1
|
Ferreira RSB, de Souza PT, Cardoso LP, de Jesus MB, Batista EAC. Sustainable extraction of phytoestrogens from soybean and okara using green solvents. Food Res Int 2025; 201:115521. [PMID: 39849685 DOI: 10.1016/j.foodres.2024.115521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 11/21/2024] [Accepted: 12/14/2024] [Indexed: 01/30/2025]
Abstract
Soy extract waste, okara, is a rich source of bioactive compounds such as isoflavones, which are phytoestrogens with potential health benefits. To develop a green approach to recovering these compounds and valorizing okara, a study was developed to screen variables for the extraction of isoflavones from okara and soybean (for comparison) using Deep Eutectic Solvents (DES) composed with choline chloride ([Ch]Cl) and acetic acid (AA) ([Ch]Cl: AA, 1:2). A fractional design (24-1) was used to evaluate variables in the extraction of isoflavones, followed by a Central Composite Rotatable Design (CCRD). The variables analyzed included temperature, % water, solid-liquid ratio, and stirring speed. Furthermore, cytotoxicity tests were carried out using Caco-2 cells from the extracts obtained under best conditions, and the solid matrices were evaluated by scanning electron microscopy (SEM). This study showed that 1194.56 µg TIC/g of dried soybeans were extracted using [Ch]Cl: AA with 70 % water added at low temperature (25 °C), 500 rpm, S/L ratio of 10 mg/mL and extraction time of 2 h. For okara, 450.9 µg TIC/g of dry okara were extracted at 40 °C, 500 rpm, 61.5 % water in DES, S/L ratio of 10 mg/mL, and extraction time of 1 h. In the cytotoxicity tests, it was observed that the neutralization step of the extracts is necessary to reduce the cytotoxic effects caused by the high acidity of the solvents. In summary, this work has shown that aqueous mixtures of DES can be used as sustainable alternative techniques for recovering isoflavones from soybean residue and can replace toxic conventional solvents.
Collapse
Affiliation(s)
- Ramon S B Ferreira
- Laboratório de Extração, Termodinâmica Aplicada e Equilíbrio - EXTRAE, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Rua Monteiro Lobato,80, 13083-062 Campinas, SP, Brazil
| | - Patrícia T de Souza
- Laboratório de Extração, Termodinâmica Aplicada e Equilíbrio - EXTRAE, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Rua Monteiro Lobato,80, 13083-062 Campinas, SP, Brazil
| | - Luana P Cardoso
- Laboratório de Interações Nanopartículas & Células, Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia CP 6109, Universidade Estadual de Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
| | - Marcelo B de Jesus
- Laboratório de Interações Nanopartículas & Células, Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia CP 6109, Universidade Estadual de Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
| | - Eduardo A C Batista
- Laboratório de Extração, Termodinâmica Aplicada e Equilíbrio - EXTRAE, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Rua Monteiro Lobato,80, 13083-062 Campinas, SP, Brazil.
| |
Collapse
|
2
|
Paié-Ribeiro J, Baptista F, Gomes MJ, Teixeira A, Pinheiro V, Outor-Monteiro D, Barros AN. Exploring the Variability in Phenolic Compounds and Antioxidant Capacity in Olive Oil By-Products: A Path to Sustainable Valorization. Antioxidants (Basel) 2024; 13:1470. [PMID: 39765799 PMCID: PMC11672913 DOI: 10.3390/antiox13121470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
The olive oil industry generates large volumes of by-products, creating notable environmental and economic concerns. Among these, olive cake (OC)-a primary by-product of olive oil extraction-stands out due to its high content of bioactive compounds and potential for value-added recycling. This study focused on characterizing six OC samples from the Trás-os-Montes and Alto Douro regions, collected at different processing times and mills. The samples included two derived from pressing (COC), two from two-phase centrifugation (TPOC; one partially pitted and one dehydrated), and two exhausted OC (EOC) samples. Fundamental analyses assessed total phenols, ortho-diphenols, flavonoids, antioxidant capacity, and tannin content. Results revealed significant variation (p < 0.05) in phenolic composition, namely ortho-diphenols and flavonoid levels among the samples. EOC 2 exhibited the highest concentrations (19.61, 21.82, and 20.12 mg CAT/g, respectively), while COC 2 had the lowest (5.08, 5.08, and 2.76 mg GA/g, respectively). This correlated with elevated antioxidant activity in EOC 2, as measured by FRAP, DPPH, and ABTS assays (129.98, 78.00, and 56.65 μmol Trolox/g). In contrast, COC 1 and COC 2 displayed the lowest antioxidant activities (32.61 μmol Trolox/g in FRAP and 17.24 and 18.98 μmol Trolox/g in DPPH). Tannin analysis showed the highest total tannin content in the dehydrated and pitted OC samples (250.31 and 240.89 mg CAT/100 g), with COC 2 showing the lowest (88.17 mg CAT/100 g). Condensed tannin content varied significantly, with EOC 2 presenting the highest level (328.17 mg CAT/100 g) and COC 2 the lowest one (20.56 mg CAT/100 g). Through HPLC-PDA-MS, 22 compounds were identified, with luteolin and verbascoside being particularly prevalent. This in-depth characterization supports the potential valorization of olive by-products, advancing sustainability and promoting a circular economy in the olive oil sector.
Collapse
Affiliation(s)
- Jessica Paié-Ribeiro
- Animal Science Department, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.J.G.); (V.P.); (D.O.-M.)
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Filipa Baptista
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Maria José Gomes
- Animal Science Department, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.J.G.); (V.P.); (D.O.-M.)
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- AL4animals, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Alfredo Teixeira
- Mountain Research Center (CIMO), Polytechnic Instituto of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Victor Pinheiro
- Animal Science Department, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.J.G.); (V.P.); (D.O.-M.)
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- AL4animals, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Divanildo Outor-Monteiro
- Animal Science Department, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.J.G.); (V.P.); (D.O.-M.)
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- AL4animals, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Novo Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| |
Collapse
|
3
|
Gómez-Cruz I, Contreras MDM, Romero I, Castro E. Lower Energy-Demanding Extraction of Bioactive Triterpene Acids by Microwave as the First Step towards Biorefining Residual Olive Skin. Antioxidants (Basel) 2024; 13:1212. [PMID: 39456465 PMCID: PMC11504040 DOI: 10.3390/antiox13101212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
In the olive oil industry, a pit fraction is collected from olive pomace and split into a clean pit fraction and a residual olive skin-rich fraction, which does not an industrial application. Therefore, in this work, microwave-assisted extraction (MAE) was applied to obtain high-value triterpene acids (maslinic acid and oleanolic acid) from this biomass using the renewable solvent ethanol. The response surface methodology was used to gain a deeper understanding of how the solvent (ethanol-water, 50-100% v/v), time (4-30 min), and temperature (50-120 °C) affect the extraction performance, as well as the energy required for the process. The effect of milling was also studied and the solid-to-liquid ratio was also evaluated, and overall, a good compromise was found at 10% (w/v) using the raw sample (unmilled biomass). The optimised conditions were applied to residual olive skin sourced from various industries, yielding up to 5.1 g/100 g and 2.2 g/100 g dry biomass for maslinic acid and oleanolic acid, respectively. In conclusion, the residual olive skin is a promising natural source of these triterpene acids, which can be extracted using MAE, releasing extracted solids rich in polymeric carbohydrates and lignin that can be valorised under a holistic biorefinery process.
Collapse
Affiliation(s)
- Irene Gómez-Cruz
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Institute of Biorefineries Research (I3B), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - María del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Institute of Biorefineries Research (I3B), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Inmaculada Romero
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Institute of Biorefineries Research (I3B), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Institute of Biorefineries Research (I3B), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| |
Collapse
|
4
|
Wang E, Jiang Y, Zhao C. Hydroxytyrosol isolation, comparison of synthetic routes and potential biological activities. Food Sci Nutr 2024; 12:6899-6912. [PMID: 39479663 PMCID: PMC11521723 DOI: 10.1002/fsn3.4349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 11/02/2024] Open
Abstract
Hydroxytyrosol (HT) is a polyphenol found in the olive plant (Olea europaea) that has garnered attention from the food, feed, supplement, and pharmaceutical industries. HT has evolved from basic separation and extraction to chemical and biocatalytic synthesis. The yield of HT can reach 1.93 g/L/h through chemical synthesis and 7.7 g/L/h through biocatalysis; however, both methods are subject to inherent limitations. Furthermore, the potential health benefits associated with HT have been highlighted, including its ability to act as an antioxidant, reduce inflammation, combat cancer and obesity, and exert antibacterial and antiviral effects. Its neuroprotective effects, skin protection, and wound healing capabilities are also discussed. Given these remarkable biological properties, HT stands out as one of the most extensively investigated natural phenols. This review highlights future methods and pathways for the synthesis of HT, providing insights based on its bioactivity characteristics, health benefits, and potential future applications.
Collapse
Affiliation(s)
- Enhui Wang
- Beijing Qingyan Boshi Health Management Co., LtdBeijingChina
| | - Yanfei Jiang
- Beijing Qingyan Boshi Health Management Co., LtdBeijingChina
| | - Chunyue Zhao
- Beijing Qingyan Boshi Health Management Co., LtdBeijingChina
| |
Collapse
|
5
|
Kaur K, Schmitt-Kopplin P, Malik AK. Green and efficient extraction of phenolic compounds from Neem leaves using deep eutectic solvents based ultrasonic-assisted extraction. Food Chem 2024; 451:139500. [PMID: 38696941 DOI: 10.1016/j.foodchem.2024.139500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/04/2024]
Abstract
Deep eutectic solvent (DES) combined with ultrasonic-assisted extraction was employed as an environmentally friendly technique for extracting antioxidant phenolic compounds from Neem leaves in place of organic solvents. Choline chloride-Ethylene glycol (1:2) with 40% V/V water content (DES-1) was investigated as a potential total phenolic content extractant (38.2 ± 1.2 mg GAE/g DW, where GAE: gallic acid equivalent, DW: dry weight). The optimal operational parameters assessed using single-factor experiments to maximize the total phenolic compounds content were as follows: extraction time of 30 min, 40% V/V water content, liquid-solid ratio of 15:1, and room temperature. Additionally, the in-vitro antioxidant experiments (2,2-diphenyl-1- picrylhydrazyl radical scavenging assay and ferric reducing antioxidant power assay) demonstrated the DES-1-based extract of Neem leaves as a potent antioxidant agent, compared to traditional solvents. Moreover, microscopic morphological analysis supported the effectiveness of DES-1 for the noticeable alteration in the fiber surface structure of Neem leaves after extraction which benefited in the release of polyphenols from these leaves. Eventually, the mass analysis of the extract disclosed the presence of eleven polyphenols in the extract. The Green Analytical Procedure Index revealed the greenness of the extraction method.
