugal
| | - Sandrina A. Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (J.M.U.); (K.R.G.); (T.C.F.); (D.B.R.); (L.V.); (T.C.S.P.P.); (E.P.); (L.B.); (R.C.C.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Alameda Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (J.M.U.); (K.R.G.); (T.C.F.); (D.B.R.); (L.V.); (T.C.S.P.P.); (E.P.); (L.B.); (R.C.C.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Alameda Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
33
|
Sato VH, Chewchinda S, Goli AS, Sato H, Nontakham J, Vongsak B. Oral Glucose Tolerance Test (OGTT) Evidence for the Postprandial Anti-Hyperglycemic Property of Salacca zalacca (Gaertn.) Voss Seed Extract. Molecules 2023; 28:6775. [PMID: 37836618 PMCID: PMC10574354 DOI: 10.3390/molecules28196775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Salak seed extract (Salacca zalacca) is known for its high antioxidant content and low caffeine levels, making it a promising candidate for the development of value-added health products. However, there is a lack of scientific evidence for its anti-hyperglycemic effects. To address this, we investigated the in vitro and in vivo anti-hyperglycemic and antioxidant effects of salak seed extract. The HPLC chromatogram of salak seed extract shows a prominent peak that corresponds to chlorogenic acid. In vitro studies revealed that salak seeds inhibited α-glucosidase activity and glucose uptake in Caco-2 cells in a concentration-dependent manner, while also exhibiting antioxidant properties. The extract exhibits a non-competitive inhibition on α-glucosidase activity, with an IC50 and Ki of 16.28 ± 7.22 and 24.81 μg/mL, respectively. In vivo studies utilizing streptozotocin-nicotinamide-induced diabetic mice showed that the extract significantly reduced fasting blood glucose (FBG) levels in the oral glucose tolerance test. Continuous administration of the salak seed extract resulted in lower FBG levels by 13.8% as compared with untreated diabetic mice, although this change was not statistically significant. The estimated LD50 value of salak seed extract exceeds 2000 mg/kg, and no toxicity symptoms have been detected. Our research supports that salak seed extract has the potential to serve as a functional food or supplement that may be beneficial in reducing postprandial hyperglycemia among people with type 2 diabetes. This effect was explained by the salak's inhibitory mechanisms of glucose absorption due to inhibition of both α-glucosidase activity and intestinal glucose uptake, coupled with its antioxidant effects.
Collapse
Affiliation(s)
- Vilasinee Hirunpanich Sato
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (V.H.S.); (A.S.G.)
| | - Savita Chewchinda
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
| | - Arman Syah Goli
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (V.H.S.); (A.S.G.)
| | - Hitoshi Sato
- Division of Pharmacokinetics and Pharmacodynamics, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University, Tokyo 142-855, Japan;
| | - Jannarin Nontakham
- Clinical Research Section, Division of Research and Academic Support, National Cancer Institute, Bangkok 10400, Thailand;
| | - Boonyadist Vongsak
- Pharmaceutical Innovations of Natural Products Unit (PhInNat), Burapha University, Chonburi 20131, Thailand
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
34
|
Nkwingwa BK, Wado EK, Foyet HS, Bouvourne P, Jugha VT, Mambou AHMY, Bila RB, Taiwe GS. Ameliorative effects of Albizia adianthifolia aqueous extract against pentylenetetrazole-induced epilepsy and associated memory loss in mice: Role of GABAergic, antioxidant defense and anti-inflammatory systems. Biomed Pharmacother 2023; 165:115093. [PMID: 37392651 DOI: 10.1016/j.biopha.2023.115093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
Albizia adianthifolia (Schumach.) (Fabaceae) is a medicinal herb used for the treatment of epilepsy and memory impairment. This study aims to investigate the anticonvulsant effects of Albizia adianthifolia aqueous extract against pentylenetetrazole (PTZ)-induced spontaneous convulsions in mice; and determine whether the extract could mitigate memory impairment, oxidative/nitrergic stress, GABA depletion and neuroinflammation. Ultra-high performance liquid chromatography/mass spectrometry analysis was done to identify active compounds from the extract. Mice were injected with PTZ once every 48 h until kindling was developed. Animals received distilled water for the normal group and negative control groups, doses of extract (40, 80, or 160 mg/kg) for the test groups and sodium valproate (300 mg/kg) for the positive control group. Memory was measured using Y maze, novel object recognition (NOR) and open field paradigms, while the oxidative/nitrosative stresses (MDA, GSH, CAT, SOD and NO), GABAergic transmission (GABA, GABA-T and GAD) and neuro-inflammation (TNF-α, IFN-γ, IL- 1β, and IL-6) were determined. Brain photomicrograph was also studied. Apigenin, murrayanine and safranal were identified in the extract. The extract (80-160 mg/kg) significantly protected mice against seizures and mortality induced by PTZ. The extract significantly increased the spontaneous alternation and the discrimination index in the Y maze and NOR tests, respectively. PTZ kindling induced oxidative/nitrosative stress, GABA depletion, neuroinflammation and neuronal cells death was strongly reversed by the extract. The results suggest that the anticonvulsant activity of Albizia adianthifolia extract is accompanied by its anti-amnesic property, and may be supported by the amelioration of oxidative stress, GABAergic transmission and neuroinflammation.
