1
|
Kim J, Yoon S, Mansoor S, Jung CY, Kim CS, Boo KH. Parasiticidal Activity of Citral Against Enteromyxum leei (myxozoa: myxosporea) in Olive Flounder (Paralichthys olivaceus). Acta Parasitol 2025; 70:74. [PMID: 40119184 DOI: 10.1007/s11686-025-01011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/28/2025] [Indexed: 03/24/2025]
Abstract
Myxosporean parasites pose a serious challenge in the aquaculture industry, particularly for species such as olive flounder (Paralichthys olivaceus). Infected fish can experience a range of health issues including stunted growth, degraded flesh quality, and a high mortality rate, significantly impacting farmers and the entire industry. This study explored the effectiveness of essential oil as potential parasiticidal agents against myxosporean parasite infections in olive flounder. Using molecular techniques, we identified Enteromyxum leei as the causative agent of myxosporean parasite infection, and screened essential oils for parasiticidal activity. Fluorescence microscopy revealed that treatment with one essential oil, citral, at 100 µg/mL achieved a parasiticidal rate of ~ 20% after 6 h, which increased to ~ 85% after 12 h of treatment. The parasiticidal rate with 250 µg/mL citral was ~ 60% after 6 h and 100% after 12 h. The results suggest that citral treatment at 100 µg/mL or higher for durations exceeding 12 h could effectively kill E. leei parasites. This study provides a molecular-based technique for determining E. leei infectivity in flounder, and highlights the promising parasiticidal properties of citral as a potential therapeutic agent in aquaculture management strategies.
Collapse
Affiliation(s)
- Jiwon Kim
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Korea
- Department of Biotechnology, College of Applied Life Science (SARI), Jeju National University, Jeju, 63243, Korea
| | - Seonyoung Yoon
- Department of Biotechnology, College of Applied Life Science (SARI), Jeju National University, Jeju, 63243, Korea
| | - Sheikh Mansoor
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Korea
| | | | - Chang Sook Kim
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Korea
- Department of Biotechnology, College of Applied Life Science (SARI), Jeju National University, Jeju, 63243, Korea
| | - Kyung-Hwan Boo
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Korea.
- Department of Biotechnology, College of Applied Life Science (SARI), Jeju National University, Jeju, 63243, Korea.
| |
Collapse
|
2
|
Suman TY, Kim SY, Yeom DH, Jang Y, Jeong TY, Jeon J. Transcriptome and computational approaches highlighting the molecular regulation of Zacco platypus induced by mesocosm exposure to common disinfectant chlorine. CHEMOSPHERE 2023; 319:137989. [PMID: 36736481 DOI: 10.1016/j.chemosphere.2023.137989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Chlorine (Cl2) is a disinfectant often used in swimming pools and water treatment facilities. However, it is released into aquatic ecosystems, where it may harm non-targeted organisms. Here, we performed a mesocosm experiment exposing Zacco platypus (Z. platypus) to biocide Cl2 for 30 days (30 d) at two days' time points 15 days (15 d) and 30 d samples were collected. Here, Z. platypus was exposed to a sublethal concentration (0.1 mg/L) of Cl2, and comparative transcriptomics analyses were performed to determine their response mechanisms at the molecular level. According to RNA sequencing of the whole-body transcriptome, 860 and 1189 differentially expressed genes (DEGs) were identified from the 15 d and 30 d responses to Cl2, respectively. After enrichment analysis of GO (Gene Ontology) functions and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, identified DEGs were demonstrated to be associated with a variety of functions, including "ion binding and transmembrane transporters". Cl2 also induced oxidative stress in Z. platypus by increasing the levels of reactive oxygen species (ROS) while decreasing the catalase (CAT) content and the levels of solute carrier family 22 member 11 (slc22a11), Caspase-8 (casp-8), inducible nitric oxide synthase (NOS2), cytosolic phospholipase A2 gamma (PLA2G4). However, Z. platypus still allows recovery during stress suspension by increasing the expression levels of solute carrier family proteins. The GO and KEGG annotation results revealed that the expression of DEGs were related to the detoxification process, immune response, and antioxidant mechanism. Additionally, protein-protein interaction networks (PPI) and cytoHubba analyses identified sixteen hub genes and their interaction. These findings elucidate the regulation of various DEGs and signaling pathways in response to Cl2 exposure, which will improve our knowledge and laid foundation for further investigation of the toxicity of Cl2 to Z. platypus.
Collapse
Affiliation(s)
- Thodhal Yoganandham Suman
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Republic of Korea
| | - Soo-Yeon Kim
- Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju-si, 52834, Republic of Korea
| | - Dong-Hyuk Yeom
- Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju-si, 52834, Republic of Korea
| | - Younghoon Jang
- Department of Biology and Chemistry, Changwon National University, Changwon, Republic of Korea
| | - Tae-Yong Jeong
- Department of Environmental Science, Hankuk University of Foreign Studies, 81, Oedae-ro, Mohyeon-eup,Cheoin-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Republic of Korea.
| |
Collapse
|
3
|
Fu PP, Xiong F, Wu SG, Zou H, Li M, Wang GT, Li WX. Effects of Schyzocotyle acheilognathi (Yamaguti, 1934) infection on the intestinal microbiota, growth and immune reactions of grass carp (Ctenopharyngodon idella). PLoS One 2022; 17:e0266766. [PMID: 35413087 PMCID: PMC9004761 DOI: 10.1371/journal.pone.0266766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Our understanding of interactions among intestinal helminths, gut microbiota and host is still in its infancy in fish. In this study, the effects of Schyzocotyle acheilognathi infection on the intestinal microbiota, growth and immune reactions of grass carp were explored under laboratory conditions. 16S rDNA amplification sequencing results showed that S. acheilognathi infection altered the composition of intestinal microbiota only at the genus level, with a significant increase in the relative abundance of Turicibacter and Ruminococcus (P < 0.05) and a significant decrease in the relative abundance of Gordonia, Mycobacterium and Pseudocanthomonas (P < 0.05). Schyzocotyle acheilognathi infection had no significant effect (P > 0.05) on the alpha diversity indices (including Chao1, ACE, Shannon, Simpson index) of intestinal microbiota in grass carp, but PERMANOVA analysis showed that microbial structure significantly (P < 0.01) differed between hindgut and foregut. PICRUST prediction showed that some metabolism-related pathways were significantly changed after S. acheilognathi infection. The relative abundance of Turicibacter was positively correlated with the fresh weight of tapeworm (foregut: r = 0.48, P = 0.044; hindgut: r = 0.63, P = 0.005). There was no significant difference in the body condition of grass carp between the S. acheilognathi infected group and the uninfected group (P > 0.05). Intestinal tissue section with HE staining showed that S. acheilognathi infection severely damaged the intestinal villi, causing serious degeneration, necrosis and shedding of intestinal epithelial cells. The real-time fluorescent quantitative PCR results showed that S. acheilognathi infection upregulated the mRNA expression of the immune-related genes: Gal1−L2, TGF−β1 and IgM.
Collapse
Affiliation(s)
- Pei P. Fu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, P. R. China
| | - Fan Xiong
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Shan G. Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Ming Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Gui T. Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Wen X. Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- * E-mail:
| |
Collapse
|
4
|
Key Performance Indicators of Common Carp (Cyprinus carpio L.) Wintering in a Pond and RAS under Different Feeding Schemes. SUSTAINABILITY 2022. [DOI: 10.3390/su14073724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Overwintering impacts common carp performance, yet the nature of changes is not known. The aim of the study was to compare the zootechnical and key performance indicators (KPI) of Cyprinus carpio wintering in a pond with no supplementary feeding (MCF), in a Recirculating Aquaculture System (RAS) fed typical (30% of protein and 8% of fat) carp diet (AFC), and in a RAS fed high protein (42%) and fat (12%) diet (ABF). The analysis showed that ABF fish had the highest final body weight and the Fulton’s condition factor, as well as the lowest food conversion rate compared with AFC and MCF fish. Histomorphological assessment revealed that MCF fish had thinner skin layers, a depleted population of mucous cells in skin, an excessive interlamellar mass in the gills, and no supranuclear vacuoles in the intestine compared to fish from RAS. At the molecular level, higher transcript levels of il-1β and il-6 transcripts were found in the gills of MCF than in fish from RAS. The transcript level of the intestinal muc5b was the highest in ABF fish. Relative expression of il-1β and il-6 in gills were presumably the highest due to lamellar fusions in MCF fish. Described KPIs may assist carp production to ensure sustainability and food security in the European Union.
Collapse
|
5
|
Currie A, Cockerill D, Diez-Padrisa M, Haining H, Henriquez F, Quinn B. Anemia in salmon aquaculture: Scotland as a case study. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2022; 546:737313. [PMID: 35039692 PMCID: PMC8547259 DOI: 10.1016/j.aquaculture.2021.737313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/12/2021] [Accepted: 08/05/2021] [Indexed: 05/14/2023]
Abstract
Anemia in salmonid aquaculture is a recognized blood disorder resulting from the reduction of hemoglobin concentration and/or erythrocyte count. Because of sub-optimal oxygen supply to the tissues, as a negative impact of anemia fish will experience reduced growth and poor health. This health challenge may be linked with several factors including anthropogenic changes in the marine environment, infectious etiology (viral, bacterial, and parasitic), nutritional deficiencies, or hemorrhaging. From the mid-late summer of 2017 to 2019, Scottish salmon farming companies began to report the occurrence of anemic events in open-net marine sites. At that time, the industry had little understanding of the pathogenesis and possible mechanisms of anemia and limited the ability to formulate effective mitigation strategies. Clinical examination of fish raised suspicion of anemia and this was confirmed by generating a packed cell volume value by centrifugation of a microhematocrit tube of whole anticoagulated blood. Company health team members, including vets and biologists, reported discoloration of gills and local hemorrhages. This paper reviews various commercially significant cases and lesser-known cases of anemia in cultured salmonid species induced by various biological factors. The current methods available to assess hematology are addressed and some future methods that could be adopted in modern day fish farming are identified. An account of the most recent anemic event in Scottish farmed Atlantic salmon (Salmo salar) is presented and discussed as a case study from information provided by two major Scottish salmon producers. The percent of total marine sites (n = 80) included in this case study, that reported with suspected or clinical anemia covering the period mid-late summer 2017 to 2019, was between 1 and 13%. The findings from this case study suggest that anemia experienced in most cases was regenerative and most likely linked to blood loss from the gills.
