1
|
Jin Y, Sun G, Chen B, Feng S, Tang M, Wang H, Zhang Y, Wang Y, An Y, Xiao Y, Liu Z, Liu P, Tian Z, Yin H, Zhang S, Luan X. Delivering miR-23b-3p by small extracellular vesicles to promote cell senescence and aberrant lipid metabolism. BMC Biol 2025; 23:41. [PMID: 39934790 DOI: 10.1186/s12915-025-02143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Aging is a natural process that affects the majority of organs within the organism. The liver, however, plays a pivotal role in maintaining the organism's homeostasis due to its robust regenerative and metabolic capabilities. Nevertheless, the liver also undergoes the effects of aging, which can result in a range of metabolic disorders. The function of extracellular vesicles and the signals they convey represent a significant area of interest within the field of ageing research. However, research on liver ageing from the perspective of EVs remains relatively limited. RESULTS In the present study, we extracted liver tissue small extracellular vesicles (sEVs) of mice at different ages and performed transcriptome and proteome analyses to investigate the senescence-associated secretory phenotype (SASP) and mechanisms. sEVs in the older group were rich in miR-23b-3p, which was abundant in the sEVs of induced aging cells and promoted cell senescence by targeting TNF alpha induced protein 3 (Tnfaip3). After injecting adeno-associated virus (AAV) expressing miR-23b-3p into mice, the liver of mice in the experimental group displayed a more evident inflammatory response than that in the control group. Additionally, we found elevated miR-23b-3p in blood-derived-sEVs from patients with familial hypercholesterolemia. CONCLUSIONS Our findings suggest that miR-23b-3p plays a pivotal role in liver aging and is associated with abnormal lipid metabolism. The upregulation of miR-23b-3p in liver EVs may serve as a potential biomarker for aging and metabolic disorders. Targeting miR-23b-3p could provide new therapeutic strategies for ameliorating age-related liver dysfunction and associated metabolic abnormalities.
Collapse
Affiliation(s)
- Ye Jin
- Rare Disease Medical Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
- Center for Digital Medicine and Artificial Intelligence, National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
| | - Gaoge Sun
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Binxian Chen
- Rare Disease Medical Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Siqin Feng
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
| | - Muyun Tang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
| | - Hui Wang
- Department of Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuan Wang
- Echo Biotech Co., Ltd, Beijing, 102627, China
| | - Yang An
- GemPharmatech Co., Ltd, Nanjing, 210000, China
| | - Yu Xiao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China
| | - Zihan Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Peng Liu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
| | - Zhuang Tian
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Hang Yin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Shuyang Zhang
- Rare Disease Medical Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China.
- School of Medicine, Tsinghua University, Beijing, 100084, China.
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Xiaodong Luan
- Rare Disease Medical Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China.
- Center for Drug Research and Evaluation, National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China.
| |
Collapse
|
2
|
Buttari B, Tramutola A, Rojo AI, Chondrogianni N, Saha S, Berry A, Giona L, Miranda JP, Profumo E, Davinelli S, Daiber A, Cuadrado A, Di Domenico F. Proteostasis Decline and Redox Imbalance in Age-Related Diseases: The Therapeutic Potential of NRF2. Biomolecules 2025; 15:113. [PMID: 39858508 PMCID: PMC11764413 DOI: 10.3390/biom15010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of cellular homeostasis, overseeing the expression of a wide array of genes involved in cytoprotective processes such as antioxidant and proteostasis control, mitochondrial function, inflammation, and the metabolism of lipids and glucose. The accumulation of misfolded proteins triggers the release, stabilization, and nuclear translocation of NRF2, which in turn enhances the expression of critical components of both the proteasomal and lysosomal degradation pathways. This process facilitates the clearance of toxic protein aggregates, thereby actively maintaining cellular proteostasis. As we age, the efficiency of the NRF2 pathway declines due to several factors including increased activity of its repressors, impaired NRF2-mediated antioxidant and cytoprotective gene expression, and potential epigenetic changes, though the precise mechanisms remain unclear. This leads to diminished antioxidant defenses, increased oxidative damage, and exacerbated metabolic dysregulation and inflammation-key contributors to age-related diseases. Given NRF2's role in mitigating proteotoxic stress, the pharmacological modulation of NRF2 has emerged as a promising therapeutic strategy, even in aged preclinical models. By inducing NRF2, it is possible to mitigate the damaging effects of oxidative stress, metabolic dysfunction, and inflammation, thus reducing protein misfolding. The review highlights NRF2's therapeutic implications for neurodegenerative diseases and cardiovascular conditions, emphasizing its role in improving proteostasis and redox homeostasis Additionally, it summarizes current research into NRF2 as a therapeutic target, offering hope for innovative treatments to counteract the effects of aging and associated diseases.
Collapse
Affiliation(s)
- Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Antonella Tramutola
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University, 00185 Rome, Italy;
| | - Ana I. Rojo
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), National Institute of Health Carlos III (ISCIII), Instituto de Investigación Sanitaria La Paz (IdiPaz), 28049 Madrid, Spain; (A.I.R.); (A.C.)
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece;
| | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 00185, Uttar Pradesh, India;
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.B.); (L.G.)
| | - Letizia Giona
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.B.); (L.G.)
- PhD Program in Science of Nutrition, Metabolism, Aging and Gender-Related Diseases, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Elisabetta Profumo
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Andreas Daiber
- Department for Cardiology 1, University Medical Center Mainz, Molecular Cardiology, Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Antonio Cuadrado
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), National Institute of Health Carlos III (ISCIII), Instituto de Investigación Sanitaria La Paz (IdiPaz), 28049 Madrid, Spain; (A.I.R.); (A.C.)
| | - Fabio Di Domenico
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
3
|
Sedlacek J. Activation of the 26S Proteasome to Reduce Proteotoxic Stress and Improve the Efficacy of PROTACs. ACS Pharmacol Transl Sci 2025; 8:21-35. [PMID: 39816802 PMCID: PMC11729432 DOI: 10.1021/acsptsci.4c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025]
Abstract
The 26S proteasome degrades the majority of cellular proteins and affects all aspects of cellular life. Therefore, the 26S proteasome abundance, proper assembly, and activity in different life contexts need to be precisely controlled. Impaired proteasome activity is considered a causative factor in several serious disorders. Recent advances in proteasome biology have revealed that the proteasome can be activated by different factors or small molecules. Thus, activated ubiquitin-dependent proteasome degradation has effects such as extending the lifespan in different models, preventing the accumulation of protein aggregates, and reducing their negative impact on cells. Increased 26S proteasome-mediated degradation reduces proteotoxic stress and can potentially improve the efficacy of engineered degraders, such as PROTACs, particularly in situations characterized by proteasome malfunction. Here, emerging ideas and recent insights into the pharmacological activation of the proteasome at the transcriptional and posttranslational levels are summarized.
Collapse
Affiliation(s)
- Jindrich Sedlacek
- Department
of Genetics and Microbiology, Charles University
and Research Center BIOCEV, Pru°myslová 595, Vestec 252 50, Czech Republic
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech
Republic
| |
Collapse
|
4
|
Sakamoto K, Fujimoto R, Kamiyama-Ando E, Hirokawa T. Anthricin-induced hyperactive proteasome and its molecular mechanism. Biochem Biophys Rep 2024; 40:101830. [PMID: 39386079 PMCID: PMC11462260 DOI: 10.1016/j.bbrep.2024.101830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Recently, targeted protein degradation has attracted increasing interest as a new drug discovery approach. This method aims to control the function of drug targets by inducing their degradation through protein degradation systems such as the proteasome. Concurrently, compounds that enhance proteasome activity have also garnered attention. In 2023, we reported that anthricin (also known as 4-deoxypodophyllotoxin), a natural product that belongs to the lignan family, enhances proteasome activity. However, whether this enhancement was because of increased proteasome expression or improved proteasome function remains unclear. In this study, we investigated the structure-activity relationship of anthricin and its analogs in enhancing proteasome activity, the effects of anthricin on proteasome-related gene expression, and the direct binding between anthricin and the proteasome using pull-down assay. Moreover, we assessed the interaction between anthricin and the proteasome using molecular dynamics (MD) simulations. The results showed that anthricin does not induce proteasome-related gene expression, but instead binds to the β-subunit of the proteasome, bringing the side chains of three amino acid residues (Thr1, Asp17, and Lys33) at the catalytic site closer together, thereby inducing a hyperactive state. To the best of our knowledge, this study is the first to suggest the mechanism of proteasome activity enhancement by anthricin at the molecular level. The findings could contribute to the development of new chemotypes to enhance the effects of targeted protein degraders by regulating proteasome activity.
Collapse
Affiliation(s)
- Kotaro Sakamoto
- Research & Development Department, Ichimaru Pharcos Company Limited, 318-1 Asagi, Motosu, 501-0475 Gifu, Japan
| | - Runa Fujimoto
- Research & Development Department, Ichimaru Pharcos Company Limited, 318-1 Asagi, Motosu, 501-0475 Gifu, Japan
| | - Erina Kamiyama-Ando
- Research & Development Department, Ichimaru Pharcos Company Limited, 318-1 Asagi, Motosu, 501-0475 Gifu, Japan
| | - Takatsugu Hirokawa
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, 305-8575 Tsukuba, Japan
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, 305-8575 Tsukuba, Japan
| |
Collapse
|
5
|
Wang F, Ma L, Wang Q, Hammock BD, Xiao G, Liu R. Evaluation of the Immune Response of Patulin by Proteomics. BIOSENSORS 2024; 14:322. [PMID: 39056598 PMCID: PMC11274796 DOI: 10.3390/bios14070322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Patulin, an emerging mycotoxin with high toxicity, poses great risks to public health. Considering the poor antibody production in patulin immunization, this study focuses on the four-dimensional data-independent acquisition (4D-DIA) quantitative proteomics to reveal the immune response of patulin in rabbits. The rabbit immunization was performed with the complete developed antigens of patulin, followed by the identification of the immune serum. A total of 554 differential proteins, including 292 up-regulated proteins and 262 down-regulated proteins, were screened; the differential proteins were annotated; and functional enrichment analysis was performed. The differential proteins were associated with the pathways of metabolism, gene information processing, environmental information processing, cellular processes, and organismal systems. The functional enrichment analysis indicated that the immunization procedures mostly resulted in the regulation of biochemical metabolic and signal transduction pathways, including the biosynthesis of amino acid (glycine, serine, and threonine), ascorbate, and aldarate metabolism; fatty acid degradation; and antigen processing and presentation. The 14 key proteins with high connectivity included G1U9T1, B6V9S9, G1SCN8, G1TMS5, G1U9U0, A0A0G2JH20, G1SR03, A0A5F9DAT4, G1SSA2, G1SZ14, G1T670, P30947, P29694, and A0A5F9C804, which were obtained by the analysis of protein-protein interaction networks. This study could provide potential directions for protein interaction and antibody production for food hazards in animal immunization.
Collapse
Affiliation(s)
- Feng Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (L.M.); (Q.W.); (G.X.)
| | - Lukai Ma
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (L.M.); (Q.W.); (G.X.)
| | - Qin Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (L.M.); (Q.W.); (G.X.)
