1
|
Yan S, Xing G, Yuan X, Cui E, Ji K, Yang X, Su J, Mara D, Tang J, Zhao Y, Hu J, Liu J. Upconversion nanoparticles-CuMnO 2 nanoassemblies for NIR-excited imaging of reactive oxygen species in vivo. J Colloid Interface Sci 2025; 677:666-674. [PMID: 39159521 DOI: 10.1016/j.jcis.2024.08.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Here, we designed a ratiometric luminescent nanoprobe based on lanthanide-doped upconversion nanoparticles-CuMnO2 nanoassemblies for rapid and sensitive detection of reactive oxygen species (ROS) levels in living cells and mouse. CuMnO2 nanosheets exhibit a wide absorption range of 300-700 nm, overlapping with the visible-light emission of upconversion nanoparticles (UCNPs), resulting in a significant upconversion luminescence quenching. In an acidic environment, H2O2 can promote the redox reaction of CuMnO2, leading to its dissociation from the surface of UCNPs and the restoration of upconversion luminescence. The variation in luminescence intensity ratio (UCL475/UCL450) were monitored to detect ROS levels. The H2O2 nanoprobe exhibited a linear response in the range of 0.314-10 μM with a detection limit of 11.3 nM. The biological tests proved the excellent biocompatibility and low toxicity of obtained UCNPs-CuMnO2 nanoassemblies. This ratiometric luminescent nanoprobe was successfully applied for the detection of exogenous and endogenous ROS in live cells as well as in vivo ROS quantitation. The dual transition metal ions endow this probe efficient catalytic decomposition capabilities, and this sensing strategy broadens the application of UCNPs-based nanomaterials in the field of biological analysis and diagnosis.
Collapse
Affiliation(s)
- Shanshu Yan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Gaoyuan Xing
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Xiangyang Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Endian Cui
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Kaixin Ji
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xing Yang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Jiahao Su
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Dimitrije Mara
- Institute of General and Physical Chemistry, Studentski trg 12/V, Belgrade 11158, P. O. Box 45, Serbia
| | - Jianfeng Tang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yanan Zhao
- Analytical and Testing Center, Southwest University, Chongqing 400715, China
| | - Jie Hu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Jing Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China; Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Orthopedic Hospital of Guangdong Province, Guangzhou 510515, China.
| |
Collapse
|
2
|
Wu T, Su D, Zhang L, Liu T, Wang Q, Yan C, Liu M, Ji H, Lei J, Zheng M, Wen Z. Mitochondrial Control of Proteasomal Psmb5 Drives the Differentiation of Tissue-Resident Memory T Cells in Patients with Rheumatoid Arthritis. Arthritis Rheumatol 2024; 76:1743-1757. [PMID: 39037181 DOI: 10.1002/art.42954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE To explore T cell-intrinsic mechanisms underpinning the mal-differentiation of tissue-resident memory T (Trm) cells in patients with rheumatoid arthritis (RA). METHODS Circulating T cells from patient with RA and healthy individuals were used for Trm cell differentiation. The role of Hobit in Trm differentiation was investigated through targeted silencing experiments. Psmb5 expression regulation was explored by identifying BRD2 as a key transcription factor, with the interaction validated through chromatin immunoprecipitation-quantitative polymerase chain reaction. The impact of BRD2 succinylation on Trm differentiation was examined by manipulating succinyl-CoA levels in T cells. Humanized NSG chimeras representing synovitis provided insights into Trm infiltration in RA synovitis and were used for translational experiments. RESULTS In patients with RA, a notable predisposition of CD4+ T cells toward differentiation into Trm cells was observed, demonstrating a positive correlation with the disease activity score 28. Remarkably, Hobit was a pivotal facilitator in the formation of RA CD4+ Trm cells. Mechanistic studies unveiled the dysregulation of proteasomal Psmb5 in T cells of patients with RA as the key factor contributing to elevated Hobit protein levels. The deficiency of proteasomal Psmb5 was intricately linked to BRD2, with succinylation exerting a significant impact on Psmb5 transcription and Trm cell differentiation. This heightened BRD2 succinylation was attributed to elevated levels of mitochondrial succinyl-CoA in RA T cells. Consequently, targeting succinyl-CoA within CD4+ T cells controlled the inflammation of synovial tissues in humanized chimeras. CONCLUSION Mitochondrial succinyl-CoA fosters the succinylation of BRD2, resulting in compromised transcription of proteasomal Psmb5 and the differentiation of Trm cells in RA.
Collapse
Affiliation(s)
- Tong Wu
- Soochow University, Suzhou, China
| | | | | | - Ting Liu
- Nanjing Medical University, Wuxi, China
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Niu Q, Hao J, Li Z, Zhang H. Helper T cells: A potential target for sex hormones to ameliorate rheumatoid arthritis? (Review). Mol Med Rep 2024; 30:215. [PMID: 39370806 PMCID: PMC11450432 DOI: 10.3892/mmr.2024.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease whose etiology is not fully understood. Defective peripheral immune tolerance and subsequent mis‑differentiation and aberrant infiltration of synovium by various immune cells, especially helper T (Th) cells, play an important role in the development of RA. There are significant sex differences in RA, but the results of studies on the effects of sex hormones on RA have been difficult to standardize and hormone replacement therapy has been limited by the potential for serious side effects. Existing research has amply demonstrated that cellular immune responses are largely determined by sex and that sex hormones play a key role in Th cell responses. Based on the aforementioned background and the plasticity of Th cells, it is reasonable to hypothesize that the action of sex hormones on Th cells will hopefully become a therapeutic target for RA. The present review discussed the role of various Th cell subsets in the pathogenesis of RA and also explored the role of sex hormones on the phenotype and function of these aberrantly regulated immune cells in RA as well as other pathologic effects on RA.
Collapse
Affiliation(s)
- Quanjun Niu
- Department of Orthopedics IV, Handan Hospital of Traditional Chinese Medicine, Handan, Hebei 056001, P.R. China
| | - Junhang Hao
- Department of Orthopedics IV, Handan Hospital of Traditional Chinese Medicine, Handan, Hebei 056001, P.R. China
| | - Zhen Li
- Department of Orthopedics IV, Handan Hospital of Traditional Chinese Medicine, Handan, Hebei 056001, P.R. China
| | - Huiping Zhang
- Department of Orthopedics IV, Handan Hospital of Traditional Chinese Medicine, Handan, Hebei 056001, P.R. China
| |
Collapse
|
4
|
Cao M, Sheng R, Sun Y, Cao Y, Wang H, Zhang M, Pu Y, Gao Y, Zhang Y, Lu P, Teng G, Wang Q, Rui Y. Delivering Microrobots in the Musculoskeletal System. NANO-MICRO LETTERS 2024; 16:251. [PMID: 39037551 PMCID: PMC11263536 DOI: 10.1007/s40820-024-01464-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/16/2024] [Indexed: 07/23/2024]
Abstract
Disorders of the musculoskeletal system are the major contributors to the global burden of disease and current treatments show limited efficacy. Patients often suffer chronic pain and might eventually have to undergo end-stage surgery. Therefore, future treatments should focus on early detection and intervention of regional lesions. Microrobots have been gradually used in organisms due to their advantages of intelligent, precise and minimally invasive targeted delivery. Through the combination of control and imaging systems, microrobots with good biosafety can be delivered to the desired area for treatment. In the musculoskeletal system, microrobots are mainly utilized to transport stem cells/drugs or to remove hazardous substances from the body. Compared to traditional biomaterial and tissue engineering strategies, active motion improves the efficiency and penetration of local targeting of cells/drugs. This review discusses the frontier applications of microrobotic systems in different tissues of the musculoskeletal system. We summarize the challenges and barriers that hinder clinical translation by evaluating the characteristics of different microrobots and finally point out the future direction of microrobots in the musculoskeletal system.
Collapse
Affiliation(s)
- Mumin Cao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Renwang Sheng
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Yimin Sun
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 210009, People's Republic of China
| | - Ying Cao
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 210009, People's Republic of China
| | - Hao Wang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Ming Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Yunmeng Pu
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yucheng Gao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Yuanwei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Panpan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Gaojun Teng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.
| | - Qianqian Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 210009, People's Republic of China.
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China.
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
5
|
Lu Y, Han X, Zhang H, Zheng L, Li X. Multi-omics study on the molecular mechanism of anlotinib in regulating tumor metabolism. Eur J Pharmacol 2024; 975:176639. [PMID: 38729415 DOI: 10.1016/j.ejphar.2024.176639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/12/2024]
Abstract
Anlotinib, an orally administered small molecule inhibitor of receptor tyrosine kinases (RTKs), exerts significant anti-angiogenic and vascular normalization effects. However, the mechanisms underlying its involvement in tumor metabolic reprogramming are still unclear. This study aims to investigate the distribution and expression levels of metabolites within tumors after anlotinib treatment using spatial metabolomics analysis. Subsequently, by integrating the transcriptomics and proteomics analyses, we identified that anlotinib treatment primarily modulated four metabolic pathways, including taurine and hypotaurine metabolism, steroid synthesis, pentose phosphate pathway, and lipid biosynthesis. This regulation significantly influenced the metabolic levels of compounds such as sulfonic acids, cholesterol, inositol phosphate pyrophosphate, and palmitoyl-CoA in the tumor, thereby impacting tumor initiation and progression. This study provides potential metabolic biomarkers for anlotinib treatment in tumors.
Collapse
Affiliation(s)
- Yu Lu
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Xuedan Han
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Hongwei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Xinxiang Medical University, Wei Hui, 453100, China
| | - Lufeng Zheng
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China.
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
6
|
Zhang Y, Zhang J, Liu Y, Ren S, Tao N, Meng F, Cao Q, Liu R. High fat diet increases the severity of collagen-induced arthritis in mice by altering the gut microbial community. Adv Rheumatol 2024; 64:44. [PMID: 38816873 DOI: 10.1186/s42358-024-00382-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
OBJECTIVES Research has demonstrated that obesity may be associated with rheumatoid arthritis (RA). In addition, gut microbiota and its metabolites contribute to the occurrence and development of RA and obesity. However, the mechanism by which obesity affects RA remains unclear. In this study, we aimed to investigate whether gut microbiota and their metabolites alter the effects of high fat diet (HFD) on the severity of collagen-induced arthritis (CIA) in mice. METHODS Briefly, mice were divided into normal group (N), CIA model group (C), HFD group (T), and HFD CIA group (CT). Hematoxylin and Eosin staining(HE) and Safranin O-fast green staining were conducted, and levels of blood lipid and inflammatory cytokines were measured. 16S rDNA sequencing technique and liquid chromatography-mass spectrometry (LC-MS)-based metabolomics were performed to explore changes in the microbiota structure to further reveal the pathomechanism of HFD on CIA. RESULTS HFD aggravated the severity of CIA in mice. The CT group had the highest proportion of microbial abundance of Blautia, Oscillibacter, Ruminiclostridium-9, and Lachnospiraceae UCG 006 at the genus level, but had a lower proportion of Alistipes. Additionally, the fecal metabolic phenotype of the combined CT group shows significant changes, with differential metabolites enriched in 9 metabolic pathways, including primary bile acid biosynthesis, arginine biosynthesis, sphingolipid metabolism, purine metabolism, linoleic acid metabolism, oxytocin signaling pathway, aminoacyl-tRNA biosynthesis, the pentose phosphate pathway, and sphingolipid signaling pathway. Correlation analysis revealed that some of the altered gut microbiota genera were strongly correlated with changes in fecal metabolites, total cholesterol (TC), triglyceride (TG), and inflammatory cytokine levels. CONCLUSIONS This study shows that HFD may aggravate inflammatory reaction in CIA mice by altering the gut microbiota and metabolic pathways.
