1
|
Salinas AS, Aguilar Y, Morales LV, Ahumada DA. Assessment of in-house reference materials for multi-pesticide residue analysis in three food matrices by LC-MS/MS: development, homogeneity, and stability. Anal Bioanal Chem 2025; 417:2727-2739. [PMID: 40074850 DOI: 10.1007/s00216-025-05826-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
In-house reference materials (ihRM) are an alternative to the limited supply of reference materials for method validation and assurance of the validity of pesticide residue results. Currently, limited information exists on producing ihRM of pesticide residues in food for laboratory testing purposes for the desired matrix/analyte/concentration combination. This study aimed to develop in-house reference materials for three food matrices: banana, rice, and green coffee spiked with a total of 22 pesticides, which were selected for their relevance in food matrices, with pKOW values ranging from -0.13 to 5.8 following the guidelines of ISO Guide 80:2014. In this study, we assessed the impact of spiking (solvent) and drying conditions (freeze-dried and oven) on homogeneity uncertainty. The final step of this work involved evaluating the homogeneity and kinetics for long-term stability (4 °C) according to the ISO 33405 guidelines, using a fully validated method based on QuEChERS and measurement by LC-MS/MS through a completely randomized block design with two-way ANOVA, and simple linear regression analysis for homogeneity and stability, respectively. In general, for the three matrices, it was found that using a predominantly aqueous solvent (>70%) and freeze-drying resulted in sufficient homogeneity and no significant processing trends (slope p-value > 0.05), compared to using an organic medium (>70%), which resulted in uncertainties up to 50 times higher for several analytes. On the other hand, uncertainties for long-term stability below 3% were obtained for most of the analytes at 4 °C. The results demonstrate that homogeneous and stable ihRMs can be obtained under the provided preparation conditions, although special attention is required for processing conditions, particularly for the banana at a larger scale.
Collapse
Affiliation(s)
- Andrés S Salinas
- Grupo de Investigación en Metrología Química y Bioanálisis, Instituto Nacional de Metrología de Colombia, Av Carrera 50 No 26 - 55 Int. 2, Bogotá, D.C, Colombia.
| | - Yeraldin Aguilar
- Grupo de Investigación en Metrología Química y Bioanálisis, Instituto Nacional de Metrología de Colombia, Av Carrera 50 No 26 - 55 Int. 2, Bogotá, D.C, Colombia
| | - Laura V Morales
- Grupo de Investigación en Metrología Química y Bioanálisis, Instituto Nacional de Metrología de Colombia, Av Carrera 50 No 26 - 55 Int. 2, Bogotá, D.C, Colombia
| | - Diego A Ahumada
- Grupo de Investigación en Metrología Química y Bioanálisis, Instituto Nacional de Metrología de Colombia, Av Carrera 50 No 26 - 55 Int. 2, Bogotá, D.C, Colombia
- Food and Art: Authentication and Sustainability Challenges (FAAST), Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí I Franquès 1-11, 08028, Barcelona, Spain
| |
Collapse
|
2
|
Leite VDSA, Ikehara BRM, Almeida NRD, Augusti R, Pinto FG. Rapid discrimination of geographical origin of garlic (Allium sativum L.): A metabolomic approach applied to paper spray mass spectrometry data. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9743. [PMID: 38682308 DOI: 10.1002/rcm.9743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/14/2024] [Accepted: 03/11/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION Distinguishing and categorizing the origin of garlic are highly significant, considering its widespread use as a flavoring agent. With billions of dollars annually in global trade, garlic is frequently susceptible to fraudulent practices. METHODOLOGY Paper spray ionization mass spectrometry (PS-MS) was employed to quickly analyze garlic samples from distinct geographic origins: China and Brazil. The so-generated PS-MS data were treated with metabolomic multivariate approaches, and the garlic samples from these different geographic regions were easily discriminated. RESULTS Brazilian garlic was characterized to contain higher levels of amino acids, such as arginine, proline, and valine, and organosulfur compounds, such as allicin, alliin, and l-γ-glutamil-S-allyl-l-cysteine, compared to Chinese garlic. The PS-MS data were treated employing multivariate approaches, typically used in the metabolomics field, and this protocol was promptly able to discern among both types of samples. CONCLUSION Hence, this combined strategy holds promise not only as an effective tool for the authentication of the geographical origin of garlic but also as a powerful means for biomarker discovery.
Collapse
Affiliation(s)
| | | | - Natália Reis de Almeida
- Institute of Biological and Health Sciences, Federal University of Viçosa, Rio Paranaíba, Minas Gerais, Brazil
| | - Rodinei Augusti
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Frederico Garcia Pinto
- Institute of Exact Sciences, Federal University of Viçosa, Rio Paranaíba, Minas Gerais, Brazil
| |
Collapse
|
3
|
Hassan MTA, Chen X, Fnu PIJ, Osonga FJ, Sadik OA, Li M, Chen H. Rapid detection of per- and polyfluoroalkyl substances (PFAS) using paper spray-based mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133366. [PMID: 38185081 DOI: 10.1016/j.jhazmat.2023.133366] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/10/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
Traditional PFAS analysis by mass spectrometry (MS) is time-consuming, as laborious sample preparation (e.g., extraction and desalting) is necessary. Herein, we report fast detection of PFAS by paper spray (PS)-based MS techniques, which employs a triangular-shaped filter paper for sample loading and ionization (≤ 3 min per sample). In this study, PS-MS was first used for direct PFAS analysis of drinking water, tap water, and wastewater. Interestingly, food package paper materials can be directly cut and examined with PS-MS for possible PFAS contamination. For samples containing salt matrices which would suppress PFAS ion signal, desalting paper spray mass spectrometry (DPS-MS), was shown to be capable of rapidly desalting, ionizing and detecting PFAS species such as per-fluorooctanoic acid (PFOA) and per-fluorosulphonic acid (PFOS). The retention of PFAS on paper substrate while salts being washed away by water is likely due to hydrophilic interaction between the PFAS polar head (e.g., carboxylic acid, sulfonic acid) with the polar filter paper cellulose surface. The DPS-MS method is highly sensitive (limits of detection:1.2-4.5 ppt) and can be applicable for directly analyzing soil extract and soil samples. These results suggest the high potential of PS-MS and the related DPS-MS technique in real-world environmental analysis of PFAS.