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA;
| | - Gengsheng Xiao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (L.M.); (Q.W.); (G.X.)
| | - Ruijing Liu
- Guangdong Engineering Technology Research Center for Pre-Cooked Food Processing and Quality Evaluation, Shunde Polytechnic, Foshan 528333, China
| |
Collapse
|
6
|
Yamamuro-Tanabe A, Oshima Y, Iyama T, Ishimaru Y, Yoshioka Y. Proteasome inhibitors induce apoptosis by superoxide anion generation via NADPH oxidase 5 in human neuroblastoma SH-SY5Y cells. J Pharmacol Sci 2024; 155:52-62. [PMID: 38677786 DOI: 10.1016/j.jphs.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024] Open
Abstract
The ubiquitin-proteasome system (UPS) is a major proteolytic system that plays an important role in the regulation of various cell processes, such as cell cycle, stress response, and transcriptional regulation, especially in neurons, and dysfunction of UPS is considered to be a cause of neuronal cell death in neurodegenerative diseases. However, the mechanism of neuronal cell death caused by UPS dysfunction has not yet been fully elucidated. In this study, we investigated the mechanism of neuronal cell death induced by proteasome inhibitors using human neuroblastoma SH-SY5Y cells. Z-Leu-D-Leu-Leu-al (MG132), a proteasome inhibitor, induced apoptosis in SH-SY5Y cells in a concentration- and time-dependent manner. Antioxidants N-acetylcysteine and EUK-8 attenuated MG132-induced apoptosis. Apocynin and diphenyleneiodonium, inhibitors of NADPH oxidase (NOX), an enzyme that produces superoxide anions, also attenuated MG132-induced apoptosis. It was also found that MG132 treatment increased the expression of NOX5, a NOX family member, and that siRNA-mediated silencing of NOX5 and BAPTA-AM, which inhibits NOX5 by chelating calcium, suppressed MG132-induced apoptosis and production of reactive oxygen species in SH-SY5Y cells. These results suggest that MG132 induces apoptosis in SH-SY5Y cells through the production of superoxide anion by NOX5.
Collapse
Affiliation(s)
- Akiko Yamamuro-Tanabe
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Yu Oshima
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Takumi Iyama
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Yuki Ishimaru
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Yasuhiro Yoshioka
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan.
| |
Collapse
|
7
|
Mariner BL, Rodriguez AS, Heath OC, McCormick MA. Induction of proteasomal activity in mammalian cells by lifespan-extending tRNA synthetase inhibitors. GeroScience 2024; 46:1755-1773. [PMID: 37749371 PMCID: PMC10828360 DOI: 10.1007/s11357-023-00938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
We have recently shown that multiple tRNA synthetase inhibitors can greatly increase lifespan in multiple models by acting through the conserved transcription factor ATF4. Here, we show that these compounds, and several others of the same class, can greatly upregulate mammalian ATF4 in cells in vitro, in a dose dependent manner. Further, RNASeq analysis of these cells pointed toward changes in protein turnover. In subsequent experiments here we show that multiple tRNA synthetase inhibitors can greatly upregulate activity of the ubiquitin proteasome system (UPS) in cells in an ATF4-dependent manner. The UPS plays an important role in the turnover of many damaged or dysfunctional proteins in an organism. Increasing UPS activity has been shown to enhance the survival of Huntington's disease cell models, but there are few known pharmacological enhancers of the UPS. Additionally, we see separate ATF4 dependent upregulation of macroautophagy upon treatment with tRNA synthetase inhibitors. Protein degradation is an essential cellular process linked to many important human diseases of aging such as Alzheimer's disease and Huntington's disease. These drugs' ability to enhance proteostasis more broadly could have wide-ranging implications in the treatment of important age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Blaise L Mariner
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, Albuquerque, NM, 87131, USA
| | - Antonio S Rodriguez
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Olivia C Heath
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Mark A McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, Albuquerque, NM, 87131, USA.
| |
Collapse
|
8
|
Sharma A, Sharma T, Bhaskar R, Ola M, Sharma A, Sharma PC. Promising Potential of Curcumin and Related Compounds for Antiviral Drug Discovery. Med Chem 2024; 20:597-612. [PMID: 38571348 DOI: 10.2174/0115734064277371240325105016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
Viruses are acellular, microscopic, and mobile particles containing genetic particles, either DNA/RNA strands as nucleoproteins, responsible for 69,53,743 deaths till the year 2023. Curcumin and related compounds are among the areas of pivotal interest for researchers because of their versatile pharmacological profile. Chemically known as diferuloylmethane, which is a main constituent of turmeric along with demethoxycurcumin and bisdemethoxycurcumin, they have a broad spectrum of antiviral activity against viruses such as human immunodeficiency virus, herpes simplex virus, influenza virus (Avian influenza) and Hepatitis C virus HIV. The possible role of curcumin as an antiviral agent may be attributed to the activation of the 20S proteasome, a cellular machinery responsible for degrading unfolded or misfolded proteins in a ubiquitin-independent manner. It shows suppression of HBV entry at various infection stages by inhibiting cccDNA replication by inhibiting the Wnt/β-catenin signaling pathway to attenuate IAV-induced myocarditis.
Collapse
Affiliation(s)
- Archana Sharma
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Twinkle Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Rajveer Bhaskar
- Department of Quality Assurance, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, India
| | - Monika Ola
- Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, India
| | - Alok Sharma
- Department of Pharmaceutical Technology, MIET, Meerut, 250005, India
| | - Prabodh Chander Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| |
Collapse
|
9
|
Mariner BL, Felker DP, Cantergiani RJ, Peterson J, McCormick MA. Multiomics of GCN4-Dependent Replicative Lifespan Extension Models Reveals Gcn4 as a Regulator of Protein Turnover in Yeast. Int J Mol Sci 2023; 24:16163. [PMID: 38003352 PMCID: PMC10671045 DOI: 10.3390/ijms242216163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
We have shown that multiple tRNA synthetase inhibitors can increase lifespan in both the nematode C. elegans and the budding yeast S. cerevisiae by acting through the conserved transcription factor Gcn4 (yeast)/ATF-4 (worms). To further understand the biology downstream from this conserved transcription factor in the yeast model system, we looked at two different yeast models known to have upregulated Gcn4 and GCN4-dependent increased replicative lifespan. These two models were rpl31aΔ yeast and yeast treated with the tRNA synthetase inhibitor borrelidin. We used both proteomic and RNAseq analysis of a block experimental design that included both of these models to identify GCN4-dependent changes in these two long-lived strains of yeast. Proteomic analysis of these yeast indicate that the long-lived yeast have increased abundances of proteins involved in amino acid biosynthesis. The RNAseq of these same yeast uncovered further regulation of protein degradation, identifying the differential expression of genes associated with autophagy and the ubiquitin-proteasome system (UPS). The data presented here further underscore the important role that GCN4 plays in the maintenance of protein homeostasis, which itself is an important hallmark of aging. In particular, the changes in autophagy and UPS-related gene expression that we have observed could also have wide-ranging implications for the understanding and treatment of diseases of aging that are associated with protein aggregation.
Collapse
Affiliation(s)
- Blaise L. Mariner
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (D.P.F.); (R.J.C.)
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - Daniel P. Felker
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (D.P.F.); (R.J.C.)
| | - Ryla J. Cantergiani
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (D.P.F.); (R.J.C.)
| | - Jack Peterson
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (D.P.F.); (R.J.C.)
| | - Mark A. McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (D.P.F.); (R.J.C.)
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
10
|
Curieses Andrés CM, Pérez de la Lastra JM, Andrés Juan C, Plou FJ, Pérez-Lebeña E. From reactive species to disease development: Effect of oxidants and antioxidants on the cellular biomarkers. J Biochem Mol Toxicol 2023; 37:e23455. [PMID: 37437103 DOI: 10.1002/jbt.23455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
The influence of modern lifestyle, diet, exposure to chemicals such as phytosanitary substances, together with sedentary lifestyles and lack of exercise play an important role in inducing reactive stress (RS) and disease. The imbalance in the production and scavenging of free radicals and the induction of RS (oxidative, nitrosative, and halogenative) plays an essential role in the etiology of various chronic pathologies, such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. The implication of free radicals and reactive species injury in metabolic disturbances and the onset of many diseases have been accumulating for several decades, and are now accepted as a major cause of many chronic diseases. Exposure to elevated levels of free radicals can cause molecular structural impact on proteins, lipids, and DNA, as well as functional alteration of enzyme homeostasis, leading to aberrations in gene expression. Endogenous depletion of antioxidant enzymes can be mitigated using exogenous antioxidants. The current interest in the use of exogenous antioxidants as adjunctive agents for the treatment of human diseases allows a better understanding of these diseases, facilitating the development of new therapeutic agents with antioxidant activity to improve the treatment of various diseases. Here we examine the role that RS play in the initiation of disease and in the reactivity of free radicals and RS in organic and inorganic cellular components.
Collapse
Affiliation(s)
| | | | - Celia Andrés Juan
- Department of Organic Chemistry, Cinquima Institute, Faculty of Sciences, Valladolid University, Valladolid, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, Madrid, Spain
| | | |
Collapse
|
11
|
Sakamoto K, Fujimoto R, Nakagawa S, Kamiyama E, Kanai K, Kawai Y, Kojima H, Hirasawa A, Wakamatsu K, Masutani T. Juniper berry extract containing Anthricin and Yatein suppresses lipofuscin accumulation in human epidermal keratinocytes through proteasome activation, increases brightness and decreases spots in human skin. Int J Cosmet Sci 2023; 45:655-671. [PMID: 37317028 DOI: 10.1111/ics.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/15/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Skin brightness and spot have a significant impact on youthful and beautiful appearance. One important factor influencing skin brightness is the amount of internal reflected light from the skin. Observers recognize the total surface-reflected light and internal reflected light as skin brightness. The more internal reflected light from the skin, the more attractive and brighter the skin appears. This study aims to identify a new natural cosmetic ingredient that increases the skin's internal reflected light, decreases spot and provides a youthful and beautiful skin appearance. METHODS Lipofuscin in epidermal keratinocytes, the aggregating complex of denatured proteins and peroxidized lipids, is one factor that decreases skin brightness and causes of spot. Aggregates block light transmission, and peroxidized lipids lead to skin yellowness, dullness and age spot. Lipofuscin is known to accumulate intracellularly with ageing. Rapid removal of intracellular denatured proteins prevents lipofuscin formation and accumulation in cells. We focused a proteasome system that efficiently removes intracellular denatured proteins. To identify natural ingredients that increase proteasome activity, we screened 380 extracts derived from natural products. The extract with the desired activity was fractionated and purified to identify active compounds that lead to proteasome activation. Finally, the efficacy of the proteasome-activating extract was evaluated in a human clinical study. RESULTS We discovered that Juniperus communis fruits (Juniper berry) extract (JBE) increases proteasome activity and suppresses lipofuscin accumulation in human epidermal keratinocytes. We found Anthricin and Yatein, which belong to the lignan family, to be major active compounds responsible for the proteasome-activating effect of JBE. In a human clinical study, an emulsion containing 1% JBE was applied to half of the face twice daily for 4 weeks, resulting in increased internal reflected light, brightness improvement (L-value) and reduction in yellowness (b-value) and spot in the cheek area. CONCLUSION This is the first report demonstrating that JBE containing Anthricin and Yatein decreases lipofuscin accumulation in human epidermal keratinocytes through proteasome activation, increases brightness and decreases surface spots in human skin. JBE would be an ideal natural cosmetic ingredient for creating a more youthful and beautiful skin appearance with greater brightness and less spot.
