1
|
Lin Z, Ying C, Si X, Xue N, Liu Y, Zheng R, Chen Y, Pu J, Zhang B. NOX4 exacerbates Parkinson's disease pathology by promoting neuronal ferroptosis and neuroinflammation. Neural Regen Res 2025; 20:2038-2052. [PMID: 38993139 PMCID: PMC11691449 DOI: 10.4103/nrr.nrr-d-23-01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/18/2023] [Accepted: 03/18/2024] [Indexed: 07/13/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202507000-00026/figure1/v/2024-09-09T124005Z/r/image-tiff Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta. Ferroptosis, a novel form of regulated cell death characterized by iron accumulation and lipid peroxidation, plays a vital role in the death of dopaminergic neurons. However, the molecular mechanisms underlying ferroptosis in dopaminergic neurons have not yet been completely elucidated. NADPH oxidase 4 is related to oxidative stress, however, whether it regulates dopaminergic neuronal ferroptosis remains unknown. The aim of this study was to determine whether NADPH oxidase 4 is involved in dopaminergic neuronal ferroptosis, and if so, by what mechanism. We found that the transcriptional regulator activating transcription factor 3 increased NADPH oxidase 4 expression in dopaminergic neurons and astrocytes in an 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced Parkinson's disease model. NADPH oxidase 4 inhibition improved the behavioral impairments observed in the Parkinson's disease model animals and reduced the death of dopaminergic neurons. Moreover, NADPH oxidase 4 inhibition reduced lipid peroxidation and iron accumulation in the substantia nigra of the Parkinson's disease model animals. Mechanistically, we found that NADPH oxidase 4 interacted with activated protein kinase C α to prevent ferroptosis of dopaminergic neurons. Furthermore, by lowering the astrocytic lipocalin-2 expression, NADPH oxidase 4 inhibition reduced 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced neuroinflammation. These findings demonstrate that NADPH oxidase 4 promotes ferroptosis of dopaminergic neurons and neuroinflammation, which contribute to dopaminergic neuron death, suggesting that NADPH oxidase 4 is a possible therapeutic target for Parkinson's disease.
Collapse
Affiliation(s)
- Zhihao Lin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Changzhou Ying
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiaoli Si
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Naijia Xue
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yi Liu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Ran Zheng
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Ying Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Bano N, Khan S, Ahamad S, Dar NJ, Alanazi HH, Nazir A, Bhat SA. Microglial NOX2 as a therapeutic target in traumatic brain injury: Mechanisms, consequences, and potential for neuroprotection. Ageing Res Rev 2025; 108:102735. [PMID: 40122395 DOI: 10.1016/j.arr.2025.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/08/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Traumatic brain injury (TBI) is a leading cause of long-term disability worldwide, with secondary injury mechanisms, including neuroinflammation and oxidative stress, driving much of its chronic pathology. While NADPH oxidase 2 (NOX2)-mediated reactive oxygen species (ROS) production is a recognized factor in TBI, the specific role of microglial NOX2 in perpetuating oxidative and inflammatory damage remains underexplored. Addressing this gap is critical, as current therapeutic approaches primarily target acute symptoms and fail to interrupt the persistent neuroinflammation that contributes to progressive neurodegeneration. Besides NOX, other ROS-generating enzymes, such as CYP1B1, COX2, and XO, also play crucial roles in triggering oxidative stress and neuroinflammatory conditions in TBI. However, this review highlights the pathophysiological role of microglial NOX2 in TBI, focusing on its activation following injury and its impact on ROS generation, neuroinflammatory signaling, and neuronal loss. These insights reveal NOX2 as a critical driver of secondary injury, linked to worsened outcomes, particularly in aged individuals where NOX2 activation is more pronounced. In addition, this review evaluates emerging therapeutic approaches targeting NOX2, such as GSK2795039 and other selective NOX2 inhibitors, which show potential in reducing ROS levels, limiting neuroinflammation, and preserving neurological functions. By highlighting the specific role of NOX2 in microglial ROS production and secondary neurodegeneration, this study advocates for NOX2 inhibition as a promising strategy to improve TBI outcomes by addressing the unmet need for therapies targeting long-term inflammation and neuroprotection. Our review highlights the potential of NOX2-targeted interventions to disrupt the cycle of oxidative stress and inflammation, ultimately offering a pathway to mitigate the chronic impact of TBI.
Collapse
Affiliation(s)
- Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA
| | - Hamad H Alanazi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al Jouf University 77455, Saudi Arabia
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | - Shahnawaz Ali Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
3
|
Wu X, He H, Shen D, Ye X, Chen Z, Zou S, Zhou K, Ye X, Zhang Z, Li H, Liu J. Usefulness of Serum NOX4 as a Potential Biomarker to Predict Early Neurological Deterioration and Poor Outcome of Spontaneous Intracerebral Hemorrhage: A Prospective Observational Study. Neuropsychiatr Dis Treat 2025; 21:295-307. [PMID: 39989662 PMCID: PMC11847498 DOI: 10.2147/ndt.s512801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
Background NADPH oxidase 4 (NOX4) may play a critical role for inducing oxidative stress and inflammation after spontaneous intracerebral hemorrhage (sICH). This study was performed to assess associations of serum NOX4 levels with sICH severity, early neurological deterioration (END) and neurological outcomes. Methods In this prospective cohort study, serum of 161 sICH patients and 161 controls were collected for quantifying NOX4 levels. END was defined as a decrease of ≥2 points in Glasgow coma scale (GCS) score within 24 hours of admission. Poor outcome was referred to as Glasgow Outcome Scale (GOS) scores of 1-3 at 90 days post-stroke. Results As compared to controls, a significant increase in serum NOX4 levels was observed among patients. NOX4 levels were independently associated with GCS scores and hematoma volumes (all P<0.05). The levels were significantly higher in patients with END than in those without, and in patients with poor outcome than in those with good outcome, as well as independently predicted both END (OR=3.166, 95% CI 1.237-8.105, P=0.016) and 90-day poor prognosis (OR=3.031, 95% CI 1.111-8.269, P=0.030). Serum NOX4 significantly differentiated patients at risk of END (area under ROC curve (AUC), 0.768; 95% confidence interval (CI), 0.695-0.831) and poor prognosis (AUC, 0.777; 95% CI, 0.705-0.839), which had similar prognostic ability, as compared to GCS scores and hematoma volumes (all P>0.05). Conclusion Elevated serum NOX4 levels during the early period of sICH are closely related to stroke severity, END and poor neurological outcome. Hypothetically, serum NOX4 may serve as a potential prognostic biomarker in sICH.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Neurosurgery, Lishui Hospital of Wenzhou Medical University, Lishui City People’s Hospital, Lishui, Zhejiang Province, People’s Republic of China
| | - Heng He
- Department of Neurosurgery, Lishui Hospital of Wenzhou Medical University, Lishui City People’s Hospital, Lishui, Zhejiang Province, People’s Republic of China
| | - Dapu Shen
- Department of Neurosurgery, Lishui Hospital of Wenzhou Medical University, Lishui City People’s Hospital, Lishui, Zhejiang Province, People’s Republic of China
| | - Xiaohui Ye
- Department of Nursing, Lishui Hospital of Wenzhou Medical University, Lishui City People’s Hospital, Lishui, Zhejiang Province, People’s Republic of China
| | - Ziyin Chen
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Shengdong Zou
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Kechen Zhou
- Jiangxi Medical College, Nanchang University, Nangchang, Jiangxi Province, People’s Republic of China
| | - Xiufeng Ye
- Department of Neurosurgery, Longquan City People’s Hospital, Lishui, Zhejiang Province, People’s Republic of China
| | - Zhixing Zhang
- Department of Neurosurgery, Jinyun County Hospital of Traditional Chinese Medicine, Lishui, Zhejiang Province, People’s Republic of China
| | - Huguang Li
- Department of Neurosurgery, Lishui Hospital of Wenzhou Medical University, Lishui City People’s Hospital, Lishui, Zhejiang Province, People’s Republic of China
| | - Jin Liu
- Department of Neurosurgery, Lishui Hospital of Wenzhou Medical University, Lishui City People’s Hospital, Lishui, Zhejiang Province, People’s Republic of China
| |
Collapse
|
4
|
Fu J, Du M, Wu B, Wu C, Li X, Tan W, Huang X, Zhu Z, Zhang J, Liao ZB. CircRNA Itm2b induces oxidative stress via the interaction with Sirt1-Nox4 to aggravate sleep disturbances after traumatic brain injury. Cell Biosci 2025; 15:21. [PMID: 39962534 PMCID: PMC11834694 DOI: 10.1186/s13578-025-01353-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Sleep disorders (SD) are common sequelae following traumatic brain injury (TBI) and may be linked to mitochondrial oxidative stress dysregulation after TBI. Increasing evidence showed that circRNAs play crucial roles in nervous system diseases. However, the involvement of circRNAs in sleep disturbances after TBI is not characterized. In this study, differentially expressed circRNAs were identified by RNA sequencing. Sleep quality in TBI patients was assessed through sleep scales and electroencephalograms. Further experiments were conducted to investigate the role of circItm2b. We found that circItm2b was elevated and involved sleep disorder in TBI patients. Over-expression of circItm2b might aggravate sleep disturbances in mice after TBI. Mechanically, circItm2b regulates Nox4 expression through binding Sirt1, which influences mitochondrial oxidative stress-caused circadian protein losses. Moreover, the knockdown of circItm2b attenuated mitochondrial oxidative stress-induced circadian proteins losses via circItm2b/Sirt1/Nox4 axis after TBI, which might suggest that circItm2b may serve as a prognostic marker for improving sleep disorders and represent a promising therapeutic target for TBI-related sleep disturbances.
