1
|
Bhushan B, Nanda V, Jindal N. Strategies for processing and valorization of ash gourd byproducts: A comprehensive review. Food Chem 2025; 473:143040. [PMID: 39884232 DOI: 10.1016/j.foodchem.2025.143040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 01/04/2025] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Ash gourd (Benincasa hispida) is cultivated for its medicinal benefits, with processing enhancing its health properties and shelf life. The processing industries generate significant byproducts, with peel and seeds common across all methods, along with lime (from petha sweet production), brine wastewater (from fermented foods), and pulp from juice processing. This review focuses on peel, seeds, and lime wastewater, which contain valuable compounds like polyphenols, terpenoids, essential oils, and ribosome-inactivating proteins known for their antioxidant and antibacterial properties. The review explores the bio-functionalities of these byproducts, highlighting applications in wastewater treatment, bioenergy production, edible coatings, prebiotics, medicinal products, and enzyme production. Rich in polyphenols, flavonoids, and essential oils, these byproducts offer versatile uses, such as biosorption, bio-coagulation, nanoparticle synthesis, bioenergy production, and medicinal formulations. Further research into their potential for functional foods and high-value applications is essential to maximize their benefits for human health, environmental sustainability, and economic growth.
Collapse
Affiliation(s)
- Bharat Bhushan
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, (Sangrur) Punjab, India.
| | - Vikas Nanda
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, (Sangrur) Punjab, India
| | - Navdeep Jindal
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, (Sangrur) Punjab, India
| |
Collapse
|
2
|
Kim S, Song YS, Jang HH, Lee Y, Hwang IG. Exploring optimal soil conditions for high-functional Oenanthe javanica (water dropwort) production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2910-2922. [PMID: 39652676 DOI: 10.1002/jsfa.14059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 03/16/2025]
Abstract
BACKGROUND Oenanthe javanica (Blume) DC., also known as water dropwort, is an aquatic plant species native to various regions across Asia. Despite its numerous health-promoting effects, research on improving its quality remains limited. The present study aimed to identify the optimal soil conditions required for high-quality water dropwort production. RESULTS Fifty crop and soil samples from South Korean farms were analyzed for their functional content, soil chemical properties and plant tissue components. The results indicated that crop samples with lower functional components had higher soil pH, electrical conductivity (EC) and exchangeable cations than those with higher functional components. High-quality crop samples exhibited neutral soil pH and low EC values, suggesting better nutrient availability for crop growth and reduced salt stress as a result of mineral accumulation in soil. CONCLUSION These findings suggest that soils affected by excessive salinity may create suboptimal soil conditions for water dropwort cultivation, potentially compromising crop quality. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Seulgi Kim
- Functional Food and Nutrition Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Wanju-gun, Republic of Korea
| | - Yo-Sung Song
- Soil and Fertilizer Division, Department of Agricultural Environment, National Institute of Agriculture Sciences, Wanju-gun, Republic of Korea
| | - Hwan-Hee Jang
- Functional Food and Nutrition Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Wanju-gun, Republic of Korea
| | - Yejin Lee
- Soil and Fertilizer Division, Department of Agricultural Environment, National Institute of Agriculture Sciences, Wanju-gun, Republic of Korea
| | - In-Guk Hwang
- Functional Food and Nutrition Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Wanju-gun, Republic of Korea
| |
Collapse
|
3
|
Ye H, Mu J, Yang T, Shen Q, Wang Y. Integrated Transcriptome and Metabolome Analyses Reveal Candidate Genes Associate with Phenolic Compound Biosynthesis in Different Varieties of Perilla frutescens. Int J Mol Sci 2025; 26:2841. [PMID: 40243409 PMCID: PMC11988548 DOI: 10.3390/ijms26072841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Perilla frutescens (Perilla) has great potential for utilization in food and medicine due to the abundance of secondary metabolites, especially phenolic compounds. However, the molecular mechanism underlying phenolic compound synthesis in perilla remains poorly understood. By targeted metabolome analysis, we found nine differentially accumulated metabolites among QS2, QS6, and QO7 leaves and nine unique metabolites which only exist in QS6. Furthermore, transcriptome analysis showed the differential expression genes (DEGs) were significantly enriched into phenylpropanoid- and flavonoid-related pathways. Moreover, the integrated transcriptome and metabolome analyses indicated 14 candidates highly correlated with phenolic compound biosynthesis. In addition, phenylpropanoid- and flavonoid-biosynthesis-related DEGs, including one PAL, one CYP73A, one 4CL, two CHI, two F3H, one FLS, three CHS, two CYP75B1, one ANS, and two DFR, were isolated. The results in this study provide useful information for the metabolic regulation of phenolic compounds and serve as essential gene resources for future breeding programs.
Collapse
Affiliation(s)
- Hong Ye
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (J.M.); (T.Y.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
- Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Jiaxin Mu
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (J.M.); (T.Y.)
| | - Tong Yang
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (J.M.); (T.Y.)
| | - Qi Shen
- School of Pharmaceutical Sciences, Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yukun Wang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (J.M.); (T.Y.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
- Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
4
|
Teruel-Andreu C, Cano-Lamadrid M, Hernández F, Wojdyło A. Bioactive compounds (LC-PDA-Qtof-ESI-MS and UPLC-PDA-FL) and in vitro inhibit α-amylase and α-glucosidase in leaves and fruit from different varieties of Ficus carica L. Food Chem 2025; 465:141977. [PMID: 39541694 DOI: 10.1016/j.foodchem.2024.141977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The aim of the study was to analyze the potential health-promoting and nutritional components of leaves and figs from several Spanish varieties of Ficus carica L. The study focused to identify (by LC-PDA-QTof/MS) and quantify (by UPLC-PDA-FL) various components including carotenoids, chlorophylls, tocols, amino acids, phenolic acids, flavonols, anthocyanins. Besides, the sugar profile, the antioxidant capacity (ORAC, FRAP and ABTS) and the in vitro hypoglycaemic potential via inhibition of α-amylase and α-glucosidase were evaluated. The leaves were found to have significant antioxidant properties. This is attributed to their high content of carotenoids (3170.77-6763.77 mg/ 100 g dm), chlorophylls (405.58-744.23 mg/ 100 g dm), tocols (59.35-115.61 mg/ 100 g dm), and polyphenols (1150.34 mg/100 g dm). Additionally, figs presented greater sources of amino acids (725.07 mg/100 g dm) and exhibited higher anti-diabetic activity than leaves. Figs of "Cuello Dama Negra" variety presented the highest content of anthocyanins (108.22 mg/100 g dm). The study suggests that incorporating these vegetal materials into another food matrix could have potential health benefits, especially in terms of antioxidant and anti-diabetic effects.
Collapse
Affiliation(s)
- Candela Teruel-Andreu
- Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Ctra. Beniel, Km 3.2, 03312, Orihuela, Alicante, Spain
| | - Marina Cano-Lamadrid
- Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Ctra. Beniel, Km 3.2, 03312, Orihuela, Alicante, Spain
| | - Francisca Hernández
- Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Ctra. Beniel, Km 3.2, 03312, Orihuela, Alicante, Spain
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wrocław, Poland.
| |
Collapse
|
5
|
Napiórkowska-Baran K, Treichel P, Dardzińska A, Majcherczak A, Pilichowicz A, Szota M, Szymczak B, Alska E, Przybyszewska J, Bartuzi Z. Immunomodulatory Effects of Selected Non-Nutritive Bioactive Compounds and Their Role in Optimal Nutrition. Curr Issues Mol Biol 2025; 47:89. [PMID: 39996810 PMCID: PMC11854453 DOI: 10.3390/cimb47020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
The contemporary approach to nutrition increasingly considers the role of non-nutritive bioactive compounds in modulating the immune system and maintaining health. This article provides up-to-date insight into the immunomodulatory effects of selected bioactive compounds, including micro- and macronutrients, vitamins, as well as other health-promoting substances, such as omega-3 fatty acids, probiotics, prebiotics, postbiotics (including butyric acid and sodium butyrate), coenzyme Q10, lipoic acid, and plant-derived components such as phenolic acids, flavonoids, coumarins, alkaloids, polyacetylenes, saponins, carotenoids, and terpenoids. Micro- and macronutrients, such as zinc, selenium, magnesium, and iron, play a pivotal role in regulating the immune response and protecting against oxidative stress. Vitamins, especially vitamins C, D, E, and B, are vital for the optimal functioning of the immune system as they facilitate the production of cytokines, the differentiation of immunological cells, and the neutralization of free radicals, among other functions. Omega-3 fatty acids exhibit strong anti-inflammatory effects and enhance immune cell function. Probiotics, prebiotics, and postbiotics modulate the intestinal microbiota, thereby promoting the integrity of the intestinal barrier and communication between the microbiota and the immune system. Coenzyme Q10, renowned for its antioxidant attributes, participates in the protection of cells from oxidative stress and promotes energy processes essential for immune function. Sodium butyrate and lipoic acid exhibit anti-inflammatory effects and facilitate the regeneration of the intestinal epithelium, which is crucial for the maintenance of immune homeostasis. This article emphasizes the necessity of an integrative approach to optimal nutrition that considers not only nutritional but also non-nutritional bioactive compounds to provide adequate support for immune function. Without them, the immune system will never function properly, because it has been adapted to this in the course of evolution. The data presented in this article may serve as a foundation for further research into the potential applications of bioactive components in the prevention and treatment of diseases associated with immune dysfunction.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.S.); (E.A.); (Z.B.)
| | - Paweł Treichel
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Anita Dardzińska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Agata Majcherczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Anastazja Pilichowicz
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Maciej Szota
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.S.); (E.A.); (Z.B.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Ewa Alska
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.S.); (E.A.); (Z.B.)
| | - Justyna Przybyszewska
- Department of Nutrition and Dietetics, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland;
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.S.); (E.A.); (Z.B.)
| |
Collapse
|
6
|
Shu X, Xie M, Zhang X, Wang N, Zhang W, Lin J, Yang J, Yang X, Li Y. Untargeted Metabolomics Comparison and Nutrition Evaluation of Geographical Indication Newhall Navel Oranges in China. Foods 2025; 14:355. [PMID: 39941950 PMCID: PMC11816377 DOI: 10.3390/foods14030355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
The untargeted metabolomics of Newhall navel oranges from three areas in China-Ganzhou, Fengjie, and Zigui-with geographical indication (GI) was measured using LC-MS/MS. Orthogonal partial least squares discriminant analysis was performed for sample classification and important metabolite identification. This approach identified the best markers of the geographical origin able to discriminate Fengjie, Ganzhou, and Zigui orange samples. For peeled samples, 2-isopropylmalic acid, succinic acid, citric acid, L-aspartic acid, L-glutamic γ-semialdehyde, D-β-phenylalanine, hesperetin, hydrocinnamic acid, 4-hydroxycinnamic acid, and dehydroascorbate were the markers used to discriminate the geographical origin. All these markers were overexpressed in the peeled samples from the Zigui area, followed by the Ganzhou area. As for unpeeled samples, L-glutamic γ-semialdehyde, isovitexin 2'-O-β-D-glucoside, 2-isopropylmalic acid, isovitexin, diosmetin, trans-2-hydroxycinnamate and trans-cinnamate, L-aspartic acid, hydrocinnamic acid, and β-carotene were used to discriminate their origin. The first seven markers in Zigui-planted whole samples showed the highest levels, and the last three markers were richest in Ganzhou-planted samples. According to the variation in the markers for discriminating the origins of the peeled or unpeeled Newhall navel oranges with GI and the highest value of titratable acidity in those from Zigui, the samples planted in Ganzhou have the best balance between taste and nutrition. This work confirms that the approach of untargeted metabolomics combined with OPLS-DA is an effective way for origin tracing and overall quality evaluation.
Collapse
Affiliation(s)
- Xiao Shu
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (X.S.); (M.X.); (X.Z.); (N.W.); (W.Z.); (J.Y.); (Y.L.)
| | - Manli Xie
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (X.S.); (M.X.); (X.Z.); (N.W.); (W.Z.); (J.Y.); (Y.L.)
| | - Xuemei Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (X.S.); (M.X.); (X.Z.); (N.W.); (W.Z.); (J.Y.); (Y.L.)
| | - Na Wang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (X.S.); (M.X.); (X.Z.); (N.W.); (W.Z.); (J.Y.); (Y.L.)
| | - Wei Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (X.S.); (M.X.); (X.Z.); (N.W.); (W.Z.); (J.Y.); (Y.L.)
| | - Junjie Lin
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Junying Yang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (X.S.); (M.X.); (X.Z.); (N.W.); (W.Z.); (J.Y.); (Y.L.)
| | - Xiaoxia Yang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (X.S.); (M.X.); (X.Z.); (N.W.); (W.Z.); (J.Y.); (Y.L.)
| | - Yingkui Li
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (X.S.); (M.X.); (X.Z.); (N.W.); (W.Z.); (J.Y.); (Y.L.)
| |
Collapse
|
7
|
Zhang Y, Yang E, Chen M, Zhang J, Liu Q, Lei Z, Xu T, Cai X, Feng C. Quality diversity of three calcium-rich Primulina vegetables: A comprehensive analysis of calcium content, metabolite profiles, taste characteristics, and medicinal potential. Food Chem 2025; 463:141538. [PMID: 39388873 DOI: 10.1016/j.foodchem.2024.141538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/12/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Primulina plants native to karst regions are exceptionally rich in calcium and have been developed into high‑calcium leafy vegetables. However, limited knowledge of their metabolites, taste characteristics, and potential medicinal value restricts further genetic improvements. This study conducted a comprehensive analysis on three breeding species of Primulina vegetables. Common garden experiment demonstrated significant calcium enrichment capability, with calcium content ranging from 204.45 to 391.52 mg/100 g. Through widely-targeted metabolomics, 1121 metabolites were identified within these Primulina vegetables. Furthermore, comparative analysis identified 976 differentially accumulated metabolites across nine comparison groups, driven mainly by flavonoids, phenolic acids, and lipids. Integration of electronic tongue analysis and metabolomics revealed taste profiles and identified 17 key candidate compounds related to taste. Based on network pharmacology analysis, 32 active ingredients were found in Primulina vegetables, which highlighted potential medicinal value. These findings provide a data-driven foundation for breeding programs aimed at enhancing nutritional and flavor traits.