Collapse
Affiliation(s)
- Kotaro Sakamoto
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Runa Fujimoto
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Satoshi Nakagawa
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Erina Kamiyama
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Kyoko Kanai
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Yuka Kawai
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Hiroyuki Kojima
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Asuka Hirasawa
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Kanae Wakamatsu
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Teruaki Masutani
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| |
Collapse
|
12
|
Feng Q, Xia W, Feng Z, Tan Y, Zhang Y, Liu D, Zhang G. The accelerated organ senescence and proteotoxicity in thyrotoxicosis mice. J Cell Physiol 2023; 238:2481-2498. [PMID: 37750538 DOI: 10.1002/jcp.31108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 09/27/2023]
Abstract
The mechanism of aging has always been the focus of research, because aging is related to disease susceptibility and seriously affects people's quality of life. The diseases also accelerate the aging process, especially the pathological changes of substantive organs, such as cardiac hypertrophy, severely shortened lifespan. So, lesions in organs are both a consequence and a cause of aging. However, the disease in a given organ is not in isolation but is a systemic problem. Our previous study found that thyrotoxicosis mice model has aging characteristics including immunosenescence, lipotoxicity, malnutrition. But all these characteristics will lead to organ senescence, therefore, this study continued to study the aging changes of important organs such as heart, liver, and kidney in thyrotoxicosis mice using tandem mass tags (TMT) proteomics method. The results showed that the excess thyroxine led to cardiac hypertrophy. In the liver, the ability to synthesize functional proteins, detoxify, and metabolism were declined. The effect on the kidney was the decreased ability of detoxify and metabolism. The main finding of the present study was that the acceleration of organ senescence by excess thyroxine was due to proteotoxicity. The shared cause of proteotoxicity in the three organs included the intensify of oxidative phosphorylation, the redundancy production of ribosomes, and the lack of splicing and ubiquitin proteasome system function. Totally, proteotoxicity was another parallel between thyrotoxicosis and aging in addition to lipotoxicity. Our research provided a convenient and appropriate animal model for exploring aging mechanism and antiaging drugs.
Collapse
Affiliation(s)
- Qin Feng
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
| | - Wenkai Xia
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
| | - Zhong Feng
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Yujun Tan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
| | - Yongxia Zhang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
| | - Deshan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Guimin Zhang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
| |
Collapse
|
13
|
Owen BM, Phie J, Huynh J, Needham S, Fraser C. Evaluation of quantitative biomarkers of aging in human PBMCs. FRONTIERS IN AGING 2023; 4:1260502. [PMID: 37780865 PMCID: PMC10540680 DOI: 10.3389/fragi.2023.1260502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
Functional decline with age contributes significantly to the burden of disease in developed countries. There is growing interest in the development of therapeutic interventions which slow or even reverse aging. Time and cost constraints prohibit the testing of a large number of interventions for health and lifespan extension in model organisms. Cell-based models of aging could enable high throughput testing of potential interventions. Despite extensive reports in the literature of cell properties that correlate with donor age, few are robustly observed across different laboratories. This casts doubt on the extent that aging signatures are captured in cultured cells. We tested molecular changes previously reported to correlate with donor age in peripheral blood mononuclear cells (PBMCs) and evaluated their suitability for inclusion in a panel of functional aging measures. The tested measures spanned several pathways implicated in aging including epigenetic changes, apoptosis, proteostasis, and intracellular communication. Surprisingly, only two markers correlated with donor age. DNA methylation age accurately predicted donor age confirming this is a robust aging biomarker. Additionally, the apoptotic marker CD95 correlated with donor age but only within subsets of PBMCs. To demonstrate cellular rejuvenation in response to a treatment will require integration of multiple read-outs of cell function. However, building a panel of measures to detect aging in cells is challenging and further research is needed to identify robust predictors of age in humans.
Collapse
|
14
|
Chinchankar MN, Taylor WB, Ko SH, Apple EC, Rodriguez KA, Chen L, Fisher AL. A novel endoplasmic reticulum adaptation is critical for the long-lived Caenorhabditis elegans rpn-10 proteasomal mutant. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194957. [PMID: 37355092 PMCID: PMC10528105 DOI: 10.1016/j.bbagrm.2023.194957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/24/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
The loss of proteostasis due to reduced efficiency of protein degradation pathways plays a key role in multiple age-related diseases and is a hallmark of the aging process. Paradoxically, we have previously reported that the Caenorhabditis elegans rpn-10(ok1865) mutant, which lacks the RPN-10/RPN10/PSMD4 subunit of the 19S regulatory particle of the 26S proteasome, exhibits enhanced cytosolic proteostasis, elevated stress resistance and extended lifespan, despite possessing reduced proteasome function. However, the response of this mutant against threats to endoplasmic reticulum (ER) homeostasis and proteostasis was unknown. Here, we find that the rpn-10 mutant is highly ER stress resistant compared to the wildtype. Under unstressed conditions, the ER unfolded protein response (UPR) is activated in the rpn-10 mutant as signified by increased xbp-1 splicing. This primed response appears to alter ER homeostasis through the upregulated expression of genes involved in ER protein quality control (ERQC), including those in the ER-associated protein degradation (ERAD) pathway. Pertinently, we find that ERQC is critical for the rpn-10 mutant longevity. These changes also alter ER proteostasis, as studied using the C. elegans alpha-1 antitrypsin (AAT) deficiency model, which comprises an intestinal ER-localised transgenic reporter of an aggregation-prone form of AAT called ATZ. The rpn-10 mutant shows a significant reduction in the accumulation of the ATZ reporter, thus indicating that its ER proteostasis is augmented. Via a genetic screen for suppressors of decreased ATZ aggregation in the rpn-10 mutant, we then identified ecps-2/H04D03.3, a novel ortholog of the proteasome-associated adaptor and scaffold protein ECM29/ECPAS. We further show that ecps-2 is required for improved ER proteostasis as well as lifespan extension of the rpn-10 mutant. Thus, we propose that ECPS-2-proteasome functional interactions, alongside additional putative molecular processes, contribute to a novel ERQC adaptation which underlies the superior proteostasis and longevity of the rpn-10 mutant.
Collapse
Affiliation(s)
- Meghna N Chinchankar
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio (UTHSCSA), SA, TX, United States of America; Department of Cell Systems and Anatomy, UTHSCSA, SA, TX, United States of America
| | - William B Taylor
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Su-Hyuk Ko
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio (UTHSCSA), SA, TX, United States of America; Department of Cell Systems and Anatomy, UTHSCSA, SA, TX, United States of America
| | - Ellen C Apple
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio (UTHSCSA), SA, TX, United States of America; Department of Cell Systems and Anatomy, UTHSCSA, SA, TX, United States of America
| | - Karl A Rodriguez
- Department of Cell Systems and Anatomy, UTHSCSA, SA, TX, United States of America
| | - Lizhen Chen
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio (UTHSCSA), SA, TX, United States of America; Department of Cell Systems and Anatomy, UTHSCSA, SA, TX, United States of America
| | - Alfred L Fisher
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America.
| |
Collapse
|
15
|
Impact of Reactive Species on Amino Acids-Biological Relevance in Proteins and Induced Pathologies. Int J Mol Sci 2022; 23:ijms232214049. [PMID: 36430532 PMCID: PMC9692786 DOI: 10.3390/ijms232214049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
This review examines the impact of reactive species RS (of oxygen ROS, nitrogen RNS and halogens RHS) on various amino acids, analyzed from a reactive point of view of how during these reactions, the molecules are hydroxylated, nitrated, or halogenated such that they can lose their capacity to form part of the proteins or peptides, and can lose their function. The reactions of the RS with several amino acids are described, and an attempt was made to review and explain the chemical mechanisms of the formation of the hydroxylated, nitrated, and halogenated derivatives. One aim of this work is to provide a theoretical analysis of the amino acids and derivatives compounds in the possible positions. Tyrosine, methionine, cysteine, and tryptophan can react with the harmful peroxynitrite or •OH and •NO2 radicals and glycine, serine, alanine, valine, arginine, lysine, tyrosine, histidine, cysteine, methionine, cystine, tryptophan, glutamine and asparagine can react with hypochlorous acid HOCl. These theoretical results may help to explain the loss of function of proteins subjected to these three types of reactive stresses. We hope that this work can help to assess the potential damage that reactive species can cause to free amino acids or the corresponding residues when they are part of peptides and proteins.
Collapse
|
16
|
Larsson P, Pettersson D, Engqvist H, Werner Rönnerman E, Forssell-Aronsson E, Kovács A, Karlsson P, Helou K, Parris TZ. Pan-cancer analysis of genomic and transcriptomic data reveals the prognostic relevance of human proteasome genes in different cancer types. BMC Cancer 2022; 22:993. [PMID: 36123629 PMCID: PMC9484138 DOI: 10.1186/s12885-022-10079-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background The human proteasome gene family (PSM) consists of 49 genes that play a crucial role in cancer proteostasis. However, little is known about the effect of PSM gene expression and genetic alterations on clinical outcome in different cancer forms. Methods Here, we performed a comprehensive pan-cancer analysis of genetic alterations in PSM genes and the subsequent prognostic value of PSM expression using data from The Cancer Genome Atlas (TCGA) containing over 10,000 samples representing up to 33 different cancer types. External validation was performed using a breast cancer cohort and KM plotter with four cancer types. Results The PSM genetic alteration frequency was high in certain cancer types (e.g. 67%; esophageal adenocarcinoma), with DNA amplification being most common. Compared with normal tissue, most PSM genes were predominantly overexpressed in cancer. Survival analysis also established a relationship with PSM gene expression and adverse clinical outcome, where PSMA1 and PSMD11 expression were linked to more unfavorable prognosis in ≥ 30% of cancer types for both overall survival (OS) and relapse-free interval (PFI). Interestingly, PSMB5 gene expression was associated with OS (36%) and PFI (27%), and OS for PSMD2 (42%), especially when overexpressed. Conclusion These findings indicate that several PSM genes may potentially be prognostic biomarkers and novel therapeutic targets for different cancer forms. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10079-4.