Collapse
Affiliation(s)
- Jiayuanyuan Fu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Mengran Du
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400010, China
| | - Biying Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Chenrui Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Xin Li
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Weilin Tan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Xuekang Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Ziyu Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Jie Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Zheng Bu Liao
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
5
|
Macías F, Ulloa M, Clapp C, Martínez de la Escalera G, Arnold E. Prolactin protects hippocampal neurons against H2O2-induced neurotoxicity by suppressing BAX and NOX4 via the NF-κB signaling pathway. PLoS One 2024; 19:e0313328. [PMID: 39499702 PMCID: PMC11537405 DOI: 10.1371/journal.pone.0313328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024] Open
Abstract
Reactive oxygen species (ROS) are physiological byproducts of neuronal metabolism. However, an imbalance between ROS generation and antioxidant capacity, often driven by dysregulated pro-oxidant enzymes like nicotinamide adenine dinucleotide phosphate oxidases (NOX), can result in deleterious oxidative stress. This oxidative stress is a critical factor in the pathogenesis of neurodegenerative diseases. While interventions with broad-spectrum antioxidants have demonstrated limited efficacy, the modulation of endogenous antioxidant mechanisms presents a promising therapeutic avenue. Here, we investigated the potential of the neuroprotective hormone prolactin to mitigate oxidative stress and subsequent neuronal cell death. Prolactin protected primary mouse hippocampal neurons from hydrogen peroxide (H2O2)-induced oxidative damage. Prolactin reduced ROS levels, lipid peroxidation, and apoptosis, and its effects were occluded by a specific prolactin receptor antagonist (G129R-hPRL). Mechanistically, prolactin suppressed H2O2-induced mRNA upregulation of pro-oxidative Nox4 and pro-apoptotic Bax. Moreover, prolactin induced nuclear factor kappa B (NF-κB) nuclear translocation, and the inhibition of the NF-κB signaling pathway abolished the neuroprotective and transcriptional effects of prolactin, indicating its central role in prolactin-mediated protection. Our findings indicate that prolactin exerts potent antioxidant and neuroprotective effects by modulating the expression of Nox4 and Bax, thereby reducing ROS generation and neuronal apoptosis. This study underscores the therapeutic potential of prolactin in attenuating oxidative stress and suggests a possible role in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fernando Macías
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Querétaro, México
| | - Miriam Ulloa
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Querétaro, México
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Querétaro, México
| | - Gonzalo Martínez de la Escalera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Querétaro, México
| | - Edith Arnold
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Querétaro, México
- CONAHCYT–Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Querétaro, México
| |
Collapse
|
6
|
Ji Y, Morel Y, Tran AQ, Lipinski MM, Sarkar C, Jones JW. Development and evaluation of a liquid chromatography-tandem mass spectrometry method for simultaneous measurement of toxic aldehydes from brain tissue. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1242:124208. [PMID: 38880056 PMCID: PMC11227393 DOI: 10.1016/j.jchromb.2024.124208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Reactive aldehydes are a class of electrophilic low molecular weight compounds that play an essential role in physiological function and lipid peroxidation. These molecules are implicated in many diseases, especially cardiovascular and neurodegenerative diseases, and are potential endogenous markers of lipid peroxidation. However, there are limited options to accurately quantify multiple reactive aldehydes in brain tissue. This study developed and validated a 3-nitrophenylhydrazine derivatization-based LC-MS/MS method to quantify four reactive aldehydes: malondialdehyde, acrolein, 4-hydroxy-2-hexenal and 4-hydroxy-2-nonenal. Method development involved comparing the sensitivity of detection between widely used derivatization reagents: 2,4-dinitrophenylhydrazine and 3-nitrophenylhydrazine. Our data showed that 3-nitrophenylhydrazine resulted in greater sensitivity. Additional method development included evaluation of hydrolysis sample pretreatment, selection of protein precipitation reagent, and optimization of derivatization conditions. The optimized conditions included no hydrolysis and use of 20 % trichloroacetic acid as the protein precipitation reagent. The optimized derivatization condition was 25 mM 3-nitrophenylhydrazine reacted at 20 °C for 30 min. The chromatographic conditions were optimized to reduce matrix effects, ion suppression, and efficient analysis time (<7-minute analytical run). The four aldehyde species were accurately quantified in brain tissue using stable-labeled internal standards. Application of this assay to a traumatic brain injury mouse model revealed significant accumulation of acrolein, 4-hydroxy-2-hexenal, and 4-hydroxy-2-nonenal at 28 days post injury. Overall, a validated method was developed to rapidly quantify the most prominent reactive aldehydes associated with lipid peroxidation during injury progression following acute brain trauma.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Yulemni Morel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Anh Q Tran
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Marta M Lipinski
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chinmoy Sarkar
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA.
| |
Collapse
|
7
|
Maimaiti Y, Su T, Zhang Z, Ma L, Zhang Y, Xu H. NOX4-mediated astrocyte ferroptosis in Alzheimer's disease. Cell Biosci 2024; 14:88. [PMID: 38956702 PMCID: PMC11218381 DOI: 10.1186/s13578-024-01266-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
This study investigates NADPH oxidase 4 (NOX4) involvement in iron-mediated astrocyte cell death in Alzheimer's Disease (AD) using single-cell sequencing data and transcriptomes. We analyzed AD single-cell RNA sequencing data, identified astrocyte marker genes, and explored biological processes in astrocytes. We integrated AD-related chip data with ferroptosis-related genes, highlighting NOX4. We validated NOX4's role in ferroptosis and AD in vitro and in vivo. Astrocyte marker genes were enriched in AD, emphasizing their role. NOX4 emerged as a crucial player in astrocytic ferroptosis in AD. Silencing NOX4 mitigated ferroptosis, improved cognition, reduced Aβ and p-Tau levels, and alleviated mitochondrial abnormalities. NOX4 promotes astrocytic ferroptosis, underscoring its significance in AD progression.
Collapse
Affiliation(s)
- Yasenjiang Maimaiti
- Gerontology Center, People's Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Urumqi, Xinjiang, China.
| | - Ting Su
- Gerontology Center, People's Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Urumqi, Xinjiang, China
| | - Zhanying Zhang
- Gerontology Center, People's Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Urumqi, Xinjiang, China
| | - Lingling Ma
- Gerontology Center, People's Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Urumqi, Xinjiang, China
| | - Yuan Zhang
- Gerontology Center, People's Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Urumqi, Xinjiang, China
| | - Hong Xu
- Gerontology Center, People's Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Urumqi, Xinjiang, China.
| |
Collapse
|
8
|
Liu C, Wang G, Han W, Tian Q, Li M. Ferroptosis: a potential therapeutic target for stroke. Neural Regen Res 2024; 19:988-997. [PMID: 37862200 PMCID: PMC10749612 DOI: 10.4103/1673-5374.385284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 10/22/2023] Open
Abstract
Ferroptosis is a form of regulated cell death characterized by massive iron accumulation and iron-dependent lipid peroxidation, differing from apoptosis, necroptosis, and autophagy in several aspects. Ferroptosis is regarded as a critical mechanism of a series of pathophysiological reactions after stroke because of iron overload caused by hemoglobin degradation and iron metabolism imbalance. In this review, we discuss ferroptosis-related metabolisms, important molecules directly or indirectly targeting iron metabolism and lipid peroxidation, and transcriptional regulation of ferroptosis, revealing the role of ferroptosis in the progression of stroke. We present updated progress in the intervention of ferroptosis as therapeutic strategies for stroke in vivo and in vitro and summarize the effects of ferroptosis inhibitors on stroke. Our review facilitates further understanding of ferroptosis pathogenesis in stroke, proposes new targets for the treatment of stroke, and suggests that more efforts should be made to investigate the mechanism of ferroptosis in stroke.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wenrui Han
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
9
|
Wang S, Liu A, Xu C, Hou J, Hong J. GLP-1(7-36) protected against oxidative damage and neuronal apoptosis in the hippocampal CA region after traumatic brain injury by regulating ERK5/CREB. Mol Biol Rep 2024; 51:313. [PMID: 38374452 PMCID: PMC10876747 DOI: 10.1007/s11033-024-09244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) (7-36) amide, an endogenous active form of GLP-1, has been shown to modulate oxidative stress and neuronal cell survival in various neurological diseases. OBJECTIVE This study investigated the potential effects of GLP-1(7-36) on oxidative stress and apoptosis in neuronal cells following traumatic brain injury (TBI) and explored the underlying mechanisms. METHODS Traumatic brain injury (TBI) models were established in male SD rats for in vivo experiments. The extent of cerebral oedema was assessed using wet-to-dry weight ratios following GLP-1(7-36) intervention. Neurological dysfunction and cognitive impairment were evaluated through behavioural experiments. Histopathological changes in the brain were observed using haematoxylin and eosin staining. Oxidative stress levels in hippocampal tissues were measured. TUNEL staining and Western blotting were employed to examine cell apoptosis. In vitro experiments evaluated the extent of oxidative stress and neural apoptosis following ERK5 phosphorylation activation. Immunofluorescence colocalization of p-ERK5 and NeuN was analysed using immunofluorescence cytochemistry. RESULTS Rats with TBI exhibited neurological deterioration, increased oxidative stress, and enhanced apoptosis, which were ameliorated by GLP-1(7-36) treatment. Notably, GLP-1(7-36) induced ERK5 phosphorylation in TBI rats. However, upon ERK5 inhibition, oxidative stress and neuronal apoptosis levels were elevated, even in the presence of GLP-1(7-36). CONCLUSION In summary, this study suggested that GLP-1(7-36) suppressed oxidative damage and neuronal apoptosis after TBI by activating ERK5/CREB.