Collapse
Affiliation(s)
- Yang Zhang
- The First Hospital of China Medical University, Shenyang, 110002, Liaoning, China
| | - Jie Zhang
- The First Hospital of China Medical University, Shenyang, 110002, Liaoning, China
| | - Yantong Liu
- The First Hospital of China Medical University, Shenyang, 110002, Liaoning, China
| | - Shuang Ren
- The First Hospital of China Medical University, Shenyang, 110002, Liaoning, China
| | - Ning Tao
- The First Hospital of China Medical University, Shenyang, 110002, Liaoning, China
| | - Fanyan Meng
- The First Hospital of China Medical University, Shenyang, 110002, Liaoning, China
| | - Qi Cao
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110001, Liaoning, China
| | - Ruoshi Liu
- The First Hospital of China Medical University, Shenyang, 110002, Liaoning, China.
| |
Collapse
|
7
|
Kannan KP, Girija A.S. S. Exploring the ROS reduction strategies in chronic lupus management. Front Immunol 2024; 15:1346656. [PMID: 38444846 PMCID: PMC10913789 DOI: 10.3389/fimmu.2024.1346656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Affiliation(s)
| | - Smiline Girija A.S.
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamilnadu, India
| |
Collapse
|
8
|
Hambarde S, Manalo JM, Baskin DS, Sharpe MA, Helekar SA. Spinning magnetic field patterns that cause oncolysis by oxidative stress in glioma cells. Sci Rep 2023; 13:19264. [PMID: 37935811 PMCID: PMC10630398 DOI: 10.1038/s41598-023-46758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023] Open
Abstract
Raising reactive oxygen species (ROS) levels in cancer cells to cause macromolecular damage and cell death is a promising anticancer treatment strategy. Observations that electromagnetic fields (EMF) elevate intracellular ROS and cause cancer cell death, have led us to develop a new portable wearable EMF device that generates spinning oscillating magnetic fields (sOMF) to selectively kill cancer cells while sparing normal cells in vitro and to shrink GBM tumors in vivo through a novel mechanism. Here, we characterized the precise configurations and timings of sOMF stimulation that produce cytotoxicity due to a critical rise in superoxide in two types of human glioma cells. We also found that the antioxidant Trolox reverses the cytotoxic effect of sOMF on glioma cells indicating that ROS play a causal role in producing the effect. Our findings clarify the link between the physics of magnetic stimulation and its mechanism of anticancer action, facilitating the development of a potential new safe noninvasive device-based treatment for GBM and other gliomas.
Collapse
Affiliation(s)
- Shashank Hambarde
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
| | - Jeanne M Manalo
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
| | - David S Baskin
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurosurgery, Weill Cornell Medical College, New York, NY, USA
| | - Martyn A Sharpe
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
| | - Santosh A Helekar
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA.
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA.
- Houston Methodist Research Institute, Houston, TX, USA.
- Department of Neurosurgery, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
9
|
Zheng Y, Liu Q, Goronzy JJ, Weyand CM. Immune aging - A mechanism in autoimmune disease. Semin Immunol 2023; 69:101814. [PMID: 37542986 PMCID: PMC10663095 DOI: 10.1016/j.smim.2023.101814] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/20/2023] [Indexed: 08/07/2023]
Abstract
Evidence is emerging that the process of immune aging is a mechanism leading to autoimmunity. Over lifetime, the immune system adapts to profound changes in hematopoiesis and lymphogenesis, and progressively restructures in face of an ever-expanding exposome. Older adults fail to generate adequate immune responses against microbial infections and tumors, but accumulate aged T cells, B cells and myeloid cells. Age-associated B cells are highly efficient in autoantibody production. T-cell aging promotes the accrual of end-differentiated effector T cells with potent cytotoxic and pro-inflammatory abilities and myeloid cell aging supports a low grade, sterile and chronic inflammatory state (inflammaging). In pre-disposed individuals, immune aging can lead to frank autoimmune disease, manifesting with chronic inflammation and irreversible tissue damage. Emerging data support the concept that autoimmunity results from aging-induced failure of fundamental cellular processes in immune effector cells: genomic instability, loss of mitochondrial fitness, failing proteostasis, dwindling lysosomal degradation and inefficient autophagy. Here, we have reviewed the evidence that malfunctional mitochondria, disabled lysosomes and stressed endoplasmic reticula induce pathogenic T cells and macrophages that drive two autoimmune diseases, rheumatoid arthritis (RA) and giant cell arteritis (GCA). Recognizing immune aging as a risk factor for autoimmunity will open new avenues of immunomodulatory therapy, including the repair of malfunctioning mitochondria and lysosomes.
Collapse
Affiliation(s)
- Yanyan Zheng
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Department of Cardiovascular Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Qingxiang Liu
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Jorg J Goronzy
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cornelia M Weyand
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Department of Cardiovascular Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
TeSlaa T, Ralser M, Fan J, Rabinowitz JD. The pentose phosphate pathway in health and disease. Nat Metab 2023; 5:1275-1289. [PMID: 37612403 PMCID: PMC11251397 DOI: 10.1038/s42255-023-00863-2] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 07/12/2023] [Indexed: 08/25/2023]
Abstract
The pentose phosphate pathway (PPP) is a glucose-oxidizing pathway that runs in parallel to upper glycolysis to produce ribose 5-phosphate and nicotinamide adenine dinucleotide phosphate (NADPH). Ribose 5-phosphate is used for nucleotide synthesis, while NADPH is involved in redox homoeostasis as well as in promoting biosynthetic processes, such as the synthesis of tetrahydrofolate, deoxyribonucleotides, proline, fatty acids and cholesterol. Through NADPH, the PPP plays a critical role in suppressing oxidative stress, including in certain cancers, in which PPP inhibition may be therapeutically useful. Conversely, PPP-derived NADPH also supports purposeful cellular generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) for signalling and pathogen killing. Genetic deficiencies in the PPP occur relatively commonly in the committed pathway enzyme glucose-6-phosphate dehydrogenase (G6PD). G6PD deficiency typically manifests as haemolytic anaemia due to red cell oxidative damage but, in severe cases, also results in infections due to lack of leucocyte oxidative burst, highlighting the dual redox roles of the pathway in free radical production and detoxification. This Review discusses the PPP in mammals, covering its roles in biochemistry, physiology and disease.
Collapse
Affiliation(s)
- Tara TeSlaa
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Markus Ralser
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Jing Fan
- Morgride Institute for Research, Madison, WI, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua D Rabinowitz
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ, USA.
| |
Collapse
|
11
|
Qi X, Chen J, Jiang X, Lu D, Yu X, Lin H, Monroy EY, Wang MC, Wang J. Quantification of glutathione with high throughput live-cell imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548586. [PMID: 37503234 PMCID: PMC10369946 DOI: 10.1101/2023.07.11.548586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Reduction oxidation (redox) reactions are central in life and altered redox state is associated with a spectrum of human diseases. Glutathione (GSH) is the most abundant antioxidant in eukaryotic cells and plays critical roles in maintaining redox homeostasis. Thus, measuring intracellular GSH level is an important method to assess the redox state of organism. The currently available GSH probes are based on irreversible chemical reactions with glutathione and can't monitor the real-time glutathione dynamics. Our group developed the first reversible reaction based fluorescent probe for glutathione, which can measure glutathione levels at high resolution using a confocal microscope and in the bulk scale with a flow cytometry. Most importantly it can quantitatively monitor the real-time GSH dynamics in living cells. Using the 2 nd generation of GSH probe, RealThiol (RT), this study measured the GSH level in living Hela cells after treatment with varying concentrations of DL-Buthionine sulfoximine (BSO) which inhibits GSH synthesis, using a high throughput imaging system, Cytation™ 5 cell imaging reader. The results revealed that GSH probe RT at the concentration of 2.0 µM accurately monitored the BSO treatment effect on GSH level in the Hela cells. The present results demonstrated that the GSH probe RT is sensitive and precise in GSH measurement in living cells at a high throughput imaging platform and has the potential to be applied to any cell lines.
Collapse
|
12
|
Role of T Cells in the Pathogenesis of Rheumatoid Arthritis: Focus on Immunometabolism Dysfunctions. Inflammation 2023; 46:88-102. [PMID: 36215002 DOI: 10.1007/s10753-022-01751-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Evidence demonstrated that metabolic-associated T cell abnormalities could be detected in the early stage of RA development. In this context, molecular evaluations have revealed changes in metabolic pathways, leading to the aggressive phenotype of RA T cells. A growing list of genes is downregulated or upregulated in RA T cells, and most of these genes with abnormal expression fall into the category of metabolic pathways. It has been shown that RA T cells shunt glucose towards the pentose phosphate pathway (PPP), which is associated with a high level of nicotinamide adenine dinucleotide phosphate (NADPH) and intermediate molecules. An increased level of NADPH inhibits ATM activation and thereby increases the proliferation capabilities of the RA T cells. Defects in the DNA repair nuclease MRE11A cause failures in repairing mitochondrial DNA, resulting in inhibiting the fatty acid oxidation pathway and further elevated cytoplasmic lipid droplets. Accumulated lipid droplets employ to generate lipid membranes for the cell building program and are also used to form the front-end membrane ruffles that are accomplices with invasive phenotypes of RA T cells. Metabolic pathway involvement in RA pathogenesis expands the pathogenic concept of the disease beyond the common view of autoimmunity triggered by autoantigen recognition. Increased knowledge about metabolic pathways' implications in RA pathogenesis paves the way to understand better the environment/gene interactions and host/microbiota interactions and introduce potential therapeutic approaches. This review summarized emerging data about the roles of T cells in RA pathogenesis with a focus on immunometabolism dysfunctions and how these metabolic alterations can affect the disease process.
Collapse
|
13
|
Luo TT, Wu YJ, Yin Q, Chen WG, Zuo J. The Involvement of Glucose and Lipid Metabolism Alteration in Rheumatoid Arthritis and Its Clinical Implication. J Inflamm Res 2023; 16:1837-1852. [PMID: 37131409 PMCID: PMC10149064 DOI: 10.2147/jir.s398291] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
Obviously, immune cells like T cells and macrophages play a major role in rheumatoid arthritis (RA). On one hand, the breakdown of immune homeostasis directly induces systemic inflammation; on the other hand, these cells initiate and perpetuate synovitis and tissue damages through the interaction with fibroblast-like synoviocytes (FLS). In recent years, the pathological link between metabolic disorders and immune imbalance has received increasing attention. High energy demand of immune cells leads to the accumulation of metabolic byproducts and inflammatory mediators. They act on various metabolism-sensitive signal pathways as well as relevant transcription factors, such as HIF-1α, and STATs. These molecular events will impact RA-related effectors like circulating immune cells and joint-resident cells in return, allowing the continuous progression of systemic inflammation, arthritic manifestations, and life-threatening complications. In other words, metabolic complications are secondary pathological factors for the progression of RA. Therefore, the status of energy metabolism may be an important indicator to evaluate RA severity, and in-depth explorations of the mechanisms underlying the mystery of how RA-related metabolic disorders develop will provide useful clues to further clarify the etiology of RA, and inspire the discovery of new anti-rheumatic targets. This article reviews the latest research progress on the interactions between immune and metabolism systems in the context of RA. Great importance is attached to the changes in certain pathways controlling both immune and metabolism functions during RA progression.