Collapse
Affiliation(s)
- Kirandeep Kaur
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Ph Schmitt-Kopplin
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India; Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
6
|
Tsevdou M, Ntzimani A, Katsouli M, Dimopoulos G, Tsimogiannis D, Taoukis P. Comparative Study of Microwave, Pulsed Electric Fields, and High Pressure Processing on the Extraction of Antioxidants from Olive Pomace. Molecules 2024; 29:2303. [PMID: 38792161 PMCID: PMC11123897 DOI: 10.3390/molecules29102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Olive oil production is characterized by large amounts of waste, and yet is considerably highly valued. Olive pomace can serve as a cheap source of bioactive compounds (BACs) with important antioxidant activity. Novel technologies like Pulsed Electric Fields (PEF) and High Pressure (HP) and microwave (MW) processing are considered green alternatives for the recovery of BACs. Different microwave (150-600 W), PEF (1-5 kV/cm field strength, 100-1500 pulses/15 µs width), and HP (250-650 MPa) conditions, in various product/solvent ratios, methanol concentrations, extraction temperatures, and processing times were investigated. Results indicated that the optimal MW extraction conditions were 300 W at 50 °C for 5 min using 60% v/v methanol with a product/solvent ratio of 1:10 g/mL. Similarly, the mix of 40% v/v methanol with olive pomace, treated at 650 MPa for the time needed for pressure build-up (1 min) were considered as optimal extraction conditions in the case of HP, while for PEF the optimal conditions were 60% v/v methanol with a product/solvent ratio of 1:10 g/mL, treated at 5000 pulses, followed by 1 h extraction under stirring conditions. Therefore, these alternative extraction technologies could assist the conventional practice in minimizing waste production and simultaneously align with the requirements of the circular bioeconomy concept.
Collapse
Affiliation(s)
| | | | | | | | | | - Petros Taoukis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Heroon Polytechniou Str., 15780 Athens, Greece; (M.T.); (A.N.); (M.K.); (G.D.); (D.T.)
| |
Collapse
|
7
|
Madureira J, Gonçalves I, Cardoso J, Dias MI, Santos PMP, Margaça FMA, Santos-Buelga C, Barros L, Cabo Verde S. Effects of Electron Beam Radiation on the Phenolic Composition and Bioactive Properties of Olive Pomace Extracts. Antioxidants (Basel) 2024; 13:558. [PMID: 38790664 PMCID: PMC11118055 DOI: 10.3390/antiox13050558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Olive pomace is an agro-industrial waste product generated from the olive oil industry and constituted by bioactive compounds with potential applications in several industrial sectors. The purpose of this work was to evaluate the effects of electron beam (e-beam) radiation on olive pomace, specifically on phenolic compounds (by HPLC-DAD-ESI/MS) and the bioactive properties (antioxidant, antiproliferative, and antimicrobial activities) of crude olive pomace (COP) and extracted olive pomace (EOP) extracts. The amount of total flavonoid content and the reducing power of COP extracts were higher than those obtained for EOP extracts. The results suggested that e-beam radiation at 6 kGy increased both total phenolic and total flavonoid contents as well as the reducing power of COP extracts, due to the higher extractability (>2.5-fold) of phenolic compounds from these samples, while decreasing the scavenging activity of extracts. The extracts of both olive pomaces showed antibacterial potential, and COP extracts at 400 µg/mL also presented antiproliferative activity against A549, Caco-2, 293T, and RAW264.7 cell lines, with both properties preserved with the e-beam treatment. All in all, e-beam radiation at 6 kGy appears to be a promising technology to valorize the pollutant wastes of the olive oil industry through enhancing phenolic extractability and bioactive properties, and, furthermore, to contribute to the environmental and economical sustainability of the olive oil industry.
Collapse
Affiliation(s)
- Joana Madureira
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal; (J.M.); (I.G.); (J.C.); (P.M.P.S.); (F.M.A.M.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.I.D.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Inês Gonçalves
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal; (J.M.); (I.G.); (J.C.); (P.M.P.S.); (F.M.A.M.)
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Jéssica Cardoso
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal; (J.M.); (I.G.); (J.C.); (P.M.P.S.); (F.M.A.M.)
- Escola Superior de Tecnologia da Saúde de Lisboa (ESTeSL), Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.I.D.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Pedro M. P. Santos
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal; (J.M.); (I.G.); (J.C.); (P.M.P.S.); (F.M.A.M.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Fernanda M. A. Margaça
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal; (J.M.); (I.G.); (J.C.); (P.M.P.S.); (F.M.A.M.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
- Unidad de Excelencia Producción, Agrícola y Medioambiente (AGRIENVIRONMENT), Parque Científico, Universidad de Salamanca, 37185 Salamanca, Spain
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.I.D.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Sandra Cabo Verde
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal; (J.M.); (I.G.); (J.C.); (P.M.P.S.); (F.M.A.M.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
8
|
Martins VFR, Ribeiro TB, Lopes AI, Pintado ME, Morais RMSC, Morais AMMB. Comparison among Different Green Extraction Methods of Polyphenolic Compounds from Exhausted Olive Oil Pomace and the Bioactivity of the Extracts. Molecules 2024; 29:1935. [PMID: 38731426 PMCID: PMC11085311 DOI: 10.3390/molecules29091935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The use of by-products as a source of bioactive compounds with economic added value is one of the objectives of a circular economy. The olive oil industry is a source of olive pomace as a by-product. The olive pomace used in the present study was the exhausted olive pomace, which is the by-product generated from the air drying and subsequent hexane extraction of residual oil from the olive pomace. The objective was to extract bioactive compounds remaining in this by-product. Various types of green extraction were used in the present study: solvent extraction (water and hydroalcoholic); ultrasound-assisted extraction; Ultra-Turrax-assisted extraction; and enzyme-assisted extraction (cellulase; viscoenzyme). The phenolic profile of each extract was determined using HPLC-DAD and the total phenolic content (TPC) and antioxidant activity (ABTS, DPPH, and ORAC) were determined as well. The results showed significant differences in the yield of extraction among the different methods used, with the enzyme-assisted, with or without ultrasound, extraction presenting the highest values. The ultrasound-assisted hydroethanolic extraction (USAHE) was the method that resulted in the highest content of the identified phenolic compounds: 2.021 ± 0.29 mg hydroxytyrosol/100 mg extract, 0.987 ± 0.09 mg tyrosol/100 mg extract, and 0.121 ± 0.005 mg catechol/100 mg extract. The conventional extraction with water at 50 °C produced the best results for TPC and antioxidant activity of the extracts. The extracts from the USAHE were able to inhibit Gram-positive bacteria, especially Bacillus cereus, showing 67.2% inhibition at 3% extract concentration.
Collapse
Affiliation(s)
| | | | | | | | | | - Alcina M. M. B. Morais
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (T.B.R.); (A.I.L.); (M.E.P.); (R.M.S.C.M.)
| |
Collapse
|
9
|
Ben Amor M, Trabelsi N, Djebali K, Abdallah M, Hammami M, Mejri A, Hamzaoui AH, Ramadan MF, Rtimi S. Eco-friendly extraction of antibacterial compounds from enriched olive pomace: a design-of-experiments approach to sustainability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25616-25636. [PMID: 38478307 DOI: 10.1007/s11356-024-32770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
The increasing interest in utilizing olive pomace bioactive molecules to advance functional elements and produce antioxidant and antimicrobial additives underscores the need for eco-friendly extraction and purification methods. This study aims to develop an eco-friendly extraction method to evaluate the effect of extraction parameters on the recovery of bioactive molecules from enriched olive pomace. The effects were identified based on total phenolic and flavonoid contents and antioxidant activity, employing a design of experimental methodology. The positive and the negative simultaneous effects showed that among the tested enrichments, those incorporating Nigella Sativa, dates, and coffee demonstrated superior results in terms of the measured responses. Furthermore, chromatographic analysis unveiled the existence of intriguing compounds such as hydroxytyrosol, tyrosol, and squalene in distinct proportions. Beyond this, our study delved into the structural composition of the enriched pomace through FTIR analysis, providing valuable insights into the functional groups and chemical bonds present. Concurrently, antimicrobial assays demonstrated the potent inhibitory effects of these enriched extracts against various microorganisms, underscoring their potential applications in food preservation and safety. These findings highlight enriched olive pomace as a valuable reservoir of bioactive molecules for food products since they can enhance their anti-oxidative activity and contribute to a sustainable circular economy model for olive oil industries.
Collapse
Affiliation(s)
- Marwa Ben Amor
- Centre of Biotechnology of Borj Cedria, LR15CBBC05 Laboratory of Olive Biotechnology, Hammam-Lif, Tunisia
| | - Najla Trabelsi
- Centre of Biotechnology of Borj Cedria, LR15CBBC05 Laboratory of Olive Biotechnology, Hammam-Lif, Tunisia
| | - Kais Djebali
- Centre of National of Research in Materials Sciences, Valorization of Useful Materials Laboratory, Soliman, Tunisia
| | - Marwa Abdallah
- Centre of Biotechnology of Borj Cedria, LR15CBBC05 Laboratory of Olive Biotechnology, Hammam-Lif, Tunisia
| | - Mejdi Hammami
- Centre of Biotechnology of Borj Cedria, Laboratory of Aromatic and Medicinal Plants, Hammam-Lif, Tunisia
| | - Asma Mejri
- Centre of Biotechnology of Borj Cedria, LR15CBBC05 Laboratory of Olive Biotechnology, Hammam-Lif, Tunisia
| | - Ahmed Hichem Hamzaoui
- Centre of National of Research in Materials Sciences, Valorization of Useful Materials Laboratory, Soliman, Tunisia
| | - Mohamed Fawzy Ramadan
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Sami Rtimi
- Global Institute for Water Environment and Health, 1201, Geneva, Switzerland.
| |
Collapse
|
10
|
Yang K, Wang SB, Pei D, Pu LM, Huang XY. Effective separation of maslinic acid and oleanolic acid from olive pomace using high-speed shear off-line coupled with high-speed countercurrent chromatography and their antibacterial activity test. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1236:124069. [PMID: 38442634 DOI: 10.1016/j.jchromb.2024.124069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/10/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
In this work, a high-speed shear extraction off-line coupling high-speed countercurrent chromatography method was developed to separate maslinic acid and oleanolic acid from olive pomace. To improve extraction efficiency, the polar disparity between maslinic acid and oleanolic acid necessitated the concurrent utilization of both polar and non-polar solvents during high-speed shear extraction. Then, the high-speed shear extraction was directly feed to high-speed countercurrent chromatography for subsequently separation. A total of 250 min were needed to complete the extraction and separation process. This yielded two molecules from 3.3 g of defatted olive pomace: 7.2 mg of 93.8 % pure maslinic acid and 2.3 mg of 90.1 % pure oleanolic acid, both determined by HPLC at 210 nm. Furthermore, the compounds exhibited inhibitory activity against Escherichia coli and Staphylococcus aureus. At a concentration of 100 μg/mL, its efficacy in inhibiting hyaluronidase was comparable to that of the standard drug indomethacin. Compared with the conventional separation method, this coupled technique reduced the whole time due to the direct injection of sample extraction solution. This technique provides a useful approach for the separation of natural products with significant polarity differences.