Collapse
Affiliation(s)
- A.R. Currie
- School of Health and Life Sciences, University of the West of Scotland, Paisley, Scotland, UK
- WellFish Diagnostics Ltd, University of the West of Scotland, Paisley, Scotland, UK
| | - D. Cockerill
- Scottish Salmon Company, 8 Melville Crescent, Edinburgh, Scotland, UK
| | - M. Diez-Padrisa
- Mowi Scotland Ltd, Blar Mhor Industrial Estate, Fort William, Scotland, UK
| | - H. Haining
- School of Veterinary Medicine, University of Glasgow, Glasgow, Scotland, UK
| | - F.L. Henriquez
- School of Health and Life Sciences, University of the West of Scotland, Paisley, Scotland, UK
| | - B. Quinn
- School of Health and Life Sciences, University of the West of Scotland, Paisley, Scotland, UK
- WellFish Diagnostics Ltd, University of the West of Scotland, Paisley, Scotland, UK
| |
Collapse
|
6
|
Magalhães R, Guardiola F, Guerreiro I, Fontinha F, Moutinho S, Olsen R, Peres H, Oliva-Teles A. Effect of different dietary arachidonic, eicosapentaenoic, and docosahexaenoic acid content on selected immune parameters in gilthead sea bream (Sparus aurata). FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100014. [DOI: 10.1016/j.fsirep.2021.100014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
7
|
Shivam S, El-Matbouli M, Kumar G. Kinetics of Parasite-Specific Antibody and B-Cell-Associated Gene Expression in Brown Trout, Salmo trutta during Proliferative Kidney Disease. BIOLOGY 2021; 10:1244. [PMID: 34943159 PMCID: PMC8698486 DOI: 10.3390/biology10121244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/20/2023]
Abstract
Tetracapsuloides bryosalmonae, a myxozoan endoparasite often causes chronic infection in brown trout. Antiparasite immunity mediated by antibodies and B cells is known as an important determinant of host survival and parasite proliferation during chronic infections. Accordingly, studying their time course during proliferative kidney disease (PKD) might be helpful in improving our understanding of its chronic nature. Therefore, we conducted this study to examine parasite specific serum antibody and B-cell-mediated response in laboratory-infected brown trout at different time points. Brown trout were exposed to the spores of T. bryosalmonae, derived from infected bryozoans. Samples were collected at different time points and processed for indirect ELISA, histopathology, and qRT-PCR. T. bryosalmonae specific antibody was detected at 4 weeks post exposure (wpe) and it persisted until 17 wpe. Additionally, the expressions of C4A, CD34, CD79A, BLNK, CD74, BCL7, and CD22 were differentially regulated in the important immune organs, kidney and spleen. To our knowledge, this is the first study addressing anti-T. bryosalmonae antibody response in brown trout at different time points. The results from this study provide valuable insights into the processes leading to changes in B cell development, inflammation and antibody production during the course of PKD in brown trout.
Collapse
Affiliation(s)
- Saloni Shivam
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Central Marine Fisheries Research Institute, Karwar 581301, India
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
8
|
Naya-Català F, do Vale Pereira G, Piazzon MC, Fernandes AM, Calduch-Giner JA, Sitjà-Bobadilla A, Conceição LEC, Pérez-Sánchez J. Cross-Talk Between Intestinal Microbiota and Host Gene Expression in Gilthead Sea Bream ( Sparus aurata) Juveniles: Insights in Fish Feeds for Increased Circularity and Resource Utilization. Front Physiol 2021; 12:748265. [PMID: 34675821 PMCID: PMC8523787 DOI: 10.3389/fphys.2021.748265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/02/2021] [Indexed: 01/03/2023] Open
Abstract
New types of fish feed based on processed animal proteins (PAPs), insect meal, yeast, and microbial biomasses have been used with success in gilthead sea bream. However, some drawback effects on feed conversion and inflammatory systemic markers were reported in different degrees with PAP- and non-PAP-based feed formulations. Here, we focused on the effects of control and two experimental diets on gut mucosal-adherent microbiota, and how it correlated with host transcriptomics at the local (intestine) and systemic (liver and head kidney) levels. The use of tissue-specific PCR-arrays of 93 genes in total rendered 13, 12, and 9 differentially expressed (DE) genes in the intestine, liver, and head kidney, respectively. Illumina sequencing of gut microbiota yielded a mean of 125,350 reads per sample, assigned to 1,281 operational taxonomic unit (OTUs). Bacterial richness and alpha diversity were lower in fish fed with the PAP diet, and discriminant analysis displayed 135 OTUs driving the separation between groups with 43 taxa correlating with 27 DE genes. The highest expression of intestinal pcna and alpi was achieved in PAP fish with intermediate values in non-PAP, being the pro-inflammatory action of alpi associated with the presence of Psychrobacter piscatorii. The intestinal muc13 gene was down-regulated in non-PAP fish, with this gene being negatively correlated with anaerobic (Chloroflexi and Anoxybacillus) and metal-reducing (Pelosinus and Psychrosinus) bacteria. Other inflammatory markers (igm, il8, tnfα) were up-regulated in PAP fish, positively correlating the intestinal igm gene with the inflammasome activator Escherichia/Shigella, whereas the systemic expression of il8 and tnfα was negatively correlated with the Bacilli class in PAP fish and positively correlated with Paracoccus yeei in non-PAP fish. Overall changes in the expression pattern of il10, galectins (lgals1, lgals8), and toll-like receptors (tlr2, tlr5, tlr9) reinforced the anti-inflammatory profile of fish fed with the non-PAP diet, with these gene markers being associated with a wide range of OTUs. A gut microbiota-liver axis was also established, linking the microbial generation of short chain fatty acids with the fueling of scd1- and elovl6-mediated lipogenesis. In summary, by correlating the microbiome with host gene expression, we offer new insights in the evaluation of fish diets promoting gut and metabolism homeostasis, and ultimately, the health of farmed fish.
Collapse
Affiliation(s)
- Fernando Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ana Margarida Fernandes
- SPAROS Lda, Area Empresarial de Marim, Olhăo, Portugal.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| |
Collapse
|
9
|
Holzer AS, Piazzon MC, Barrett D, Bartholomew JL, Sitjà-Bobadilla A. To React or Not to React: The Dilemma of Fish Immune Systems Facing Myxozoan Infections. Front Immunol 2021; 12:734238. [PMID: 34603313 PMCID: PMC8481699 DOI: 10.3389/fimmu.2021.734238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Myxozoans are microscopic, metazoan, obligate parasites, belonging to the phylum Cnidaria. In contrast to the free-living lifestyle of most members of this taxon, myxozoans have complex life cycles alternating between vertebrate and invertebrate hosts. Vertebrate hosts are primarily fish, although they are also reported from amphibians, reptiles, trematodes, mollusks, birds and mammals. Invertebrate hosts include annelids and bryozoans. Most myxozoans are not overtly pathogenic to fish hosts, but some are responsible for severe economic losses in fisheries and aquaculture. In both scenarios, the interaction between the parasite and the host immune system is key to explain such different outcomes of this relationship. Innate immune responses contribute to the resistance of certain fish strains and species, and the absence or low levels of some innate and regulatory factors explain the high pathogenicity of some infections. In many cases, immune evasion explains the absence of a host response and allows the parasite to proliferate covertly during the first stages of the infection. In some infections, the lack of an appropriate regulatory response results in an excessive inflammatory response, causing immunopathological consequences that are worse than inflicted by the parasite itself. This review will update the available information about the immune responses against Myxozoa, with special focus on T and B lymphocyte and immunoglobulin responses, how these immune effectors are modulated by different biotic and abiotic factors, and on the mechanisms of immune evasion targeting specific immune effectors. The current and future design of control strategies for myxozoan diseases is based on understanding this myxozoan-fish interaction, and immune-based strategies such as improvement of innate and specific factors through diets and additives, host genetic selection, passive immunization and vaccination, are starting to be considered.
Collapse
Affiliation(s)
- Astrid S Holzer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| | - Damien Barrett
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| |
Collapse
|
10
|
Selvam C, Powell MD, Liland NS, Rosenlund G, Sissener NH. Impact of dietary level and ratio of n-6 and n-3 fatty acids on disease progression and mRNA expression of immune and inflammatory markers in Atlantic salmon ( Salmo salar) challenged with Paramoeba perurans. PeerJ 2021; 9:e12028. [PMID: 34540364 PMCID: PMC8415286 DOI: 10.7717/peerj.12028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023] Open
Abstract
The aim of the study was to investigate the influence of dietary level and ratio of n-6/n-3 fatty acids (FA) on growth, disease progression and expression of immune and inflammatory markers in Atlantic salmon (Salmo salar) following challenge with Paramoeba perurans. Fish (80 g) were fed four different diets with different ratios of n-6/n-3 FA; at 1.3, 2.4 and 6.0 and one diet with ratio of 1.3 combined with a higher level of n-3 FA and n-6 FA. The diet with the n-6/n-3 FA ratio of 6.0 was included to ensure potential n-6 FA effects were revealed, while the three other diets were more commercially relevant n-6/n-3 FA ratios and levels. After a pre-feeding period of 3 months, fish from each diet regime were challenged with a standardized laboratory challenge using a clonal culture of P. perurans at the concentration of 1,000 cells L−1. The subsequent development of the disease was monitored (by gross gill score), and sampling conducted before challenge and at weekly sampling points for 5 weeks post-challenge. Challenge with P. perurans did not have a significant impact on the growth of the fish during the challenge period, but fish given the feed with the highest n-6/n-3 FA ratio had reduced growth compared to the other groups. Total gill score for all surfaces showed a significant increase with time, reaching a maximum at 21 days post-challenge and declined thereafter, irrespective of diet groups. Challenge with P. perurans influenced the mRNA expression of examined genes involved in immune and inflammatory response (TNF-α, iNOS, IL4-13b, GATA-3, IL-1β, p53, COX2 and PGE2-EP4), but diet did not influence the gene expression. In conclusion, an increase in dietary n-6/n-3 FA ratio influenced the growth of Atlantic salmon challenged with P. perurans; however, it did not alter the mRNA expression of immune genes or progression of the disease.