Collapse
Affiliation(s)
- Balbine Kamleu Nkwingwa
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Eglantine Keugong Wado
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Harquin Simplice Foyet
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Parfait Bouvourne
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Vanessa Tita Jugha
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Alain Hart Mann Youbi Mambou
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Raymond Bess Bila
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Germain Sotoing Taiwe
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
| |
Collapse
|
35
|
Bungau AF, Radu AF, Bungau SG, Vesa CM, Tit DM, Purza AL, Endres LM. Emerging Insights into the Applicability of Essential Oils in the Management of Acne Vulgaris. Molecules 2023; 28:6395. [PMID: 37687224 PMCID: PMC10489792 DOI: 10.3390/molecules28176395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The occurrence of pustules, comedones, nodules, and cysts defines acne vulgaris, a prevalent chronic inflammatory dermatological condition. In the past few decades, essential oils extracted from varied natural sources have acquired recognition due to their potential medicinal applications in acne therapy. However, there is not yet sufficient medical data to fully characterize this interaction. Multiple factors contribute to the development of acne vulgaris, including excessive sebaceous production, inflammatory processes, hyperkeratinization, and infection with Cutibacterium acnes. Essential oils, including oregano, lavender, lemon grass, myrtle, lemon, thyme, eucalyptus, rosemary, and tea tree, have been found to possess anti-inflammatory, antioxidant, and antimicrobial properties, which may target the multifactorial causes of acne. Analytical methods for determining antioxidant potential (i.e., total phenolic content, diphenyl-1-picrylhydrazyl free radical scavenging assay, reducing power assay, ferrous ion chelating activity, thiobarbituric acid reactive species assay, β-carotene bleaching assay, etc.) are essential for the evaluation of these essential oils, and their method optimization is crucial. Further studies could include the development of novel acne treatments incorporating essential oils and an assessment of their efficacy in large clinical trials. In addition, further research is necessary to ascertain the mechanisms of action of essential oils and their optimal doses and safety profiles for optimal implementation in the management of acne vulgaris.
Collapse
Affiliation(s)
- Alexa Florina Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.F.B.); (C.M.V.); (D.M.T.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.F.B.); (C.M.V.); (D.M.T.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.F.B.); (C.M.V.); (D.M.T.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Cosmin Mihai Vesa
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.F.B.); (C.M.V.); (D.M.T.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.F.B.); (C.M.V.); (D.M.T.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Anamaria Lavinia Purza
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Laura Maria Endres
- Department of Psycho-Neurosciences and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| |
Collapse
|
36
|
Karoui IJ, Chaabani E, Dali I, Aydi A, Hammami M, Abderrabba M. Optimization of antioxidant and lycopene extraction from tomato pomace using Hansen solubility parameters and its application in chicken meat preservation. J Food Sci 2023; 88:3714-3724. [PMID: 37548649 DOI: 10.1111/1750-3841.16722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023]
Abstract
Tomato pomace, composed of peels and seeds, is often discarded or used as animal feed. However, it contains valuable phytochemicals, including lycopene. Lycopene, a natural pigment, is an antioxidant known for reducing the risk of chronic diseases like cardiovascular ailments and cancer. In this study, we aimed to study the possibility of valorizing tomato pomace by quantifying phenolic compounds, evaluating the antioxidant activity of their extracts, as well as extracting and quantifying lycopene, and studying the effect of tomato peel extract on the oxidative stability of chicken patties during storage. The effectiveness of different solvent mixtures for the extraction of lycopene was evaluated using Hansen solubility parameters (HSPs). The obtained results showed that the best solvent mixture was hexane/acetone (50/50) with a Hansen theoretical distance of 7.2, indicating its favorable solvation power. It also achieved a notable extraction yield of 3.12% and the highest lycopene yield of 20.05 mg/100 g. This combination demonstrated the highest values in terms of total phenolic (24.06 mg equivalent gallic acid/100 g dry matter) and flavonoid content (30.55 mg equivalent catechin/100 g dry matter), indicating a significant presence of these compounds. However, its 1,1-diphenyl-2-picrylhydrazyl (13.51 µg/mL) and ABTS, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid, (8.52 µg/mL) IC50 values were comparatively lower than the other mixes. The use of this fraction as a food additive and antioxidant showed significant competitiveness with the conventional preservative, 2,6-di-tert-butyl-4-methylphenol. Tomato extract can be considered a potential natural preservative in food preparations due to its high lycopene content. PRACTICAL APPLICATION: This research provides valuable insights into optimizing the extraction of antioxidants from tomato pomace, using HSPs. The findings have the potential to benefit the food industry by developing improved methods for preserving chicken meat through the application of these optimized antioxidant extracts. By enhancing the preservation process, this study may contribute to extending the shelf life and maintaining the quality of chicken meat, leading to reduced food waste and improved consumer satisfaction.