Collapse
Affiliation(s)
- Yi Zhang
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; College of Life Science, Nanchang University, Nanchang, China.
| | - Endian Yang
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; College of Life Science, Nanchang University, Nanchang, China.
| | - Mingjie Chen
- College of Life Sciences, Henan Provincial Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang 464000, China.
| | - Jie Zhang
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China.
| | - Qin Liu
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; College of Life Science, Nanchang University, Nanchang, China
| | - Ziyi Lei
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; College of Life Science, Nanchang University, Nanchang, China
| | - Tingting Xu
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Xinxia Cai
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Chen Feng
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China.
| |
Collapse
|
8
|
Martiniakova M, Sarocka A, Penzes N, Biro R, Kovacova V, Mondockova V, Sevcikova A, Ciernikova S, Omelka R. Protective Role of Dietary Polyphenols in the Management and Treatment of Type 2 Diabetes Mellitus. Nutrients 2025; 17:275. [PMID: 39861406 PMCID: PMC11767469 DOI: 10.3390/nu17020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM), a serious metabolic disorder, is a worldwide health problem due to the alarming rise in prevalence and elevated morbidity and mortality. Chronic hyperglycemia, insulin resistance, and ineffective insulin effect and secretion are hallmarks of T2DM, leading to many serious secondary complications. These include, in particular, cardiovascular disorders, diabetic neuropathy, nephropathy and retinopathy, diabetic foot, osteoporosis, liver damage, susceptibility to infections and some cancers. Polyphenols such as flavonoids, phenolic acids, stilbenes, tannins, and lignans constitute an extensive and heterogeneous group of phytochemicals in fresh fruits, vegetables and their products. Various in vitro studies, animal model studies and available clinical trials revealed that flavonoids (e.g., quercetin, kaempferol, rutin, epicatechin, genistein, daidzein, anthocyanins), phenolic acids (e.g., chlorogenic, caffeic, ellagic, gallic acids, curcumin), stilbenes (e.g., resveratrol), tannins (e.g., procyanidin B2, seaweed phlorotannins), lignans (e.g., pinoresinol) have the ability to lower hyperglycemia, enhance insulin sensitivity and improve insulin secretion, scavenge reactive oxygen species, reduce chronic inflammation, modulate gut microbiota, and alleviate secondary complications of T2DM. The interaction between polyphenols and conventional antidiabetic drugs offers a promising strategy in the management and treatment of T2DM, especially in advanced disease stages. Synergistic effects of polyphenols with antidiabetic drugs have been documented, but also antagonistic interactions that may impair drug efficacy. Therefore, additional research is required to clarify mutual interactions in order to use the knowledge in clinical applications. Nevertheless, dietary polyphenols can be successfully applied as part of supportive treatment for T2DM, as they reduce both obvious clinical symptoms and secondary complications.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (R.B.); (V.K.)
| | - Anna Sarocka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (A.S.); (N.P.); (V.M.)
| | - Noemi Penzes
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (A.S.); (N.P.); (V.M.)
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (R.B.); (V.K.)
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (R.B.); (V.K.)
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (A.S.); (N.P.); (V.M.)
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (A.S.); (S.C.)
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (A.S.); (S.C.)
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (A.S.); (N.P.); (V.M.)
| |
Collapse
|
9
|
Amorim R, Marques MP, Melim C, Varela C, Sardão VA, Teixeira J, Dias MI, Barros L, Oliveira PJ, Cabral C. Chemical Characterization and Differential Lipid-Modulating Effects of Selected Plant Extracts from Côa Valley (Portugal) in a Cell Model for Liver Steatosis. Pharmaceuticals (Basel) 2025; 18:39. [PMID: 39861102 PMCID: PMC11768118 DOI: 10.3390/ph18010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Côa Valley, located in the northeast of Portugal, harbors more than 500 medicinal plant species. Among them, four species stand out due to their traditional uses: Equisetum ramosissimum Desf. (hemorrhages, urethritis, hepatitis), Rumex scutatus L. subsp. induratus (Boiss. and Reut.) Malag. (inflammation, constipation), Geranium purpureum Vill., and Geranium lucidum L. (pain relief, gastric issues). Given their rich ethnomedicinal history, we evaluated their protective effects on an in vitro model of metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS Decoction (D) and hydroalcoholic (EtOH80%) extracts were prepared and chemically characterized. Their safety profile and effects on lipid accumulation were assessed in palmitic acid (PA)-treated HepG2 cells using resazurin, sulforhodamine B, and Nile Red assays. RESULTS Chemical analysis revealed diverse phenolic compounds, particularly kaempferol derivatives in E. ramosissimum. All extracts showed minimal cytotoxicity at 25-50 µg/mL. At 100 µg/mL, only E. ramosissimum extracts maintained high cell viability. In the lipotoxicity model, E. ramosissimum decoction demonstrated the most potent effect, significantly reducing PA-induced neutral lipid accumulation in a dose-dependent manner, while other extracts showed varying degrees of activity. CONCLUSIONS These findings highlight E. ramosissimum's decoction, rich in kaempferol derivatives, as particularly effective in reducing lipid accumulation in this MASLD cell model while also providing a comprehensive characterization of traditionally used plants from the Côa Valley region.
Collapse
Affiliation(s)
- Ricardo Amorim
- Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; (R.A.); (M.P.M.); (C.M.); (C.V.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (V.A.S.); (J.T.); (P.J.O.)
| | - Mário Pedro Marques
- Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; (R.A.); (M.P.M.); (C.M.); (C.V.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (V.A.S.); (J.T.); (P.J.O.)
| | - Catarina Melim
- Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; (R.A.); (M.P.M.); (C.M.); (C.V.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (V.A.S.); (J.T.); (P.J.O.)
| | - Carla Varela
- Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; (R.A.); (M.P.M.); (C.M.); (C.V.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (V.A.S.); (J.T.); (P.J.O.)
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, University of Coimbra, Pólo II, R. Silvio Lima, 3030-790 Coimbra, Portugal
| | - Vilma A. Sardão
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (V.A.S.); (J.T.); (P.J.O.)
- Multidisciplinary Institute of Aging, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - José Teixeira
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (V.A.S.); (J.T.); (P.J.O.)
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Maria Inês Dias
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança (IPB), Campus Santa Apolónia, 5300-253 Bragança, Portugal; (M.I.D.); (L.B.)
- Associate Laboratory for Sustainability and Technology in Mountains Regions (SusTEC), Polytechnic Institute of Bragança (IPB), Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança (IPB), Campus Santa Apolónia, 5300-253 Bragança, Portugal; (M.I.D.); (L.B.)
- Associate Laboratory for Sustainability and Technology in Mountains Regions (SusTEC), Polytechnic Institute of Bragança (IPB), Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Paulo J. Oliveira
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (V.A.S.); (J.T.); (P.J.O.)
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Célia Cabral
- Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; (R.A.); (M.P.M.); (C.M.); (C.V.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (V.A.S.); (J.T.); (P.J.O.)
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
10
|
Wan X, Cui L, Xiao Q. Metabolomics and network pharmacology-based identification of phenolic acids in Polygonatum kingianum var. grandifolium rhizomes as anti-cancer/Tumor active ingredients. PLoS One 2024; 19:e0315857. [PMID: 39689118 DOI: 10.1371/journal.pone.0315857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
Broadly targeted metabolomics techniques were used to identify phenolic acid compounds in Polygonatum kingianum var. grandifolium (PKVG) rhizomes and retrieve anti-cancer/tumor active substance bases from them. We identified potential drug targets by constructing Venn diagrams of compound and disease targets. Further, KEGG pathway analysis was performed to reveal the relevant pathways for anti-cancer/tumor activity of PKVG. Finally, we performed molecular docking to determine whether the identified proteins were targets of phenolic acid compounds from PKVG rhizome parts. The study's results revealed 71 phenolic acid compounds in PKVG rhizomes. Among them, three active ingredients and 42 corresponding targets were closely related to the anticancer/tumor activities of PKVG rhizome site phenolic acids. We identified two essential compounds and eight important targets by constructing the compound-target pathway network. 2 essential compounds were androsin and chlorogenic acid; 8 key targets were MAPK1, EGFR, PRKCA, MAPK10, GSK3B, CASP3, CASP8, and MMP9. The analysis of the KEGG pathway identified 42 anti-cancer/tumor-related pathways. In order of degree, we performed molecular docking on two essential compounds and the top 4 targets, MAPK1, EGFR, PRKCA, and MAPK10, to further validate the network pharmacology screening results. The molecular docking results were consistent with the network pharmacology results. Therefore, we suggest that the phenolic acids in PKVG rhizomes may exert anti-cancer/tumor activity through a multi-component, multi-target, and multi-channel mechanism of action.
Collapse
Affiliation(s)
- Xiaolin Wan
- Hubei Key Laboratory of Biological Resources Protection and Utilization (Hubei Minzu University), Enshi, China
| | - Lingjun Cui
- Hubei Key Laboratory of Biological Resources Protection and Utilization (Hubei Minzu University), Enshi, China
| | - Qiang Xiao
- Hubei Key Laboratory of Biological Resources Protection and Utilization (Hubei Minzu University), Enshi, China
| |
Collapse
|
11
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Recent insight into the advances and prospects of microbial lipases and their potential applications in industry. Int Microbiol 2024; 27:1597-1631. [PMID: 38489100 DOI: 10.1007/s10123-024-00498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Enzymes play a crucial role in various industrial sectors. These biocatalysts not only ensure sustainability and safety but also enhance process efficiency through their unique specificity. Lipases possess versatility as biocatalysts and find utilization in diverse bioconversion reactions. Presently, microbial lipases are gaining significant focus owing to the rapid progress in enzyme technology and their widespread implementation in multiple industrial procedures. This updated review presents new knowledge about various origins of microbial lipases, such as fungi, bacteria, and yeast. It highlights both the traditional and modern purification methods, including precipitation and chromatographic separation, the immunopurification technique, the reversed micellar system, the aqueous two-phase system (ATPS), and aqueous two-phase flotation (ATPF), moreover, delves into the diverse applications of microbial lipases across several industries, such as food, vitamin esters, textile, detergent, biodiesel, and bioremediation. Furthermore, the present research unveils the obstacles encountered in employing lipase, the patterns observed in lipase engineering, and the application of CRISPR/Cas genome editing technology for altering the genes responsible for lipase production. Additionally, the immobilization of microorganisms' lipases onto various carriers also contributes to enhancing the effectiveness and efficiencies of lipases in terms of their catalytic activities. This is achieved by boosting their resilience to heat and ionic conditions (such as inorganic solvents, high-level pH, and temperature). The process also facilitates the ease of recycling them and enables a more concentrated deposition of the enzyme onto the supporting material. Consequently, these characteristics have demonstrated their suitability for application as biocatalysts in diverse industries.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
12
|
Lei W, Mao Y, Liu C, Pan F, Ma K, Li J. Contribution of polyvinylpolypyrrolidone (PVPP) treatment to the distribution of polyphenols and the evolution of esters and higher alcohols in Rosa roxburghii Tratt wine. Food Res Int 2024; 197:115245. [PMID: 39593327 DOI: 10.1016/j.foodres.2024.115245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Polyvinylpolypyrrolidone (PVPP) is commonly employed for fining in fruit wine brewing. This study aimed to investigate the impact of PVPP pretreatment on the formation of fermentation aroma and polyphenol distribution in Rosa roxburghii Tratt (RRT) wine. A significant effect of PVPP on polyphenol adsorption was observed, and polyphenol families or subfamilies such as flavanols and flavonols showed specific affinity for PVPP, decreasing by over 19 % and 30 %, respectively. Furthermore, it was the first time to demonstrate a significant enhancement in the ester content of the corresponding RRT wine after PVPP treatment, particularly in imparting sweet and fruity esters (increased by over 40 %). In contrast, the RRT wine treated with PVPP exhibited a significant reduction of over 20 % in the concentration of higher alcohols, particularly reflected in the green and chemical aromas. This indicates that PVPP treatment could promote the transformation of RRT wine aroma from green and chemical to sweet and fruity. Correlation analysis revealed a positive relationship between the concentration of higher alcohols and most phenolic compounds in RRT wine, while quercetin 3-glucoside, rutin, and polydatin were negatively correlated with esters that can impart fruit flavor and floral aroma to fruit wine. As a practical insight into fruit wine fermentation, PVPP fining before fermentation is more likely to alter the phenolic compositions of RRT wine, thereby influencing its aroma characteristics. Specifically, polyphenols associated with energy metabolism of yeast could have stimulated the formed fluxes of esters. The association between the formation of esters and higher alcohols with phenolic compounds will provide new information on the impact of clarification treatments on yeast-derived volatile metabolites in RRT wine and hold promise in improving the aroma of RRT wine by modulating polyphenol composition through pre-clarification.