Collapse
Affiliation(s)
- Shuwei Wang
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Aijun Liu
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Chaopeng Xu
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Jingxuan Hou
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Jun Hong
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China.
| |
Collapse
|
10
|
Gola L, Bierhansl L, Csatári J, Schroeter CB, Korn L, Narayanan V, Cerina M, Abdolahi S, Speicher A, Hermann AM, König S, Dinkova-Kostova AT, Shekh-Ahmad T, Meuth SG, Wiendl H, Gorji A, Pawlowski M, Kovac S. NOX4-derived ROS are neuroprotective by balancing intracellular calcium stores. Cell Mol Life Sci 2023; 80:127. [PMID: 37081190 PMCID: PMC10119225 DOI: 10.1007/s00018-023-04758-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/22/2023]
Abstract
Hyperexcitability is associated with neuronal dysfunction, cellular death, and consequently neurodegeneration. Redox disbalance can contribute to hyperexcitation and increased reactive oxygen species (ROS) levels are observed in various neurological diseases. NOX4 is an NADPH oxidase known to produce ROS and might have a regulating function during oxidative stress. We, therefore, aimed to determine the role of NOX4 on neuronal firing, hyperexcitability, and hyperexcitability-induced changes in neural network function. Using a multidimensional approach of an in vivo model of hyperexcitability, proteomic analysis, and cellular function analysis of ROS, mitochondrial integrity, and calcium levels, we demonstrate that NOX4 is neuroprotective by regulating ROS and calcium homeostasis and thereby preventing hyperexcitability and consequently neuronal death. These results implicate NOX4 as a potential redox regulator that is beneficial in hyperexcitability and thereby might have an important role in neurodegeneration.
Collapse
Affiliation(s)
- Lukas Gola
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Laura Bierhansl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Júlia Csatári
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lisanne Korn
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Venu Narayanan
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Manuela Cerina
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Sara Abdolahi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Anna Speicher
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Alexander M Hermann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, Medical Faculty, University of Münster, 48149, Münster, Germany
| | | | - Tawfeeq Shekh-Ahmad
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Matthias Pawlowski
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany.
| |
Collapse
|
11
|
Mason H, Rai G, Kozyr A, De Jonge N, Gliniewicz E, Berg LJ, Wald G, Dorrier C, Henderson MJ, Zakharov A, Dyson T, Audley J, Pettinato AM, Padilha EC, Shah P, Xu X, Leto TL, Simeonov A, Zarember KA, McGavern DB, Gallin JI. Development of an improved and specific inhibitor of NADPH oxidase 2 to treat traumatic brain injury. Redox Biol 2023; 60:102611. [PMID: 36709665 PMCID: PMC9894920 DOI: 10.1016/j.redox.2023.102611] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
NADPH oxidases (NOX's), and the reactive oxygen species (ROS) they produce, play an important role in host defense, thyroid hormone synthesis, apoptosis, gene regulation, angiogenesis and other processes. However, overproduction of ROS by these enzymes is associated with cardiovascular disease, fibrosis, traumatic brain injury (TBI) and other diseases. Structural similarities between NOX's have complicated development of specific inhibitors. Here, we report development of NCATS-SM7270, a small molecule optimized from GSK2795039, that inhibited NOX2 in primary human and mouse granulocytes. NCATS-SM7270 specifically inhibited NOX2 and had reduced inhibitory activity against xanthine oxidase in vitro. We also studied the role of several NOX isoforms during mild TBI (mTBI) and demonstrated that NOX2 and, to a lesser extent, NOX1 deficient mice are protected from mTBI pathology, whereas injury is exacerbated in NOX4 knockouts. Given the pathogenic role played by NOX2 in mTBI, we treated mice transcranially with NCATS-SM7270 after injury and revealed a dose-dependent reduction in mTBI induced cortical cell death. This inhibitor also partially reversed cortical damage observed in NOX4 deficient mice following mTBI. These data demonstrate that NCATS-SM7270 is an improved and specific inhibitor of NOX2 capable of protecting mice from NOX2-dependent cell death associated with mTBI.
Collapse
Affiliation(s)
- Hannah Mason
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Arina Kozyr
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Nathaniel De Jonge
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Emily Gliniewicz
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Lars J Berg
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Gal Wald
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Cayce Dorrier
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Alexey Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Tristan Dyson
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John Audley
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Anthony M Pettinato
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Elias Carvalho Padilha
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Pranav Shah
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Thomas L Leto
- Molecular Defenses Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Kol A Zarember
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA.
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - John I Gallin
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Miller DR, Ingersoll MA, Chou YW, Kosmacek EA, Oberley-Deegan RE, Lin MF. Dynamics of antioxidant heme oxygenase-1 and pro-oxidant p66Shc in promoting advanced prostate cancer progression. Free Radic Biol Med 2022; 193:274-291. [PMID: 36265795 DOI: 10.1016/j.freeradbiomed.2022.10.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022]
Abstract
The castration-resistant (CR) prostate cancer (PCa) is lethal and is the second leading cause of cancer-related deaths in U.S. males. To develop effective treatments toward CR PCa, we investigated reactive oxygen species (ROS) signaling pathway for its role involving in CR PCa progression. ROS can regulate both cell growth and apoptosis: a moderate increase of ROS promotes proliferation; its substantial rise results in cell death. p66Shc protein can increase oxidant species production and its elevated level is associated with the androgen-independent (AI) phenotype of CR PCa cells; while heme oxygenase-1 (HO-1) is an antioxidant enzyme and elevated in a sub-group of metastatic PCa cells. In this study, our data revealed that HO-1 and p66Shc protein levels are co-elevated in various AI PCa cell lines as well as p66Shc cDNA-transfected cells. Knockdown and/or inhibition of either p66Shc or HO-1 protein leads to reduced tumorigenicity as well as a reduction of counterpart protein. Knockdown of HO-1 alone results in increased ROS levels, nucleotide and protein oxidation and induction of cell death. Together, our data indicate that elevated HO-1 protein levels protect PCa cells from otherwise apoptotic conditions induced by aberrant p66Shc/ROS production, which thereby promotes PCa progression to the CR phenotype. p66Shc and HO-1 can serve as functional targets for treating CR PCa.
Collapse
Affiliation(s)
- Dannah R Miller
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Matthew A Ingersoll
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Yu-Wei Chou
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Elizabeth A Kosmacek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; Section of Urology, Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
13
|
Saadi A, Sandouka S, Grad E, Singh PK, Shekh-Ahmad T. Spatial, temporal, and cell-type-specific expression of NADPH Oxidase isoforms following seizure models in rats. Free Radic Biol Med 2022; 190:158-168. [PMID: 35964838 DOI: 10.1016/j.freeradbiomed.2022.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
The NADPH Oxidase (NOX) enzymes are key producers of reactive oxygen species (ROS) and consist of seven different isoforms, distributed across the tissues and cell types. The increasing level of ROS induces oxidative stress playing a crucial role in neuronal death and the development of epilepsy. Recently, NOX2 was reported as a primary source of ROS production, activated by NMDA receptor, a crucial marker of epilepsy development. Here, we demonstrate spatial, temporal, and cellular expression of NOX2 and NOX4 complexes in in-vitro and in-vivo seizure models. We showed that the expression of NOX2 and NOX4 was increased in the initial 24 h following a brief seizure induced by pentylenetetrazol. Interestingly, while this elevated level returns to baseline 48 h following seizure in the cortex, in the hippocampus these levels remain elevated up to one week following the seizure. Moreover, we showed that 1- and 2- weeks following status epilepticus (SE), expression of NOX2 and NOX4 remains significantly elevated both in the cortex and the hippocampus. Furthermore, in in-vitro seizure model, NOX2 and NOX4 isoforms were overexpressed in neurons and astrocytes following seizures. These results suggest that NOX2 and NOX4 in the brain have a transient response to seizures, and these responses temporally vary depending on, seizure duration, brain region (cortex or hippocampus), and cell types.
