1
|
Zheng D, Hu M, Wang W, Chen S, Zhou Z, Lv Y, Jiang D, Chen J, Lan X, Qin C. SPECT Imaging of Cardiac Inflammation by Targeting IL4 Receptor-α on Macrophages. Mol Pharm 2025; 22:2509-2520. [PMID: 39945732 DOI: 10.1021/acs.molpharmaceut.4c01336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2025]
Abstract
The inflammation response is a prominent sign of myocardial infarction (MI), mediating the process of cardiac fibrosis and ventricular remodeling. Inflammation visualization holds new promise for guiding cardiac anti-inflammatory therapy. Interleukin-4 receptor α (IL4Rα) interacts with IL4, closely related to macrophage polarization. This study aimed to evaluate the feasibility of a technetium-99m (99mTc) labeled IL4Rα antibody probe ([99mTc]Tc-HYNIC-CM310) for targeting postinfarction macrophage SPECT imaging. [99mTc]Tc-HYNIC-CM310 was prepared by radiolabeling an IL4Rα-specific monoclonal antibody (CM310) with 99mTc. Images were acquired at 0.5, 6, 12, 24, and 36 h postinjection on the next day after MI and the sham model preparation, and a biodistribution study was performed at 36 h. The mean percentage of injected dose per gram (%ID/g) of various tissues was obtained by drawing the regions of interest. [18F]FDG myocardial metabolism and inflammation imaging were performed for comparison and verification. Immunofluorescence costaining and flow cytometry were conducted to validate the coexpression of IL4Rα and macrophages. The radiolabeling yield of [99mTc]Tc-HYNIC-CM310 was approximately 88.31% ± 1.70%, and the radiochemical purity was 93.70% ± 0.38%. The accumulation of [99mTc]Tc-HYNIC-CM310 in infarcted myocardium was increased starting at 12 h postinjection. The tracer uptake was significantly higher in the infarcted myocardium than the same site in sham-operated rats (P < 0.05). The tracer uptake region was consistent with the cardiac metabolic defect and inflammatory region seen by [18F]FDG PET. Immunofluorescence staining and flow cytometry confirmed the colocalization of IL4Rα+ cells and macrophage markers in the infarcted myocardium. We successfully prepared and validated the SPECT probe [99mTc]Tc-HYNIC-CM310 for precise visualization of macrophages, offering a new opportunity for guiding the treatment of cardiac inflammation.
Collapse
Affiliation(s)
- Danzha Zheng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, Hubei 430022, China
| | - Mengyan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, Hubei 430022, China
| | - Wenwen Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Shan Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zhangyongxue Zhou
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, Hubei 430022, China
| | - Yuhu Lv
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, Hubei 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, Hubei 430022, China
| | - Jianjun Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, Hubei 430022, China
| | - Chunxia Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, Hubei 430022, China
| |
Collapse
|
2
|
Froom ZSCS, Callaghan NI, Davenport Huyer L. Cellular crosstalk in fibrosis: insights into macrophage and fibroblast dynamics. J Biol Chem 2025:110203. [PMID: 40334985 DOI: 10.1016/j.jbc.2025.110203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025] Open
Abstract
Pathological fibrosis, the excessive deposition of extracellular matrix and tissue stiffening that causes progressive organ dysfunction, underlies diverse chronic diseases. The fibrotic microenvironment is driven by the dynamic microenvironmental interaction between various cell types; macrophages and fibroblasts play central roles in fibrotic disease initiation, maintenance, and progression. Macrophage functional plasticity to microenvironmental stimuli modulates fibroblast functionality by releasing pro-inflammatory cytokines, growth factors, and matrix remodeling enzymes that promote fibroblast proliferation, activation, and differentiation into myofibroblasts. Activated fibroblasts and myofibroblasts serve as the fibrotic effector cells, secreting extracellular matrix components and initiating microenvironmental contracture. Fibroblasts also modulate macrophage function through the release of their own pro-inflammatory cytokines and growth factors, creating bidirectional crosstalk that reinforces the chronic fibrotic cycle. The intricate interplay between macrophages and fibroblasts, including their secretomes and signaling interactions, leads to tissue damage and pathological loss of tissue function. In this review, we examine macrophage-fibroblast reciprocal dynamic interactions in pathological fibrotic conditions. We discuss the specific lineages and functionality of macrophages and fibroblasts implicated in fibrotic progression, with focus on their signal transduction pathways and secretory signalling that enables their pro-fibrotic behaviour. We then finish with a set of recommendations for future experimentation with the goal of developing a set of potential targets for anti-fibrotic therapeutic candidates. Understanding the cellular interactions between macrophages and fibroblasts provides valuable insights into potential therapeutic strategies to mitigate fibrotic disease progression.
Collapse
Affiliation(s)
- Zachary S C S Froom
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Neal I Callaghan
- Department of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Locke Davenport Huyer
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Biomaterials & Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS B3H 4R2, Canada; Nova Scotia Health, Halifax, NS B3S 0H6, Canada.
| |
Collapse
|
3
|
Singh A, Pillai L, Danes D, Umar S, Balakrishnan S. 4-fluorophenylacetamide acetyl coumarin induces pro-inflammatory M1 macrophage polarization and suppresses the immunosuppressive M2 phenotype through PI3k/AKT/NF-κB modulation. Mol Biol Rep 2025; 52:415. [PMID: 40266432 DOI: 10.1007/s11033-025-10517-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND The tumor microenvironment plays a critical role in cancer progression, with tumor-associated macrophages regulating immune responses. These macrophages can adopt a pro-inflammatory M1 phenotype that suppresses tumor growth or an anti-inflammatory M2 phenotype that promotes progression. Reprogramming macrophages toward the M1 phenotype is a therapeutic strategy. Previous studies showed that 4-Fluorophenylacetamide-acetyl coumarin (4-FPAC), a synthetic coumarin derivative, exhibits cytostatic activity in A549 lung carcinoma cells by modulating reactive oxygen species (ROS), nitric oxide synthase, and signaling pathways, including PI3K/AKT/NF-κB. This study evaluates the impact of 4-FPAC on macrophage polarization. HYPOTHESIS We hypothesized that 4-FPAC promotes M1 macrophage polarization while suppressing M2 markers through modulation of signaling pathways, thus serving as an immunomodulatory agent. RESULTS Treatment with 4-FPAC induced M1 polarization in THP1-derived macrophages, evident from morphological elongation, elevated ROS and NO production, and increased IL-12 levels. IL-10 levels and M2 markers (CD163, STAT3, AKT1) were downregulated, while M1 markers (CD80, STAT1, AKT2) were upregulated. Gene expression and western blot analyses revealed activation of P38 and NF-κB pathways and reduced phosphorylated AKT1 levels. In silico docking showed strong interactions of 4-FPAC with regulatory proteins like P38, NF-κB, and AKT1, suggesting pathway modulation. CONCLUSION 4-FPAC facilitates M1 macrophage polarization and inhibits M2 signaling, demonstrating its potential as an immunomodulatory agent. Coupled with its cytostatic effects on A549 cells, these findings position 4-FPAC as a promising candidate for cancer therapy. Further in vivo studies are warranted to validate its therapeutic potential and explore applications in immunotherapy and inflammation-associated diseases.
Collapse
Affiliation(s)
- Anjali Singh
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Lakshmi Pillai
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Dhanush Danes
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
- Department of Zoology, Union Christian College, Aluva, Kerala, 683102, India
| | - Shweta Umar
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Suresh Balakrishnan
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
4
|
Menzaghi C, Marucci A, Mastroianno M, Di Ciaccia G, Armillotta MP, Prehn C, Salvemini L, Mangiacotti D, Adamski J, Fontana A, De Cosmo S, Lamacchia O, Copetti M, Trischitta V. Inflammation and Prediction of Death in Type 2 Diabetes. Evidence of an Intertwined Link With Tryptophan Metabolism. J Clin Endocrinol Metab 2025; 110:e1323-e1333. [PMID: 39193712 PMCID: PMC12012783 DOI: 10.1210/clinem/dgae593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
CONTEXT The role of inflammation in shaping death risk in diabetes is still unclear. OBJECTIVE To study whether inflammation is associated with and helps predict mortality risk in patients with type 2 diabetes. To explore the intertwined link between inflammation and tryptophan metabolism on death risk. METHODS There were 2 prospective cohorts: the aggregate Gargano Mortality Study (1731 individuals; 872 all-cause deaths) as the discovery sample, and the Foggia Mortality Study (490 individuals; 256 deaths) as validation sample. Twenty-seven inflammatory markers were measured. Causal mediation analysis and in vitro studies were carried out to explore the link between inflammatory markers and the kynurenine to tryptophan ratio (KTR) in shaping mortality risk. RESULTS Using multivariable stepwise Cox regression analysis, interleukin (IL)-4, IL-6, IL-8, IL-13, RANTES, and interferon gamma-induced protein-10 (IP-10) were independently associated with death. An inflammation score (I score) comprising these 6 molecules is strongly associated with death in both the discovery and the validation cohorts HR (95% CI) 2.13 (1.91-2.37) and 2.20 (1.79-2.72), respectively. The I score improved discrimination and reclassification measures (all P < .01) of 2 mortality prediction models based on clinical variables. The causal mediation analysis showed that 28% of the KTR effect on mortality was mediated by IP-10. Studies in cultured endothelial cells showed that 5-methoxy-tryptophan, an anti-inflammatory metabolite derived from tryptophan, reduces the expression of IP-10, thus providing a functional basis for the observed causal mediation. CONCLUSION Adding the I score to clinical prediction models may help identify individuals who are at greater risk of death. Deeply addressing the intertwined relationship between low-grade inflammation and imbalanced tryptophan metabolism in shaping mortality risk may help discover new therapies targeting patients characterized by these abnormalities.
Collapse
Affiliation(s)
- Claudia Menzaghi
- Research Unit of Diabetes and Endocrine Diseases, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico “Casa Sollievo della Sofferenza,”71013 San Giovanni Rotondo, Italy
| | - Antonella Marucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico “Casa Sollievo della Sofferenza,”71013 San Giovanni Rotondo, Italy
| | - Mario Mastroianno
- Scientific Direction, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico “Casa Sollievo della Sofferenza,”71013 San Giovanni Rotondo, Italy
| | - Giulio Di Ciaccia
- Research Unit of Diabetes and Endocrine Diseases, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico “Casa Sollievo della Sofferenza,”71013 San Giovanni Rotondo, Italy
| | - Maria Pia Armillotta
- Research Unit of Diabetes and Endocrine Diseases, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico “Casa Sollievo della Sofferenza,”71013 San Giovanni Rotondo, Italy
| | - Cornelia Prehn
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Lucia Salvemini
- Research Unit of Diabetes and Endocrine Diseases, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico “Casa Sollievo della Sofferenza,”71013 San Giovanni Rotondo, Italy
| | - Davide Mangiacotti
- Research Unit of Diabetes and Endocrine Diseases, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico “Casa Sollievo della Sofferenza,”71013 San Giovanni Rotondo, Italy
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Andrea Fontana
- Biostatistics Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico “Casa Sollievo della Sofferenza,”71013 San Giovanni Rotondo, Italy
| | - Salvatore De Cosmo
- Unit of Internal Medicine, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico “Casa Sollievo della Sofferenza,”71013 San Giovanni Rotondo, Italy
| | - Olga Lamacchia
- Endocrinology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Massimiliano Copetti
- Biostatistics Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico “Casa Sollievo della Sofferenza,”71013 San Giovanni Rotondo, Italy
| | - Vincenzo Trischitta
- Research Unit of Diabetes and Endocrine Diseases, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico “Casa Sollievo della Sofferenza,”71013 San Giovanni Rotondo, Italy
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
5
|
Stacchiotti C, Mazzella di Regnella S, Cinotti M, Spalloni A, Volpe E. Neuroinflammation and Amyotrophic Lateral Sclerosis: Recent Advances in Anti-Inflammatory Cytokines as Therapeutic Strategies. Int J Mol Sci 2025; 26:3854. [PMID: 40332510 PMCID: PMC12028049 DOI: 10.3390/ijms26083854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Neuroinflammation is an inflammatory response occurring within the central nervous system (CNS). The process is marked by the production of pro-inflammatory cytokines, chemokines, small-molecule messengers, and reactive oxygen species. Microglia and astrocytes are primarily involved in this process, while endothelial cells and infiltrating blood cells contribute to neuroinflammation when the blood-brain barrier (BBB) is damaged. Neuroinflammation is increasingly recognized as a pathological hallmark of several neurological diseases, including amyotrophic lateral sclerosis (ALS), and is closely linked to neurodegeneration, another key feature of ALS. In fact, neurodegeneration is a pathological trigger for inflammation, and neuroinflammation, in turn, contributes to motor neuron (MN) degeneration through the induction of synaptic dysfunction, neuronal death, and inhibition of neurogenesis. Importantly, resolution of acute inflammation is crucial for avoiding chronic inflammation and tissue destruction. Inflammatory processes are mediated by soluble factors known as cytokines, which are involved in both promoting and inhibiting inflammation. Cytokines with anti-inflammatory properties may exert protective roles in neuroinflammatory diseases, including ALS. In particular, interleukin (IL)-10, transforming growth factor (TGF)-β, IL-4, IL-13, and IL-9 have been shown to exert an anti-inflammatory role in the CNS. Other recently emerging immune regulatory cytokines in the CNS include IL-35, IL-25, IL-37, and IL-27. This review describes the current understanding of neuroinflammation in ALS and highlights recent advances in the role of anti-inflammatory cytokines within CNS with a particular focus on their potential therapeutic applications in ALS. Furthermore, we discuss current therapeutic strategies aimed at enhancing the anti-inflammatory response to modulate neuroinflammation in this disease.