Collapse
Affiliation(s)
- Ting-Ting Luo
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Xin’an Medical Research Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Yi-Jin Wu
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Xin’an Medical Research Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Qin Yin
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Wen-Gang Chen
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Jian Zuo
- Xin’an Medical Research Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Correspondence: Jian Zuo, Email
| |
Collapse
|
14
|
Patwardhan RS, Kundu K, Purohit V, Kumar BK, Singh B, Thoh M, Undavia K, Bhilwade HN, Nayak SK, Sharma D, Sandur SK. Malabaricone C, a constituent of spice Myristica malabarica, exhibits anti-inflammatory effects via modulation of cellular redox. J Biosci 2023. [PMID: 36971326 PMCID: PMC10040911 DOI: 10.1007/s12038-023-00329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The present study primarily focuses on the efficacy of Malabaricone C (Mal C) as an anti-inflammatory agent. Mal C inhibited mitogen-induced T-cell proliferation and cytokine secretion. Mal C significantly reduced cellular thiols in lymphocytes. N-acetyl cysteine (NAC) restored cellular thiol levels and abrogated Mal C-mediated inhibition of T-cell proliferation and cytokine secretion. Physical interaction between Mal C and NAC was evinced from HPLC and spectral analysis. Mal C treatment significantly inhibited concanavalin A-induced phosphorylation of ERK/JNK and DNA binding of NF-κB. Administration of Mal C to mice suppressed T-cell proliferation and effector functions ex vivo. Mal C treatment did not alter the homeostatic proliferation of T-cells in vivo but completely abrogated acute graft-versus-host disease (GvHD)-associated morbidity and mortality. Our studies indicate probable use of Mal C for prophylaxis and treatment of immunological disorders caused due to hyper-activation of T-cells.
Collapse
Affiliation(s)
- Raghavendra S Patwardhan
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Kshama Kundu
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Vaitashi Purohit
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Binita Kislay Kumar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Beena Singh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Maikho Thoh
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Khushboo Undavia
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Hari N Bhilwade
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Sandip K Nayak
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
- Homi Bhabha National Institute, Mumbai, 400094 India
| | - Santosh K Sandur
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
- Homi Bhabha National Institute, Mumbai, 400094 India
| |
Collapse
|
15
|
Liang H, Fu W, Yu W, Cao Z, Liu E, Sun F, Kong X, Gao Y, Zhou Y. Elucidating the mitochondrial function of murine lymphocyte subsets and the heterogeneity of the mitophagy pathway inherited from hematopoietic stem cells. Front Immunol 2022; 13:1061448. [PMID: 36420255 PMCID: PMC9676649 DOI: 10.3389/fimmu.2022.1061448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/24/2022] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Mitochondria are mainly involved in ATP production to meet the energy demands of cells. Researchers are increasingly recognizing the important role of mitochondria in the differentiation and activation of hematopoietic cells, but research on how mitochondrial metabolism influence different subsets of lymphocyte at different stages of differentiation and activation are yet to be carried out. In this work, the mitochondrial functions of lymphocytes were compared at different differentiation and activation stages and included CD8+ T lymphocytes, CD4+ T lymphocytes, B lymphocytes, NK cells as well as their subsets. For this purpose, a complete set of methods was used to comprehensively analyze mitophagy levels, mitochondrial reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and the mitochondrial mass (MM) of subsets of lymphocytes. It is expected that this will provide a complete set of standards, and drawing the mitochondrial metabolic map of lymphocyte subsets at different stages of differentiation and activation. RESULTS AND DISCUSSION Of all lymphocytes, B cells had a relatively high mitochondrial metabolic activity which was evident from the higher levels of mitophagy, ROS, MMP and MM, and this reflected the highly heterogeneous nature of the mitochondrial metabolism in lymphocytes. Among the B cell subsets, pro-B cells had relatively higher levels of MM and MMP, while the mitochondrial metabolism level of mature B cells was relatively low. Similarly, among the subsets of CD4+ T cell, a relatively higher level of mitochondrial metabolism was noted for naive CD4+ T cells. Finally, from the CD8+ T cell subsets, CD8+ Tcm had relatively high levels of MM and MMP but relatively low ones for mitophagy, with effector T cells displaying the opposite characteristics. Meanwhile, the autophagy-related genes of lymphoid hematopoietic cells including hematopoietic stem cells, hematopoietic progenitor cells and lymphocyte subsets were analyzed, which preliminarily showed that these cells were heterogeneous in the selection of mitophagy related Pink1/Park2, BNIP3/NIX and FUNDC1 pathways. The results showed that compared with CD4+ T, CD8+ T and NK cells, B cells were more similar to long-term hematopoietic stem cell (LT-HSC) and short-term hematopoietic stem cell (ST-HSC) in terms of their participation in the Pink1/Park2 pathway, as well as the degree to which the characteristics of autophagy pathway were inherited from HSC. Compared with CLP and B cells, HSC are less involved in BNIP3/NIX pathway. Among the B cell subsets, pro-B cells inherited the least characteristics of HSC in participating in Pink1/Park2 pathway compared with pre-B, immature B and immature B cells. Among CD4+ T cell subsets, nTreg cells inherited the least characteristics of HSC in participating in Pink1/Park2 pathway compared with naive CD4+ T and memory CD4+ T cells. Among the CD8+ T cell subsets, compared with CLP and effector CD8+ T cells, CD8+ Tcm inherit the least characteristics of HSC in participating in Pink1/Park2 pathway. Meanwhile, CLP, naive CD4+ T and effector CD8+ T were more involved in BNIP3/NIX pathway than other lymphoid hematopoietic cells. CONCLUSION This study is expected to provide a complete set of methods and basic reference values for future studies on the mitochondrial functions of lymphocyte subsets at different stages of differentiation and activation in physiological state, and also provides a standard and reference for the study of infection and immunity based on mitochondrial metabolism.
Collapse
Affiliation(s)
- Haoyue Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Weichao Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wenying Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhijie Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ertao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Fanfan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaodong Kong
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
16
|
Pérez S, Rius-Pérez S. Macrophage Polarization and Reprogramming in Acute Inflammation: A Redox Perspective. Antioxidants (Basel) 2022; 11:antiox11071394. [PMID: 35883885 PMCID: PMC9311967 DOI: 10.3390/antiox11071394] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022] Open
Abstract
Macrophage polarization refers to the process by which macrophages can produce two distinct functional phenotypes: M1 or M2. The balance between both strongly affects the progression of inflammatory disorders. Here, we review how redox signals regulate macrophage polarization and reprogramming during acute inflammation. In M1, macrophages augment NADPH oxidase isoform 2 (NOX2), inducible nitric oxide synthase (iNOS), synaptotagmin-binding cytoplasmic RNA interacting protein (SYNCRIP), and tumor necrosis factor receptor-associated factor 6 increase oxygen and nitrogen reactive species, which triggers inflammatory response, phagocytosis, and cytotoxicity. In M2, macrophages down-regulate NOX2, iNOS, SYNCRIP, and/or up-regulate arginase and superoxide dismutase type 1, counteract oxidative and nitrosative stress, and favor anti-inflammatory and tissue repair responses. M1 and M2 macrophages exhibit different metabolic profiles, which are tightly regulated by redox mechanisms. Oxidative and nitrosative stress sustain the M1 phenotype by activating glycolysis and lipid biosynthesis, but by inhibiting tricarboxylic acid cycle and oxidative phosphorylation. This metabolic profile is reversed in M2 macrophages because of changes in the redox state. Therefore, new therapies based on redox mechanisms have emerged to treat acute inflammation with positive results, which highlights the relevance of redox signaling as a master regulator of macrophage reprogramming.
Collapse
|
17
|
Altered Transcriptional Regulation of Glycolysis in Circulating CD8+ T Cells of Rheumatoid Arthritis Patients. Genes (Basel) 2022; 13:genes13071216. [PMID: 35886000 PMCID: PMC9323564 DOI: 10.3390/genes13071216] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
Peripheral T lymphocytes of rheumatoid arthritis (RA) patients show pathological changes in their metabolic pathways, especially glycolysis. These changes may drive the increased proliferation and tissue invasiveness of RA T cells. In order to study the transcriptional regulation underlying these alterations, we analysed publicly available RNA sequencing data from circulating T lymphocyte subsets of healthy individuals, untreated RA patients, and patients undergoing treatment for RA. Differential co-expression networks were created using sample-wise edge weights from an analysis called “linear interpolation to obtain network estimates for single sample” (lionessR), and annotated using the Gene Transcription Regulation Database (GTRD). Genes with high centrality scores were identified. CD8+ effector memory cells (Tem) and CD8+CD45RA+ effector memory cells (Temra) showed large changes in the transcriptional regulation of glycolysis in untreated RA. PFKFB3 and GAPDH were differentially regulated and had high centrality scores in CD8+ Tem cells. PFKFB3 downregulation may be due to HIF1A post transcriptional inhibition. Tocilizumab treatment partially reversed the RA-associated differential expression of several metabolic and regulatory genes. MYC was upregulated and had high centrality scores in RA CD8+ Temra cells; however, its glycolysis targets were unaltered. The upregulation of the PI3K-AKT and mTOR pathways may explain MYC upregulation.
Collapse
|
18
|
Lee EK, Koh EM, Kim YN, Song J, Song CH, Jung KJ. Immunomodulatory Effect of Hispolon on LPS-Induced RAW264.7 Cells and Mitogen/Alloantigen-Stimulated Spleen Lymphocytes of Mice. Pharmaceutics 2022; 14:pharmaceutics14071423. [PMID: 35890318 PMCID: PMC9322787 DOI: 10.3390/pharmaceutics14071423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Hispolon is a potent anticancer, anti-inflammatory, antioxidant, and antidiabetic agent isolated from Phellinus linteus, an oriental medicinal mushroom. However, the immunomodulatory mechanisms by which hispolon affects macrophages and lymphocytes remain poorly characterized. We investigated the immunomodulatory effects of hispolon on oxidative stress, inflammatory responses, and lymphocyte proliferation using lipopolysaccharide (LPS)-treated RAW264.7 macrophages or mitogen/alloantigen-treated mouse splenocytes. Hispolon inhibited LPS-induced reactive oxygen and nitrogen species (ROS/RNS) generation and decreased total sulfhydryl (SH) levels in a cell-free system and RAW264.7 cells. Hispolon exerted significant anti-inflammatory effects by inhibiting production of the proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) and activation of nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) in LPS-treated RAW264.7 cells. Hispolon also modulated NF-κB and STAT3 activation by suppressing the NF-κB p65 interaction with phospho-IκBα and the STAT3 interaction with JAK1, as determined via coimmunoprecipitation analysis. Additionally, hispolon significantly decreased lymphocyte proliferation, T cell responses and T helper type 1 (Th1)/type 2 (Th2) cytokines production in mitogen/alloantigen-treated splenocytes. We conclude that hispolon exerts immunomodulatory effects on LPS-treated macrophages or mitogen/alloantigen-treated splenocytes through antioxidant, anti-inflammatory, and antiproliferative activities. Thus, hispolon may be a therapeutic agent for treating immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Eun Kyeong Lee
- Immunotoxicology Research Group, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea; (E.K.L.); (E.M.K.); (Y.N.K.); (C.H.S.)
| | - Eun Mi Koh
- Immunotoxicology Research Group, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea; (E.K.L.); (E.M.K.); (Y.N.K.); (C.H.S.)
| | - Yu Na Kim
- Immunotoxicology Research Group, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea; (E.K.L.); (E.M.K.); (Y.N.K.); (C.H.S.)
| | - Jeongah Song
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup 56212, Korea;
| | - Chi Hun Song
- Immunotoxicology Research Group, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea; (E.K.L.); (E.M.K.); (Y.N.K.); (C.H.S.)
| | - Kyung Jin Jung
- Immunotoxicology Research Group, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea; (E.K.L.); (E.M.K.); (Y.N.K.); (C.H.S.)