Collapse
Affiliation(s)
- Iness Jabri Karoui
- Laboratory of Materials Molecules and Applications, Preparatory Institute for Scientific and Technical Studies, Carthage University, Tunis, Tunisia
| | - Emna Chaabani
- Laboratory of Medicinal and Aromatic Plants, Biotechnology Center of Borj-Cedria, Hammam-Lif, Tunisia
| | - Imen Dali
- Laboratory of Materials Molecules and Applications, Preparatory Institute for Scientific and Technical Studies, Carthage University, Tunis, Tunisia
- Chemistry Department, University of Sciences of Tunis, El Manar University, Tunis, Tunisia
| | | | - Majdi Hammami
- Laboratory of Medicinal and Aromatic Plants, Biotechnology Center of Borj-Cedria, Hammam-Lif, Tunisia
| | - Manef Abderrabba
- Laboratory of Materials Molecules and Applications, Preparatory Institute for Scientific and Technical Studies, Carthage University, Tunis, Tunisia
| |
Collapse
|
37
|
Letizia F, Fratianni A, Cofelice M, Testa B, Albanese G, Di Martino C, Panfili G, Lopez F, Iorizzo M. Antioxidative Properties of Fermented Soymilk Using Lactiplantibacillus plantarum LP95. Antioxidants (Basel) 2023; 12:1442. [PMID: 37507980 PMCID: PMC10376881 DOI: 10.3390/antiox12071442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
In recent times, there has been a growing consumer interest in replacing animal foods with alternative plant-based products. Starting from this assumption, for its functional properties, soymilk fermented with lactic acid bacteria is gaining an important position in the food industry. In the present study, soymilk was fermented with Lactiplantibacillus plantarum LP95 at 37 °C, without the use of stabilizers as well as thickeners and acidity regulators. We evaluated the antioxidant capacity of fermented soymilk along with its enrichment in aglycone isoflavones. The conversion of isoflavone glucosides to aglycones (genistein, glycitein, and daidzein) was analyzed together with antioxidant activity (ABTS) measurements, lipid peroxidation measurements obtained by a thiobarbituric acid reactive substance (TBARS) assay, and apparent viscosity measurements. From these investigations, soymilk fermentation using Lp. plantarum LP95 as a starter significantly increased isoflavones' transformation to their aglycone forms. The content of daidzein, glycitein, and genistein increased after 24 h of fermentation, reaching levels of 48.45 ± 1.30, 5.10 ± 0.16, and 56.35 ± 1.02 μmol/100 g of dry weight, respectively. Furthermore, the antioxidant activity increased after 6 h with a reduction in MDA (malondialdehyde). The apparent viscosity was found to increase after 24 h of fermentation, while it slightly decreased, starting from 21 days of storage. Based on this evidence, Lp. plantarum LP95 appears to be a promising candidate as a starter for fermented soymilk production.