Collapse
Affiliation(s)
- Wenping Lei
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China; CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, No. 515 Xingyuan 8th Road, Chengdu 611430, China
| | - Yu Mao
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China; CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, No. 515 Xingyuan 8th Road, Chengdu 611430, China
| | - Chang Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China; CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, No. 515 Xingyuan 8th Road, Chengdu 611430, China
| | - Fei Pan
- Guizhou Yunshang Cilihua Technology Co., Ltd, Yongning Town, Guanling Autonomous County, Anshun 561000, China
| | - Kexi Ma
- CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, No. 515 Xingyuan 8th Road, Chengdu 611430, China
| | - Jingming Li
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China; CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, No. 515 Xingyuan 8th Road, Chengdu 611430, China.
| |
Collapse
|
13
|
Radziejewska-Kubzdela E, Kidoń M, Kowiel A, Waszkowiak K, Szymandera-Buszka K, Bednarek M, Kuligowski M, Kobus-Cisowska J, Mierzwa D. The Effect of Ultrasound and Lactic Acid Fermentation on the Selected Quality Parameters and Bioactive Compounds Content in Fermented Pumpkin ( Cucurbita pepo L.). Molecules 2024; 29:5586. [PMID: 39683745 DOI: 10.3390/molecules29235586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Increasing the consumption of fruit and vegetables can be achieved by creating new products. A promising method seems to be the directed fermentation of vegetables. The aim of this study was to investigate the effect of ultrasonic pretreatment (US; 25 kHz; 5 min) and the lactic acid bacteria strain (LAB; Lactiplantibacillus plantarum 299v and Lacticaseibacillus rhamnosus GG) on the quality of fermented pumpkin (Cucurbita pepo L.). The pumpkin was inoculated with 5 log CFU/g of specific LAB strain. Fermentation was carried out for 7 days at 35 °C. Some samples were US treated at the washing stage. During fermentation, there was an increase in the LAB count of 3 logarithmic cycles compared to the initial inoculum. For L. rhamnosus, preceding fermentation by US treatment contributed to an increased bacteria count of 4 logarithmic cycles. In the case of fermentation with L. rhamnosus, the lactic acid content was significantly higher than for L. plantarum. These samples are also characterized by higher sensory properties, desirability of taste, and overall desirability. Fermentation contributed to a decrease in carotenoid and phenolic compounds content and an increase in the antioxidant capacity of the pumpkins, regardless of the bacterial strain.
Collapse
Affiliation(s)
- Elżbieta Radziejewska-Kubzdela
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Marcin Kidoń
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Angelika Kowiel
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Katarzyna Waszkowiak
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Krystyna Szymandera-Buszka
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Marta Bednarek
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Maciej Kuligowski
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Joanna Kobus-Cisowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Dominik Mierzwa
- Division of Process Engineering, Institute of Chemical Technology and Engineering, Poznań University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
14
|
Wang C, Zhang H, Wang X, Wang X, Li X, Li C, Wang Y, Zhang M. Comprehensive Review on Fruit of Terminalia chebula: Traditional Uses, Phytochemistry, Pharmacology, Toxicity, and Pharmacokinetics. Molecules 2024; 29:5547. [PMID: 39683707 DOI: 10.3390/molecules29235547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Terminalia chebula Retz., known for its dried fruit, namely Chebulae Fructus, is a medicinal plant with a long-standing global reputation, which was initially recognized for its therapeutic properties during the Jin Dynasty. This review consolidates current knowledge on the traditional uses, phytochemistry, pharmacological properties, toxicity, and pharmacokinetics of Chebulae Fructus, highlighting its clinical significance and the promising therapeutic potential of its compounds. To date, studies have identified approximately 149 compounds within the plant, including tannins, phenolic acids, lignans, triterpenes, flavonoids, and volatiles. These compounds confer a broad spectrum of biological activities in vitro and in vivo, such as antioxidant, anti-inflammatory, antiviral, anticancer, antibacterial, hepatoprotective, nephroprotective, neuroprotective, and anti-diabetic, some of which are already integrated into clinical practice. However, despite substantial advancements, considerable gaps remain in understanding the complete mechanisms of action, pharmacokinetics, and safety profiles of its extracts and compounds. This paper advocates for enhanced focus on these areas to fully elucidate the therapeutic capacities and facilitate the clinical application of Chebulae Fructus. This comprehensive analysis not only reinforces the ethnopharmacological significance of Chebulae Fructus but also lays a foundation for future pharmacological explorations.
Collapse
Affiliation(s)
- Changjian Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongfei Zhang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiangdong Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinyue Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinru Li
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Cuiying Li
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuefei Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Min Zhang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
15
|
El-Zairy AH, Mohamed HS, Ahmed SA, Ahmed SA, Okla MK, El-Adl K, AbdElgawad H, Hozzein WN. Spectroscopic analysis of wild medicinal desert plants from wadi sanor (beni-suef), Egypt, and their antimicrobial and antioxidant activities. Heliyon 2024; 10:e39612. [PMID: 39553552 PMCID: PMC11564941 DOI: 10.1016/j.heliyon.2024.e39612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/08/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
Desert plants possess untapped potential for medicinal applications due to their rich phytochemical profiles. However, they need to be more explored. Thus, this study integrates advanced analytical, biochemical, and molecular techniques to investigate the phytochemical composition and biological activities (antimicrobial and antioxidant) of four desert plants (Pergularia tomentosa, Zygophyllum coccineum, Pulicaria undulata, and Ochradenus baccatus), collected from Wadi Sannor, Beni-Suef Governorate, Egypt, in March 2021. The volatile chemicals in the 70 % ethanol extracts of the selected plants were also analyzed using GC-MS. The extract exhibited strong antioxidant properties, as demonstrated by its FRAP (Ferric reducing ability of plasma) values, anti-lipid peroxidation, superoxide anion scavenging activity, and DPPH scavenging activity. Additionally, plants extracts showed high antimicrobial activities against seven pathogens, including three Gram-negative bacteria (Pseudomonas aeruginosa, Salmonella typhimurium, Escherichia coli) and four Gram-positive bacteria (Staphylococcus saprophyticus, Staphylococcus epidermidis, Enterococcus faecalis, Streptococcus salivarius). Lastly, molecular docking was conducted for cis-vaccenic acid, (E)-9-octadecenoic acid, the cyclohepta[b]furan-2-one scaffold, and URS-20(30)-en-3-ol against both the thymidylate kinase enzyme and the active sites of E. coli DNA gyrase. The results from the molecular docking studies showed a strong correlation with the biological data. Moreover, these compounds exhibited good, proposed absorption, distribution, metabolism, and excretion-toxicity (ADMET) profiles. Our study highlights the potential of P. tomentosa, Z. coccineum, P. undulata, and O. baccatus for future medical applications and the development of new pharmaceuticals derived from desert flora.
Collapse
Affiliation(s)
- Amany H. El-Zairy
- Chemistry of medicinal and aromatic plants department, Research Institute of Medicinal and Aromatic plants (RIMAP), Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Hussein S. Mohamed
- Chemistry of medicinal and aromatic plants department, Research Institute of Medicinal and Aromatic plants (RIMAP), Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Shimaa A. Ahmed
- Chemistry department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Sayed A. Ahmed
- Chemistry department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
- Faculty of Engineering, Nahda University, Beni-Suef, Egypt
| | - Mohammad K. Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Khaled El-Adl
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Belgium
| | - Wael N. Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
16
|
Mei H, Li Y, Wu S, He J. Natural plant polyphenols contribute to the ecological and healthy swine production. J Anim Sci Biotechnol 2024; 15:146. [PMID: 39491001 PMCID: PMC11533317 DOI: 10.1186/s40104-024-01096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/25/2024] [Indexed: 11/05/2024] Open
Abstract
The absence of trace amounts of natural bioactive compounds with important biological activities in traditional dietary models for global farm animals, coupled with an incomplete theoretical system for animal nutrition, has led to unbalanced and inadequate animal nutrition. This deficiency has adversely impacted animal health and the ecological environment, presenting formidable challenges to the advancement of the swine breeding industry in various countries around the world toward high-quality development. Recently, due to the ban of antibiotics for growth promotion in swine diets, botanical active compounds have been extensively investigated as feed additives. Polyphenols represent a broad group of plant secondary metabolites. They are natural, non-toxic, pollution-free, and highly reproducible compounds that have a wide range of physiological functions, such as antioxidant, anti-inflammatory, immunomodulatory, antiviral, antibacterial, and metabolic activities. Accordingly, polyphenols have been widely studied and used as feed additives in swine production. This review summarizes the structural characteristics, classification, current application situation, general properties of polyphenols, and the latest research advances on their use in swine production. Additionally, the research and application bottlenecks and future development of plant polyphenols in the animal feed industry are reviewed and prospected. This review aims to stimulate the in-depth study of natural plant polyphenols and the research and development of related products in order to promote the green, healthy, and high-quality development of swine production, while also providing ideas for the innovation and development in the theoretical system of animal nutrition.
Collapse
Affiliation(s)
- Huadi Mei
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China
| | - Yuanfei Li
- Jiangxi Province Key Laboratory of Genetic Improvement of Indigenous Chicken Breeds, Institute of Biotechnology, Nanchang Normal University, Nanchang, Jiangxi, 330000, China
| | - Shusong Wu
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China.
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China.
| |
Collapse
|
17
|
Shi C, Fang D, Xia S, Guo Y, Wang J, Lyu L, Wu W, Huang C, Li W. Poly(lactic acid)/polycaprolactone nanofibrous packaging containing different functional agents for blackberry postharvest preservation. Int J Biol Macromol 2024; 279:134544. [PMID: 39116968 DOI: 10.1016/j.ijbiomac.2024.134544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Electrospun nanofibrous films containing different active agents were prepared and compared to improve the storage quality of blackberries. We added different essential oils, phenolic acids, microbial antagonists and plant growth regulators to poly(lactic acid)/polycaprolactone (PP) nanofilms and compared their antimicrobial properties against bacteria and fungi. Based on the results, oregano essential oil/PP (OPP), chlorogenic acid/PP (CPP), natamycin/PP (NPP) and methyl jasmonate/PP (MPP) were selected. The addition of active agents decreased the tensile strength and increased the elastic modulus and elongation at break. These active agents did not affect the thermal stability, water contact angle (except for NPP) or water permeability (except for NPP and MPP) of the nanofilms. Nanofilms also controlled the release of active agents and showed antioxidant activity and biosafety. Different nanofilms were applied to blackberry postharvest storage, and OPP contributed the lowest to deterioration in appearance, 'red small drupelets' phenomenon, decay rate, weight loss and softening. Among these nanofilms, the OPP nanofilm exhibited the best shelf-life extension of blackberry.
Collapse
Affiliation(s)
- Chong Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Donglu Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China.
| | - Shuqiong Xia
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yalong Guo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Junying Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Nanjing Forestry University, Nanjing 210037, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
18
|
Narra F, Piragine E, Benedetti G, Ceccanti C, Florio M, Spezzini J, Troisi F, Giovannoni R, Martelli A, Guidi L. Impact of thermal processing on polyphenols, carotenoids, glucosinolates, and ascorbic acid in fruit and vegetables and their cardiovascular benefits. Compr Rev Food Sci Food Saf 2024; 23:e13426. [PMID: 39169551 PMCID: PMC11605278 DOI: 10.1111/1541-4337.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024]
Abstract
Bioactive compounds in fruit and vegetables have a positive impact on human health by reducing oxidative stress, inflammation, and the risk of chronic diseases such as cancer, cardiovascular (CV) diseases, and metabolic disorders. However, some fruit and vegetables must be heated before consumption and thermal processes can modify the amount of nutraceuticals, that is, polyphenols, carotenoids, glucosinolates, and ascorbic acid, that can increase or decrease in relation to different factors such as type of processing, temperature, and time but also the plant part (e.g., flower, leaf, tuber, and root) utilized as food. Another important aspect is related to the bioaccessibility and bioavailability of nutraceuticals. Indeed, the key stage of nutraceutical bioefficiency is oral bioavailability, which involves the release of nutraceuticals from fruit and vegetables in gastrointestinal fluids, the solubilization of nutraceuticals and their interaction with other components of gastrointestinal fluids, the absorption of nutraceuticals by the epithelial layer, and the chemical and biochemical transformations into epithelial cells. Several studies have shown that thermal processing can enhance the absorption of nutraceuticals from fruit and vegetable. Once absorbed, they reach the blood vessels and promote multiple biological effects (e.g., antioxidant, anti-inflammatory, antihypertensive, vasoprotective, and cardioprotective). In this review, we described the impact of different thermal processes (such as boiling, steaming and superheated steaming, blanching, and microwaving) on the retention/degradation of bioactive compounds and their health-promoting effects after the intake. We then summarized the impact of heating on the absorption of nutraceuticals and the biological effects promoted by natural compounds in the CV system to provide a comprehensive overview of the potential impact of thermal processing on the CV benefits of fruit and vegetables.