- Correspondence: ; Tel.: +82-42-610-8279; Fax: +82-42-610-8099
| |
Collapse
|
19
|
Wang X, Fan D, Cao X, Ye Q, Wang Q, Zhang M, Xiao C. The Role of Reactive Oxygen Species in the Rheumatoid Arthritis-Associated Synovial Microenvironment. Antioxidants (Basel) 2022; 11:antiox11061153. [PMID: 35740050 PMCID: PMC9220354 DOI: 10.3390/antiox11061153] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease that begins with a loss of tolerance to modified self-antigens and immune system abnormalities, eventually leading to synovitis and bone and cartilage degradation. Reactive oxygen species (ROS) are commonly used as destructive or modifying agents of cellular components or they act as signaling molecules in the immune system. During the development of RA, a hypoxic and inflammatory situation in the synovium maintains ROS generation, which can be sustained by increased DNA damage and malfunctioning mitochondria in a feedback loop. Oxidative stress caused by abundant ROS production has also been shown to be associated with synovitis in RA. The goal of this review is to examine the functions of ROS and related molecular mechanisms in diverse cells in the synovial microenvironment of RA. The strategies relying on regulating ROS to treat RA are also reviewed.
Collapse
Affiliation(s)
- Xing Wang
- School of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; (X.W.); (Q.Y.); (Q.W.)
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Danping Fan
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Qinbin Ye
- School of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; (X.W.); (Q.Y.); (Q.W.)
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Qiong Wang
- School of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; (X.W.); (Q.Y.); (Q.W.)
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China
- Correspondence: or
| |
Collapse
|
20
|
Jiang N, Zhang Y, Yao C, Huang H, Wang Q, Huang S, He Q, Liu X. Ginsenosides Rb1 Attenuates Chronic Social Defeat Stress-Induced Depressive Behavior via Regulation of SIRT1-NLRP3/Nrf2 Pathways. Front Nutr 2022; 9:868833. [PMID: 35634375 PMCID: PMC9133844 DOI: 10.3389/fnut.2022.868833] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Ginsenoside Rb1, a diol-type ginseng saponin, has various positive effects on the central nervous system. This study aimed to evaluate the antidepressant effects of Rb1 on chronic social defeat stress (CSDS) induced behavioral deficits and the exact neural cascades linked with inflammatory processes. The results of behavioral tests such as social interaction, tail suspension, and forced swimming revealed that oral treatment of Rb1 (35 and 70 mg/kg) alleviates depression-like behavior. Rb1 treatment increased antioxidant enzyme activity (SOD and CAT) and reduced lipid peroxidation (LPO) content in the hippocampus. Rb1 also suppressed the production of inflammatory cytokines (TNF-α, IL-18, and IL-1β) as well as microglial activation (Iba1) in response to CSDS. Moreover, Rb1 administration considerably reduced the protein expression of NLRP3 (inflammasome) and promoted the protein expressions of Nrf2, HO-1 and Sirtuin1(SIRT1) activation in the hippocampus. Our findings showed that Rb1 effectively restores the depressive-like behavior in CSDS-induced model mice, mediated in part by the normalization of oxidative stress levels. The suppression of neuroinflammation is mediated by the regulation of SIRT1-NLRP3/Nrf2 pathways. Our results asserted that the Rb1 is a novel therapeutic candidate for treating depression.
Collapse
Affiliation(s)
- Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Hunan University of Chinese Medicine, College of Traditional Chinese Medicine, Changsha, China
| | - Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Caihong Yao
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hong Huang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qiong Wang
- Hunan University of Chinese Medicine, College of Traditional Chinese Medicine, Changsha, China
- Affiliated TCM Hospital, School of Pharmacy, Sino-Portugal TCM International Cooperation Center, Southwest Medical University, Luzhou, China
| | - Shuangxue Huang
- Hunan University of Chinese Medicine, College of Traditional Chinese Medicine, Changsha, China
| | - Qinghu He
- Hunan University of Chinese Medicine, College of Traditional Chinese Medicine, Changsha, China
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Hunan University of Chinese Medicine, College of Traditional Chinese Medicine, Changsha, China
- *Correspondence: Xinmin Liu
| |
Collapse
|
21
|
Zhao TV, Sato Y, Goronzy JJ, Weyand CM. T-Cell Aging-Associated Phenotypes in Autoimmune Disease. FRONTIERS IN AGING 2022; 3:867950. [PMID: 35821833 PMCID: PMC9261367 DOI: 10.3389/fragi.2022.867950] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 01/10/2023]
Abstract
The aging process causes profound restructuring of the host immune system, typically associated with declining host protection against cancer and infection. In the case of T cells, aging leads to the accumulation of a diverse set of T-cell aging-associated phenotypes (TASP), some of which have been implicated in driving tissue inflammation in autoimmune diseases. T cell aging as a risk determinant for autoimmunity is exemplified in two classical autoimmune conditions: rheumatoid arthritis (RA), a disease predominantly affecting postmenopausal women, and giant cell arteritis (GCA), an inflammatory vasculopathy exclusively occurring during the 6th-9th decade of life. Pathogenic T cells in RA emerge as a consequence of premature immune aging. They have shortening and fragility of telomeric DNA ends and instability of mitochondrial DNA. As a result, they produce a distinct profile of metabolites, disproportionally expand their endoplasmic reticulum (ER) membranes and release excess amounts of pro-inflammatory effector cytokines. Characteristically, they are tissue invasive, activate the inflammasome and die a pyroptotic death. Patients with GCA expand pathogenic CD4+ T cells due to aberrant expression of the co-stimulatory receptor NOTCH1 and the failure of the PD-1/PD-L1 immune checkpoint. In addition, GCA patients lose anti-inflammatory Treg cells, promoting tissue-destructive granulomatous vasculitis. In summary, emerging data identify T cell aging as a risk factor for autoimmune disease and directly link TASPs to the breakdown of T cell tolerance and T-cell-induced tissue inflammation.
Collapse
Affiliation(s)
- Tuantuan V. Zhao
- Mayo Clinic Alix School of Medicine, College of Medicine and Science, Rochester, MN, United States
| | - Yuki Sato
- Mayo Clinic Alix School of Medicine, College of Medicine and Science, Rochester, MN, United States
| | - Jorg J. Goronzy
- Mayo Clinic Alix School of Medicine, College of Medicine and Science, Rochester, MN, United States
- School of Medicine, Stanford University, Stanford, CA, United States
| | - Cornelia M. Weyand
- Mayo Clinic Alix School of Medicine, College of Medicine and Science, Rochester, MN, United States
- School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
22
|
Trejo-Zambrano MI, Gómez-Bañuelos E, Andrade F. Redox-Mediated Carbamylation As a Hapten Model Applied to the Origin of Antibodies to Modified Proteins in Rheumatoid Arthritis. Antioxid Redox Signal 2022; 36:389-409. [PMID: 33906423 PMCID: PMC8982126 DOI: 10.1089/ars.2021.0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 12/23/2022]
Abstract
Significance: The production of antibodies to posttranslationally modified antigens is a hallmark in rheumatoid arthritis (RA). In particular, the presence of citrullination-associated antibodies, targeting both citrullinating enzymes (the peptidylarginine deiminases [PADs]) and citrullinated antigens (anticitrullinated protein antibodies [ACPAs]), has suggested that dysregulated citrullination is relevant for disease pathogenesis. Antibodies to other protein modifications with physicochemical similarities to citrulline, such as carbamylated-lysine and acetylated-lysine, have also gained interest in RA, but their mechanistic relation to ACPAs remains unclear. Recent Advances: Recent studies using RA-derived monoclonal antibodies have found that ACPAs are cross-reactive to carbamylated and acetylated peptides, challenging our understanding of the implications of such cross-reactivity. Critical Issues: Analogous to the classic antibody response to chemically modified proteins, we examine the possibility that antibodies to modified proteins in RA are more likely to resemble antihapten antibodies rather than autoantibodies. This potential shift in the autoantibody paradigm in RA offers the opportunity to explore new mechanisms involved in the origin and cross-reactivity of pathogenic antibodies in RA. In contrast to citrullination, carbamylation is a chemical modification associated with oxidative stress, it is highly immunogenic, and is considered in the group of posttranslational modification-derived products. We discuss the possibility that carbamylated proteins are antigenic drivers of cross-reacting antihapten antibodies that further create the ACPA response, and that ACPAs may direct the production of antibodies to PAD enzymes. Future Directions: Understanding the complexity of autoantibodies in RA is critical to develop tools to clearly define their origin, identify drivers of disease propagation, and develop novel therapeutics. Antioxid. Redox Signal. 36, 389-409.
Collapse
Affiliation(s)
| | - Eduardo Gómez-Bañuelos
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Zuo J, Tang J, Lu M, Zhou Z, Li Y, Tian H, Liu E, Gao B, Liu T, Shao P. Glycolysis Rate-Limiting Enzymes: Novel Potential Regulators of Rheumatoid Arthritis Pathogenesis. Front Immunol 2021; 12:779787. [PMID: 34899740 PMCID: PMC8651870 DOI: 10.3389/fimmu.2021.779787] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023] Open
Abstract
Rheumatoid arthritis (RA) is a classic autoimmune disease characterized by uncontrolled synovial proliferation, pannus formation, cartilage injury, and bone destruction. The specific pathogenesis of RA, a chronic inflammatory disease, remains unclear. However, both key glycolysis rate-limiting enzymes, hexokinase-II (HK-II), phosphofructokinase-1 (PFK-1), and pyruvate kinase M2 (PKM2), as well as indirect rate-limiting enzymes, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), are thought to participate in the pathogenesis of RA. In here, we review the latest literature on the pathogenesis of RA, introduce the pathophysiological characteristics of HK-II, PFK-1/PFKFB3, and PKM2 and their expression characteristics in this autoimmune disease, and systematically assess the association between the glycolytic rate-limiting enzymes and RA from a molecular level. Moreover, we highlight HK-II, PFK-1/PFKFB3, and PKM2 as potential targets for the clinical treatment of RA. There is great potential to develop new anti-rheumatic therapies through safe inhibition or overexpression of glycolysis rate-limiting enzymes.