Collapse
Affiliation(s)
- Costanza Stacchiotti
- Molecular Neuroimmunology Unit, Santa Lucia Foundation, 00143 Rome, Italy; (C.S.); (S.M.d.R.); (M.C.); (E.V.)
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Simona Mazzella di Regnella
- Molecular Neuroimmunology Unit, Santa Lucia Foundation, 00143 Rome, Italy; (C.S.); (S.M.d.R.); (M.C.); (E.V.)
| | - Miriam Cinotti
- Molecular Neuroimmunology Unit, Santa Lucia Foundation, 00143 Rome, Italy; (C.S.); (S.M.d.R.); (M.C.); (E.V.)
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy
| | - Alida Spalloni
- Molecular Neurobiology Unit, Santa Lucia Foundation, 00143 Rome, Italy
| | - Elisabetta Volpe
- Molecular Neuroimmunology Unit, Santa Lucia Foundation, 00143 Rome, Italy; (C.S.); (S.M.d.R.); (M.C.); (E.V.)
| |
Collapse
|
6
|
Bermudez-Lekerika P, Gualdi F, Le Maitre CL, Piñero J, Oliva B, Gantenbein B. In-silico proteomic analysis of the role of IL-4 and IL-10 in IVD degeneration: Protein-protein interaction networks for candidate prioritisation. Comput Struct Biotechnol J 2025; 27:1600-1613. [PMID: 40291541 PMCID: PMC12033940 DOI: 10.1016/j.csbj.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Protein-protein interaction (PPI) networks provide a static map of functional protein interactions, which when combined with algorithms, can prioritize key protein candidates which experimental studies cannot capture. This study, aimed to construct knowledge-based nucleus pulposus (NP)-specific PPI networks which could be deployed to investigate complex protein interactions in human NP cells and tissues following IL-4 and IL-10 stimulation. NP-specific PPI networks were developed based on mass spectrometry (MS) and secretome datasets from human NP cells. These networks were validated using in vitro and ex vivo experimental data sets. Genes Underlying Inheritance Linked Disorders (GUILD) genome-wide network-based prioritization framework was employed for protein candidate prediction under no treatment baseline and IL-4, IL-10 and IL-1β single or combined stimulating scenarios. These secretome-based in vitro PPI networks were able to reproduce the no-treatment candidate prioritization baseline. Whereby within NP cells from discs isolated due to traumatic injury biglycan was identified whilst in degenerate samples decorin was highlighted. Furthermore, experimentally observed IL-4 pleiotropic behaviour was predicted by IL-1 receptor-like 1 prioritization. PPI network-based IL-4 and IL-10 conditions offered novel insights of potential candidates, including collagen IV and fibroblast growth factor intracellular binding protein (FIBP) as key candidates within IL-4 activation pathways, whereas urocortin 3 and neural growth factor were identified following IL-10 stimulation. Additionally, MS based PPI network propagation offered a more extensive, module-based structure networks with lower edge degree and biological variability. Overall, multiple proteomic experimental approaches are required to successfully validate in-silico prediction models to understand the complex interactions between the plethora of proteins involved in IVD degeneration.
Collapse
Affiliation(s)
- Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Murtenstrasse 35, Bern CH-3008, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Mittelstrasse 43, Bern CH-3012, Switzerland
| | - Francesco Gualdi
- Group of Integrative Biomedical Informatics, Hospital del Mar Research Institute, Barcelona 08003, Spain
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), USI/SUPSI, Lugano, Switzerland
| | - Christine L. Le Maitre
- Division of Clinical Sciences, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RN, United Kingdom
| | - Janet Piñero
- Medinformatics Solutions SL, Barcelona 08007, Spain
| | - Baldomero Oliva
- Group of Structural Bioinformatics, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Murtenstrasse 35, Bern CH-3008, Switzerland
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Faculty of Medicine, University of Bern, Freiburgstrasse 3, Bern CH-3010, Switzerland
| |
Collapse
|
7
|
Kračun D, Görlach A, Snedeker JG, Buschmann J. Reactive oxygen species in tendon injury and repair. Redox Biol 2025; 81:103568. [PMID: 40023978 PMCID: PMC11915165 DOI: 10.1016/j.redox.2025.103568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
Reactive oxygen species (ROS) are chemical moieties that in physiological concentrations serve as fast-acting signaling molecules important for cellular homeostasis. However, their excess either due to overproduction or inability of the antioxidant system to inactivate them results in oxidative stress, contributing to cellular dysfunction and tissue damage. In tendons, which are hypovascular, hypocellular, and composed predominantly of extracellular matrix (ECM), particularly collagen I, ROS likely play a dual role: regulating cellular processes such as inflammation, proliferation, and ECM remodeling under physiological conditions, while contributing to tendinopathy and impaired healing when dysregulated. This review explores the sources of ROS in tendons, including NADPH oxidases and mitochondria, and their role in key processes such as tissue adaptation to mechanical load and injury repair, also in systemic conditions such as diabetes. In addition, we integrate the emerging perspective that calcium signaling-mediated by mechanically activated ion channels-plays a central role in tendon mechanotransduction under daily mechanical loads. We propose that mechanical overuse (overload) may lead to hyperactivation of calcium channels, resulting in chronically elevated intracellular calcium levels that amplify ROS production and oxidative stress. Although direct evidence linking calcium channel hyperactivity, intracellular calcium dysregulation, and ROS generation under overload conditions is currently circumstantial, this review aims to highlight these connections and identify them as critical avenues for future research. By framing ROS within the context of both adaptive and maladaptive responses to mechanical load, this review provides a comprehensive synthesis of redox biology in tendon injury and repair, paving the way for future work, including development of therapeutic strategies targeting ROS and calcium signaling to enhance tendon recovery and resilience.
Collapse
Affiliation(s)
- Damir Kračun
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland; University Clinic Balgrist, Orthopaedic Biomechanics, Forchstrasse 340, 8008, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland.
| | - Agnes Görlach
- Experimental and Molecular Paediatric Cardiology, German Heart Centre Munich, TUM University Hospital, Technical University of Munich, Munich, 80636, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Jess G Snedeker
- University Clinic Balgrist, Orthopaedic Biomechanics, Forchstrasse 340, 8008, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland.
| |
Collapse
|
8
|
Harada Y, Sasaki T, Obata-Ninomiya K, Matsuyama T, Ueha S, Shichino S, Watanabe T, Bin W, Ogawa S, Ki S, Suzuki Y, Ueno H, Ziegler SF, Inoue H, Burrows PD, Murphy K, Kim BS, Kubo M. Atopic skin inflammation promotes systemic anaphylactic responses via IL-13 signaling in conventional dendritic cells. RESEARCH SQUARE 2025:rs.3.rs-5892170. [PMID: 39989951 PMCID: PMC11844645 DOI: 10.21203/rs.3.rs-5892170/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Cutaneous allergen sensitization (CAS) underlies atopic dermatitis (AD) and leads to various allergic symptoms, including food allergy and anaphylaxis. IL-13 expression by T follicular helper T (TFH) has been reported to be involved in generating high-affinity IgE antibodies and causing systemic anaphylaxis.1, 2 However, the mechanisms by which IL-13 triggers IgE-mediated allergic responses remain poorly defined. In the present study, we elucidate the role of IL-13 in the CAS-mediated mechanism by which high-affinity IgE antibodies are produced when the same allergen is introduced at a distal site in the secondary sensitization. The CAS model system using mice lacking the cell lineage-specific IL-13 receptor (IL-13R) demonstrated that dendritic cells (DCs), but not T or B cells, are critical in the high-affinity IgE-mediated anaphylactic response. The IL-13 signal in type 2 conventional DCs (cDC2s) enhanced the expression of MHC class II and CD301b, which was essential for the recall of type 2 responses, inducing the production of high-affinity IgE antibodies. Similar IL-13R-expressing DCs were identified in allergic rhinitis and food allergy patients with a history of AD. These findings strongly suggest the importance of DC-specific IL-13 signaling in CAS-induced allergic reactions associated with the atopic march, which is common in human AD patients.
Collapse
Affiliation(s)
- Yasuyo Harada
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba 278-0022, Japan
- YH and TS equally contribute to this manuscript as first author
| | - Takanori Sasaki
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba 278-0022, Japan
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo 160-8582, Japan
- YH and TS equally contribute to this manuscript as first author
| | - Kazushige Obata-Ninomiya
- Benaroya Research Institute, Center for Fundamental Immunology, 1201 Ninth Avenue, Seattle WA 98101-2795
| | - Takahiro Matsuyama
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 1-35-1 Sakuragaoka, Kagoshima 890-0075, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba 278-0022, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba 278-0022, Japan
| | - Takashi Watanabe
- Laboratory for Integrative Genomics, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Wu Bin
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba 278-0022, Japan
| | - Shuhei Ogawa
- Division of integrated research, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba 278-0022, Japan
| | - Sewon Ki
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshie Suzuki
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Hideki Ueno
- Department of Immunology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Steven F. Ziegler
- Benaroya Research Institute, Center for Fundamental Immunology, 1201 Ninth Avenue, Seattle WA 98101-2795
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 1-35-1 Sakuragaoka, Kagoshima 890-0075, Japan
| | - Peter D. Burrows
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kenneth Murphy
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Brian S. Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Mark Lebwohl Center for Neuroinflammation and Sensation, Marc and Jennifer Lipschultz Precision Immunology Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- Allen Discovery Center for Neuroimmune Interactions, New York, NY 10019, USA
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba 278-0022, Japan
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
9
|
Dalpati N, Rai SK, Sharma P, Sarangi PP. Integrins and integrin-driven secretory pathways as multi-dimensional regulators of tumor-associated macrophage recruitment and reprogramming in tumor microenvironment. Matrix Biol 2025; 135:55-69. [PMID: 39645091 DOI: 10.1016/j.matbio.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Integrins, a group of transmembrane receptors, play a crucial role in mediating the interactions between cells and extracellular matrix (ECM) proteins. The intracellular signaling initiated by these cell-matrix interactions in leukocytes mediates many essential cellular processes such as survival, migration, metabolism, and other immunological functions. Macrophages, as phagocytes, participate in both proinflammatory and anti-inflammatory processes, including progression. Numerous reports have shown that the integrin-regulated secretome, comprising cytokines, chemokines, growth factors, proteases, and other bioactive molecules, is a crucial modulator of macrophage functions in tumors, significantly influencing macrophage programming and reprogramming within the tumor microenvironment (TME) in addition to driving their step-by-step entry process into tumor tissue spaces. Importantly, studies have demonstrated a pivotal role for integrin receptor-mediated secretome and associated signaling pathways in functional reprogramming from anti-tumorigenic to pro-tumorigenic phenotype in tumor-associated macrophages (TAMs). In this comprehensive review, we have provided an in-depth analysis of the latest findings of various key pathways, mediators, and signaling cascades associated with integrin-driven polarization of macrophages in tumors. This manuscript will provide an updated understanding of the modulation of inflammatory monocytes/ macrophages and TAMs by integrin-driven secretory pathways in various functions such as migration, differentiation, and their role in tumor progression, angiogenesis, and metastasis.
Collapse
Affiliation(s)
- Nibedita Dalpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Shubham Kumar Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Prerna Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Pranita P Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
10
|
Parham E, Ahmad M, Falasca M. Haematological Manifestations of SARS-CoV-2: Insights into Erythropoiesis, Hepcidin Regulation, and Cytokine Storm. Int J Mol Sci 2025; 26:874. [PMID: 39940645 PMCID: PMC11817086 DOI: 10.3390/ijms26030874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a respiratory disease that can range in presentation from mild symptoms to severe conditions such as pneumonia and acute respiratory distress syndrome. SARS-CoV-2, a single-stranded RNA virus, spreads through aerosols and respiratory droplets. It enters human cells by binding to the angiotensin-converting enzyme 2 receptor, leading to various complications, including significant alterations in red blood cells and potential disruptions in haemoglobin function and oxygen transport. During infection, the interaction between hypoxia, inflammation, and haematopoiesis affects erythropoiesis at multiple levels. Hypoxia and inflammation, resulting from lung complications and a reduced red blood cell count, influence the regulation of hepcidin, a key regulator of iron levels in the blood. Elevated hepcidin levels are associated with hypoxia and the suppression of erythroferrone, a hormone that normally inhibits hepcidin production. Despite high levels of inflammation, patients in intensive care units often exhibit elevated ferritin levels, which, rather than indicating low hepcidin, suggest disrupted iron metabolism and the development of severe anaemia. Iron is kept in stores, likely due to paradoxically high hepcidin levels, which explains the elevated ferritin measurements. An increase in immature blood cells and a decrease in CD71+ erythroid cells are observed. The elevated levels of CD71+ erythroid cells highlight their dual role in modulating hyper-inflammation and immune response during disease progression. This review examines the pathway by which SARS-CoV-2 affects red blood cell production and the haematopoietic system and how it triggers cytokine storms through interleukins, immature blood cells, and CD71+ erythroid cells. Understanding these processes provides novel pathways for managing haematological manifestations and immune responses in patients with COVID-19.
Collapse
Affiliation(s)
- Elahi Parham
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy;
| | - Makky Ahmad
- Department of Medicine and Surgery, University of Pavia, 27100 Pavia, Italy;
| | - Marco Falasca
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy;
| |
Collapse
|
11
|
Hunt M, Torres M, Bachar-Wikstrom E, Wikstrom JD. Cellular and molecular roles of reactive oxygen species in wound healing. Commun Biol 2024; 7:1534. [PMID: 39562800 DOI: 10.1038/s42003-024-07219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024] Open
Abstract
Wound healing is a highly coordinated spatiotemporal sequence of events involving several cell types and tissues. The process of wound healing requires strict regulation, and its disruption can lead to the formation of chronic wounds, which can have a significant impact on an individual's health as well as on worldwide healthcare expenditure. One essential aspect within the cellular and molecular regulation of wound healing pathogenesis is that of reactive oxygen species (ROS) and oxidative stress. Wounding significantly elevates levels of ROS, and an array of various reactive species are involved in modulating the wound healing process, such as through antimicrobial activities and signal transduction. However, as in many pathologies, ROS play an antagonistic pleiotropic role in wound healing, and can be a pathogenic factor in the formation of chronic wounds. Whilst advances in targeting ROS and oxidative stress have led to the development of novel pre-clinical therapeutic methods, due to the complex nature of ROS in wound healing, gaps in knowledge remain concerning the specific cellular and molecular functions of ROS in wound healing. In this review, we highlight current knowledge of these functions, and discuss the potential future direction of new studies, and how these pathways may be targeted in future pre-clinical studies.