Collapse
Affiliation(s)
- Federica Narra
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | - Eugenia Piragine
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
- Department of PharmacyUniversity of PisaPisaItaly
| | | | - Costanza Ceccanti
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
| | - Marta Florio
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | | | | | - Roberto Giovannoni
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
- Department of BiologyUniversity of PisaPisaItaly
| | - Alma Martelli
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
- Department of PharmacyUniversity of PisaPisaItaly
| | - Lucia Guidi
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
| |
Collapse
|
19
|
Afridi MN, Zafar Z, Khan IA, Ali I, Bacha AUR, Maitlo HA, Qasim M, Nawaz M, Qi F, Sillanpää M, Lee KH, Asif MB. Advances in MXene-based technologies for the remediation of toxic phenols: A comprehensive review. Adv Colloid Interface Sci 2024; 332:103250. [PMID: 39047647 DOI: 10.1016/j.cis.2024.103250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/08/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
The pressing global issue of organic pollutants, particularly phenolic compounds derived primarily from industrial wastes, poses a significant threat to the environment. Although progress has been made in the development of low-cost materials for phenolic compound removal, their effectiveness remains limited. Thus, there is an urgent need for novel technologies to comprehensively address this issue. In this context, MXenes, known for their exceptional physicochemical properties, have emerged as highly promising candidates for the remediation of phenolic pollutants. This review aims to provide a comprehensive and critical evaluation of MXene-based technologies for the removal of phenolic pollutants, focusing on the following key aspects: (1) The classification and categorization of phenolic pollutants, highlighting their adverse environmental impacts, and emphasizing the crucial need for their removal. (2) An in-depth discussion on the synthesis methods and properties of MXene-based composites, emphasizing their suitability for environmental remediation. (3) A detailed analysis of MXene-based adsorption, catalysis, photocatalysis, and hybrid processes, showcasing current advancements in MXene modification and functionalization to enhance removal efficiency. (4) A thorough examination of the removal mechanisms and stability of MXene-based technologies, elucidating their operating conditions and stability in pollutant removal scenarios. (5) Finally, this review concludes by outlining future challenges and opportunities for MXene-based technologies in water treatment, facilitating their potential applications. This comprehensive review provides valuable insights and innovative ideas for the development of versatile MXene-based technologies tailored to combat water pollution effectively.
Collapse
Affiliation(s)
- Muhammad Naveed Afridi
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Zulakha Zafar
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Imtiaz Afzal Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Imran Ali
- Department of Environmental Sciences, Sindh Madressatul Islam University, Aiwan-e-Tijarat Road, Karachi 74000, Pakistan
| | - Aziz-Ur-Rahim Bacha
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Hubdar Ali Maitlo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Qasim
- Department of Civil Engineering, The University of Lahore, 1Km, Defense Road, Lahore, Punjab, Pakistan
| | - Muhammad Nawaz
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, Doornfontein, South Africa; Sustainability Cluster, School of Advanced Engineering, UPES, Bidholi, Dehradun, Uttarakhand, India; Adnan Kassar School of Business, Lebanese American University, Beirut, Lebanon
| | - Kang Hoon Lee
- Department of Energy and Environmental Engineering, The Catholic University of Korea, Bucheon, Republic of Korea.
| | - Muhammad Bilal Asif
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| |
Collapse
|
20
|
Karastergiou A, Gancel AL, Jourdes M, Teissedre PL. Valorization of Grape Pomace: A Review of Phenolic Composition, Bioactivity, and Therapeutic Potential. Antioxidants (Basel) 2024; 13:1131. [PMID: 39334790 PMCID: PMC11428247 DOI: 10.3390/antiox13091131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Vitis vinifera L., commonly known as grapes, is one of the most widely cultivated crops worldwide, with over 80% used for wine production. However, the winemaking process generates substantial residues, including grape pomace (GP), wine lees, and wastewater, which can pose significant environmental and economic challenges. Among these, GP stands out not only as a waste product but also as a rich source of polyphenols-bioactive compounds with recognized antioxidant and anti-inflammatory properties. Recent advancements have expanded the application of GP-derived extracts, particularly in the health and food industries, due to their potent bioactive properties. This review provides a comprehensive overview of the valorization of GP, focusing on its phenolic composition and therapeutic potential. It evokes innovative, environmentally friendly extraction techniques and integrated methods for the chemical analysis of these valuable compounds. Additionally, the health benefits of GP polyphenols are explored, with recent experimental findings examining their metabolism and highlighting the key role of gut microbiota in these processes. These insights contribute to a deeper understanding of the biological activity of GP extracts and underscore their growing significance as a high-added-value product. By illustrating how winemaking by-products can be transformed into natural therapeutic agents, this review emphasizes the importance of sustainable development and eco-friendly waste management practices, significantly contributing to the advancement of a circular economy.
Collapse
Affiliation(s)
| | | | | | - Pierre-Louis Teissedre
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, OENO, ISVV, F-33882 Villenave d’Ornon, France; (A.K.); (A.-L.G.); (M.J.)
| |
Collapse
|
21
|
Carlos de Sousa W, Alves Morais R, Damian Giraldo Zuniga A. Buriti (Mauritia flexuosa) shell flour: Nutritional composition, chemical profile, and antioxidant potential as a strategy for valuing waste from native Brazilian fruits. Food Res Int 2024; 190:114578. [PMID: 38945600 DOI: 10.1016/j.foodres.2024.114578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024]
Abstract
The Cerrado is one of the most biodiverse biomes in the world, characterized by a wealth of native fruits with unique nutritional characteristics. In this sense, the social, economic, and environmental importance of fully utilizing food is widely recognized. Therefore, generally considered waste, fruit shells can be transformed into a coproduct with high added value. The objective of this work was to carry out a comprehensive assessment of the physicochemical properties, carbohydrate and fatty acid profile, phytochemical compounds, phenolic profile, and antioxidant potential of the recovered extracts of buriti (Mauritia flexuosa) shells in natura and dehydrated at 55 °C (flour). In addition, the functional properties were verified by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) from buriti shell flour. The results indicated high fiber content and energy value for the sample processed at 55 °C (58.95 g/100 g and 378.91 kcal/100 g, respectively) and low lipid and protein content (1.03 g/100 g and 1.39 g/100 g, respectively). Regardless of the sample analyzed, maltose was the majority sugar (37.33 - 281.01 g/100 g). The main fatty acids detected were oleic acid (61.33 - 62.08 %) followed by palmitic acid (33.91 - 34.40 %). The analysis of the mineral profile demonstrated that the samples did not differ significantly from each other, showing that the drying process did not interfere with the results obtained (p ≤ 0.05). The analysis of individual phenolics allowed the identification of six phenolic compounds in buriti shells. However, it is possible to observe that the drying method had a positive and significant influence on the phenolic profile (p ≤ 0.05), with chlorogenic acid (2.63 - 8.27 mg/100 g) and trigonelline (1.06 - 41.52 mg/100 g), the majority compounds. On the other hand, it is important to highlight that buriti shells have a high content of carotenoids, mainly β-carotene (27.18 - 62.94 µg/100 g) and α-carotene (18.23 - 60.28 µg/100 g), also being positively influenced by the drying process at 55 °C (p ≤ 0.05). The dried shells showed a high content of phytochemical compounds and high antioxidant activity based on the different methods tested. The results show that buriti shell flour can be fully utilized and has nutritional and chemical aspects that can be applied to develop new sustainable, nutritious, and functional food formulations.
Collapse
Affiliation(s)
- Wallace Carlos de Sousa
- Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Tocantins (UFT), Palmas 77001-090, Brazil
| | - Romulo Alves Morais
- Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Tocantins (UFT), Palmas 77001-090, Brazil.
| | - Abraham Damian Giraldo Zuniga
- Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Tocantins (UFT), Palmas 77001-090, Brazil
| |
Collapse
|
22
|
Yang X, Lan W, Sun X. Effects of chlorogenic acid-grafted-chitosan on biofilms, oxidative stress, quorum sensing and c-di-GMP in Pseudomonas fluorescens. Int J Biol Macromol 2024; 273:133029. [PMID: 38852716 DOI: 10.1016/j.ijbiomac.2024.133029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/09/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
This study determined the inhibitory mechanism as well as anti-biofilm activity of chlorogenic acid-grafted-chitosan (CS-g-CA) against Pseudomonas fluorescens (P. fluorescens) in terms of biofilm content, oxidative stress, quorum sensing and cyclic diguanosine monophosphate (c-di-GMP) concentration, and detected the changes in the expression levels of related genes by quantitative real-time PCR (qRT-PCR). Results indicated that treatment with sub-concentrations of CS-g-CA for P. fluorescens led to reduce the biofilm size of large colonies, decrease the content of biofilm and extracellular polymers, weaken the motility and adhesion of P. fluorescens. Moreover, CS-g-CA resulted in higher ROS levels, diminished catalase activity (CAT), and increased superoxide dismutase (SOD) in P. fluorescens. CS-g-CA reduced the production of quorum-sensing signaling molecules (AHLs) and the concentration of c-di-GMP in bacteria. Genes for flagellar synthesis (flgA), the resistance to stress (rpoS and hfq), and pde (phosphodiesterases that degrade c-di-GMP) were significantly down-regulated as determined by RT-PCR. Overall, CS-g-CA leads to the accumulation of ROS in bacteria via P. fluorescens environmental resistance genes and decreases the activity of enzymes in the bacterial antioxidant system, and interferes with the production and reception of quorum-sensing signaling molecules and the synthesis of c-di-GMP in P. fluorescens, which regulates the generation of biofilms.
Collapse
Affiliation(s)
- Xin Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| | - Xiaohong Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
23
|
Sigala-Aguilar NA, López MG, Fernández-Luqueño F. Carbon-based nanomaterials as inducers of biocompounds in plants: Potential risks and perspectives. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108753. [PMID: 38781637 DOI: 10.1016/j.plaphy.2024.108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Biocompounds are metabolites synthesized by plants, with clinically proven capacity in preventing and treating degenerative diseases in humans. Carbon-based nanomaterials (CNMs) are atomic structures that assume different hybridization and shape. Due to the reactive property, CNMs can induce the synthesis of metabolites, such as biocompounds in cells and various plant species, by generating reactive oxygen species (ROS). In response, plants positively or negatively regulate the expression of various families of genes and enzymes involved in physiological and metabolomic pathways of plants, such as carbon and nitrogen metabolism, which are directly involved in plant development and growth. Likewise, ROS can modulate the expression of enzymes and genes related to the adaptation of plants to stress, such as the glutathione ascorbate cycle, the shikimic acid, and phenylpropanoid pathways, from which the largest amount of biocompounds in plants are derived. This document exposes the ability of three CNMs (fullerene, graphene, and carbon nanotubes) to positively or negatively regulate the activity of enzymes and genes involved in various plant species' primary and secondary metabolism. The mechanism of action of CNMs on the production of biocompounds and the effect of the translocation of CNMs on the growth and content of primary metabolites in plants are described. Adverse effects of CNMs on plants, prospects, and possible risks involved are also discussed. The use of CNMs as inducers of biocompounds in plants could have implications and relevance for human health, crop quality, and plant adaptation and resistance to biotic and abiotic stress.
Collapse
Affiliation(s)
- Nayelli Azucena Sigala-Aguilar
- Sustainability of Natural Resources and Energy Programs, Center for Research and Advanced Studies of the IPN, Saltillo, 25900, Coahuila, Mexico
| | - Mercedes G López
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies of the IPN, Irapuato, 36824, Guanajuato, Mexico.
| | - Fabián Fernández-Luqueño
- Sustainability of Natural Resources and Energy Programs, Center for Research and Advanced Studies of the IPN, Saltillo, 25900, Coahuila, Mexico.
| |
Collapse
|
24
|
Xie J, Xiong S, Li Y, Xia B, Li M, Zhang Z, Shi Z, Peng Q, Li C, Lin L, Liao D. Phenolic acids from medicinal and edible homologous plants: a potential anti-inflammatory agent for inflammatory diseases. Front Immunol 2024; 15:1345002. [PMID: 38975345 PMCID: PMC11224438 DOI: 10.3389/fimmu.2024.1345002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Inflammation has been shown to trigger a wide range of chronic diseases, particularly inflammatory diseases. As a result, the focus of research has been on anti-inflammatory drugs and foods. In recent years, the field of medicinal and edible homology (MEH) has developed rapidly in both medical and food sciences, with 95% of MEH being associated with plants. Phenolic acids are a crucial group of natural bioactive substances found in medicinal and edible homologous plants (MEHPs). Their anti-inflammatory activity is significant as they play a vital role in treating several inflammatory diseases. These compounds possess enormous potential for developing anti-inflammatory drugs and functional foods. However, their development is far from satisfactory due to their diverse structure and intricate anti-inflammatory mechanisms. In this review, we summarize the various types, structures, and distribution of MEHP phenolic acids that have been identified as of 2023. We also analyze their anti-inflammatory activity and molecular mechanisms in inflammatory diseases through NF-κB, MAPK, NLRP3, Nrf2, TLRs, and IL-17 pathways. Additionally, we investigate their impact on regulating the composition of the gut microbiota and immune responses. This analysis lays the groundwork for further exploration of the anti-inflammatory structure-activity relationship of MEHP phenolic acids, aiming to inspire structural optimization and deepen our understanding of their mechanism, and provides valuable insights for future research and development in this field.