Collapse
Affiliation(s)
- Peter Larsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Daniella Pettersson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanna Engqvist
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Werner Rönnerman
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Vasilopoulou MA, Gioran A, Theodoropoulou M, Koutsaviti A, Roussis V, Ioannou E, Chondrogianni N. Healthspan improvement and anti-aggregation effects induced by a marine-derived structural proteasome activator. Redox Biol 2022; 56:102462. [PMID: 36095970 PMCID: PMC9482115 DOI: 10.1016/j.redox.2022.102462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/28/2022] [Accepted: 08/28/2022] [Indexed: 11/15/2022] Open
Abstract
Proteasome activation has been shown to promote cellular and organismal healthspan and to protect against aggregation-related conditions, such as Alzheimer's disease (AD). Various natural compounds have been described for their proteasome activating properties but scarce data exist on marine metabolites that often possess unique chemical structures, exhibiting pronounced bioactivities with novel mechanisms of action. In this study, we have identified for the first time a marine structural proteasome activator, namely (1R,3E,6R,7Z,11S,12S)-dolabella-3,7,18-trien-6,17-olide (DBTO). DBTO activates the 20S proteasome complex in cell-free assays but also in cellulo. Continuous supplementation of human primary fibroblasts with DBTO throughout their cellular lifespan confers an improved healthspan while ameliorated health status is also observed in wild type (wt) Caenorhabditis elegans (C. elegans) nematodes supplemented with DBTO. Furthermore, treatment of various AD nematode models, as well as of human cells of neuronal origin challenged with exogenously added Aβ peptide, with DBTO results in enhanced protection against Aβ-induced proteotoxicity. In total, our results reveal the first structural proteasome activator derived from the marine ecosystem and highlight its potential as a compound that might be used for healthspan maintenance and preventive strategies against proteinopathies, such as AD. (1R,3E,6R,7Z,11S,12S)-dolabella-3,7,18-trien-6,17-olide (DBTO) is a structural proteasome activator. DBTO is the first identified marine structural proteasome activator. DBTO positively modulates cellular healthspan and organismal health status. DBTO confers protection against Aβ-induced proteotoxicity.
Collapse
|
18
|
Yilmaz S, Bedir E, Ballar Kirmizibayrak P. The role of cycloastragenol at the intersection of NRF2/ARE, telomerase, and proteasome activity. Free Radic Biol Med 2022; 188:105-116. [PMID: 35718303 DOI: 10.1016/j.freeradbiomed.2022.06.230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
Aging is well-characterized by the gradual decline of cellular functionality. As redox balance, proteostasis, and telomerase systems have been found to be associated with aging and age-related diseases, targeting these systems with small compounds has been considered a promising therapeutic approach. Cycloastragenol (CA), a small molecule telomerase activator obtained from Astragalus species, has been reported to positively affect several age-related pathophysiologies, but the mechanisms underlying CA activity have yet to be reported. Here, we presented that CA increased NRF2 nuclear localization and activity leading to upregulation of cytoprotective enzymes and attenuation of oxidative stress-induced ROS levels. Furthermore, CA-mediated induction of telomerase activity was found to be regulated by NRF2. CA not only increased the expression of hTERT but also its nuclear localization via upregulating the Hsp90-chaperon complex. In addition to modulating nuclear hTERT levels at unstressed conditions, CA alleviated oxidative stress-induced mitochondrial hTERT levels while increasing nuclear hTERT levels. Concomitantly, H2O2-induced mitochondrial ROS level was found to be significantly decreased by CA administration. Our data also revealed that CA strongly enhanced proteasome activity and assembly. More importantly, the proteasome activator effect of CA is dependent on the induction of telomerase activity, which is mediated by NRF2 system. In conclusion, our results not only revealed the cross-talk among NRF2, telomerase, and proteasome systems but also that CA functions at the intersection of these three major aging-related cellular pathways.
Collapse
Affiliation(s)
- Sinem Yilmaz
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Bornova, Izmir, Turkey; Department of Bioengineering, Faculty of Engineering, University of Alanya Aladdin Keykubat, Antalya, Turkey
| | - Erdal Bedir
- Department of Bioengineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey.
| | | |
Collapse
|
19
|
Cekała K, Trepczyk K, Sowik D, Karpowicz P, Giełdoń A, Witkowska J, Giżyńska M, Jankowska E, Wieczerzak E. Peptidomimetics Based on C-Terminus of Blm10 Stimulate Human 20S Proteasome Activity and Promote Degradation of Proteins. Biomolecules 2022; 12:biom12060777. [PMID: 35740902 PMCID: PMC9221443 DOI: 10.3390/biom12060777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/15/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Degradation of misfolded, redundant and oxidatively damaged proteins constitutes one of the cellular processes which are influenced by the 20S proteasome. However, its activity is generally thought to decrease with age which leads to the gradual accumulation of abnormal proteins in cells and their subsequent aggregation. Therefore, increasing proteasomal degradation constitutes a promising strategy to delay the onset of various age-related diseases, including neurodegenerative disorders. In this study we designed and obtained a series of peptidomimetic stimulators of 20S comprising in their sequences the C-terminal fragment of Blm10 activator. Some of the compounds were capable of enhancing the degradation of natively unfolded and oxidatively damaged proteins, such as α-synuclein and enolase, whose applicability as proteasome substrates was evaluated by microscale thermophoresis (MST). Furthermore, they increased the ChT-L activity of the proteasome in HEK293T cell extracts. Our studies indicate that the 20S proteasome-mediated protein substrates hydrolysis may be selectively increased by peptide-based stimulators acting in an allosteric manner. These compounds, after further optimization, may have the potential to counteract proteasome impairment in patients suffering from age-related diseases.
Collapse
|
20
|
Shen W, He J, Hou T, Si J, Chen S. Common Pathogenetic Mechanisms Underlying Aging and Tumor and Means of Interventions. Aging Dis 2022; 13:1063-1091. [PMID: 35855334 PMCID: PMC9286910 DOI: 10.14336/ad.2021.1208] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
Recently, there has been an increase in the incidence of malignant tumors among the older population. Moreover, there is an association between aging and cancer. During the process of senescence, the human body suffers from a series of imbalances, which have been shown to further accelerate aging, trigger tumorigenesis, and facilitate cancer progression. Therefore, exploring the junctions of aging and cancer and searching for novel methods to restore the junctions is of great importance to intervene against aging-related cancers. In this review, we have identified the underlying pathogenetic mechanisms of aging-related cancers by comparing alterations in the human body caused by aging and the factors that trigger cancers. We found that the common mechanisms of aging and cancer include cellular senescence, alterations in proteostasis, microbiota disorders (decreased probiotics and increased pernicious bacteria), persistent chronic inflammation, extensive immunosenescence, inordinate energy metabolism, altered material metabolism, endocrine disorders, altered genetic expression, and epigenetic modification. Furthermore, we have proposed that aging and cancer have common means of intervention, including novel uses of common medicine (metformin, resveratrol, and rapamycin), dietary restriction, and artificial microbiota intervention or selectively replenishing scarce metabolites. In addition, we have summarized the research progress of each intervention and revealed their bidirectional effects on cancer progression to compare their reliability and feasibility. Therefore, the study findings provide vital information for advanced research studies on age-related cancers. However, there is a need for further optimization of the described methods and more suitable methods for complicated clinical practices. In conclusion, targeting aging may have potential therapeutic effects on aging-related cancers.
Collapse
Affiliation(s)
- Weiyi Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| |
Collapse
|
21
|
Vasilopoulou MΑ, Ioannou E, Roussis V, Chondrogianni N. Modulation of the ubiquitin-proteasome system by marine natural products. Redox Biol 2021; 41:101897. [PMID: 33640701 PMCID: PMC7921624 DOI: 10.1016/j.redox.2021.101897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) is a key player in the maintenance of cellular protein homeostasis (proteostasis). Since proteasome function declines upon aging leading to the acceleration of its progression and the manifestation of age-related pathologies, many attempts have been performed towards proteasome activation as a strategy to promote healthspan and longevity. The marine environment hosts a plethora of organisms that produce a vast array of primary and secondary metabolites, the majority of which are unique, exhibiting a wide spectrum of biological activities. The fact that these biologically important compounds are also present in edible marine organisms has sparked the interest for elucidating their potential health-related applications. In this review, we focus on the antioxidant, anti-aging, anti-aggregation and anti-photoaging properties of various marine constituents. We further discuss representatives of marine compounds classes with regard to their potential (direct or indirect) action on UPS components that could serve as UPS modulators and exert beneficial effects on conditions such as oxidative stress, aging and age-related diseases.
Collapse
Affiliation(s)
- Mary Α Vasilopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece; Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larisa, Greece.
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece.
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece.
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece.
| |
Collapse
|
22
|
LRRK2 at the Crossroad of Aging and Parkinson's Disease. Genes (Basel) 2021; 12:genes12040505. [PMID: 33805527 PMCID: PMC8066012 DOI: 10.3390/genes12040505] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease (PD) is a heterogeneous neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta and the widespread occurrence of proteinaceous inclusions known as Lewy bodies and Lewy neurites. The etiology of PD is still far from clear, but aging has been considered as the highest risk factor influencing the clinical presentations and the progression of PD. Accumulating evidence suggests that aging and PD induce common changes in multiple cellular functions, including redox imbalance, mitochondria dysfunction, and impaired proteostasis. Age-dependent deteriorations in cellular dysfunction may predispose individuals to PD, and cellular damages caused by genetic and/or environmental risk factors of PD may be exaggerated by aging. Mutations in the LRRK2 gene cause late-onset, autosomal dominant PD and comprise the most common genetic causes of both familial and sporadic PD. LRRK2-linked PD patients show clinical and pathological features indistinguishable from idiopathic PD patients. Here, we review cellular dysfunctions shared by aging and PD-associated LRRK2 mutations and discuss how the interplay between the two might play a role in PD pathologies.
Collapse
|
23
|
Fiolek TJ, Magyar CL, Wall TJ, Davies SB, Campbell MV, Savich CJ, Tepe JJ, Mosey RA. Dihydroquinazolines enhance 20S proteasome activity and induce degradation of α-synuclein, an intrinsically disordered protein associated with neurodegeneration. Bioorg Med Chem Lett 2021; 36:127821. [PMID: 33513387 DOI: 10.1016/j.bmcl.2021.127821] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/05/2021] [Accepted: 01/18/2021] [Indexed: 02/02/2023]
Abstract
Aggregates or oligomeric forms of many intrinsically disordered proteins (IDPs), including α-synuclein, are hallmarks of neurodegenerative diseases, like Parkinson's and Alzheimer's disease, and key contributors to their pathogenesis. Due to their disordered nature and therefore lack of defined drug-binding pockets, IDPs are difficult targets for traditional small molecule drug design and are often referred to as "undruggable". The 20S proteasome is the main protease that targets IDPs for degradation and therefore small molecule 20S proteasome enhancement presents a novel therapeutic strategy by which these undruggable IDPs could be targeted. The concept of 20S activation is still relatively new, with few potent activators having been identified thus far. Herein, we synthesized and evaluated a library of dihydroquinazoline analogues and discovered several promising new 20S proteasome activators. Further testing of top hits revealed that they can enhance 20S mediated degradation of α-synuclein, the IDP associated with Parkinson's disease.