Collapse
Affiliation(s)
- Kun Yang
- College of Science, Gansu Agricultural University, Lanzhou 730000, China; CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Sheng-Bing Wang
- College of Science, Gansu Agricultural University, Lanzhou 730000, China; CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Dong Pei
- Yunnan Olive Health Industry Innovation Research and Development Co., Ltd, Lijiang 674100, China
| | - Lu-Mei Pu
- College of Science, Gansu Agricultural University, Lanzhou 730000, China.
| | - Xin-Yi Huang
- College of Science, Gansu Agricultural University, Lanzhou 730000, China; CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China.
| |
Collapse
|
11
|
Shen L, Pang S, Zhong M, Sun Y, Qayum A, Liu Y, Rashid A, Xu B, Liang Q, Ma H, Ren X. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. ULTRASONICS SONOCHEMISTRY 2023; 101:106646. [PMID: 37862945 PMCID: PMC10594638 DOI: 10.1016/j.ultsonch.2023.106646] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/23/2023] [Accepted: 10/07/2023] [Indexed: 10/22/2023]
Abstract
The increasing focus on health and well-being has sparked a rising interest in bioactive components in the food, pharmaceutical, and nutraceutical industries. These components are gaining popularity due to their potential benefits for overall health. The growing interest has resulted in a continuous rise in demand for bioactive components, leading to the exploration of both edible and non-edible sources to obtain these valuable substances. Traditional extraction methods like solvent extraction, distillation, and pressing have certain drawbacks, including lower extraction efficiency, reduced yield, and the use of significant amounts of solvents or resources. Furthermore, certain extraction methods necessitate high temperatures, which can adversely affect certain bioactive components. Consequently, researchers are exploring non-thermal technologies to develop environmentally friendly and efficient extraction methods. Ultrasonic-assisted extraction (UAE) is recognized as an environmentally friendly and highly efficient extraction technology. The UAE has the potential to minimize or eliminate the need for organic solvents, thereby reducing its impact on the environment. Additionally, UAE has been found to significantly enhance the production of target bioactive components, making it an attractive method in the industry. The emergence of ultrasonic assisted extraction equipment (UAEE) has presented novel opportunities for research in chemistry, biology, pharmaceuticals, food, and other related fields. However, there is still a need for further investigation into the main components and working modes of UAEE, as current understanding in this area remains limited. Therefore, additional research and exploration are necessary to enhance our knowledge and optimize the application of UAEE. The core aim of this review is to gain a comprehensive understanding of the principles, benefits and impact on bioactive components of UAE, explore the different types of equipment used in this technique, examine the various working modes and control parameters employed in UAE, and provide a detailed overview of the blending of UAE with other emerging extraction technologies. In conclusion, the future development of UAEE is envisioned to focus on achieving increased efficiency, reduced costs, enhanced safety, and improved reliability. These key areas of advancement aim to optimize the performance and practicality of UAEE, making it a more efficient, cost-effective, and reliable extraction technology.
Collapse
Affiliation(s)
- Lipeng Shen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Shuixiu Pang
- Zhongke Zhigu International Pharmaceutical Biotechnology (Guangdong) Co., Ltd, Guikeng Village, Chuangxing Avenue, Gaoxin District, Qingyuan, Guangdong 511538, China
| | - Mingming Zhong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yufan Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yuxuan Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
12
|
Jiao P, He X, Ma S, Wang S, Niu Q. Ultrasonic-Assisted Extraction of Antioxidants from Perilla frutescens Leaves Based on Tailor-Made Deep Eutectic Solvents: Optimization and Antioxidant Activity. Molecules 2023; 28:7554. [PMID: 38005276 PMCID: PMC10674400 DOI: 10.3390/molecules28227554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The development of natural antioxidants to replace synthetic compounds is attractive. Perilla frutescens leaves were proven to be rich in antioxidants. The extraction of antioxidants from Perilla leaves via ultrasonic-assisted extraction (UAE) based on choline chloride-based deep eutectic solvents (DESs) was studied. Firstly, several DESs were prepared, and their extraction effects were compared. Secondly, the extraction process was optimized by single-factor experiments and response surface methodology (RSM). Finally, the optimization results were verified and compared with the results of traditional solvent-based UAE. The effects of solvents on the surface cell morphology of Perilla frutescens leaves were characterized by scanning electron microscopy (SEM). Choline chloride-acetic acid-based DES (ChCl-AcA) extract showed a relatively high ferric-reducing antioxidant activity (FRAP) and 2,2-diphenyl-1-picrylhyldrazyl radical scavenging rate (DPPH). Under the optimal operating conditions (temperature 41 °C, liquid-solid ratio 33:1, ultrasonic time 30 min, water content 25%, ultrasonic power 219 W), the experimental results are as follows: DPPH64.40% and FRAP0.40 mM Fe(II)SE/g DW. The experimental and predicted results were highly consistent with a low error (<3.38%). The values of the DPPH and FRAP were significantly higher than that for the water, ethanol, and butanol-based UAE. SEM analysis confirmed that ChCl-AcA enhanced the destruction of the cell wall, so that more antioxidants were released. This study provides an eco-friendly technology for the efficient extraction of antioxidants from Perilla frutescens leaves. The cytotoxicity and biodegradability of the extract will be further verified in a future work.
Collapse
Affiliation(s)
- Pengfei Jiao
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | | | | | | | - Qiuhong Niu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
13
|
Maslinic Acid Supplementation during the In Vitro Culture Period Ameliorates Early Embryonic Development of Porcine Embryos by Regulating Oxidative Stress. Animals (Basel) 2023; 13:ani13061041. [PMID: 36978582 PMCID: PMC10044061 DOI: 10.3390/ani13061041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023] Open
Abstract
As a pentacyclic triterpene, MA exhibits effective free radical scavenging capabilities. The purpose of this study was to explore the effects of MA on porcine early-stage embryonic development, oxidation resistance and mitochondrial function. Our results showed that 1 μM was the optimal concentration of MA, which resulted in dramatically increased blastocyst formation rates and improvement of blastocyst quality of in vitro-derived embryos from parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT). Further analysis indicated that MA supplementation not only significantly decreased the abundance of intracellular reactive oxygen species (ROS) and dramatically increased the abundance of intracellular reductive glutathione (GSH) in porcine early-stage embryos, but also clearly attenuated mitochondrial dysfunction and inhibited apoptosis. Moreover, Western blotting showed that MA supplementation upregulated OCT4 (p < 0.01), SOD1 (p < 0.0001) and CAT (p < 0.05) protein expression in porcine early-stage embryos. Collectively, our data reveal that MA supplementation exerts helpful effects on porcine early embryo development competence via regulation of oxidative stress (OS) and amelioration of mitochondrial function and that MA may be useful for increasing the in vitro production (IVP) efficiency of porcine early-stage embryos.
Collapse
|
14
|
Peng S, Zhu M, Li S, Ma X, Hu F. Ultrasound-assisted extraction of polyphenols from Chinese propolis. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1131959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
IntroductionPropolis is a beneficial bioactive food with rich polyphenols content. Nowadays, an increasing interest is attracted to the extraction of polyphenols from raw propolis. This study utilized the novel ultrasound-assisted approach for polyphenol extraction from Chinese propolis, aiming to improve its extraction yield and reveal the relevant mechanisms via extraction kinetic study as well as the compositional and structural analysis.MethodsThe optimum ultrasound-assisted extraction conditions were optimized according to the total phenolic content and total flavonoids content. Compositional and structural analysis were conducted using high performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry, high-performance liquid chromatography, Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM).Results and discussionThe optimum ultrasound-assisted extraction conditions were as follows: ratio of liquid to solid, 60:1; ultrasound power, 135 W; ultrasound duration, 20 min. Under the optimum conditions, the antioxidant activities of the extract were increased by 95.55% and 64.46% by 2,2-diphenyl-1-picrylhydrazyl radical scavenging ability assay and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging ability assay, respectively, compared to those obtained by traditional maceration. The second-order kinetics model was employed to study the extraction process; it was found that ultrasound significantly accelerated the extraction of propolis and increased the maximum extraction volume of phenolic compounds. The qualitative and quantitative analysis of polyphenol compositions showed that ultrasound did not change the polyphenol types in the extract but it significantly improved the contents of various flavonoids and phenolic acids such as galangin, chrysin, pinocembrin, pinobanksin and isoferulic acid. Likewise, the FT-IR analysis indicated that the types of functional groups were similar in the two extracts. The SEM analysis revealed that the ultrasound-assisted extraction enhanced the contact areas between propolis and ethanol by breaking down the propolis particles and eroding the propolis surface.
Collapse
|
15
|
Exploring Olive Pomace for Skincare Applications: A Review. COSMETICS 2023. [DOI: 10.3390/cosmetics10010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The cosmetic industry is continuously searching for new active ingredients in an effort to attend to consumer demands which, in recent years, are focused on more natural and environmentally friendly products, obtained from sustainable resources. Nevertheless, they are required to provide cosmetologically appealing skincare products, ultimately with the purpose of improving skin appearance. The olive oil industry generates a large amount of liquid and semi-solid by-products such as olive pomace. Their phytotoxicity impairs safe disposal, so valorization strategies that promote by-product reuse are needed, which may include skincare products. Hydroxytyrosol is the main phenolic compound present in olive pomace and possesses biological effects that make it a desirable active compound for cosmetic formulations such as antioxidant and anti-aging activities as well as photoprotector, depigmenting, antimicrobial and anti-inflammatory actions. Other compounds present in olive pomace can also have functional properties and skin-related benefits. However, the application of this by-product can be a challenge in terms of formulation’s design, stability, and proven efficacy, so appropriate methodologies should be used to validate its incorporation and may include extraction and further encapsulation of bioactive compounds in order to achieve effective and aesthetic appealing skincare products.
Collapse
|
16
|
He Y, Wang Y, Yang K, Jiao J, Zhan H, Yang Y, Lv D, Li W, Ding W. Maslinic Acid: A New Compound for the Treatment of Multiple Organ Diseases. Molecules 2022; 27:8732. [PMID: 36557864 PMCID: PMC9786823 DOI: 10.3390/molecules27248732] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Maslinic acid (MA) is a pentacyclic triterpene acid, which exists in many plants, including olive, and is highly safe for human beings. In recent years, it has been reported that MA has anti-inflammatory, antioxidant, anti-tumor, hypoglycemic, neuroprotective and other biological activities. More and more experimental data has shown that MA has a good therapeutic effect on multiple organ diseases, indicating that it has great clinical application potential. In this paper, the extraction, purification, identification and analysis, biological activity, pharmacokinetics in vivo and molecular mechanism of MA in treating various organ diseases are reviewed. It is hoped to provide a new idea for MA to treat various organ diseases.
Collapse
Affiliation(s)
- Yan He
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Yi Wang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Kun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Jia Jiao
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Hong Zhan
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Youjun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - De Lv
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Weihong Li
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Weijun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| |
Collapse
|
17
|
Liu S, Liu H, Zhang L, Ma C, Abd El-Aty AM. Edible pentacyclic triterpenes: A review of their sources, bioactivities, bioavailability, self-assembly behavior, and emerging applications as functional delivery vehicles. Crit Rev Food Sci Nutr 2022; 64:5203-5219. [PMID: 36476115 DOI: 10.1080/10408398.2022.2153238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Edible pentacyclic triterpenes (PTs) are a group of nutraceutical ingredients commonly distributed in human diets. Existing evidence has proven that they have various biological functions, including anticancer, antioxidant, anti-inflammatory and hypoglycemic activities, making them as "functional factor" for a long time. However, their properties of strong hydrophobicity, poor permeability, poor absorption, and rapid metabolism result in low oral bioavailability, which dramatically hinders their efficacy for use. Recently, free PTs have successively been found to self-assemble or co-assemble into self-contained nanostructures with enhanced water dispersibility and oral bioavailability, which seems to be an efficient processing method for increased oral efficacy. Of particular interest, formulating them into nanostructures can also be introduced as functional delivery carriers for bioactive compounds or drugs with various advantages, such as improved stability, controlled release, enhanced oral bioavailability, synergistic bioactivity, and targeted delivery. This review systematically summarized the chemical structures, plant sources, bioactivities, absorption, metabolism, and oral bioavailability of PTs. Notably, we emphasized their self-assembly properties and emerging role as functional delivery carriers for nutrients, suggesting that PT nanostructures are not only efficient oral forms when introduced into foods but also functional delivery materials for nutrients to expand their commercial food applications.