Collapse
Affiliation(s)
- Aseel Saadi
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Sereen Sandouka
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Etty Grad
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Prince Kumar Singh
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Tawfeeq Shekh-Ahmad
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
14
|
Jiang F, Chen Z, Hu J, Liu Q. Serum NOX4 as a Promising Prognostic Biomarker in Association with 90-Day Outcome of Severe Traumatic Brain Injury. Int J Gen Med 2022; 15:5307-5317. [PMID: 35669593 PMCID: PMC9165705 DOI: 10.2147/ijgm.s366170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) is related to brain oxidative stress. We attempted to examine the association between serum NOX4 levels, severity and prognosis of severe traumatic brain injury (sTBI). Methods We measured serum NOX4 levels in 105 patients with sTBI. Trauma severity was assessed using Glasgow coma scale (GCS) and Rotterdam computed tomography (CT) classification. Study outcome data on death and worst outcome (Glasgow outcome scale score of 1-3) were collected at 90 days after trauma. Multivariate analyses were performed to determine independent factors for overall survival and worst outcome. Area under receiver operating characteristic curve (AUC) was estimated to assess prognostic predictive ability. Results Serum NOX4 levels were tightly correlated with GCS score (t=-5.843, P < 0.001) and Rotterdam CT score (t = 4.231, P < 0.001). During 90 days of follow-up, 50 participants (47.6%) experienced a worse outcome, 28 (26.7%) died and the mean overall survival time was 71.9 days (95% confidence interval (CI), 65.7-78.1 days). Serum NOX4 was independently associated with an increased risk of short overall survival (hazard ratio, 1.129; 95% CI, 1.039-1.228) or worse outcome (odds ratio, 1.053; 95% CI, 1.014-1.095). Serum NOX4 levels had a certain predictive value for the patient's risk of mortality (AUC, 0.803; 95% CI, 0.714-0.874) or worse outcome (AUC, 0.780; 95% CI, 0.689-0.855). Moreover, its AUC was in the range of GCS score and Rotterdam CT score (both P > 0.05) and it significantly improved their AUCs (both P < 0.05). Conclusion Serum NOX4 levels in the acute phase of sTBI were associated with trauma severity, an increased risk of mortality and worse outcome, suggesting that serum NOX4 could be an important prognostic factor for sTBI.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Neurosurgery, Ningbo Hangzhou Bay Hospital, Ningbo, 315336, People’s Republic of China
- Department of Neurosurgery, Ningbo Branch, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Ningbo, 315336, People’s Republic of China
| | - Zhicheng Chen
- Department of Neurosurgery, Ningbo Hangzhou Bay Hospital, Ningbo, 315336, People’s Republic of China
- Department of Neurosurgery, Ningbo Branch, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Ningbo, 315336, People’s Republic of China
| | - Jiemiao Hu
- Department of Neurosurgery, Ningbo Hangzhou Bay Hospital, Ningbo, 315336, People’s Republic of China
- Department of Neurosurgery, Ningbo Branch, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Ningbo, 315336, People’s Republic of China
| | - Qianzhi Liu
- Department of Neurosurgery, Ningbo Hangzhou Bay Hospital, Ningbo, 315336, People’s Republic of China
- Department of Neurosurgery, Ningbo Branch, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Ningbo, 315336, People’s Republic of China
| |
Collapse
|
15
|
Luengo E, Trigo-Alonso P, Fernández-Mendívil C, Nuñez Á, Campo MD, Porrero C, García-Magro N, Negredo P, Senar S, Sánchez-Ramos C, Bernal JA, Rábano A, Hoozemans J, Casas AI, Schmidt HHHW, López MG. Implication of type 4 NADPH oxidase (NOX4) in tauopathy. Redox Biol 2022; 49:102210. [PMID: 34922273 PMCID: PMC8686076 DOI: 10.1016/j.redox.2021.102210] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 11/01/2022] Open
Abstract
Aggregates of the microtubule-associated protein tau are a common marker of neurodegenerative diseases collectively termed as tauopathies, such as Alzheimer's disease (AD) and frontotemporal dementia. Therapeutic strategies based on tau have failed in late stage clinical trials, suggesting that tauopathy may be the consequence of upstream causal mechanisms. As increasing levels of reactive oxygen species (ROS) may trigger protein aggregation or modulate protein degradation and, we had previously shown that the ROS producing enzyme NADPH oxidase 4 (NOX4) is a major contributor to cellular autotoxicity, this study was designed to evaluate if NOX4 is implicated in tauopathy. Our results show that NOX4 is upregulated in patients with frontotemporal lobar degeneration and AD patients and, in a humanized mouse model of tauopathy induced by AVV-TauP301L brain delivery. Both, global knockout and neuronal knockdown of the Nox4 gene in mice, diminished the accumulation of pathological tau and positively modified established tauopathy by a mechanism that implicates modulation of the autophagy-lysosomal pathway (ALP) and, consequently, improving the macroautophagy flux. Moreover, neuronal-targeted NOX4 knockdown was sufficient to reduce neurotoxicity and prevent cognitive decline, even after induction of tauopathy, suggesting a direct and causal role for neuronal NOX4 in tauopathy. Thus, NOX4 is a previously unrecognized causative, mechanism-based target in tauopathies and blood-brain barrier permeable specific NOX4 inhibitors could have therapeutic potential even in established disease.
Collapse
Affiliation(s)
- Enrique Luengo
- Instituto Teófilo Hernando for Drug Discovery, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Paula Trigo-Alonso
- Instituto Teófilo Hernando for Drug Discovery, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Cristina Fernández-Mendívil
- Instituto Teófilo Hernando for Drug Discovery, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Ángel Nuñez
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Del Campo
- Department of Health and Pharmaceutical Science, Faculty of Pharmacy, San Pablo CEU University, Montepríncipe, Alcorcón, Spain
| | - César Porrero
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nuria García-Magro
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sergio Senar
- Dr. Target Machine Learning. Calle Alejo Carpentier 13, Alcala de Henares, 28806, Madrid, Spain
| | - Cristina Sánchez-Ramos
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Juan A Bernal
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alberto Rábano
- Department of Neuropathology and Tissue Bank, Unidad de Investigación Proyecto Alzheimer, Fundación CIEN, Instituto de Salud Carlos III, Madrid, Spain
| | - Jeroen Hoozemans
- Department of Pathology, Amsterdam University Medical Centers Location VUmc, Amsterdam, the Netherlands
| | - Ana I Casas
- Department of Pharmacology and Personalized Medicine, Maastricht Center for Systems Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Neurology, University Hospital Essen, Essen, Germany
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalized Medicine, Maastricht Center for Systems Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Manuela G López
- Instituto Teófilo Hernando for Drug Discovery, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain.
| |
Collapse
|
16
|
Inampudi C, Ciccotosto GD, Cappai R, Crack PJ. Genetic Modulators of Traumatic Brain Injury in Animal Models and the Impact of Sex-Dependent Effects. J Neurotrauma 2021; 37:706-723. [PMID: 32027210 DOI: 10.1089/neu.2019.6955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a major health problem causing disability and death worldwide. There is no effective treatment, due in part to the complexity of the injury pathology and factors affecting its outcome. The extent of brain injury depends on the type of insult, age, sex, lifestyle, genetic risk factors, socioeconomic status, other co-injuries, and underlying health problems. This review discusses the genes that have been directly tested in TBI models, and whether their effects are known to be sex-dependent. Sex differences can affect the incidence, symptom onset, pathology, and clinical outcomes following injury. Adult males are more susceptible at the acute phase and females show greater injury in the chronic phase. TBI is not restricted to a single sex; despite variations in the degree of symptom onset and severity, it is important to consider both female and male animals in TBI pre-clinical research studies.
Collapse
Affiliation(s)
- Chaitanya Inampudi
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Giuseppe D Ciccotosto
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Cappai
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Peter J Crack
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
17
|
Farkhondeh T, Samarghandian S, Roshanravan B, Peivasteh-Roudsari L. Impact of Curcumin on Traumatic Brain Injury and Involved Molecular Signaling Pathways. Recent Pat Food Nutr Agric 2021; 11:137-144. [PMID: 31288732 DOI: 10.2174/2212798410666190617161523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/14/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
Traumatic Brain Injury (TBI) is one of the main causes of mortality and morbidity worldwide with no suitable treatment. The present study was designed to review the present literature about the protective effects of curcumin and the underlying mechanism against TBI. All published English language papers from beginning to 2019 were selected in this study. The findings indicate that curcumin may be effective against TBI outcomes by modulating the molecular signaling pathways involved in oxidative stress, inflammation, apoptosis, and autophagy. However, more experimental studies should be done to identify all mechanisms involved in the pathogenesis of TBI. Patents for Curcumin and chronic inflammation and traumatic brain injury management (WO2017097805A1 and US9101580B2) were published. In conclusion, the present study confirmed the potential therapeutic impact of curcumin for treating TBI.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Babak Roshanravan
- Medical Student, Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Leila Peivasteh-Roudsari
- Devision of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Huang TC, Luo L, Jiang SH, Chen C, He HY, Liang CF, Li WS, Wang H, Zhu L, Wang K, Guo Y. Targeting integrated stress response regulates microglial M1/M2 polarization and attenuates neuroinflammation following surgical brain injury in rat. Cell Signal 2021; 85:110048. [PMID: 34015470 DOI: 10.1016/j.cellsig.2021.110048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/01/2021] [Accepted: 05/16/2021] [Indexed: 12/24/2022]
Abstract
Integrated stress response (ISR) contributes to various neuropathological processes and acting as a therapy target in CNS injuries. However, the fundamental role of ISR in regulating microglial polarization remains largely unknown. Currently no proper pharmacological approaches to reverse microglia-driven neuroinflammation in surgical brain injury (SBI) have been reported. Here we found that inhibition of the crucial ISR effector, activating transcription factor 4 (ATF4), using the RNA interference suppressed the lipopolysaccharide (LPS)-stimulated microglial M1 polarization in vitro. Interestingly, counteracting ISR with a small-molecule ISR inhibitor (ISRIB) resulted in a significant microglial M1 towards M2 phenotype switching after LPS treatment. The potential underlying mechanisms may related to downregulate the intracellular NADPH oxidase 4 (NOX4) expression under the neuroinflammatory microenvironment. Notably, ISRIB ameliorated the infiltration of microglia and improved the neurobehavioral outcomes in the SBI rat model. Overall, our findings suggest that targeting ISR exerts a novel anti-inflammatory effect on microglia via regulating M1/M2 phenotype and may represent a potential therapeutic target to overcome neuroinflammation following SBI.