Collapse
Affiliation(s)
- Md Tanim-Al Hassan
- Department of Chemistry and Environmental Science, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Xingzhi Chen
- Department of Chemistry and Environmental Science, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Praneeth Ivan Joel Fnu
- Department of Chemistry and Environmental Science, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Francis J Osonga
- Department of Chemistry and Environmental Science, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Omowunmi A Sadik
- Department of Chemistry and Environmental Science, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA.
| |
Collapse
|
4
|
Zhao P, Liu R, Yuan L. Dissipation, Residue and Human Dietary Risk Assessment of Pyraclostrobin and Cyazofamid in Grapes Using an HPLC-UV Detector. Foods 2024; 13:314. [PMID: 38254615 PMCID: PMC10814842 DOI: 10.3390/foods13020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Pyraclostrobin is a new broad-spectrum methoxyacrylic acid fungicide. Cyazofamid is a new selective foliar spray acaricide. Here, we studied the degradation rate and final residues of pyraclostrobin and cyazofamid in grape and evaluated their dietary risk to consumers. The average recoveries of pyraclostrobin ether ester, cyazofamid and cyazofamid metabolite (CCIM) in grapes were 84-94%, 92-98% and 99-104%, respectively. The relative standard deviations (RSDs) were 6.0-20.3%, 2.4-10.5% and 1.3-4.0%, respectively, and the LOQs were all 0.05 mg/kg. The digestion dynamics of the experimental sites were in accordance with the first-order kinetic equation. The degradation half-lives of pyraclostrobin ether ester and cyazofamid were 17.8 d-28.9 d and 4.3 d-7.8 d, respectively. The final residues of pyraclostrobin ether ester, cyazofamid and CCIM in grapes were <0.05-1.88 mg/kg, <0.05-0.31 mg/kg and <0.05-0.47 mg/kg, respectively. Using probability models, the total chronic risk values for pyraclostrobin and cyazofamid were calculated to be 0.112-189.617% and 0.021-1.714%, respectively. The results of the contribution analysis indicate that pyraclostrobin poses a much greater risk to Chinese consumers than cyazofamid, especially to children and adolescents, who have a significantly greater risk than adults. This suggests that more consideration should be given to the cumulative risk of compounds for vulnerable groups in the future.
Collapse
Affiliation(s)
- Peiying Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Rong Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Longfei Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
5
|
de Andrade JC, Galvan D, Kato LS, Conte-Junior CA. Consumption of fruits and vegetables contaminated with pesticide residues in Brazil: A systematic review with health risk assessment. CHEMOSPHERE 2023; 322:138244. [PMID: 36841459 DOI: 10.1016/j.chemosphere.2023.138244] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Brazil is the third largest exporter of fruits and vegetables in the world and, consequently, uses large amounts of pesticides. Food contamination with pesticide residues (PRs) is a serious concern, especially in developing countries. Several research reports revealed that some Brazilian farmers spray pesticides on fruits and vegetables in large quantities, generating PRs after harvest. Thus, ingestion of food contaminated with PRs can cause adverse health effects. Based on information obtained through a systematic review of essential information from 33 articles, we studied the assessment of potential health risks associated with fruit and vegetable consumption in children and adults from Brazilian states. This study identified 111 PRs belonging to different chemical groups, mainly organophosphates and organochlorines, in 26 fruit and vegetable samples consumed and exported by Brazil. Sixteen of these PRs were above the Maximum Residue Limit (MRL) established by local and international legislation. We did not identify severe acute and chronic dietary risks, but the highest risk values were observed in São Paulo and Santa Catarina, associated with the consumption of tomatoes and sweet peppers due to the high concentrations of organophosphates. A high long-term health risk is associated with the consumption of oranges in São Paulo and grapes in Bahia due to chlorothalonil and procymidone. We also identified that 26 PRs are considered carcinogenic by the United States Environmental Protection Agency (US EPA), and the carcinogenic risk analysis revealed no severe risk in any Brazilian state investigated due to the cumulative hazard index (HI) < 1. However, the highest HI values were in São Paulo due to acephate and carbaryl in sweet pepper and in Bahia due to dichlorvos. This information can help regulatory authorities define new guidelines for pesticide residue limits in fruits and vegetables commonly consumed and exported from Brazil and monitor the quality of commercial formulations.
Collapse
Affiliation(s)
- Jelmir Craveiro de Andrade
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, 20020-000, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Diego Galvan
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, 20020-000, Brazil.
| | - Lilian Seiko Kato
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, 20020-000, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, 20020-000, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
| |
Collapse
|
6
|
Pereira I, Monaghan J, Abruzzi LR, Gill CG. PAMAM-Functionalized Paper as a New Substrate for the Paper Spray Mass Spectrometry Measurement of Proteins. Anal Chem 2023; 95:7134-7141. [PMID: 37115227 DOI: 10.1021/acs.analchem.2c05316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Paper surface functionalization with polyamidoamine (PAMAM) dendrimers has been developed for increased sensitivity analysis of proteins by paper spray mass spectrometry (PS-MS). PAMAM is a branched polymeric compound with an ethylenediamine core linked to repeating PAMAM units that generates an outer surface rich in primary amines. These positively charged amine groups can interact electrostatically with negatively charged residues (e.g., aspartate, glutamate) on the protein surface. PAMAM inner amide moieties can also promote hydrogen bonding with protein surface oxygens, making PAMAM a useful material for protein extraction. PAMAM-functionalized PS-MS paper strips were used to extract proteins from biofluids, dipped in acetonitrile to remove unbound constituents, dried, and then measured with PS-MS. The use of this strategy was optimized and compared with unmodified paper strips. PAMAM-functionalized paper substrates provided sixfold greater sensitivity for albumin, 11-fold for hemoglobin, sevenfold for insulin, and twofold for lysozyme. The analytical performance of the functionalized paper substrate was evaluated through the analysis of albumin in urine, achieving linearity with R2 > 0.99, LOD of 1.1 μg mL-1, LOQ of 3.8 μg mL-1, precision better than 10%, and relative recovery 70-83%. The method was applied to quantify urinary albumin from nine anonymous patient samples (concentrations ranged from 6.5 to 77.4 μg mL-1), illustrating its potential for the diagnosis of microalbuminuria. These data demonstrate the utility of paper modification with the PAMAM dendrimer for sensitive PS-MS analysis of proteins, opening a path for further applications in clinical diagnosis through the analysis of disease-related proteins.