Collapse
Affiliation(s)
- Chandrasekar Selvam
- Institute of Marine Research, Bergen, Norway.,Central Marine Fisheries Research Institute, Kochi, India
| | - Mark D Powell
- Marineholmen RAS Lab AS & University of Bergen, Bergen, Norway
| | | | | | | |
Collapse
|
11
|
Salinas I, Fernández-Montero Á, Ding Y, Sunyer JO. Mucosal immunoglobulins of teleost fish: A decade of advances. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104079. [PMID: 33785432 PMCID: PMC8177558 DOI: 10.1016/j.dci.2021.104079] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 05/03/2023]
Abstract
Immunoglobulins (Igs) are complex glycoproteins that play critical functions in innate and adaptive immunity of all jawed vertebrates. Given the unique characteristics of mucosal barriers, secretory Igs (sIgs) have specialized to maintain homeostasis and keep pathogens at bay at mucosal tissues from fish to mammals. In teleost fish, the three main IgH isotypes, IgM, IgD and IgT/Z can be found in different proportions at the mucosal secretions of the skin, gills, gut, nasal, buccal, and pharyngeal mucosae. Similar to the role of mammalian IgA, IgT plays a predominant role in fish mucosal immunity. Recent studies in IgT have illuminated the primordial role of sIgs in both microbiota homeostasis and pathogen control at mucosal sites. Ten years ago, IgT was discovered to be an immunoglobulin class specialized in mucosal immunity. Aiming at this 10-year anniversary, the goal of this review is to summarize the current status of the field of fish Igs since that discovery, while identifying knowledge gaps and future avenues that will move the field forward in both basic and applied science areas.
Collapse
Affiliation(s)
- Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Álvaro Fernández-Montero
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yang Ding
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Zhou W, Krogdahl Å, Sæle Ø, Chikwati E, Løkka G, Kortner TM. Digestive and immune functions in the intestine of wild Ballan wrasse (Labrus bergylta). Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111011. [PMID: 34174428 DOI: 10.1016/j.cbpa.2021.111011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022]
Abstract
This study was carried out to profile key characteristics of intestinal functions and health in wild-caught Ballan wrasse. To describe functional variation along the intestine, samples were collected from four intestinal segments, named from the proximal to the distal segment: IN1, IN2, IN3 and IN4. The sections showed quite similar structure, i.e. regarding mucosal fold height and branching, lamina propria and submucosal width and cellular composition and thickness of the muscle layers. Leucine aminopeptidase and maltase capacity decreased from IN1 to IN4, suggesting a predominant role of IN1 in digestion. Gene expression levels of vitamin C transporter (slc23a1) and fatty acid transporters (cd36 and fabp2) were higher in IN1 than in IN4, indicating a more important role of the proximal intestine regarding transport of vitamins and fatty acids. Higher expression of the gene coding for IgM heavy chain constant region (ighm) was found in IN4 than in IN1, suggesting an important immune function of the distal intestine. Other immune related genes il1b, il6, cd40, showed similar expression in the proximal and the distal part of the intestine. Parasite infection, especially the myxozoan parasite Enteromyxum leei, coincided with infiltration of lymphocytic and eosinophilic granular cells in the submucosa and lamina propria. The present study established reference information necessary for interpretation of results of studies of intestinal functions and health in cultured Ballan wrasse.
Collapse
Affiliation(s)
- Weiwen Zhou
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Åshild Krogdahl
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Øystein Sæle
- Feed and Nutrition, Institute of Marine Research, Bergen, Norway.
| | - Elvis Chikwati
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Guro Løkka
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Trond M Kortner
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
13
|
Yu Y, Wang Q, Huang Z, Ding L, Xu Z. Immunoglobulins, Mucosal Immunity and Vaccination in Teleost Fish. Front Immunol 2020; 11:567941. [PMID: 33123139 PMCID: PMC7566178 DOI: 10.3389/fimmu.2020.567941] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Due to direct contact with aquatic environment, mucosal surfaces of teleost fish are continuously exposed to a vast number of pathogens and also inhabited by high densities of commensal microbiota. The B cells and immunoglobulins within the teleost mucosa-associated lymphoid tissues (MALTs) play key roles in local mucosal adaptive immune responses. So far, three Ig isotypes (i.e., IgM, IgD, and IgT/Z) have been identified from the genomic sequences of different teleost fish species. Moreover, teleost Igs have been reported to elicit mammalian-like mucosal immune response in six MALTs: gut-associated lymphoid tissue (GALT), skin-associated lymphoid tissue (SALT), gill-associated lymphoid tissue (GIALT), nasal-associated lymphoid tissue (NALT), and the recently discovered buccal and pharyngeal MALTs. Critically, analogous to mammalian IgA, teleost IgT represents the most ancient Ab class specialized in mucosal immunity and plays indispensable roles in the clearance of mucosal pathogens and the maintenance of microbiota homeostasis. Given these, this review summarizes the current findings on teleost Igs, MALTs, and their immune responses to pathogenic infection, vaccination and commensal microbiota, with the purpose of facilitating future evaluation and rational design of fish vaccines.
Collapse
Affiliation(s)
- Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Qingchao Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhenyu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Liguo Ding
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
Picard-Sánchez A, Estensoro I, Perdiguero P, Del Pozo R, Tafalla C, Piazzon MC, Sitjà-Bobadilla A. Passive Immunization Delays Disease Outcome in Gilthead Sea Bream Infected With Enteromyxum leei (Myxozoa), Despite the Moderate Changes in IgM and IgT Repertoire. Front Immunol 2020; 11:581361. [PMID: 33013935 PMCID: PMC7516018 DOI: 10.3389/fimmu.2020.581361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
Passive immunization constitutes an emerging field of interest in aquaculture, particularly with the restrictions for antibiotic use. Enteromyxum leei is a myxozoan intestinal parasite that invades the paracellular space of the intestinal epithelium, producing a slow-progressing disease, leading to anorexia, cachexia and mortalities. We have previously demonstrated that gilthead sea bream (GSB, Sparus aurata) that survive E. leei infection become resistant upon re-exposure, and this resistance is directly related to the presence of high levels of specific IgM in serum. Thus, the current work was aimed to determine if passive immunization could help to prevent enteromyxosis in GSB and to study in detail the nature of these protective antibodies. Serum from a pool of resistant (SUR) or naïve (NAI) animals was intracoelomically injected 24 h prior to the E. leei-effluent challenge and at 9 days post-challenge (dpc). Effluent challenge lasted for 23 days, and then the injected groups were allocated in separate tanks with clean water. A non-lethal parasite diagnosis was performed at 56 dpc. At the final sampling (100 dpc), blood, serum and tissues were collected for histology, molecular diagnosis and the detection of circulating antibodies. In parallel, we performed an immunoglobulin repertoire analysis of the fish generating SUR and NAI sera. The results showed that, fish injected with parasite-specific antibodies (spAbs) became infected with the parasite, but showed lower disease signs and intensity of infection than the other groups, indicating a later establishment of the parasite. Repertoire analysis revealed that E. leei induced a polyclonal expansion of diverse IgM and IgT subsets that could be in part an evasion strategy of the parasite. Nonetheless, GSB was able to produce sufficient levels of parasite-spAbs to avoid re-infection of surviving animals and confer certain degree of protection upon passive transfer of antibodies. These results highlight the crucial role of spAb responses against E. leei and set the basis for the development of effective treatment or prophylactic methods for aquaculture.
Collapse
Affiliation(s)
- Amparo Picard-Sánchez
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - Raquel Del Pozo
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| |
Collapse
|
15
|
Ronza P, Estensoro I, Bermúdez R, Losada AP, Pérez-Cordón G, Pardo BG, Sitjà-Bobadilla A, Quiroga MI. Effects of Enteromyxum spp. (Myxozoa) infection in the regulation of intestinal E-cadherin: Turbot against gilthead sea bream. JOURNAL OF FISH DISEASES 2020; 43:337-346. [PMID: 31984535 DOI: 10.1111/jfd.13130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Enteromyxoses are relevant diseases for turbot and gilthead sea bream aquaculture. The myxozoan parasites invade the intestinal mucosa, causing a cachectic syndrome associated with intestinal barrier alteration; nonetheless, their pathological impact is different. Turbot infected by Enteromyxum scophthalmi develop more severe intestinal lesions, reaching mortality rates of 100%, whereas in E. leei-infected gilthead sea bream, the disease progresses slowly, and mortality rates are lower. The mechanisms underlying the different pathogenesis are still unclear. We studied the distribution and expression changes of E-cadherin, a highly conserved protein of the adherens junctions, in the intestine of both species by immunohistochemistry and quantitative PCR, using the same immunohistochemical protocol and common primers. The regular immunostaining pattern observed in control fish turned into markedly irregular in parasitized turbot, showing an intense immunoreaction at the host-parasite interface. Nevertheless, E-cadherin gene expression was not significantly modulated in this species. On the contrary, no evident changes in the protein distribution were noticed in gilthead sea bream, whereas a significant gene downregulation occurred in advanced infection. The results contribute to the understanding of the different host-parasite interactions in enteromyxoses. Host and parasite cells appear to establish diverse relationships in these species, which could underlie the different pathological picture.
Collapse
Affiliation(s)
- Paolo Ronza
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Castellón, Spain
| | - Roberto Bermúdez
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
- Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Paula Losada
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
| | - Gregorio Pérez-Cordón
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Castellón, Spain
- Cryptosporidium Reference Unit, Public Health Wales, Singleton Hospital, Swansea, UK
| | - Belén G Pardo
- Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Departamento de Zoología, Genética y Antropología Física, Universidade de Santiago de Compostela, Lugo, Spain
| | | | - Mª Isabel Quiroga
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
- Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
16
|
Peixoto MJ, Ferraz R, Magnoni LJ, Pereira R, Gonçalves JF, Calduch-Giner J, Pérez-Sánchez J, Ozório ROA. Protective effects of seaweed supplemented diet on antioxidant and immune responses in European seabass (Dicentrarchus labrax) subjected to bacterial infection. Sci Rep 2019; 9:16134. [PMID: 31695116 PMCID: PMC6834676 DOI: 10.1038/s41598-019-52693-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
European seabass (Dicentrarchus labrax) production is often hampered by bacterial infections such as photobacteriosis caused by Photobacterium damselae subsp. piscicida (Phdp). Since diet can impact fish immunity, this work investigated the effect of dietary supplementation of 5% Gracilaria sp. aqueous extract (GRA) on seabass antioxidant capacity and resistance against Phdp. After infection, mortality was delayed in fish fed GRA, which also revealed increased lysozyme activity levels, as well as decreased lipid peroxidation, suggesting higher antioxidant capacity than in fish fed a control diet. Dietary GRA induced a down-regulation of hepatic stress-responsive heat shock proteins (grp-78, grp-170, grp-94, grp-75), while bacterial infection caused a down-regulation in antioxidant genes (prdx4 and mn-sod). Diet and infection interaction down-regulated the transcription levels of genes associated with oxidative stress response (prdx5 and gpx4) in liver. In head-kidney, GRA led to an up-regulation of genes associated with inflammation (il34, ccr9, cd33) and a down-regulation of genes related to cytokine signalling (mif, il1b, defb, a2m, myd88). Additionally, bacterial infection up-regulated immunoglobulins production (IgMs) and down-regulated the transcription of the antimicrobial peptide leap2 in head kidney. Overall, we found that GRA supplementation modulated seabass resistance to Phdp infection.
