1
|
Vahedi-Shahandashti R, Houbraken J, Hubka V, Meijer M, Zelger BG, Binder U, Lass-Flörl C. Deciphering Aspergillus section Terrei in Galleria mellonella model: a clade-specific pathogenicity characterization. Microbiol Spectr 2025; 13:e0257624. [PMID: 40094356 PMCID: PMC12053913 DOI: 10.1128/spectrum.02576-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
The Aspergillus genus encompasses a diverse array of species, some of which are opportunistic pathogens. Traditionally, human aspergillosis has primarily been linked to a few Aspergillus species, predominantly A. fumigatus. Changes in epidemiology and advancements in molecular techniques have brought attention to less common and previously unrecognized pathogenic cryptic species. Despite the taxonomic recognition of many cryptic species in section Terrei, their virulence potential and clinical implications, compared to A. terreus sensu stricto, remain poorly understood. Hence, the current study utilized the alternative in vivo model Galleria mellonella to evaluate the virulence potential of 19 accepted Aspergillus species in section Terrei, classified into three series (major phylogenetic clades): Terrei, Nivei, and Ambigui. Analyzing the median survival rates of infected larvae of all species in each series revealed that series Ambigui has a significantly lower virulence compared to series Terrei and Nivei. Taking a closer look at series Terrei and Nivei revealed a trend of survival within each clade, dividing the species into two groups: highly virulent (up to 72 h survival) and less virulent (up to 144 h survival). Histological observation, considering fungal distribution and filamentation, further supported this assessment, revealing increased distribution and hyphal formation in virulent species. Additionally, the susceptibility profile of conventional antifungals was determined, revealing an increased azole minimum inhibitory concentration for some tested cryptic species such as A. niveus and A. iranicus. Our results highlight the importance of cryptic species identification, as they can exhibit different levels of virulence and show reduced antifungal susceptibility. IMPORTANCE With changing fungal epidemiology and an increasingly vulnerable population, cryptic Aspergillus species are emerging as human pathogens. Their diversity and clinical relevance remain underexplored, with some species showing reduced antifungal susceptibility and higher virulence, highlighting the need for better preparedness in clinical practice. Using the Galleria mellonella model, we assessed the virulence of Aspergillus species of section Terrei, including cryptic and non-cryptic species, across three series Terrei, Nivei, and Ambigui. The results revealed significant virulence variation among the series, with some cryptic species displaying high virulence. Histological analysis confirmed increased hyphal formation and fungal spread in the more virulent species. Additionally, elevated azole minimum inhibitory concentrations were also observed in certain cryptic species. This study presents novel insights into the pathogenicity of Aspergillus section Terrei, emphasizing the critical importance of accurately identifying cryptic species due to their diverse virulence potential and antifungal resistance, which may have substantial clinical implications.
Collapse
Affiliation(s)
- Roya Vahedi-Shahandashti
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, ECMM Excellent Center of Mycology, ISHAM Working Group Member of A. terreus, Innsbruck, Austria
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Vit Hubka
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Meijer
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Bettina Gudrun Zelger
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Ulrike Binder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, ECMM Excellent Center of Mycology, ISHAM Working Group Member of A. terreus, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, ECMM Excellent Center of Mycology, ISHAM Working Group Member of A. terreus, Innsbruck, Austria
| |
Collapse
|
2
|
Spencer EK, Miller CR, Bull JJ. Standardized methods for rearing a moth larva, Manduca sexta, in a laboratory setting. PLoS One 2025; 20:e0316776. [PMID: 40299873 PMCID: PMC12040098 DOI: 10.1371/journal.pone.0316776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/14/2025] [Indexed: 05/01/2025] Open
Abstract
The larval tobacco hornworm, Manduca sexta, has been used in a laboratory setting for physiological studies and for pathogen virulence studies. This moth offers a much larger size than the commonly used wax moth (Galleria mellonella), and it can thus be used for a greater variety of assays, such as repeated sampling of the same individual, growth measurements, and tissue sampling. Yet their occasional use in research has led to a minimally documented set of rearing methods. To facilitate further adoption of this insect model, we expanded on previously reported protocols and developed our own rearing methods, which we report here. Our protocol requires little specialized equipment, with a cost less than $100/month for the feeding and maintenance of a laboratory colony of about five hundred larvae of differing instar phases. The low cost generalized equipment and supplies, and the simplification of the standardized protocols allows for an easy entry point for rearing tobacco hornworm populations. We also describe a few methods that are relevant to the uses of these organisms as infection models.