Collapse
Affiliation(s)
- Igor Pereira
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, Nanaimo, British Columbia V9R 5S5, Canada
| | - Joseph Monaghan
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, Nanaimo, British Columbia V9R 5S5, Canada
- Chemistry Department, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Lucas R Abruzzi
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, Nanaimo, British Columbia V9R 5S5, Canada
- Chemistry Department, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Chris G Gill
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, Nanaimo, British Columbia V9R 5S5, Canada
- Chemistry Department, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Chemistry Department, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Department of Occupational and Environmental Health Sciences, University of Washington, Seattle, Washington 98195-1618, United States
| |
Collapse
|
7
|
Kim SH, Lee YH, Jeong MJ, Gwon DY, Lee JH, Shin Y, Choi H. LC-MS/MS Method Minimizing Matrix Effect for the Analysis of Bifenthrin and Butachlor in Chinese Chives and Its Application for Residual Study. Foods 2023; 12:foods12081683. [PMID: 37107478 PMCID: PMC10137788 DOI: 10.3390/foods12081683] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The matrix effect refers to the change in the analytical signal caused by the matrix in which the sample is contained, as well as the impurities that are co-eluted with the target analyte. In crop sample analysis using LC-MS/MS, the matrix effect can affect the quantification results. Chinese chives are likely to exhibit a strong matrix effect when co-extracted with bifenthrin and butachlor due to the presence of phytochemicals and chlorophyll. A novel analytical method was developed to reduce the matrix effects of bifenthrin and butachlor to a negligible level in Chinese chives. The established method had a limit of quantitation of 0.005 mg/kg and correlation coefficients greater than 0.999 within the range of 0.005-0.5 mg/kg. Matrix effects were found to be negligible, with values ranging from -18.8% to 7.2% in four different sources of chives and two leafy vegetables. Compared to conventional analytical methods for the LOQ and matrix effect, the established method demonstrated improved performances. The analytical method was further applied in a residual study in chive fields. The active ingredient of butachlor 5 granule (GR) was not detected after soil admixture application, while that of bifenthrin 1 emulsifiable concentrate (EC) showed a range from 1.002 to 0.087 mg/kg after foliar spraying. The dissipation rate constant (k) of bifenthrin was determined to be 0.115, thus its half-life was calculated to be 6.0 days. From the results, PHI and safety use standards of both pesticides were suggested. The developed analytical method can be applied to accurately determine bifenthrin and butachlor residues in Chinese chives and provides a foundation for further research on the fate and behavior of these pesticides in the environment.
Collapse
Affiliation(s)
- So-Hee Kim
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Yoon-Hee Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Mun-Ju Jeong
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Da-Yeong Gwon
- Department of Life & Environmental Sciences, Wonkwang University, Iksan 54538, Republic of Korea
| | - Ji-Ho Lee
- Department of Crop Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Yongho Shin
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Hoon Choi
- Department of Life & Environmental Sciences, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
8
|
Kannoujia J, Nagineni D, Rodda R, Chilukuri R, Babu Nanubolu J, Akshinthala P, Yarasi S, Kantevari S, Sripadi P. Identification and Characterization of the Isomeric Impurity of the Fungicide "Cyazofamid". Chem Asian J 2023; 18:e202201276. [PMID: 36745042 DOI: 10.1002/asia.202201276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/07/2023]
Abstract
Identification and characterization of biproducts/ impurities present in agrochemicals are critical in view of their efficacy and safety towards public health. We herein present our study on identification and characterization of an impurity, 5-chloro-2-cyano-N,N-dimethyl-4-p-tolylimidazole-1-sulfonamide (2) present in the fungicide, "cyazofamid". Intermittent HPLC analysis of the reaction of substituted imidazole (1) with N,N-dimethylsulfamoyl chloride suggested that 2 is formed during the reaction. Isolation by preparative HPLC and characterization by NMR, LC/HRMS, MS/MS and single crystal XRD analysis confirmed 2 as an isomer of cyazofamid, wherein the N,N-dimethyl sulfonamide group was positioned on the other nitrogen of imidazole in close proximity to chloride group. Computational studies further supported the formation of 2 and ruled out the other possible isomeric structures.
Collapse
Affiliation(s)
- Jyoti Kannoujia
- Centre for Mass Spectrometry, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Devendra Nagineni
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.,Fluoro & Agrochemical Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Ramesh Rodda
- Centre for Mass Spectrometry, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Ramesh Chilukuri
- Fluoro & Agrochemical Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Jagadeesh Babu Nanubolu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.,Centre for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Parameswari Akshinthala
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.,Polymers & Functional Materials, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, India
| | - Soujanya Yarasi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.,Polymers & Functional Materials, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, India
| | - Srinivas Kantevari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.,Fluoro & Agrochemical Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Prabhakar Sripadi
- Centre for Mass Spectrometry, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
9
|
Assessing the Effectiveness of Chemical Marker Extraction from Amazonian Plant Cupuassu (Theobroma grandiflorum) by PSI-HRMS/MS and LC-HRMS/MS. Metabolites 2023; 13:metabo13030367. [PMID: 36984807 PMCID: PMC10056743 DOI: 10.3390/metabo13030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Employing a combination of liquid chromatography electrospray ionization and paper spray ionization high-resolution tandem mass spectrometry, extracts from cupuassu (Theobroma grandiflorum) pulp prepared with either water, methanol, acetonitrile or combinations thereof were subjected to metabolite fingerprinting. Among the tested extractors, 100% methanol extracted preferentially phenols and cinnamic acids derivatives, whereas acetonitrile and acetonitrile/methanol were more effective in extracting terpenoids and flavonoids, respectively. And while liquid chromatography- mass spectrometry detected twice as many metabolites as paper spray ionization tandem mass spectrometry, the latter proved its potential as a screening technique. Comprehensive structural annotation showed a high production of terpenes, mainly oleanane triterpene derivatives. of the mass spectra Further, five major metabolites with known antioxidant activity, namely catechin, citric acid, epigallocatechin-3′-glucuronide, 5,7,8-trihydroxyflavanone, and asiatic acid, were subjected to molecular docking analysis using the antioxidative enzyme peroxiredoxin 5 (PRDX5) as a model receptor. Based on its excellent docking score, a pharmacophore model of 5,7,8-trihydroxyflavanone was generated, which may help the design of new antioxidants.
Collapse
|
10
|
Shi L, Habib A, Bi L, Hong H, Begum R, Wen L. Ambient Ionization Mass Spectrometry: Application and Prospective. Crit Rev Anal Chem 2022; 54:1584-1633. [PMID: 36206159 DOI: 10.1080/10408347.2022.2124840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Mass spectrometry (MS) is a formidable analytical tool for the analysis of non-polar to polar compounds individually and/or from mixtures, providing information on the molecular weights and chemical structures of the analytes. During the last more than one-decade, ambient ionization mass spectrometry (AIMS) has developed quickly, producing a wide range of platforms and proving scientific improvements in a variety of domains, from biological imaging to quick quality control. These methods have made it possible to detect target analytes in real time without sample preparation in an open environment, and they can be connected to any MS system with an atmospheric pressure interface. They also have the ability to analyze explosives, illicit drugs, disease diagnostics, drugs in biological samples, adulterants in food and agricultural products, reaction progress, and environmental monitoring. The development of novel ambient ionization techniques, such as probe electrospray ionization, paper spray ionization, and fiber spray ionization, employed even at picolitre to femtolitre solution levels to provide femtogram to attogram levels of the target analytes. The special characteristic of this ambient ion source, which has been extensively used, is the noninvasive property of PESI of examination of biological real samples. The results in the current review supports the idea that AIMS has emerged as a pioneer in MS-based approaches and that methods will continue to be developed along with improvements to existing ones in the near future.