Collapse
Affiliation(s)
- Francesco Letizia
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Alessandra Fratianni
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Martina Cofelice
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Bruno Testa
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Gianluca Albanese
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Catello Di Martino
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Gianfranco Panfili
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Francesco Lopez
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Massimo Iorizzo
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| |
Collapse
|
38
|
Martin D, Joly C, Dupas-Farrugia C, Adt I, Oulahal N, Degraeve P. Volatilome Analysis and Evolution in the Headspace of Packed Refrigerated Fish. Foods 2023; 12:2657. [PMID: 37509749 PMCID: PMC10378619 DOI: 10.3390/foods12142657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
Fresh fish is a perishable food in which chemical (namely oxidation) and microbiological degradation result in undesirable odor. Non-processed fish (i.e., raw fish) is increasingly commercialized in packaging systems which are convenient for its retailing and/or which can promote an extension of its shelf-life. Compared to fish sent to its retail unpackaged, fish packaging results in a modification of the gaseous composition of the atmosphere surrounding it. These modifications of atmosphere composition may affect both chemical and microbiological degradation pathways of fish constituents and thereby the volatile organic compounds produced. In addition to monitoring Total Volatile Basic Nitrogen (TVB-N), which is a common indicator to estimate non-processed fish freshness, analytical techniques such as gas chromatography coupled to mass spectrometry or techniques referred to as "electronic nose" allow either the identification of the entire set of these volatile compounds (the volatilome) and/or to selectively monitor some of them, respectively. Interestingly, monitoring these volatile organic compounds along fish storage might allow the identification of early-stage markers of fish alteration. In this context, to provide relevant information for the identification of volatile markers of non-processed packaged fish quality evolution during its storage, the following items have been successively reviewed: (1) inner atmosphere gaseous composition and evolution as a function of fish packaging systems; (2) fish constituents degradation pathways and analytical methods to monitor fish degradation with a focus on volatilome analysis; and (3) the effect of different factors affecting fish preservation (temperature, inner atmosphere composition, application of hurdle technology) on volatilome composition.
Collapse
Affiliation(s)
- Doriane Martin
- BioDyMIA Research Unit, Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, 155 Rue Henri de Boissieu, F-01000 Bourg en Bresse, France
| | - Catherine Joly
- BioDyMIA Research Unit, Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, 155 Rue Henri de Boissieu, F-01000 Bourg en Bresse, France
| | - Coralie Dupas-Farrugia
- BioDyMIA Research Unit, Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, 155 Rue Henri de Boissieu, F-01000 Bourg en Bresse, France
| | - Isabelle Adt
- BioDyMIA Research Unit, Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, 155 Rue Henri de Boissieu, F-01000 Bourg en Bresse, France
| | - Nadia Oulahal
- BioDyMIA Research Unit, Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, 155 Rue Henri de Boissieu, F-01000 Bourg en Bresse, France
| | - Pascal Degraeve
- BioDyMIA Research Unit, Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, 155 Rue Henri de Boissieu, F-01000 Bourg en Bresse, France
| |
Collapse
|
39
|
Chilakala R, Moon HJ, Kim K, Yang S, Cheong SH. Anti-obesity effects of Camellia (Camellia oleifera Abel) oil treatment on high-fat diet-induced obesity in C57BL/6J mice. Phys Act Nutr 2023; 27:50-61. [PMID: 37583072 PMCID: PMC10440180 DOI: 10.20463/pan.2023.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE In the current study, we investigated the effects of camellia oil and camellia oil infused with herbs (Camellia oleifera Abel) on obesity in obese mice fed a high-fat diet (HFD). METHODS The antioxidant activity of camellia oil in scavenging free radicals was investigated. Additionally, body and organ weight changes, serum and liver marker parameters, antioxidant enzyme activities, liver and epididymal fat histology, protein and gene expression associated with lipogenesis and hyperglycemia effect on adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, were examined in HFD-induced obese mice. RESULTS The hepatic steatosis and epididymal fat were significantly reduced by the oral administration of camellia oil and herb-infused camellia oil. Moreover, hepatic and serum marker parameters such as total cholesterol, insulin, triglycerides, tumor necrosis factor-α, adiponectin, thiobarbituric acid reactive substances, aspartate aminotransferase, and alanine transaminase were beneficially impacted. Additionally, the activity of antioxidant enzymes also increased. Camellia oil and herb-infused camellia oil treatments reduced the expression of genes linked to hyperglycemia and lipogenesis via activation of AMPK phosphorylation. CONCLUSION For many people, exercise poses an obstacle in the daily routine due to lack of ease, difficulty in maintaining consistency, and hard work. Camellia oil combined with herbs has anti-obesity and antihyperglycemic effects. These findings indicate that treatment with herb-infused camellia oil is most beneficial for elderly individuals who do not prefer frequent exercise.