Collapse
Affiliation(s)
- Maria J Peixoto
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal, Portugal.,ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Renato Ferraz
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal, Portugal.,ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Leonardo J Magnoni
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal, Portugal.,IIB-INTECH - Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (CONICET), Chascomús, Argentina
| | - Rui Pereira
- ALGAPLUS, Lda - Travessa Alexandre da Conceição S/N, 3830-196, Ílhavo, Portugal
| | - José F Gonçalves
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Josep Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, 12595, Ribera de Cabanes, Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, 12595, Ribera de Cabanes, Castellón, Spain
| | - Rodrigo O A Ozório
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal, Portugal. .,ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
17
|
Picard-Sánchez A, Estensoro I, Del Pozo R, Piazzon MC, Palenzuela O, Sitjà-Bobadilla A. Acquired protective immune response in a fish-myxozoan model encompasses specific antibodies and inflammation resolution. FISH & SHELLFISH IMMUNOLOGY 2019; 90:349-362. [PMID: 31067499 DOI: 10.1016/j.fsi.2019.04.300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
The myxozoan parasite Enteromyxum leei causes chronic enteritis in gilthead sea bream (GSB, Sparus aurata) leading to intestinal dysfunction. Two trials were performed in which GSB that had survived a previous infection with E. leei (SUR), and naïve GSB (NAI), were exposed to water effluent containing parasite stages. Humoral factors (total IgM and IgT, specific anti-E. leei IgM, total serum peroxidases), histopathology and gene expression were analysed. Results showed that SUR maintained high levels of specific anti-E. leei IgM (up to 16 months), expressed high levels of immunoglobulins at the intestinal mucosa, particularly the soluble forms, and were resistant to re-infection. Their acquired-type response was complemented by other immune effectors locally and systemically, like cell cytotoxicity (high granzyme A expression), complement activity (high c3 and fucolectin expression), and serum peroxidases. In contrast to NAI, SUR displayed a post-inflammatory phenotype in the intestine and head kidney, characteristic of inflammation resolution (low il1β, high il10 and low hsp90α expression).
Collapse
Affiliation(s)
- Amparo Picard-Sánchez
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Raquel Del Pozo
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - M Carla Piazzon
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Oswaldo Palenzuela
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain.
| |
Collapse
|
18
|
Korytář T, Wiegertjes GF, Zusková E, Tomanová A, Lisnerová M, Patra S, Sieranski V, Šíma R, Born-Torrijos A, Wentzel AS, Blasco-Monleon S, Yanes-Roca C, Policar T, Holzer AS. The kinetics of cellular and humoral immune responses of common carp to presporogonic development of the myxozoan Sphaerospora molnari. Parasit Vectors 2019; 12:208. [PMID: 31060624 PMCID: PMC6501462 DOI: 10.1186/s13071-019-3462-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/27/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sphaerospora molnari is a myxozoan parasite causing skin and gill sphaerosporosis in common carp (Cyprinus carpio) in central Europe. For most myxozoans, little is known about the early development and the expansion of the infection in the fish host, prior to spore formation. A major reason for this lack of information is the absence of laboratory model organisms, whose life-cycle stages are available throughout the year. RESULTS We have established a laboratory infection model for early proliferative stages of myxozoans, based on separation and intraperitoneal injection of motile and dividing S. molnari stages isolated from the blood of carp. In the present study we characterize the kinetics of the presporogonic development of S. molnari, while analyzing cellular host responses, cytokine and systemic immunoglobulin expression, over a 63-day period. Our study shows activation of innate immune responses followed by B cell-mediated immune responses. We observed rapid parasite efflux from the peritoneal cavity (< 40 hours), an initial covert infection period with a moderate proinflammatory response for about 1-2 weeks, followed by a period of parasite multiplication in the blood which peaked at 28 days post-infection (dpi) and was associated with a massive lymphocyte response. Our data further revealed a switch to a massive anti-inflammatory response (up to 1456-fold expression of il-10), a strong increase in the expression of IgM transcripts and increased number of IgM+ B lymphocytes, which produce specific antibodies for the elimination of most of the parasites from the fish at 35 dpi. However, despite the presence of these antibodies, S. molnari invades the liver 42 dpi, where an increase in parasite cell number and indistinguishable outer cell membranes are indicative of effective exploitation and disguise mechanisms. From 49 dpi onwards, the acute infection changes to a chronic one, with low parasite numbers remaining in the fish. CONCLUSIONS To our knowledge, this is the first time myxozoan early development and immune modulation mechanisms have been analyzed along with innate and adaptive immune responses of its fish host, in a controlled laboratory system. Our study adds important information on host-parasite interaction and co-evolutionary adaptation of early metazoans (Cnidaria) with basic vertebrate (fish) immune systems and the evolution of host adaptation and parasite immune evasion strategies.
Collapse
Affiliation(s)
- Tomáš Korytář
- Institute of Parasitology, Biology, Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia, České Budějovice, Czech Republic
| | - Geert F. Wiegertjes
- Aquaculture and Fisheries Group, Wageningen Institute of Animal Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Eliška Zusková
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia, České Budějovice, Czech Republic
| | - Anna Tomanová
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Martina Lisnerová
- Institute of Parasitology, Biology, Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Sneha Patra
- Institute of Parasitology, Biology, Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Viktor Sieranski
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- Faculty of Engineering and Natural Sciences, Johannes Kepler University, Linz, Austria
| | - Radek Šíma
- Institute of Parasitology, Biology, Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Ana Born-Torrijos
- Institute of Parasitology, Biology, Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Annelieke S. Wentzel
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Sandra Blasco-Monleon
- Institute of Parasitology, Biology, Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Carlos Yanes-Roca
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia, České Budějovice, Czech Republic
| | - Tomáš Policar
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia, České Budějovice, Czech Republic
| | - Astrid S. Holzer
- Institute of Parasitology, Biology, Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
19
|
Liu S, Du Y, Sheng X, Tang X, Xing J, Zhan W. Molecular cloning of polymeric immunoglobulin receptor-like (pIgRL) in flounder (Paralichthys olivaceus) and its expression in response to immunization with inactivated Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2019; 87:524-533. [PMID: 30710627 DOI: 10.1016/j.fsi.2019.01.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/19/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
In the present work, the polymeric immunoglobulin receptor-like (pIgRL) from flounder (Paralichthys olivaceus) was firstly cloned and identified. The full length cDNA of flounder pIgRL was of 1393 bp including an open reading frame of 1053 bp, and the deduced pIgRL sequence encoded 350 amino acids, with a predicted molecular mass of 39 kDa. There were two immunoglobulin-like domains in flounder pIgRL. In healthy flounder, the transcriptional level of pIgRL was detected in different tissues by real-time PCR, showing the highest level in the skin and gills, and higher levels in the spleen and hindgut. After flounders were vaccinated with inactivated Vibrio anguillarum via intraperitoneal injection and immersion, the pIgRL mRNA level increased firstly and then declined in all tested tissues during 48 h, and the maximum expression levels in the gills, skin, spleen and hindgut in immersion group, or in the spleen, head kidney, skin and gills in injection group, were higher than in other tested tissues. In addition, recombinant protein of the extracellular region of flounder pIgRL was expressed in Escherichia coli BL21 (DE3), and rabbit anti-pIgRL polyclonal antibodies were prepared, which specifically reacted with the recombinant pIgRL, and a 39 kDa protein confirmed as natural pIgRL by liquid chromatography-mass spectrometry in skin mucus of flounder. Co-immunoprecipitation assay and western-blotting demonstrated that the pIgRL, together with IgM, could be immunoprecipitated by anti-pIgRL antibody in gut, skin and gill mucus of flounder, suggesting the existence of pIgRL-IgM complexes. These results indicated that the flounder pIgRL was probably involved in the mucosal IgM transportation and played important roles in mucosal immunity.