Collapse
Affiliation(s)
- Lulu Shi
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Ahsan Habib
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Lei Bi
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| | - Huanhuan Hong
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| | - Rockshana Begum
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Luhong Wen
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
11
|
Xu S, Xu Z, Liu Z. Paper-Based Molecular-Imprinting Technology and Its Application. BIOSENSORS 2022; 12:595. [PMID: 36004991 PMCID: PMC9405720 DOI: 10.3390/bios12080595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022]
Abstract
Paper-based analytical devices (PADs) are highly effective tools due to their low cost, portability, low reagent accumulation, and ease of use. Molecularly imprinted polymers (MIP) are also extensively used as biomimetic receptors and specific adsorption materials for capturing target analytes in various complex matrices due to their excellent recognition ability and structural stability. The integration of MIP and PADs (MIP-PADs) realizes the rapid, convenient, and low-cost application of molecular-imprinting analysis technology. This review introduces the characteristics of MIP-PAD technology and discusses its application in the fields of on-site environmental analysis, food-safety monitoring, point-of-care detection, biomarker detection, and exposure assessment. The problems and future development of MIP-PAD technology in practical application are also prospected.
Collapse
Affiliation(s)
| | - Zhigang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China;
| | - Zhimin Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China;
| |
Collapse
|
12
|
Freitas C, Machado LS, Pereira I, da Silva RR, dos Santos GF, Chaves AR, Simas RC, Lima GS, Vaz BG. Assessing organophosphorus and carbamate pesticides in maize samples using MIP extraction and PSI-MS analyzes. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2510-2515. [PMID: 35602426 PMCID: PMC9114180 DOI: 10.1007/s13197-022-05464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/07/2022] [Accepted: 04/03/2022] [Indexed: 06/03/2023]
Abstract
The indiscriminate utilization of agrochemicals causes environmental and animal life impacts. In this regard, methodologies have been developed to offer efficiency and quickness for agrochemicals detection. Due to their selectivity and molecular recognition sites, Molecular Imprinted Polymer (MIPs) have been widely employed in some areas, including biotechnology, waste analyses, foodstuff, biological fluids, and others. This work proposed developing a method to determine aminocarb, pirimicarb, dimethoate, omethoate, pyridaphenthion, and fenitrothion pesticides using molecularly imprinted polymer combined with solid-phase extraction (MIP-SPE) for clean-up and paper spray ionization mass spectrometry for their analysis. Extractions analysis for Aminocarb, Pirimicarb, and Omethoate using MIP-SPE showed better performance when compared with MIP and NIP. The R 2 values were found with R 2 > 0.98 for all pesticides, and LODs and LOQs values were 50 and 100 µg kg-1, respectively. The precision and accuracy were assessed at three concentration levels-low, medium, and high. The precision values (interday and intraday) were below 10%, and the variation of recovery was between 80 and 120% for all pesticides. Therefore, it was possible to verify the presence of two carbamates and five organophosphorus without the necessity of preconcentration samples with precision and good recovery. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05464-7.
Collapse
Affiliation(s)
- Carla Freitas
- Chemistry Institute, Federal University of Goiás, Goiânia, GO 74690-900 Brazil
| | - Lucas S. Machado
- Chemistry Institute, Federal University of Goiás, Goiânia, GO 74690-900 Brazil
| | - Igor Pereira
- Chemistry Institute, Federal University of Goiás, Goiânia, GO 74690-900 Brazil
| | - Rodolfo R. da Silva
- Chemistry Institute, Federal University of Goiás, Goiânia, GO 74690-900 Brazil
| | | | - Andrea R. Chaves
- Chemistry Institute, Federal University of Goiás, Goiânia, GO 74690-900 Brazil
| | - Rosineide C. Simas
- Chemistry Institute, Federal University of Goiás, Goiânia, GO 74690-900 Brazil
| | - Gesiane S. Lima
- Chemistry Institute, Federal University of Goiás, Goiânia, GO 74690-900 Brazil
| | - Boniek G. Vaz
- Chemistry Institute, Federal University of Goiás, Goiânia, GO 74690-900 Brazil
| |
Collapse
|
13
|
Rapid and non-invasive surface-enhanced Raman spectroscopy (SERS) detection of chlorpyrifos in fruits using disposable paper-based substrates charged with gold nanoparticle/halloysite nanotube composites. Mikrochim Acta 2022; 189:197. [PMID: 35459974 DOI: 10.1007/s00604-022-05261-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/04/2022] [Indexed: 10/18/2022]
Abstract
Chlorpyrifos is one of the most widely used organophosphate insecticides in agricultural production. Nevertheless, the residues of chlorpyrifos in agricultural by-product seriously threaten human health. Thus, the ultrasensitive detection of chlorpyrifos residues in agri-food products is of great demand. Herein, an AuNP/HNT-assembled disposable paper SERS substrate was prepared by an electrostatic self-assembly method to detect chlorpyrifos residues. The AuNP/HNT paper substrate exhibited high SERS activity, good reproducibility, and long-term stability, which was successfully used for quantitative detection of chlorpyrifos; the detection limit reached 7.9 × 10-9 M. For spiked apple samples the calculated recovery was 87.9% with a RSD value of 6.1%. The excellent detection ability of AuNP/HNT paper-based SERS substrate indicated that it will play an important role in pesticide detection in the future. AuNP/HNT assembled disposable paper SERS substrate was prepared by an electrostatic self-assembly method to detect chlorpyrifos residues in fruits.
Collapse
|
14
|
Li J, Liu J, Wan Y, Wang J, Pi F. Routine analysis of pesticides in foodstuffs: Emerging ambient ionization mass spectrometry as an alternative strategy to be on your radar. Crit Rev Food Sci Nutr 2022; 63:7341-7356. [PMID: 35229702 DOI: 10.1080/10408398.2022.2045561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pesticides residues in foodstuffs are longstanding of great concern to consumers and governments, thus reliable evaluation techniques for these residues are necessary to ensure food safety. Emerging ambient ionization mass spectrometry (AIMS), a transformative technology in the field of analytical chemistry, is becoming a promising and solid evaluation technology due to its advantages of direct, real-time and in-situ ionization on samples without complex pretreatments. To provide useful guidance on the evaluation techniques in the field of food safety, we offered a comprehensive review on the AIMS technology and introduced their novel applications for the analysis of residual pesticides in foodstuffs under different testing scenarios (i.e., quantitative, screening, imaging, high-throughput detection and rapid on-site analysis). Meanwhile, the creative combination of AIMS with high-resolution mass analyzer (e.g., orbitrap and time-of-flight) was fundamentally mentioned based on recent studies about the detection and evaluation of multi-residual pesticides between 2015 and 2021. Finally, the technical challenges and prospects associated with AIMS operation in food industry were discussed.