Collapse
Affiliation(s)
- Taylor J Fiolek
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States
| | - Christina L Magyar
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, United States
| | - Tyler J Wall
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, United States
| | - Steven B Davies
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, United States
| | - Molly V Campbell
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, United States
| | - Christopher J Savich
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, United States
| | - Jetze J Tepe
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States.
| | - R Adam Mosey
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, United States.
| |
Collapse
|
24
|
Mladenovic Djordjevic AN, Kapetanou M, Loncarevic-Vasiljkovic N, Todorovic S, Athanasopoulou S, Jovic M, Prvulovic M, Taoufik E, Matsas R, Kanazir S, Gonos ES. Pharmacological intervention in a transgenic mouse model improves Alzheimer's-associated pathological phenotype: Involvement of proteasome activation. Free Radic Biol Med 2021; 162:88-103. [PMID: 33279620 PMCID: PMC7889698 DOI: 10.1016/j.freeradbiomed.2020.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia worldwide, characterized by a progressive decline in a variety of cognitive and non-cognitive functions. The amyloid beta protein cascade hypothesis places the formation of amyloid beta protein aggregates on the first position in the complex pathological cascade leading to neurodegeneration, and therefore AD might be considered to be a protein-misfolding disease. The Ubiquitin Proteasome System (UPS), being the primary protein degradation mechanism with a fundamental role in the maintenance of proteostasis, has been identified as a putative therapeutic target to delay and/or to decelerate the progression of neurodegenerative disorders that are characterized by accumulated/aggregated proteins. The purpose of this study was to test if the activation of proteasome in vivo can alleviate AD pathology. Specifically by using two compounds with complementary modes of proteasome activation and documented antioxidant and redox regulating properties in the 5xFAD transgenic mice model of AD, we ameliorated a number of AD related deficits. Shortly after proteasome activation we detected significantly reduced amyloid-beta load correlated with improved motor functions, reduced anxiety and frailty level. Essentially, to our knowledge this is the first report to demonstrate a dual activation of the proteasome and its downstream effects. In conclusion, these findings open up new directions for future therapeutic potential of proteasome-mediated proteolysis enhancement.
Collapse
Affiliation(s)
- Aleksandra N Mladenovic Djordjevic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Boulevard Despota Stefana, 142, 11000, Belgrade, Serbia.
| | - Marianna Kapetanou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635, Athens, Greece
| | - Natasa Loncarevic-Vasiljkovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Boulevard Despota Stefana, 142, 11000, Belgrade, Serbia; Molecular Nutrition and Health Lab, CEDOC - Centro de Estudos de Doenças Crónicas, NOVA Medical School / Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Edifício CEDOC II, Rua Câmara Pestana 6, 1150-082, Lisboa, Portugal
| | - Smilja Todorovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Boulevard Despota Stefana, 142, 11000, Belgrade, Serbia
| | - Sofia Athanasopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635, Athens, Greece; Department of Biology, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Milena Jovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Boulevard Despota Stefana, 142, 11000, Belgrade, Serbia
| | - Milica Prvulovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Boulevard Despota Stefana, 142, 11000, Belgrade, Serbia
| | - Era Taoufik
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521, Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521, Athens, Greece
| | - Selma Kanazir
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Boulevard Despota Stefana, 142, 11000, Belgrade, Serbia
| | - Efstathios S Gonos
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635, Athens, Greece.
| |
Collapse
|
25
|
Pandurangan S, Murugesan P, Ramudu KN, Krishnaswamy B, Ayyadurai N. Enhanced Cellular Uptake and Sustained Transdermal Delivery of Collagen for Skin Regeneration. ACS APPLIED BIO MATERIALS 2020; 3:7540-7549. [PMID: 35019495 DOI: 10.1021/acsabm.0c00755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study reports a method for transporting high molecular weight collagen for skin regeneration. An independent engineered enzymatic vehicle that has the ability for efficient transdermal delivery of regenerative biomaterial was developed for tissue regeneration. Collagen has been well recognized as a skin regeneration molecule due to its interaction with the extracellular matrix to stimulate skin cell growth, proliferation, and differentiation. However, the transdermal delivery of collagen poses a significant challenge due to its high molecular weight as well as a lack of efficient approaches. Here, to improve the transdermal delivery efficiency, α-1,4-glycosidic hydrolase was engineered with genetically encoded 3,4-dihydroxy-L-phenylalanine, which enhanced its biological activity as revealed by microscale thermophoresis. The remodeled catalytic pocket resulted in enhanced substrate binding activity of the enzyme with a predominant glycosaminoglycan (chondroitin sulfate) present in the extracellular matrix of the skin. The engineered enzyme rapidly opened up the skin extracellular matrix fiber (15 min) to ferry collagen across the wall, without disturbing the cellular bundle architecture. Confocal microscopy indicated that macromolecules had diffused three times deeper into the engineered enzyme-treated skin than the native enzyme-treated skin. Gene expression, histopathology, and hematology analysis also supported the penetration of macromolecules. Cytotoxicity (mammalian cell culture) and in vivo (Caenorhabditis elegans and Rattus noryegicus) studies revealed that the congener enzyme could potentially be used as a penetration enhancer, which is of paramount importance for the multimillion cosmetic industries. Hence, it offers promise as a pharmaceutical enzyme for transdermal delivery bioenhancement and dermatological applications.
Collapse
Affiliation(s)
- Suryalakshmi Pandurangan
- Division of Biochemistry and Biotechnology Council of Scientific and Industrial Research, Central Leather Research Institute, Chennai 600 020, India.,Academy of Scientific and Innovative Research Central Leather Research Institute Campus, Chennai 600 020, India
| | | | - Kamini Numbi Ramudu
- Division of Biochemistry and Biotechnology Council of Scientific and Industrial Research, Central Leather Research Institute, Chennai 600 020, India.,Academy of Scientific and Innovative Research Central Leather Research Institute Campus, Chennai 600 020, India
| | | | - Niraikulam Ayyadurai
- Division of Biochemistry and Biotechnology Council of Scientific and Industrial Research, Central Leather Research Institute, Chennai 600 020, India.,Academy of Scientific and Innovative Research Central Leather Research Institute Campus, Chennai 600 020, India
| |
Collapse
|
26
|
Xie K, Kapetanou M, Sidiropoulou K, Bano D, Gonos ES, Djordjevic AM, Ehninger D. Signaling pathways of dietary energy restriction and metabolism on brain physiology and in age-related neurodegenerative diseases. Mech Ageing Dev 2020; 192:111364. [PMID: 32991920 DOI: 10.1016/j.mad.2020.111364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/17/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Several laboratory animal models have shown that dietary energy restriction (ER) can promote longevity and improve various health aspects in old age. However, whether the entire spectrum of ER-induced short- and long-term physiological and metabolic adaptions is translatable to humans remains to be determined. In this review article, we present recent evidence towards the elucidation of the impact of ER on brain physiology and in age-related neurodegenerative diseases. We also discuss modulatory influences of ER on metabolism and overall on human health, limitations of current experimental designs as well as future perspectives for ER trials in humans. Finally, we summarize signaling pathways and processes known to be affected by both aging and ER with a special emphasis on the link between ER and cellular proteostasis.
Collapse
Affiliation(s)
- Kan Xie
- Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Marianna Kapetanou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece
| | | | - Daniele Bano
- Aging and Neurodegeneration Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Efstathios S Gonos
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece
| | - Aleksandra Mladenovic Djordjevic
- Department of Neurobiology, Institute for Biological Research 'Sinisa Stankovic', University of Belgrade, National Institute of Republic of Serbia, Boulevard Despota Stefana 142, 11000 Belgrade, Serbia
| | - Dan Ehninger
- Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
27
|
Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou PV, Azzini E, Peluso I, Prakash Mishra A, Nigam M, El Rayess Y, Beyrouthy ME, Polito L, Iriti M, Martins N, Martorell M, Docea AO, Setzer WN, Calina D, Cho WC, Sharifi-Rad J. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol 2020; 11:694. [PMID: 32714204 PMCID: PMC7347016 DOI: 10.3389/fphys.2020.00694] [Citation(s) in RCA: 847] [Impact Index Per Article: 169.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress plays an essential role in the pathogenesis of chronic diseases such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. Long term exposure to increased levels of pro-oxidant factors can cause structural defects at a mitochondrial DNA level, as well as functional alteration of several enzymes and cellular structures leading to aberrations in gene expression. The modern lifestyle associated with processed food, exposure to a wide range of chemicals and lack of exercise plays an important role in oxidative stress induction. However, the use of medicinal plants with antioxidant properties has been exploited for their ability to treat or prevent several human pathologies in which oxidative stress seems to be one of the causes. In this review we discuss the diseases in which oxidative stress is one of the triggers and the plant-derived antioxidant compounds with their mechanisms of antioxidant defenses that can help in the prevention of these diseases. Finally, both the beneficial and detrimental effects of antioxidant molecules that are used to reduce oxidative stress in several human conditions are discussed.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nanjangud V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Luciana Dini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Jovana Rajkovic
- Medical Faculty, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | | | - Elena Azzini
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Ilaria Peluso
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H.N.B. Garhwal (A Central) University, Srinagar, India
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, India
| | - Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Marc El Beyrouthy
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Letizia Polito
- General Pathology Section, Department of Experimental, Diagnostic and Specialty Medicine – DIMES, Bologna, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Anca Oana Docea
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William N. Setzer
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL, United States
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou PV, Azzini E, Peluso I, Prakash Mishra A, Nigam M, El Rayess Y, Beyrouthy ME, Polito L, Iriti M, Martins N, Martorell M, Docea AO, Setzer WN, Calina D, Cho WC, Sharifi-Rad J. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol 2020; 11:694. [PMID: 32714204 PMCID: PMC7347016 DOI: 10.3389/fphys.2020.00694+10.3389/fphys.2020.00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 01/20/2024] Open
Abstract
Oxidative stress plays an essential role in the pathogenesis of chronic diseases such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. Long term exposure to increased levels of pro-oxidant factors can cause structural defects at a mitochondrial DNA level, as well as functional alteration of several enzymes and cellular structures leading to aberrations in gene expression. The modern lifestyle associated with processed food, exposure to a wide range of chemicals and lack of exercise plays an important role in oxidative stress induction. However, the use of medicinal plants with antioxidant properties has been exploited for their ability to treat or prevent several human pathologies in which oxidative stress seems to be one of the causes. In this review we discuss the diseases in which oxidative stress is one of the triggers and the plant-derived antioxidant compounds with their mechanisms of antioxidant defenses that can help in the prevention of these diseases. Finally, both the beneficial and detrimental effects of antioxidant molecules that are used to reduce oxidative stress in several human conditions are discussed.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nanjangud V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Luciana Dini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Jovana Rajkovic
- Medical Faculty, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | | | - Elena Azzini
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Ilaria Peluso
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H.N.B. Garhwal (A Central) University, Srinagar, India
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, India
| | - Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Marc El Beyrouthy
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Letizia Polito
- General Pathology Section, Department of Experimental, Diagnostic and Specialty Medicine – DIMES, Bologna, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Anca Oana Docea
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William N. Setzer
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL, United States
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou PV, Azzini E, Peluso I, Prakash Mishra A, Nigam M, El Rayess Y, Beyrouthy ME, Polito L, Iriti M, Martins N, Martorell M, Docea AO, Setzer WN, Calina D, Cho WC, Sharifi-Rad J. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol 2020; 11:694. [PMID: 32714204 PMCID: PMC7347016 DOI: 10.3389/fphys.2020.00694 10.3389/fphys.2020.00694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 06/13/2023] Open
Abstract
Oxidative stress plays an essential role in the pathogenesis of chronic diseases such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. Long term exposure to increased levels of pro-oxidant factors can cause structural defects at a mitochondrial DNA level, as well as functional alteration of several enzymes and cellular structures leading to aberrations in gene expression. The modern lifestyle associated with processed food, exposure to a wide range of chemicals and lack of exercise plays an important role in oxidative stress induction. However, the use of medicinal plants with antioxidant properties has been exploited for their ability to treat or prevent several human pathologies in which oxidative stress seems to be one of the causes. In this review we discuss the diseases in which oxidative stress is one of the triggers and the plant-derived antioxidant compounds with their mechanisms of antioxidant defenses that can help in the prevention of these diseases. Finally, both the beneficial and detrimental effects of antioxidant molecules that are used to reduce oxidative stress in several human conditions are discussed.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nanjangud V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Luciana Dini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Jovana Rajkovic
- Medical Faculty, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | | | - Elena Azzini
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Ilaria Peluso
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H.N.B. Garhwal (A Central) University, Srinagar, India
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, India
| | - Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Marc El Beyrouthy
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Letizia Polito
- General Pathology Section, Department of Experimental, Diagnostic and Specialty Medicine – DIMES, Bologna, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Anca Oana Docea
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William N. Setzer
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL, United States
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Kelmer Sacramento E, Kirkpatrick JM, Mazzetto M, Baumgart M, Bartolome A, Di Sanzo S, Caterino C, Sanguanini M, Papaevgeniou N, Lefaki M, Childs D, Bagnoli S, Terzibasi Tozzini E, Di Fraia D, Romanov N, Sudmant PH, Huber W, Chondrogianni N, Vendruscolo M, Cellerino A, Ori A. Reduced proteasome activity in the aging brain results in ribosome stoichiometry loss and aggregation. Mol Syst Biol 2020; 16:e9596. [PMID: 32558274 PMCID: PMC7301280 DOI: 10.15252/msb.20209596] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
A progressive loss of protein homeostasis is characteristic of aging and a driver of neurodegeneration. To investigate this process quantitatively, we characterized proteome dynamics during brain aging in the short-lived vertebrate Nothobranchius furzeri combining transcriptomics and proteomics. We detected a progressive reduction in the correlation between protein and mRNA, mainly due to post-transcriptional mechanisms that account for over 40% of the age-regulated proteins. These changes cause a progressive loss of stoichiometry in several protein complexes, including ribosomes, which show impaired assembly/disassembly and are enriched in protein aggregates in old brains. Mechanistically, we show that reduction of proteasome activity is an early event during brain aging and is sufficient to induce proteomic signatures of aging and loss of stoichiometry in vivo. Using longitudinal transcriptomic data, we show that the magnitude of early life decline in proteasome levels is a major risk factor for mortality. Our work defines causative events in the aging process that can be targeted to prevent loss of protein homeostasis and delay the onset of age-related neurodegeneration.