Collapse
Affiliation(s)
- Shiqi Liu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Han Liu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Lulu Zhang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Chao Ma
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
18
|
Mikucka W, Zielińska M, Bułkowska K, Witońska I. Valorization of distillery stillage by polyphenol recovery using microwave-assisted, ultrasound-assisted and conventional extractions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116150. [PMID: 36070645 DOI: 10.1016/j.jenvman.2022.116150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/04/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
An increasing understanding of the negative environmental effects of waste discharges has made valorization of distillery by-products to recover added-value compounds a sound option for distillery stillage management. In this study, the recovery of bioactive compounds, i.e. polyphenols, from distillery stillage was performed by microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and conventional solid-liquid extraction (CSLE) to investigate the effects of extraction time, the concentration of ethyl acetate (EA) in a solvent mixture with ethanol and water, and solid-to-solvent ratio on the recovery yield and antioxidant activity of the extracts. The highest yields of total polyphenol content (TPC) (3.73 mg gallic acid equivalent/g) and phenolic acid content (2.51 μg/g) were obtained with 8-min MAE with 70% EA. MAE provided 1.2- and 1.4-times higher yield of phenolic acids and 1.2- and 1.6-times higher antioxidant activity than UAE and CSLE, respectively. Due to the approximately 3-times higher rate of extraction, the ratio between energy consumption and extraction yield was better in MAE than in UAE. Principal component analysis (PCA) showed that the antioxidant activity of the extracts was positively correlated with TPC and phenolic acid content. Six phenolic acids that were identified were present mainly in their free forms (up to 95% of the total), with a predominance of ferulic (up to 0.80 μg/g) and p-coumaric (up to 0.72 μg/g) acids.
Collapse
Affiliation(s)
- Wioleta Mikucka
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Słoneczna St. 45G, 10-709, Olsztyn, Poland.
| | - Magdalena Zielińska
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Słoneczna St. 45G, 10-709, Olsztyn, Poland
| | - Katarzyna Bułkowska
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Słoneczna St. 45G, 10-709, Olsztyn, Poland
| | - Izabela Witońska
- Lodz University of Technology, Faculty of Chemistry, Institute of General and Ecological Chemistry, Zeromskiego St. 116, 90-924, Lodz, Poland
| |
Collapse
|
19
|
Wang L, Wang Y, Chen M, Zhu Y, Qin Y, Zhou Y. Tetrabutylammonium bromide-based hydrophobic deep eutectic solvent for the extraction and separation of dihydromyricetin from vine tea and its inhibitory efficiency against xanthine oxidase. RSC Adv 2022; 12:28659-28676. [PMID: 36320535 PMCID: PMC9540247 DOI: 10.1039/d2ra04266e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
In this study, deep eutectic solvent oscillation-assisted extraction (DES-OS) combined with macroporous resin adsorption and desorption technology was used to achieve the rapid green extraction and separation of the characteristic component dihydromyricetin (DMY) from vine tea. Multivariate data analysis showed that the DES system composed of tetrabutylammonium bromide (N444Br) and pyruvic acid (molar ratio 1 : 2) had good extraction performance for DMY. The influence parameters of DES-OS were studied, and optimized by the single-factor test and response surface methodology (RSM) with Box–Behnken design (BBD). The extraction model of DMY was established and verified. The results showed that the extraction yield of DMY could reach 40.1 mg g−1 under the optimal conditions (DES water contents of 71.18%, extraction time of 2.80 h, extraction temperature of 46.40 °C), which is in good agreement with the predicted value. In addition, Fourier transform infrared spectroscopy (FT-IR) was used to characterize the solvent before and after extraction. Scanning electron microscopy (SEM) results further confirmed that tetrabutylammonium bromide:pyruvate enhanced the destruction of the cell wall structure, resulting in the release of more DMY. Furthermore, different macroporous resins were selected for the separation of DMY for the DES-OS extract, and it was found that the DM301 resin had the ideal recovery performance under optimized dynamic condition. Finally, the product was found to have an inhibitory effect against xanthine oxidase (XO) as a mixed-type competitive inhibitor with IC50 values of (5.79 ± 0.22) × 10−5 mol L−1. The inhibitory mechanisms of DMY on XO were explored by enzyme kinetics, spectroscopy, molecular docking and molecular dynamics analysis approaches, which provided a theoretical basis for the above inhibition assays. In this study, deep eutectic solvent oscillation-assisted extraction (DES-OS) combined with macroporous resin adsorption and desorption technology was used to achieve the rapid green extraction and separation of dihydromyricetin (DMY) from vine tea.![]()
Collapse
Affiliation(s)
- Liling Wang
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Zhejiang Academy of ForestryHangzhou 310023China
| | - Yanbin Wang
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Zhejiang Academy of ForestryHangzhou 310023China
| | - Meixu Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and TechnologyHangzhou 310023China
| | - Yaoyao Zhu
- School of Biological and Chemical Engineering, Zhejiang University of Science and TechnologyHangzhou 310023China
| | - Yuchuan Qin
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Zhejiang Academy of ForestryHangzhou 310023China
| | - Yifeng Zhou
- School of Biological and Chemical Engineering, Zhejiang University of Science and TechnologyHangzhou 310023China
| |
Collapse
|
20
|
Mikucka W, Zielinska M, Bulkowska K, Witonska I. Subcritical water extraction of bioactive phenolic compounds from distillery stillage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115548. [PMID: 35753130 DOI: 10.1016/j.jenvman.2022.115548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Distilleries generate huge amounts of by-products that have a negative impact on the environment, so the management of wastes generated by this sector should be improved. Because distillery by-products are a source of bioactive compounds, the recovery of these compounds not only reduces issues with environmental protection but also provides the basis for a waste-to-profit solution. Following the latest trends in the search for so-called green extraction techniques for recovering valuable products, this study investigated the effect of subcritical water extraction (SWE) conditions (temperature (25-260 °C), time (5-90 min), and solid-to-solvent ratio (1:5-1:50, w:v)) on the efficiency of recovery of bioactive compounds, i.e., polyphenols from distillery stillage, and on the antioxidant activity of the extracts. The highest extraction yield was obtained with 30-min SWE with a solid-to-solvent ratio of 1:15 at either 140 °C (for total polyphenol content and phenolic acid content) or 200 °C (for total flavonoid content), as indicated by the Response Surface Methodology analysis. Phenolic acids in the extracts were present mainly in free forms (up to 88% of the total content). The antioxidant activity, which was measured using several assays, correlated positively with the content of phenolic acids, which confirmed their significant contribution to the bioactive properties of the extracts. The antioxidant effects of the extracts were mostly due to hydroxycinnamic acids (especially ferulic and p-coumaric acids). Principal component analysis showed that the temperature and time of SWE were the factors that can explain the greatest amount of variation in the extraction yield, composition, and bioactive properties of the polyphenols. These results will influence the design of further processes, such as purification and concentration, which are necessary before using the extracted compounds as substrates that are applicable in various industries. Based on the analysis of the elemental composition, the biomass remaining after SWE was evaluated to consider the possibilities of its further utilization.
Collapse
Affiliation(s)
- Wioleta Mikucka
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Sloneczna St. 45G, 10-709, Olsztyn, Poland.
| | - Magdalena Zielinska
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Sloneczna St. 45G, 10-709, Olsztyn, Poland
| | - Katarzyna Bulkowska
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Sloneczna St. 45G, 10-709, Olsztyn, Poland
| | - Izabela Witonska
- Lodz University of Technology, Faculty of Chemistry, Institute of General and Ecological Chemistry, Zeromskiego St. 116, 90-924, Lodz, Poland
| |
Collapse
|
21
|
Liao Y, Chen F, Xu L, Dessie W, Li J, Qin Z. Study on extraction and antibacterial activity of aucubin from Eucommia ulmoides seed-draff waste biomass. Heliyon 2022; 8:e10765. [PMID: 36267368 PMCID: PMC9576858 DOI: 10.1016/j.heliyon.2022.e10765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/13/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Aucubin (AU) is an active ingredient exerting strong antioxidant and anti-inflammatory effects in treating several diseases. This study evaluated the extraction of AU from Eucommia ulmoides seed-draff (EUSD) waste biomass using a series of solvents (methanol, ethanol, i-propanol, n-propanol, n-butanol, n-pentanol and cyclohexane) assisted with microwave and ultrasound, and proposed the optimized method for extraction. Five factors were investigated by Box-Behnken design (BBD) and response surface methodology (RSM). The optimized extraction conditions were as follows: liquid-solid ratio of 46.37 mL/g, methanol percentage of 89.56%, ultrasonic (extraction) time of 59.95 min, microwave power of 306.73 W, and microwave (extraction) time of 18.93 s. To this end, the AU extraction reached the maximum value (149.1 mg/g), which was consistent with the theoretical value (149.3 mg/g). Furthermore, the kinetics of extraction process were investigated by mathematic modeling. The extraction process analysis was also explored by 1H nuclear magnetic resonance (1H-NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and COSMOtherm program. This study found out that methanol provided better extraction efficiency than the conventional solvents (water, ethanol, i-propanol, n-propanol, n-butanol, n-pentanol, cyclohexane) due to possible interactions by the formation of hydrogen bond between AU and methanol, and ultrasound and microwave could significantly enhance mass transfer, which exhibited higher extraction efficiency and lower energy consumptions (149.1 mg/g and 0.102 kW·h vs. 73.4 mg/g and 0.700 kW·h for Soxhlet extraction). In the antibacterial activity study, the AU extract exerted strong antibacterial ability against 4 tested pathogens, and the antibacterial effect followed the order of: Staphylococcus aureus (35.9 ± 1.32 mm) > Escherichia coli (30.7 ± 1.38 mm) > Bacillus subtilis (20.5 ± 1.36 mm) > Salmonella (15.9 ± 1.39 mm) with the AU concentration of 40 mg/mL. Therefore, the development of this study will help to deepen the further understanding of natural product extraction by methanol-based ultrasonic and microwave, and has certain application value for the development and utilization of natural iridoid glycosides product.