Collapse
Affiliation(s)
- Matthew Hunt
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Monica Torres
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Etty Bachar-Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Jakob D Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden.
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
12
|
Mozooni Z, Shahmohammadi A, Golestani N, Bahadorizadeh L. The Relationship Between Serum and Tissue Levels of IL-13 and TYK2 in Colorectal Cancer Patients. Immunol Invest 2024; 53:1279-1292. [PMID: 39252194 DOI: 10.1080/08820139.2024.2399581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
INTRODUCTION Colorectal cancer (CRC) is a third cause of death worldwide. The immune system plays a significant role in the tumor microenvironment and identifying its components involved in cancer development can aid in finding new biomarkers for prognosis, treatment monitoring, and immune-based therapies. Interleukin 13 (IL-13) is a cytokine produced by immune cells that has been implicated in tumor invasion, proliferation, and metastasis. Previous studies have shown that IL-13 causes the phosphorylation of Tyrosine kinase 2 (TYK2), which may contribute to the development and progression of cancer. This study investigated the levels expression of IL-13 and TYK2 in the tissue and serum of CRC patients and explored their possible association with pathological and clinical factors. METHODS 105 patients with CRC and 105 healthy individuals were involved in the study. Tissue and blood samples were collected. The quantitative Real-Time PCR (qRT-PCR) technique was used to assess the expression levels of the IL-13 and TYK2 CRC tissue samples in comparison with the adjacent control tissue. RESULT The expression levels of IL-13 were lower and TYK2 were found to be higher in CRC tissue compared to normal tissue. Additionally, serum levels of IL-13 were decreased in CRC patients while TYK2 levels were elevated. A significant negative correlation was found between the expression levels of IL-13 in both serum and tissue and the cancer stage. CONCLUSION These results suggest that IL-13 and TYKMay 2 play essential roles in CRC development and progression and may serve as potential biomarkers for early detection and treatment.
Collapse
Affiliation(s)
- Zahra Mozooni
- Institute of Immunology and Infectious Diseases, Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Nafiseh Golestani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leyla Bahadorizadeh
- Institute of Immunology and Infectious Diseases, Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Internal Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Beucher L, Gabillard-Lefort C, Baris OR, Mialet-Perez J. Monoamine oxidases: A missing link between mitochondria and inflammation in chronic diseases ? Redox Biol 2024; 77:103393. [PMID: 39405979 PMCID: PMC11525629 DOI: 10.1016/j.redox.2024.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024] Open
Abstract
The role of mitochondria spans from the regulation of the oxidative phosphorylation, cell metabolism and survival/death pathways to a more recently identified function in chronic inflammation. In stress situations, mitochondria release some pro-inflammatory mediators such as ATP, cardiolipin, reactive oxygen species (ROS) or mitochondrial DNA, that are believed to participate in chronic diseases and aging. These mitochondrial Damage-Associated Molecular Patterns (mito-DAMPs) can modulate specific receptors among which TLR9, NLRP3 and cGAS-STING, triggering immune cells activation and sterile inflammation. In order to counter the development of chronic diseases, a better understanding of the underlying mechanisms of low grade inflammation induced by mito-DAMPs is needed. In this context, monoamine oxidases (MAO), the mitochondrial enzymes that degrade catecholamines and serotonin, have recently emerged as potent regulators of chronic inflammation in obesity-related disorders, cardiac diseases, cancer, rheumatoid arthritis and pulmonary diseases. The role of these enzymes in inflammation embraces their action in both immune and non-immune cells, where they regulate monoamines levels and generate toxic ROS and aldehydes, as by-products of enzymatic reaction. Here, we discuss the more recent advances on the role and mechanisms of action of MAOs in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Lise Beucher
- Univ Angers, Inserm, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, F-49000, France
| | | | - Olivier R Baris
- Univ Angers, Inserm, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, F-49000, France
| | - Jeanne Mialet-Perez
- Univ Angers, Inserm, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, F-49000, France.
| |
Collapse
|
14
|
Pereira da Fonseca A, Traidl S, Gutzmer R, Schaper-Gerhardt K, Werfel T, Mommert S. Histamine and Th2 cytokines independently and synergistically upregulate MMP12 expression in human M2 macrophages. Front Immunol 2024; 15:1429009. [PMID: 39502691 PMCID: PMC11536267 DOI: 10.3389/fimmu.2024.1429009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/30/2024] [Indexed: 11/08/2024] Open
Abstract
Beyond Th2 cells and various immune cells, M2 macrophages have been identified in lesional skin of atopic dermatitis (AD) indicating their involvement in the disease's underlying mechanisms. MMP12, a matrix-degrading enzyme, which is predominantly produced by macrophages, is increased in skin lesions of AD patients. In this study we investigated the expression of MMP12 mRNA in lesional AD skin at single cell level through RNA sequencing (scRNA-seq) and the expression of MMP12 in M2 macrophages from healthy individuals and AD patients in response to Th2 cytokines and histamine using quantitative PCR and ELISA. Additionally, we analyzed macrophages from dupilumab-treated AD patients using the same methods to assess the influence of Th2 cytokines on MMP12 expression ex-vivo. ScRNA-seq identified macrophages as the primary producers of MMP12 in lesional AD skin. In-vitro, both MMP12 mRNA and protein expression were significantly increased in monocytes during differentiation to M2 macrophages in the presence of histamine, of Th2 cytokines or of Th2 cytokines in combination with histamine. In M2 macrophages obtained from dupilumab-treated AD patients, the upregulation of MMP12 expression by IL-4 and IL-13 was attenuated. Our findings unveil a novel mechanism whereby Th2 cytokines and histamine regulate MMP12 expression, potentially impacting skin barrier homeostasis in AD.
Collapse
Affiliation(s)
| | - Stephan Traidl
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Ralf Gutzmer
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, Minden, Germany
| | - Katrin Schaper-Gerhardt
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, Minden, Germany
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Susanne Mommert
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Stewart TJ, Farrell J, Frew JW. A systematic review of case-control studies of cytokines in blister fluid and skin tissue of patients with Stevens Johnson syndrome and toxic epidermal necrolysis. Australas J Dermatol 2024; 65:491-504. [PMID: 38831709 DOI: 10.1111/ajd.14329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
Stevens Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are severe cutaneous adverse reactions characterised by keratinocyte apoptosis, necroptosis and epidermal detachment. Several cytokines and cytotoxic proteins have been shown to be elevated in the blood and skin of SJS/TEN sufferers and biologics such as intravenous immune globulin and tumour necrosis factor (TNF)-alpha inhibitors have demonstrated good therapeutic potential. The exact pathogenic model of SJS/TEN however remains elusive. This systematic review aimed to evaluate the case-control studies of cytokines and cytotoxic proteins in the blister fluid and skin of adults with Stevens Johnson syndrome and/or toxic epidermal necrolysis. This review was registered with INPLASY and conducted in accordance with the PRISMA reporting guidelines. Potential bias was assessed using the NIH criteria. Eleven articles describing results from 96 cases and 170 controls were included. Fas, Fas ligand, Interleukin (IL)-8 and B-cell lymphoma (Bcl)-2 were elevated in SJS/TEN blister fluid and skin tissue, compared with healthy controls. IL-2, IL-6, TNF-alpha, tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), interferon-gamma and matrix metalloproteinase-2 were elevated in SJS/TEN blister fluid compared with fluid sampled from lesional controls. Granulysin, IL-33, TGF-beta-1 and IL-13 were elevated in SJS/TEN skin tissue compared with lesional lichen planus tissue, as was IL-13, IFN-gamma, IL-2 and IL-5, when compared with erythema multiforme tissue. A wide array of cytokines and cytotoxic proteins are present at higher concentrations in the blister fluid and skin tissue of SJS/TEN patients compared with healthy and lesional controls. Our findings suggest that these proteins may be pathogenic, as well as possibly markers for diagnosis, disease severity and course. They may also prove to be useful therapeutic targets. More research is needed.
Collapse
Affiliation(s)
- Thomas Jonathan Stewart
- Department of Dermatology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- School of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Joshua Farrell
- Department of Dermatology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - John Walter Frew
- School of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Dermatology, Liverpool Hospital, Liverpool, New South Wales, Australia
| |
Collapse
|
16
|
Datta C, Das P, Dutta S, Prasad T, Banerjee A, Gehlot S, Ghosal A, Dhabal S, Biswas P, De D, Chaudhuri S, Bhattacharjee A. AMPK activation reduces cancer cell aggressiveness via inhibition of monoamine oxidase A (MAO-A) expression/activity. Life Sci 2024; 352:122857. [PMID: 38914305 DOI: 10.1016/j.lfs.2024.122857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024]
Abstract
AIM AMPK can be considered as an important target molecule for cancer for its unique ability to directly recognize cellular energy status. The main aim of this study is to explore the role of different AMPK activators in managing cancer cell aggressiveness and to understand the mechanistic details behind the process. MAIN METHODS First, we explored the AMPK expression pattern and its significance in different subtypes of lung cancer by accessing the TCGA data sets for LUNG, LUAD and LUSC patients and then established the correlation between AMPK expression pattern and overall survival of lung cancer patients using Kaplan-Meire plot. We further carried out several cell-based assays by employing different wet lab techniques including RT-PCR, Western Blot, proliferation, migration and invasion assays to fulfil the aim of the study. KEY FINDINGS SIGNIFICANCE: This study identifies the importance of AMPK activators as a repurposing agent for combating lung and colon cancer cell aggressiveness. It also suggests SRT-1720 as a potent repurposing agent for cancer treatment especially in NSCLC patients where a point mutation is present in LKB1.
Collapse
Affiliation(s)
- Chandreyee Datta
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Payel Das
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Subhajit Dutta
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Tuhina Prasad
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Abhineet Banerjee
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Sameep Gehlot
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Arpa Ghosal
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Sukhamoy Dhabal
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Pritam Biswas
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Debojyoti De
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Surabhi Chaudhuri
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India.
| |
Collapse
|
17
|
Umur E, Bulut SB, Yiğit P, Bayrak E, Arkan Y, Arslan F, Baysoy E, Kaleli-Can G, Ayan B. Exploring the Role of Hormones and Cytokines in Osteoporosis Development. Biomedicines 2024; 12:1830. [PMID: 39200293 PMCID: PMC11351445 DOI: 10.3390/biomedicines12081830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The disease of osteoporosis is characterized by impaired bone structure and an increased risk of fractures. There is a significant impact of cytokines and hormones on bone homeostasis and the diagnosis of osteoporosis. As defined by the World Health Organization (WHO), osteoporosis is defined as having a bone mineral density (BMD) that is 2.5 standard deviations (SD) or more below the average for young and healthy women (T score < -2.5 SD). Cytokines and hormones, particularly in the remodeling of bone between osteoclasts and osteoblasts, control the differentiation and activation of bone cells through cytokine networks and signaling pathways like the nuclear factor kappa-B ligand (RANKL)/the receptor of RANKL (RANK)/osteoprotegerin (OPG) axis, while estrogen, parathyroid hormones, testosterone, and calcitonin influence bone density and play significant roles in the treatment of osteoporosis. This review aims to examine the roles of cytokines and hormones in the pathophysiology of osteoporosis, evaluating current diagnostic methods, and highlighting new technologies that could help for early detection and treatment of osteoporosis.
Collapse
Affiliation(s)
- Egemen Umur
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Safiye Betül Bulut
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Pelin Yiğit
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Emirhan Bayrak
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Yaren Arkan
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Fahriye Arslan
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Engin Baysoy
- Department of Biomedical Engineering, Bahçeşehir University, İstanbul 34353, Türkiye
| | - Gizem Kaleli-Can
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Bugra Ayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Hauser KA, Garvey CN, Crow RS, Hossainey MRH, Howard DT, Ranganathan N, Gentry LK, Yaparla A, Kalia N, Zelle M, Jones EJ, Duttargi AN, Rollins-Smith LA, Muletz-Wolz CR, Grayfer L. Amphibian mast cells serve as barriers to chytrid fungus infections. eLife 2024; 12:RP92168. [PMID: 39082933 PMCID: PMC11290838 DOI: 10.7554/elife.92168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Global amphibian declines are compounded by deadly disease outbreaks caused by the chytrid fungus, Batrachochytrium dendrobatidis (Bd). Much has been learned about the roles of amphibian skin-produced antimicrobial components and microbiomes in controlling Bd, yet almost nothing is known about the roles of skin-resident immune cells in anti-Bd defenses. Mammalian mast cells reside within and serve as key immune sentinels in barrier tissues like skin. Accordingly, we investigated the roles of Xenopus laevis frog mast cells during Bd infections. Our findings indicate that enrichment of X. laevis skin mast cells confers anti-Bd protection and ameliorates the inflammation-associated skin damage caused by Bd infection. This includes a significant reduction in infiltration of Bd-infected skin by neutrophils, promoting mucin content within cutaneous mucus glands, and preventing Bd-mediated changes to skin microbiomes. Mammalian mast cells are known for their production of the pleiotropic interleukin-4 (IL4) cytokine and our findings suggest that the X. laevis IL4 plays a key role in manifesting the effects seen following cutaneous mast cell enrichment. Together, this work underscores the importance of amphibian skin-resident immune cells in anti-Bd defenses and illuminates a novel avenue for investigating amphibian host-chytrid pathogen interactions.