Collapse
Affiliation(s)
| | - Joanna M Kirkpatrick
- Leibniz Institute on Aging‐Fritz Lipmann Institute (FLI)JenaGermany
- Present address:
Proteomics Science Technology PlatformThe Francis Crick InstituteLondonUK
| | - Mariateresa Mazzetto
- Leibniz Institute on Aging‐Fritz Lipmann Institute (FLI)JenaGermany
- Bio@SNSScuola Normale SuperiorePisaItaly
| | - Mario Baumgart
- Leibniz Institute on Aging‐Fritz Lipmann Institute (FLI)JenaGermany
| | | | - Simone Di Sanzo
- Leibniz Institute on Aging‐Fritz Lipmann Institute (FLI)JenaGermany
| | - Cinzia Caterino
- Leibniz Institute on Aging‐Fritz Lipmann Institute (FLI)JenaGermany
- Bio@SNSScuola Normale SuperiorePisaItaly
| | - Michele Sanguanini
- Centre for Misfolding DiseasesDepartment of ChemistryUniversity of CambridgeCambridgeUK
| | | | - Maria Lefaki
- Institute of Chemical BiologyNational Hellenic Research FoundationAthensGreece
| | | | | | | | | | - Natalie Romanov
- European Molecular Biology LaboratoryHeidelbergGermany
- Present address:
Max Planck Institute of BiophysicsFrankfurt am MainGermany
| | | | | | - Niki Chondrogianni
- Institute of Chemical BiologyNational Hellenic Research FoundationAthensGreece
| | - Michele Vendruscolo
- Centre for Misfolding DiseasesDepartment of ChemistryUniversity of CambridgeCambridgeUK
| | - Alessandro Cellerino
- Leibniz Institute on Aging‐Fritz Lipmann Institute (FLI)JenaGermany
- Bio@SNSScuola Normale SuperiorePisaItaly
| | - Alessandro Ori
- Leibniz Institute on Aging‐Fritz Lipmann Institute (FLI)JenaGermany
| |
Collapse
|
31
|
Kaku H, Rothstein TL. FAIM Is a Non-redundant Defender of Cellular Viability in the Face of Heat and Oxidative Stress and Interferes With Accumulation of Stress-Induced Protein Aggregates. Front Mol Biosci 2020; 7:32. [PMID: 32175331 PMCID: PMC7056718 DOI: 10.3389/fmolb.2020.00032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/11/2020] [Indexed: 11/13/2022] Open
Abstract
A key element of cellular homeostasis lies in the way in which misfolded and dysfunctional proteins are handled. Cellular pathways that include proteasomal destruction and autophagic disposal are components of normal proteostasis. Here we report a novel molecule that plays a non-redundant role in maintaining homeostasis, Fas Apoptosis Inhibitory Molecule (FAIM). FAIM is highly conserved throughout evolution and bears no homology to any other protein. We found that FAIM counteracts heat and oxidative stress-induced loss of cell viability. FAIM is recruited to ubiquitinated proteins induced by cellular stress and the levels of stress-induced protein aggregates are much greater in FAIM-deficient cell lines. Primary fibroblasts from FAIM-deficient mice showed the same proteostasis deficits as cell lines. Administration of a mediator of oxidative stress to FAIM-deficient animals induced more ubiquitinated protein aggregates and more organ damage as compared to wild type mice. These results identify a completely new actor that protects cells against stress-induced loss of viability by preventing protein aggregation.
Collapse
Affiliation(s)
- Hiroaki Kaku
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States.,Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Thomas L Rothstein
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States.,Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
32
|
En A, Takauji Y, Miki K, Ayusawa D, Fujii M. Lamin B receptor plays a key role in cellular senescence induced by inhibition of the proteasome. FEBS Open Bio 2020; 10:237-250. [PMID: 31825172 PMCID: PMC6996348 DOI: 10.1002/2211-5463.12775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/07/2019] [Accepted: 12/09/2019] [Indexed: 12/04/2022] Open
Abstract
Cellular senescence is a terminal growth arrest phenomenon in mammalian cells. Coordinated regulation of protein synthesis and degradation is required to maintain protein homeostasis in cells; however, senescent cells exhibit decreased activity of the proteasome, a major cellular proteolytic machinery, with an accumulation of proteins. Indeed, we showed that MG132, a proteasome inhibitor, induced cellular senescence through an accumulation of proteins in human cells. We then investigated the mechanisms of cellular senescence induced by protein accumulation by treating cells with MG132. We found that lamin B receptor (LBR), a nuclear membrane protein that regulates heterochromatin organization, was mislocalized and down-regulated in cells on treatment with MG132. Importantly, enforced expression of LBR suppressed cellular senescence induced by MG132. We also showed that LBR was involved in the regulation of chromatin organization in senescent cells, and that endoplasmic reticulum stress and autophagy were likely to be involved in the mislocalization and down-regulation of LBR. These findings indicate that decreased LBR function was responsible for the induction of cellular senescence by MG132, and thus suggest that protein accumulation caused by inhibition of the proteasome induced cellular senescence probably through chromatin dysregulation in human cells.
Collapse
Affiliation(s)
- Atsuki En
- Graduate School of NanobioscienceYokohama City UniversityJapan
| | - Yuki Takauji
- Graduate School of NanobioscienceYokohama City UniversityJapan
- Ichiban Life CorporationYokohamaJapan
| | - Kensuke Miki
- Graduate School of NanobioscienceYokohama City UniversityJapan
- Ichiban Life CorporationYokohamaJapan
| | - Dai Ayusawa
- Graduate School of NanobioscienceYokohama City UniversityJapan
- Ichiban Life CorporationYokohamaJapan
| | - Michihiko Fujii
- Graduate School of NanobioscienceYokohama City UniversityJapan
| |
Collapse
|
33
|
Coux O, Zieba BA, Meiners S. The Proteasome System in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:55-100. [DOI: 10.1007/978-3-030-38266-7_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Panagiotidou E, Chondrogianni N. We Are What We Eat: Ubiquitin–Proteasome System (UPS) Modulation Through Dietary Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:329-348. [DOI: 10.1007/978-3-030-38266-7_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
35
|
Abstract
The proteasome degrades most cellular proteins in a controlled and tightly regulated manner and thereby controls many processes, including cell cycle, transcription, signalling, trafficking and protein quality control. Proteasomal degradation is vital in all cells and organisms, and dysfunction or failure of proteasomal degradation is associated with diverse human diseases, including cancer and neurodegeneration. Target selection is an important and well-established way to control protein degradation. In addition, mounting evidence indicates that cells adjust proteasome-mediated degradation to their needs by regulating proteasome abundance through the coordinated expression of proteasome subunits and assembly chaperones. Central to the regulation of proteasome assembly is TOR complex 1 (TORC1), which is the master regulator of cell growth and stress. This Review discusses how proteasome assembly and the regulation of proteasomal degradation are integrated with cellular physiology, including the interplay between the proteasome and autophagy pathways. Understanding these mechanisms has potential implications for disease therapy, as the misregulation of proteasome function contributes to human diseases such as cancer and neurodegeneration.
Collapse
|
36
|
Proteasome Activation to Combat Proteotoxicity. Molecules 2019; 24:molecules24152841. [PMID: 31387243 PMCID: PMC6696185 DOI: 10.3390/molecules24152841] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022] Open
Abstract
Loss of proteome fidelity leads to the accumulation of non-native protein aggregates and oxidatively damaged species: hallmarks of an aged cell. These misfolded and aggregated species are often found, and suggested to be the culpable party, in numerous neurodegenerative diseases including Huntington's, Parkinson's, Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Diseases (AD). Many strategies for therapeutic intervention in proteotoxic pathologies have been put forth; one of the most promising is bolstering the efficacy of the proteasome to restore normal proteostasis. This strategy is ideal as monomeric precursors and oxidatively damaged proteins, so called "intrinsically disordered proteins" (IDPs), are targeted by the proteasome. This review will provide an overview of disorders in proteins, both intrinsic and acquired, with a focus on susceptibility to proteasomal degradation. We will then examine the proteasome with emphasis on newly published structural data and summarize current known small molecule proteasome activators.
Collapse
|
37
|
Gonos ES, Kapetanou M, Sereikaite J, Bartosz G, Naparło K, Grzesik M, Sadowska-Bartosz I. Origin and pathophysiology of protein carbonylation, nitration and chlorination in age-related brain diseases and aging. Aging (Albany NY) 2019; 10:868-901. [PMID: 29779015 PMCID: PMC5990388 DOI: 10.18632/aging.101450] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
Non-enzymatic protein modifications occur inevitably in all living systems. Products of such modifications accumulate during aging of cells and organisms and may contribute to their age-related functional deterioration. This review presents the formation of irreversible protein modifications such as carbonylation, nitration and chlorination, modifications by 4-hydroxynonenal, removal of modified proteins and accumulation of these protein modifications during aging of humans and model organisms, and their enhanced accumulation in age-related brain diseases.