Collapse
Affiliation(s)
- Jianlin Zuo
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinshuo Tang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meng Lu
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
| | - Zhongsheng Zhou
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hao Tian
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Enbo Liu
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baoying Gao
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Pu Shao
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Lee HR, Yoo SJ, Kim J, Park CK, Kang SW. Reduction of Oxidative Stress in Peripheral Blood Mononuclear Cells Attenuates the Inflammatory Response of Fibroblast-like Synoviocytes in Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms222212411. [PMID: 34830290 PMCID: PMC8624216 DOI: 10.3390/ijms222212411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
The production and oxidation mechanism of reactive oxygen species (ROS) are out of balance in rheumatoid arthritis (RA). However, the correlation between ROS and T cell subsets in RA remains unclear. Peripheral blood mononuclear cells (PBMCs) from patients with RA (n = 40) and healthy controls (n = 10) were isolated from whole blood samples. Synovial tissues (n = 3) and synovial fluid (n = 10) were obtained from patients with RA. The repartition of T cell subsets and expression of ROS and cytokines were examined according to RA severity. Fibroblast-like synoviocytes (FLSs) from patients with RA were stimulated with PBMCs and the expression of inflammation-related molecules were measured by RT-PCR and cytokine array. Regulatory T cells from patients with moderate (5.1 > DAS28 ≥ 3.2) RA showed the highest expression of mitochondrial ROS among the groups based on disease severity. Although ROS levels steadily increased with RA severity, there was a slight decline in severe RA (DAS28 ≥ 5.1) compared with moderate RA. The expression of inflammatory cytokines in RA FLSs were significantly inhibited when FLSs were co-cultured with PBMCs treated with ROS inhibitor. These findings provide a novel approach to suppress inflammatory response of FLSs through ROS regulation in PBMCs.
Collapse
Affiliation(s)
- Ha-Reum Lee
- Division of Rheumatology, Department of Internal Medicine, Chungnam National University Hospital, 282 Munhwaro, Daejeon 35015, Korea; (H.-R.L.); (S.-J.Y.); (J.K.)
- Research Institute for Medical Sciences, School of Medicine, Chungnam National University, 266 Munhwaro, Daejeon 35015, Korea
| | - Su-Jin Yoo
- Division of Rheumatology, Department of Internal Medicine, Chungnam National University Hospital, 282 Munhwaro, Daejeon 35015, Korea; (H.-R.L.); (S.-J.Y.); (J.K.)
| | - Jinhyun Kim
- Division of Rheumatology, Department of Internal Medicine, Chungnam National University Hospital, 282 Munhwaro, Daejeon 35015, Korea; (H.-R.L.); (S.-J.Y.); (J.K.)
| | - Chan Keol Park
- Division of Rheumatology, Department of Internal Medicine, Chungnam National University Sejong Hospital, 20 Bodeum-7-ro, Sejong 30099, Korea;
| | - Seong Wook Kang
- Division of Rheumatology, Department of Internal Medicine, Chungnam National University Hospital, 282 Munhwaro, Daejeon 35015, Korea; (H.-R.L.); (S.-J.Y.); (J.K.)
- Research Institute for Medical Sciences, School of Medicine, Chungnam National University, 266 Munhwaro, Daejeon 35015, Korea
- Correspondence: ; Tel.: +82-42-338-2428
| |
Collapse
|
25
|
Iwata S, Tanaka Y. Therapeutic perspectives on the metabolism of lymphocytes in patients with rheumatoid arthritis and systemic lupus erythematosus. Expert Rev Clin Immunol 2021; 17:1121-1130. [PMID: 34351835 DOI: 10.1080/1744666x.2021.1964957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The activation of autoreactive T- and B-cells and production of autoantibodies by B cells are involved in the pathogenesis of autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Recently, the concept of 'immunometabolism' has attracted significant attention. Immune cells produce large amounts of energy in the form of ATP and biosynthesize biological components such as nucleic acids and lipids via metabolic reprogramming to activate, differentiate, and exert their functions. AREAS COVERED While the mechanisms underlying the metabolism of CD4+ T cells in SLE have been extensively studied, the metabolic changes underlying B cell activation, differentiation, and function remain unclear. Drugs targeting mTOR and AMPK, such as sirolimus, rapamycin, and metformin, have shown some efficacy and tolerability in clinical trials on patients with SLE, but have not led to breakthroughs. In this review, we summarize the current knowledge on the immunometabolic mechanisms involved in SLE and RA and discuss the potential novel therapeutic drugs. EXPERT OPINION The intensity of activation of different immune cells and their metabolic kinetics vary in different autoimmune diseases; thus, understanding the disease- and cell-specific metabolic mechanisms may help in the development of clinically effective immunometabolism-targeting drugs.
Collapse
Affiliation(s)
- Shigeru Iwata
- The First Department of Internal Medicine, Assistant Professor, University of Occupational and Environmental Health, Japan, School of Medicine, Kitakyushu, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, Professor and Chairman, Deputy Director, University of Occupational and Environmental Health, Japan, the University Hospital, School of Medicine, Kitakyushu, Japan
| |
Collapse
|
26
|
Redox Enzymes of the Thioredoxin Family as Potential and Novel Markers in Pemphigus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6672693. [PMID: 33868574 PMCID: PMC8032527 DOI: 10.1155/2021/6672693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/03/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022]
Abstract
Pemphigus vulgaris (PV) is a severe autoimmune blistering disease affecting both skin and mucous membranes. Its pathogenesis is related to IgG autoantibodies primarily targeting the cellular adhesion protein desmoglein (Dsg) 3, one of the major desmosome components. Impaired redox regulation is considered a major player in the pathogenesis of autoimmune diseases such as pemphigus by enhancing inflammation and breakdown of immunological tolerance by structural protein modifications. Despite many recent advances, local and systemic redox profiles that characterize the immune response in pemphigus are virtually unknown but potentially crucial in further advancing our understanding of redox-dependent modifications that eventually lead to clinical manifestation. Here, we have analyzed the individual expression pattern of four major redox enzymes that are members of the thioredoxin (Trx) fold superfamily (peroxiredoxins (Prxs) 1 and 4, glutaredoxin (Grx) 2, and Trx1) in serum and PBMCs as well as their distribution in the skin of pemphigus patients compared to healthy controls. We show that in groups of five pemphigus patients, Prx1 is upregulated in both serum and PBMCs, while its epithelial distribution remains within the spinous epithelial layer. Expression of Grx2 and Prx4 is both reduced in serum and PBMCs, while their distinct and similar expression in the skin changes from an even distribution throughout the basal layer (healthy) to ubiquitous nuclear localization in pemphigus patients. In PV patients, Trx1 is secreted into serum, and cellular distribution appears membrane-bound and cytosolic compared to healthy controls. We furthermore showed that a 3D ex vivo human skin model can indeed be used to reproduce similar changes in the protein levels and distribution of redox enzymes by application of cold atmospheric plasma. Deciphering the relationship between redox enzyme expression and autoimmunity in the context of pemphigus could be critical in elucidating key pathogenic mechanisms and developing novel interventions for clinical management.
Collapse
|
27
|
Xu C, Wang S, Wang H, Liu K, Zhang S, Chen B, Liu H, Tong F, Peng F, Tu Y, Li Y. Magnesium-Based Micromotors as Hydrogen Generators for Precise Rheumatoid Arthritis Therapy. NANO LETTERS 2021; 21:1982-1991. [PMID: 33624495 DOI: 10.1021/acs.nanolett.0c04438] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogen therapy is an emerging and highly promising strategy for the treatment of inflammation-related diseases. However, nonpolarity and low solubility of hydrogen under the physiological conditions results in a limited therapeutic effect. Herein, we develop a biocompatible magnesium micromotor coated with hyaluronic acid as a hydrogen generator for precise rheumatoid arthritis management. The hydrogen bubbles generated locally not only function as a propellant for the motion but also function as the active ingredient for reactive oxygen species (ROS) and inflammation scavenging. Under ultrasound guidance, the micromotors are injected intra-articularly, and the dynamics of the micromotors can be visualized. By scavenging ROS and inflammation via active hydrogen, the oxidative stress is relieved and the levels of inflammation cytokines are reduced by our micromotors, showing prominent therapeutic efficacy in ameliorating joint damage and suppressing the overall arthritis severity toward a collagen-induced arthritis rat model. Therefore, our micromotors show great potential for the therapy of rheumatoid arthritis and further clinical transformation.
Collapse
Affiliation(s)
- Cong Xu
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shuanghu Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Hong Wang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Kun Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Shiyu Zhang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Hao Liu
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fei Tong
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yingfeng Tu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yingjia Li
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
28
|
Saksida T, Jevtić B, Djedović N, Miljković Đ, Stojanović I. Redox Regulation of Tolerogenic Dendritic Cells and Regulatory T Cells in the Pathogenesis and Therapy of Autoimmunity. Antioxid Redox Signal 2021; 34:364-382. [PMID: 32458699 DOI: 10.1089/ars.2019.7999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Autoimmune diseases are progressively affecting westernized societies, as the proportion of individuals suffering from autoimmunity is steadily increasing over the past decades. Understanding the role of reactive oxygen species (ROS) in modulation of the immune response in the pathogenesis of autoimmune disorders is of utmost importance. The focus of this review is the regulation of ROS production within tolerogenic dendritic cells (tolDCs) and regulatory T (Treg) cells that have the essential role in the prevention of autoimmune diseases and significant potency in their therapy. Recent Advances: It is now clear that ROS are extremely important for the proper function of both DC and T cells. Antigen processing/presentation and the ability of DC to activate T cells depend upon the ROS availability. Treg differentiation, suppressive function, and stability are profoundly influenced by ROS presence. Critical Issues: Although a plethora of results on the relation between ROS and immune cells exist, it remains unclear whether ROS modulation is a productive way for skewing T cells and DCs toward a tolerogenic phenotype. Also, the possibility of ROS modulation for enhancement of regulatory properties of DC and Treg during their preparation for use in cellular therapy has to be clarified. Future Directions: Studies of DC and T cell redox regulation should allow for the improvement of the therapy of autoimmune diseases. This could be achieved through the direct therapeutic application of ROS modulators in autoimmunity, or indirectly through ROS-dependent enhancement of tolDC and Treg preparation for cell-based immunotherapy. Antioxid. Redox Signal. 34, 364-382.