Collapse
Affiliation(s)
- Kelsey A Hauser
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Christina N Garvey
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Ryley S Crow
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Muhammad RH Hossainey
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Dustin T Howard
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Netra Ranganathan
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Lindsey K Gentry
- Center for Conservation Genomics, Smithsonian National Zoo & Conservation Biology InstituteWashingtonUnited States
| | - Amulya Yaparla
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Namarta Kalia
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Mira Zelle
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Elizabeth J Jones
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown UniversityWashingtonUnited States
| | - Anju N Duttargi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown UniversityWashingtonUnited States
| | - Louise A Rollins-Smith
- Departments of Pathology, Microbiology and Immunology, and of Pediatrics, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian National Zoo & Conservation Biology InstituteWashingtonUnited States
| | - Leon Grayfer
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| |
Collapse
|
19
|
Vizcaino Castro A, Daemen T, Oyarce C. Strategies to reprogram anti-inflammatory macrophages towards pro-inflammatory macrophages to support cancer immunotherapies. Immunol Lett 2024; 267:106864. [PMID: 38705481 DOI: 10.1016/j.imlet.2024.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Tumor-associated myeloid cells, including macrophages and myeloid-derived suppressor cells, can be highly prevalent in solid tumors and play a significant role in the development of the tumor. Therefore, myeloid cells are being considered potential targets for cancer immunotherapies. In this review, we focused on strategies aimed at targeting tumor-associated macrophages (TAMs). Most strategies were studied preclinically but we also included a limited number of clinical studies based on these strategies. We describe possible underlying mechanisms and discuss future challenges and prospects.
Collapse
Affiliation(s)
- Ana Vizcaino Castro
- Laboratory of Tumor Virology and Cancer Immunotherapy, Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Toos Daemen
- Laboratory of Tumor Virology and Cancer Immunotherapy, Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Cesar Oyarce
- Laboratory of Tumor Virology and Cancer Immunotherapy, Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
20
|
Sohrabi S, Alipour S, Ghahramanipour Z, Masoumi J, Baradaran B. STAT signaling pathways in immune cells and their associated mechanisms in cancer pathogenesis. BIOIMPACTS : BI 2024; 15:30030. [PMID: 39963570 PMCID: PMC11830145 DOI: 10.34172/bi.30030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/11/2023] [Accepted: 10/28/2023] [Indexed: 02/20/2025]
Abstract
Introduction Signal transducer and activator of transcriptions (STATs) factors as critical proteins in cell signaling regulate diverse biological processes such as differentiation and proliferation of cells. STATs have been shown to play distinct roles in modulating immune responses mediated by innate and adaptive immune cell subsets due to their significant roles in cytokine signaling. Methods In the current study, we review recent studies on the contribution of individual STAT proteins to cytokine signaling, development, and activity of diverse immune cells that constitute the whole immune system and help its performance against endogenous or exogenous agents with a particular focus on meaningful STAT factor in each of innate and adaptive immune cells' subsets to clarify their function in favor of the tumor or against it. Results Dysregulation of signaling pathways in the immune cells is associated with various immune disorders, such as the inability of immune system cells in the effective destruction of cancerous cells. Increase of knowledge about these pathways' functions is essential to understand how they can be effectively targeted to eliminate tumors. Conclusion The majority of immune cells use the Jak/STAT signaling pathway, which is one of the most important signaling pathways with a role in induction of proper immune responses. Since each of the STAT factors has a specific role in diverse immune cells' subsets, appropriate targeting of them can be a promising strategy for patients who suffer from immune system disorders; specifically it can be beneficial as an approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Sohrabi S, Masoumi J, Naseri B, Ghorbaninezhad F, Alipour S, Kazemi T, Ahmadian Heris J, Aghebati Maleki L, Basirjafar P, Zandvakili R, Doustvandi MA, Baradaran B. STATs signaling pathways in dendritic cells: As potential therapeutic targets? Int Rev Immunol 2024; 43:138-159. [PMID: 37886903 DOI: 10.1080/08830185.2023.2274576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APCs), including heterogenous populations with phenotypic and functional diversity that coordinate bridging innate and adaptive immunity. Signal transducer and activator of transcriptions (STAT) factors as key proteins in cytokine signaling were shown to play distinct roles in the maturation and antigen presentation of DCs and play a pivotal role in modulating immune responses mediated by DCs such as differentiation of T cells to T helper (Th) 1, Th2 or regulatory T (Treg) cells. This review sheds light on the importance of STAT transcription factors' signaling pathways in different subtypes of DCs and highlights their targeting potential usages for improving DC-based immunotherapies for patients who suffer from cancer or diverse autoimmune conditions according to the type of the STAT transcription factor and its specific activating or inhibitory agent.
Collapse
Affiliation(s)
- Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Pedram Basirjafar
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Raziyeh Zandvakili
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Volk-Draper L, Athaiya S, Espinosa Gonzalez M, Bhattarai N, Wilber A, Ran S. Tumor microenvironment restricts IL-10 induced multipotent progenitors to myeloid-lymphatic phenotype. PLoS One 2024; 19:e0298465. [PMID: 38640116 PMCID: PMC11029653 DOI: 10.1371/journal.pone.0298465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/24/2024] [Indexed: 04/21/2024] Open
Abstract
Lymphangiogenesis is induced by local pro-lymphatic growth factors and bone marrow (BM)-derived myeloid-lymphatic endothelial cell progenitors (M-LECP). We previously showed that M-LECP play a significant role in lymphangiogenesis and lymph node metastasis in clinical breast cancer (BC) and experimental BC models. We also showed that differentiation of mouse and human M-LECP can be induced through sequential activation of colony stimulating factor-1 (CSF-1) and Toll-like receptor-4 (TLR4) pathways. This treatment activates the autocrine interleukin-10 (IL-10) pathway that, in turn, induces myeloid immunosuppressive M2 phenotype along with lymphatic-specific proteins. Because IL-10 is implicated in differentiation of numerous lineages, we sought to determine whether this pathway specifically promotes the lymphatic phenotype or multipotent progenitors that can give rise to M-LECP among other lineages. Analyses of BM cells activated either by CSF-1/TLR4 ligands in vitro or orthotopic breast tumors in vivo showed expansion of stem/progenitor population and coincident upregulation of markers for at least four lineages including M2-macrophage, lymphatic endothelial, erythroid, and T-cells. Induction of cell plasticity and multipotency was IL-10 dependent as indicated by significant reduction of stem cell markers and those for multiple lineages in differentiated cells treated with anti-IL-10 receptor (IL-10R) antibody or derived from IL-10R knockout mice. However, multipotent CD11b+/Lyve-1+/Ter-119+/CD3e+ progenitors detected in BM appeared to split into a predominant myeloid-lymphatic fraction and minor subsets expressing erythroid and T-cell markers upon establishing tumor residence. Each sub-population was detected at a distinct intratumoral site. This study provides direct evidence for differences in maturation status between the BM progenitors and those reaching tumor destination. The study results suggest preferential tumor bias towards expansion of myeloid-lymphatic cells while underscoring the role of IL-10 in early BM production of multipotent progenitors that give rise to both hematopoietic and endothelial lineages.
Collapse
Affiliation(s)
- Lisa Volk-Draper
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
| | - Shaswati Athaiya
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
| | - Maria Espinosa Gonzalez
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
| | - Nihit Bhattarai
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
| | - Andrew Wilber
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
- Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States of America
| | - Sophia Ran
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
- Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States of America
| |
Collapse
|
23
|
Yang Q, Barbachano-Guerrero A, Fairchild LM, Rowland TJ, Dowell RD, Allen MA, Warren CJ, Sawyer SL. Macrophages derived from human induced pluripotent stem cells (iPSCs) serve as a high-fidelity cellular model for investigating HIV-1, dengue, and influenza viruses. J Virol 2024; 98:e0156323. [PMID: 38323811 PMCID: PMC10949493 DOI: 10.1128/jvi.01563-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Macrophages are important target cells for diverse viruses and thus represent a valuable system for studying virus biology. Isolation of primary human macrophages is done by culture of dissociated tissues or from differentiated blood monocytes, but these methods are both time consuming and result in low numbers of recovered macrophages. Here, we explore whether macrophages derived from human induced pluripotent stem cells (iPSCs)-which proliferate indefinitely and potentially provide unlimited starting material-could serve as a faithful model system for studying virus biology. Human iPSC-derived monocytes were differentiated into macrophages and then infected with HIV-1, dengue virus, or influenza virus as model human viruses. We show that iPSC-derived macrophages support the replication of these viruses with kinetics and phenotypes similar to human blood monocyte-derived macrophages. These iPSC-derived macrophages were virtually indistinguishable from human blood monocyte-derived macrophages based on surface marker expression (flow cytometry), transcriptomics (RNA sequencing), and chromatin accessibility profiling. iPSC lines were additionally generated from non-human primate (chimpanzee) fibroblasts. When challenged with dengue virus, human and chimpanzee iPSC-derived macrophages show differential susceptibility to infection, thus providing a valuable resource for studying the species-tropism of viruses. We also show that blood- and iPSC-derived macrophages both restrict influenza virus at a late stage of the virus lifecycle. Collectively, our results substantiate iPSC-derived macrophages as an alternative to blood monocyte-derived macrophages for the study of virus biology. IMPORTANCE Macrophages have complex relationships with viruses: while macrophages aid in the removal of pathogenic viruses from the body, macrophages are also manipulated by some viruses to serve as vessels for viral replication, dissemination, and long-term persistence. Here, we show that iPSC-derived macrophages are an excellent model that can be exploited in virology.
Collapse
Affiliation(s)
- Qing Yang
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | | | - Laurence M. Fairchild
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Teisha J. Rowland
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Robin D. Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Linda Crnic Institute for Down Syndrome Boulder Branch, BioFrontiers Institute, Boulder, Colorado, USA
- Department of Computer Science, University of Colorado Boulder, Boulder, Colorado, USA
| | - Mary A. Allen
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Linda Crnic Institute for Down Syndrome Boulder Branch, BioFrontiers Institute, Boulder, Colorado, USA
| | - Cody J. Warren
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Sara L. Sawyer
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
24
|
Yuan Z, Jiang D, Yang M, Tao J, Hu X, Yang X, Zeng Y. Emerging Roles of Macrophage Polarization in Osteoarthritis: Mechanisms and Therapeutic Strategies. Orthop Surg 2024; 16:532-550. [PMID: 38296798 PMCID: PMC10925521 DOI: 10.1111/os.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
Osteoarthritis (OA) is the most common chronic degenerative joint disease in middle-aged and elderly people, characterized by joint pain and dysfunction. Macrophages are key players in OA pathology, and their activation state has been studied extensively. Various studies have suggested that macrophages might respond to stimuli in their microenvironment by changing their phenotypes to pro-inflammatory or anti-inflammatory phenotypes, which is called macrophage polarization. Macrophages accumulate and become polarized (M1 or M2) in many tissues, such as synovium, adipose tissue, bone marrow, and bone mesenchymal tissues in joints, while resident macrophages as well as other stromal cells, including fibroblasts, chondrocytes, and osteoblasts, form the joint and function as an integrated unit. In this study, we focus exclusively on synovial macrophages, adipose tissue macrophages, and osteoclasts, to investigate their roles in the development of OA. We review recent key findings related to macrophage polarization and OA, including pathogenesis, molecular pathways, and therapeutics. We summarize several signaling pathways in macrophage reprogramming related to OA, including NF-κB, MAPK, TGF-β, JAK/STAT, PI3K/Akt/mTOR, and NLRP3. Of note, despite the increasing availability of treatments for osteoarthritis, like intra-articular injections, surgery, and cellular therapy, the demand for more effective clinical therapies has remained steady. Therefore, we also describe the current prospective therapeutic methods that deem macrophage polarization to be a therapeutic target, including physical stimulus, chemical compounds, and biological molecules, to enhance cartilage repair and alleviate the progression of OA.
Collapse
Affiliation(s)
- Zimu Yuan
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Decheng Jiang
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Mengzhu Yang
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Jie Tao
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Xin Hu
- Orthopedic Research Institute, Department of OrthopedicsWest China Hospital, Sichuan UniversityChengduChina
| | - Xiao Yang
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduChina
| | - Yi Zeng
- Orthopedic Research Institute, Department of OrthopedicsWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
25
|
Ma Y, Chen H, Li H, Zhao Z, An Q, Shi C. Targeting monoamine oxidase A: a strategy for inhibiting tumor growth with both immune checkpoint inhibitors and immune modulators. Cancer Immunol Immunother 2024; 73:48. [PMID: 38349393 PMCID: PMC10864517 DOI: 10.1007/s00262-023-03622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/22/2023] [Indexed: 02/15/2024]
Abstract
Monoamine oxidase A (MAOA) is a membrane-bound mitochondrial enzyme present in almost all vertebrate tissues that catalyzes the degradation of biogenic and dietary-derived monoamines. MAOA is known for regulating neurotransmitter metabolism and has been implicated in antitumor immune responses. In this review, we retrospect that MAOA inhibits the activities of various types of tumor-associated immune cells (such as CD8+ T cells and tumor-associated macrophages) by regulating their intracellular monoamines and metabolites. Developing novel MAOA inhibitor drugs and exploring multidrug combination strategies may enhance the efficacy of immune governance. Thus, MAOA may act as a novel immune checkpoint or immunomodulator by influencing the efficacy and effectiveness of immunotherapy. In conclusion, MAOA is a promising immune target that merits further in-depth exploration in preclinical and clinical settings.