Collapse
Affiliation(s)
- Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens 11635, Greece
| | - Marianna Kapetanou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens 11635, Greece.,Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Athens 15701, Greece
| | - Jolanta Sereikaite
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Vilnius 2040, Lithuania
| | - Grzegorz Bartosz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| | - Katarzyna Naparło
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszow, Rzeszow 35-601, Poland
| | - Michalina Grzesik
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszow, Rzeszow 35-601, Poland
| | - Izabela Sadowska-Bartosz
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszow, Rzeszow 35-601, Poland
| |
Collapse
|
38
|
Abstract
Proteasomes are multienzyme complexes that maintain protein homeostasis (proteostasis) and important cellular functions through the degradation of misfolded, redundant, and damaged proteins. It is well established that aging is associated with the accumulation of damaged and misfolded proteins. This phenomenon is paralleled by declined proteasome activity. When the accumulation of redundant proteins exceed degradation, undesirable signaling and/or aggregation occurs and are the hallmarks of neurodegenerative diseases and many cancers. Thus, increasing proteasome activity has been recognized as a new approach to delay the onset or ameliorate the symptoms of neurodegenerative and other proteotoxic disorders. Enhancement of proteasome activity has many therapeutic potentials but is still a relatively unexplored field. In this perspective, we review current approaches, genetic manipulation, posttranslational modification, and small molecule proteasome agonists used to increase proteasome activity, challenges facing the field, and applications beyond aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Evert Njomen
- Department of Chemistry, and Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jetze J. Tepe
- Department of Chemistry, and Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
39
|
Sakellari M, Chondrogianni N, Gonos ES. Protein synthesis inhibition induces proteasome assembly and function. Biochem Biophys Res Commun 2019; 514:224-230. [PMID: 31029420 DOI: 10.1016/j.bbrc.2019.04.114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/15/2019] [Indexed: 10/26/2022]
Abstract
Protein synthesis and degradation balance have a crucial role in maintenance of cellular homeostasis and function. The ubiquitin-proteasome system is one of the major cellular proteolytic machineries responsible for the removal of normal, abnormal, denatured or in general damaged proteins. Proteasome is a multisubunit enzyme that consists of the 20S core and the 19S regulatory complexes giving rise to multiple active forms. In the present study we investigated the crosstalk between protein synthesis and proteasome-mediated protein degradation. Pharmacological protein synthesis inhibition led to increased proteasome function and assembly of 30S/26S proteasome complexes, in human primary embryonic fibroblasts. The enhancement in proteasome function counted for the degradation of ubiquitinated, misfolded and oxidized proteins. Additionally, it was found that heat shock proteins 70 and 90 are probably involved in the elevated proteasome assembly. Our results provide an insight on how the mechanisms of protein synthesis, protein degradation and heat shock protein chaperones machinery interact under various cellular conditions.
Collapse
Affiliation(s)
- Marianthi Sakellari
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece; Örebro University, Medical School, Örebro, 701 82, Sweden
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece.
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece; Örebro University, Medical School, Örebro, 701 82, Sweden.
| |
Collapse
|
40
|
Sulforaphane - role in aging and neurodegeneration. GeroScience 2019; 41:655-670. [PMID: 30941620 DOI: 10.1007/s11357-019-00061-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
In the last several years, numerous molecules derived from plants and vegetables have been tested for their antioxidant, anti-inflammatory, and anti-aging properties. One of them is sulforaphane (SFN), an isothiocyanate present in cruciferous vegetables. SFN activates the antioxidant and anti-inflammatory responses by inducing Nrf2 pathway and inhibiting NF-κB. It also has an epigenetic effect by inhibiting HDAC and DNA methyltransferases and modifies mitochondrial dynamics. Moreover, SFN preserves proteome homeostasis (proteostasis) by activating the proteasome, which has been shown to lead to increased cellular lifespan and prevent neurodegeneration. In this review, we describe some of the molecular and physical characteristics of SFN, its mechanisms of action, and the effects that SFN treatment induces in order to discuss its relevance as a "miraculous" drug to prevent aging and neurodegeneration.
Collapse
|
41
|
Proteasome β5 subunit overexpression improves proteostasis during aging and extends lifespan in Drosophila melanogaster. Sci Rep 2019; 9:3170. [PMID: 30816680 PMCID: PMC6395709 DOI: 10.1038/s41598-019-39508-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
The β5 subunit of the proteasome has been shown in worms and in human cell lines to be regulatory. In these models, β5 overexpression results in upregulation of the entire proteasome complex which is sufficient to increase proteotoxic stress resistance, improve metabolic parameters, and increase longevity. However, fundamental questions remain unanswered, including the temporal requirements for β5 overexpression and whether β5 overexpression can extend lifespan in other species. To determine if adult-only overexpression of the β5 subunit can increase proteasome activity in a different model, we characterized phenotypes associated with β5 overexpression in Drosophila melanogaster adults. We find that adult-only overexpression of the β5 subunit does not result in transcriptional upregulation of the other subunits of the proteasome as they do in nematodes and human cell culture. Despite this lack of a regulatory role, boosting β5 expression increases the chymotrypsin-like activity associated with the proteasome, reduces both the size and number of ubiquitinated protein aggregates in aged flies, and increases longevity. Surprisingly, these phenotypes were not associated with increased resistance to acute proteotoxic insults or improved metabolic parameters.
Collapse
|
42
|
Aivazidis S, Anderson CC, Roede JR. Toxicant-mediated redox control of proteostasis in neurodegeneration. CURRENT OPINION IN TOXICOLOGY 2019; 13:22-34. [PMID: 31602419 PMCID: PMC6785977 DOI: 10.1016/j.cotox.2018.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Disruption in redox signaling and control of cellular processes has emerged as a key player in many pathologies including neurodegeneration. As protein aggregations are a common hallmark of several neuronal pathologies, a firm understanding of the interplay between redox signaling, oxidative and free radical stress, and proteinopathies is required to sort out the complex mechanisms in these diseases. Fortunately, models of toxicant-induced neurodegeneration can be utilized to evaluate and report mechanistic alterations in the proteostasis network (PN). The epidemiological links between environmental toxicants and neurological disease gives further credence into characterizing the toxicant-mediated PN disruptions observed in these conditions. Reviewed here are examples of mechanistic interaction between oxidative or free radical stress and PN alterations. Additionally, investigations into toxicant-mediated PN disruptions, specifically focusing on environmental metals and pesticides, are discussed. Finally, we emphasize the need to distinguish whether the presence of protein aggregations are contributory to phenotypes related to neurodegeneration, or if they are a byproduct of PN deficiencies.
Collapse
Affiliation(s)
- Stefanos Aivazidis
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Colin C Anderson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - James R Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
43
|
Li Y, Xue Y, Xu X, Wang G, Liu Y, Wu H, Li W, Wang Y, Chen Z, Zhang W, Zhu Y, Ji W, Xu T, Liu L, Chen Q. A mitochondrial FUNDC1/HSC70 interaction organizes the proteostatic stress response at the risk of cell morbidity. EMBO J 2018; 38:embj.201798786. [PMID: 30591555 DOI: 10.15252/embj.201798786] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 08/25/2018] [Accepted: 10/04/2018] [Indexed: 01/22/2023] Open
Abstract
Both protein quality and mitochondrial quality are vital for the cellular activity, and impaired proteostasis and mitochondrial dysfunction are common etiologies of aging and age-related disorders. Here, we report that the mitochondrial outer membrane protein FUNDC1 interacts with the chaperone HSC70 to promote the mitochondrial translocation of unfolded cytosolic proteins for degradation by LONP1 or for formation of non-aggresomal mitochondrion-associated protein aggregates (MAPAs) upon proteasome inhibition in cultured human cells. Integrative approaches including csCLEM, Apex, and biochemical analysis reveal that MAPAs contain ubiquitinated cytosolic proteins, autophagy receptor p62, and mitochondrial proteins. MAPAs are segregated from mitochondria in a FIS1-dependent manner and can subsequently be degraded via autophagy. Although the FUNDC1/HSC70 pathway promotes the degradation of unfolded cytosolic proteins, excessive accumulation of unfolded proteins on the mitochondria prior to MAPA formation impairs mitochondrial integrity and activates AMPK, leading to cellular senescence. We suggest that human mitochondria organize cellular proteostatic response at the risk of their own malfunction and cell lethality.
Collapse
Affiliation(s)
- Yanjun Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanhong Xue
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaojun Xu
- College of Life Science and Technology, HuaZhong University of Science and Technology, Wuhan, Hubei, China
| | - Guopeng Wang
- School of Life Sciences, Peking University, Beijing, China
| | - Yiqun Liu
- School of Life Sciences, Peking University, Beijing, China
| | - Hao Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wenhui Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yueying Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ziheng Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Weilin Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yushan Zhu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wei Ji
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Science and Technology, HuaZhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Quan Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China .,College of Life Sciences, Nankai University, Tianjin, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Coleman RA, Trader DJ. Development and Application of a Sensitive Peptide Reporter to Discover 20S Proteasome Stimulators. ACS COMBINATORIAL SCIENCE 2018; 20:269-276. [PMID: 29553711 DOI: 10.1021/acscombsci.7b00193] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To attenuate an overabundance of cellular protein, it has been hypothesized that the 20S core particle (20S CP) of the proteasome can be chemically stimulated to degrade proteins into nontoxic peptides more quickly. Screening for small molecule 20S CP stimulators is typically performed with a reporter peptide composed of four amino acids and a coumarin group that is released upon proteasome-mediated hydrolysis to generate a fluorescent signal. Screening with this small reporter can lead to false negatives because the reporter peptide is rapidly turned-over without stimulation. To improve the screening for 20S CP stimulators, we have developed a peptide FRET reporter nearly four times more sensitive to stimulation but still amenable for high throughput screening. Through application of our FRET reporter, we have discovered two 20S CP gate-opening stimulators and also a molecule that elicits its mechanism of action through an interaction with a 20S CP active site.
Collapse
Affiliation(s)
- Rachel A. Coleman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Darci J. Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
45
|
Langerak S, Kim MJ, Lamberg H, Godinez M, Main M, Winslow L, O'Connor MB, Zhu CC. The Drosophila TGF-beta/Activin-like ligands Dawdle and Myoglianin appear to modulate adult lifespan through regulation of 26S proteasome function in adult muscle. Biol Open 2018; 7:bio.029454. [PMID: 29615416 PMCID: PMC5936056 DOI: 10.1242/bio.029454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Drosophila Activin signaling pathway employs at least three separate ligands – Activin-β (Actβ), Dawdle (Daw), and Myoglianin (Myo) – to regulate several general aspects of fruit fly larval development, including cell proliferation, neuronal remodeling, and metabolism. Here we provide experimental evidence indicating that both Daw and Myo are anti-ageing factors in adult fruit flies. Knockdown of Myo or Daw in adult fruit flies reduced mean lifespan, while overexpression of either ligand in adult muscle tissues but not in adipose tissues enhanced mean lifespan. An examination of ubiquitinated protein aggregates in adult muscles revealed a strong inverse correlation between Myo- or Daw-initiated Activin signaling and the amount of ubiquitinated protein aggregates. We show that this correlation has important functional implications by demonstrating that the lifespan extension effect caused by overexpression of wild-type Daw or Myo in adult muscle tissues can be completely abrogated by knockdown of a 26S proteasome regulatory subunit Rpn1 in adult fly muscle, and that the prolonged lifespan caused by overexpression of Daw or Myo in adult muscle could be due to enhanced protein levels of the key subunits of 26S proteasome. Overall, our data suggest that Activin signaling initiated by Myo and Daw in adult Drosophila muscles influences lifespan, in part, by modulation of protein homeostasis through either direct or indirect regulation of the 26S proteasome levels. Since Myo is closely related to the vertebrate muscle mass regulator Myostatin (GDF8) and the Myostatin paralog GDF11, our observations may offer a new experimental model for probing the roles of GDF11/8 in ageing regulation in vertebrates. This article has an associated First Person interview with the first author of the paper. Summary: This article has, for the first time, demonstrated that fruit fly TGF-beta, or Activin-type ligand Daw, or Myo-initiated Activin signaling in adult fruit fly muscle tissues works as an anti-ageing factor by regulating 26S proteasome activities in those tissues.