Collapse
Affiliation(s)
- Teng-Chao Huang
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China; East China Institute of Digital Medical Engineering, Shangrao 334000, PR China
| | - Lun Luo
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China
| | - Shi-Hai Jiang
- Department of Joint Replacement and Trauma Surgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China; Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany
| | - Chuan Chen
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China
| | - Hai-Yong He
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China
| | - Chao-Feng Liang
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China
| | - Wen-Sheng Li
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China
| | - Hui Wang
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China
| | - Lei Zhu
- Department of Burns, Plastic & Reconstructive Surgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China
| | - Kun Wang
- Department of Joint Replacement and Trauma Surgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China.
| | - Ying Guo
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China.
| |
Collapse
|
19
|
Carminic acid supplementation protects against fructose-induced kidney injury mainly through suppressing inflammation and oxidative stress via improving Nrf-2 signaling. Aging (Albany NY) 2021; 13:10326-10353. [PMID: 33819919 PMCID: PMC8064181 DOI: 10.18632/aging.202794] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Excessive fructose (Fru) intake has become an increased risk for chronic kidney disease progression. Despite extensive researches that have been performed to develop effective treatments against Fru-induced renal injury, the outcome has achieved limited success. In this study, we attempted to explore whether carminic acid (CA) could influence the progression of Fru-induced kidney injury, and the underlying molecular mechanism. At first, our in vitro results showed that CA significantly reduced inflammation in mouse tubular epithelial cells and human tubule epithelial cells stimulated by Fru. The anti-inflammatory effects of CA were associated with the blockage of nuclear factor-κB (NF-κB) signaling. In addition, Fru-exposed cells showed higher oxidative stress, which was effectively restrained by CA treatment through improving nuclear factor (erythroid-derived 2)-like 2 (Nrf-2) nuclear translocation. Importantly, we found that Fru-induced inflammation and oxidative stress were accelerated in cells with Nrf-2 knockdown. What's more, in Fru-stimulated cells, CA-alleviated inflammatory response and reactive oxygen species (ROS) production were evidently abolished by Nrf-2 knockdown. The in vivo analysis demonstrated that Fru led to metabolic disorder, excessive albuminuria and histologic changes in renal tissues, which were effectively reversed by CA supplementation. We confirmed that CA significantly reduced inflammation and oxidative stress in the kidneys of mice through regulating NF-κB and Nrf-2 signaling pathways, eventually alleviating the progression of chronic kidney injury. Taken together, these results identified CA as a potential therapeutic strategy for metabolic stress-induced renal injury through restraining inflammation and oxidative stress via the improvement of Nrf-2 signaling.
Collapse
|
20
|
Luo Q, Xian P, Wang T, Wu S, Sun T, Wang W, Wang B, Yang H, Yang Y, Wang H, Liu W, Long Q. Antioxidant activity of mesenchymal stem cell-derived extracellular vesicles restores hippocampal neurons following seizure damage. Am J Cancer Res 2021; 11:5986-6005. [PMID: 33897894 PMCID: PMC8058724 DOI: 10.7150/thno.58632] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress is a critical event in neuronal damage following seizures. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been shown to be promising nanotherapeutic agents in neurological disorders. However, the mechanism underlying MSC-EVs therapeutic efficacy for oxidative stress-induced neuronal damage remains poorly understood. Methods: We investigated the antioxidant and restoration activities of MSC-EVs on hippocampal neurons in response to H2O2 stimulation in vitro and seizures in vivo. We also explored the potential underlying mechanism by injecting adeno-associated virus (AAV)-nuclear factor erythroid-derived 2, like 2 (Nrf2), a key antioxidant mediator, in animal models. Results: MSC-EVs were enriched in antioxidant miRNAs and exhibited remarkable antioxidant activity evident by increased ferric ion-reducing antioxidant ability, catalase, superoxide dismutase, and glutathione peroxidase activities and decreased reactive oxygen species (ROS) generation, DNA/lipid/protein oxidation, and stress-associated molecular patterns in cultured cells and mouse models. Notably, EV administration exerted restorative effects on the hippocampal neuronal structure and associated functional impairments, including dendritic spine alterations, electrophysiological disturbances, calcium transients, mitochondrial changes, and cognitive decline after oxidative stress in vitro or in vivo. Mechanistically, we found that the Nrf2 signaling pathway was involved in the restorative effect of EV therapy against oxidative neuronal damage, while AAV-Nrf2 injection attenuated the antioxidant activity of MSC-EVs on the seizure-induced hippocampal injury. Conclusions: We have shown that MSC-EVs facilitate the reconstruction of hippocampal neurons associated with the Nrf2 defense system in response to oxidative insults. Our study highlights the clinical value of EV-therapy in neurological disorders such as seizures.
Collapse
|
21
|
Park MW, Cha HW, Kim J, Kim JH, Yang H, Yoon S, Boonpraman N, Yi SS, Yoo ID, Moon JS. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer's diseases. Redox Biol 2021; 41:101947. [PMID: 33774476 PMCID: PMC8027773 DOI: 10.1016/j.redox.2021.101947] [Citation(s) in RCA: 389] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress has been implicated in the pathogenesis of Alzheimer's disease (AD). Mitochondrial dysfunction is linked to oxidative stress and reactive oxygen species (ROS) in neurotoxicity during AD. Impaired mitochondrial metabolism has been associated with mitochondrial dysfunction in brain damage of AD. While the role of NADPH oxidase 4 (NOX4), a major source of ROS, has been identified in brain damage, the mechanism by which NOX4 regulates ferroptosis of astrocytes in AD remains unclear. Here, we show that the protein levels of NOX4 were significantly elevated in impaired astrocytes of cerebral cortex from patients with AD and APP/PS1 double-transgenic mouse model of AD. The levels of 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA), a marker of oxidative stress-induced lipid peroxidation, were significantly also elevated in impaired astrocytes of patients with AD and mouse AD. We demonstrate that the over-expression of NOX4 significantly increases the impairment of mitochondrial metabolism by inhibition of mitochondrial respiration and ATP production via the reduction of five protein complexes in the mitochondrial ETC in human astrocytes. Moreover, the elevation of NOX4 induces oxidative stress by mitochondrial ROS (mtROS) production, mitochondrial fragmentation, and inhibition of cellular antioxidant process in human astrocytes. Furthermore, the elevation of NOX4 increased ferroptosis-dependent cytotoxicity by the activation of oxidative stress-induced lipid peroxidation in human astrocytes. These results suggest that NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in AD.
Collapse
Affiliation(s)
- Min Woo Park
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, Republic of Korea
| | - Hyeon Woo Cha
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, Republic of Korea
| | - Junhyung Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, Republic of Korea
| | - Jung Han Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, Republic of Korea
| | - Haesung Yang
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea; BK21 Four Project, Department of Biomedical Laboratory Science, General Graduate School, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea
| | - Sunmi Yoon
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea; BK21 Four Project, Department of Biomedical Laboratory Science, General Graduate School, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea
| | - Napissara Boonpraman
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea; BK21 Four Project, Department of Biomedical Laboratory Science, General Graduate School, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea
| | - Sun Shin Yi
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea; BK21 Four Project, Department of Biomedical Laboratory Science, General Graduate School, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea
| | - Ik Dong Yoo
- Department of Nuclear Medicine, Soonchunhyang University Hospital Cheonan, Cheonan, 31151, Chungcheongnam-do, Republic of Korea.
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, Republic of Korea.
| |
Collapse
|
22
|
Zhang XS, Lu Y, Li W, Tao T, Peng L, Wang WH, Gao S, Liu C, Zhuang Z, Xia DY, Hang CH, Li W. Astaxanthin ameliorates oxidative stress and neuronal apoptosis via SIRT1/NRF2/Prx2/ASK1/p38 after traumatic brain injury in mice. Br J Pharmacol 2021; 178:1114-1132. [PMID: 33326114 DOI: 10.1111/bph.15346] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Oxidative stress and neuronal apoptosis play key roles in traumatic brain injury. We investigated the protective effects of astaxanthin against traumatic brain injury and its underlying mechanisms of action. EXPERIMENTAL APPROACH A weight-drop model of traumatic brain injury in vivo and hydrogen peroxide exposure in vitro model were established. Brain oedema, behaviour tests, western blot, biochemical analysis, lesion volume, histopathological study and cell viability were performed. KEY RESULTS Astaxanthin significantly reduced oxidative insults on Days 1, 3 and 7 after traumatic brain injury. Neuronal apoptosis was also ameliorated on Day 3. Additionally, astaxanthin improved neurological functions up to 3 weeks after traumatic brain injury. Astaxanthin treatment dramatically enhanced the expression of peroxiredoxin 2 (Prx2), nuclear factor-erythroid 2-related factor 2 (NRF2/Nrf2) and sirtuin 1 (SIRT1), while it down-regulated the phosphorylation of apoptosis signal-regulating kinase 1 (ASK1) and p38. Inhibition of Prx2 by siRNA injection reversed the beneficial effects of astaxanthin against traumatic brain injury. Additionally, Nrf2 knockout prevented the neuroprotective effects of astaxanthin in traumatic brain injury. In contrast, overexpression of Prx2 in Nrf2 knockout mice attenuated the secondary brain injury after traumatic brain injury. Moreover, inhibiting SIRT1 by EX527 dramatically inhibited the neuroprotective effects of astaxanthin and suppressed SIRT1/Nrf2/Prx2/ASK1/p38 pathway both in vivo and in vitro. CONCLUSION AND IMPLICATIONS Astaxanthin improved the neurological functions and protected the brain from injury after traumatic brain injury, primarily by reducing oxidative stress and neuronal death via SIRT1/Nrf2/Prx2/ASK1/p38 signalling pathway and might be a new candidate to ameliorate traumatic brain injury.