Collapse
Affiliation(s)
- Yifan Ma
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
- Gansu University of Traditional Chinese Medicine, Lanzhou, 730030, Gansu, People's Republic of China
| | - Hanmu Chen
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
- School of Basic Medical Sciences, Medical College of Yan'an University, 580 Bao-Ta Street, Yanan, 716000, Shaanxi, People's Republic of China
| | - Hui Li
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Zhite Zhao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Qingling An
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.
| |
Collapse
|
26
|
Wang J, Tian F, Cao L, Du R, Tong J, Ding X, Yuan Y, Wang C. Macrophage polarization in spinal cord injury repair and the possible role of microRNAs: A review. Heliyon 2023; 9:e22914. [PMID: 38125535 PMCID: PMC10731087 DOI: 10.1016/j.heliyon.2023.e22914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The prevention, treatment, and rehabilitation of spinal cord injury (SCI) have always posed significant medical challenges. After mechanical injury, disturbances in microcirculation, edema formation, and the generation of free radicals lead to additional damage, impeding effective repair processes and potentially exacerbating further dysfunction. In this context, inflammatory responses, especially the activation of macrophages, play a pivotal role. Different phenotypes of macrophages have distinct effects on inflammation. Activation of classical macrophage cells (M1) promotes inflammation, while activation of alternative macrophage cells (M2) inhibits inflammation. The polarization of macrophages is crucial for disease healing. A non-coding RNA, known as microRNA (miRNA), governs the polarization of macrophages, thereby reducing inflammation following SCI and facilitating functional recovery. This study elucidates the inflammatory response to SCI, focusing on the infiltration of immune cells, specifically macrophages. It examines their phenotype and provides an explanation of their polarization mechanisms. Finally, this paper introduces several well-known miRNAs that contribute to macrophage polarization following SCI, including miR-155, miR-130a, and miR-27 for M1 polarization, as well as miR-22, miR-146a, miR-21, miR-124, miR-223, miR-93, miR-132, and miR-34a for M2 polarization. The emphasis is placed on their potential therapeutic role in SCI by modulating macrophage polarization, as well as the present developments and obstacles of miRNA clinical therapy.
Collapse
Affiliation(s)
- Jiawei Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Feng Tian
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Lili Cao
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Ruochen Du
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Jiahui Tong
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Xueting Ding
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Yitong Yuan
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Chunfang Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| |
Collapse
|
27
|
Marella S, Sharma A, Ganesan V, Ferrer-Torres D, Krempski JW, Idelman G, Clark S, Nasiri Z, Vanoni S, Zeng C, Dlugosz AA, Zhou H, Wang S, Doyle AD, Wright BL, Spence JR, Chehade M, Hogan SP. IL-13-induced STAT3-dependent signaling networks regulate esophageal epithelial proliferation in eosinophilic esophagitis. J Allergy Clin Immunol 2023; 152:1550-1568. [PMID: 37652141 PMCID: PMC11102758 DOI: 10.1016/j.jaci.2023.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Basal zone hyperplasia (BZH) and dilated intercellular spaces (DISs) are thought to contribute to the clinical manifestations of eosinophilic esophagitis (EoE); however, the molecular pathways that drive BZH remain largely unexplored. OBJECTIVE We sought to define the role of IL-13-induced transcriptional programs in esophageal epithelial proliferation in EoE. METHODS We performed RNA sequencing, bioinformatics, Western blot, reverse transcriptase quantitative PCR, and histologic analyses on esophageal biopsies from healthy control and patients with EoE, primary esophageal cells derived from patients with EoE, and IL-13-stimulated esophageal epithelial keratinocytes grown at the air-liquid interface (EPC2-ALI). Genetic (shRNA) and pharmacologic (proteolysis-targeting chimera degrader) approaches and in vivo model of IL-13-induced esophageal epithelial remodeling (Krt5-rtTA x tetO-IL-13Tg) were used to define the role of signal transducer and activator of transcription 3 (STAT3) and STAT6 and secreted frizzled-related protein 1 (SFRP1) in esophageal epithelial proliferation. RESULTS RNA-sequencing analysis of esophageal biopsies (healthy control vs EoE) and EPC2-ALI revealed 82 common differentially expressed genes that were enriched for putative STAT3 target genes. In vitro and in vivo analyses revealed a link between IL-13-induced STAT3 and STAT6 phosphorylation, SFRP1 mRNA expression, and esophageal epithelial proliferation. In vitro studies showed that IL-13-induced esophageal epithelial proliferation was STAT3-dependent and regulated by the STAT3 target SFRP1. SFRP1 mRNA is increased in esophageal biopsies from patients with active EoE compared with healthy controls or patients in remission and identifies an esophageal suprabasal epithelial cell subpopulation that uniquely expressed the core EoE proinflammatory transcriptome genes (CCL26, ALOX15, CAPN14, ANO1, and TNFAIP6). CONCLUSIONS These studies identify SFRP1 as a key regulator of IL-13-induced and STAT3-dependent esophageal proliferation and BZH in EoE and link SFRP1+ esophageal epithelial cells with the proinflammatory and epithelial remodeling response in EoE.
Collapse
Affiliation(s)
- Sahiti Marella
- Department of Pathology, University of Michigan, Ann Arbor, Mich
| | - Ankit Sharma
- Department of Pathology, University of Michigan, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Varsha Ganesan
- Department of Pathology, University of Michigan, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | | | - James W Krempski
- Department of Pathology, University of Michigan, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Gila Idelman
- Department of Pathology, University of Michigan, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Sydney Clark
- Department of Pathology, University of Michigan, Ann Arbor, Mich
| | - Zena Nasiri
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Mich
| | - Simone Vanoni
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Chang Zeng
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andrej A Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | - Haibin Zhou
- Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, Mich
| | - Shaomeng Wang
- Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, Mich
| | - Alfred D Doyle
- Division of Allergy, Asthma and Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Benjamin L Wright
- Division of Allergy, Asthma and Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz; Section of Allergy and Immunology, Division of Pulmonology, Phoenix Children's Hospital, Phoenix, Ariz
| | - Jason R Spence
- Internal Medicine, University of Michigan, Ann Arbor, Mich
| | - Mirna Chehade
- Mount Sinai Center for Eosinophilic Disorders, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Simon P Hogan
- Department of Pathology, University of Michigan, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
28
|
Xiang X, Zhang Z, Liu Y, Xu W, Gong J, Yu S, Zhang L, Jiang T. Circulating Inflammatory Factor Levels in the Early Phase of COVID-19 are Associated with the Progression of Respiratory Failure: A Single-Center Retrospective Study. J Inflamm Res 2023; 16:5249-5260. [PMID: 38026262 PMCID: PMC10656869 DOI: 10.2147/jir.s430221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose To evaluate the potential relationships between serum interleukin (IL)-2, IL-4, IL-6, IL-10, IL-17, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α levels and occurrence of respiratory failure in patients with early-stage COVID-19 disease. Patients and Methods We analyzed clinical characteristics, laboratory parameters, and immunoinflammatory markers in 302 patients diagnosed with SARS-CoV-2 infection who required hospitalization at Changshu Hospital of Nantong University. IL-2, IL-4, IL-6, IL-10, IL-17, IFN-γ, and TNF-α levels in the peripheral blood of patients hospitalized five days after disease onset were measured using multiplex bead-based flow fluorescent immunoassay (MBFFI). Results Patients with respiratory failure had higher serum IL-4 [0 (0, 0.54) pg/mL], IL-6 [40.76 (12.33, 90.28) pg/mL], IL-10 [6.65 (4.12, 11.34) pg/mL], and IL-17 [9.48 (4.31, 12.13) pg/mL] levels than patients without respiratory failure (P=0.042, P<0.0001, P=0.012, and P=0.036, respectively). Serum IL-2, IFN-γ, and TNF-α levels were not significantly different between the two groups. The occurrence of respiratory failure was positively correlated with sex (R=0.122, P=0.034), lactic acid (R=0.193, P=0.007), white blood cell count (R=0.121, P=0.038), erythrocyte distribution width (R=0.131, P=0.024), thyrocalcitonin (R=0.280, P<0.0001), and D-dimer levels (R=0.214, P<0.0001) but negatively correlated with oxygen partial pressure (R=-0.208, P=0.004), oxygen saturation (R=-0.220, P=0.002), lymphocyte count (R=-0.129, P=0.026), and calcium (R=-0.152, P=0.042). Among the immunoinflammatory biomarkers, the occurrence of respiratory failure was positively correlated with IL-4 (R=-0.117, P=0.042), IL-6 (R=0.206, P<0.0001), IL-10 (R=0.145, P=0.012), and IL-17 (R=0.121, P=0.036) levels. Conclusion Serum levels of pro-inflammatory cytokines IL-6 and IL-17 and anti-inflammatory cytokines IL-4 and IL-10 were significantly elevated in patients with respiratory failure and weakly positively correlated with the occurrence of respiratory failure. Further studies are required to explore these key immune mechanisms to help clinicians better manage acute complications, long-term sequelae, and possible future COVID-19 variants and be flexible in managing future epidemics and similar public health threats.
Collapse
Affiliation(s)
- Xiaoli Xiang
- Department of Key Laboratory, Affiliated Changshu Hospital of Nantong University, Changshu, People’s Republic of China
- Department of Ophthalmology, Affiliated Changshu Hospital of Nantong University, Changshu, People’s Republic of China
| | - Zhicheng Zhang
- Department of Key Laboratory, Affiliated Changshu Hospital of Nantong University, Changshu, People’s Republic of China
| | - Ying Liu
- Department of Key Laboratory, Affiliated Changshu Hospital of Nantong University, Changshu, People’s Republic of China
| | - Wenxuan Xu
- Department of Key Laboratory, Affiliated Changshu Hospital of Nantong University, Changshu, People’s Republic of China
| | - Ju Gong
- Department of Emergency Medicine, Affiliated Changshu Hospital of Nantong University, Changshu, People’s Republic of China
| | - Sheng Yu
- Department of Critical Care Medicine, Affiliated Changshu Hospital of Nantong University, Changshu, People’s Republic of China
| | - Lan Zhang
- Information Center, Affiliated Changshu Hospital of Nantong University, Changshu, People’s Republic of China
| | - Tingwang Jiang
- Department of Key Laboratory, Affiliated Changshu Hospital of Nantong University, Changshu, People’s Republic of China
| |
Collapse
|
29
|
Scott TE, Lewis CV, Zhu M, Wang C, Samuel CS, Drummond GR, Kemp-Harper BK. IL-4 and IL-13 induce equivalent expression of traditional M2 markers and modulation of reactive oxygen species in human macrophages. Sci Rep 2023; 13:19589. [PMID: 37949903 PMCID: PMC10638413 DOI: 10.1038/s41598-023-46237-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
In cardiovascular disease, pathological and protective roles are reported for the Th2 cytokines IL-4 and IL-13, respectively. We hypothesised that differential effects on macrophage function are responsible. Type I and II receptor subunit (IL-2Rγ, IL-4Rα and IL-13Rα1) and M2 marker (MRC-1, CCL18, CCL22) expression was assessed via RT-qPCR in IL-4- and IL-13-treated human primary macrophages. Downstream signalling was evaluated via STAT1, STAT3 and STAT6 inhibitors, and IL-4- and IL-13-induced reactive oxygen species (ROS) generation assessed. IL-4 and IL-13 exhibited equivalent potency and efficacy for M2 marker induction, which was attenuated by STAT3 inhibition. Both cytokines enhanced PDBu-stimulated superoxide generation however this effect was 17% greater with IL-4 treatment. Type I IL-4 receptor expression was increased on M1-like macrophages but did not lead to a differing ability of these cytokines to modulate M1-like macrophage superoxide production. Overall, this study did not identify major differences in the ability of IL-4 and IL-13 to modulate macrophage function, suggesting that the opposing roles of these cytokines in cardiovascular disease are likely to be via actions on other cell types. Future studies should directly compare IL-4 and IL-13 in vivo to more thoroughly investigate the therapeutic validity of selective targeting of these cytokines.
Collapse
Affiliation(s)
- Tara E Scott
- Cardiovascular Disease Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Caitlin V Lewis
- Cardiovascular Disease Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mingyu Zhu
- Cardiovascular Disease Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Chao Wang
- Cardiovascular Disease Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Barbara K Kemp-Harper
- Cardiovascular Disease Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
30
|
Hamza A, Cho JY, Cap KC, Hossain AJ, Kim JG, Park JB. Extracellular pyruvate kinase M2 induces cell migration through p-Tyr42 RhoA-mediated superoxide generation and epithelial-mesenchymal transition. Free Radic Biol Med 2023; 208:614-629. [PMID: 37722568 DOI: 10.1016/j.freeradbiomed.2023.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
In the tumor microenvironment (TME), communication between cancer cells and tumor-associated macrophages (TAMs) through secreted extracellular proteins promotes cancer progression. Here, we observed that co-culturing cancer cells (4T1) and macrophage cells (Raw264.7) significantly enhanced superoxide production in both cell types. Using MALDI-TOF, we identified PKM2 as a highly secreted protein by Raw264.7 cells and bone marrow-derived monocytes. The extracellular recombinant PKM2 protein not only enhanced cancer cell migration and invasion but also increased superoxide production. Additionally, PKM2 was found to associate with the cell surface, and its binding to integrin α5/β1 receptor was inhibited by antibodies specifically targeting it. Furthermore, we investigated downstream signaling pathways involved in PKM2-induced superoxide production. We found that knock-down of RhoA and p47phox using siRNAs effectively abolished superoxide generation in response to extracellular PKM2. Notably, extracellular PKM2 triggered the phosphorylation of p47phox at Ser345 residue and RhoA at Tyr42 residue (p-Tyr42 RhoA). Moreover, extracellular PKM2 exerted regulatory control over the expression of key epithelial-mesenchymal transition (EMT) markers, including ZEB1, Snail1, vimentin, and E-cadherin. Interestingly, p-Tyr42 RhoA translocated to the nucleus, where it bound to the ZEB1 promoter region. In light of these findings, we propose that extracellular PKM2 within the TME plays a critical role in tumorigenesis by promoting cancer cell migration and invasion through RhoA/p47phox signaling pathway.