Collapse
Affiliation(s)
- Jingchen Xie
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Suhui Xiong
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yamei Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Bohou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Minjie Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhimin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhe Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Qiuxian Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
25
|
Chen Y, Li H, Cai Y, Wang K, Wang Y. Anti-hyperuricemia bioactive peptides: a review on obtaining, activity, and mechanism of action. Food Funct 2024; 15:5714-5736. [PMID: 38752330 DOI: 10.1039/d4fo00760c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Hyperuricemia, a disorder of uric acid metabolism, serves as a significant risk factor for conditions such as hypertension, diabetes mellitus, renal failure, and various metabolic syndromes. The main contributors to hyperuricemia include overproduction of uric acid in the liver or impaired excretion in the kidneys. Despite traditional clinical drugs being employed for its treatment, significant health concerns persist. Recently, there has been growing interest in utilizing protein peptides sourced from diverse food origins to mitigate hyperuricemia. This article provides a comprehensive review of bioactive peptides with anti-hyperuricemia properties derived from animals, plants, and their products. We specifically outline the methods for preparing these peptides from food proteins and elucidate their efficacy and mechanisms in combating hyperuricemia, supported by in vitro and in vivo evidence. Uric acid-lowering peptides offer promising prospects due to their safer profile, enhanced efficacy, and improved bioavailability. Therefore, this review underscores significant advancements and contributions in identifying peptides capable of metabolizing purine and/or uric acid, thereby alleviating hyperuricemia. Moreover, it offers a theoretical foundation for the development of functional foods incorporating uric acid-lowering peptides.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, China
| | - Hongyan Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, China
| | - Yunfei Cai
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, China
| | - Ke Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, China
- Institute of Modern Fermentation Engineering and Future Foods, Guangxi University, Nanning, 530004, China
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
- Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co. Ltd., Rizhao, 276800, China
| | - Yousheng Wang
- Institute of Modern Fermentation Engineering and Future Foods, Guangxi University, Nanning, 530004, China
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
26
|
Amanpour A, Coskun B, Kanmaz H, Turan BK, Soylu M, Celik F, Hayaloglu AA. Elucidation of heavy metal content, phenolic profiles, and antioxidant activities of kale (Brassica oleracea L. var. acephala) and arugula (Brassica eruca L.) grown in urban gardens in Istanbul. J Food Sci 2024; 89:3506-3522. [PMID: 38660924 DOI: 10.1111/1750-3841.17076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
This study was conducted to evaluate the effect of two distances: close (0-10 m) and far (60 m) from the heavy traffic roadside, at three different cultivation sites (MS: Mevlanakapi-Silivrikapi, SB: Silivrikapi-Belgradkapi, and BY: Belgradkapi-Yedikule kapi) along the road line. First, the phenolic compounds, antioxidant activity, and physicochemical properties in kale and arugula vegetables were examined. Second, heavy metal concentrations in vegetables, soil, and irrigated water were investigated. In both vegetables, the highest total phenolic content was detected in samples obtained from far distance in SB site (3880.3 mg/kg) for kale and in BY site (1459.9 mg/kg) for arugula, whereas the lowest content was found at the close distance in MS site for both kale (448.5 mg/kg) and arugula (586.4 mg/kg). The antioxidant activity values [mg Trolox/kg (dw)] ranged from 366.74 to 586.10 and 2349.00 to 3757.4 for kale and from 520.00 to 945.60 and 3323.00 to 5814.70 for arugula in 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) and 2,2-diphenyl-1-picrylhydrazyl methods, respectively. The levels of Cd and Hg in kale and arugula and Fe content in arugula exceeded FAO/WHO permissible limits, making them unsafe for human consumption. Meanwhile, the Pb content in kale and arugula and Fe content in kale were observed to be within acceptable limits set by FAO/WHO. In the irrigated water, the Pb value was below the permissible limit, whereas the Cd value was above it and no Hg and Fe were detected. In the soil samples, the Pb and Fe values were below the limit, whereas the Cd and Hg values were higher.
Collapse
Affiliation(s)
- Armin Amanpour
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts Design and Architecture, Istanbul Medipol University, Istanbul, Türkiye
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Biruni University, Istanbul, Türkiye
| | - Beril Coskun
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Biruni University, Istanbul, Türkiye
| | - Hilal Kanmaz
- Department of Food Engineering, Inonu University, Malatya, Türkiye
| | - Busra Kaya Turan
- Department of Food Engineering, Inonu University, Malatya, Türkiye
| | - Meltem Soylu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Alanya Alaaddin Keykubat University, Antalya, Türkiye
| | - Fatma Celik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Biruni University, Istanbul, Türkiye
| | | |
Collapse
|
27
|
Baptista F, Paié-Ribeiro J, Almeida M, Barros AN. Exploring the Role of Phenolic Compounds in Chronic Kidney Disease: A Systematic Review. Molecules 2024; 29:2576. [PMID: 38893451 PMCID: PMC11173950 DOI: 10.3390/molecules29112576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic kidney disease (CKD) presents a formidable global health concern, affecting one in six adults over 25. This review explores the potential of phenolic compounds in managing CKD and its complications. By examining the existing research, we highlight their diverse biological activities and potential to combat CKD-related issues. We analyze the nutritional benefits, bioavailability, and safety profile of these compounds. While the clinical evidence is promising, preclinical studies offer valuable insights into underlying mechanisms, optimal dosages, and potential side effects. Further research is crucial to validate the therapeutic efficacy of phenolic compounds for CKD. We advocate for continued exploration of their innovative applications in food, pharmaceuticals, and nutraceuticals. This review aims to catalyze the scientific community's efforts to leverage phenolic compounds against CKD-related challenges.
Collapse
Affiliation(s)
- Filipa Baptista
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, 5000-801 Vila Real, Portugal
| | - Jessica Paié-Ribeiro
- CECAV-Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Mariana Almeida
- CECAV-Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Novo Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, 5000-801 Vila Real, Portugal
| |
Collapse
|
28
|
Senekovič J, Ciringer T, Ambrožič-Dolinšek J, Islamčević Razboršek M. The Effect of Combined Elicitation with Light and Temperature on the Chlorogenic Acid Content, Total Phenolic Content and Antioxidant Activity of Berula erecta in Tissue Culture. PLANTS (BASEL, SWITZERLAND) 2024; 13:1463. [PMID: 38891272 PMCID: PMC11174371 DOI: 10.3390/plants13111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Chlorogenic acid is one of the most prominent bioactive phenolic acids with great pharmacological, cosmetic and nutritional value. The potential of Berula erecta in tissue culture was investigated for the production of chlorogenic acid and its elicitation combined with light of different wavelengths and low temperature. The content of chlorogenic acid in the samples was determined by HPLC-UV, while the content of total phenolic compounds and the antioxidant activity of their ethanol extracts were evaluated spectrophotometrically. The highest fresh and dry biomasses were obtained in plants grown at 23 °C. This is the first study in which chlorogenic acid has been identified and quantified in Berula erecta. The highest chlorogenic acid content was 4.049 mg/g DW. It was determined in a culture grown for 28 days after the beginning of the experiment at 12 °C and under blue light. The latter also contained the highest content of total phenolic compounds, and its extracts showed the highest antioxidant activity. Berula erecta could, potentially, be suitable for the in vitro production of chlorogenic acid, although many other studies should be conducted before implementation on an industrial scale.
Collapse
Affiliation(s)
- Jan Senekovič
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia;
| | - Terezija Ciringer
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška Cesta 160, 2000 Maribor, Slovenia;
| | - Jana Ambrožič-Dolinšek
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia;
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška Cesta 160, 2000 Maribor, Slovenia;
- Faculty of Education, University of Maribor, Koroška Cesta 160, 2000 Maribor, Slovenia
| | - Maša Islamčević Razboršek
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| |
Collapse
|
29
|
Chen C, Wang X, Chen W, Liu Q, Wang L. Encapsulation of phenolic acids within food-grade carriers systems: a systematic review. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38764436 DOI: 10.1080/10408398.2024.2350616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Phenolic acids are natural compounds with potential therapeutic effects against various diseases. However, their incorporation into food and pharmaceutical products is limited by challenges such as instability, low solubility, and reduced bioavailability. This systematic review summarizes recent advances in phenolic acid encapsulation using food-grade carrier systems, focusing on proteins, lipids, and polysaccharides. Encapsulation efficiency, release behavior, and bioavailability are examined, as well as the potential health benefits of encapsulated phenolic acids in food products. Strategies to address limitations of current encapsulation systems are also proposed. Encapsulation has emerged as a promising method to enhance the stability and bioavailability of phenolic acids in food products, and various encapsulation technologies have been developed for this purpose. The use of proteins, lipids, and carbohydrates as carriers in food-grade encapsulation systems remains a common approach, but it is associated with certain limitations. Future research on phenolic acid encapsulation should focus on developing environmentally friendly, organic solvent-free, low-energy, scalable, and stable encapsulation systems, as well as co-encapsulation methods that combine multiple phenolic acids or phenolic acids with other bioactive substances to produce synergistic effects.
Collapse
Affiliation(s)
- Chao Chen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Xiao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenqi Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qin Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| |
Collapse
|
30
|
Bai H, Wang S, Wang ZM, Zhu LL, Yan HB, Wang YB, Wang XY, Peng L, Liu JZ. Investigation of bioactive compounds and their correlation with the antioxidant capacity in different functional vinegars. Food Res Int 2024; 184:114262. [PMID: 38609241 DOI: 10.1016/j.foodres.2024.114262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
There are complex and diverse substances in traditional vinegars, some of which have been identified as biologically active factors, but the variety of functional compounds is currently restricted. In this study, it was aimed to determine the bioactive compounds in 10 typical functional vinegars. The findings shown that total flavonoids (0.21-7.19 mg rutin equivalent/mL), total phenolics (0.36-3.20 mg gallic acid equivalent/mL), and antioxidant activities (DPPH: 3.17-47.63 mmol trolox equivalent/L, ABTS: 6.85-178.29 mmol trolox equivalent/L) varied among different functional vinegars. In addition, the concentrations of the polysaccharides (1.17-44.87 mg glucose equivalent/mL) and total saponins (0.67-12.46 mg oleanic acid equivalent/mL) were determined, which might play key role for the function of tested vinegars. A total of 8 organic acids, 7 polyphenol compounds and 124 volatile compounds were measured and tentatively identified. The protocatechuic acid (4.81-485.72 mg/L), chlorogenic acid (2.69-7.52 mg/L), and epicatechin (1.18-97.42 mg/L) were important polyphenol compounds in the functional vinegars. Redundancy analysis indicated that tartaric acid, oxalic acid and chlorogenic acid were significantly positively correlated with antioxidant capacity. Various physiologically active ingredients including cyclo (Pro-Leu), cyclo (Phe-Pro), cyclo (Phe-Val), cyclo (Pro-Val), 1-monopalmitin and 1-eicosanol were firstly detected in functional vinegars. Principle component analysis revealed that volatiles profile of bergamot Monascus aromatic vinegar and Hengshun honey vinegar exhibited distinctive differences from other eight vinegar samples. Moreover, the partial least squares regression analysis demonstrated that 11 volatile compounds were positively correlated with the antioxidant activity of vinegars, which suggested these compounds might be important functional substances in tested vinegars. This study explored several new functionally active compounds in different functional vinegars, which could widen the knowledge of bioactive factor in vinegars and provide new ideas for further development of functional vinegar beverages.
Collapse
Affiliation(s)
- Hua Bai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Shuang Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Zong-Min Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China.
| | - Lan-Lan Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Hong-Bo Yan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Yan-Bo Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Xin-Yu Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Lin Peng
- School of Life Science, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Ji-Zhou Liu
- Shandong Xinfurui Agricultural Science and Technology Co., Ltd., Liaocheng, Shandong 252300, China
| |
Collapse
|
31
|
Albadrani HM, Chauhan P, Ashique S, Babu MA, Iqbal D, Almutary AG, Abomughaid MM, Kamal M, Paiva-Santos AC, Alsaweed M, Hamed M, Sachdeva P, Dewanjee S, Jha SK, Ojha S, Slama P, Jha NK. Mechanistic insights into the potential role of dietary polyphenols and their nanoformulation in the management of Alzheimer's disease. Biomed Pharmacother 2024; 174:116376. [PMID: 38508080 DOI: 10.1016/j.biopha.2024.116376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/19/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Alzheimer's disease (AD) is a very common neurodegenerative disorder associated with memory loss and a progressive decline in cognitive activity. The two major pathophysiological factors responsible for AD are amyloid plaques (comprising amyloid-beta aggregates) and neurofibrillary tangles (consisting of hyperphosphorylated tau protein). Polyphenols, a class of naturally occurring compounds, are immensely beneficial for the treatment or management of various disorders and illnesses. Naturally occurring sources of polyphenols include plants and plant-based foods, such as fruits, herbs, tea, vegetables, coffee, red wine, and dark chocolate. Polyphenols have unique properties, such as being the major source of anti-oxidants and possessing anti-aging and anti-cancerous properties. Currently, dietary polyphenols have become a potential therapeutic approach for the management of AD, depending on various research findings. Dietary polyphenols can be an effective strategy to tackle multifactorial events that occur with AD. For instance, naturally occurring polyphenols have been reported to exhibit neuroprotection by modulating the Aβ biogenesis pathway in AD. Many nanoformulations have been established to enhance the bioavailability of polyphenols, with nanonization being the most promising. This review comprehensively provides mechanistic insights into the neuroprotective potential of dietary polyphenols in treating AD. It also reviews the usability of dietary polyphenol as nanoformulation for AD treatment.