Collapse
Affiliation(s)
- Xiang-Sheng Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wen Li
- Department of Pharmacy, Beijing Boai Hospital, China Rehabilitation Research Center, Capital Medical University, Beijing, China
| | - Tao Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lei Peng
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei-Han Wang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Cang Liu
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Da-Yong Xia
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
23
|
Tao W, Yu L, Shu S, Liu Y, Zhuang Z, Xu S, Bao X, Gu Y, Cai F, Song W, Xu Y, Zhu X. miR-204-3p/Nox4 Mediates Memory Deficits in a Mouse Model of Alzheimer's Disease. Mol Ther 2021; 29:396-408. [PMID: 32950103 PMCID: PMC7791017 DOI: 10.1016/j.ymthe.2020.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/25/2020] [Accepted: 09/01/2020] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder leading to dementia in the elderly, and the mechanisms of AD are not fully defined. MicroRNAs (miRNAs) have been shown to contribute to memory deficits in AD. In this study, we identified that miR-204-3p was downregulated in the hippocampus and plasma of 6-month-old APPswe/PS1dE9 (APP/PS1) mice. miR-204-3p overexpression attenuated memory and synaptic deficits in APP/PS1 mice. The amyloid levels and oxidative stress were decreased in the hippocampus of APP/PS1 mice after miR-204-3p overexpression. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (Nox4) was a target of miR-204-3p, and Nox4 inhibition by GLX351322 protected neuronal cells against Aβ1-42-induced neurotoxicity. Furthermore, GLX351322 treatment rescued synaptic and memory deficits, and decreased oxidative stress and amyloid levels in the hippocampus of APP/PS1 mice. These results revealed that miR-204-3p attenuated memory deficits and oxidative stress in APP/PS1 mice by targeting Nox4, and miR-204-3p overexpression and/or Nox4 inhibition might be a potential therapeutic strategy for AD treatment.
Collapse
Affiliation(s)
- Wenyuan Tao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China
| | - Linjie Yu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China
| | - Shu Shu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China
| | - Ying Liu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China
| | - Zi Zhuang
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Siyi Xu
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Xinyu Bao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China
| | - Yue Gu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China; Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, PR China.
| | - Xiaolei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China; Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, PR China.
| |
Collapse
|
24
|
Xie J, Hong E, Ding B, Jiang W, Zheng S, Xie Z, Tian D, Chen Y. Inhibition of NOX4/ROS Suppresses Neuronal and Blood-Brain Barrier Injury by Attenuating Oxidative Stress After Intracerebral Hemorrhage. Front Cell Neurosci 2020; 14:578060. [PMID: 33281556 PMCID: PMC7691600 DOI: 10.3389/fncel.2020.578060] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a common and severe neurological disorder that can effectively induce oxidative stress responses. NADPH oxidase 4 (NOX4) is a member of the NOX family of oxidases. It is expressed in the brain normally and involved in cell signal transduction and the removal of harmful substances. In some pathological conditions, it mediates inflammation and the aging of cells. However, few studies have focused on whether NOX4 is involved in brain injury caused by ICH. Therefore, this study aimed to clarify the role of NOX4 in the pathological process that occurs after ICH and the potential mechanism underlying its role. A rat model of ICH was established by the injection of collagenase type IV, and the expression of NOX4 was then determined. Further, siRNA-mediated protein expression knockdown technology was used for NOX4 knockdown, and western immunoblotting, immunohistochemistry, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), and other molecular biological techniques were performed to assess the effects of NOX4 knockdown. Neurobiological scoring, brain water content determination, and other brain injury detection methods were also performed to assess the role of NOX4 following ICH. We found that the expression of NOX4 increased in the brains of rats after ICH, and that it was mainly expressed in neurons, astrocytes, vascular endothelial cells and microglia. Following NOX4 knockdown, the level of oxidative stress in the brain decreased considerably, the neurobehavioral scores improved, the levels of neuronal apoptosis reduced markedly, and the impairment of blood-brain barrier function was significantly ameliorated in rats with ICH. In conclusion, this study suggests that NOX4 expression is upregulated after ICH, which may cause an imbalance in the oxidative stress of relevant cells in the brain, leading to subsequent apoptosis of neurons and damage to the blood-brain barrier due to secondary brain injury following ICH.
Collapse
Affiliation(s)
- Jiayu Xie
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Enhui Hong
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Baiyun Ding
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Weiping Jiang
- Department of Neurosurgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Shizhong Zheng
- Department of Neurosurgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhichong Xie
- Department of Neurosurgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan Tian
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yizhao Chen
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
25
|
Sultan MT, Choi BY, Ajiteru O, Hong DK, Lee SM, Kim HJ, Ryu JS, Lee JS, Hong H, Lee YJ, Lee H, Suh YJ, Lee OJ, Kim SH, Suh SW, Park CH. Reinforced-hydrogel encapsulated hMSCs towards brain injury treatment by trans-septal approach. Biomaterials 2020; 266:120413. [PMID: 33038593 DOI: 10.1016/j.biomaterials.2020.120413] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022]
Abstract
Encapsulated stem cells in various biomaterials have become a potentially promising cell transplantation strategy in the treatment of various neurologic disorders. However, there is no ideal cell delivery material and method for clinical application in brain diseases. Here we show silk fibroin (SF)-based hydrogel encapsulated engineered human mesenchymal stem cells (hMSCs) to overproduce brain-derived neurotrophic factor (BDNF) (BDNF-hMSC) is an effective approach to treat brain injury through trans-septal cell transplantation in the rat model. In this study, we observed SF induced sustained BDNF production by BDNF-hMSC both in 2D (9.367 ± 1.969 ng/ml) and 3D (7.319 ± 0.1025 ng/ml) culture conditions for 3 days. Through immunohistochemistry using α-tubulin, BDNF-hMSCs showed a significant increased average neurite length of co-cultured neuro 2a (N2a) cells, suggested that BDNF-hMSCs induced neurogenesis in vitro. Encapsulated BDNF-hMSC, pre-labeled with the red fluorescent dye PKH-26, exhibited intense fluorescence up to 14 days trans-septal transplantation, indicated excellent viability of the transplanted cells. Compared to the vehicle-treated, encapsulated BDNF- hMSC demonstrated significantly increased BDNF level both in the sham-operated and injured hippocampus (Hip) through immunoblot analysis after 7 days implantation. Transplantation of the encapsulated BDNF-hMSC promoted neurological functional recovery via significantly reduced neuronal death in the Hip 7 days post-injury. Using magnetic resonance imaging (MRI) analysis, we demonstrated that encapsulated BDNF-hMSC reduced lesion area significantly at 14 and 21 days in the damaged brain following trans-septal implantation. This stem cell transplantation approach represents a critical set up towards brain injury treatment for clinical application.
Collapse
Affiliation(s)
- Md Tipu Sultan
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Bo Young Choi
- Department of Physiology, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Olatunji Ajiteru
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Dae Ki Hong
- Department of Physiology, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Soon Min Lee
- SL BiGen, Inc. SL BIGEN Research Hall, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Hyo-Jin Kim
- SL BiGen, Inc. SL BIGEN Research Hall, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Jun Sun Ryu
- Department of Otorhinolaryngology-Head and Neck Surgery, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Ji Seung Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Heesun Hong
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Young Jin Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Hanna Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Ye Ji Suh
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Soon Hee Kim
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Sang Won Suh
- Department of Physiology, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, School of Medicine, Hallym University, Chuncheon, 24253, Republic of Korea.
| |
Collapse
|
26
|
Low Molecular Weight Dextran Sulfate (ILB ®) Administration Restores Brain Energy Metabolism Following Severe Traumatic Brain Injury in the Rat. Antioxidants (Basel) 2020; 9:antiox9090850. [PMID: 32927770 PMCID: PMC7555574 DOI: 10.3390/antiox9090850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability in people less than 40 years of age in Western countries. Currently, there are no satisfying pharmacological treatments for TBI patients. In this study, we subjected rats to severe TBI (sTBI), testing the effects of a single subcutaneous administration, 30 min post-impact, of a new low molecular weight dextran sulfate, named ILB®, at three different dose levels (1, 5, and 15 mg/kg body weight). A group of control sham-operated animals and one of untreated sTBI rats were used for comparison (each group n = 12). On day 2 or 7 post-sTBI animals were sacrificed and the simultaneous HPLC analysis of energy metabolites, N-acetylaspartate (NAA), oxidized and reduced nicotinic coenzymes, water-soluble antioxidants, and biomarkers of oxidative/nitrosative stress was carried out on deproteinized cerebral homogenates. Compared to untreated sTBI rats, ILB® improved energy metabolism by increasing ATP, ATP/ adenosine diphosphate ratio (ATP/ADP ratio), and triphosphate nucleosides, dose-dependently increased NAA concentrations, protected nicotinic coenzyme levels and their oxidized over reduced ratios, prevented depletion of ascorbate and reduced glutathione (GSH), and decreased oxidative (malondialdehyde formation) and nitrosative stress (nitrite + nitrate production). Although needing further experiments, these data provide the first evidence that a single post-injury injection of a new low molecular weight dextran sulfate (ILB®) has beneficial effects on sTBI metabolic damages. Due to the absence of adverse effects in humans, ILB® represents a promising therapeutic agent for the treatment of sTBI patients.