Collapse
Affiliation(s)
- Tamara Saksida
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Neda Djedović
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
29
|
Li W, Ali T, He K, Liu Z, Shah FA, Ren Q, Liu Y, Jiang A, Li S. Ibrutinib alleviates LPS-induced neuroinflammation and synaptic defects in a mouse model of depression. Brain Behav Immun 2021; 92:10-24. [PMID: 33181270 DOI: 10.1016/j.bbi.2020.11.008] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/14/2020] [Accepted: 11/05/2020] [Indexed: 01/24/2023] Open
Abstract
Previous studies have demonstrated a close association between an altered immune system and major depressive disorders, and inhibition of neuroinflammation may represent an alternative mechanism to treat depression. Recently, the anti-inflammatory activity of ibrutinib has been reported. However, the effect of ibrutinib on neuroinflammation-induced depression and its underlying mechanism has not been comprehensively studied. Therefore, we aimed to elucidate the potential anti-depressive role and mechanism of ibrutinib against neuroinflammation-induced depression and synaptic defects. Our results showed that ibrutinib treatment significantly reduced lipopolysaccharide (LPS)-induced depressive-like behaviors and neuroinflammation via inhibiting NF-kB activation, decreasing proinflammatory cytokine levels, and normalizing redox signaling and its downstream components, including Nrf2, HO-1, and SOD2, as well as glial cell activation markers, such as Iba-1 and GFAP. Further, ibrutinib treatment inhibited LPS-activated inflammasome activation by targeting NLRP3/P38/Caspase-1 signaling. Interestingly, LPS reduced the number of dendritic spines and expression of BDNF, and synaptic-related markers, including PSD95, snap25, and synaptophysin, were improved by ibrutinib treatment in the hippocampal area of the mouse brain. In conclusion, our findings suggest that ibrutinib can alleviate neuroinflammation and synaptic defects, suggesting it has antidepressant potential against LPS-induced neuroinflammation and depression.
Collapse
Affiliation(s)
- Weifen Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Kaiwu He
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zizhen Liu
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Fawad Ali Shah
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.
| | - Qingguo Ren
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China.
| | - Yan Liu
- The Seventh Affiliated Hospital of Sun Yat-Sen University, 628 Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China.
| | - Anlong Jiang
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
30
|
Abstract
The immunopathogenesis of rheumatoid arthritis (RA) spans decades, beginning with the production of autoantibodies against post-translationally modified proteins (checkpoint 1). After years of asymptomatic autoimmunity and progressive immune system remodeling, tissue tolerance erodes and joint inflammation ensues as tissue-invasive effector T cells emerge and protective joint-resident macrophages fail (checkpoint 2). The transition of synovial stromal cells into autoaggressive effector cells converts synovitis from acute to chronic destructive (checkpoint 3). The loss of T cell tolerance derives from defective DNA repair, causing abnormal cell cycle dynamics, telomere fragility and instability of mitochondrial DNA. Mitochondrial and lysosomal anomalies culminate in the generation of short-lived tissue-invasive effector T cells. This differentiation defect builds on a metabolic platform that shunts glucose away from energy generation toward the cell building and motility programs. The next frontier in RA is the development of curative interventions, for example, reprogramming T cell defects during the period of asymptomatic autoimmunity.
Collapse
Affiliation(s)
- Cornelia M Weyand
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Jörg J Goronzy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
31
|
Abstract
Metabolic pathways and redox reactions are at the core of life. In the past decade(s), numerous discoveries have shed light on how metabolic pathways determine the cellular fate and function of lymphoid and myeloid cells, giving rise to an area of research referred to as immunometabolism. Upon activation, however, immune cells not only engage specific metabolic pathways but also rearrange their oxidation-reduction (redox) system, which in turn supports metabolic reprogramming. In fact, studies addressing the redox metabolism of immune cells are an emerging field in immunology. Here, we summarize recent insights revealing the role of reactive oxygen species (ROS) and the differential requirement of the main cellular antioxidant pathways, including the components of the thioredoxin (TRX) and glutathione (GSH) pathways, as well as their transcriptional regulator NF-E2-related factor 2 (NRF2), for proliferation, survival and function of T cells, B cells and macrophages.
Collapse
Affiliation(s)
- Jonathan Muri
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland.
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
32
|
Cheng Q, Wu H, Du Y. The roles of small-molecule inflammatory mediators in rheumatoid arthritis. Scand J Immunol 2020; 93:e12982. [PMID: 33025632 DOI: 10.1111/sji.12982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation and joint destruction. Although great progress has been made in the treatment of RA with antagonists of pro-inflammatory cytokines such as TNF-α, IL-6 and IL-1, the disease remains refractory in some patients. Previous studies have found that small-molecule inflammatory mediators, such as prostaglandins, leukotrienes, reactive oxygen species, nitric oxide, lipoxins and platelet-activating factor, play a significant role in the development of RA. Such compounds help to induce, maintain or reduce inflammation and could therefore be potential therapeutic targets. In this review, we describe the roles of various classes of small-molecule inflammatory mediators in RA and discuss the effects of some drugs that modulate their activity. Many drugs targeting these mediators have demonstrated good efficacy in mouse models of RA but not in patients. However, it is clear that many small-molecule inflammatory mediators play key roles in the pathogenesis of RA, and a better understanding of the underlying molecular pathways may assist in the development of targeted therapies that are efficacious in RA patients.
Collapse
Affiliation(s)
- Qi Cheng
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Department of Clinic Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Du
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Rheumatoid arthritis (RA) is a prototypic autoimmune disease manifesting as chronic inflammation of the synovium and leading to acceleration of cardiovascular disease and shortening of life expectancy. The basic defect causing autoimmunity has remained elusive, but recent insights have challenged the notion that autoantigen is the core driver. RECENT FINDINGS Emerging data have added metabolic cues involved in the proper maintenance and activation of immune cells as pathogenic regulators. Specifically, studies have unveiled metabolic pathways that enforce T cell fate decisions promoting tissue inflammation; including T cell tissue invasiveness, T cell cytokine release, T cell-dependent macrophage activation and inflammatory T cell death. At the center of the metabolic abnormalities lies the mitochondria, which is consistently underperforming in RA T cells. The mitochondrial defect results at least partially from insufficient DNA repair and leads to lipid droplet accumulation, formation of invasive membrane ruffles, inflammasome activation and pyroptotic T cell death. SUMMARY T cells in patients with RA, even naïve T cells never having been involved in inflammatory lesions, have a unique metabolic signature and the changes in intracellular metabolites drive pathogenic T cell behavior. Recognizing the role of metabolic signals in cell fate decisions opens the possibility for immunomodulation long before the end stage synovial inflammation encountered in clinical practice.
Collapse
|
34
|
Alcaraz MJ, Ferrándiz ML. Relevance of Nrf2 and heme oxygenase-1 in articular diseases. Free Radic Biol Med 2020; 157:83-93. [PMID: 31830562 DOI: 10.1016/j.freeradbiomed.2019.12.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 02/08/2023]
Abstract
Joint conditions pose an important public health problem as they are a leading cause of pain, functional limitation and physical disability. Oxidative stress is related to the pathogenesis of many chronic diseases affecting the joints such as rheumatoid arthritis and osteoarthritis. Cells have developed adaptive protection mechanisms to maintain homeostasis such as nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) which regulates the transcription of many genes involved in redox balance, detoxification, metabolism and inflammation. Activation of Nrf2 results in the synthesis of heme oxygenase-1 (HO-1) leading to the formation of a number of bioactive metabolites, mainly CO, biliverdin and bilirubin. Ample evidence supports the notion that Nrf2 and HO-1 can confer protection against oxidative stress and inflammatory and immune responses in joint tissues. As a consequence, this pathway may control the activation and metabolism of articular cells to play a regulatory role in joint destruction thus offering new opportunities for better treatments. Further studies are necessary to identify improved strategies to regulate Nrf2 and HO-1 activation in order to enable the development of drugs with therapeutic applications in joint diseases.
Collapse
Affiliation(s)
- Maria José Alcaraz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100, Burjasot, Valencia, Spain.
| | - María Luisa Ferrándiz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100, Burjasot, Valencia, Spain
| |
Collapse
|
35
|
Mullen L, Mengozzi M, Hanschmann EM, Alberts B, Ghezzi P. How the redox state regulates immunity. Free Radic Biol Med 2020; 157:3-14. [PMID: 31899344 DOI: 10.1016/j.freeradbiomed.2019.12.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/05/2019] [Accepted: 12/19/2019] [Indexed: 12/30/2022]
Abstract
Oxidative stress is defined as an imbalance between the levels of reactive oxygen species (ROS) and antioxidant defences. The view of oxidative stress as a cause of cell damage has evolved over the past few decades to a much more nuanced view of the role of oxidative changes in cell physiology. This is no more evident than in the field of immunity, where oxidative changes are now known to regulate many aspects of the immune response, and inflammatory pathways in particular. Our understanding of redox regulation of immunity now encompasses not only increases in reactive oxygen and nitrogen species, but also changes in the activities of oxidoreductase enzymes. These enzymes are important regulators of immune pathways both via changes in their redox activity, but also via other more recently identified cytokine-like functions. The emerging picture of redox regulation of immune pathways is one of increasing complexity and while therapeutic targeting of the redox environment to treat inflammatory disease is a possibility, any such strategy is likely to be more nuanced than simply inhibiting ROS production.
Collapse
Affiliation(s)
- Lisa Mullen
- Brighton and Sussex Medical School, Falmer, Brighton, UK
| | | | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Ben Alberts
- Brighton and Sussex Medical School, Falmer, Brighton, UK
| | - Pietro Ghezzi
- Brighton and Sussex Medical School, Falmer, Brighton, UK.
| |
Collapse
|
36
|
Ali T, Hao Q, Ullah N, Rahman SU, Shah FA, He K, Zheng C, Li W, Murtaza I, Li Y, Jiang Y, Tan Z, Li S. Melatonin Act as an Antidepressant via Attenuation of Neuroinflammation by Targeting Sirt1/Nrf2/HO-1 Signaling. Front Mol Neurosci 2020; 13:96. [PMID: 32595452 PMCID: PMC7304371 DOI: 10.3389/fnmol.2020.00096] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Physical or psychological stress can cause an immunologic imbalance that disturbs the central nervous system followed by neuroinflammation. The association between inflammation and depression has been widely studied in recent years, though the molecular mechanism is still largely unknown. Thus, targeting the signaling pathways that link stress to neuroinflammation might be a useful strategy against depression. The current study investigated the protective effect of melatonin against lipopolysaccharide (LPS)-induced neuroinflammation and depression. Our results showed that LPS treatment significantly induced depressive-like behavior in mice. Moreover, LPS-treatment enhanced oxidative stress, pro-inflammatory cytokines including TNFα, IL-6, and IL-1β, NF-κB phosphorylation, and glial cell activation markers including GFAP and Iba-1 in the brain of mice. Melatonin treatment significantly abolished the effect of LPS, as indicated by improved depressive-like behaviors, reduced cytokines level, reduced oxidative stress, and normalized LPS-altered Sirt1, Nrf2, and HO-1 expression. However, the melatonin protective effects were reduced after luzindole administration. Collectively, it is concluded that melatonin receptor-dependently protects against LPS-induced depressive-like behaviors via counteracting LPS-induced neuroinflammation.