Collapse
Affiliation(s)
- Susu Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Yang Du
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Webin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China
| |
Collapse
|
20
|
Estruch G, Collado MC, Monge-Ortiz R, Tomás-Vidal A, Jover-Cerdá M, Peñaranda DS, Pérez Martínez G, Martínez-Llorens S. Long-term feeding with high plant protein based diets in gilthead seabream (Sparus aurata, L.) leads to changes in the inflammatory and immune related gene expression at intestinal level. BMC Vet Res 2018; 14:302. [PMID: 30285734 PMCID: PMC6171182 DOI: 10.1186/s12917-018-1626-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/25/2018] [Indexed: 11/12/2022] Open
Abstract
Background In order to ensure sustainability of aquaculture production of carnivourous fish species such as the gilthead seabream (Sparus aurata, L.), the impact of the inclusion of alternative protein sources to fishmeal, including plants, has been assessed. With the aim of evaluating long-term effects of vegetable diets on growth and intestinal status of the on-growing gilthead seabream (initial weight = 129 g), three experimental diets were tested: a strict plant protein-based diet (VM), a fishmeal based diet (FM) and a plant protein-based diet with 15% of marine ingredients (squid and krill meal) alternative to fishmeal (VM+). Intestines were sampled after 154 days. Besides studying growth parameters and survival, the gene expression related to inflammatory response, immune system, epithelia integrity and digestive process was analysed in the foregut and hindgut sections, as well as different histological parameters in the foregut. Results There were no differences in growth performance (p = 0.2703) and feed utilization (p = 0.1536), although a greater fish mortality was recorded in the VM group (p = 0.0141). In addition, this group reported a lower expression in genes related to pro-inflammatory response, as Interleukine-1β (il1β, p = 0.0415), Interleukine-6 (il6, p = 0.0347) and cyclooxigenase-2 (cox2, p = 0.0014), immune-related genes as immunoglobulin M (igm, p = 0.0002) or bacterial defence genes as alkaline phosphatase (alp, p = 0.0069). In contrast, the VM+ group yielded similar survival rate to FM (p = 0.0141) and the gene expression patterns indicated a greater induction of the inflammatory and immune markers (il1β, cox2 and igm). However, major histological changes in gut were not detected. Conclusions Using plants as the unique source of protein on a long term basis, replacing fishmeal in aqua feeds for gilthead seabream, may have been the reason of a decrease in the level of different pro-inflammatory mediators (il1 β, il6 and cox2) and immune-related molecules (igm and alp), which reflects a possible lack of local immune response at the intestinal mucosa, explaining the higher mortality observed. Krill and squid meal inclusion in vegetable diets, even at low concentrations, provided an improvement in nutrition and survival parameters compared to strictly plant protein based diets as VM, maybe explained by the maintenance of an effective immune response throughout the assay. Electronic supplementary material The online version of this article (10.1186/s12917-018-1626-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guillem Estruch
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology, Department of Biotechnology, Spanish National Research Council (IATA-CSIC), Av. Agustin Escardino 7, 46980, Paterna, Spain
| | - Raquel Monge-Ortiz
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Ana Tomás-Vidal
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Miguel Jover-Cerdá
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - David S Peñaranda
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Gaspar Pérez Martínez
- Institute of Agrochemistry and Food Technology, Department of Biotechnology, Spanish National Research Council (IATA-CSIC), Av. Agustin Escardino 7, 46980, Paterna, Spain
| | - Silvia Martínez-Llorens
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
21
|
Piazzon MC, Estensoro I, Calduch-Giner JA, Del Pozo R, Picard-Sánchez A, Pérez-Sánchez J, Sitjà-Bobadilla A. Hints on T cell responses in a fish-parasite model: Enteromyxum leei induces differential expression of T cell signature molecules depending on the organ and the infection status. Parasit Vectors 2018; 11:443. [PMID: 30064468 PMCID: PMC6069777 DOI: 10.1186/s13071-018-3007-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/09/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUD Enteromyxum leei is a myxozoan parasite that produces a slow-progressing intestinal disease. This parasite invades the paracellular space of the intestinal epithelium and progresses from the posterior to the anterior intestine. The aim of the present study was to gain insights into fish T cell responses in the gilthead sea bream-E. leei infection model using a PCR-array with 30 signature molecules for different leukocyte responses in head kidney, spleen, anterior and posterior intestine. RESULTS The PCR-array results suggest that E. leei induced migration of T cells from head kidney to intestines where TH1, CTL and TH17 profiles were activated and kept in balance by the upregulation of regulatory cytokines. These results were partially validated by the use of cross-reacting antibodies and BrdU immunostaining to monitor proliferation. Zap70 immunostaining supported the increased number of T cells in the anterior intestine detected by gene expression, but double staining with BrdU did not show active proliferation of this cell type at a local level, supporting the migration from lymphohaematopoietic tissues to the site of infection. Global analyses of the expression profiles revealed a clear separation between infected and exposed, but non-infected fish, more evident in the target organ. Exposed, non-infected animals showed an intermediate phenotype closer to the control fish. CONCLUSIONS These results evidence a clear modulation of the T cell response of gilthead sea bream upon E. leei infection. The effects occurred both at local and systemic levels, but the response was stronger and more specific at the site of infection, the intestine. Altogether, this research poses a promising basis to understand the response against this important parasite and establish effective preventive or palliative measures.
Collapse
Affiliation(s)
- M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Raquel Del Pozo
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Amparo Picard-Sánchez
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain.
| |
Collapse
|
22
|
Braden LM, Rasmussen KJ, Purcell SL, Ellis L, Mahony A, Cho S, Whyte SK, Jones SRM, Fast MD. Acquired Protective Immunity in Atlantic Salmon Salmo salar against the Myxozoan Kudoa thyrsites Involves Induction of MHIIβ + CD83 + Antigen-Presenting Cells. Infect Immun 2018; 86:e00556-17. [PMID: 28993459 PMCID: PMC5736826 DOI: 10.1128/iai.00556-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/03/2017] [Indexed: 12/15/2022] Open
Abstract
The histozoic myxozoan parasite Kudoa thyrsites causes postmortem myoliquefaction and is responsible for economic losses to salmon aquaculture in the Pacific Northwest. Despite its importance, little is known about the host-parasite relationship, including the host response to infection. The present work sought to characterize the immune response in Atlantic salmon during infection, recovery, and reexposure to K. thyrsites After exposure to infective seawater, infected and uninfected smolts were sampled three times over 4,275 degree-days. Histological analysis revealed infection severity decreased over time in exposed fish, while in controls there was no evidence of infection. Following a secondary exposure of all fish, severity of infection in the controls was similar to that measured in exposed fish at the first sampling time but was significantly reduced in reexposed fish, suggesting the acquisition of protective immunity. Using immunohistochemistry, we detected a population of MHIIβ+ cells in infected muscle that followed a pattern of abundance concordant with parasite prevalence. Infiltration of these cells into infected myocytes preceded destruction of the plasmodium and dissemination of myxospores. Dual labeling indicated a majority of these cells were CD83+/MHIIβ+ Using reverse transcription-quantitative PCR, we detected significant induction of cellular effectors, including macrophage/dendritic cells (mhii/cd83/mcsf), B cells (igm/igt), and cytotoxic T cells (cd8/nkl), in the musculature of infected fish. These data support a role for cellular effectors such as antigen-presenting cells (monocyte/macrophage and dendritic cells) along with B and T cells in the acquired protective immune response of Atlantic salmon against K. thyrsites.
Collapse
Affiliation(s)
- Laura M Braden
- Hoplite Laboratory, Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Karina J Rasmussen
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Sara L Purcell
- Hoplite Laboratory, Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Lauren Ellis
- Hoplite Laboratory, Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Amelia Mahony
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Steven Cho
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Shona K Whyte
- Hoplite Laboratory, Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Simon R M Jones
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Mark D Fast
- Hoplite Laboratory, Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|
23
|
Piazzon MC, Calduch-Giner JA, Fouz B, Estensoro I, Simó-Mirabet P, Puyalto M, Karalazos V, Palenzuela O, Sitjà-Bobadilla A, Pérez-Sánchez J. Under control: how a dietary additive can restore the gut microbiome and proteomic profile, and improve disease resilience in a marine teleostean fish fed vegetable diets. MICROBIOME 2017; 5:164. [PMID: 29282153 PMCID: PMC5745981 DOI: 10.1186/s40168-017-0390-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/18/2017] [Indexed: 05/15/2023]
Abstract
BACKGROUND The constant increase of aquaculture production and wealthy seafood consumption has forced the industry to explore alternative and more sustainable raw aquafeed materials, and plant ingredients have been used to replace marine feedstuffs in many farmed fish. The objective of the present study was to assess whether plant-based diets can induce changes in the intestinal mucus proteome, gut autochthonous microbiota and disease susceptibility of fish, and whether these changes could be reversed by the addition of sodium butyrate to the diets. Three different trials were performed using the teleostean gilthead sea bream (Sparus aurata) as model. In a first preliminary short-term trial, fish were fed with the additive (0.8%) supplementing a basal diet with low vegetable inclusion (D1) and then challenged with a bacteria to detect possible effects on survival. In a second trial, fish were fed with diets with greater vegetable inclusion levels (D2, D3) and the long-term effect of sodium butyrate at a lower dose (0.4%) added to D3 (D4 diet) was tested on the intestinal proteome and microbiome. In a third trial, the long-term effectiveness of sodium butyrate (D4) to prevent disease outcome after an intestinal parasite (Enteromyxum leei) challenge was tested. RESULTS The results showed that opposed forces were driven by dietary plant ingredients and sodium butyrate supplementation in fish diet. On the one hand, vegetable diets induced high parasite infection levels that provoked drops in growth performance, decreased intestinal microbiota diversity, induced the dominance of the Photobacterium genus, as well as altered the gut mucosal proteome suggesting detrimental effects on intestinal function. On the other hand, butyrate addition slightly decreased cumulative mortality after bacterial challenge, avoided growth retardation in parasitized fish, increased intestinal microbiota diversity with a higher representation of butyrate-producing bacteria and reversed most vegetable diet-induced changes in the gut proteome. CONCLUSIONS This integrative work gives insights on the pleiotropic effects of a dietary additive on the restoration of intestinal homeostasis and disease resilience, using a multifaceted approach.
Collapse
Affiliation(s)
- María Carla Piazzon
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Belén Fouz
- Department of Microbiology and Ecology, Faculty of Biology, University of Valencia, Valencia, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Paula Simó-Mirabet
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | | | - Oswaldo Palenzuela
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| |
Collapse
|
24
|
Piazzon MC, Galindo-Villegas J, Pereiro P, Estensoro I, Calduch-Giner JA, Gómez-Casado E, Novoa B, Mulero V, Sitjà-Bobadilla A, Pérez-Sánchez J. Differential Modulation of IgT and IgM upon Parasitic, Bacterial, Viral, and Dietary Challenges in a Perciform Fish. Front Immunol 2016; 7:637. [PMID: 28082977 PMCID: PMC5186763 DOI: 10.3389/fimmu.2016.00637] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/12/2016] [Indexed: 02/01/2023] Open
Abstract
Three different immunoglobulin (Ig) isotypes can be found in teleost fish, IgM, IgD, and the teleost-specific IgT. IgM is considered to have a systemic activity, and IgT is attributed a mucosal role, similar to mammalian IgA. In this study, the complete sequence of gilthead sea bream IgM and IgT in their membrane (m) and soluble (s) forms are described for the first time in a perciform fish. Their constitutive gene expression is analyzed in different tissues, and their regulation upon viral, bacterial, parasitic, mucosal vaccination and dietary challenges are studied. GCB IgM and IgT have the prototypical structure when compared to other fish Igs. The constitutive expression of sIgM was the highest overall in all tissues, whereas mIgT expression was highest in mucosal tissues, such as gills and intestine. IgM and IgT were differentially regulated upon infection. IgT was highly upregulated locally upon infection with the intestinal parasite Enteromyxum leei or systemically after Nodavirus infection. Long-term intestinal parasitic infections increased the serum titer of both isotypes. Mucosal vaccination against Photobacterium damselae subsp. piscicida finely regulated the Ig response inducing a systemic increase of IgM titers in serum and a local IgT response in skin mucus when animals were exposed to the pathogen by bath challenge. Interestingly, plant-based diets inhibit IgT upregulation upon intestinal parasitic challenge, which was related to a worse disease outcome. All these results corroborate the mucosal role of IgT and emphasize the importance of a finely tuned regulation of Ig isotypes upon infection, which could be of special interest in vaccination studies.