Collapse
Affiliation(s)
- Yunhui Liao
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Yongzhou 425199, China
| | - Feng Chen
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Lujie Xu
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Wubliker Dessie
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Yongzhou 425199, China
| | - Jiaxing Li
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Zuodong Qin
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Yongzhou 425199, China
- Corresponding author.
| |
Collapse
|
22
|
Optimization of Microwave-Assisted Water Extraction to Obtain High Value-Added Compounds from Exhausted Olive Pomace in a Biorefinery Context. Foods 2022; 11:foods11142002. [PMID: 35885246 PMCID: PMC9320046 DOI: 10.3390/foods11142002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Microwave-assisted water extraction (MAWE) was evaluated to obtain the valuable bioactive compounds hydroxytyrosol and mannitol from exhausted olive pomace (EOP). The influence of the operational parameters solid loading (3–15%, w/v), temperature (40–100 °C), and extraction time (4–40 min) was studied using an experimental design. The optimized conditions maximizing their joint extraction were 12% w/v solid loading, 100 °C temperature, and 16 min. It was possible to solubilize 5.87 mg of hydroxytyrosol/g EOP and 46.70 mg mannitol/g EOP. The extracts were also further characterized by liquid chromatography–mass spectrometry, which detected other hydroxytyrosol derivatives such as oleacein, verbascoside, and oleuropein. Moreover, the applied MAWE conditions promoted the co-extraction of proteinaceus material, which was also evaluated. In order to carry out an integral valorization of this waste, the extracted EOP solid was further evaluated chemically and microscopically before recovering the bioactive triterpenes. In particular, maslinic acid and oleanolic acid were obtained, 9.54 mg/g extracted solid and 3.60 mg/g extracted solid, respectively. Overall, MAWE can be applied as a first stage in the fractionation of EOP to support its valorization in a biorefinery framework.
Collapse
|
23
|
Zhang C, Zhang J, Xin X, Zhu S, Niu E, Wu Q, Li T, Liu D. Changes in Phytochemical Profiles and Biological Activity of Olive Leaves Treated by Two Drying Methods. Front Nutr 2022; 9:854680. [PMID: 35571891 PMCID: PMC9097227 DOI: 10.3389/fnut.2022.854680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Olive leaves, which are the most abundant byproducts of the olive industry, offer multiple health benefits. The investigation of the phytochemical profiles and relevant biological activities is an essential step toward transforming these low-value byproducts into value-added ones. This study systematically investigated the phytochemical profiles, antioxidant capacity, and inhibition rates of olive leaves from four cultivars on the α-glucosidase, α-amylase, and angiotensin-converting enzyme (ACE). The leaves were prepared using two common drying methods, namely, hot air-drying and freeze-drying. A total of 33 bioactive compounds were identified in the olive leaves, namely, 19 flavonoids, 2 phenylethanoids, 2 coumarins, 2 hydroxycinnamic acids, 2 iridoids, and 6 triterpenic acids. Quantification of the bioactive compounds revealed high amounts of polyphenols, especially flavonoids [2,027–8,055 mg/kg dry weight (DW)], iridoids (566–22,096 mg/kg DW), and triterpenic acids (13,824–19,056 mg/kg DW) in the olive leaves. The hot air-dried leaves showed significantly (P < 0.05) higher iridoid (oleuropein and secoxyloganin) content than the fresh leaves, while freeze-drying resulted in significantly (P < 0.05) higher flavonoid aglycone and hydroxytyrosol content. Additionally, freeze-drying led to samples with the highest radical scavenging, α-amylase, α-glucosidase, and ACE inhibition abilities. The flavonoid (e.g., quercetin, luteolin, eriodictyol, kaempferol-7-O-glucoside, and luteolin-7-O-glucoside), hydroxytyrosol, and oleanolic acid contents in the olive leaves were positively correlated (P < 0.05) with their bioactive potentials.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianming Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoting Xin
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shenlong Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Erli Niu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qinghang Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ting Li
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Daqun Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
24
|
Processing of Distillery Stillage to Recover Phenolic Compounds with Ultrasound-Assisted and Microwave-Assisted Extractions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052709. [PMID: 35270409 PMCID: PMC8910419 DOI: 10.3390/ijerph19052709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023]
Abstract
This study investigated the effect of ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) conditions (extraction time, acetone concentration, solid-to-solvent ratio) on the efficiency of polyphenol recovery from distillery stillage and antioxidant activity of the extracts. The highest total polyphenol content, flavonoid content, and phenolic acid content were obtained with 10-min UAE and 5-min MAE at a solid-to-acetone ratio of 1:15 (w:v). Recovery yield was the highest with an aqueous solution of 60% acetone, confirming the results of Hansen Solubility Parameter analysis. Although UAE resulted in approximately 1.2 times higher extraction yield, MAE showed a better balance between extraction yield and energy consumption exhibited by its 3-fold higher extraction rate than that of UAE. Content of total polyphenols and phenolic acids strongly correlated with antioxidant activity, indicating that these compounds provide a substantial contribution to the bioactive properties of the extracts. Six phenolic acids were extracted, predominately ferulic and p-coumaric acids, and free forms of these acids constituted 91% of their total content, which opens various possibilities for their application in the food, cosmetics, and pharmaceutical industries.
Collapse
|
25
|
Comparative Evaluation of the Phytochemical Profiles and Antioxidant Potentials of Olive Leaves from 32 Cultivars Grown in China. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041292. [PMID: 35209081 PMCID: PMC8878581 DOI: 10.3390/molecules27041292] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022]
Abstract
Olives (Olea europaea L.) are a significant part of the agroindustry in China. Olive leaves, the most abundant by-products of the olive and olive oil industry, contain bioactive compounds that are beneficial to human health. The purpose of this study was to evaluate the phytochemical profiles and antioxidant capacities of olive leaves from 32 cultivars grown in China. A total of 32 phytochemical compounds were identified using high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry, including 17 flavonoids, five iridoids, two hydroxycinnamic acids, six triterpenic acids, one simple phenol, and one coumarin. Specifically, olive leaves were found to be excellent sources of flavonoids (4.92–18.29 mg/g dw), iridoids (5.75–33.73 mg/g dw), and triterpenic acids (15.72–35.75 mg/g dw), and considerable variations in phytochemical content were detected among the different cultivars. All tested cultivars were classified into three categories according to their oil contents for further comparative phytochemicals assessment. Principal component analysis indicated that the investigated olive cultivars could be distinguished based upon their phytochemical profiles and antioxidant capacities. The olive leaves obtained from the low-oil-content (<16%) cultivars exhibited higher levels of glycosylated flavonoids and iridoids, while those obtained from high-oil-content (>20%) cultivars contained mainly triterpenic acids in their compositions. Correspondingly, the low-oil-content cultivars (OL3, Frantoio selection and OL14, Huaou 5) exhibited the highest ABTS antioxidant activities (758.01 ± 16.54 and 710.64 ± 14.58 mg TE/g dw, respectively), and OL9 (Olea europaea subsp. Cuspidata isolate Yunnan) and OL3 exhibited the highest ferric reducing/antioxidant power assay values (1228.29 ± 23.95 mg TE/g dw and 1099.99 ± 14.30 mg TE/g dw, respectively). The results from this study may be beneficial to the comprehensive evaluation and utilization of bioactive compounds in olive leaves.
Collapse
|
26
|
Tapia-Quirós P, Montenegro-Landívar MF, Reig M, Vecino X, Cortina JL, Saurina J, Granados M. Recovery of Polyphenols from Agri-Food By-Products: The Olive Oil and Winery Industries Cases. Foods 2022; 11:362. [PMID: 35159513 PMCID: PMC8834469 DOI: 10.3390/foods11030362] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
The production of olive oil and wine are two of the main agri-food economic activities in Southern Europe. They generate large amounts of solid and liquid wastes (e.g., olive pomace, olive mill wastewater, grape pomace, grape stems, wine lees, and wine processing wastewater) that represent a major environmental problem. Consequently, the management of these residues has become a big challenge for these industries, since they are harmful to the environment but rich in bioactive compounds, such as polyphenols. In recent years, the recovery of phenolic compounds has been proposed as a smart strategy for the valorization of these by-products, from a circular economy perspective. This review aims to provide a comprehensive description of the state of the art of techniques available for the analysis, extraction, and purification of polyphenols from the olive mill and winery residues. Thus, the integration and implementation of these techniques could provide a sustainable solution to the olive oil and winery sectors.
Collapse
Affiliation(s)
- Paulina Tapia-Quirós
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (J.S.)
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - María Fernanda Montenegro-Landívar
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (J.S.)
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Mònica Reig
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Xanel Vecino
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Chemical Engineering Department, Research Center in Technologies, Energy and Industrial Processes—CINTECX, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain
| | - José Luis Cortina
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Water Technology Center—CETAQUA, Carretera d’Esplugues, 75, 08940 Cornellà de Llobregat, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (J.S.)
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (J.S.)
| |
Collapse
|
27
|
Enrichment of Refined Olive Oils with Phenolic Extracts of Olive Leaf and Exhausted Olive Pomace. Antioxidants (Basel) 2022; 11:antiox11020204. [PMID: 35204087 PMCID: PMC8868085 DOI: 10.3390/antiox11020204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
Refined olive oils (ROOs) are commonly enriched with synthetic antioxidants. Antioxidant extracts obtained from natural products can be used to improve the stability of these oils. In this study, ROOs were enriched through the addition of phenolic extracts from olive leaves (OLs) and exhausted olive pomace (EOP). In addition to replacing synthetic antioxidants with natural ones, this results in the valorization of these olive-derived biomasses. The most suitable method for mixing and enriching refined oils was probe-type ultrasonication using lecithin as the emulsifier. Thereafter, the change in the content of antioxidant compounds and the antioxidant capacity of the oils at 25, 35, and 45 °C were studied over 28 and 50 days of storage. The experimental results were fitted using a pseudo-first-order kinetic model. The oxidative stability index of the ROO enriched with a 2 g/L OL extract (70 h) was higher than that of a commercial ROO (46.8 h). Moreover, the oxidative stability index of the refined olive pomace oil (ROPO) enriched with a 2 g/L EOP extract (44.1 h) was higher than that of a commercial ROPO (38.9 h). In addition, the oxidative stabilities and antioxidant capacities of the oils were significantly correlated.