Collapse
Affiliation(s)
- Ramakrishna Chilakala
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea
| | - Hyeon Jeong Moon
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea
| | | | | | - Sun Hee Cheong
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea
| |
Collapse
|
40
|
Smeriglio A, Iraci N, Denaro M, Mandalari G, Giofrè SV, Trombetta D. Synergistic Combination of Citrus Flavanones as Strong Antioxidant and COX-Inhibitor Agent. Antioxidants (Basel) 2023; 12:antiox12040972. [PMID: 37107347 PMCID: PMC10136195 DOI: 10.3390/antiox12040972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Recently, we demonstrated that a Citrus flavanone mix (FM) shows antioxidant and anti-inflammatory activity, even after gastro-duodenal digestion (DFM). The aim of this study was to investigate the possible involvement of the cyclooxygenases (COXs) in the anti-inflammatory activity previously detected, using a human COX inhibitor screening assay, molecular modeling studies, and PGE2 release by Caco-2 cells stimulated with IL-1β and arachidonic acid. Furthermore, the ability to counteract pro-oxidative processes induced by IL-1β was evaluated by measuring four oxidative stress markers, namely, carbonylated proteins, thiobarbituric acid-reactive substances, reactive oxygen species, and reduced glutathione/oxidized glutathione ratio in Caco-2 cells. All flavonoids showed a strong inhibitory activity on COXs, confirmed by molecular modeling studies, with DFM, which showed the best and most synergistic activity on COX-2 (82.45% vs. 87.93% of nimesulide). These results were also corroborated by the cell-based assays. Indeed, DFM proves to be the most powerful anti-inflammatory and antioxidant agent reducing, synergistically and in a statistically significant manner (p < 0.05), PGE2 release than the oxidative stress markers, also with respect to the nimesulide and trolox used as reference compounds. This leads to the hypothesis that FM could be an excellent antioxidant and COX inhibitor candidate to counteract intestinal inflammation.
Collapse
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Marcella Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Vincenzo Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
41
|
Bouazza A, Fontaine E, Leverve X, Koceir EA. Interference of altered plasma trace elements profile with hyperhomocysteinemia and oxidative stress damage to insulin secretion dysfunction in Psammomys obesus: focus on the selenium. Arch Physiol Biochem 2023; 129:505-518. [PMID: 33171059 DOI: 10.1080/13813455.2020.1839501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The objective of this study is to investigate the relationship between altered plasma trace elements, particularly selenium (Se), with Hyper-homocysteinemia (HhCys) as a predictive factor of insulin secretion dysfunction. The study is carried out on adult Psammomys obesus, divided in 4 experimental groups: (I) Normoglycemic/Normoinsulinemic; (II) Normoglycemic/Hyperinsulinemic; (III) Hyperglycaemic/Hyperinsulinemic and (IV) Hyperglycaemic/Insulin deficiency with ketoacidosis. The data showed that a drastic depletion of Se plasma levels is positively correlated with HhCys (>15 µmol/L; p < .001), concomitantly with decreased GPx activity, GSH levels, and GSH/GSSG ratio in group IV both in plasma and liver. In contrast, SOD activity is increased (p ≤ .001) in group IV both in plasma and liver. However, plasma Cu and Mn levels increased, while plasma Zn levels decreased in group IV (p < .001). Our study confirms the increase of plasma hCys levels seemed to be a major contributing factor to antioxidant capacities and alters the availability of selenium metabolism by interference with homocysteine synthesis in the insulin secretion deficiency stage.
Collapse
Affiliation(s)
- Asma Bouazza
- Bioenergetics and Intermediary Metabolism team, Laboratory of Biology and Organism Physiology, Biological Sciences faculty, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Eric Fontaine
- Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), INSERM, Grenoble, France
| | - Xavier Leverve
- Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), INSERM, Grenoble, France
| | - Elhadj-Ahmed Koceir
- Bioenergetics and Intermediary Metabolism team, Laboratory of Biology and Organism Physiology, Biological Sciences faculty, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| |
Collapse
|
42
|
Ghani MA, Barril C, Bedgood DR, Burrows GE, Prenzler PD. Multi-Dimensional Antioxidant Screening of Selected Australian Native Plants and Putative Annotation of Active Compounds. Molecules 2023; 28:3106. [PMID: 37049870 PMCID: PMC10095623 DOI: 10.3390/molecules28073106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Acacia implexa, Eucalyptus rossii and Exocarpos cupressiformis are native plants of Australia, which were used by the First Peoples for medicinal purposes. In this study, 70% aqueous ethanol crude extracts were prepared from A. implexa bark and leaves, E. rossii leaves and E. cupressiformis leaves, and partitioned via sequential extraction with n-hexane, dichloromethane (DCM), ethyl acetate and ethanol. The crude extracts and fractions were screened for antioxidant activity using a novel, high-throughput lipid-based antioxidant assay, as well as the aqueous ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assay and the Folin-Ciocalteu test for total phenols. In the lipid-based assay, non-polar n-hexane and DCM fractions showed higher antioxidant activity against the formation of peroxides and thiobarbituric acid reactive substances (TBARS) than the other fractions, whereas the non-polar fractions were not effective in aqueous assays. This illustrates that the high potential of the lipid-soluble n-hexane and DCM fractions as antioxidants would have been missed if only aqueous-based assays were used. In addition, the potent antioxidant compounds were putatively annotated using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-qTOF-MS). Gallic acid, (+)-catechin, (-)-epicatechin and tannins were found in most crude extracts.