Collapse
Affiliation(s)
- Emma K. Spencer
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Craig R. Miller
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
| | - James J. Bull
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
3
|
Kaczmarek A, Boguś MI. The activation of caspases in immunocompetent cells is an important infection factor of the pathogenic fungus Conidiobolus coronatus (Entomophthorales: Ancylistaceae). J Invertebr Pathol 2025; 211:108328. [PMID: 40188939 DOI: 10.1016/j.jip.2025.108328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/30/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025]
Abstract
Apoptosis is a mechanism commonly used by pathogenic fungi to inhibit the host's immune response. One opportunistic pathogen is Conidiobolus coronatus, which causes fungal infection in mammals and insects. In a study, larvae of Galleria mellonella were exposed to the pathogen for 24 h. After this exposure, some larvae were used for hemolymph collection (F24), while others were incubated for an additional 24 h (F48). The activity of caspase-9 and caspase-3-like proteins in hemocytes was measured using a colorimetric method. The changes in caspase concentration were calculated using ELISA tests. Immunocytochemical analyses were employed to show changes in the levels of the examined proteins in both their pro- and active forms. Fluorescence microscopy was used to detect changes in cultured hemocytes and flow cytometry analysis was conducted to detect both forms of caspases in freshly collected hemocytes. To evaluate the effect of fungal infection, caspase inhibitors (Z-DEVD-FMK and Z-LEHD-FMK) were injected into the larvae, and their impact on insect development and resistance to fungal infection was determined. The exposure of larvae to the entomopathogen increased the detection levels, concentrations, and activity of both caspase-like proteins in hemocytes during fungal infection. The research has indicated that inhibition of these proteins disrupts larval development and increases resistance to infection. These results suggest that apoptosis might be an important mechanism for a pathogen to inhibit the insect immune response. Given the similarities between insects' and mammals' innate immune responses, the presented results may indicate a potential mechanism of fungal pathogenicity in both groups.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55 00-818 Warsaw, Poland.
| | - Mieczysława Irena Boguś
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55 00-818 Warsaw, Poland
| |
Collapse
|
4
|
Tava V, Reséndiz-Sharpe A, Vanhoffelen E, Saracchi M, Cortesi P, Lagrou K, Velde GV, Pasquali M. Fusarium musae Infection in Animal and Plant Hosts Confirms Its Cross-Kingdom Pathogenicity. J Fungi (Basel) 2025; 11:90. [PMID: 39997383 PMCID: PMC11856682 DOI: 10.3390/jof11020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Fusarium musae is a pathogen belonging to the Fusarium fujikuroi species complex, isolated from both banana fruits and immunocompromised patients, therefore hypothesized to be a cross-kingdom pathogen. We aimed to characterize F. musae infection in plant and animal hosts to prove its cross-kingdom pathogenicity. Therefore, we developed two infection models, one in banana and one in Galleria mellonella larvae, as a human proxy for the investigation of cross-kingdom pathogenicity of F. musae, along with accurate disease indexes effective to differentiate infection degrees in animal and plant hosts. We tested a worldwide collection of F. musae strains isolated both from banana fruits and human patients, and we provided the first experimental proof of the ability of all strains of F. musae to cause significant disease in banana fruits, as well as in G. mellonella. Thereby, we confirmed that F. musae can be considered a cross-kingdom pathogen. We, thus, provide a solid basis and toolbox for the investigation of the host-pathogen interactions of F. musae with its hosts.
Collapse
Affiliation(s)
- Valeria Tava
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (V.T.); (M.S.); (P.C.)
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium; (A.R.-S.); (E.V.)
| | | | - Eliane Vanhoffelen
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium; (A.R.-S.); (E.V.)
| | - Marco Saracchi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (V.T.); (M.S.); (P.C.)
| | - Paolo Cortesi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (V.T.); (M.S.); (P.C.)
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium;
- Department of Laboratory Medicine and National Reference Center for Mycosis, UZ Leuven, 3000 Leuven, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium; (A.R.-S.); (E.V.)