Collapse
Affiliation(s)
- Hind Muteb Albadrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Saudi Arabia
| | - Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak, Haryana 124001, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | | | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura- 140401, Punjab, India.; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, India.
| |
Collapse
|
32
|
Hurkul MM, Cetinkaya A, Kaya SI, Yayla S, Ozkan SA. Investigation of Health Effects of Major Phenolic Compounds in Foods: Extraction Processes, Analytical Approaches and Applications. Crit Rev Anal Chem 2024:1-35. [PMID: 38650305 DOI: 10.1080/10408347.2024.2336981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The escalating costs of healthcare services and a growing awareness of personal health responsibilities have led individuals to explore natural methods alongside conventional medicines for health improvement and disease prevention. The aging global population is experiencing increased health needs, notably related to conditions like diabetes, heart disease, and hypertension. Lifestyle-related diseases, poor dietary habits, and sedentary lifestyles underscore the importance of foods containing nutrients that can aid in preventing and managing these diseases. Phenolic compounds, a fundamental group of phytochemicals, are prominent in the chemical diversity of the natural world and are abundant in functional foods. Widely distributed in various plant parts, these compounds exhibit important functional and sensory properties, including color, taste, and aroma. Their diverse functionalities, particularly antioxidant activity, play a crucial role in mitigating cellular oxidative stress, potentially reducing damage associated with serious health issues such as cardiovascular disease, neurodegenerative disea23ses, and cancer. Phenolic compounds exist in different forms, some combined with glycosides, impacting their biological effects and absorption. Approximately 8000 polyphenols isolated from plants offer significant potential for natural medicines and nutritional supplements. Therefore, their extraction process and selective and sensitive food determination are very important. This review focuses on the extraction processes, analytical methods, and health effects of major phenolic compounds in foods. The examination encompasses a comprehensive analysis of analytical approaches and their applications in elucidating the presence and impact of these compounds on human health.
Collapse
Affiliation(s)
- M Mesud Hurkul
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - S Irem Kaya
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Seyda Yayla
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
33
|
Jeon D, Seo B, Yang J, Shim WS, Kang NG, Park D, Kim JW. Substantial Confinement of Crystal Growth of Organic Crystalline Materials in Metal-Organic Membrane Microshells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8225-8232. [PMID: 38584357 DOI: 10.1021/acs.langmuir.4c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
This study proposes a robust microshell encapsulation system in which a metal-organic membrane (MOM), consisting of phytic acids (PAs) and metal ions, intrinsically prevents the molecular crystal growth of organic crystalline materials (OCMs). To develop this system, OCM-containing oil-in-water (O/W) Pickering emulsions were enveloped with the MOM, in which anionic pulp cellulose nanofiber (PCNF) primers electrostatically captured zinc ions at the O/W interface and chelated with PA, thus producing the MOM with a controlled shell thickness at the micron scale. We ascertained that the MOM formation fills and covers ∼75% of the surface pore size of PCNF films, which enhances the interfacial modulus by 2 orders of magnitude compared to that when treated with bare PCNFs. Through a feasibility test using a series of common OCMs, including ethylhexyl triazone, avobenzone, and ceramide, we demonstrated the excellent ability of our MOM microshell system to stably encapsulate OCMs while retaining their original molecular structures over time. These findings indicate that our MOM-reinforced microshell technology can be applied as a platform to substantially confine the crystal growth of various types of OCMs.
Collapse
Affiliation(s)
- Dongyoung Jeon
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bokgi Seo
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jongryeol Yang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Woo Sun Shim
- R&D Campus, LG Household & Health Care, Seoul 07795, Republic of Korea
| | - Nae-Gyu Kang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Daehwan Park
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
34
|
Ronca CL, Duque-Soto C, Samaniego-Sánchez C, Morales-Hernández ME, Olalla-Herrera M, Lozano-Sánchez J, Giménez Martínez R. Exploring the Nutritional and Bioactive Potential of Olive Leaf Residues: A Focus on Minerals and Polyphenols in the Context of Spain's Olive Oil Production. Foods 2024; 13:1036. [PMID: 38611342 PMCID: PMC11012209 DOI: 10.3390/foods13071036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Lyophilized plant-origin extracts are rich in highly potent antioxidant polyphenols. In order to incorporate them into food products, it is necessary to protect these phytochemicals from atmospheric factors such as heat, light, moisture, or pH, and to enhance their bioavailability due to their low solubility. To address these challenges, recent studies have focused on the development of encapsulation techniques for antioxidant compounds within polymeric structures. In this study, lyophilized olive leaf extracts were microencapsulated with the aim of overcoming the aforementioned challenges. The method used for the preparation of the studied microparticles involves external ionic gelation carried out within a water-oil (W/O) emulsion at room temperature. HPLC analysis demonstrates a high content of polyphenols, with 90% of the bioactive compounds encapsulated. Meanwhile, quantification by inductively coupled plasma optical emission spectroscopy (ICP-OES) reveals that the dried leaves, lyophilized extract, and microencapsulated form contain satisfactory levels of macro- and micro-minerals (calcium, potassium, sodium). The microencapsulation technique could be a novel strategy to harness the polyphenols and minerals of olive leaves, thus enriching food products and leveraging the antioxidant properties of the polyphenolic compounds found in the lyophilized extract.
Collapse
Affiliation(s)
- Carolina L. Ronca
- Department of Pharmacy, University of Federico II of Naples, 80138 Naples, Italy;
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain; (C.D.-S.); (C.S.-S.); (M.O.-H.); (R.G.M.)
| | - Carmen Duque-Soto
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain; (C.D.-S.); (C.S.-S.); (M.O.-H.); (R.G.M.)
| | - Cristina Samaniego-Sánchez
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain; (C.D.-S.); (C.S.-S.); (M.O.-H.); (R.G.M.)
| | | | - Manuel Olalla-Herrera
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain; (C.D.-S.); (C.S.-S.); (M.O.-H.); (R.G.M.)
| | - Jesús Lozano-Sánchez
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain; (C.D.-S.); (C.S.-S.); (M.O.-H.); (R.G.M.)
| | - Rafael Giménez Martínez
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain; (C.D.-S.); (C.S.-S.); (M.O.-H.); (R.G.M.)
| |
Collapse
|
35
|
Hu Z, Hu C, Li Y, Jiang Q, Li Q, Fang C. Pumpkin seed oil: a comprehensive review of extraction methods, nutritional constituents, and health benefits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:572-582. [PMID: 37650308 DOI: 10.1002/jsfa.12952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/01/2023]
Abstract
Pumpkin seed oil (PSO), a rich source of nutrients, is extracted from the seeds of different pumpkin varieties for food and medicines. This article aims to provide an evidence-based review of the literature and to explore the extraction technologies, nutritional properties, and biological activity of PSO. From previous literature, PSO contains a large proportion of unsaturated fatty acids, with linoleic acid as the main component, and an amount of tocopherol, phytosterol, and phenolic acids. Some differences in the yield, composition, and physicochemical properties of PSO can be associated with the pumpkin's cultivars and the extraction methods. Some novel technologies involved in supercritical fluid extraction, enzyme-assisted aqueous extraction, and ultrasound-assisted extraction have been replacing the conventional technologies gradually as promising methods for the safe, non-polluting, and effective recovery of PSO. This healthy vegetable oil was reported by several in vitro and in vivo studies to have potential protective roles in oxidative stress, inflammation, cancer, and cardiovascular diseases. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zicong Hu
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- College of Agriculture and Biotechnology, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- Institute of Food Science, Wenzhou Academy of Agricultural Science, Wenzhou, China
- Wenzhou Specialty Food Resources Engineering Technology Research Center, Wenzhou, China
| | - Chaofan Hu
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- College of Agriculture and Biotechnology, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- Institute of Food Science, Wenzhou Academy of Agricultural Science, Wenzhou, China
- Wenzhou Specialty Food Resources Engineering Technology Research Center, Wenzhou, China
| | - Yanpo Li
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- College of Agriculture and Biotechnology, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- Institute of Food Science, Wenzhou Academy of Agricultural Science, Wenzhou, China
- Wenzhou Specialty Food Resources Engineering Technology Research Center, Wenzhou, China
| | - Qiaojun Jiang
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- College of Agriculture and Biotechnology, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- Institute of Food Science, Wenzhou Academy of Agricultural Science, Wenzhou, China
- Wenzhou Specialty Food Resources Engineering Technology Research Center, Wenzhou, China
| | - Qunhe Li
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- College of Agriculture and Biotechnology, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- Institute of Food Science, Wenzhou Academy of Agricultural Science, Wenzhou, China
- Wenzhou Specialty Food Resources Engineering Technology Research Center, Wenzhou, China
| | - Cuilan Fang
- Centre for Disease Control and Prevention of Jiulongpo, Chongqing, China
| |
Collapse
|
36
|
Silva LR, Rodrigues S, Kumar N, Goel N, Singh K, Gonçalves AC. Development of phenolic acids-based system as anticancer drugs. ADVANCEMENT OF PHENOLIC ACIDS IN DRUG DISCOVERY 2024:255-294. [DOI: 10.1016/b978-0-443-18538-0.00006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
37
|
Ye H, Zhang H, Xiang J, Shen G, Yang F, Wang F, Wang J, Tang Y. Advances and prospects of natural dietary polyphenols as G-quadruplex stabilizers in biomedical applications. Int J Biol Macromol 2024; 254:127825. [PMID: 37926317 DOI: 10.1016/j.ijbiomac.2023.127825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
G-quadruplexes (G4s) have arrested continuous interest in cancer research, and targeting G4s with small molecules has become an ideal approach for drug development. Plant-based dietary polyphenols have attracted much attention for their remarkable anti-cancer effects. Studies have suggested that polyphenols exhibit interesting scaffolds to bind G4s, which can effectively downregulate the proto-oncogenes by stabilizing those G4 structures. Therefore, this review not only summarizes studies on natural dietary polyphenols (including analogs) as G4 stabilizers, but also reveals their anti-cancer activities. Furthermore, the structural and antioxidant insights of polyphenols with G4s are discussed, and future development is proposed. These insights may pave the way for the development of the next generation of anti-cancer drugs targeting nucleic acids.
Collapse
Affiliation(s)
- Huanfeng Ye
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hong Zhang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China.
| | - Junfeng Xiang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Gang Shen
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China
| | - Fengmin Yang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China
| | - Fangfang Wang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China.
| | - Yalin Tang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China.
| |
Collapse
|
38
|
Acurio L, Salazar D, Castillo B, Santiana C, Martínez-Monzó J, Igual M. Characterization of Second-Generation Snacks Manufactured from Andean Tubers and Tuberous Root Flours. Foods 2023; 13:51. [PMID: 38201079 PMCID: PMC10778556 DOI: 10.3390/foods13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Andean roots, such as zanahoria blanca, achira, papa China, camote, oca, and mashua, contain high amounts of dietary fiber, vitamins, minerals, and fructo-oligosaccharides. This study aimed to demonstrate the possibility of obtaining healthy second-generation (2G) snacks (products obtained from the immediate expansion of the mixture at the exit of the extruder die) using these roots as raw materials. Corn grits were mixed with Andean root flour in a proportion of 80:20, and a Brabender laboratory extruder was used to obtain the 2G snacks. The addition of root flour increased the water content, water activity, sectional expansion index, hygroscopicity, bulk density, and water absorption index but decreased the porosity. However, all 2G snacks manufactured with Andean root flour showed better characteristics than did the control (made with corn grits) in texture (softer in the first bite and pleasant crispness) and optical properties (more intense and saturated colors). The developed snacks could be considered functional foods due to the high amount of carotenoids and phenolic compounds they exhibit after the addition of Andean root flours. The composition of raw roots, specifically the starch, fiber, and protein content, had the most impact on snack properties due to their gelatinization or denaturalization.
Collapse
Affiliation(s)
- Liliana Acurio
- Department of Science and Engineering in Food and Biotechnology, Technical University of Ambato, Av. Los Chasquis & Río Payamino, Ambato 180150, Ecuador; (D.S.); (B.C.)
- i-Food Group, Instituto Universitario de Ingeniería de Alimentos-FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46021 Valencia, Spain;
| | - Diego Salazar
- Department of Science and Engineering in Food and Biotechnology, Technical University of Ambato, Av. Los Chasquis & Río Payamino, Ambato 180150, Ecuador; (D.S.); (B.C.)
| | - Bagner Castillo
- Department of Science and Engineering in Food and Biotechnology, Technical University of Ambato, Av. Los Chasquis & Río Payamino, Ambato 180150, Ecuador; (D.S.); (B.C.)
| | - Cristian Santiana
- Facultad de Ciencias Pecuarias, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur Km 1 1/2, Riobamba 060155, Ecuador;
| | - Javier Martínez-Monzó
- i-Food Group, Instituto Universitario de Ingeniería de Alimentos-FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46021 Valencia, Spain;
| | - Marta Igual
- i-Food Group, Instituto Universitario de Ingeniería de Alimentos-FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46021 Valencia, Spain;
| |
Collapse
|
39
|
Liao Y, Meng Q. Protection against cancer therapy-induced cardiovascular injury by planed-derived polyphenols and nanomaterials. ENVIRONMENTAL RESEARCH 2023; 238:116896. [PMID: 37586453 DOI: 10.1016/j.envres.2023.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Cancer therapy-induced heart injury is a significant concern for cancer patients undergoing chemotherapy, radiotherapy, immunotherapy, and also targeted molecular therapy. The use of these treatments can lead to oxidative stress and cardiomyocyte damage in the heart, which can result in heart failure and other cardiac complications. Experimental studies have revealed that chemotherapy drugs such as doxorubicin and cyclophosphamide can cause severe side effects such as cardiac fibrosis, electrophysiological remodeling, chronic oxidative stress and inflammation, etc., which may increase risk of cardiac disorders and attacks for patients that underwent chemotherapy. Similar consequences may also be observed for patients that undergo radiotherapy for left breast or lung malignancies. Polyphenols, a group of natural compounds with antioxidant and anti-inflammatory properties, have shown the potential in protecting against cancer therapy-induced heart injury. These compounds have been found to reduce oxidative stress, necrosis and apoptosis in the heart, thereby preserving cardiac function. In recent years, nanoparticles loaded with polyphenols have also provided for the delivery of these compounds and increasing their efficacy in different organs. These nanoparticles can improve the bioavailability and efficacy of polyphenols while minimizing their toxicity. This review article summarizes the current understanding of the protective effects of polyphenols and nanoparticles loaded with polyphenols against cancer therapy-induced heart injury. The article discusses the mechanisms by which polyphenols protect the heart, including antioxidant and anti-inflammation abilities. The article also highlights the potential benefits of using nanoparticles for the delivery of polyphenols.