Collapse
Affiliation(s)
- Md. Ahsan Ghani
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Celia Barril
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Danny R. Bedgood
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Geoffrey E. Burrows
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Paul D. Prenzler
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- The Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| |
Collapse
|
43
|
Odoom JF, Aboagye CI, Acheampong P, Asiamah I, Darko G, Borquaye LS. Chemical Composition, Antioxidant, and Antimicrobial Activities of the Leaf and Fruit Essential Oils of the West African Plum, Vitex doniana. J CHEM-NY 2023. [DOI: 10.1155/2023/9959296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Vitex doniana (West African plum or black plum) is a plant with varying phytoconstituents and biological activities across different countries. In this study, essential oils extracted from the leaves and fruits of Vitex doniana cultivated in Ghana were investigated for their antimicrobial and antioxidant activities. The antioxidant actions of the essential oils were determined using hydrogen peroxide (H2O2), phosphomolybdenum, thiobarbituric acid reactive substances (TBARS), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays. For both essential oils, the total antioxidant capacities ranged from 44 to 68 µg/g AAE, the IC50 values for H2O2 scavenging activity were between 87 and 242 µg/mL, whereas that for DPPH assay were between 322 and 599 µg/mL. The IC50 for the TBARS assay for both essential oils also ranged from 247 to 414 µg/mL. The antimicrobial activities of the essential oils were investigated using the broth dilution assay. The minimum inhibition concentration for the essential oils ranged from 12.5 to 50 mg/mL. Biofilm inhibitory activity was also evaluated for both essential oils, and the fruit essential oil showed a half-maximal inhibition of biofilm formation (BIC50) at 44.40 ± 0.6 mg/mL, whereas the BIC50 value of the leaf essential oil was 109.1 ± 0.9 mg/mL. The fruit essential oil was superior to the leaf essential oil in inhibiting the secretion of pyoverdine. Molecular docking analyses suggested that methyl cinnamate, ethyl cinnamate, p-menth-4-en-3-one, trans-α-ionone, benzyl benzoate, isobutyl cinnamate, and folic acid likely interacted with LasR and algC proteins, and hence, contributed to the inhibition of biofilm formation and pyoverdine secretion. Essential oils from Vitex doniana could, therefore, be exploited as a natural source of radical scavenging and antimicrobial agents and could be useful in the pharmaceutical, food, and cosmetic industries.
Collapse
|
44
|
Ha JW, Choi JY, Boo YC. Differential Effects of Histidine and Histidinamide versus Cysteine and Cysteinamide on Copper Ion-Induced Oxidative Stress and Cytotoxicity in HaCaT Keratinocytes. Antioxidants (Basel) 2023; 12:antiox12040801. [PMID: 37107176 PMCID: PMC10135049 DOI: 10.3390/antiox12040801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Metal chelators are used for various industrial and medical purposes based on their physicochemical properties and biological activities. In biological systems, copper ions bind to certain enzymes as cofactors to confer catalytic activity or bind to specific proteins for safe storage and transport. However, unbound free copper ions can catalyze the production of reactive oxygen species (ROS), causing oxidative stress and cell death. The present study aims to identify amino acids with copper chelation activities that might mitigate oxidative stress and toxicity in skin cells exposed to copper ions. A total of 20 free amino acids and 20 amidated amino acids were compared for their copper chelation activities in vitro and the cytoprotective effects in cultured HaCaT keratinocytes exposed to CuSO4. Among the free amino acids, cysteine showed the highest copper chelation activity, followed by histidine and glutamic acid. Among the amidated amino acids, cysteinamide showed the highest copper chelation activity, followed by histidinamide and aspartic acid. CuSO4 (0.4–1.0 mM) caused cell death in a concentration-dependent manner. Among the free and amidated amino acids (1.0 mM), only histidine and histidinamide prevented the HaCaT cell death induced by CuSO4 (1.0 mM). Cysteine and cysteinamide had no cytoprotective effects despite their potent copper-chelating activities. EDTA and GHK-Cu, which were used as reference compounds, had no cytoprotective effects either. Histidine and histidinamide suppressed the CuSO4-induced ROS production, glutathione oxidation, lipid peroxidation, and protein carbonylation in HaCaT cells, whereas cysteine and cysteinamide had no such effects. Bovine serum albumin (BSA) showed copper-chelating activity at 0.5–1.0 mM (34–68 mg mL−1). Histidine, histidinamide, and BSA at 0.5–1.0 mM enhanced the viability of cells exposed to CuCl2 or CuSO4 (0.5 mM or 1.0 mM) whereas cysteine and cysteinamide had no such effects. The results of this study suggest that histidine and histidinamide have more advantageous properties than cysteine and cysteinamide in terms of alleviating copper ion-induced toxic effects in the skin.