Collapse
|
28
|
Kurtulbaş E. Prediction of mass transfer and kinetic behavior during the extraction of high added‐value products from sour cherry (
Prunus cerasus
L.) peels. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ebru Kurtulbaş
- Istanbul University‐Cerrahpaşa Chemical Engineering Department İstanbul Turkey
| |
Collapse
|
29
|
Sharma M, Dash KK. Microwave and ultrasound assisted extraction of phytocompounds from black jamun pulp: Kinetic and thermodynamics characteristics. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
Castro-Muñoz R, Díaz-Montes E, Gontarek-Castro E, Boczkaj G, Galanakis CM. A comprehensive review on current and emerging technologies toward the valorization of bio-based wastes and by products from foods. Compr Rev Food Sci Food Saf 2021; 21:46-105. [PMID: 34957673 DOI: 10.1111/1541-4337.12894] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/25/2021] [Accepted: 11/06/2021] [Indexed: 01/07/2023]
Abstract
Industries in the agro-food sector are the largest generators of waste in the world. Agro-food wastes and by products originate from the natural process of senescence, pretreatment, handling, and manufacturing processes of food and beverage products. Notably, most of the wastes are produced with the transformation of raw materials (such as fruits, vegetables, plants, tubers, cereals, and dairy products) into different processed foods (e.g., jams, sauces, and canned fruits/vegetables), dairy derivatives (e.g., cheese and yogurt), and alcoholic (e.g., wine and beer) and nonalcoholic beverages (e.g., juices and soft drinks). Current research is committed not only to the usage of agro-food wastes and by products as a potential source of high-value bioactive compounds (e.g., phenolic compounds, anthocyanins, and organic acids) but also to the implementation of emerging and innovative technologies that can compete with conventional extraction methods for the efficient extraction of such biomolecules from the residues. Herein, specific valorization technologies, such as membrane-based processes, microwave, ultrasound, pulsed electric-assisted extraction, supercritical/subcritical fluids, and pressurized liquids, have emerged as advanced techniques in extracting various added-value biomolecules, showing multiple advantages (improved extraction yields, reduced process time, and protection to the bioactive properties of the compounds). Hence, this comprehensive review aims to analyze the ongoing research on applying such techniques in valorization protocols. A last-five-year review, together with a featured analysis of the relevant findings in the field, is provided.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, San Antonio Buenavista, Toluca de Lerdo, Mexico.,Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Elsa Díaz-Montes
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Barrio La Laguna Ticoman, Ciudad de México, Mexico
| | - Emilia Gontarek-Castro
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Charis M Galanakis
- Research and Innovation Department, Galanakis Laboratories, Chania, Greece.,Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| |
Collapse
|
31
|
Xie P, Cecchi L, Bellumori M, Balli D, Giovannelli L, Huang L, Mulinacci N. Phenolic Compounds and Triterpenes in Different Olive Tissues and Olive Oil By-Products, and Cytotoxicity on Human Colorectal Cancer Cells: The Case of Frantoio, Moraiolo and Leccino Cultivars ( Olea europaea L.). Foods 2021; 10:foods10112823. [PMID: 34829103 PMCID: PMC8618932 DOI: 10.3390/foods10112823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 12/16/2022] Open
Abstract
Phenolic and triterpenoid compounds of the olive tree are recognized as having a key role in health promotion, thanks to their multiple protective actions in humans. To expand the source of these bioactive compounds, the phenolic and triterpenoid profiles of leaf, branch, destoned fruit, destoned pomace, shell, seed, and extra virgin olive oil from the Frantoio, Leccino, and Moraiolo olive cultivars were simultaneously characterized by HPLC-DAD-MS. Overall, 43 molecules were quantitated and expressed on the obtained dry extracts. Oleuropein was mainly concentrated in branches (82.72 g/kg), fruits (55.79 g/kg), leaves (36.71 g/kg), and shells (1.26 g/kg), verbascoside (4.88 g/kg) in pomace, and nüzhenide 11-methyl oleoside (90.91 g/kg) in seeds. Among triterpenoids, which were absent in shells, the highest amount of oleanolic acid was found in olive leaves (11.88 g/kg). HCT-116 colorectal cells were chosen to assess the cytotoxicity of the dry extract, using the phytocomplex from Frantoio, which was the richest in phenols and triterpenoids. The IC50 was also determined for 13 pure molecules (phenols and terpenoids) detected in the extracts. The greatest inhibition on the cell’s proliferation was induced by the branch dry extract (IC50 88.25 μg/mL) and by ursolic acid (IC50 24 μM). A dose-dependent relationship was observed for the tested extracts.
Collapse
Affiliation(s)
- Pujun Xie
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China; (P.X.); (L.H.)
- National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, China
- Key and Open Laboratory on Forest Chemical Engineering, SFA, Nanjing 210042, China
- Key Laboratory of Biomass Energy and Material, Nanjing 210042, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Lorenzo Cecchi
- Department of NEUROFARBA, Nutraceutical and Pharmaceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (L.C.); (M.B.); (D.B.)
| | - Maria Bellumori
- Department of NEUROFARBA, Nutraceutical and Pharmaceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (L.C.); (M.B.); (D.B.)
| | - Diletta Balli
- Department of NEUROFARBA, Nutraceutical and Pharmaceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (L.C.); (M.B.); (D.B.)
| | - Lisa Giovannelli
- Department of NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy;
| | - Lixin Huang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China; (P.X.); (L.H.)
- National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, China
- Key and Open Laboratory on Forest Chemical Engineering, SFA, Nanjing 210042, China
- Key Laboratory of Biomass Energy and Material, Nanjing 210042, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Nadia Mulinacci
- Department of NEUROFARBA, Nutraceutical and Pharmaceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (L.C.); (M.B.); (D.B.)
- Correspondence: ; Tel.: +39-0554573773
| |
Collapse
|
32
|
Madureira J, Margaça FMA, Santos-Buelga C, Ferreira ICFR, Verde SC, Barros L. Applications of bioactive compounds extracted from olive industry wastes: A review. Compr Rev Food Sci Food Saf 2021; 21:453-476. [PMID: 34773427 DOI: 10.1111/1541-4337.12861] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/28/2022]
Abstract
The wastes generated during the olive oil extraction process, even if presenting a negative impact for the environment, contain several bioactive compounds that have considerable health benefits. After suitable extraction and purification, these compounds can be used as food antioxidants or as active ingredients in nutraceutical and cosmetic products due to their interesting technological and pharmaceutical properties. The aim of this review, after presenting general applications of the different types of wastes generated from this industry, is to focus on the olive pomace produced by the two-phase system and to explore the challenging applications of the main individual compounds present in this waste. Hydroxytyrosol, tyrosol, oleuropein, oleuropein aglycone, and verbascoside are the most abundant bioactive compounds present in olive pomace. Besides their antioxidant activity, these compounds also demonstrated other biological properties such as antimicrobial, anticancer, or anti-inflammatory, thus being used in formulations to produce pharmaceutical and cosmetic products or in the fortification of food. Nevertheless, it is mandatory to involve both industries and researchers to create strategies to valorize these byproducts while maintaining environmental sustainability.
Collapse
Affiliation(s)
- Joana Madureira
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Loures, Portugal.,Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal.,Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s /n, Salamanca, Spain
| | - Fernanda M A Margaça
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Loures, Portugal
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s /n, Salamanca, Spain.,Unidad de Excelencia Producción, Agrícola y Medioambiente (AGRIENVIRONMENT), Parque Científico, Universidad de Salamanca, Salamanca, Spain
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Sandra Cabo Verde
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Loures, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| |
Collapse
|
33
|
Sequential Extraction of Hydroxytyrosol, Mannitol and Triterpenic Acids Using a Green Optimized Procedure Based on Ultrasound. Antioxidants (Basel) 2021; 10:antiox10111781. [PMID: 34829652 PMCID: PMC8614775 DOI: 10.3390/antiox10111781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 01/18/2023] Open
Abstract
Olive-derived biomasses contain bioactive compounds with health promoting effects as well as antioxidant and sweet-tasting properties. However, their sequential extraction has not been attained. In the present study, firstly antioxidants and mannitol were extracted from exhausted olive pomace (EOP) by an eco-friendly method, ultrasound-assisted water extraction (UAWE). The amplitude (20-80%), extraction time (2-18 min) and solid loading (2-15%, w/v) were evaluated according to a Box-Behnken experimental design. Using the response surface methodology, the optimal conditions for extraction were obtained: 80% amplitude, 11.5% solid loading and 16 min. It enabled the multi-response optimization of the total phenolic content (TPC) (40.04 mg/g EOP), hydroxytyrosol content (6.42 mg/g EOP), mannitol content (50.92 mg/g EOP) and antioxidant activity (ferric reducing power or FRAP, 50.95 mg/g EOP; ABTS, 100.64 mg/g EOP). Moreover, the phenolic profile of the extracts was determined by liquid chromatography-UV and mass spectrometry, identifying hydroxytyrosol as the main phenolic compound and other minor derivatives could be characterized. Scanning electron microscopy was used to analyze the morphological changes produced in the cellular structure of EOP after UAWE. In addition, the chemical composition of the extracted EOP solid was characterized for further valorization. Then, a second extraction step was performed in order to extract bioactive triterpenes from the latter solid. The triterpenes content in the extract was determined and the effect of the previous UAWE step on the triterpenes extraction was evaluated. In this case, the use of ultrasound enhanced the extraction of maslinic acid and oleanolic acid from pelletized EOP with no milling requirement. Overall, UAWE can be applied to obtain antioxidant compounds and mannitol as first extraction step from pelletized EOP while supporting the subsequent recovery of triterpenic acids.
Collapse
|
34
|
Wang R, He R, Li Z, Li S, Li C, Wang L. Tailor-made deep eutectic solvents-based green extraction of natural antioxidants from partridge leaf-tea (Mallotus furetianus L.). Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Customized Deep Eutectic Solvents as Green Extractants for Ultrasonic-Assisted Enhanced Extraction of Phenolic Antioxidants from Dogbane Leaf-Tea. Foods 2021; 10:foods10112527. [PMID: 34828805 PMCID: PMC8620010 DOI: 10.3390/foods10112527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022] Open
Abstract
This study evaluates the application of eco-friendly deep eutectic solvents (DESs) in the extraction of phenolic antioxidants from dogbane leaf-tea (DLT). The results showed DESs with lower viscosity allowed an efficient extraction of significantly higher contents of total phenolics or flavonoids. An innovative and high-efficient solvent, choline chloride-levulinic acid (ChCl-LevA), was screened and used in ultrasonic-assisted extraction (UAE) of phenolic compounds from DLT. According to full factorial design experimental results, total phenolic content (TPC), total flavonoid content (TFC), antioxidant activity, and anti-α-glucosidase activity (α-GIA) of the DLT extracts were simultaneously optimized by response surface methodology. Sonication temperature and water content in ChCl-LevA were found to be the major factors affecting the TPC, TFC, antioxidant activity, and α-GIA of DLT extracts. Under the optimum parameters (water content in ChCl-LevA was 45%, sonication temperature was 50 °C, and extraction time was 30 min), the measured results for all the responses were obtained as follows: TPC-91.38 ± 7.20 mg GAE/g DW, TFC-84.12 ± 3.47 mg RE/g DW, ABTS+-492 ± 7.33 mmol TE/g DW, FRAP-6235 ± 121 μmol Fe(II)/g DW and α-GIA-230 ± 7.59 mmol AE/g DW, which were consistent with the predicted values. In addition, strongly significant positive correlations were observed between TPC/TFC and bio-activities of the DLT extracts. HPLC results indicated high contents of (-)-epigallocatechin (4272 ± 84.86 μg/g DW), catechin (5268 ± 24.53 μg/g DW), isoquercitrin (3500 ± 86.07 μg/g DW), kaempferol 3-O-rutinoside (3717 ± 97.71 μg/g DW), and protocatechuic acid (644 ± 1.65 μg/g DW) were observed in the DLT extracts. In contrast to other extraction methods, ChCl-LevA-based UAE yielded higher TPC, TFC, individual phenolic contents, stronger antioxidant activity, and α-GIA. Scanning electron microscope (SEM) analysis further confirmed that ChCl-LevA-based UAE enhanced the disruption of cell wall structure, thereby making more phenolic antioxidants released from DLT. In short, ChCl-LevA-based UAE was confirmed to be an innovative and high-efficient method for extraction of phenolic antioxidants from DLT. Dogbane leaves can be considered as a good tea source rich in natural antioxidants.