Collapse
Affiliation(s)
- Jingkun Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Jinghan Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yuqi Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Jiahua Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| |
Collapse
|
15
|
Zhao G, Chu F, Zhou J. Dual ambient plasma source ionization mass spectrometry for the rapid detection of trace sterols in urban water. JOURNAL OF MASS SPECTROMETRY : JMS 2022; 57:e4809. [PMID: 35075730 DOI: 10.1002/jms.4809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
A direct analytical method based on dual ambient plasma ion source tandem mass spectrometry was used for the simultaneous determination of four sterols in the environment. This technology has very high sensitivity and the method detects the four sterols in methanol-water (1:3) solutions with limits of detection (LOD) and limits of quantification (LOQ) ranging from 1.2 ng/L to 6.9 ng/L and 7.6 ng/L to 10.0 ng/L, respectively. The method was also used to test water quality at three locations within the city and successfully detected all four sterols at very low concentrations. The dual plasma source tandem mass spectrometry technique is extremely simple, rapid, sensitive and highly efficient compared to other traditional methods, providing a useful screening tool for sterols in water.
Collapse
Affiliation(s)
- Gaosheng Zhao
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, China
| | - Fengjian Chu
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
| | - Jianguang Zhou
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, China
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
de Andrade JC, Galvan D, Effting L, Tessaro L, Aquino A, Conte-Junior CA. Multiclass Pesticide Residues in Fruits and Vegetables from Brazil: A Systematic Review of Sample Preparation Until Post-Harvest. Crit Rev Anal Chem 2021; 53:1174-1196. [PMID: 34908509 DOI: 10.1080/10408347.2021.2013157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Brazil annually produces around 43 million tons of fruits and vegetables. Therefore, large amounts of pesticides are needed to grow these foods. The use of unauthorized or indiscriminate pesticides can lead to the adherence of residues of these compounds to the product in a concentration above the maximum residue limit (MRL). Pesticide residues (PRs) monitoring is a continuous challenge due to several factors influencing the detection of these compounds in the food matrix. Currently, several adaptations to conventional techniques have been developed to minimize these problems. This systematic review presents the main information obtained from 52 research articles, taken from five databases, on changes and advances in Brazil in sample preparation methods for determining PRs in fruits and vegetables in the last nine years. We cover the preexisting ones and some others that might be suitable alternatives approaches. In addition, we present a brief discussion on the monitoring of PRs in different Brazilian regions, and we found that residues belonging to the organophosphate and pyrethroid classes were detected more frequently. Approximately 67% of the residues detected are of irregular use in 28 types of fruits and vegetables commonly consumed and exported by Brazil.
Collapse
Affiliation(s)
- Jelmir Craveiro de Andrade
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diego Galvan
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luciane Effting
- Chemistry Department, State University of Londrina (UEL), Londrina, Brazil
| | - Letícia Tessaro
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Adriano Aquino
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Ma Z, Gao Y, Chu F, Tong Y, He Y, Li Y, Gao Z, Chen W, Zhang S, Pan Y. Tip-assisted ambient electric arc ionization mass spectrometry for rapid detection of trace organophosphorus pesticides in strawberries. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Maciel LÍL, Rodrigues Feitosa Ramalho R, Izidoro Ribeiro R, Cunha Xavier Pinto M, Pereira I, Vaz BG. Combining the Katritzky Reaction and Paper Spray Ionization Mass Spectrometry for Enhanced Detection of Amino Acid Neurotransmitters in Mouse Brain Sections. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2513-2518. [PMID: 34464122 DOI: 10.1021/jasms.1c00153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This work describes the development of a system that combines a derivatization protocol based on the Katritzky reaction with paper spray ionization mass spectrometry (PSI-MS) for the analysis of amino acid neurotransmitters in mouse brain tissues. The system is relatively simple, consisting of spraying the derivatization solution onto a mouse brain section mounted on a glass slide, applying a small volume of solvent to moisten the sample, pressing a triangular paper onto the sample surface to transfer the sample constituents to the paper surface, and using the paper as a substrate for PSI-MS analysis. The Katritzky reaction facilitated the ionization of the amino acids by reacting a pyrylium salt with the amino group of the analytes, forming very stable pyridinium cations, which greatly increased the sensitivity of the PSI-MS analysis. Most of the intensities of the amino acids modified by the Katritzky reaction were more than 10 times greater than the nonderivatized ones. The system was applied for the analysis of brain sections obtained from mice with Parkinson's disease, and the amino acids gamma-aminobutyric acid (GABA) and glycine (Gly), two compounds very well-known in studies of Parkinson's disease, were readily detected. The results suggest that the Katritzky reaction combined with PSI-MS might offer a significant advance in the knowledge on protocols that improve the sensitivity of detection of crucial biological compounds.
Collapse
Affiliation(s)
| | | | - Raul Izidoro Ribeiro
- Institute of Biological Sciences, Federal University of Goiás, 74690-900, Goiânia, Brazil
| | | | - Igor Pereira
- Chemistry Institute, Federal University of Goiás, 74690-900, Goiânia, Brazil
| | - Boniek Gontijo Vaz
- Chemistry Institute, Federal University of Goiás, 74690-900, Goiânia, Brazil
| |
Collapse
|
19
|
Coelho Pimenta JV, Augusti R, Sabino AA. On-Surface Alcohol Oxidation Monitored by Paper Spray Mass Spectrometry: The Role of Ruthenium as Catalyst. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2168-2174. [PMID: 34279929 DOI: 10.1021/jasms.1c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Paper spray ionization mass spectrometry (PS-MS) is employed herein as a convenient platform to investigate an on-surface catalytic process, that is, the oxidation of alcohols induced by ruthenium salts. The tag-charged benzyl alcohol 1 (m/z 166), used as a suitable prototype starting substrate, is quickly oxidized by tert-butyl hydroperoxide (TBHP) in an on-surface process catalyzed by ruthenium trichloride (RuCl3). The PS(+)-MS revealed the formation of products from the oxidation of alcohol 1. RuCl3 and TBHP played a crucial role in this process since when salts of other metals (platinum, palladium, and iron) and another oxidizing agent (hydrogen peroxide) are employed, no reaction is observed. Moreover, UV radiation and heating accelerate the on-surface alcohol 1 oxidation. Finally, an exciting possibility is to employ PS-MS to investigate similar organic catalytic reactions to accelerate them and detect unstable intermediates, indiscernible in the condensed phase.