Collapse
Affiliation(s)
- Maria C Piazzon
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC) , Castellón , Spain
| | - Jorge Galindo-Villegas
- Department of Cell Biology and Histology, Faculty of Biology, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia , Murcia , Spain
| | - Patricia Pereiro
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC) , Vigo , Spain
| | - Itziar Estensoro
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC) , Castellón , Spain
| | - Josep A Calduch-Giner
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC) , Castellón , Spain
| | - Eduardo Gómez-Casado
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC) , Vigo , Spain
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia , Murcia , Spain
| | - Ariadna Sitjà-Bobadilla
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC) , Castellón , Spain
| | - Jaume Pérez-Sánchez
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC) , Castellón , Spain
| |
Collapse
|
25
|
Parra D, Korytář T, Takizawa F, Sunyer JO. B cells and their role in the teleost gut. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:150-66. [PMID: 26995768 PMCID: PMC5125549 DOI: 10.1016/j.dci.2016.03.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 05/03/2023]
Abstract
Mucosal surfaces are the main route of entry for pathogens in all living organisms. In the case of teleost fish, mucosal surfaces cover the vast majority of the animal. As these surfaces are in constant contact with the environment, fish are perpetually exposed to a vast number of pathogens. Despite the potential prevalence and variety of pathogens, mucosal surfaces are primarily populated by commensal non-pathogenic bacteria. Indeed, a fine balance between these two populations of microorganisms is crucial for animal survival. This equilibrium, controlled by the mucosal immune system, maintains homeostasis at mucosal tissues. Teleost fish possess a diffuse mucosa-associated immune system in the intestine, with B cells being one of the main responders. Immunoglobulins produced by these lymphocytes are a critical line of defense against pathogens and also prevent the entrance of commensal bacteria into the epithelium. In this review we will summarize recent literature regarding the role of B-lymphocytes and immunoglobulins in gut immunity in teleost fish, with specific focus on immunoglobulin isotypes and the microorganisms, pathogenic and non-pathogenic that interact with the immune system.
Collapse
Affiliation(s)
- David Parra
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Tomáš Korytář
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Sitjà-Bobadilla A, Estensoro I, Pérez-Sánchez J. Immunity to gastrointestinal microparasites of fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:187-201. [PMID: 26828391 DOI: 10.1016/j.dci.2016.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
Fish intestinal parasites cause direct mortalities and also morbidity, poor growth, higher susceptibility to opportunistic pathogens and lower resistance to stress. This review is focused on microscopic parasites (Protozoa and Metazoa) that invade the gastrointestinal tract of fish. Intracellular parasites (mainly Microsporidia and Apicomplexa) evoke almost no host immune reaction while they are concealed in the cytoplasmic and nuclear compartments, and can even use fish cells (macrophages) as Trojan horses to spread in the host. Inflammatory reaction only appears when the parasite bursts infected cells. Immunity against extracellular parasites is depicted for the myxozoans Ceratonova shasta and Enteromyxum spp. The cellular and humoral innate responses and the production of antibodies are crucial for resolving some of these myxozoonoses, but an excessive inflammatory reaction (concerted by cytokines) can become a fatal pathophysiological consequence. The local immune response plays a key role, with numerous genes more strongly regulated in the intestine than at lymphohaematopoietic organs.
Collapse
Affiliation(s)
- Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Consejo Superior de Investigaciones Científicas, Castellón, Spain.
| | - Itziar Estensoro
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Consejo Superior de Investigaciones Científicas, Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Consejo Superior de Investigaciones Científicas, Castellón, Spain
| |
Collapse
|
27
|
Calduch-Giner JA, Sitjà-Bobadilla A, Pérez-Sánchez J. Gene Expression Profiling Reveals Functional Specialization along the Intestinal Tract of a Carnivorous Teleostean Fish (Dicentrarchus labrax). Front Physiol 2016; 7:359. [PMID: 27610085 PMCID: PMC4997091 DOI: 10.3389/fphys.2016.00359] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/05/2016] [Indexed: 01/23/2023] Open
Abstract
High-quality sequencing reads from the intestine of European sea bass were assembled, annotated by similarity against protein reference databases and combined with nucleotide sequences from public and private databases. After redundancy filtering, 24,906 non-redundant annotated sequences encoding 15,367 different gene descriptions were obtained. These annotated sequences were used to design a custom, high-density oligo-microarray (8 × 15 K) for the transcriptomic profiling of anterior (AI), middle (MI), and posterior (PI) intestinal segments. Similar molecular signatures were found for AI and MI segments, which were combined in a single group (AI-MI) whereas the PI outstood separately, with more than 1900 differentially expressed genes with a fold-change cutoff of 2. Functional analysis revealed that molecular and cellular functions related to feed digestion and nutrient absorption and transport were over-represented in AI-MI segments. By contrast, the initiation and establishment of immune defense mechanisms became especially relevant in PI, although the microarray expression profiling validated by qPCR indicated that these functional changes are gradual from anterior to posterior intestinal segments. This functional divergence occurred in association with spatial transcriptional changes in nutrient transporters and the mucosal chemosensing system via G protein-coupled receptors. These findings contribute to identify key indicators of gut functions and to compare different fish feeding strategies and immune defense mechanisms acquired along the evolution of teleosts.
Collapse
Affiliation(s)
- Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Spain
| |
Collapse
|
28
|
Estruch G, Collado MC, Peñaranda DS, Tomás Vidal A, Jover Cerdá M, Pérez Martínez G, Martinez-Llorens S. Impact of Fishmeal Replacement in Diets for Gilthead Sea Bream (Sparus aurata) on the Gastrointestinal Microbiota Determined by Pyrosequencing the 16S rRNA Gene. PLoS One 2015; 10:e0136389. [PMID: 26317431 PMCID: PMC4552794 DOI: 10.1371/journal.pone.0136389] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 08/04/2015] [Indexed: 11/18/2022] Open
Abstract
Recent studies have demonstrated the impact of diet on microbiota composition, but the essential need for the optimization of production rates and costs forces farms and aquaculture production to carry out continuous dietary tests. In order to understand the effect of total fishmeal replacement by vegetable-based feed in the sea bream (Sparus aurata), the microbial composition of the stomach, foregut, midgut and hindgut was analysed using high-throughput 16S rDNA sequencing, also considering parameters of growth, survival and nutrient utilisation indices.A total of 91,539 16S rRNA filtered-sequences were analysed, with an average number of 3661.56 taxonomically assigned, high-quality sequences per sample. The dominant phyla throughout the whole gastrointestinal tract were Actinobacteria, Protebacteria and Firmicutes. A lower diversity in the stomach in comparison to the other intestinal sections was observed. The microbial composition of the Recirculating Aquaculture System was totally different to that of the sea bream gastrointestinal tract. Total fishmeal replacement had an important impact on microbial profiles but not on diversity. Streptococcus (p-value: 0.043) and Photobacterium (p-value: 0.025) were highly represented in fish fed with fishmeal and vegetable-meal diets, respectively. In the stomach samples with the vegetable diet, reads of chloroplasts and mitochondria from vegetable dietary ingredients were rather abundant. Principal Coordinate Analysis showed a clear differentiation between diets in the microbiota present in the gut, supporting the presence of specific bacterial consortia associated with the diet.Although differences in growth and nutritive parameters were not observed, a negative effect of the vegetable diet on the survival rate was determined. Further studies are required to shed more light on the relationship between the immune system and sea bream gastrointestinal tract microbiota and should consider the modulation of the microbiota to improve the survival rate and nutritive efficacy when using plant-based diets.
Collapse
Affiliation(s)
- G. Estruch
- Aquaculture and Biodiversity Research Group. Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Valencia (Valencia), Spain
| | - M. C. Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna (Valencia), Spain
| | - D. S. Peñaranda
- Aquaculture and Biodiversity Research Group. Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Valencia (Valencia), Spain
| | - A. Tomás Vidal
- Aquaculture and Biodiversity Research Group. Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Valencia (Valencia), Spain
| | - M. Jover Cerdá
- Aquaculture and Biodiversity Research Group. Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Valencia (Valencia), Spain
| | - G. Pérez Martínez
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna (Valencia), Spain
| | - S. Martinez-Llorens
- Aquaculture and Biodiversity Research Group. Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Valencia (Valencia), Spain
- * E-mail:
| |
Collapse
|
29
|
Zhang F, Liu D, Wang L, Li T, Chang Q, An L, Yang G. Characterization of IgM-binding protein: A pIgR-like molecule expressed by intestinal epithelial cells in the common carp (Cyprinus carpio L.). Vet Immunol Immunopathol 2015; 167:30-5. [PMID: 26166176 DOI: 10.1016/j.vetimm.2015.06.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/06/2015] [Accepted: 06/29/2015] [Indexed: 11/20/2022]
Abstract
The adaptive mucosal immune system seems to be an important defence mechanism for fish, but the binding of immunoglobulin M (IgM) in mucosal organs has yet to be clarified in fish. The present study was designed to search for the protein that binds IgM in the intestinal epithelium and determine its distribution in mucosa-associated lymphoid tissues of the common carp (Cyprinus carpio L.). The serum-derived carp IgM fraction was isolated by Sephadex G-200 and assessed for purity by SDS-PAGE under reducing conditions. Serum IgM was subsequently used in affinity chromatography of IgM-sepharose for isolation of a specific binding protein from the intestinal epithelium. The resultant adsorbed protein (IgM-binding protein) demonstrated a single band using SDS-PAGE, with a relative molecular mass of 43.5 kDa. These results demonstrate for the first time that IgM-sepharose can be used as affinity chromatography to purify membrane proteins that bind IgM in fish. Using immunohistochemistry, we found that the distribution of IgM-binding protein in intestinal tissues was abundant, while that of splenic leukocytes were undetectable. Our study indicates that IgM-binding protein might be involved in transportation of IgM in intestine tissues, which is distinct from the IgM receptor on splenocytes.
Collapse
Affiliation(s)
- Fumiao Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, PR China
| | - Dezhi Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, PR China
| | - Lei Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, PR China
| | - Ting Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, PR China
| | - Qiang Chang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, PR China
| | - Liguo An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, PR China.