Collapse
|
27
|
Oxidative Stress-Mediated Blood-Brain Barrier (BBB) Disruption in Neurological Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020. [DOI: 10.1155/2020/4356386] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier (BBB), as a crucial gate of brain-blood molecular exchange, is involved in the pathogenesis of multiple neurological diseases. Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and the scavenger system. Since oxidative stress plays a significant role in the production and maintenance of the BBB, the cerebrovascular system is especially vulnerable to it. The pathways that initiate BBB dysfunction include, but are not limited to, mitochondrial dysfunction, excitotoxicity, iron metabolism, cytokines, pyroptosis, and necroptosis, all converging on the generation of ROS. Interestingly, ROS also provide common triggers that directly regulate BBB damage, parameters including tight junction (TJ) modifications, transporters, matrix metalloproteinase (MMP) activation, inflammatory responses, and autophagy. We will discuss the role of oxidative stress-mediated BBB disruption in neurological diseases, such as hemorrhagic stroke, ischemic stroke (IS), Alzheimer’s disease (AD), Parkinson’s disease (PD), traumatic brain injury (TBI), amyotrophic lateral sclerosis (ALS), and cerebral small vessel disease (CSVD). This review will also discuss the latest clinical evidence of potential biomarkers and antioxidant drugs towards oxidative stress in neurological diseases. A deeper understanding of how oxidative stress damages BBB may open up more therapeutic options for the treatment of neurological diseases.
Collapse
|
28
|
Wolf A, Herb M, Schramm M, Langmann T. The TSPO-NOX1 axis controls phagocyte-triggered pathological angiogenesis in the eye. Nat Commun 2020; 11:2709. [PMID: 32483169 PMCID: PMC7264151 DOI: 10.1038/s41467-020-16400-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Aberrant immune responses including reactive phagocytes are implicated in the etiology of age-related macular degeneration (AMD), a major cause of blindness in the elderly. The translocator protein (18 kDa) (TSPO) is described as a biomarker for reactive gliosis, but its biological functions in retinal diseases remain elusive. Here, we report that tamoxifen-induced conditional deletion of TSPO in resident microglia using Cx3cr1CreERT2:TSPOfl/fl mice or targeting the protein with the synthetic ligand XBD173 prevents reactivity of phagocytes in the laser-induced mouse model of neovascular AMD. Concomitantly, the subsequent neoangiogenesis and vascular leakage are prevented by TSPO knockout or XBD173 treatment. Using different NADPH oxidase-deficient mice, we show that TSPO is a key regulator of NOX1-dependent neurotoxic ROS production in the retina. These data define a distinct role for TSPO in retinal phagocyte reactivity and highlight the protein as a drug target for immunomodulatory and antioxidant therapies for AMD.
Collapse
Affiliation(s)
- Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, D-50931, Cologne, Germany
| | - Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, D-50931, Cologne, Germany
| | - Michael Schramm
- Institute for Medical Microbiology, Immunology and Hygiene, D-50931, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, D-50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, D-50931, Cologne, Germany.
| |
Collapse
|
29
|
Ge C, Hu L, Lou D, Li Q, Feng J, Wu Y, Tan J, Xu M. Nrf2 deficiency aggravates PM 2.5-induced cardiomyopathy by enhancing oxidative stress, fibrosis and inflammation via RIPK3-regulated mitochondrial disorder. Aging (Albany NY) 2020; 12:4836-4865. [PMID: 32182211 PMCID: PMC7138545 DOI: 10.18632/aging.102906] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/05/2020] [Indexed: 01/04/2023]
Abstract
PM2.5 is a well-known air pollutant threatening public health, and long-term exposure to PM2.5 increases the risk of cardiovascular diseases. Nrf2 plays a pivotal role in the amelioration of PM2.5-induced lung injury. However, if Nrf2 is involved in PM2.5-induced heart injury, and the underlying molecular mechanisms have not been explored. In this study, wild type (Nrf2+/+) and Nrf2 knockout (Nrf2-/-) mice were exposed to PM2.5 for 6 months. After PM2.5 exposure, Nrf2-/- mice developed severe physiological changes, lung injury and cardiac dysfunction. In the PM2.5-exposed hearts, Nrf2 deficiency caused significant collagen accumulation through promoting the expression of fibrosis-associated signals. Additionally, Nrf2-/- mice exhibited greater oxidative stress in cardiac tissues after PM2.5 exposure. Furthermore, PM2.5-induced inflammation in heart samples were accelerated in Nrf2-/- mice through promoting inhibitor of α/nuclear factor κB (IκBα/NF-κB) signaling pathways. We also found that Nrf2-/- aggravated autophagy initiation and glucose metabolism disorder in hearts of mice with PM2.5 challenge. Cardiac receptor-interacting protein kinase 3 (RIPK3) expression triggered by PM2.5 was further enhanced in mice with the loss of Nrf2. Collectively, these results suggested that strategies for enhancing Nrf2 could be used to treat PM2.5-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Linfeng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Qiang Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Jing Feng
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Yekuan Wu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| |
Collapse
|
30
|
Vetrovoy O, Sarieva K, Lomert E, Nimiritsky P, Eschenko N, Galkina O, Lyanguzov A, Tyulkova E, Rybnikova E. Pharmacological HIF1 Inhibition Eliminates Downregulation of the Pentose Phosphate Pathway and Prevents Neuronal Apoptosis in Rat Hippocampus Caused by Severe Hypoxia. J Mol Neurosci 2019; 70:635-646. [PMID: 31865524 DOI: 10.1007/s12031-019-01469-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/12/2019] [Indexed: 01/24/2023]
Abstract
The pentose phosphate pathway (PPP) of glucose metabolism in the brain serves as a primary source of NADPH which in turn plays a crucial role in multiple cellular processes, including maintenance of redox homeostasis and antioxidant defense. In our model of protective mild hypobaric hypoxia in rats (3MHH), an inverse correlation between hypoxia-inducible factor-1 (HIF1) activity and mRNA levels of glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of PPP, was observed. In the present study, it was demonstrated that severe hypobaric hypoxia (SH) induced short-term upregulation of HIF1 alpha-subunit (HIF1α) in the hippocampal CA1 subfield and decreased the activity of G6PD. The levels of NADPH were also reduced, promoting oxidative stress, triggering apoptosis, and neuronal loss. Injection of a HIF1 inhibitor (HIF1i), topotecan hydrochloride (5 mg/kg, i.p.), before SH prevented the upregulation of HIF1α and normalized G6PD activity. In addition, HIF1i injection caused an increase in NADPH levels, normalization of total glutathione levels and of the cellular redox status as well as suppression of free-radical and apoptotic processes. These results demonstrate a new molecular mechanism of post-hypoxic cerebral pathology development which involves HIF1-dependent PPP depletion and support a recently suggested injurious role of HIF1 activation in the acute phase of cerebral hypoxia/ischemia. Application of PPP stimulators in early post-hypoxic/ischemic period might represent a promising neuroprotective strategy. Graphical abstract HIF1-dependent down-regulation of the pentose phosphate pathway contributes to the hypoxia-induced oxidative stress and neuronal apoptosis in the rat hippocampus.
Collapse
Affiliation(s)
- Oleg Vetrovoy
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova emb. 6, 199034, Saint Petersburg, Russia. .,Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya emb. 7-9, 199034, Saint Petersburg, Russia.
| | - Kseniia Sarieva
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova emb. 6, 199034, Saint Petersburg, Russia
| | - Ekaterina Lomert
- Laboratory of Cell Biology in Culture, Institute of Cytology, Russian Academy of Sciences, Tihoretsky pr. 4, 194064, Saint Petersburg, Russia
| | - Peter Nimiritsky
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosov Ave. 27-10, 119192, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Lomonosov Ave. 31-5, 119192, Moscow, Russia
| | - Natalia Eschenko
- Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya emb. 7-9, 199034, Saint Petersburg, Russia
| | - Olga Galkina
- Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya emb. 7-9, 199034, Saint Petersburg, Russia
| | - Andrey Lyanguzov
- Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya emb. 7-9, 199034, Saint Petersburg, Russia
| | - Ekaterina Tyulkova
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova emb. 6, 199034, Saint Petersburg, Russia
| | - Elena Rybnikova
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova emb. 6, 199034, Saint Petersburg, Russia
| |
Collapse
|
31
|
Czigler A, Toth L, Szarka N, Berta G, Amrein K, Czeiter E, Lendvai-Emmert D, Bodo K, Tarantini S, Koller A, Ungvari Z, Buki A, Toth P. Hypertension Exacerbates Cerebrovascular Oxidative Stress Induced by Mild Traumatic Brain Injury: Protective Effects of the Mitochondria-Targeted Antioxidative Peptide SS-31. J Neurotrauma 2019; 36:3309-3315. [PMID: 31266393 DOI: 10.1089/neu.2019.6439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) induces cerebrovascular oxidative stress, which is associated with neurovascular uncoupling, autoregulatory dysfunction, and persisting cognitive decline in both pre-clinical models and patients. However, single mild TBI (mTBI), the most frequent form of brain trauma, increases cerebral generation of reactive oxygen species (ROS) only transiently. We hypothesized that comorbid conditions might exacerbate long-term ROS generation in cerebral arteries after mTBI. Because hypertension is the most important cerebrovascular risk factor in populations prone to mild brain trauma, we induced mTBI in normotensive and spontaneously hypertensive rats (SHR) and assessed changes in cytoplasmic and mitochondrial superoxide (O2-) production by confocal microscopy in isolated middle cerebral arteries (MCA) 2 weeks after mTBI using dihydroethidine (DHE) and the mitochondria-targeted redox-sensitive fluorescent indicator dye MitoSox. We found that mTBI induced a significant increase in long-term cytoplasmic and mitochondrial O2- production in MCAs of SHRs and increased expression of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit Nox4, which were reversed to the normal level by treating the animals with the cell-permeable, mitochondria-targeted antioxidant peptide SS-31 (5.7 mg kg-1 day-1, i.p.). Persistent mTBI-induced oxidative stress in MCAs of SHRs was significantly decreased by inhibiting vascular NADPH oxidase (apocyinin). We propose that hypertension- and mTBI-induced cerebrovascular oxidative stress likely lead to persistent dysregulation of cerebral blood flow (CBF) and cognitive dysfunction, which might be reversed by SS-31 treatment.