Collapse
Affiliation(s)
- Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Qiang Hao
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Najeeb Ullah
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Shafiq Ur Rahman
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Pakistan
| | - Fawad Ali Shah
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Kaiwu He
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Chengyou Zheng
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Weifen Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Iram Murtaza
- Signal Transduction Lab, Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Yang Li
- Laboratory of Receptor Research, Shanghai Institute of Materia Medical, Chinese Academy of Sciences, Shanghai, China
| | - Yuhua Jiang
- Cancer Centre, The Second Hospital of Shandong University, Jinan, China
| | - Zhen Tan
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
37
|
Liang J, Ziegler JD, Jahraus B, Orlik C, Blatnik R, Blank N, Niesler B, Wabnitz G, Ruppert T, Hübner K, Balta E, Samstag Y. Piperlongumine Acts as an Immunosuppressant by Exerting Prooxidative Effects in Human T Cells Resulting in Diminished T H17 but Enhanced T reg Differentiation. Front Immunol 2020; 11:1172. [PMID: 32595640 PMCID: PMC7303365 DOI: 10.3389/fimmu.2020.01172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022] Open
Abstract
Piperlongumine (PL), a natural small molecule derived from the Piper longum Linn plant, has received growing interest as a prooxidative drug with promising anticancer properties. Yet, the influence of PL on primary human T cells remained elusive. Knowledge of this is of crucial importance, however, since T cells in particular play a critical role in tumor control. Therefore, we investigated the effects of PL on the survival and function of primary human peripheral blood T cells (PBTs). While PL was not cytotoxic to PBTs, it interfered with several stages of T cell activation as it inhibited T cell/APC immune synapse formation, co-stimulation-induced upregulation of CD69 and CD25, T cell proliferation and the secretion of proinflammatory cytokines. PL-induced immune suppression was prevented in the presence of thiol-containing antioxidants. In line with this finding, PL increased the levels of intracellular reactive oxygen species and decreased glutathione in PBTs. Diminished intracellular glutathione was accompanied by a decrease in S-glutathionylation on actin suggesting a global alteration of the antioxidant response. Gene expression analysis demonstrated that TH17-related genes were predominantly inhibited by PL. Consistently, the polarization of primary human naïve CD4+ T cells into TH17 subsets was significantly diminished while differentiation into Treg cells was substantially increased upon PL treatment. This opposed consequence for TH17 and Treg cells was again abolished by thiol-containing antioxidants. Taken together, PL may act as a promising agent for therapeutic immunosuppression by exerting prooxidative effects in human T cells resulting in a diminished TH17 but enhanced Treg cell differentiation.
Collapse
Affiliation(s)
- Jie Liang
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Jacqueline D. Ziegler
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Beate Jahraus
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Christian Orlik
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Renata Blatnik
- Mass Spectrometry Core Facility, Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Norbert Blank
- Division of Rheumatology, Department of Internal Medicine V, Heidelberg University, Heidelberg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
- nCounter Core Facility, Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - Guido Wabnitz
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Thomas Ruppert
- Mass Spectrometry Core Facility, Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Katrin Hübner
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Emre Balta
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Yvonne Samstag
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
38
|
Mehta M, Gohil D, Khattry N, Kumar R, Sandur S, Sharma D, Checker R, Agarwal B, Jha D, Majumdar A, Gota V. Prevention of acute graft-versus-host-disease by Withaferin a via suppression of AKT/mTOR pathway. Int Immunopharmacol 2020; 84:106575. [PMID: 32416453 DOI: 10.1016/j.intimp.2020.106575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/21/2020] [Accepted: 05/06/2020] [Indexed: 11/18/2022]
Abstract
Acute Graft versus Host Disease (aGVHD) is a frequent and serious complication in patients receiving allogeneic bone marrow transplantation (allo-BMT) and often requires rigorous prophylaxis. The current treatment regimens for aGVHD are associated with several side effects which necessitates the development of novel interventions that prevent aGVHD without precluding graft-versus-tumor effects. In the present study, we show that treatment of donor graft with plant steroidal lactone Withaferin A (WA) prior to transplantation markedly reduced aGVHD mediated damage in target organs without compromising the graft-versus.-tumor activity of the transplanted lymphocytes. WA abrogated post-transplant cytokine storm associated with allo-activation of donor lymphocytes. This was attributed to the ability of WA to inhibit early signaling events in T-cell activation including lymphoblast formation and activation of AKT/mTOR pathway. Mortality and morbidity related to allo-transplantation was significantly reduced in recipients of WA treated donor splenocytes compared to recipient of vehicle treated donor splenocytes. Further, WA treatment did not have any effect on reconstitution of lymphoid and myeloid lineages in recipients, resulting in stable and complete donor chimerism. In agreement with previous reports showing the effectiveness of WA in a mouse model of partial chimerism, our data further establishes that WA is able to attenuate aGVHD in an MHC-mismatched high dose chemo-conditioned murine model without compromising engraftment. This study provides compelling scientific basis for possible application of WA for prevention and treatment of aGVHD in patients receiving allo-BMT.
Collapse
Affiliation(s)
- Miten Mehta
- Department of Pharmacology and Toxicology, Bombay College of Pharmacy, Mumbai, India; Clinical Pharmacology laboratory, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Dievya Gohil
- Clinical Pharmacology laboratory, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Navin Khattry
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | - Rajiv Kumar
- Department of Pathology, Tata Memorial Hospital, Mumbai, India
| | - Santosh Sandur
- Radiation Biology & Health Science Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Deepak Sharma
- Radiation Biology & Health Science Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Rahul Checker
- Radiation Biology & Health Science Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Beamon Agarwal
- Department of Hematopathology, Montefiore Medical Centre, New York, NY, United States
| | - Dhruv Jha
- Birla Institute of Technology, Mesra Ranchi, Ranchi, India
| | - Anuradha Majumdar
- Department of Pharmacology and Toxicology, Bombay College of Pharmacy, Mumbai, India
| | - Vikram Gota
- Clinical Pharmacology laboratory, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India.
| |
Collapse
|
39
|
Abstract
Rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) are relatively common autoimmune diseases, often considered prototypic examples for how protective immunity switches to destructive immunity. The autoantigens recognized in RA and SLE are distinct, clinical manifestations are partially overlapping. A shared feature is the propensity of the adaptive immune system to respond inappropriately, with T cell hyper-responsiveness a pinnacle pathogenic defect. Upon antigen recognition, T cells mobilize a multi-pranged metabolic program, enabling them to massively expand and turn into highly mobile effector cells. Current evidence supports that T cells from patients with RA or SLE adopt metabolic programs different from healthy T cells, in line with the concept that autoimmune effector functions rely on specified pathways of energy sensing, energy generation and energy utilization. Due to misrouting of the energy sensor AMPK, RA T cells have a defect in balancing catabolic and anabolic processes and deviate towards a cell-building program. They supply biosynthetic precursors by shunting glucose away from glycolytic breakdown towards the pentose phosphate pathway and upregulate lipogenesis, enabling cellular motility and tissue invasiveness. Conversely, T cells from SLE patients are committed to high glycolytic flux, overusing the mitochondrial machinery and imposing oxidative stress. Typically, disease-relevant effector functions in SLE are associated with inappropriate activation of the key metabolic regulator mTORC1. Taken together, disease-specific metabolic signatures in RA and SLE represent vulnerabilities that are therapeutically targetable to suppress pathogenic immune responses.
Collapse
Affiliation(s)
- Bowen Wu
- School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jörg J. Goronzy
- School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94304, USA
| | - Cornelia M. Weyand
- School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94304, USA
| |
Collapse
|
40
|
Nadeem A, Ahmad SF, Al-Harbi NO, Alasmari AF, Al-Ayadhi LY, Alasmari F, Ibrahim KE, Attia SM, Bakheet SA. Upregulation of enzymatic antioxidants in CD4 + T cells of autistic children. Biochimie 2020; 171-172:205-212. [PMID: 32173487 DOI: 10.1016/j.biochi.2020.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/10/2020] [Indexed: 01/06/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder which begins in early childhood and presents itself with characteristic symptoms such as repetitive behavioral patterns and problems in speech/social interactions. Adaptive immune system is thought to be involved in the etiology of ASD. T cells orchestrate amplification of inflammation through release of inflammatory mediators; however, antioxidant defenses have not been evaluated in CD4+ T cells of ASD subjects. In this study we evaluated intracellular enzymatic antioxidant potential through measurement of major antioxidant enzymes (SOD, GPx, and GR) in ASD subjects and typically developing control (TDC) children and further assessed its role in modulation of inflammation. Our data reveal that there is an increase in antioxidant potential (SOD, GPx, GR) in CD4+ T cells of ASD subjects as compared to TDC children at both protein and activity level. Further, this antioxidant increase was associated with upregulated IL-17A levels in CD4+ T cells. This was corroborated by oxidant treatment in vitro. Pretreatment with oxidant, H2O2 led to attenuation of IL-17A levels along with increased oxidative stress in stimulated CD4+ T cells from ASD subjects. These data reveal that antioxidant play an essential role in modulation of inflammatory potential in CD4+ T cells of ASD subjects.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Autism Research and Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
41
|
Weyand CM, Goronzy JJ. Immunometabolism in the development of rheumatoid arthritis. Immunol Rev 2020; 294:177-187. [PMID: 31984519 PMCID: PMC7047523 DOI: 10.1111/imr.12838] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022]
Abstract
In rheumatoid arthritis (RA), breakdown of self-tolerance and onset of clinical disease are separated in time and space, supporting a multi-hit model in which emergence of autoreactive T cells is a pinnacle pathogenic event. Determining factors in T cell differentiation and survival include antigen recognition, but also the metabolic machinery that provides energy and biosynthetic molecules for cell building. Studies in patients with RA have yielded a disease-specific metabolic signature, which enables naive CD4 T cells to differentiate into pro-inflammatory helper T cells that are prone to invade into tissue and elicit inflammation through immunogenic cell death. A typifying property of RA CD4 T cells is the shunting of glucose away from glycolytic breakdown and mitochondrial processing toward the pentose phosphate pathway, favoring anabolic over catabolic reactions. Key defects have been localized to the mitochondria and the lysosome; including instability of mitochondrial DNA due to the lack of the DNA repair nuclease MRE11A and inefficient lysosomal tethering of AMPK due to deficiency of N-myristoyltransferase 1 (NMT1). The molecular taxonomy of the metabolically reprogrammed RA T cells includes glycolytic enzymes (glucose-6-phosphate dehydrogenase, phosphofructokinase), DNA repair molecules (MRE11A, ATM), regulators of protein trafficking (NMT1), and the membrane adapter protein TSK5. As the mechanisms determining abnormal T cell behavior in RA are unraveled, opportunities will emerge to interject autoimmune T cells by targeting their metabolic checkpoints.
Collapse
Affiliation(s)
- Cornelia M Weyand
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Jörg J Goronzy
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| |
Collapse
|
42
|
Liu K, Fang J, Jin J, Zhu S, Xu X, Xu Y, Ye B, Lin SH, Xu X. Serum Metabolomics Reveals Personalized Metabolic Patterns for Macular Neovascular Disease Patient Stratification. J Proteome Res 2020; 19:699-707. [PMID: 31755721 DOI: 10.1021/acs.jproteome.9b00574] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The macular neovascular disease is a group disorder with complex pathogenesis of neovascularization for vision impairment and irreversible blindness, posing great challenges to precise diagnosis and management. We prospectively recruited participants with age-related macular degeneration (AMD), polypoidal choroidal vasculopathy (PCV), and pathological myopia (PM) and compared with cataract patients without fundus diseases as a control group. The serum metabolome was profiled by gas chromatography coupled with time-of-flight mass spectrometry (GC-TOFMS) analysis. Multivariate statistical methods as well as data mining were performed for interpretation of macular neovascularization. A total of 446 participants with macular neovascularization and 138 cataract subjects as the control group were enrolled in this study. By employing GC-TOFMS, 131 metabolites were identified and 33 differentiating metabolites were highlighted in patients with macular neovascularization. For differential diagnosis, three panels of specific metabolomics-based biomarkers provided areas under the curve of 0.967, 0.938, and 0.877 in the discovery phase (n = 328) and predictive values of 87.3%, 79%, and 85.7% in the test phase (n = 256). Personalized pathway dysregulation scores measurement using Lilikoi package in R language revealed the pentose phosphate pathway and mitochondrial electron transport chain as the most important pathways in AMD; purine metabolism and glycolysis were identified as the major disturbed pathways in PCV, while the altered thiamine metabolism and purine metabolism may contribute to PM phenotypes. Serum metabolomics are powerful for characterizing metabolic disturbances of the macular neovascular disease. Differences in metabolic pathways may reflect an underlying macular neovascular disease and serve as therapeutic targets for macular neovascular treatment.