Collapse
|
36
|
Olive Pomace Phenolic Compounds Stability and Safety Evaluation: From Raw Material to Future Ophthalmic Applications. Molecules 2021; 26:molecules26196002. [PMID: 34641545 PMCID: PMC8512844 DOI: 10.3390/molecules26196002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
Nowadays, increasing interest in olive pomace (OP) valorization aims to improve olive's industry sustainability. Interestingly, several studies propose a high-value application for OP extracts containing its main phenolic compounds, hydroxytyrosol and oleuropein, as therapy for ocular surface diseases. In this work, the stability and accessibility of OP total phenolic and flavonoid content, main representative compounds, and antioxidant activity were assessed under different pretreatment conditions. Among them, lyophilization and supercritical CO2 extraction were found to increase significantly most responses measured in the produced extracts. Two selected extracts (CONV and OPT3) were obtained by different techniques (conventional and pressurized liquid extraction); Their aqueous solutions were characterized by HPLC-DAD-MS/MS. Additionally, their safety and stability were evaluated according to EMA requirements towards their approval as ophthalmic products: their genotoxic effect on ocular surface cells and their 6-months storage stability at 4 different temperature/moisture conditions (CPMP/ICH/2736/99), together with pure hydroxytyrosol and oleuropein solutions. The concentration of hydroxytyrosol and oleuropein in pure or extract solutions was tracked, and possible degradation products were putatively identified by HPLC-DAD-MS/MS. Hydroxytyrosol and oleuropein had different stability as standard or extract solutions, with oleuropein also showing different degradation profile. All compounds/extracts were safe for ophthalmic use at the concentrations tested.
Collapse
|
37
|
Qian XP, Zhang XH, Sun LN, Xing WF, Wang Y, Sun SY, Ma MY, Cheng ZP, Wu ZD, Xing C, Chen BN, Wang YQ. Corosolic acid and its structural analogs: A systematic review of their biological activities and underlying mechanism of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153696. [PMID: 34456116 DOI: 10.1016/j.phymed.2021.153696] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The corosolic acid (CA), also known as plant insulin, is a pentacyclic triterpenoid extracted from plants such as Lagerstroemia speciosa. It has been shown to have anti-diabetic, anti-inflammatory and anti-tumor effects. Its structural analogs ursolic acid (UA), oleanolic acid (OA), maslinic acid (MA), asiatic acid (AA) and betulinic acid (BA) display similar individual pharmacological activities to those of CA. However, there is no systematic review documenting pharmacological activities of CA and its structural analogues. This study aims to fill this gap in literature. PURPOSE This systematic review aims to summarize the medical applications of CA and its analogues. METHODS A systematic review summarizes and compares the extraction techniques, pharmacokinetic parameters, and pharmacological effects of CA and its structural analogs. Hypoglycemic effect is one of the key inclusion criteria for searching Web of Science, PubMed, Embase and Cochrane databases up to October 2020 without language restrictions. 'corosolic acid', 'ursolic acid', 'oleanolic acid', 'maslinic acid', 'asiatic acid', 'betulinic acid', 'extraction', 'pharmacokinetic', 'pharmacological' were used to extract relevant literature. The PRISMA guidelines were followed. RESULTS At the end of the searching process, 140 articles were selected for the systematic review. Information of CA and five of its structural analogs including UA, OA, MA, AA and BA were included in this review. CA and its structural analogs are pentacyclic triterpenes extracted from plants and they have low solubilities in water due to their rigid scaffold and hydrophobic properties. The introduction of water-soluble groups such as sugar or amino groups could increase the solubility of CA and its structural analogs. Their biological activities and underlying mechanism of action are reviewed and compared. CONCLUSION CA and its structural analogs UA, OA, MA, AA and BA are demonstrated to show activities in lowering blood sugar, anti-inflammation and anti-tumor. Their oral absorption and bioavailability can be improved through structural modification and formulation design. CA and its structural analogs are promising natural product-based lead compounds for further development and mechanistic studies.
Collapse
Affiliation(s)
- Xu-Ping Qian
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Xuzhou Medical University, Xuzhou, China
| | - Xue-Hui Zhang
- Department of Pharmacy, Jiangsu Shengze Hospital, Nanjing Medical University, Suzhou, China
| | - Lu-Ning Sun
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Wei-Fan Xing
- Nanjing Chenxiang Pharmaceutical Research Co. Ltd
| | - Yu Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Shi-Yu Sun
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Meng-Yuan Ma
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Xuzhou Medical University, Xuzhou, China
| | - Zi-Ping Cheng
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Zu-Dong Wu
- Nanjing Chenxiang Pharmaceutical Research Co. Ltd
| | - Chen Xing
- Nanjing Chenxiang Pharmaceutical Research Co. Ltd
| | - Bei-Ning Chen
- Department of Chemistry, University of Sheffield, Brookhill, Sheffield S3 7HF, United Kingdom.
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Jiangsu Shengze Hospital, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
38
|
Gupta N. A Review on Recent Developments in the Anticancer Potential of Oleanolic acid and its analogs (2017-2020). Mini Rev Med Chem 2021; 22:600-616. [PMID: 35135459 DOI: 10.2174/1389557521666210810153627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
Oleanolic acid (OA) is a pentacyclic triterpenoid class of natural product known to possess a broad range of biological activities, specifically, anticancer. Considering the anticancer potential of OA, a large number of analogs have been prepared by several researchers through modifications at C-3, C-12 and C-28 -COOH to develop the potent anticancer agents with improved cytotoxicity and pharmaceutical properties. Some of the synthesized derivatives have been assessed in clinical trials also. This review summarizes the most recent synthetic and biological efforts in the development of oleanolic acid and its analogs during the period 2017-2020. Reports published during this period revealed that both OA and its analogs possess a remarkable potential for the development of effective anticancer agents along with several others such as anti-inflammatory, anti-viral, anti-microbial and anti-diabetic agents.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Pharmaceutical Sciences, MM College of Pharmacy, M. M. University, Mullana, Ambala, Haryana. India
| |
Collapse
|
39
|
Abishli R, Albarri R, Şahin S. Mass transfer, kinetics, and thermodynamics studies during the extraction of polyphenols from
Feijoa sellowiana
peels. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ramiz Abishli
- Department of Chemical Engineering Istanbul University‐Cerrahpaşa Istanbul Turkey
| | - Raneen Albarri
- Department of Chemical Engineering Istanbul University‐Cerrahpaşa Istanbul Turkey
| | - Selin Şahin
- Department of Chemical Engineering Istanbul University‐Cerrahpaşa Istanbul Turkey
| |
Collapse
|
40
|
Chanioti S, Katsouli M, Tzia C. Novel Processes for the Extraction of Phenolic Compounds from Olive Pomace and Their Protection by Encapsulation. Molecules 2021; 26:molecules26061781. [PMID: 33810031 PMCID: PMC8005142 DOI: 10.3390/molecules26061781] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Olive pomace, the solid by-product derived from olive oil production consists of a high concentration of bioactive compounds with antioxidant activity, such as phenolic compounds, and their recovery by applying innovative techniques is a great opportunity and challenge for the olive oil industry. This study aimed to point out a new approach for the integrated valorization of olive pomace by extracting the phenolic compounds and protecting them by encapsulation or incorporation in nanoemulsions. Innovative assisted extraction methods were evaluated such as microwave (MAE), homogenization (HAE), ultrasound (UAE), and high hydrostatic pressure (HHPAE) using various solvent systems including ethanol, methanol, and natural deep eutectic solvents (NADESs). The best extraction efficiency of phenolic compounds was achieved by using NADES as extraction solvent and in particular the mixture choline chloride-caffeic acid (CCA) and choline chloride-lactic acid (CLA); by HAE at 60 °C/12,000 rpm and UAE at 60 °C, the total phenolic content (TPC) of extracts was 34.08 mg gallic acid (GA)/g dw and 20.14 mg GA/g dw for CCA, and by MAE at 60 °C and HHPAE at 600 MPa/10 min, the TPC was 29.57 mg GA/g dw and 25.96 mg GA/g dw for CLA. HAE proved to be the best method for the extraction of phenolic compounds from olive pomace. Microencapsulation and nanoemulsion formulations were also reviewed for the protection of the phenolic compounds extracted from olive pomace. Both encapsulation techniques exhibited satisfactory results in terms of encapsulation stability. Thus, they can be proposed as an excellent technique to incorporate phenolic compounds into food products in order to enhance both their antioxidative stability and nutritional value.
Collapse
|
41
|
de Almeida Pontes PV, Ayumi Shiwaku I, Maximo GJ, Caldas Batista EA. Choline chloride-based deep eutectic solvents as potential solvent for extraction of phenolic compounds from olive leaves: Extraction optimization and solvent characterization. Food Chem 2021; 352:129346. [PMID: 33711729 DOI: 10.1016/j.foodchem.2021.129346] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
This study evaluates the use of deep eutectic solvents (DES) prepared with choline chloride ([Ch]Cl) and carboxylic acids for phenolic compound extraction from olive leaves. These extracts were then compared to those obtained using ethanol. The effects of temperature and water addition during DES- and ethanol-based extractions were analyzed using response surface methodology. Due to the lack of solid-liquid equilibrium (SLE) data for [Ch]Cl + acetic acid, SLE, and DES density and viscosity with and without water addition were measured and analyzed. [Ch]Cl:acetic acid (54.1 °C, 50.0% water addition) extracted 15% more phenolic compounds than ethanol (54.1 °C, 0.5% water addition), according to UHPLC-MS based analyses. SLE analyses showed that [Ch]Cl + acetic acid presented a eutectic region at close to a 1:2 molar ratio. DES precursors and water addition influenced solvent physical properties and phenolic compound yield. DES was confirmed to be an innovative, strong solvent for phenolic compound extraction from olive leaves.
Collapse
Affiliation(s)
- Paula Virginia de Almeida Pontes
- EXTRAE, Laboratory of Extraction, Applied Thermodynamics and Equilibrium, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil
| | - Isabella Ayumi Shiwaku
- EXTRAE, Laboratory of Extraction, Applied Thermodynamics and Equilibrium, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil
| | - Guilherme José Maximo
- EXTRAE, Laboratory of Extraction, Applied Thermodynamics and Equilibrium, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil
| | - Eduardo Augusto Caldas Batista
- EXTRAE, Laboratory of Extraction, Applied Thermodynamics and Equilibrium, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil.
| |
Collapse
|
42
|
Tapia-Quirós P, Montenegro-Landívar MF, Reig M, Vecino X, Alvarino T, Cortina JL, Saurina J, Granados M. Olive Mill and Winery Wastes as Viable Sources of Bioactive Compounds: A Study on Polyphenols Recovery. Antioxidants (Basel) 2020; 9:E1074. [PMID: 33139671 PMCID: PMC7694004 DOI: 10.3390/antiox9111074] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 01/06/2023] Open
Abstract
In this study, the recovery of polyphenols from olive oil mill and winery waste was investigated. The performance of ultrasound assisted extraction (UAE), microwave assisted extraction (MAE), and pressurized liquid extraction (PLE) was assessed using ethanol-water mixtures, which are compatible with food, nutraceutical, and cosmetic applications. The extraction efficiency from olive pomace and lees samples was evaluated in terms of total polyphenol content (TPC), determined by high performance liquid chromatography (HPLC) and Folin-Ciocalteu assay. The effect of solvent composition, temperature, and time was analyzed by response surface methodology. Ethanol:water 50:50 (v/v) was found to be a suitable solvent mixture for both kinds of samples and all three extraction techniques. The performance of the extraction techniques was evaluated, under optimal experimental conditions, with a set of different representative samples of residues from olive oil and wine production. Overall, the best extraction efficiency for olive pomace residues was provided by MAE (ethanol:water 50:50 (v/v), 90 °C, 5 min), and for wine residues by PLE (ethanol:water 50:50 (v/v), 100 °C, 5 min, 1 cycle). However, the results provided by UAE (ethanol:water 50:50 (v/v), 30 min) were also suitable. Considering not only extraction performance, but also investment and operational costs, UAE is proposed for a future scaling up evaluation. Regarding olive pomace as a source for natural phenolic antioxidants, olive variety and climatic conditions should be taken into account, since both influence TPC in the extracts, while for winery residues, lees from red wines are more suitable than those from white wines.