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, PR China.
| |
Collapse
|
30
|
Montero D, Benitez-Dorta V, Caballero MJ, Ponce M, Torrecillas S, Izquierdo M, Zamorano MJ, Manchado M. Dietary vegetable oils: effects on the expression of immune-related genes in Senegalese sole (Solea senegalensis) intestine. FISH & SHELLFISH IMMUNOLOGY 2015; 44:100-108. [PMID: 25655325 DOI: 10.1016/j.fsi.2015.01.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 01/23/2015] [Accepted: 01/23/2015] [Indexed: 06/04/2023]
Abstract
The decreased availability of fish oil, traditionally used as oil source in marine aquafeeds, has lead to the search for alternatives oils. Vegetable oils (VO) are being extensively used as lipid sources in marine fish diets, inducing an imbalance on certain dietary fatty acids. Alteration on the dietary ratio of w-6/w-3 has been described to have detrimental effects on fish immunity. Senegalese sole has high susceptibility to stress and diseases, and little is known on the effects of dietary VO on its immunity. In this study, Senegalese sole juveniles were fed diets (56% crude protein, 12% crude lipid) containing linseed (100LO), soybean (100SO) or fish (100FO) oils as unique oil source. Growth, cortisol and intestinal fatty acid composition were determined after 90 days. Moreover, at the final of the experiment a stress test (5 min of net chasing) was carried out. To evaluate the effect of diets and stress on intestine immunology, expression profiles of a set of 53 immune-related genes using RT-qPCR was also performed. The use of VO did not induced changes in fish growth, but affected fatty acid profile of intestine and expression of immune-related genes. The use of SO (rich in n-6 fatty acids) induced an over-expression of those genes related to complement pathway, recognizing pathogen associated to molecular patterns, defensive response against bacteria, defensive response against viruses, antigen differentiation, cytokines and their receptors. This general over-expression could indicate an activation of inflammatory processes in fish gut. When a stress was applied, a decrease of mRNA levels of different immune-related genes with respect to the unstressed control could be observed in fish fed 100FO. However, fish fed 100LO, with a higher ALA/LA ratio, seemed to ameliorate the effects of combined effects of FO substitution plus stressful situation whereas fish fed 100SO did not show this type of response.
Collapse
Affiliation(s)
- Daniel Montero
- University of Las Palmas de Gran Canaria, Grupo de Investigación en Acuicultura (GIA), Transmontaña S/n, 35412 Las Palmas, Canary Islands, Spain.
| | - Vanessa Benitez-Dorta
- University of Las Palmas de Gran Canaria, Grupo de Investigación en Acuicultura (GIA), Transmontaña S/n, 35412 Las Palmas, Canary Islands, Spain
| | - María José Caballero
- University of Las Palmas de Gran Canaria, Grupo de Investigación en Acuicultura (GIA), Transmontaña S/n, 35412 Las Palmas, Canary Islands, Spain
| | - Marian Ponce
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro de pichón S/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - Silvia Torrecillas
- University of Las Palmas de Gran Canaria, Grupo de Investigación en Acuicultura (GIA), Transmontaña S/n, 35412 Las Palmas, Canary Islands, Spain
| | - Marisol Izquierdo
- University of Las Palmas de Gran Canaria, Grupo de Investigación en Acuicultura (GIA), Transmontaña S/n, 35412 Las Palmas, Canary Islands, Spain
| | - María Jesús Zamorano
- University of Las Palmas de Gran Canaria, Grupo de Investigación en Acuicultura (GIA), Transmontaña S/n, 35412 Las Palmas, Canary Islands, Spain
| | - Manuel Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro de pichón S/n, 11500 El Puerto de Santa María, Cádiz, Spain
| |
Collapse
|
31
|
Valdenegro-Vega VA, Polinski M, Bridle A, Crosbie P, Leef M, Nowak BF. Effects of single and repeated infections with Neoparamoeba perurans on antibody levels and immune gene expression in Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2015; 42:522-529. [PMID: 25433137 DOI: 10.1016/j.fsi.2014.11.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/17/2014] [Accepted: 11/21/2014] [Indexed: 06/04/2023]
Abstract
Amoebic gill disease (AGD) is the main health problem for the salmon industry in Tasmania, Australia and is now reported in most salmon producing countries. Antibody and gene expression responses to the pathogen, Neoparamoeba perurans, have been studied independently following primary exposure; however, the effects of sequential reinfection, which can often occur during net-pen culture of salmon, remain unclear. The association between the transcription of immunoglobulin (Ig) and their systemic and mucosal antibody levels in regards to AGD is unknown. Herein, we assessed the antibody responses as well as Ig transcription in the gills of Atlantic salmon infected only once and also sequentially with N. perurans. After four successive AGD challenges, no significant differences in plasma or skin mucus levels of IgM were observed between AGD-naïve and challenged fish. However, IgM gene expression in gill lesions of AGD-affected fish increased up to 31 d after infection, while no changes in IgT, TCR and CD8 transcription were observed. Changes at IgM transcription level did not match the lack of antibody response in mucus, which is possibly explained by weak correlations existing between protein and mRNA abundances in cells and tissues. In the second experiment, which investigated Ig responses to AGD at the transcriptional as well as antibody production level in salmon after a single infection, the levels of serum or skin mucus IgM antibody were not affected and no changes in the IgM or IgT transcription were induced.
Collapse
Affiliation(s)
- Victoria A Valdenegro-Vega
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Locked Bag 1370, Launceston, Tasmania 7250, Australia.
| | - Mark Polinski
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Locked Bag 1370, Launceston, Tasmania 7250, Australia
| | - Andrew Bridle
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Locked Bag 1370, Launceston, Tasmania 7250, Australia
| | - Philip Crosbie
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Locked Bag 1370, Launceston, Tasmania 7250, Australia
| | - Melanie Leef
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Locked Bag 1370, Launceston, Tasmania 7250, Australia
| | - Barbara F Nowak
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Locked Bag 1370, Launceston, Tasmania 7250, Australia
| |
Collapse
|
32
|
Kumar G, Abd-Elfattah A, El-Matbouli M. Identification of differentially expressed genes of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in response to Tetracapsuloides bryosalmonae (Myxozoa). Parasitol Res 2015; 114:929-39. [PMID: 25563603 PMCID: PMC4336411 DOI: 10.1007/s00436-014-4258-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/15/2014] [Indexed: 01/08/2023]
Abstract
Tetracapsuloides bryosalmonae Canning et al., 1999 (Myxozoa) is the causative agent of proliferative kidney disease in various species of salmonids in Europe and North America. We have shown previously that the development and distribution of the European strain of T. bryosalmonae differs in the kidney of brown trout (Salmo trutta) Linnaeus, 1758 and rainbow trout (Oncorhynchus mykiss) Walbaum, 1792, and that intra-luminal sporogonic stages were found in brown trout but not in rainbow trout. We have now compared transcriptomes from kidneys of brown trout and rainbow trout infected with T. bryosalmonae using suppressive subtractive hybridization (SSH). The differentially expressed transcripts produced by SSH were cloned, transformed, and tested by colony PCR. Differential expression screening of PCR products was validated using dot blot, and positive clones having different signal intensities were sequenced. Differential screening and a subsequent NCBI-BLAST analysis of expressed sequence tags revealed nine clones expressed differently between both fish species. These differentially expressed genes were validated by quantitative real-time PCR of kidney samples from both fish species at different time points of infection. Expression of anti-inflammatory (TSC22 domain family protein 3) and cell proliferation (Prothymin alpha) genes were upregulated significantly in brown trout but downregulated in rainbow trout. The expression of humoral immune response (immunoglobulin mu) and endocytic pathway (Ras-related protein Rab-11b) genes were significantly upregulated in rainbow trout but downregulated in brown trout. This study suggests that differential expression of host anti-inflammatory, humoral immune and endocytic pathway responses, cell proliferation, and cell growth processes do not inhibit the development of intra-luminal sporogonic stages of the European strain of T. bryosalmonae in brown trout but may suppress it in rainbow trout.
Collapse
Affiliation(s)
- Gokhlesh Kumar
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | | | | |
Collapse
|
33
|
Couto A, Kortner T, Penn M, Bakke A, Krogdahl Å, Oliva-Teles A. Effects of dietary soy saponins and phytosterols on gilthead sea bream (Sparus aurata) during the on-growing period. Anim Feed Sci Technol 2014. [DOI: 10.1016/j.anifeedsci.2014.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Chettri JK, Kuhn JA, Jaafar RM, Kania PW, Møller OS, Buchmann K. Epidermal response of rainbow trout to Ichthyobodo necator: immunohistochemical and gene expression studies indicate a Th1-/Th2-like switch. JOURNAL OF FISH DISEASES 2014; 37:771-83. [PMID: 23952070 DOI: 10.1111/jfd.12169] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 07/05/2013] [Accepted: 07/16/2013] [Indexed: 05/20/2023]
Abstract
Infections with the parasitic flagellate Ichthyobodo necator (Henneguy, 1883) cause severe skin and gill disease in rainbow trout Oncorhynchus mykiss (Walbaum, 1792) juveniles. The epidermal disturbances including hyperplasia and mucous cell exhaustion caused by parasitization are known, but no details on specific cellular and humoral reactions have been presented. By applying gene expression methods and immunohistochemical techniques, further details of immune processes in the affected skin can be presented. A population of I. necator was established in the laboratory and used to induce an experimental infection of juvenile rainbow trout. The course of infection was followed by sampling for parasite enumeration, immunohistochemistry (IHC) and quantitative PCR (qPCR) on days 0, 5, 9 and 14 post-infection. IHC showed a significant increase in the occurrence of IgM-positive cells in the skin of the infected fish, whereas IgT-positive cells were eliminated and the number of CD8-positive cells declined. qPCR studies supported the IHC findings showing a significant increase in IgM and a decrease in the CD8 gene expression. In addition, genes encoding innate immune genes such as lysozyme, SAA and cathelicidin 2 were up-regulated. Expression of cytokines (IL-1β, IL-4/13A, IL-6, IL-8, IL-10), the cell marker CD4 and the transcription factor GATA3 showed a significant increase after infection. Cytokine profiling including up-regulation of IL-4/13A and IL-10 genes and transcription factor GATA3 connected to the proliferation of IgM producing lymphocytes suggests a partial shift towards a Th2 response associated with the I. necator infection.
Collapse
Affiliation(s)
- J K Chettri
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | | | | | | | | |
Collapse
|
35
|
Gómez D, Bartholomew J, Sunyer JO. Biology and mucosal immunity to myxozoans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:243-56. [PMID: 23994774 PMCID: PMC4216934 DOI: 10.1016/j.dci.2013.08.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 05/13/2023]
Abstract
Myxozoans are among the most abundant parasites in nature. Their life cycles involve two hosts: an invertebrate, usually an annelid, and a vertebrate, usually a fish. They affect fish species in their natural habitats but also constitute a menace for fish aquaculture. Using different strategies they are able to parasitize and cause damage in multiple organs, including mucosal tissues, which they use also as portals of entry. In fish, the main mucosal sites include the intestine, skin and gills. Recently the finding of a specific mucosal immunoglobulin in teleost (IgT), analogous to mammalian IgA, and the capacity of fish to develop a specific mucosal immune response against different pathogens, has highlighted the importance of studying immune responses at mucosal sites. In this review, we describe the major biological characteristics of myxozoan parasites and present the data available regarding immune responses for species that infect mucosal sites. As models for mucosal immunity we review the responses to Enteromyxum spp. and Ceratomyxa shasta, both of which parasitize the intestine. The immune response at the skin and gills is also described, as these mucosal tissues are used by myxozoans as attaching surfaces and portal of entry, and some species also parasitize these sites. Finally, the development of immunoprophylactic strategies is discussed.