Collapse
Affiliation(s)
| | - Rodinei Augusti
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Adão Aparecido Sabino
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
20
|
Mendes TPP, Lobón GS, Lima LAS, Guerra NKM, Carvalho GA, Freitas EMM, Pinto MCX, Pereira I, Vaz BG. Mass spectrometry-based biosensing using pencil graphite rods. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Rankin‐Turner S, Heaney LM. Applications of ambient ionization mass spectrometry in 2020: An annual review. ANALYTICAL SCIENCE ADVANCES 2021; 2:193-212. [PMID: 38716454 PMCID: PMC10989608 DOI: 10.1002/ansa.202000135] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 06/26/2024]
Abstract
Recent developments in mass spectrometry (MS) analyses have seen a concerted effort to reduce the complexity of analytical workflows through the simplification (or removal) of sample preparation and the shortening of run-to-run analysis times. Ambient ionization mass spectrometry (AIMS) is an exemplar MS-based technology that has swiftly developed into a popular and powerful tool in analytical science. This increase in interest and demonstrable applications is down to its capacity to enable the rapid analysis of a diverse range of samples, typically in their native state or following a minimalistic sample preparation approach. The field of AIMS is constantly improving and expanding, with developments of powerful and novel techniques, improvements to existing instrumentation, and exciting new applications added with each year that passes. This annual review provides an overview of applications of AIMS techniques over the past year (2020), with a particular focus on the application of AIMS in a number of key fields of research including biomedical sciences, forensics and security, food sciences, the environment, and chemical synthesis. Novel ambient ionization techniques are introduced, including picolitre pressure-probe electrospray ionization and fiber spray ionization, in addition to modifications and improvements to existing techniques such as hand-held devices for ease of use, and USB-powered ion sources for on-site analysis. In all, the information provided in this review supports the view that AIMS has become a leading approach in MS-based analyses and that improvements to existing methods, alongside the development of novel approaches, will continue across the foreseeable future.
Collapse
Affiliation(s)
- Stephanie Rankin‐Turner
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Liam M. Heaney
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughLeicestershireUK
| |
Collapse
|
22
|
Zhao J, Sharat C, Mehta PA, Mizuno K, Vinks AA, Setchell KDR. Paperspray Ionization Mass Spectrometry as a Tool for Predicting Real-Time Optimized Dosing of the Chemotherapeutic Drug Melphalan. J Appl Lab Med 2021; 6:625-636. [PMID: 33582807 DOI: 10.1093/jalm/jfaa237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Melphalan, an important component of hematopoietic stem cell transplantation (HSCT) preparative regimens, is associated with significant toxicity and large between patient variability in pharmacokinetics making it difficult to calculate the optimal dose for pediatric patients. Paperspray (PS) ionization generates gas phase analyte ions directly from a dried blood spot without the need for prior sample preparation or chromatography. With these advantages, a validated PS-MS/MS assay was developed and applied to the 'real-time' determination of melphalan pharmacokinetics (PK). METHODS Melphalan was quantified by stable-labeled isotope dilution analysis in whole blood by PS-MS/MS. Blood samples were obtained at timed intervals from patients during HSCT after administration of a very low (test) dose of melphalan to avoid toxicity. Pharmacokinetics parameters were calculated using WinNonlin v.6.4. From these data, the optimal therapeutic dose was estimated and full dose PK repeated. RESULTS PS-MS/MS method was linear over a large dynamic range (25-50 000 ng/mL), intra- and interassay reproducibility of quality control samples was <15% CV. With essentially no prior sample preparation, PS-MS/MS measurement of blood melphalan concentrations showed excellent correlation (R2 = 0.959, n = 62) with a validated electrospray-LC-MS/MS method. Trapezoidal area under the curves calculated for 5 patients administered low dose melphalan showed a high linear correlation (R2 = 0.981) between the PS-MS/MS and LC-MS/MS methods. The faster PS approach permitted real-time PK evaluation of individual patients. CONCLUSIONS A validated PS-MS/MS assay for melphalan in patients undergoing HSCT is described that facilitates pharmacokinetic-guided individualized precision dosing with immediate bedside dose adjustments to improve outcomes by balancing toxicity and efficacy of melphalan.
Collapse
Affiliation(s)
- Junfang Zhao
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chandra Sharat
- Division of Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Parinda A Mehta
- Division of Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kana Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Alexander A Vinks
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kenneth D R Setchell
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
23
|
Martins RO, de Araújo GL, de Freitas CS, Silva AR, Simas RC, Vaz BG, Chaves AR. Miniaturized sample preparation techniques and ambient mass spectrometry as approaches for food residue analysis. J Chromatogr A 2021; 1640:461949. [PMID: 33556677 DOI: 10.1016/j.chroma.2021.461949] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 01/21/2023]
Abstract
Analytical methods such as liquid chromatography (LC) and mass spectrometry (MS) are widely used techniques for the analyses of different classes of compounds. This is due to their highlighted capacity for separating and identifying components in complex matrices such food samples. However, in most cases, effective analysis of the target analyte becomes challenging due to the complexity of the sample, especially for quantification of trace concentrations. In this case, miniaturized sample preparation methods have been used as a strategy for analysis of complex matrices. This involves removing the interferents and concentrating the analytes in a sample. These methods combine simplicity and effectiveness and given their miniaturized scale, they are in accordance with green chemistry precepts. Besides, ambient mass spectrometry represents a new trend in fast and rapid analyses, especially for qualitative and screening analysis. However, for complex matrix analyses, sample preparation is still a difficult step and the miniaturized sample preparation techniques show great potential for an improved and widespread use of ambient mass spectrometry techniques. . This review aims to contribute as an overview of current miniaturized sample preparation techniques and ambient mass spectrometry methods as different approaches for selective and sensitive analysis of residues in food samples.
Collapse
Affiliation(s)
| | | | | | | | | | - Boniek Gontijo Vaz
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | | |
Collapse
|
24
|
Rodrigues MF, Pereira I, Morais RL, Lobón GS, Gil EDS, Vaz BG. A New Strategy for the Analysis of Steroid Hormones in Industrial Wastewaters by Paper Spray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2250-2257. [PMID: 32930580 DOI: 10.1021/jasms.0c00145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new approach using paper spray ionization mass spectrometry (PSI-MS) for the analysis of steroid hormones in wastewater samples has been demonstrated. Triangular papers containing paraffin barriers as microfluidic channels were used to direct the sample solution to the paper tip, preventing the sample from spreading over the corners of the paper. The method was used to analyze the hormones levonorgestrel and algestone acetophenide in industrial wastewaters. Analytical curves presented a correlation coefficient (R2) above 0.99. Limits of quantification were below 2.3 ppm and limits of detection below 0.7 ppm. Values of precision (coefficient of variation) and accuracy (relative error) were less than 15% for all analyses. Recovery results ranged from 82% to 102%. Levonorgestrel was also analyzed by high-performance liquid chromatography coupled to mass spectrometry in order to compare the analytical performance with PSI-MS. No statistically significant differences were found between both methods. This study demonstrates the usefulness of PSI-MS for rapid analysis of hormones in industrial wastewater samples and also indicates its potential to be employed as a simple and reliable analytical method in environmental sciences.