Collapse
Affiliation(s)
- Shaughna Langerak
- Department of Biological Sciences, Ferris State University, Big Rapids, MI 49307, USA
| | - Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hannah Lamberg
- Department of Biological Sciences, Ferris State University, Big Rapids, MI 49307, USA
| | - Michael Godinez
- Department of Biological Sciences, Ferris State University, Big Rapids, MI 49307, USA
| | - Mackenzie Main
- Department of Biological Sciences, Ferris State University, Big Rapids, MI 49307, USA
| | - Lindsey Winslow
- Department of Biological Sciences, Ferris State University, Big Rapids, MI 49307, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Changqi C Zhu
- Department of Biological Sciences, Ferris State University, Big Rapids, MI 49307, USA
| |
Collapse
|
46
|
Khan TK, Nelson TJ. Protein kinase C activator bryostatin‐1 modulates proteasome function. J Cell Biochem 2018; 119:6894-6904. [PMID: 29693282 DOI: 10.1002/jcb.26887] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/21/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Tapan K. Khan
- Center for Neurodegenerative DiseasesBlanchette Rockefeller Neurosciences Institute, West Virginia UniversityMorgantownWest Virginia
| | - Thomas J. Nelson
- Center for Neurodegenerative DiseasesBlanchette Rockefeller Neurosciences Institute, West Virginia UniversityMorgantownWest Virginia
| |
Collapse
|
47
|
Franceschi C, Garagnani P, Morsiani C, Conte M, Santoro A, Grignolio A, Monti D, Capri M, Salvioli S. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates. Front Med (Lausanne) 2018; 5:61. [PMID: 29662881 PMCID: PMC5890129 DOI: 10.3389/fmed.2018.00061] [Citation(s) in RCA: 540] [Impact Index Per Article: 77.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022] Open
Abstract
Geroscience, the new interdisciplinary field that aims to understand the relationship between aging and chronic age-related diseases (ARDs) and geriatric syndromes (GSs), is based on epidemiological evidence and experimental data that aging is the major risk factor for such pathologies and assumes that aging and ARDs/GSs share a common set of basic biological mechanisms. A consequence is that the primary target of medicine is to combat aging instead of any single ARD/GSs one by one, as favored by the fragmentation into hundreds of specialties and sub-specialties. If the same molecular and cellular mechanisms underpin both aging and ARDs/GSs, a major question emerges: which is the difference, if any, between aging and ARDs/GSs? The hypothesis that ARDs and GSs such as frailty can be conceptualized as accelerated aging will be discussed by analyzing in particular frailty, sarcopenia, chronic obstructive pulmonary disease, cancer, neurodegenerative diseases such as Alzheimer and Parkinson as well as Down syndrome as an example of progeroid syndrome. According to this integrated view, aging and ARDs/GSs become part of a continuum where precise boundaries do not exist and the two extremes are represented by centenarians, who largely avoided or postponed most ARDs/GSs and are characterized by decelerated aging, and patients who suffered one or more severe ARDs in their 60s, 70s, and 80s and show signs of accelerated aging, respectively. In between these two extremes, there is a continuum of intermediate trajectories representing a sort of gray area. Thus, clinically different, classical ARDs/GSs are, indeed, the result of peculiar combinations of alterations regarding the same, limited set of basic mechanisms shared with the aging process. Whether an individual will follow a trajectory of accelerated or decelerated aging will depend on his/her genetic background interacting lifelong with environmental and lifestyle factors. If ARDs and GSs are manifestations of accelerated aging, it is urgent to identify markers capable of distinguishing between biological and chronological age to identify subjects at higher risk of developing ARDs and GSs. To this aim, we propose the use of DNA methylation, N-glycans profiling, and gut microbiota composition to complement the available disease-specific markers.
Collapse
Affiliation(s)
- Claudio Franceschi
- Institute of Neurological Sciences, University of Bologna, Bellaria Hospital, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden.,Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, Bologna, Italy.,CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy
| | - Cristina Morsiani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| | - Andrea Grignolio
- Unit and Museum of History of Medicine, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| |
Collapse
|
48
|
Aunan JR, Cho WC, Søreide K. The Biology of Aging and Cancer: A Brief Overview of Shared and Divergent Molecular Hallmarks. Aging Dis 2017; 8:628-642. [PMID: 28966806 PMCID: PMC5614326 DOI: 10.14336/ad.2017.0103] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/03/2017] [Indexed: 12/17/2022] Open
Abstract
Aging is the inevitable time-dependent decline in physiological organ function and is a major risk factor for cancer development. Due to advances in health care, hygiene control and food availability, life expectancy is increasing and the population in most developed countries is shifting to an increasing proportion of people at a cancer susceptible age. Mechanisms of aging are also found to occur in carcinogenesis, albeit with shared or divergent end-results. It is now clear that aging and cancer development either share or diverge in several disease mechanisms. Such mechanisms include the role of genomic instability, telomere attrition, epigenetic changes, loss of proteostasis, decreased nutrient sensing and altered metabolism, but also cellular senescence and stem cell function. Cancer cells and aged cells are also fundamentally opposite, as cancer cells can be thought of as hyperactive cells with advantageous mutations, rapid cell division and increased energy consumption, while aged cells are hypoactive with accumulated disadvantageous mutations, cell division inability and a decreased ability for energy production and consumption. Nonetheless, aging and cancer are tightly interconnected and many of the same strategies and drugs may be used to target both, while in other cases antagonistic pleiotrophy come into effect and inhibition of one can be the activation of the other. Cancer can be considered an aging disease, though the shared mechanisms underpinning the two processes remain unclear. Better understanding of the shared and divergent pathways of aging and cancer is needed.
Collapse
Affiliation(s)
- Jan R Aunan
- 1Gastrointestinal Translational Research Unit, Molecular Lab, Stavanger University Hospital, Stavanger, Norway.,2Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
| | - William C Cho
- 3Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Kjetil Søreide
- 1Gastrointestinal Translational Research Unit, Molecular Lab, Stavanger University Hospital, Stavanger, Norway.,2Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway.,4Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
49
|
Approaches for extending human healthspan: from antioxidants to healthspan pharmacology. Essays Biochem 2017; 61:389-399. [PMID: 28698312 DOI: 10.1042/ebc20160091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 02/07/2023]
Abstract
Dramatic increases in human lifespan and declining population growth are monumental achievements but these same achievements have also led to many societies today ageing at a faster rate than ever before. Extending healthy lifespan (healthspan) is a key translational challenge in this context. Disease-centric approaches to manage population ageing risk are adding years to life without adding health to these years. The growing consensus that ageing is driven by a limited number of interconnected processes suggests an alternative approach. Instead of viewing each age-dependent disease as the result of an independent chain of events, this approach recognizes that most age-dependent diseases depend on and are driven by a limited set of ageing processes. While the relative importance of each of these processes and the best intervention strategies targeting them are subjects of debate, there is increasing interest in providing preventative intervention options to healthy individuals even before overt age-dependent diseases manifest. Elevated oxidative damage is involved in the pathophysiology of most age-dependent diseases and markers of oxidative damage often increase with age in many organisms. However, correlation is not causation and, sadly, many intervention trials of supposed antioxidants have failed to extend healthspan and to prevent diseases. This does not, however, mean that reactive species (RS) and redox signalling are unimportant. Ultimately, the most effective antioxidants may not turn out to be the best geroprotective drugs, but effective geroprotective interventions might well turn out to also have excellent, if probably indirect, antioxidant efficacy.
Collapse
|
50
|
Wu SX, Jiang X, Liu YY, Chen LF, Tao J. EFFECTS AND MECHANISMS OF A NEW MULTIVITAMIN ON CHRONIC METABOLIC SYNDROMES AND AGING. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2017; 14:52-61. [PMID: 28331914 DOI: 10.21010/ajtcam.v14i1.4256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Increased occurrence of chronic syndromes has prompted researchers to investigate and develop drugs and methods for controlling chronic syndromes with a view to improve human health and reduce early aging. MATERIAL AND METHODS Human trials: After the allotted multivitamin pills or placebo pills had been taken for a stipulated period of about 2 months, the volunteers filled out feedback forms on curative effects of the pills in line with the health examination reports. The effects of the multivitamin on various symptoms or diseases and dysfunctions of the chronic metabolic syndromes were noted and evaluated based on the information provided in forms. Animal experiments: Mouse aging model induced by D-galactose were administered the multivitamin by oral gavage every morning. At the end of the sixth week, activity or content of the components associated with ageing and anti-aging in the brain and liver of the aging mice were determined to investigate the mechanisms of the new multivitamin on chronic metabolic syndromes and aging. RESULTS We found that multivitamin can eliminate or attenuate 38 types of symptoms or dysfunctions of the investigated metabolic syndromes; and that it has both preventive and curative/adjunctive therapeutic effects on the metabolic syndromes. The effects of this multivitamin on components associated with aging and anti-aging were significantly decreased - malondialdehyde content and monoamine oxidase activity but significantly increased activity of superoxide dismutase and glutathione peroxidase. This multivitamin has significant anti-aging effects. CONCLUSION Supplementing with this multivitamin can prevent and provide treatment/adjunctive therapy for these chronic metabolic syndromes and delay the aging process. List of AbbreviationsBWbody weight; Cu/Zn-SOD, cuprum/zinc-superoxide dismutaseMAOmonoamine oxidaseMDAmalondialdehyde; Mn-SOD, manganese-superoxide dismutase; T-SOD, total superoxide dismutase; TP, total protein.
Collapse
Affiliation(s)
- Su-Xi Wu
- School of Chemistry and Bioengineering, Changsha University of Science and Technology, Changsha 410004, China
| | - Xuewei Jiang
- School of Chemistry and Bioengineering, Changsha University of Science and Technology, Changsha 410004, China
| | - Yu-Ying Liu
- Department of Health Care, People's Hospital of Hunan Province, Changsha 410004, China
| | - Lin-Feng Chen
- Hospital of Changsha University of Science and Technology, Changsha 410004, China
| | - Jun Tao
- School of Chemistry and Bioengineering, Changsha University of Science and Technology, Changsha 410004, China
| |
Collapse
|