Collapse
Affiliation(s)
- Amir Hamza
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea
| | - Jung Yoon Cho
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea
| | - Kim Cuong Cap
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea; Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea
| | - Abu Jubayer Hossain
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea; Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea
| | - Jae-Gyu Kim
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea; Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea; Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea.
| |
Collapse
|
31
|
Villanueva-Martin G, Acosta-Herrera M, Carmona EG, Kerick M, Ortego-Centeno N, Callejas-Rubio JL, Mages N, Klages S, Börno S, Timmermann B, Bossini-Castillo L, Martin J. Non-classical circulating monocytes expressing high levels of microsomal prostaglandin E2 synthase-1 tag an aberrant IFN-response in systemic sclerosis. J Autoimmun 2023; 140:103097. [PMID: 37633117 DOI: 10.1016/j.jaut.2023.103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
Systemic sclerosis (SSc) is a complex disease that affects the connective tissue, causing fibrosis. SSc patients show altered immune cell composition and activation in the peripheral blood (PB). PB monocytes (Mos) are recruited into tissues where they differentiate into macrophages, which are directly involved in fibrosis. To understand the role of CD14+ PB Mos in SSc, a single-cell transcriptome analysis (scRNA-seq) was conducted on 8 SSc patients and 8 controls. Using unsupervised clustering methods, CD14+ cells were assigned to 11 clusters, which added granularity to the known monocyte subsets: classical (cMos), intermediate (iMos) and non-classical Mos (ncMos) or type 2 dendritic cells. NcMos were significantly overrepresented in SSc patients and showed an active IFN-signature and increased expression levels of PTGES, in addition to monocyte motility and adhesion markers. We identified a SSc-related cluster of IRF7+ STAT1+ iMos with an aberrant IFN-response. Finally, a depletion of M2 polarised cMos in SSc was observed. Our results highlighted the potential of PB Mos as biomarkers for SSc and provided new possibilities for putative drug targets for modulating the innate immune response in SSc.
Collapse
Affiliation(s)
- Gonzalo Villanueva-Martin
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - Marialbert Acosta-Herrera
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain; Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain
| | - Elio G Carmona
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain; Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain
| | - Martin Kerick
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - Norberto Ortego-Centeno
- Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain; Department of Medicine, University of Granada, Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain
| | - Jose Luis Callejas-Rubio
- Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain
| | - Norbert Mages
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Sven Klages
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Stefan Börno
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Lara Bossini-Castillo
- Department of Genetics and Biotechnology Institute, Biomedical Research Centre (CIBM), University of Granada, 18100, Granada, Spain; Advanced Therapies and Biomedical Technologies (TEC-14), Biosanitary Research Institute Ibs. GRANADA, 18016, Granada, Spain.
| | - Javier Martin
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain.
| |
Collapse
|
32
|
Susser LI, Nguyen MA, Geoffrion M, Emerton C, Ouimet M, Khacho M, Rayner KJ. Mitochondrial Fragmentation Promotes Inflammation Resolution Responses in Macrophages via Histone Lactylation. Mol Cell Biol 2023; 43:531-546. [PMID: 37807652 PMCID: PMC10569354 DOI: 10.1080/10985549.2023.2253131] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/10/2023] [Indexed: 10/10/2023] Open
Abstract
During the inflammatory response, macrophage phenotypes can be broadly classified as pro-inflammatory/classically activated "M1", or pro-resolving/alternatively "M2" macrophages. Although the classification of macrophages is general and assumes there are distinct phenotypes, in reality macrophages exist across a spectrum and must transform from a pro-inflammatory state to a proresolving state following an inflammatory insult. To adapt to changing metabolic needs of the cell, mitochondria undergo fusion and fission, which have important implications for cell fate and function. We hypothesized that mitochondrial fission and fusion directly contribute to macrophage function during the pro-inflammatory and proresolving phases. In the present study, we find that mitochondrial length directly contributes to macrophage phenotype, primarily during the transition from a pro-inflammatory to a proresolving state. Phenocopying the elongated mitochondrial network (by disabling the fission machinery using siRNA) leads to a baseline reduction in the inflammatory marker IL-1β, but a normal inflammatory response to LPS, similar to control macrophages. In contrast, in macrophages with a phenocopied fragmented phenotype (by disabling the fusion machinery using siRNA) there is a heightened inflammatory response to LPS and increased signaling through the ATF4/c-Jun transcriptional axis compared to control macrophages. Importantly, macrophages with a fragmented mitochondrial phenotype show increased expression of proresolving mediator arginase 1 and increased phagocytic capacity. Promoting mitochondrial fragmentation caused an increase in cellular lactate, and an increase in histone lactylation which caused an increase in arginase 1 expression. These studies demonstrate that a fragmented mitochondrial phenotype is critical for the proresolving response in macrophages and specifically drive epigenetic changes via lactylation of histones following an inflammatory insult.
Collapse
Affiliation(s)
- Leah I. Susser
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- University of Ottawa Heart Institute, Ottawa, Canada
| | - My-Anh Nguyen
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- University of Ottawa Heart Institute, Ottawa, Canada
| | | | | | - Mireille Ouimet
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- University of Ottawa Heart Institute, Ottawa, Canada
| | - Mireille Khacho
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity & Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology (OISB), Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Katey J Rayner
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- University of Ottawa Heart Institute, Ottawa, Canada
- Centre for Infection, Immunity & Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
33
|
Zou Z, Li H, Yu K, Ma K, Wang Q, Tang J, Liu G, Lim K, Hooper G, Woodfield T, Cui X, Zhang W, Tian K. The potential role of synovial cells in the progression and treatment of osteoarthritis. EXPLORATION (BEIJING, CHINA) 2023; 3:20220132. [PMID: 37933282 PMCID: PMC10582617 DOI: 10.1002/exp.20220132] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/15/2023] [Indexed: 11/08/2023]
Abstract
Osteoarthritis (OA), the commonest arthritis, is characterized by the progressive destruction of cartilage, leading to disability. The Current early clinical treatment strategy for OA often centers on anti-inflammatory or analgesia medication, weight loss, improved muscular function and articular cartilage repair. Although these treatments can relieve symptoms, OA tends to be progressive, and most patients require arthroplasty at the terminal stages of OA. Recent studies have shown a close correlation between joint pain, inflammation, cartilage destruction and synovial cells. Consequently, understanding the potential mechanisms associated with the action of synovial cells in OA could be beneficial for the clinical management of OA. Therefore, this review comprehensively describes the biological functions of synovial cells, the synovium, together with the pathological changes of synovial cells in OA, and the interaction between the cartilage and synovium, which is lacking in the present literature. Additionally, therapeutic approaches based on synovial cells for OA treatment are further discussed from a clinical perspective, highlighting a new direction in the treatment of OA.
Collapse
Affiliation(s)
- Zaijun Zou
- Department of Sports MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Han Li
- Department of Sports MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Kai Yu
- Department of Bone and JointCentral Hospital of Zhuang He CityDalianLiaoningChina
| | - Ke Ma
- Department of Clinical MedicineChina Medical UniversityShenyangLiaoningChina
| | - Qiguang Wang
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduSichuanChina
| | - Junnan Tang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Guozhen Liu
- School of MedicineThe Chinese University of Hong Kong (Shenzhen)ShenzhenGuangdongChina
| | - Khoon Lim
- Christchurch Regenerative Medicine and Tissue Engineering Group (CReaTE)Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of OtagoChristchurchNew Zealand
| | - Gary Hooper
- Christchurch Regenerative Medicine and Tissue Engineering Group (CReaTE)Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of OtagoChristchurchNew Zealand
| | - Tim Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering Group (CReaTE)Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of OtagoChristchurchNew Zealand
| | - Xiaolin Cui
- Department of Sports MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
- School of MedicineThe Chinese University of Hong Kong (Shenzhen)ShenzhenGuangdongChina
- Christchurch Regenerative Medicine and Tissue Engineering Group (CReaTE)Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of OtagoChristchurchNew Zealand
| | - Weiguo Zhang
- Department of Sports MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
- Key Laboratory of Molecular Mechanisms for Repair and Remodeling of Orthopaedic DiseasesLiaoning ProvinceDalianLiaoningChina
| | - Kang Tian
- Department of Sports MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
- Key Laboratory of Molecular Mechanisms for Repair and Remodeling of Orthopaedic DiseasesLiaoning ProvinceDalianLiaoningChina
| |
Collapse
|
34
|
Yan SW, Zhang R, Guo X, Wang BN, Long SR, Liu RD, Wang ZQ, Cui J. Trichinella spiralis dipeptidyl peptidase 1 suppressed macrophage cytotoxicity by promoting M2 polarization via the STAT6/PPARγ pathway. Vet Res 2023; 54:77. [PMID: 37705099 PMCID: PMC10500742 DOI: 10.1186/s13567-023-01209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/31/2023] [Indexed: 09/15/2023] Open
Abstract
Trichinella spiralis dipeptidyl peptidase 1 (TsDPP1), or cysteine cathepsin C, is a secretory protein that is highly expressed during the infective larvae and adult worm stages in the intestines. The aim of this study was to investigate the mechanism by which recombinant TsDPP1 (rTsDPP1) activates macrophages M2 polarization and decreases macrophage cytotoxicity to kill newborn larvae via ADCC. RAW264.7 macrophages and murine peritoneal macrophages were used in this study. The results of the immunofluorescence test (IFT) and confocal microscopy showed that rTsDPP1 specifically bound to macrophages, and the binding site was localized on the cell membrane. rTsDPP1 activated macrophage M2 polarization, as demonstrated by high expression levels of Arg1 (M2 marker) and M2-related genes (IL-10, TGF-β, CD206 and Arg1) and high numbers of CD206+ macrophages. Furthermore, the expression levels of p-STAT6, STAT6 and PPARγ were obviously increased in rTsDPP1-treated macrophages, which were evidently abrogated by using a STAT6 inhibitor (AS1517499) and PPARγ antagonist (GW9662). The results indicated that rTsDPP1 promoted macrophage M2 polarization through the STAT6/PPARγ pathway. Griess reaction results revealed that rTsDPP1 suppressed LPS-induced NO production in macrophages. qPCR and flow cytometry results showed that rTsDPP1 downregulated the expression of FcγR I (CD64) in macrophages. The ability of ADCC to kill newborn larvae was significantly decreased in rTsDPP1-treated macrophages, but AS1517499 and GW9662 restored its killing capacity. Our results demonstrated that rTsDPP1 induced macrophage M2 polarization, upregulated the expression of anti-inflammatory cytokines, and inhibited macrophage-mediated ADCC via activation of the STAT6/PPARγ pathway, which is beneficial to the parasitism and immune evasion of this nematode.
Collapse
Affiliation(s)
- Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ru Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Guo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Bo Ning Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
35
|
Fiordi B, Salvestrini V, Gugliotta G, Castagnetti F, Curti A, Speiser DE, Marcenaro E, Jandus C, Trabanelli S. IL-18 and VEGF-A trigger type 2 innate lymphoid cell accumulation and pro-tumoral function in chronic myeloid leukemia. Haematologica 2023; 108:2396-2409. [PMID: 37021528 PMCID: PMC10483352 DOI: 10.3324/haematol.2022.282140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a hematologic malignancy associated to an unregulated growth of myeloid cells in bone marrow (BM) and peripheral blood (PB), characterized by the BCR-ABL1 translocation. Given the known cytokine impairment in the leukemic niche of CML, we investigated the impact of this microenvironmental dysregulation on innate lymphoid cells (ILC), whose role in cancer has recently emerged. Three ILC subsets are identified based on transcriptional profiles and cytokine secretion. We observed that interleukin 18 (IL-18) and vascular endothelial growth factor A (VEGF-A) are increased in CML patients' sera and that ILC2 are enriched in CML PB and BM. We found that IL-18 drives ILC2 proliferation and that CML ILC2 highly express CXCR4 and CXCR7 BM-homing receptors, potentially explaining their enrichment in PB and BM, respectively. Next, we showed that ILC2 are hyper-activated through a tumor-derived VEGF-Adependent mechanism, which leads to higher IL-13 secretion. In response to IL-13, leukemic cells increase their clonogenic capacity. Finally, we discovered that the pro-tumoral axis involving VEGF-A, IL-18 and ILC2 was disrupted upon tyrosine kinase inhibitor treatment, normalizing the levels of all these players in CML patients responding to therapy. Overall, our study uncovers the involvement of ILC2 in CML progression, mediated by VEGF-A and IL-18.
Collapse
Affiliation(s)
- Benedetta Fiordi
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Valentina Salvestrini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Institute of Hematology « Seràgnoli », Bologna, Italy
| | - Gabriele Gugliotta
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Institute of Hematology « Seràgnoli », Bologna, Italy
| | - Fausto Castagnetti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Institute of Hematology « Seràgnoli », Bologna, Italy
| | - Antonio Curti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Institute of Hematology « Seràgnoli », Bologna, Italy
| | - Daniel E Speiser
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Epalinges, Switzerland
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Sara Trabanelli
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
| |
Collapse
|
36
|
Žaloudíková M. Mechanisms and Effects of Macrophage Polarization and Its Specifics in Pulmonary Environment. Physiol Res 2023; 72:S137-S156. [PMID: 37565418 PMCID: PMC10660583 DOI: 10.33549/physiolres.935058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 06/09/2023] [Indexed: 12/01/2023] Open
Abstract
Macrophages are a specific group of cells found in all body tissues. They have specific characteristics in each of the tissues that correspond to the functional needs of the specific environment. These cells are involved in a wide range of processes, both pro-inflammatory and anti-inflammatory ("wound healing"). This is due to their specific capacity for so-called polarization, a phenotypic change that is, moreover, partially reversible compared to other differentiated cells of the human body. This promises a wide range of possibilities for its influence and thus therapeutic use. In this article, we therefore review the mechanisms that cause polarization, the basic classification of polarized macrophages, their characteristic markers and the effects that accompany these phenotypic changes. Since the study of pulmonary (and among them mainly alveolar) macrophages is currently the focus of scientific interest of many researchers and these macrophages are found in very specific environments, given mainly by the extremely high partial pressure of oxygen compared to other locations, which specifically affects their behavior, we will focus our review on this group.