Collapse
Affiliation(s)
| | - Igor Pereira
- Chemistry Institute, Federal University of Goiás, Goiânia 74690900, Brazil
| | - Ruiter Lima Morais
- Faculty of Pharmacy, Federal University of Goiás, Goiânia 74690900, Brazil
| | - Gérman Sanz Lobón
- Chemistry Institute, Federal University of Goiás, Goiânia 74690900, Brazil
| | - Eric de Souza Gil
- Faculty of Pharmacy, Federal University of Goiás, Goiânia 74690900, Brazil
| | - Boniek Gontijo Vaz
- Chemistry Institute, Federal University of Goiás, Goiânia 74690900, Brazil
| |
Collapse
|
25
|
Beneito-Cambra M, Gilbert-López B, Moreno-González D, Bouza M, Franzke J, García-Reyes JF, Molina-Díaz A. Ambient (desorption/ionization) mass spectrometry methods for pesticide testing in food: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4831-4852. [PMID: 33000770 DOI: 10.1039/d0ay01474e] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ambient mass spectrometry refers to the family of techniques that allows ions to be generated from condensed phase samples under ambient conditions and then, collected and analysed by mass spectrometry. One of their key advantages relies on their ability to allow the analysis of samples with minimal to no sample workup. This feature maps well to the requirements of food safety testing, in particular, those related to the fast determination of pesticide residues in foods. This review discusses the application of different ambient ionization methods for the qualitative and (semi)quantitative determination of pesticides in foods, with the focus on different specific methods used and their ionization mechanisms. More popular techniques used are those commercially available including desorption electrospray ionization (DESI-MS), direct analysis on real time (DART-MS), paper spray (PS-MS) and low-temperature plasma (LTP-MS). Several applications described with ambient MS have reported limits of quantitation approaching those of reference methods, typically based on LC-MS and generic sample extraction procedures. Some of them have been combined with portable mass spectrometers thus allowing "in situ" analysis. In addition, these techniques have the ability to map surfaces (ambient MS imaging) to unravel the distribution of agrochemicals on crops.
Collapse
Affiliation(s)
- Miriam Beneito-Cambra
- Analytical Chemistry Research Group (FQM-323), Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaén, Spain.
| | | | | | | | | | | | | |
Collapse
|
26
|
Wang Q, Bhattarai M, Zhao P, Alnsour T, Held M, Faik A, Chen H. Fast and Sensitive Detection of Oligosaccharides Using Desalting Paper Spray Mass Spectrometry (DPS-MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2226-2235. [PMID: 32910855 PMCID: PMC8189650 DOI: 10.1021/jasms.0c00310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Conventional mass spectrometry (MS)-based analytical methods for small carbohydrate fragments (oligosaccharides, degree of polymerization 2-12) are time-consuming due to the need for an offline sample pretreatment such as desalting. Herein, we report a new paper spray ionization method, named desalting paper spray (DPS), which employs a piece of triangular filter paper for both sample desalting and ionization. Unlike regular paper spray ionization (PSI) and nanoelectrospray ionization (nanoESI), DPS-MS allows fast and sensitive detection of oligosaccharides in biological samples having complex matrices (e.g., Tris, PBS, HEPES buffers, or urine). When an oligosaccharide sample is loaded onto the filter paper substrate (10 × 5 mm, height × base) made mostly of cellulose, oligosaccharides are adsorbed on the paper via hydrophilic interactions with cellulose. Salts and buffers can be washed away using an ACN/H2O (90/10 v/v) solution, while oligosaccharides can be eluted from the paper using a solution of ACN/H2O/formic acid (FA) (10/90/1 v/v/v) and directly spray-ionized from the tip of the paper. Various saccharides at trace levels (e.g., 50 fmol) in nonvolatile buffer can be quickly analyzed by DPS-MS (<5 min per sample). DPS-MS is also applicable for direct detection of oligosaccharides from glycosyltransferase (GT) reactions, a challenging task that typically requires a radioactive assay. Quantitative analysis of acceptor and product oligosaccharides shows increased product with increased GT enzymes used for the reaction, a result in line with the radioactivity assay. This work suggests that DPS-MS has potential for rapid oligosaccharide analysis from biological samples.
Collapse
Affiliation(s)
- Qi Wang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Matrika Bhattarai
- Department of Environmental and Plant Biology & Molecular and Cellular Biology Program, Ohio University, Athens, Ohio
| | - Pengyi Zhao
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Tariq Alnsour
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Michael Held
- Deparment of Chemistry and Biochemistry, Ohio University, Athens, Ohio
- Corresponding Authors: Hao Chen - Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey. , Ahmed Faik – Department of Environmental and Plant Biology, Ohio University, Athens, Ohio. , Michael Held – Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio.
| | - Ahmed Faik
- Department of Environmental and Plant Biology & Molecular and Cellular Biology Program, Ohio University, Athens, Ohio
- Corresponding Authors: Hao Chen - Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey. , Ahmed Faik – Department of Environmental and Plant Biology, Ohio University, Athens, Ohio. , Michael Held – Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio.
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
- Corresponding Authors: Hao Chen - Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey. , Ahmed Faik – Department of Environmental and Plant Biology, Ohio University, Athens, Ohio. , Michael Held – Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio.
| |
Collapse
|
27
|
Ramalho RRF, da Silva LC, Maciel LIL, Pereira I, Nascimento ADR, Simas RC, Vaz BG. Directly transferring pepper constituents to triangular papers for pungency determination by paper spray ionization mass spectrometry. Anal Bioanal Chem 2020; 412:5389-5396. [PMID: 32556565 DOI: 10.1007/s00216-020-02755-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
A method named imprint paper spray ionization mass spectrometry (imprint-PSI-MS) has been developed and employed for the determination of pungency of peppers. A pepper fruit was cut into a triangular shape, deposited onto a triangular paper, and compressed by a homemade press tool aiming to imprint and transfer the pepper constituents onto the paper surface. Subsequently, the triangular paper was submitted to conventional PSI-MS analysis. Twelve peppers were analyzed, ranging from highly pungent to lowly pungent taste. Pepper pungency values from the Scoville scale (in Scoville heat units, SHU) were compared with the ion intensities of the capsaicin and dihydrocapsaicin compounds obtained from the imprint-PSI-MS analysis, and a correlation coefficient of 0.97 was achieved. In addition, the ion intensities of a sugar compound were monitored in all peppers, and the results were compared with the Scoville scale. Low sugar ion intensities were detected in pungent peppers, while high ion intensities were achieved in low-pungent peppers, suggesting that the pepper pungency may be determined by inversely relating pungency to sugar contents. This work demonstrates the utility of the imprint-PSI-MS method to perform rapid qualitative analyses of peppers and estimate the pungency by monitoring the pepper metabolites. Graphical abstract.