Collapse
Affiliation(s)
- Yunshu Liao
- Department of Cardiac Surgery, The First Hospital Affiliated to the Army Medical University, Chongqing, 400038, China
| | - Qinghua Meng
- Department of Cardiac Surgery, The First Hospital Affiliated to the Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
40
|
Luo Y, Li YC, Wang M, Zhou L, Meng FB, Jiang LS. Effects of grafting methods and raw materials on the physicochemical properties and biological activities of phenolic acids grafted oat β-glucan. Food Res Int 2023; 173:113250. [PMID: 37803562 DOI: 10.1016/j.foodres.2023.113250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 10/08/2023]
Abstract
Phenolic acids are commonly used as food biological preservatives. Grafting phenolic acids onto polysaccharides could effectively enhance their biological activities and environmental stability to varying degrees. However, grafting methods and raw materials could affect the physical properties and biological activities of the phenolic acid-grafted polysaccharides. In this study, caffeic acid (CA) and gallic acid (GA) were grafted onto oat β-glucan (OG) and hydrolyzed oat β-glucan (OGH) through N,N'-carbonyldiimidazole-mediated (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride coupling N-hydroxysuccinimide (EDC/NHS) methods. Graft modification decreased the crystallinity and thermal stability of the conjugates, but retained good bioactivities for the conjugates. The antioxidant and bacteriostatic activities of the conjugates prepared by the EDC method were better than those of the CDI method, and the OGH-conjugates showed better biological activities than OG-conjugates. EDC-GAOGH showed best DPPH (89.78%) and ABTS (92.32%) scavenging activities. The inhibitory effect of EDC-GAOGH on Escherichia coli was significantly better than that of EDC-CAOGH, but for Staphylococcus aureus, the results are opposite, which indicating that different phenolic acid grafting products have different inhibitory effects on pathogenic microbes. In general, grafting phenolic acids onto OGH using EDC method is an effective strategy for preparing food biological preservative.
Collapse
Affiliation(s)
- Yan Luo
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Yun-Cheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Meng Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Li Zhou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu 610106, PR China
| | - Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| | - Li-Shi Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
41
|
Wang W, Lin Z, Wang W, Shang M, Lv H, Zong Q, Li J, Liang B, Zhou W. Elicitation with hydrogen peroxide promotes growth, phenolic-enrichment, antioxidant activity and nutritional values of two hydroponic lettuce genotypes. Food Chem X 2023; 19:100847. [PMID: 37780298 PMCID: PMC10534238 DOI: 10.1016/j.fochx.2023.100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
Dietary vegetables rich in bioactive compounds are major responsible for promoting human health. Herein, the effect of hydrogen peroxide (H2O2), an important signaling compound, on growth and quality of two hydroponic lettuce genotypes was investigated. The maximum enhancement of growth traits was shown in lettuce elicited with 10 mmol/L H2O2, while 40 mmol/L H2O2 significantly reduced above growth traits. H2O2 elicitation increased pigment contents and photosynthetic process, which consequently caused enhancements of phenolic compounds, ascorbic acid, glutathione, carotenoids, soluble sugars, free amino acids, soluble protein, minerals, and antioxidant capacity, while above alterations appeared in a genotype-dependent manner. The phenolic accumulation was correlated with improved activity of phenylalanine ammonia lyase (PAL) and expression levels of genes related to phenolic biosynthesis, including PAL, chalcone synthase, flavanone 3-hydroxylase, dihydroflavonol-4 reductase, and UDP-glucose: flavonoid 3-O-glucosyltransferase. Therefore, elicitation with H2O2 is a promising strategy to develop lettuce with high bioactive compounds and biomass.
Collapse
Affiliation(s)
- Weixuan Wang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266000, China
| | - Zikun Lin
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266000, China
| | - Weiran Wang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266000, China
| | - Meixin Shang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266000, China
| | - Haofeng Lv
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266000, China
| | - Quanli Zong
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266000, China
| | - Junliang Li
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266000, China
| | - Bin Liang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266000, China
| | - Weiwei Zhou
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266000, China
| |
Collapse
|
42
|
Zhang K, Zhang D, Yang Q, Long L, Xie J, Wang Y, Yao Q, Wu F, Liu S. Integrated widely targeted metabolomics and network pharmacology revealed quality disparities between Guizhou and conventional producing areas of Codonopsis Radix. Front Nutr 2023; 10:1271817. [PMID: 37915621 PMCID: PMC10616484 DOI: 10.3389/fnut.2023.1271817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/18/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction With the internationalization of traditional Chinese medicine, the demand for medicinal and edible Codonopsis Radix (CR) has increased, and its medicinal resources have attracted attention. CR is a well-known traditional Chinese medicine with a long pharmaceutical and edible history. The Guizhou province in China has abundant CR resources, but in the absence of systematic studies on species identification and chemical compositions, the capacity of the capacity of the province to CR resource has not been fully utilized. Methodology We used plant morphology and DNA barcoding techniques to identify Luodang (LD) and Weidang (WD) species. To investigate the differences in metabolites between LD and WD, as well as three Chinese Pharmacopeia CRs, and to predict pharmacological mechanisms of action for the dominant differential metabolites, we utilized widely targeted metabolomics and network pharmacology. The results also revealed the material basis for the excellent food properties of both LD and WD. Results The plant traits and DNA barcoding molecular identification results indicated that Luodang and Weidang from Guizhou were Codonopsis tangshen and Codonopsis pilosula, respectively. Widely targeted metabolomics analysis revealed that a total of 1,116 metabolites from 14 categories, including phenolic acids, lipids, flavonoids, were found in five CRs and shared 1,054 (94.4%) metabolites. LD and WD each contained 3 and 10 dominant differential metabolites, respectively, which were primarily flavonoids and amino acids. Amino acids, phenolic acids, and organic acids play important roles in their excellent food attributes. In CR, eight dominant differential metabolites were discovered for the first time, including isoorientin-7-O-(6″-feruloyl) glucoside, N-formyl-L-methionine, and cyclo (Phe-Glu), among others. Network pharmacology analyses showed that, in LD, dominant differential metabolites were closely related to anti-tumor, cardiovascular disease improvement, nervous system protection, and metabolic disease treatment, whereas in WD, they were closely related to nervous system protection and cardiovascular disease improvement. Conclusion The species of LD and WD were included in the Chinese Pharmacopeia, and their metabolite profiles were remarkably similar to CR from traditional producing areas. Therefore, LD and WD can be used and promoted medicinally as CR, and they have potential value for new drug development. This study enriched the database of CR compounds and provided a reference for quality control, resource development, and new drug development of CR.
Collapse
Affiliation(s)
- Kaixian Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Delin Zhang
- Pharmacy Department, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qingfang Yang
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Langtao Long
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jian Xie
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yong Wang
- Guizhou Medical and Health Industry Research Institute, Zunyi, China
| | - Qiuyang Yao
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Faming Wu
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Sha Liu
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Guizhou Medical and Health Industry Research Institute, Zunyi, China
| |
Collapse
|
43
|
Zhou Z, Liang S, Zou X, Teng Y, Wang W, Fu L. Determination of Phenolic Acids Using Ultra-High-Performance Liquid Chromatography Coupled with Triple Quadrupole (UHPLC-QqQ) in Fruiting Bodies of Sanghuangporus baumii (Pilát) L.W. Zhou and Y.C. Dai. PLANTS (BASEL, SWITZERLAND) 2023; 12:3565. [PMID: 37896027 PMCID: PMC10609702 DOI: 10.3390/plants12203565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
Sanghuangporus, a medicinal mushroom, has gained significant attention due to its beneficial properties. Phenolic acids are among the major bioactive compounds in Sanghuangporus, known for their antioxidant and anti-inflammatory activities. To precisely quantify the phenolic acid content, we developed a method utilizing ultra-high-performance liquid chromatography with triple quadrupole (UHPLC-QqQ). This study optimized the UHPLC-QqQ conditions to simultaneously separate and detect eight phenolic acids in Sanghuangporus baumii (Pilát) L.W. Zhou and Y.C. Dai, including chlorogenic acid, p-coumaric acid, caffeic acid, cryptochlorogenic acid, protocatechuic acid, ferulic acid, sinapic acid, and syringic acid. The separation process utilized a ZORBAX Eclipse Plus C18 column using 0.01% formic acid and 2 mmol/L ammonium formate in water as the aqueous phase and methanol containing 0.01% formic acid and 2 mmol/L ammonium formate as the organic phase. Calibration curves were constructed using standard solutions to quantitatively determine the phenolic acid content. The results showed significant variation in phenolic acid content among S. baumii fruiting bodies, with Protocatechuic acid, p-coumaric acid, and caffeic acid being the most abundant. This method is valuable for quantifying phenolic acid compounds under different cultivation conditions. It provides excellent sensitivity, selectivity, and reproducibility for the quantification of phenolic acids in Sanghuangporus, contributing to a better understanding of its chemical composition and potential health benefits. This approach represents a novel technical means for the simultaneous analysis of compound phenolic acids in Sanghuangporus fruiting bodies.
Collapse
Affiliation(s)
- Zhongjing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.Z.); (S.L.); (Y.T.)
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.Z.); (S.L.); (Y.T.)
| | - Xiaowei Zou
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, China;
| | - Yi Teng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.Z.); (S.L.); (Y.T.)
| | - Weike Wang
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Lizhong Fu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, China;
| |
Collapse
|
44
|
Wu Y, Yu X, Ding W, Remón J, Xin M, Sun T, Wang TTY, Yu LL, Wang J. Fabrication, performance, and potential environmental impacts of polysaccharide-based food packaging materials incorporated with phytochemicals: A review. Int J Biol Macromol 2023; 249:125922. [PMID: 37482166 DOI: 10.1016/j.ijbiomac.2023.125922] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Although food packaging preserves food's quality, it unfortunately contributes to global climate change since the considerable carbon emissions associated with its entire life cycle. Polysaccharide-based packaging materials (PPMs) are promising options to preserve foods, potentially helping the food industry reduce its carbon footprint. PPMs incorporated with phytochemicals hold promise to address this critical issue, keep food fresh and prolong the shelf life. However, phytochemicals' health benefits are impacted by their distinct chemical structures thus the phytochemicals-incorporated PPMs generally exhibit differential performances. PPMs must be thoughtfully formulated to possess adequate physicochemical properties to meet commercial standards. Given this, this review first-time provides a comprehensive review of recent advances in the fabrication of phytochemicals incorporated PPMs. The application performances of phytochemicals-incorporated PPMs for preserving foods, as well as the intelligent monitoring of food quality, are thoroughly introduced. The possible associated environmental impacts and scalability challenges for the commercial application of these PPMs are also methodically assessed. This review seeks to provide comprehensive insights into exploring new avenues to achieve a greener and safer food industry via innovative food packaging materials. This is paramount to preserve not only food shelf life but also the environment, facilitating the eco-friendly development of the food industry.
Collapse
Affiliation(s)
- Yanbei Wu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| | - Xueling Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| | - Wei Ding
- China Leather and Footwear Research Institute Co. Ltd., Beijing, PR China.
| | - Javier Remón
- Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018 Zaragoza, Spain
| | - Mengmeng Xin
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| | - Tianjun Sun
- Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Beijing, PR China
| | - Thomas T Y Wang
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, MD, USA
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China.
| |
Collapse
|
45
|
Alibekov RS, Mustapa Kamal SM, Taip FS, Sulaiman A, Azimov AM, Urazbayeva KA. Recovery of Phenolic Compounds from Jackfruit Seeds Using Subcritical Water Extraction. Foods 2023; 12:3296. [PMID: 37685228 PMCID: PMC10486435 DOI: 10.3390/foods12173296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Jackfruit is one of the major fruits cultivated in many Asian countries. Jackfruit seeds are generally disposed of into the environment, which causes an environmental concern that leads to biowaste accumulation. The seeds have excellent nutritional value, such as carbohydrates, protein, fats, minerals, and bioactive compounds. Bioactive compounds, such as phenolic, can be recovered from jackfruit seeds that could add value to the food and pharmaceutical industry. Thus, this study focused on utilizing subcritical water to extract the phenolic compounds from jackfruit seeds and correlate them with antioxidant activity (AA). The extraction of phenolic compounds was studied at different temperatures and extraction times. The highest total phenolic compounds (TPC) and AA were obtained by treating the jackfruit seed powder at 210 °C, 30 min, and 15% solid loading under subcritical water extraction (SWE) with 1.84 mg GAE/100 g (TPC) and 86% (AA). High correlation between the extracted TPC and AA of the jackfruit seed extracts was obtained (R2 = 0.96), indicating a significant positive relationship between TPC and AA. A higher amount of TPC was obtained via SWE as compared to Soxhlet extraction (1 h:0.53 mg GAE/100 g and 4 h:1.20 mg GAE/100 g). More pores were detected on the surface of the sample treated by SWE than using Soxhlet extraction. Thus, jackfruit seed extracts can be potentially beneficial in the fortification of fermented dairy or meat products.