Collapse
Affiliation(s)
- M Žaloudíková
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
37
|
Li YJ, Zhang C, Martincuks A, Herrmann A, Yu H. STAT proteins in cancer: orchestration of metabolism. Nat Rev Cancer 2023; 23:115-134. [PMID: 36596870 DOI: 10.1038/s41568-022-00537-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 01/04/2023]
Abstract
Reprogrammed metabolism is a hallmark of cancer. However, the metabolic dependency of cancer, from tumour initiation through disease progression and therapy resistance, requires a spectrum of distinct reprogrammed cellular metabolic pathways. These pathways include aerobic glycolysis, oxidative phosphorylation, reactive oxygen species generation, de novo lipid synthesis, fatty acid β-oxidation, amino acid (notably glutamine) metabolism and mitochondrial metabolism. This Review highlights the central roles of signal transducer and activator of transcription (STAT) proteins, notably STAT3, STAT5, STAT6 and STAT1, in orchestrating the highly dynamic metabolism not only of cancer cells but also of immune cells and adipocytes in the tumour microenvironment. STAT proteins are able to shape distinct metabolic processes that regulate tumour progression and therapy resistance by transducing signals from metabolites, cytokines, growth factors and their receptors; defining genetic programmes that regulate a wide range of molecules involved in orchestration of metabolism in cancer and immune cells; and regulating mitochondrial activity at multiple levels, including energy metabolism and lipid-mediated mitochondrial integrity. Given the central role of STAT proteins in regulation of metabolic states, they are potential therapeutic targets for altering metabolic reprogramming in cancer.
Collapse
Affiliation(s)
- Yi-Jia Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Chunyan Zhang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Antons Martincuks
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Andreas Herrmann
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
- Sorrento Therapeutics, San Diego, CA, USA
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
38
|
Peckert-Maier K, Langguth P, Strack A, Stich L, Mühl-Zürbes P, Kuhnt C, Drassner C, Zinser E, Wrage M, Mattner J, Steinkasserer A, Royzman D, Wild AB. CD83 expressed by macrophages is an important immune checkpoint molecule for the resolution of inflammation. Front Immunol 2023; 14:1085742. [PMID: 36875129 PMCID: PMC9975560 DOI: 10.3389/fimmu.2023.1085742] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Excessive macrophage (Mφ) activation results in chronic inflammatory responses or autoimmune diseases. Therefore, identification of novel immune checkpoints on Mφ, which contribute to resolution of inflammation, is crucial for the development of new therapeutic agents. Herein, we identify CD83 as a marker for IL-4 stimulated pro-resolving alternatively activated Mφ (AAM). Using a conditional KO mouse (cKO), we show that CD83 is important for the phenotype and function of pro-resolving Mφ. CD83-deletion in IL-4 stimulated Mφ results in decreased levels of inhibitory receptors, such as CD200R and MSR-1, which correlates with a reduced phagocytic capacity. In addition, CD83-deficient Mφ upon IL-4 stimulation, show an altered STAT-6 phosphorylation pattern, which is characterized by reduced pSTAT-6 levels and expression of the target gene Gata3. Concomitantly, functional studies in IL-4 stimulated CD83 KO Mφ reveal an increased production of pro-inflammatory mediators, such as TNF-α, IL-6, CXCL1 and G-CSF. Furthermore, we show that CD83-deficient Mφ have enhanced capacities to stimulate the proliferation of allo-reactive T cells, which was accompanied by reduced frequencies of Tregs. In addition, we show that CD83 expressed by Mφ is important to limit the inflammatory phase using a full-thickness excision wound healing model, since inflammatory transcripts (e.g. Cxcl1, Il6) were increased, whilst resolving transcripts (e.g. Ym1, Cd200r, Msr-1) were decreased in wounds at day 3 after wound infliction, which reflects the CD83 resolving function on Mφ also in vivo. Consequently, this enhanced inflammatory milieu led to an altered tissue reconstitution after wound infliction. Thus, our data provide evidence that CD83 acts as a gatekeeper for the phenotype and function of pro-resolving Mφ.
Collapse
Affiliation(s)
- Katrin Peckert-Maier
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich–Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Pia Langguth
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich–Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Astrid Strack
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich–Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich–Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich–Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Christine Kuhnt
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich–Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Christina Drassner
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich–Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Elisabeth Zinser
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich–Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Marius Wrage
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitäts-klinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitäts-klinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich–Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Dmytro Royzman
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich–Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Andreas B. Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich–Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| |
Collapse
|
39
|
Lenert ME, Szabo-Pardi TA, Burton MD. Regulatory T-cells and IL-5 mediate pain outcomes in a preclinical model of chronic muscle pain. Mol Pain 2023; 19:17448069221110691. [PMID: 35712872 PMCID: PMC9926397 DOI: 10.1177/17448069221110691] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fibromyalgia (FM) is a chronic musculoskeletal pain disorder primarily diagnosed in women. Historically, clinical literature focusing on cytokines and immune cells has been inconsistent. However, recent key studies show several layers of immune system dysfunction in FM. Preclinically, studies of the immune system have focused on monocytes with little focus on other immune cells. Importantly, T-cells are implicated in the development and resolution of chronic pain states, particularly in females. Our previous work showed that monocytes from women with FM produced more interleukin 5 (IL-5) and systemic treatment of IL-5 reversed mechanical hypersensitivity in a preclinical model of FM. Typically, IL-5 is produced by TH2-cells, so in this study we assessed T-cell populations and cytokine production in female mice using the acid-induced chronic muscle pain model of FM before and after treatment with IL-5. Two unilateral injections of pH4.0 saline, five days apart, into the gastrocnemius muscle induce long-lasting widespread pain. We found that peripheral (blood) regulatory Thelper-cells (CD4+ FOXP3+) are downregulated in pH4.0-injected mice, with no differences in tissue (lymph nodes) or CD8+ T-cell populations. We tested the analgesic properties of IL-5 using a battery of spontaneous and evoked pain measures. Interestingly, IL-5 treatment induced place preference in mice previously injected with pH4.0 saline. Mice treated with IL-5 show limited changes in T-cell populations compared to controls, with a rescue in regulatory T-cells which positively correlates with improved mechanical hypersensitivity. The experiments in this study provide novel evidence that downregulation of regulatory T-cells play a role in chronic muscle pain pathology in the acidic saline model of FM and that IL-5 signaling is a promising target for future development of therapeutics.
Collapse
Affiliation(s)
| | | | - Michael D Burton
- Michael D Burton, Neuroimmunology and Behavior Lab, Department of Neuroscience, School of Brain and Behavioral Science, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Rd., BSB 10.546, Richardson, TX 75080, USA.
| |
Collapse
|
40
|
Anemoside A3 Inhibits Macrophage M2-Like Polarization to Prevent Triple-Negative Breast Cancer Metastasis. Molecules 2023; 28:molecules28041611. [PMID: 36838599 PMCID: PMC9967222 DOI: 10.3390/molecules28041611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/15/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Triple negative breast cancer (TNBC) exhibits the characteristics of strong metastatic ability and a high recurrence rate, and M2-type macrophages play an important role in this process. Previous research data suggested that Anemoside A3 (A3), a monomeric component of Pulsatilla Chinensis, could prevent and treat TNBC by converting M0 macrophages into M1 immunogen phenotypes. This study showed that A3 significantly restrained the lung metastases of 4 T1-Luc cells with bioluminescence imaging in vivo and Hematoxylin and Eosin (H&E) staining. Meanwhile, the percentage of M2-type macrophages (CD206+ labeled cells) in the lung tissues was evidently decreased through immunohistochemical assay. We further proved that A3 markedly prevented M2-type polarization induced by IL-4 in vitro, as illustrated by the down-regulated expression of the cell surface marker CD206 protein by FACS and Arg-1, and of the Fizz1 and Ym1 genes by RT-PCR in M2-type macrophages. Furthermore, the invasion and migration of 4 T1 cells, which was promoted by the conditioned medium from M2-type macrophages, could be suppressed by A3. Luminex assay demonstrated that A3 treatment resulted in a reduction of the levels of CCL2, VEGF, CCL7, and MMP-9 in conditioned medium. Additionally, the expression of phosphorylated-STAT3 protein was inhibited by A3, which resulted in the macrophage M2-type polarization arrest, while no significant difference in JAK2 phosphorylation was detected. SiRNA transfection experiments suggested that STAT3 might be the target of A3 inhibiting M2-type polarization of macrophages. In conclusion, these results indicate that A3 could attenuate the metastasis of TNBC by inhibiting the M2-type polarization of macrophages, which may be related to the STAT3 pathway.
Collapse
|
41
|
Biswas P, Swaroop S, Dutta N, Arya A, Ghosh S, Dhabal S, Das P, Majumder C, Pal M, Bhattacharjee A. IL-13 and the hydroperoxy fatty acid 13(S)HpODE play crucial role in inducing an apoptotic pathway in cancer cells involving MAO-A/ROS/p53/p21 signaling axis. Free Radic Biol Med 2023; 195:309-328. [PMID: 36592660 DOI: 10.1016/j.freeradbiomed.2022.12.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
This study depicted the effect of IL-13 and 13(S)HpODE (the endogenous product during IL-13 activation) in the process of cancer cell apoptosis. We examined the role of both IL-13 and 13(S)HpODE in mediating apoptotic pathway in three different in vitro cellular models namely A549 lung cancer, HCT116 colorectal cancer and CCF52 GBM cells. Our data showed that IL-13 promotes apoptosis of A549 lung carcinoma cells through the involvement of 15-LO, PPARγ and MAO-A. Our observations demonstrated that IL-13/13(S)HpODE stimulate MAO-A-mediated intracellular ROS production and p53 as well as p21 induction which play a crucial role in IL-13-stimulated A549 cell apoptosis. We further showed that 13(S)HpODE promotes apoptosis of HCT116 and CCF52 cells through the up-regulation of p53 and p21 expression. Our data delineated that IL-13 stimulates p53 and p21 induction which is mediated through 15-LO and MAO-A in A549 cells. In addition, we observed that PPARγ plays a vital role in apoptosis as well as in p53 and p21 expression in A549 cells in the presence of IL-13. We validated our observations in case of an in vivo colon cancer tumorigenic study using syngeneic mice model and demonstrated that 13(S)HpODE significantly reduces solid tumor growth through the activation of apoptosis. These data thus confirmed that IL-13 > 15-LO>13(S)HpODE > PPARγ>MAO-A > ROS > p53>p21 axis has a major contribution in regulating cancer cell apoptosis and further identified 13(S)HpODE as a potential chemo-preventive agent which can improve the efficacy of cancer treatment as a combination compound.
Collapse
Affiliation(s)
- Pritam Biswas
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Surbhi Swaroop
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Naibedya Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India
| | - Aditi Arya
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India
| | - Sukhamoy Dhabal
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Payel Das
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | | | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India.