Collapse
Affiliation(s)
- Ruver R F Ramalho
- Chemistry Institute, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | - Lidya C da Silva
- Chemistry Institute, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | - Lanaia I L Maciel
- Chemistry Institute, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | - Igor Pereira
- Chemistry Institute, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | | | - Rosineide C Simas
- Chemistry Institute, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | - Boniek G Vaz
- Chemistry Institute, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
28
|
Hassaan MA, El Nemr A. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. EGYPTIAN JOURNAL OF AQUATIC RESEARCH 2020; 46:207-220. [DOI: 10.1016/j.ejar.2020.08.007] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
29
|
Kasperkiewicz A, Pawliszyn J. Multiresidue pesticide quantitation in multiple fruit matrices via automated coated blade spray and liquid chromatography coupled to triple quadrupole mass spectrometry. Food Chem 2020; 339:127815. [PMID: 32836024 DOI: 10.1016/j.foodchem.2020.127815] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/20/2022]
Abstract
Application of ambient mass spectrometry techniques to accelerate analysis of pesticides in produce, with technique validation via chromatographic separation, has not been explored extensively. In this work, coated blade spray (CBS) was used to provide freedom of instrumental choice for a multiresidue panel of pesticides in apple, blueberry, grape, and strawberry through direct-coupling with mass spectrometry (MS) and liquid chromatographic (LC) analyses. For all four matrices, >125 compounds were found to meet European Union guidelines concerning linearity, precision, and accuracy while both CBS-MS/MS and SPME-LC-MS/MS methods achieved limits of quantitation below their minimum regulatory limits. Additionally, results for samples containing residues (n = 57) yielded good agreement between instrumental methods (percent differences < 20% for 73% residues), supporting CBS as a stand-alone technique or complement to LC confirmation of pesticides in fruit matrices.
Collapse
Affiliation(s)
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
30
|
Mendes TPP, Pereira I, de Lima LAS, Morais CLM, Neves ACON, Martin FL, Lima KMG, Vaz BG. Paper Spray Ionization Mass Spectrometry as a Potential Tool for Early Diagnosis of Cervical Cancer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1665-1672. [PMID: 32614181 DOI: 10.1021/jasms.0c00111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Squamous intraepithelial lesion is an abnormal growth of epithelial cells on the surface of the cervix that may lead to cervical cancer. Analytical protocols for the determination of squamous intraepithelial lesions are in high demand, since cervical cancer is the fourth most diagnosed cancer among women in the world. Here, paper spray ionization mass spectrometry (PSI-MS) is used to distinguish between healthy (negative for intraepithelial lesion or malignancy) and diseased (high-grade squamous intraepithelial lesion) blood plasmas. A total of 86 blood samples of different women (49 healthy samples, 37 diseased samples) were collected, and the plasmas were prepared. Then, 10 μL of each plasma sample was deposited onto triangular papers for PSI-MS analysis. No additional step of sample preparation was necessary. The interval-successive projection algorithm linear discriminant analysis (iSPA-LDA) was applied to the PSI mass spectra, showing six ions (mostly phospholipids) that were predictive of healthy and diseased plasmas. Values of 77% accuracy, 86% sensitivity, 80% positive predictive value (PPV), and 75% negative predictive value (NPV) were achieved. This study provides evidence that PSI-MS may potentially be used as a fast and simple analytical technique for the early diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Thais P P Mendes
- Chemistry Institute, Federal University of Goiás, Goiánia, Brazil
| | - Igor Pereira
- Chemistry Institute, Federal University of Goiás, Goiánia, Brazil
| | | | - Camilo L M Morais
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| | - Ana C O N Neves
- Chemistry Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Kássio M G Lima
- Chemistry Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
31
|
de Araújo GL, de Aguiar DVA, Pereira I, da Silva LC, Chaves AAR, Vaz BG. Polypyrrole-coated needle as an electrospray emitter for ambient mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3235-3241. [PMID: 32930186 DOI: 10.1039/d0ay00652a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polypyrrole (PPy) is a polymer widely used as an extraction phase due to its ability to perform intermolecular interactions with the analyte, such as acid-base, π-π, dipole-dipole, hydrophobic, and hydrogen bonding. In this manuscript, we report the coating of a stainless steel needle with a PPy film for analyte extraction and subsequent analysis by electrospray ionization mass spectrometry (ESI-MS) under ambient and open-air conditions. The method, named PPy-ESI-MS, was optimized for analysis of 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA) in synthetic urine. Seven cycles of electrodeposition of the PPy film onto the needle surface, sample at pH 8, and 40 min of extraction of analytes were determined as the best analysis conditions. The analytical performance of PPy-ESI-MS was evaluated for MDA and MDMA compounds. Analytical curves were obtained with R2 > 0.98. Limits of detection (LODs) and limits of quantification (LOQs) were determined as 20 μg L-1 and 70 μg L-1 for MDA and as 25 μg L-1 and 80 μg L-1 for MDMA, respectively. Values of precision were below 17%, and values of accuracy below 5%. The apparent recoveries ranged between 84.5% and 111.3%. In addition, the PPy-ESI-MS method was applied for the analysis of sarcosine in synthetic urine in order to evaluate the performance of the method for another class of compounds. The calibration curve was obtained with R2 > 0.98, along with LOD and LOQ of 30 μg L-1 and 100 μg L-1, respectively. The precision and accuracy values were below 5% and 8%, respectively, and the apparent recoveries close to 100%. This work demonstrates the usefulness of combining an extraction phase with ESI-MS analysis under ambient conditions to determine different classes of small molecules in a complex sample.
Collapse
Affiliation(s)
- Giovanna L de Araújo
- Chemistry Institute, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil.
| | | | - Igor Pereira
- Chemistry Institute, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil.
| | - Lidya C da Silva
- Chemistry Institute, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil.
| | - Andrà A R Chaves
- Chemistry Institute, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil.
| | - Boniek G Vaz
- Chemistry Institute, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil.
| |
Collapse
|