Collapse
Affiliation(s)
- Ravshanbek Sultanbekovich Alibekov
- Food Engineering Department, M. Auezov South-Kazakhstan University, Tauke Khan Avenue 5, Shymkent 160012, Kazakhstan; (R.S.A.); (A.M.A.); (K.A.U.)
| | - Siti Mazlina Mustapa Kamal
- Department of Process and Food Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; (F.S.T.); (A.S.)
| | - Farah Saleena Taip
- Department of Process and Food Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; (F.S.T.); (A.S.)
| | - Alifdalino Sulaiman
- Department of Process and Food Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; (F.S.T.); (A.S.)
| | - Abdugani Mutalovich Azimov
- Food Engineering Department, M. Auezov South-Kazakhstan University, Tauke Khan Avenue 5, Shymkent 160012, Kazakhstan; (R.S.A.); (A.M.A.); (K.A.U.)
| | - Klara Abdyrazahovna Urazbayeva
- Food Engineering Department, M. Auezov South-Kazakhstan University, Tauke Khan Avenue 5, Shymkent 160012, Kazakhstan; (R.S.A.); (A.M.A.); (K.A.U.)
| |
Collapse
|
46
|
Iqbal I, Wilairatana P, Saqib F, Nasir B, Wahid M, Latif MF, Iqbal A, Naz R, Mubarak MS. Plant Polyphenols and Their Potential Benefits on Cardiovascular Health: A Review. Molecules 2023; 28:6403. [PMID: 37687232 PMCID: PMC10490098 DOI: 10.3390/molecules28176403] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Fruits, vegetables, and other food items contain phytochemicals or secondary metabolites which may be considered non-essential nutrients but have medicinal importance. These dietary phytochemicals exhibit chemopreventive and therapeutic effects against numerous diseases. Polyphenols are secondary metabolites found in vegetables, fruits, and grains. These compounds exhibit several health benefits such as immune modulators, vasodilators, and antioxidants. This review focuses on recent studies on using dietary polyphenols to treat cardiovascular disorders, atherosclerosis, and vascular endothelium deficits. We focus on exploring the safety of highly effective polyphenols to ensure their maximum impact on cardiac abnormalities and discuss recent epidemiological evidence and intervention trials related to these properties. Kaempferol, quercetin, and resveratrol prevent oxidative stress by regulating proteins that induce oxidation in heart tissues. In addition, polyphenols modulate the tone of the endothelium of vessels by releasing nitric oxide (NO) and reducing low-density lipoprotein (LDL) oxidation to prevent atherosclerosis. In cardiomyocytes, polyphenols suppress the expression of inflammatory markers and inhibit the production of inflammation markers to exert an anti-inflammatory response. Consequently, heart diseases such as strokes, hypertension, heart failure, and ischemic heart disease could be prevented by dietary polyphenols.
Collapse
Affiliation(s)
- Iram Iqbal
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (I.I.); (M.W.); (M.F.L.); (R.N.)
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Fatima Saqib
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Bushra Nasir
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (I.I.); (M.W.); (M.F.L.); (R.N.)
| | - Muhammad Farhaj Latif
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (I.I.); (M.W.); (M.F.L.); (R.N.)
| | - Ahmar Iqbal
- Department of General Surgery, Shanxi Medical University, Jinzhong 030600, China;
| | - Rabia Naz
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (I.I.); (M.W.); (M.F.L.); (R.N.)
| | | |
Collapse
|
47
|
Ventura G, Mesto D, Blasi D, Cataldi TRI, Calvano CD. The Effect of Milling on the Ethanolic Extract Composition of Dried Walnut ( Juglans regia L.) Shells. Int J Mol Sci 2023; 24:13059. [PMID: 37685864 PMCID: PMC10487924 DOI: 10.3390/ijms241713059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
This study investigates the ethanolic extract of dried walnut (Juglans regia L.) shells upon hammer milling (HM) and ball milling (BM) grinding processes. Marked differences were observed in the attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectra. The two extracts were investigated by reversed-phase liquid chromatography coupled with electrospray ionization and high-resolution mass spectrometry (RPLC-ESI-HRMS). Following enzymatic digestion, the fatty acids (FAs) were examined, and tandem MS of epoxidized species was applied to establish the C-C double bond position; the most abundant species were FA 18:2 Δ9,12, FA 18:1 Δ9, and FA 18:3 Δ9,12,15. However, no significant qualitative differences were observed between FAs in the two samples. Thus, the presence of potential active secondary metabolites was explored, and more than 30 phenolic compounds, including phenols, ellagic acid derivatives, and flavonoids, were found. Interestingly, the HM samples showed a high concentration of ellagitannins and hydrolyzable tannins, which were absent in the BM sample. These findings corroborate the greater phenolic content in the HM sample, as evaluated by the Folin-Ciocalteu test. Among the others, the occurrence of lanceoloside A at m/z 391.1037 [C19H20O9-H]-, and a closely related benzoyl derivate at m/z 405.1190 (C20H22O9-H]-), was ascertained. The study provides valuable information that highlights the significance of physical pre-treatments, such as mill grinding, in shaping the composition of extracts, with potential applications in the biorefinery or pharmaceutical industries.
Collapse
Affiliation(s)
- Giovanni Ventura
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (D.M.); (T.R.I.C.); (C.D.C.)
- Interdepartmental Research Center SMART, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Davide Mesto
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (D.M.); (T.R.I.C.); (C.D.C.)
| | - Davide Blasi
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (D.M.); (T.R.I.C.); (C.D.C.)
| | - Tommaso R. I. Cataldi
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (D.M.); (T.R.I.C.); (C.D.C.)
- Interdepartmental Research Center SMART, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Cosima Damiana Calvano
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (D.M.); (T.R.I.C.); (C.D.C.)
- Interdepartmental Research Center SMART, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
48
|
Hamrouni H, Othman KB, Benmoussa H, Idoudi S, Najjaa H, Neffati M, Elfalleh W. Phenolic Profiling, Antioxidant, and Antibacterial Activities of Selected Medicinal Plants from Tunisia. Chem Biodivers 2023; 20:e202300265. [PMID: 37369625 DOI: 10.1002/cbdv.202300265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 06/29/2023]
Abstract
Phytochemical screening of aqueous extract from six medicinal wild plants grown in South-eastern of Tunisia: Atriplex halimus, Teucrium polium, Moricandia arvensis, Deverra tortuoa, Haplophyllum tuberculatum and Polygonum equisetiforme were evaluated. Both decoction and ultrasound assisted extraction were used. Antioxidant, antibacterial proprieties, and phenolic profiling, using LC-ESI-MS method, were assessed. Total polyphenols, flavonoids, and condensed tannins contents ranged from 7.47±0.19 to 22.25±0.49 mg GAE/g Dw, 5.47±0.06 to 7.55±0.07 mg RE/g Dw, and 0.33±0.02 to 19.43±0.64 mg TAE/g Dw, respectively. Moreover, the reducing power and DPPH tests showed that P. equisetiforme (EC50 : 12.50±0.50 μg/ml; DPPH⋅+ : 213.49±4.24 mg TEAC/g DW), T. polium (EC50 : 25.00±1.00 μg/ml; DPPH⋅+ : 181.39±9.47 mg TEAC/g DW) as well as H. tuberculatum (EC50 : 56.25±0.25 μg/ml; DPPH⋅+ : 177.83±5.85 mg TEAC/g DW) extracts were the most effective natural antioxidants. For anti-bacterial activity, the ultrasonic extract of H. tuberculatum showed the highest activity against both P. aeruginosa (13.50±0.71 mm) and S. aureus (13.00±0.00 mm) at 10 mg/ml. Furthermore 24 phenolic compounds were identified, with predominance of quinic acid, gallic acid, protocatechuic acid, syringic acid, p-coumaric acid, trans-ferulic acid, catechin (+), trans-cinnamic and silymarin. These results were further consolidated by to heatmap clustering with P. equisetiforme, H. tuberculatum, T. polium as the main antioxidant and antibacterial sources which supports their domestication and industrial use.
Collapse
Affiliation(s)
- Hania Hamrouni
- Energy, Water, Environment and Process Laboratory, LR18ES35), National Engineering School of Gabes, University of Gabes, Zrig Eddakhlania, 6072, Gabes, Tunisia
| | - Khadija Ben Othman
- Energy, Water, Environment and Process Laboratory, LR18ES35), National Engineering School of Gabes, University of Gabes, Zrig Eddakhlania, 6072, Gabes, Tunisia
- Research Unit Advanced Materials, Applied Mechanics, Innovative Processes and Environment, UR22ES04), Higher Institute of Applied Sciences and Technology of Gabes (ISSATG), University of Gabes, 6072, Gabes, Tunisia
| | - Hasnia Benmoussa
- Laboratory of Environmental Process Engineering, Faculty of Chemistry, BP1505, Oran-Mohamed Boudiaf University of Science and Technology, El M'naouer, 31000, Oran, Algeria
| | - Sourour Idoudi
- Energy, Water, Environment and Process Laboratory, LR18ES35), National Engineering School of Gabes, University of Gabes, Zrig Eddakhlania, 6072, Gabes, Tunisia
| | - Hanen Najjaa
- Laboratory of pastoral ecosystem and valorization of spontaneous plants and associated microorganisms, Institute of Arid Lands of Medenine, Route Eljorf, 4119 Medenine, University of Gabes, Tunisia
| | - Mohamed Neffati
- Laboratory of pastoral ecosystem and valorization of spontaneous plants and associated microorganisms, Institute of Arid Lands of Medenine, Route Eljorf, 4119 Medenine, University of Gabes, Tunisia
| | - Walid Elfalleh
- Energy, Water, Environment and Process Laboratory, LR18ES35), National Engineering School of Gabes, University of Gabes, Zrig Eddakhlania, 6072, Gabes, Tunisia
| |
Collapse
|
49
|
Zhu C, Zhang M, Wang S, Gao X, Lin T, Yu J, Tian J, Hu Z. Phenolic compound profile and gastrointestinal action of Solanaceae fruits: Species-specific differences. Food Res Int 2023; 170:112968. [PMID: 37316011 DOI: 10.1016/j.foodres.2023.112968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023]
Abstract
In this study, the presence of phenolic compounds derived from four Solanaceae fruits (tomato, pepino, tamarillo, and goldenberry) during gastrointestinal digestion and the effect of these compounds on human gut microbiota was investigated. The results indicated that the total phenolic content of all Solanaceae fruits were increased during digestion. Furthermore, the targeted metabolic analysis identified 296 compounds, of which 71 were changed after gastrointestinal digestion in all Solanaceae fruits. Among these changed phenolic compounds, 51.3% phenolic acids and 91% flavonoids presented higher bioaccessibility in pepino and tamarillo, respectively. Moreover, higher levels of glycoside-formed phenolic acids, including dihydroferulic acid glucoside and coumaric acid glucoside, were found in tomato fruits. In addition, tachioside showed the highest bioaccessibility in goldenberry fruits. The intake of Solanaceae fruits during the in vitro fermentation decreased the Firmicutes/Bacteroidetes ratio (F/B) compared with the control (∼15-fold change on average), and goldenberry fruits showed the best effect (F/B = 2.1). Furthermore, tamarillo significantly promoted the growth of Bifidobacterium and short-chain fatty acids production. Overall, this study revealed that Solanaceae fruits had different phenolic compound profiles and health-promoting effects on the gut microbiota. It also provided relevant information to improve the consumption of Solanaceae fruits, mainly tamarillo and goldenberry fruits, due to their gut health-promoting properties, as functional foods.
Collapse
Affiliation(s)
- Changan Zhu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Min Zhang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Shuwen Wang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Xinhao Gao
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Teng Lin
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; The Rural Development Academy, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; The Rural Development Academy, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Sanya 572000, China.
| |
Collapse
|
50
|
Fei X, Yan Y, Wang L, Huang Z, Gong D, Zhang G. Protocatechuic acid and gallic acid improve the emulsion and thermal stability of whey protein by covalent binding. Food Res Int 2023; 170:113000. [PMID: 37316070 DOI: 10.1016/j.foodres.2023.113000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/15/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023]
Abstract
This study aimed to explore the impacts of gallic acid (GA)/protocatechuic acid (PA) on the structural and functional characteristics of whey proteins (WP) through covalent binding. To this purpose, the covalent complexes of WP-PA and WP-GA at different concentration gradients were prepared by the alkaline method. SDS-PAGE indicated that PA/GA was cross-linked by covalent bonds. The decreased contents of free amino and sulfhydryl groups suggested that WP formed covalent bonds with PA/GA by amino and sulfhydryl groups, and the structure of WP became slightly looser after covalent modification by PA/GA. When the concentration of GA was added up to 10 mM, the structure of WP was slightly loosened with a reduction of α-helix content by 2.3% and an increase in random coil content by 3.0%. The emulsion stability index of WP increased by 14.9 min after interaction with GA. Moreover, the binding of WP and 2-10 mM PA/GA increased the denaturation temperature by 1.95 to 19.87 °C, indicating the improved thermal stability of the PA/GA-WP covalent complex. Additionally, the antioxidant capacity of WP was increased with increasing GA/PA concentration. This work may offer worthful information for enhancing the functional properties of WP and the application of the PA/GA-WP covalent complexes in food emulsifiers.
Collapse
Affiliation(s)
- Xiaoyun Fei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yuzhong Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Langhong Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Food Science and Engineering, Foshan University, Foshan 528225, China.
| | - Zhaohua Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|