| |
Collapse
|
42
|
Poto R, Gambardella AR, Marone G, Schroeder JT, Mattei F, Schiavoni G, Varricchi G. Basophils from allergy to cancer. Front Immunol 2022; 13:1056838. [PMID: 36578500 PMCID: PMC9791102 DOI: 10.3389/fimmu.2022.1056838] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Human basophils, first identified over 140 years ago, account for just 0.5-1% of circulating leukocytes. While this scarcity long hampered basophil studies, innovations during the past 30 years, beginning with their isolation and more recently in the development of mouse models, have markedly advanced our understanding of these cells. Although dissimilarities between human and mouse basophils persist, the overall findings highlight the growing importance of these cells in health and disease. Indeed, studies continue to support basophils as key participants in IgE-mediated reactions, where they infiltrate inflammatory lesions, release pro-inflammatory mediators (histamine, leukotriene C4: LTC4) and regulatory cytokines (IL-4, IL-13) central to the pathogenesis of allergic diseases. Studies now report basophils infiltrating various human cancers where they play diverse roles, either promoting or hampering tumorigenesis. Likewise, this activity bears remarkable similarity to the mounting evidence that basophils facilitate wound healing. In fact, both activities appear linked to the capacity of basophils to secrete IL-4/IL-13, with these cytokines polarizing macrophages toward the M2 phenotype. Basophils also secrete several angiogenic factors (vascular endothelial growth factor: VEGF-A, amphiregulin) consistent with these activities. In this review, we feature these newfound properties with the goal of unraveling the increasing importance of basophils in these diverse pathobiological processes.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Adriana Rosa Gambardella
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy,Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - John T. Schroeder
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD, United States
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy,*Correspondence: Gilda Varricchi, ; Giovanna Schiavoni,
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy,Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy,*Correspondence: Gilda Varricchi, ; Giovanna Schiavoni,
| |
Collapse
|
43
|
Fu JL, Hao HF, Wang S, Jiao YN, Li PP, Han SY. Marsdenia tenacissima extract disturbs the interaction between tumor-associated macrophages and non-small cell lung cancer cells by targeting HDGF. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115607. [PMID: 35973634 DOI: 10.1016/j.jep.2022.115607] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Marsdenia tenacissima (Roxb.) Wight et Arn. is a traditional Chinese herbal medicine, and its water-soluble ingredient Marsdenia tenacissima extract (MTE), was widely used for cancer treatment. The multi-pharmacological efficacies and mechanisms of MTE in directly inhibiting tumor cells have been extensively studied. However, the anti-tumor effects of MTE in the tumor-associated macrophages (TAMs) microenvironment remain unclear. AIM OF THE STUDY To uncover the role of hepatoma-derived growth factor (HDGF) in the interaction between TAMs and non-small cell lung cancer (NSCLC) cells. To evaluate the anti-tumor effects of MTE on the vicious crosstalk between TAMs and NSCLC by targeting HDGF. MATERIALS AND METHODS HDGF-overexpression PC-9 and H292 NSCLC cell lines were constructed and verified. RNA-sequencing (RNA-seq) was performed in HDGF-overexpression PC-9 cells to probe the differential expression of genes. THP-1-derived macrophages were characterized using specific markers after stimulation with phorbol-12-myristate 13-acetate (PMA) and rhIL-4 or rhHDGF. The role of HDGF both in NSCLC cells and TAMs was determined using approaches like Western blot, qRT-PCR, ELISA, and flow cytometry. The interaction between tumor cells and TAMs were assessed by indirect co-culture H1975, PC-9 cells with M2 type macrophages. The effects of MTE on anti-tumor and macrophage polarization were evaluated in vitro and in vivo. RESULTS RNA-seq results identified IL-4 as a critical response to HDGF in NSCLC. HDGF induced macrophages polarizing toward M2 type, and promoted NSCLC cells proliferation, migration and invasion in vitro. On the one hand, HDGF dose-dependently promoted IL-4 expression in NSCLC cells. On the other hand, HDGF induced M2 macrophage polarization through the IL-4/JAK1/STAT3 signaling pathway. MTE treatment significantly decreased the expression and secretion of HDGF in NSCLC cells. Meanwhile, MTE treatment led to M2 macrophage repolarization, as evidenced by decreased expression of M2 markers and increased levels of M1 markers. Importantly, MTE treatment significantly suppressed tumor development in C57BL/6 mice bearing Lewis lung cancer (LLC) cells in vivo, accompanied by decreased plasma HDGF levels, reduced M2 macrophages infiltration and increased M1 macrophages proportion in mice tumor tissues. CONCLUSIONS HDGF upregulated IL-4 expression in NSCLC cells, and promoted M2 polarization by the IL-4/JAK1/STAT3 signaling pathway in macrophages. MTE disturbed the interaction between NSCLC and TAMs in vitro, and inhibited tumor growth in vivo, at least in part, by suppressing HDGF. Therefore, our present study revealed a novel anti-tumor mechanism of MTE through inhibiting HDGF expression and enhancing macrophage polarization from M2 to M1 phenotype.
Collapse
Affiliation(s)
- Jia-Lei Fu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Hui-Feng Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Shan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Yan-Na Jiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Ping-Ping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China.
| | - Shu-Yan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China.
| |
Collapse
|
44
|
Jiang M, Qi Y, Huang W, Lin Y, Li B. Curcumin Reprograms TAMs from a Protumor Phenotype towards an Antitumor Phenotype via Inhibiting MAO-A/STAT6 Pathway. Cells 2022; 11:3473. [PMID: 36359867 PMCID: PMC9655729 DOI: 10.3390/cells11213473] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
M1 phenotype macrophages have anticancer characteristics, whereas M2 phenotype macrophages promote tumor growth and metastasis. A higher M1/M2 ratio, therefore, has a beneficial effect on the tumor immune microenvironment, thereby inhibiting tumor growth. The natural alkaloid curcumin is found to have anticancer properties. However, the mechanism remains unclear. In this study, a cell co-culture system and M2 macrophage model were used to evaluate the effects of curcumin on tumor-associated macrophage (TAM) phenotypes. Our results demonstrate that curcumin reprogrammed the M2 macrophages by reducing the level of anti-inflammatory cytokines (TGF-β, Arg-1, and IL-10) and an M2 surface marker (CD206) induced by Cal27 cells or IL-4, as well as upregulating proinflammatory cytokines (TNF-α, iNOS, and IL-6) and an M1 surface marker (CD86). The in vitro assays suggested that curcumin treatment suppressed the migration and invasion of the Cal27 cells induced by the M2-like macrophages. Mechanistically, the repolarization of TAMs may be attributed to the inhibition of monoamine oxidase A (MAO-A)/STAT6 signaling after curcumin treatment. Collectively, our results show that the anticancer effects of curcumin could be explained by reprogramming TAMs from a protumor phenotype towards an antitumor phenotype.
Collapse
Affiliation(s)
- Mingjing Jiang
- Liaoning Provincial Key Laboratory of Oral Diseases, Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Ying Qi
- Liaoning Provincial Key Laboratory of Oral Diseases, Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Wei Huang
- Liaoning Provincial Key Laboratory of Oral Diseases, Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Ying Lin
- Liaoning Provincial Key Laboratory of Oral Diseases, Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Bo Li
- Liaoning Provincial Key Laboratory of Oral Diseases, Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Department of Oral Anatomy and Physiology, Hospital of Stomatology, Jilin University, Changchun 130021, China
| |
Collapse
|
45
|
Vanherle S, Jorissen W, Dierckx T, Loix M, Grajchen E, Mingneau F, Guns J, Gervois P, Lambrichts I, Dehairs J, Swinnen JV, Mulder MT, Remaley AT, Haidar M, Hendriks JJ, Bogie JJ. The ApoA-I mimetic peptide 5A enhances remyelination by promoting clearance and degradation of myelin debris. Cell Rep 2022; 41:111591. [DOI: 10.1016/j.celrep.2022.111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
|
46
|
Bakhshian Nik A, Alvarez-Argote S, O'Meara CC. Interleukin 4/13 signaling in cardiac regeneration and repair. Am J Physiol Heart Circ Physiol 2022; 323:H833-H844. [PMID: 36149768 PMCID: PMC9602781 DOI: 10.1152/ajpheart.00310.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022]
Abstract
Interleukin 4 (IL4) and interleukin 13 (IL13) are closely related cytokines that have been classically attributed to type II immunity, namely, differentiation of T-helper 2 (TH2) cells and alternative activation of macrophages. Although the role of IL4/13 has been well described in various contexts such as defense against helminth parasites, pathogenesis of allergic disease, and several models of wound healing, relatively little is known about the role of IL4/13 in the heart following injury. Emerging literature has identified various roles for IL4/13 in animal models of cardiac regeneration as well as in the adult mammalian heart following myocardial injury. Notably, although IL4 and IL13 signal to hematopoietic cell types following myocardial infarction (MI) to promote wound healing phenotypes, there is substantial evidence that these cytokines can signal directly to non-hematopoietic cell types in the heart during development, homeostasis, and following injury. Comprehensive understanding of the molecular and cellular actions of IL4/13 in the heart is still lacking, but overall evidence to date suggests that activation of these cytokines results in beneficial outcomes with respect to cardiac repair. Here, we aim to comprehensively review the role of IL4 and IL13 and their prospective mechanisms in cardiac regeneration and repair.
Collapse
Affiliation(s)
- Amirala Bakhshian Nik
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Santiago Alvarez-Argote
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Caitlin C O'Meara
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
47
|
Xue S, Rogers LR, Zheng M, He J, Piermarocchi C, Mias GI. Applying differential network analysis to longitudinal gene expression in response to perturbations. Front Genet 2022; 13:1026487. [PMID: 36324501 PMCID: PMC9618823 DOI: 10.3389/fgene.2022.1026487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Differential Network (DN) analysis is a method that has long been used to interpret changes in gene expression data and provide biological insights. The method identifies the rewiring of gene networks in response to external perturbations. Our study applies the DN method to the analysis of RNA-sequencing (RNA-seq) time series datasets. We focus on expression changes: (i) in saliva of a human subject after pneumococcal vaccination (PPSV23) and (ii) in primary B cells treated ex vivo with a monoclonal antibody drug (Rituximab). The DN method enabled us to identify the activation of biological pathways consistent with the mechanisms of action of the PPSV23 vaccine and target pathways of Rituximab. The community detection algorithm on the DN revealed clusters of genes characterized by collective temporal behavior. All saliva and some B cell DN communities showed characteristic time signatures, outlining a chronological order in pathway activation in response to the perturbation. Moreover, we identified early and delayed responses within network modules in the saliva dataset and three temporal patterns in the B cell data.
Collapse
Affiliation(s)
- Shuyue Xue
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Lavida R.K. Rogers
- Department of Biological Sciences, University of the Virgin Islands, St Thomas, US Virgin Islands
| | - Minzhang Zheng
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Jin He
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Carlo Piermarocchi
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
| | - George I. Mias
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
48
|
de Groot AE, Myers KV, Krueger TEG, Brennen WN, Amend SR, Pienta KJ. Targeting interleukin 4 receptor alpha on tumor-associated macrophages reduces the pro-tumor macrophage phenotype. Neoplasia 2022; 32:100830. [PMID: 35939881 PMCID: PMC9386102 DOI: 10.1016/j.neo.2022.100830] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022]
Abstract
Tumor-associated macrophages (TAMs) are an abundant tumor-promoting cell type in the tumor microenvironment (TME). Most TAMs exhibit a pro-tumor M2-like phenotype supportive of tumor growth, immune evasion, and metastasis. IL-4 and IL-13 are major cytokines that polarize macrophages to an M2 subset and share a common receptor, IL-4 receptor alpha (IL-4R alpha). Treatment of human ex vivo polarized M2 macrophages and M2 macrophage precursors with IL-4R alpha antagonist antibody Dupilumab (DupixentⓇ) reduces M2 macrophage features, including a shift in cell surface marker protein expression and gene expression. In animal models of prostate cancer, both pharmacologic inhibition of IL-4R alpha and genetic deletion of IL-4R alpha utilizing an Il4ra -/- mouse model result in decreased CD206 on TAMs. These data support IL-4R alpha as a target to reduce the pro-tumor, M2-like macrophage phenotype as a novel adjunct cancer therapy.
Collapse
Affiliation(s)
- Amber E de Groot
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD, USA
| | - Kayla V Myers
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD, USA.
| | - Timothy E G Krueger
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD, USA; Department of Oncology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA
| | - W Nathaniel Brennen
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD, USA; Department of Oncology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA
| | - Sarah R Amend
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA; Department of Oncology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA
| | - Kenneth J Pienta
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD, USA; Department of Oncology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins Whiting School of Engineering, 3400 N. Charles St., Baltimore, MD, 21218, USA
| |
Collapse
|
49
|
Honda N, Watanabe Y, Tokuoka Y, Hanajima R. Roles of microglia/macrophage and antibody in cell sheet transplantation in the central nervous system. Stem Cell Res Ther 2022; 13:470. [PMID: 36089602 PMCID: PMC9465875 DOI: 10.1186/s13287-022-03168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background We previously established a human mesenchymal stem cell (MSC) line that was modified to express trophic factors. Transplanting a cell sheet produced from this line in an amyotrophic lateral sclerosis mouse model showed a beneficial trend for mouse life spans. However, the sheet survived for less than 14 days, and numerous microglia and macrophages were observed within and adjacent to the sheet. Here, we examined the roles of microglia and macrophages as well as acquired antibodies in cell sheet transplantation. Methods We observed the effects of several MSC lines on macrophages in vitro, that is, phenotype polarization (M1 or M2) and migration. We then investigated how phenotypic polarization affected MSC survival using antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP). We also confirmed the role of complement on cytotoxicity. Lastly, we selectively eliminated microglia and macrophages in vivo to determine whether these cells were cytoprotective to the donor sheet. Results In vitro co-culture with MSCs induced M2 polarization in macrophages and facilitated their migration toward MSCs in vitro. There was no difference between M1 and M2 phenotypes on ADCC and ADCP. Cytotoxicity was observed even in the absence of complement. Eliminating microglia/macrophage populations in vivo resulted in increased survival of donor cells after transplantation. Conclusions Acquired antibodies played a role in ADCC and ADCP. MSCs induced M2 polarization in macrophages and facilitated their migration toward MSCs in vitro. Despite these favorable characteristics of microglia and macrophages, deletion of these cells was advantageous for the survival of donor cells in vivo. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03168-5.
Collapse
|
50
|
Potential Therapeutic Skin Microbiomes Suppressing Staphylococcus aureus-Derived Immune Responses and Upregulating Skin Barrier Function-Related Genes via the AhR Signaling Pathway. Int J Mol Sci 2022; 23:ijms23179551. [PMID: 36076953 PMCID: PMC9455615 DOI: 10.3390/ijms23179551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Disruption of the skin microbial balance can exacerbate certain skin diseases and affect prognosis and treatment. Changes in the distribution and prevalence of certain microbial species on the skin, such as Staphylococcus aureus (SA), can impact the development of severe atopic dermatitis (AD) or psoriasis (Pso). A dysfunctional skin barrier develops in AD and Pso due to SA colonization, resulting in keratinization and chronic or progressive chronic inflammation. Disruption of the skin barrier following SA colonization can elevate the production of T helper 2 (Th2)-derived cytokines, which can cause an imbalance in Th1, Th2, and Th17 cells. This study examined the ability of potential therapeutic skin microbiomes, such as Cutibacterium avidum R-CH3 and Staphylococcus hominis R9, to inhibit SA biofilm formation and restore skin barrier function-related genes through the activation of the aryl hydrocarbon receptor (AhR) and the nuclear factor erythroid-2-related factor 2 (Nrf2) downstream target. We observed that IL-4/IL-13-induced downregulation of FLG, LOR, and IVL induced by SA colonization could be reversed by dual AhR/Nrf2 activation. Further, OVOL1 expression may be modulated by functional microbiomes via dual AhR/Nrf2 activation. Our results suggest that our potential therapeutic skin microbiomes can prevent SA-derived Th2-biased skin barrier disruption via IL-13 and IL-4-dependent FLG deregulation, STAT3 activation, and AhR-mediated STAT6 expression.
Collapse
|