Collapse
Affiliation(s)
- Jae Won Ha
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea; (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Joon Yong Choi
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea; (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Yong Chool Boo
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea; (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Correspondence: ; Tel.: +82-53-420-4946
| |
Collapse
|
45
|
Delgadillo-Valero LF, Hernández-Cruz EY, Pedraza-Chaverri J. The Protective Role of Ozone Therapy in Kidney Disease: A Review. Life (Basel) 2023; 13:life13030752. [PMID: 36983907 PMCID: PMC10057350 DOI: 10.3390/life13030752] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Ozone (O3) is a reactive oxygen species (ROS) that can interact with cellular components and cause oxidative stress. Following said logic, if O3 induces such a stressful milieu, how does it exert antioxidant functions? This is mediated by controlled toxicity produced by low concentrations of O3, which enhance the cell’s suppliance of antioxidant properties without causing any further damage. Therapeutic concentrations vary extensively, although 50 µg/mL is commonly used in experimental and clinical procedures, given that augmented concentrations might work as germicides or cause endogenous damage. O3 therapy has been shown to be effective when applied before or after traumatic renal procedures, whether caused by ischemia, xenobiotics, chronic damage, or other models. In this review, we focus on discussing the role of O3 therapy in different models of kidney damage associated with fibrosis, apoptosis, oxidative stress, and inflammation. We integrate and report knowledge about O3 in renal therapy, debunking skepticism towards unconventional medicine, explaining its proven therapeutic properties, and thus providing background for its use in further research as well as in clinical settings.
Collapse
Affiliation(s)
- Luis Fernando Delgadillo-Valero
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04360, Mexico
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Estefani Yaquelin Hernández-Cruz
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico
- Postgraduate in Biological Sciences, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - José Pedraza-Chaverri
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico
- Correspondence:
| |
Collapse
|
46
|
Park S, Yang M, Yim DG, Jo C, Kim G. VIS/NIR hyperspectral imaging with artificial neural networks to evaluate the content of thiobarbituric acid reactive substances in beef muscle. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
47
|
Lee M, Kim D, Ji Choi E, Hee Song J, Yong Kang J, Won Lee K, Yoon Chang J. Transcriptome responses of lactic acid bacteria isolated from kimchi under hydrogen peroxide exposure. Food Res Int 2023; 168:112681. [PMID: 37120183 DOI: 10.1016/j.foodres.2023.112681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
In this study, five species of lactic acid bacteria (LAB) isolated from kimchi were analyzed in terms of their potential antioxidant activity. Latilactobacillus curvatus WiKim38, Companilactobacillus allii WiKim39, and Lactococcus lactis WiKim0124 exhibited higher radical scavenging activity, reducing power, and lipid peroxidation inhibition than the reference strain and tolerated hydrogen peroxide (H2O2) exposure up to a concentration of 2.5 mM. To investigate the antioxidant mechanism of LAB strains, transcriptomic and proteomic signatures were compared between the H2O2-exposed and untreated group using RNA sequencing and two-dimensional protein gel electrophoresis. Across all LAB strains, cell membrane responses and metabolic processes were the most prominent in the main categories of gene ontology classification, indicating that cellular components and interactions play an important role in oxidative stress responses. Thus, LAB strains isolated from kimchi could be considered for potential use in functional food production and in antioxidant starter cultures.