Collapse
Affiliation(s)
- Paulina Tapia-Quirós
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya (UPC)-Barcelona TECH, 08930 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (M.R.); (X.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, 08930 Barcelona, Spain
| | - Maria Fernanda Montenegro-Landívar
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya (UPC)-Barcelona TECH, 08930 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (M.R.); (X.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, 08930 Barcelona, Spain
| | - Monica Reig
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya (UPC)-Barcelona TECH, 08930 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (M.R.); (X.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, 08930 Barcelona, Spain
| | - Xanel Vecino
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya (UPC)-Barcelona TECH, 08930 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (M.R.); (X.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, 08930 Barcelona, Spain
| | - Teresa Alvarino
- Galician Water Research Center Foundation (Cetaqua Galicia), University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
| | - Jose Luis Cortina
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya (UPC)-Barcelona TECH, 08930 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (M.R.); (X.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, 08930 Barcelona, Spain
- CETAQUA, Carretera d’Esplugues, 75, 08940 Barcelona, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain;
| | - Merce Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain;
| |
Collapse
|
43
|
Valorisation of Exhausted Olive Pomace by an Eco-Friendly Solvent Extraction Process of Natural Antioxidants. Antioxidants (Basel) 2020; 9:antiox9101010. [PMID: 33080930 PMCID: PMC7603280 DOI: 10.3390/antiox9101010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Exhausted olive pomace (EOP) is the waste generated from the drying and subsequent extraction of residual oil from the olive pomace. In this work, the effect of different aqueous solvents on the recovery of antioxidant compounds from this lignocellulosic biomass was assessed. Water extraction was selected as the best option for recovering bioactive compounds from EOP, and the influence of the main operational parameters involved in the extraction was evaluated by response surface methodology. Aqueous extraction of EOP under optimised conditions (10% solids, 85 °C, and 90 min) yielded an extract with concentrations (per g EOP) of phenolic compounds and flavonoids of 44.5 mg gallic acid equivalent and 114.9 mg rutin equivalent, respectively. Hydroxytyrosol was identified as the major phenolic compound in EOP aqueous extracts. Moreover, these extracts showed high antioxidant activity, as well as moderate bactericidal action against some food-borne pathogens. In general, these results indicate the great potential of EOP as a source of bioactive compounds, with potential uses in several industrial applications.
Collapse
|
44
|
Contreras MDM, Romero I, Moya M, Castro E. Olive-derived biomass as a renewable source of value-added products. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
45
|
Chuo SC, Nasir HM, Mohd-Setapar SH, Mohamed SF, Ahmad A, Wani WA, Muddassir M, Alarifi A. A Glimpse into the Extraction Methods of Active Compounds from Plants. Crit Rev Anal Chem 2020; 52:667-696. [PMID: 32954795 DOI: 10.1080/10408347.2020.1820851] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Naturally active compounds are usually contained inside plants and materials thereof. Thus, the extraction of the active compounds from plants needs appropriate extraction methods. The commonly employed extraction methods are mostly based on solid-liquid extraction. Frequently used conventional extraction methods such as maceration, heat-assisted extraction, Soxhlet extraction, and hydrodistillation are often criticized for large solvent consumption and long extraction times. Therefore, many advanced extraction methods incorporating various technologies such as ultrasound, microwaves, high pressure, high voltage, enzyme hydrolysis, innovative solvent systems, adsorption, and mechanical forces have been studied. These advanced extraction methods are often better than conventional methods in terms of higher yields, higher selectivity, lower solvent consumption, shorter processing time, better energy efficiency, and potential to avoid organic solvents. They are usually designed to be greener, more sustainable, and environment friendly. In this review, we have critically described recently developed extraction methods pertaining to obtaining active compounds from plants and materials thereof. Main factors that affect the extraction performances are tuned, and extraction methods are chosen in line with the properties of targeted active compounds or the objectives of extraction. The review also highlights the advancements in extraction procedures by using combinations of extraction methods to obtain high overall yields or high purity extracts.
Collapse
Affiliation(s)
- Sing Chuong Chuo
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia.,Department of Quantity Surveying, Faculty of Built Environment, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia
| | - Hasmida Mohd Nasir
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia
| | - Siti Hamidah Mohd-Setapar
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia.,Malaysia-Japan International Institute of Technology, Jalan Sultan Yahya Petra, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Sarajul Fikri Mohamed
- Department of Quantity Surveying, Faculty of Built Environment, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia
| | - Akil Ahmad
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia.,Malaysia-Japan International Institute of Technology, Jalan Sultan Yahya Petra, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Waseem A Wani
- Department of Chemistry, Govt. Degree College Tral, Kashmir, J&K, India
| | - Mohd Muddassir
- Catalytic Chemistry Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Alarifi
- Catalytic Chemistry Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
46
|
Gullón P, Gullón B, Astray G, Carpena M, Fraga-Corral M, Prieto MA, Simal-Gandara J. Valorization of by-products from olive oil industry and added-value applications for innovative functional foods. Food Res Int 2020; 137:109683. [PMID: 33233259 DOI: 10.1016/j.foodres.2020.109683] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/10/2020] [Accepted: 09/06/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND In the last years, the consumption of olive oil has experienced a sharp rise due to its organoleptic and healthy properties and with this the wastes and by-products derived from the olive production and the olive oil industry have also increased causing important environmental and economic issues. However, the high content in bioactive compounds of these wastes and by-products makes that its recovery is both a great challenge and an excellent opportunity for the olive oil sector. AIM OF THE REVIEW This review encompasses the more outstanding aspects related to the advances achieved until date in the olive oil by-products valorisation and added-value applications for innovative functional foods. CONCLUSION Taking into account the information reported in this manuscript, the development of a multiproduct biorefinery in cascade using eco-friendly technologies interchangable seems a suitable stratety to obtaining high added value compounds from olive oil by-products with applications in the field of innovative functional foods. In addition, this would allow an integral valorization of these residues enhancing the profitability of the olive oil industry. On the other hand, the biocompounds fom olive oil by-products have been described by their interesting bioactivities with beneficial properties for the consumers' health; therefore, their incorporation into the formulation of functional foods opens new possibilities in the field of innovative foods. Future perspective: Despite the studies descibed in the literature, more research on the healthy properties of the recovered compounds and their interactions with food components is key to allow their reintegration in the food chain and therefore, the removal of the olive oil by-products.
Collapse
Affiliation(s)
- Patricia Gullón
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, Ourense, Spain
| | - Gonzalo Astray
- Department of Physical Chemistry, Faculty Science, Faculty of Science, University of Vigo, Ourense Campus, Ourense, Spain
| | - María Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain
| | - María Fraga-Corral
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain.
| |
Collapse
|
47
|
Liang Y, Pan Z, Chen Z, Fei Y, Zhang J, Yuan J, Zhang L, Zhang J. Ultrasound‐Assisted Natural Deep Eutectic Solvents as Separation‐Free Extraction Media for Hydroxytyrosol from Olives. ChemistrySelect 2020. [DOI: 10.1002/slct.202002026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yihong Liang
- State Key Laboratory of Advanced Welding and Joining Harbin Institute of Technology Shenzhen 518055 China
- Research Centre of Printed Flexible Electronics School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen 518055 China
| | - Zuchen Pan
- State Key Laboratory of Advanced Welding and Joining Harbin Institute of Technology Shenzhen 518055 China
- Research Centre of Printed Flexible Electronics School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen 518055 China
| | - Zhengjian Chen
- Zhuhai Institute of Advanced Technology Chinese Academy of Sciences Biomaterials Research Center Zhuhai China
| | - Yuqing Fei
- Zhuhai Institute of Advanced Technology Chinese Academy of Sciences Biomaterials Research Center Zhuhai China
| | - Jiliang Zhang
- Zhuhai Institute of Advanced Technology Chinese Academy of Sciences Biomaterials Research Center Zhuhai China
| | - Jumao Yuan
- Zhuhai Institute of Advanced Technology Chinese Academy of Sciences Biomaterials Research Center Zhuhai China
| | - Ling Zhang
- School of Science, Harbin Institute of Technology, Shenzhen HIT Campus of University Town of Shenzhen Shenzhen 518055 China
| | - Jiaheng Zhang
- State Key Laboratory of Advanced Welding and Joining Harbin Institute of Technology Shenzhen 518055 China
- Research Centre of Printed Flexible Electronics School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen 518055 China
| |
Collapse
|
48
|
Rakshit M, Srivastav PP, Bhunia K. Kinetic modeling of ultrasonic‐assisted extraction of punicalagin from pomegranate peel. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Madhulekha Rakshit
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur India
| | - Prem P. Srivastav
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur India
| | - Kanishka Bhunia
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur India
| |
Collapse
|
49
|
Comparison of Different Extraction Methods for the Recovery of Olive Leaves Polyphenols. Processes (Basel) 2020. [DOI: 10.3390/pr8091008] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In the present study, advanced extraction techniques, microwave (MAE), ultrasound (UAE), and high pressure (HPAE)-assisted extraction, were applied to improve extraction efficiency of olive (Olea europaea L.) leaves polyphenols. The effect of sample mass (1.5 and 3 g), MAE—time (2, 8.5, and 15 min) and temperature (45 and 80 °C), UAE—time (7, 14, and 21 min) and amplitude (50 and 100%) and HPAE—time (1, 5.5, and 10 min) and pressure (300 and 500 MPa) on the concentration of each analyzed polyphenol compound was examined. Identified polyphenols were oleuropein, hydroxytyrosol, chlorogenic acid, caffeic acid, verbascoside, and rutin. All three advanced extraction techniques yielded higher content of total polyphenols when compared to the conventional heat-reflux extraction (CE) along with a significant reduction of extraction time from 60 (CE) to 2, 21, and 5.5 min in MAE, UAE, and HPAE, respectively. The most intensive values of tested parameters in each technique were the ones that promoted cell wall disruption, e.g., temperature of 80 °C in MAE, 100% amplitude in UAE and 500 MPa in HPAE. MAE and UAE were more efficient in total polyphenols’ recovery than HPAE.
Collapse
|
50
|
Zhang Z, Bai G, Xu D, Cao Y. Effects of ultrasound on the kinetics and thermodynamics properties of papain entrapped in modified gelatin. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|