Collapse
Affiliation(s)
- Kun Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai General Hospital , Shanghai Engineering Center for Visual Science and Photomedicine , Shanghai 200040 , China
| | - Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai General Hospital , Shanghai Engineering Center for Visual Science and Photomedicine , Shanghai 200040 , China.,College of Basic Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , China
| | - Jing Jin
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai General Hospital , Shanghai Engineering Center for Visual Science and Photomedicine , Shanghai 200040 , China
| | - Shaopin Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai General Hospital , Shanghai Engineering Center for Visual Science and Photomedicine , Shanghai 200040 , China
| | - Xiaoyin Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai General Hospital , Shanghai Engineering Center for Visual Science and Photomedicine , Shanghai 200040 , China
| | - Yupeng Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai General Hospital , Shanghai Engineering Center for Visual Science and Photomedicine , Shanghai 200040 , China
| | - Bin Ye
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai General Hospital , Shanghai Engineering Center for Visual Science and Photomedicine , Shanghai 200040 , China
| | - Shu-Hai Lin
- College of Basic Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences , Xiamen University , Xiamen , Fujian 361005 , China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai General Hospital , Shanghai Engineering Center for Visual Science and Photomedicine , Shanghai 200040 , China
| |
Collapse
|
43
|
Singla B, Holmdahl R, Csanyi G. Editorial: Oxidants and Redox Signaling in Inflammation. Front Immunol 2019; 10:545. [PMID: 30984168 PMCID: PMC6448005 DOI: 10.3389/fimmu.2019.00545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 01/08/2023] Open
Affiliation(s)
- Bhupesh Singla
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Rikard Holmdahl
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Center for Medical Inflammation Research, Southern Medical University, Guangzhou, China
| | - Gabor Csanyi
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
44
|
Wen Z, Jin K, Shen Y, Yang Z, Li Y, Wu B, Tian L, Shoor S, Roche NE, Goronzy JJ, Weyand CM. N-myristoyltransferase deficiency impairs activation of kinase AMPK and promotes synovial tissue inflammation. Nat Immunol 2019; 20:313-325. [PMID: 30718913 PMCID: PMC6396296 DOI: 10.1038/s41590-018-0296-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
N-myristoyltransferase (NMT) attaches the fatty acid myristate to the N-terminal glycine of proteins to sort them into soluble and membrane-bound fractions. Function of the energy-sensing AMP-activated protein kinase, AMPK, is myristoylation dependent. In rheumatoid arthritis (RA), pathogenic T cells shift glucose away from adenosine tri-phosphate production toward synthetic and proliferative programs, promoting proliferation, cytokine production, and tissue invasion. We found that RA T cells had a defect in NMT1 function, which prevented AMPK activation and enabled unopposed mTORC1 signaling. Lack of the myristate lipid tail disrupted the lysosomal translocation and activation of AMPK. Instead, myristoylation-incompetent RA T cells hyperactivated the mTORC1 pathway and differentiated into pro-inflammatory TH1 and TH17 helper T cells. In vivo, NMT1 loss caused robust synovial tissue inflammation, whereas forced NMT1 overexpression rescued AMPK activation and suppressed synovitis. Thus, NMT1 has tissue-protective functions by facilitating lysosomal recruitment of AMPK and dampening mTORC1 signaling.
Collapse
Affiliation(s)
- Zhenke Wen
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ke Jin
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yi Shen
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhen Yang
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yinyin Li
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bowen Wu
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lu Tian
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Stanford Shoor
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Niall E Roche
- Arthritis Center, Stanford Health Care-ValleyCare, Pleasanton, CA, USA
| | - Jorg J Goronzy
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
45
|
Sulforaphane as anticancer agent: A double-edged sword? Tricky balance between effects on tumor cells and immune cells. Adv Biol Regul 2018; 71:79-87. [PMID: 30528536 DOI: 10.1016/j.jbior.2018.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022]
Abstract
Sulforaphane (SFN) is a naturally occurring isothiocyanate derived from cruciferous vegetables such as broccoli. It has been reported to inhibit the growth of a variety of cancers, such as breast, prostate, colon, skin, lung, gastric or bladder cancer. SFN is supposed to act primarily as an antioxidant due to the activation of the Nrf2-Keap1 signaling pathway. This enhances the activity of phase II detoxifying enzymes and the trapping of free radicals. Finally, SFN induces cell cycle arrest or apoptosis of tumor cells. Here, we discuss effects of SFN on the immune defense system. In contrast to the situation in tumor cells, SFN acts pro-oxidatively in primary human T cells. It increases intracellular ROS levels and decreases GSH, resulting in inhibition of T cell activation and T cell effector functions. Regarding the use of SFN as an "anticancer agent" we conclude that SFN could act as a double-edged sword. On the one hand it reduces carcinogenesis, on the other hand it blocks the T cell-mediated immune response, the latter being important for immune surveillance of tumors. Thus, SFN could also interfere with the successful application of immunotherapy by immune checkpoint inhibitors (e.g. CTLA-4 antibodies and PD-1/PD-L1 antibodies) or CAR T cells. Therefore, a combination of SFN with T cell-mediated cancer immunotherapies does not seem advisable.
Collapse
|
46
|
Liang J, Jahraus B, Balta E, Ziegler JD, Hübner K, Blank N, Niesler B, Wabnitz GH, Samstag Y. Sulforaphane Inhibits Inflammatory Responses of Primary Human T-Cells by Increasing ROS and Depleting Glutathione. Front Immunol 2018; 9:2584. [PMID: 30487791 PMCID: PMC6246742 DOI: 10.3389/fimmu.2018.02584] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/19/2018] [Indexed: 11/20/2022] Open
Abstract
The activity and function of T-cells are influenced by the intra- and extracellular redox milieu. Oxidative stress induces hypo responsiveness of untransformed T-cells. Vice versa increased glutathione (GSH) levels or decreased levels of reactive oxygen species (ROS) prime T-cell metabolism for inflammation, e.g., in rheumatoid arthritis. Therefore, balancing the T-cell redox milieu may represent a promising new option for therapeutic immune modulation. Here we show that sulforaphane (SFN), a compound derived from plants of the Brassicaceae family, e.g., broccoli, induces a pro-oxidative state in untransformed human T-cells of healthy donors or RA patients. This manifested as an increase of intracellular ROS and a marked decrease of GSH. Consistently, increased global cysteine sulfenylation was detected. Importantly, a major target for SFN-mediated protein oxidation was STAT3, a transcription factor involved in the regulation of TH17-related genes. Accordingly, SFN significantly inhibited the activation of untransformed human T-cells derived from healthy donors or RA patients, and downregulated the expression of the transcription factor RORγt, and the TH17-related cytokines IL-17A, IL-17F, and IL-22, which play a major role within the pathophysiology of many chronic inflammatory/autoimmune diseases. The inhibitory effects of SFN could be abolished by exogenously supplied GSH and by the GSH replenishing antioxidant N-acetylcysteine (NAC). Together, our study provides mechanistic insights into the mode of action of the natural substance SFN. It specifically exerts TH17 prone immunosuppressive effects on untransformed human T-cells by decreasing GSH and accumulation of ROS. Thus, SFN may offer novel clinical options for the treatment of TH17 related chronic inflammatory/autoimmune diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Jie Liang
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Beate Jahraus
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Emre Balta
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Jacqueline D. Ziegler
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Katrin Hübner
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Norbert Blank
- Division of Rheumatology, Department of Internal Medicine V, Heidelberg University, Heidelberg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
- nCounter Core Facility, Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - Guido H. Wabnitz
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Yvonne Samstag
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
47
|
Kuhn H, Humeniuk L, Kozlov N, Roigas S, Adel S, Heydeck D. The evolutionary hypothesis of reaction specificity of mammalian ALOX15 orthologs. Prog Lipid Res 2018; 72:55-74. [PMID: 30237084 DOI: 10.1016/j.plipres.2018.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Hartmut Kuhn
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Lia Humeniuk
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Nikita Kozlov
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Sophie Roigas
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Susan Adel
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine, Division of Hepathology and Gastroenterology, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Dagmar Heydeck
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany
| |
Collapse
|
48
|
Pearson JD, Mason JC. Reactive oxygen species as drivers of autoimmune pathology: an Introduction to Special Issue "Oxidative stress and altered redox signalling in autoimmune and connective tissue diseases". Free Radic Biol Med 2018; 125:1-2. [PMID: 30217269 DOI: 10.1016/j.freeradbiomed.2018.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jeremy D Pearson
- Department of Vascular Biology, School of Cardiovascular Medicine & Sciences, King's College London, London SE1 9NH, UK.
| | - Justin C Mason
- Vascular Sciences, National Heart & Lung Institute, Imperial College, London W12 0NN.
| |
Collapse
|
49
|
Abstract
Cell-fate decisions in innate and adaptive immune cells are metabolically regulated and modified by tissue-derived signals, thereby balancing protective and pathogenic immunity. Reporting in Science, Ling et al. (2018) have identified C1q as a mitochondrial activator that suppresses exuberant anti-self and anti-viral CD8 T cell effector responses to prevent autoimmune disease.
Collapse
Affiliation(s)
- Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
50
|
Gaber T, Chen Y, Krauß PL, Buttgereit F. Metabolism of T Lymphocytes in Health and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 342:95-148. [PMID: 30635095 DOI: 10.1016/bs.ircmb.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adaptive immune responses that occur in infection, cancer, and autoimmune as well as allergic diseases involve the participation of T cells. T cells travel throughout the body searching for antigens, which are recognized via the major histocompatibility complexes. In the healthy organism, these T cells maintain metabolic quiescence until they encounter a potentially cognate antigen. Once activated, e.g., during an infection or tissue damage, T cells switch their metabolic program to gain energy and building blocks to maintain cellular homeostasis and to fulfill their specific immune functions involving clonal expansion and/or differentiation into effector and memory T cells to ultimately ensure host survival. Thus, differences in metabolism in healthy and pathogenic T cells provide an explanation for dysfunctionality of T-cell responses in metabolic disorders, autoimmunity, and cancer. Here, we summarize current knowledge on T-cell metabolism during the maintenance of homeostasis, activation, and differentiation as well as over the course of time that memory is generated in health and in diseased states such as autoimmunity and cancer.
Collapse
Affiliation(s)
- Timo Gaber
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Yuling Chen
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Pierre-Louis Krauß
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Frank Buttgereit
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| |
Collapse
|