Collapse
|
48
|
Ye H, Ke Y, Li W, Zhu B, Jiang L, Hu X, Zeng L. Molecular engineering of fluorescence probe for real-time non-destructive visual screening of meat freshness. Anal Chim Acta 2023; 1254:341125. [PMID: 37005030 DOI: 10.1016/j.aca.2023.341125] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023]
Abstract
Spoiled meat poses a great challenge to food security and human health, which should be addressed by the early monitoring and warning of the meat freshness. We herein exploited a molecular engineering strategy to construct a set of fluorescence probes (PTPY, PTAC, and PTCN) with phenothiazine as fluorophore and cyanovinyl as recognition site for the facile and efficient monitoring of meat freshness. These probes produce an obvious fluorescence color transition from dark red to bright cyan in response to cadaverine (Cad) through the nucleophilic addition/elimination reaction. The sensing performances were elaborately improved to achieve quick response (16 s), low detection limit (LOD = 3.9 nM), and high contrast fluorescence color change by enhancing the electron-withdrawing strength of cyanovinyl moiety. Furthermore, PTCN test strips were fabricated for portable and naked-eye detection of Cad vapor with fluorescence color change from crimson to cyan, and accurate determination of Cad vapor level with RGB color (red, green, blue) mode analysis. The test strips were employed to detect the freshness of real beef samples, and demonstrated a good capability of non-destructive, non-contact and visual screening meat freshness on site.
Collapse
Affiliation(s)
- Huan Ye
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yingjun Ke
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Wenlu Li
- School of Food and Drug, Luoyang Normal University, Henan Luoyang, 471934, China
| | - Beitong Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Lirong Jiang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Xichao Hu
- School of Food and Drug, Luoyang Normal University, Henan Luoyang, 471934, China.
| | - Lintao Zeng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China; School of Chemistry and Materials Science, Hubei Engineering University, Hubei Xiaogan, 432100, China.
| |
Collapse
|
49
|
Salimi A, Shabani M, Bayrami D, Saray A, Farshbaf Moghimi N. Gallic acid and sesame oil exert cardioprotection via mitochondrial protection and antioxidant properties on Ketamine-Induced cardiotoxicity model in rats. TOXIN REV 2023. [DOI: 10.1080/15569543.2023.2165503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences
| | - Mohammad Shabani
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Deniz Bayrami
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Armin Saray
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nastaran Farshbaf Moghimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
50
|
Lee HL, Kim JM, Moon JH, Kim MJ, Jeong HR, Go MJ, Kim HJ, Eo HJ, Lee U, Heo HJ. Anti-Amnesic Effect of Synbiotic Supplementation Containing Corni fructus and Limosilactobacillus reuteri in DSS-Induced Colitis Mice. Int J Mol Sci 2022; 24:ijms24010090. [PMID: 36613533 PMCID: PMC9820465 DOI: 10.3390/ijms24010090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
This study was conducted to compare the synbiotic activity between Corni fructus (C. fructus) and Limosilactobacillus reuteri (L. reuteri) on dextran sulfate sodium (DSS)-induced colitis and cognitive dysfunction in C57BL/6 mice. C. fructus (as prebiotics, PRE), L. reuteri (as probiotics, PRO), and synbiotics (as a mixture of L. reuteri and C. fructus, SYN) were fed to mice for 3 weeks. Consumption of PRE, PRO, and SYN ameliorated colitis symptoms in body weight, large intestinal length, and serum albumin level. Moreover, SYN showed a synergistic effect on intestinal permeability and intestinal anti-inflammation response. Also, SYN significantly improved cognitive function as a result of measuring the Y-maze and passive avoidance tests in DSS-induced behavioral disorder mice. Especially, SYN also restored memory function by increasing the cholinergic system and reducing tau and amyloid β pathology. In addition, PRE, PRO, and SYN ameliorated dysbiosis by regulating the gut microbiota and the concentration of short-chain fatty acids (SCFAs) in feces. The bioactive compounds of C. fructus were identified with quinic acid, morroniside, loganin, and cornuside, using ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS2). In conclusion, synbiotic supplementation alleviated DSS-induced colitis and cognitive dysfunction by modulating gut microbiota, proinflammatory cytokines, and SCFAs production.
Collapse
Affiliation(s)
- Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong Hyun Moon
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Ji Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hye Rin Jeong
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyun Ji Eo
- Division of Special Forest Resources, Department of Forest Bioresources, National Institute of Forest Science (NIFoS), Suwon 16631, Republic of Korea
| | - Uk Lee
- Division of Special Forest Resources, Department of Forest Bioresources, National Institute of Forest Science (NIFoS), Suwon 16631, Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Correspondence: ; Tel.: +82-(55)-7721907
| |
Collapse
|