Collapse
Affiliation(s)
- Daniela Gómez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jerri Bartholomew
- Department of Microbiology, Center for Fish Disease Research, Oregon State University, Corvallis, OR, USA.
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Pérez-Cordón G, Estensoro I, Benedito-Palos L, Calduch-Giner JA, Sitjà-Bobadilla A, Pérez-Sánchez J. Interleukin gene expression is strongly modulated at the local level in a fish-parasite model. FISH & SHELLFISH IMMUNOLOGY 2014; 37:201-208. [PMID: 24530812 DOI: 10.1016/j.fsi.2014.01.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/22/2014] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
The goal of this work was to identify interleukin (IL)-related genes in the gilthead sea bream (GSB) (Sparus aurata L.) and how they are modulated by the parasite Enteromyxum leei, a myxozoan that causes severe enteritis with a strong inflammatory response. A Blast-X search of our transcriptomic GSB database (www.nutrigroup-iats.org/seabreamdb) identified 16 new sequences encompassing seven ILs (IL-7, IL-8, IL-10, IL-12β, IL-15, IL-18, and IL-34), the interleukin enhancer-binding factor 2 (ILF2), and eight IL receptors (IL-R); IL-R1, IL-6RA, IL-6RB, IL-8RA, IL-10RA, IL-10RB, IL-18R1, and IL-22R. Except for ILF2, their expression, plus that of IL-1β, IL-1R2, IL-6, and TNF-α (from public repositories), were analysed by 96-well PCR array of samples of blood, spleen, head kidney, and intestine of GSB that were anally intubated with E. leei (recipient group, RCPT). Only the expression profile of the intestine of RCPT fish showed significant difference as compared to samples from PBS-inoculated fish. At 17 days post intubation (dpi), the expression of key pro-inflammatory ILs, such as IL-8, IL-8R, IL-12β, and TNFα was significantly up-regulated, whereas at 64 dpi, anti-inflammatory IL expression (IL-6, IL-6RB, IL-7, IL-10, IL-10RA, and IL-15) was predominant. These results indicate a modification of the IL expression at late times post infection, probably to protect the fish intestine from the parasite and damage inflicted by an excessive inflammatory response. Furthermore, the response is mainly mediated at the local level as no significant changes were detected in blood, spleen and head kidney.
Collapse
Affiliation(s)
- Gregorio Pérez-Cordón
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Laura Benedito-Palos
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain.
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| |
Collapse
|
37
|
Modulation of leukocytic populations of gilthead sea bream (Sparus aurata) by the intestinal parasite Enteromyxum leei (Myxozoa: Myxosporea). Parasitology 2013; 141:425-40. [DOI: 10.1017/s0031182013001789] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYThe cellular mucosal and systemic effectors of gilthead sea bream (GSB) (Sparus aurata) involved in the acute immune response to the intestinal parasite Enteromyxum leei were studied in fish experimentally infected by the anal route. In the intestinal inflammatory infiltrates and in lymphohaematopoietic organs (head kidney and spleen) of parasitized fish, the number of plasma cells, B cells (IgM immunoreactive) and mast cells (histamine immunoreactive) were significantly higher, whereas the number of acidophilic granulocytes (G7 immunoreactive) decreased, compared with non-parasitized and unexposed fish. These differences were stronger at the posterior intestine, the main target of the parasite, and no differences were found in the thymus. In non-parasitized GSB, the percentage of splenic surface occupied by melanomacrophage centres was significantly higher. These results suggest that the cellular response of GSB to E. leei includes proliferation of leukocytes in lymphohaematopoietic organs and recruitment into intestines via blood circulation involving elements of innate and adaptive immunity. Acidophilic granulocytes and mast cells presented opposite patterns of response to the parasite infection, with an overall depletion of the former and an increased amount of the latter. Some differences between both cell types were also detected in regard to their granule density and cell morphology.
Collapse
|
38
|
Estensoro I, Álvarez-Pellitero P, Sitjà-Bobadilla A. Antigenic characterization of Enteromyxum leei (Myxozoa: Myxosporea). DISEASES OF AQUATIC ORGANISMS 2013; 106:149-162. [PMID: 24113248 DOI: 10.3354/dao02651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Enteromyxum leei, an intestinal myxozoan parasite affecting a wide range of fish, was partially purified, and the immunogenic composition of its glycoproteins as well as the proteolytic activity were studied. Parasite extracts, mainly containing spores, were separated by SDS-PAGE, and thereafter, immunoblots were carried out with a polyclonal antiserum (Pab) raised against E. leei. Periodic acid/Schiff staining of gels, periodate- and Proteinase K-treated Western blots and Lectin blots were performed to analyse the terminal carbohydrate composition of the parasite's antigens. Additionally, the cross-reaction of the parasite extracts with a Pab raised against the polar filament of the myxozoan Myxobolus pendula was studied. Both Pabs detected proteic epitopes on antigenic proteins and glycoproteins of E. leei, ranging between 15 and 280 kDa. In particular, 2 glycoproteic bands (15 and 165 kDa), immunoreactive to both Pabs and with glucose and mannose moieties, could correspond to common antigens shared among myxozoans. The 165 kDa band also presented galactose, N-acetyl-galactosamine and N-acetyl-glucosamine, pointing to its possible origin on chitin-built spore valves and to its possible involvement in host-parasite interactions. The molecular weight of the 15 kDa glycoproteic antigen matches that of minicollagen, a cnidarian-specific protein of nematocysts with a myxozoan homologue. Several proteases with apparent molecular weights ranging between 43 and 245 kDa were found in zymographies of E. leei extracts, and these may have a potential role in the parasite's pathogenesis. This is a useful approach for further studies to detect targets for antiparasitic therapy.
Collapse
Affiliation(s)
- Itziar Estensoro
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Torre de la Sal s/n, 12595 Ribera de Cabanes, Castellón, Spain
| | | | | |
Collapse
|
39
|
Estensoro I, Jung-Schroers V, Álvarez-Pellitero P, Steinhagen D, Sitjà-Bobadilla A. Effects of Enteromyxum leei (Myxozoa) infection on gilthead sea bream (Sparus aurata) (Teleostei) intestinal mucus: glycoprotein profile and bacterial adhesion. Parasitol Res 2012; 112:567-76. [PMID: 23086443 DOI: 10.1007/s00436-012-3168-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
Abstract
The intestinal myxosporean parasite Enteromyxum leei causes severe desquamative enteritis in gilthead sea bream (Sparus aurata) (Teleostei) that impairs nutrient absorption causing anorexia and cachexia. In fish, as in terrestrial vertebrates, intestinal goblet cells are responsible for the adherent mucus secretion overlying epithelial cells, which constitutes a first line of innate immune defense against offending microorganisms but serves also as substrate and nutrient source for the commensal microflora. The secreted intestinal mucus of parasitized (n = 6) and unexposed (n = 8) gilthead sea bream was isolated, concentrated, and subjected to downward gel chromatography. Carbohydrate and protein contents (via PAS and Bradford stainings), terminal glycosylation (via lectin ELISA), and Aeromonas hydrophila and Vibrio alginolyticus adhesion were analyzed for the isolated intestinal mucins. Parasitized fish, compared with unexposed fish, presented intestinal mucus mucins with a lower glycoprotein content and glycosylation degree at the anterior and middle intestine, whereas both glycoprotein content and glycosylation degree increased at the posterior intestine section, though only significantly for the total carbohydrate content. Additionally, a slight molecular size increase was detected in the mucin glycoproteins of parasitized fish. Terminal glycosylation of the mucus glycoproteins in parasitized fish pointed to an immature mucin secretion (N-acetyl-α-D-galactosamine increase, α-L-fucose, and neuraminic-acid-α-2-6-galactose reduction). Bacterial adhesion to large-sized mucus glycoproteins (>2,000 kDa) of parasitized fish was significantly lower than in unexposed fish.
Collapse
Affiliation(s)
- Itziar Estensoro
- Instituto de Acuicultura Torre de Sal, Consejo Superior de Investigaciones Científicas, Torre de Sal s/n, 12595 Ribera de Cabanes, Castellón, Spain.
| | | | | | | | | |
Collapse
|
40
|
Calduch-Giner JA, Sitjà-Bobadilla A, Davey GC, Cairns MT, Kaushik S, Pérez-Sánchez J. Dietary vegetable oils do not alter the intestine transcriptome of gilthead sea bream (Sparus aurata), but modulate the transcriptomic response to infection with Enteromyxum leei. BMC Genomics 2012; 13:470. [PMID: 22967181 PMCID: PMC3444936 DOI: 10.1186/1471-2164-13-470] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 09/07/2012] [Indexed: 11/30/2022] Open
Abstract
Background Studies conducted with gilthead sea bream (Sparus aurata L.) have determined the maximum dietary replacement of fish meal and oil without compromising growth or product quality. The present study aimed to analyze the effect of the nutritional background on fish health and fish fed plant protein-based diets with fish oil (FO diet) or a blend of vegetable oils (66VO diet) were exposed for 102 days to the intestinal myxosporean parasite Enteromyxum leei, and the intestine transcriptome was analyzed with a customized oligo-microarray of 7,500 annotated genes. Results Infection prevalence was high and similar in the two diet groups, but the outcome of the disease was more pronounced in fish fed the 66VO diet. No differences were found in the transcriptome of both diet control groups, whereas the number of differentially expressed genes in infected groups was considerable. K-means clustering of these differentially expressed genes identified four expression patterns that reflected the progression of the disease with the magnitude of the fold-change being higher in infected 66VO fish. A positive correlation was found between the time of infection and the magnitude of the transcriptional change within the 66VO group, being higher in early infected animals. Within this diet group, a strong up-regulation of many components of the immune specific response was evidenced, whereas other genes related to complement response and xenobiotic metabolism were down-regulated. Conclusions The high replacement of fish oil by vegetable oils in practical fish feeds did not modify the intestine transcriptome of gilthead sea bream, but important changes were apparent when fish were exposed to the myxosporean E. leei. The detected changes were mostly a consequence rather than a cause of the different disease progression in the two diet groups. Hence, the developed microarray constitutes an excellent diagnostic tool to address changes associated with the action of intestinal pathogens, but lacks a prognostic value to predict in advance the different susceptibility of growing fish to the current pathogen.
Collapse
Affiliation(s)
- Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Department of Marine Species Biology, Culture and Pathology, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, 12595, Spain
| | | | | | | | | | | |
Collapse
|