Collapse
Affiliation(s)
- Andras Czigler
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Pecs, Hungary.,Institute for Translational Medicine, Departments of University of Pecs, Medical School, Pecs, Hungary
| | - Luca Toth
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Pecs, Hungary.,Institute for Translational Medicine, Departments of University of Pecs, Medical School, Pecs, Hungary
| | - Nikolett Szarka
- Institute for Translational Medicine, Departments of University of Pecs, Medical School, Pecs, Hungary
| | - Gergely Berta
- Medical Biology and University of Pecs, Medical School, Pecs, Hungary
| | - Kriszitina Amrein
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Pecs, Hungary
| | - Endre Czeiter
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Pecs, Hungary.,Immunology and Biotechnology, University of Pecs, Medical School, Pecs, Hungary
| | - Dominika Lendvai-Emmert
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Pecs, Hungary
| | - Kornelia Bodo
- Immunology and Biotechnology, University of Pecs, Medical School, Pecs, Hungary
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Akos Koller
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Pecs, Hungary.,Department of Morphology and Physiology, Semmelweis University, Budapest, Hungary.,Sport-Physiology Research Center, University of Physical Education, Budapest, Hungary.,Department of Physiology, New York Medical College, Valhalla, New York
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andras Buki
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Pecs, Hungary
| | - Peter Toth
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Pecs, Hungary.,Institute for Translational Medicine, Departments of University of Pecs, Medical School, Pecs, Hungary.,MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
| |
Collapse
|
32
|
Wang X, Sun D, Hu Y, Xu X, Jiang W, Shang H, Cui D. The roles of oxidative stress and Beclin-1 in the autophagosome clearance impairment triggered by cardiac arrest. Free Radic Biol Med 2019; 136:87-95. [PMID: 30951836 DOI: 10.1016/j.freeradbiomed.2018.12.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 02/03/2023]
Abstract
During cardiac arrest and return of spontaneous circulation (CA-ROSC), autophagosome clearance in the cortex is progressively impaired, but the role of reactive oxygen species (ROS) in this process and the mechanism underlying the autophagy impairment remain unknown. In this study, we investigated the impacts of ROS on the autophagy-lysosome pathway after CA-ROSC in rats. Cortices from CA-ROSC rats revealed accumulation of LC3, p62 and ubiquitin, indicating impaired autophagic flux. Furthermore, impairment of autophagic flux was related to lysosomal lesion, as indicated by decreased cathepsin D and lysosomal-associated membrane protein 2 (LAMP2) levels after CA-ROSC. In vitro, the resulting ROS generation blocked autophagosome processing and caused accumulation of LC3-II, ubiquitin, and p62, leading to mitochondrial dysfunction and cell death; this outcome was alleviated by cyclosporine A (CsA) pretreatment. Interestingly, ischemia/reperfusion injury was connected with ROS-mediated Beclin-1 upregulation and a reduction in LAMP2, which is a pivotal protein in the autophagy-lysosome pathway. Recovery of the LAMP2 levels and partial Beclin-1 silencing restored the autophagic flux and reduced cell death after CA-ROSC. Taken together, our data indicate that CA-ROSC injury impairs autophagosome clearance partially through a ROS-induced decline in LAMP2 and increase in Beclin-1, leading to increased neuronal cell death.
Collapse
Affiliation(s)
- Xintao Wang
- Department of Anesthesiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, China
| | - Dawei Sun
- Department of Anesthesiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, China
| | - Yue Hu
- Department of Anesthesiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, China
| | - Xiaotao Xu
- Department of Anesthesiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, China
| | - Wei Jiang
- Department of Anesthesiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, China
| | - Hanbing Shang
- Department of Neurosurgery, Shanghai Ruijin Hospital Affiliated with Medical School of Shanghai Jiaotong University, China.
| | - Derong Cui
- Department of Anesthesiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, China.
| |
Collapse
|
33
|
Wang J, Ma MW, Dhandapani KM, Brann DW. NADPH oxidase 2 deletion enhances neurogenesis following traumatic brain injury. Free Radic Biol Med 2018; 123:62-71. [PMID: 29782989 DOI: 10.1016/j.freeradbiomed.2018.05.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
Abstract
The NADPH oxidase (NOX) enzyme family is a major source of reactive oxygen species (ROS) and contributor to the secondary pathology underlying traumatic brain injury (TBI). However, little is known about how NOX-derived ROS influences the proliferation and cell-fate determination of neural stem/progenitor cells (NSCs/NPCs) following TBI. In the current study, we found that deletion of NOX2 (NOX2-KO) significantly decreases the population of radial glia-like NSCs and neuroblasts but maintains the population of non-radial Sox2 expressing stem cells under physiological (non-injury) conditions. Surprisingly, the brains of NOX2-KO mice demonstrated a robust increase in the number of neuroblasts during the first week after TBI, as compared to the wild-type group. This increase may result from an enhanced proliferation of NPCs in a lower ROS environment after brain injury, as further examination revealed a significant increase of dividing neuroblasts in both NOX2-KO and NOX inhibitor-treated mouse brain during the first week following TBI. Finally, 5-Bromo-2'-deoxyuridine (BrdU) lineage tracing demonstrated a significantly increased number of newborn neurons were present in the perilesional cortex of NOX2-KO mice at 5 weeks post TBI, indicating that deletion of NOX2 promotes long-term neurogenesis in the injured brain following TBI. Altogether, these findings suggest that targeting NOX through genetic deletion or inhibition enhances post-injury neurogenesis, which may be beneficial for recovery following TBI.
Collapse
Affiliation(s)
- Jing Wang
- Charlie Norwood Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30909, USA
| | - Merry W Ma
- Charlie Norwood Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30909, USA
| | - Krishnan M Dhandapani
- Charlie Norwood Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30909, USA
| | - Darrell W Brann
- Charlie Norwood Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30909, USA.
| |
Collapse
|
34
|
Modular cell-internalizing aptamer nanostructure enables targeted delivery of large functional RNAs in cancer cell lines. Nat Commun 2018; 9:2283. [PMID: 29891903 PMCID: PMC5995956 DOI: 10.1038/s41467-018-04691-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/09/2018] [Indexed: 02/07/2023] Open
Abstract
Large RNAs and ribonucleoprotein complexes have powerful therapeutic potential, but effective cell-targeted delivery tools are limited. Aptamers that internalize into target cells can deliver siRNAs (<15 kDa, 19–21 nt/strand). We demonstrate a modular nanostructure for cellular delivery of large, functional RNA payloads (50–80 kDa, 175–250 nt) by aptamers that recognize multiple human B cell cancer lines and transferrin receptor-expressing cells. Fluorogenic RNA reporter payloads enable accelerated testing of platform designs and rapid evaluation of assembly and internalization. Modularity is demonstrated by swapping in different targeting and payload aptamers. Both modules internalize into leukemic B cell lines and remained colocalized within endosomes. Fluorescence from internalized RNA persists for ≥2 h, suggesting a sizable window for aptamer payloads to exert influence upon targeted cells. This demonstration of aptamer-mediated, cell-internalizing delivery of large RNAs with retention of functional structure raises the possibility of manipulating endosomes and cells by delivering large aptamers and regulatory RNAs. Large RNAs and ribonucleoprotein complexes have shown potential as novel therapeutic agents, but their targeted delivery to cells is still challenging. Here the authors present a modular aptamer nanostructure for intracellular delivery of RNAs up to 250 nucleotides to cancer cells.
Collapse
|
35
|
Ma MW, Wang J, Dhandapani KM, Wang R, Brann DW. NADPH oxidases in traumatic brain injury - Promising therapeutic targets? Redox Biol 2018; 16:285-293. [PMID: 29571125 PMCID: PMC5952873 DOI: 10.1016/j.redox.2018.03.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Despite intense investigation, no neuroprotective agents for TBI have yet translated to the clinic. Recent efforts have focused on identifying potential therapeutic targets that underlie the secondary TBI pathology that evolves minutes to years following the initial injury. Oxidative stress is a key player in this complex cascade of secondary injury mechanisms and prominently contributes to neurodegeneration and neuroinflammation. NADPH oxidase (NOX) is a family of enzymes whose unique function is to produce reactive oxygen species (ROS). Human post-mortem and animal studies have identified elevated NOX2 and NOX4 levels in the injured brain, suggesting that these two NOXs are involved in the pathogenesis of TBI. In support of this, NOX2 and NOX4 deletion studies have collectively revealed that targeting NOX enzymes can reduce oxidative stress, attenuate neuroinflammation, promote neuronal survival, and improve functional outcomes following TBI. In addition, NOX inhibitor studies have confirmed these findings and demonstrated an extended critical window of efficacious TBI treatment. Finally, the translational potential, caveats, and future directions of the field are highlighted and discussed throughout the review.
Collapse
Affiliation(s)
- Merry W Ma
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ruimin Wang
- Department of Neurobiology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|