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (V.T.); (M.S.); (P.C.)
| |
Collapse
|
5
|
Kaczmarek A, Wrońska AK, Sobich J, Boguś MI. The multifunctional role of IFN-γ in Galleria mellonella (Lepidoptera) immunocompetent cells. Cytokine 2025; 185:156804. [PMID: 39546818 DOI: 10.1016/j.cyto.2024.156804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Cytokines are highly conserved between mammals and insects. The present study examines the multiple effects of interferon-gamma (IFN-γ) application on the immunological defence mechanisms of Galleria mellonella larvae, invertebrates which are gaining popularity as a replacement for mammalian research models in immunological studies. G. mellonella hemolymph is known to contain an IFN-γ homolog that shares 33 % similarity with its mammalian analogue, and its level in insect hemocytes increases during exposition to entomopathogenic fungus Conidiobolus coronatus. The present research examines the impact of IFN-γ on larval development, the effectiveness of fungal infection, and the morphology and physiology of wax moth immunocompetent cells. Treatment with IFN-γ enhanced wound healing, chemotaxis activity and hemocyte impedance, while reducing hemocyte phagocytosis and oxidative stress in cultured immunocompetent cells; it also appears to increase the levels of Jak-2- and NF-κB-like molecules in hemocytes. Our findings suggest that IFN-γ demonstrated considerable similarity between mammals and humans, thus further demonstrating the evolutionary conservatism of cytokines.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland.
| | - Anna Katarzyna Wrońska
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
| | - Justyna Sobich
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
| | - Mieczysława Irena Boguś
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
| |
Collapse
|
6
|
Spencer EK, Miller CR, Bull J. Standardized methods for rearing a moth larva, Manduca sexta, in a laboratory setting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.18.629232. [PMID: 39763740 PMCID: PMC11702677 DOI: 10.1101/2024.12.18.629232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
The larval tobacco hornworm, Manduca sexta, has been used in a laboratory setting for physiological studies and for pathogen virulence studies. This moth offers a much larger size than the commonly used wax moth (Galleria mellonella), and it can thus be used for a greater variety of assays, such as repeated sampling of the same individual, growth measurements, and tissue sampling. Yet their occasional use in research has led to a minimally documented set of rearing methods. To facilitate further adoption of this insect model, we expanded on previously reported protocols and developed our own rearing methods, which we report here. Our protocol requires little specialized equipment, with a cost less than $100/month for the feeding and maintenance of a laboratory colony of about five hundred larvae of differing instar phases. The low cost generalized equipment and supplies, and the simplification of the standardized protocols allows for an easy entry point for rearing tobacco hornworm populations. We also describe a few methods that are relevant to the uses of these organisms as infection models.
Collapse
Affiliation(s)
- Emma K. Spencer
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Craig R. Miller
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
| | - James Bull
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
7
|
Eiamthaworn K, Holthaus D, Suriyaprom S, Rickerts V, Tragoolpua Y. Immunomodulation and Protective Effects of Cordyceps militaris Extract Against Candida albicans Infection in Galleria mellonella Larvae. INSECTS 2024; 15:882. [PMID: 39590481 PMCID: PMC11595007 DOI: 10.3390/insects15110882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
Cordyceps militaris-derived formulations are currently used for multiple purposes because of their medical properties, especially immune system modulation. This study analyzes the inhibitory effects of C. militaris aqueous extract on Candida albicans infections and the immune response in larvae of the greater wax moth Galleria mellonella (Lepidoptera: Pyralidae). Larvae exhibited melanization within 1 h of being infected with C. albicans inoculum at a concentration of 106 cells/larvae, and died within 24 h from a lethal dose. Aqueous extract of C. militaris proved to be nontoxic at concentrations of 0.25 and 0.125 mg/larvae, and had the greatest ability to prolong the survival of larvae infected with a sublethal dose of C. albicans at a concentration of 105 cells/larvae. Moreover, the number of hemocytes in the hemolymph of G. mellonella increased after infection with C. albicans and treatment with the aqueous extract of C. militaris at 1, 24, and 48 h by 1.21 × 107, 1.23 × 107, and 1.4 × 107 cells/100 µL, respectively. The highest number of hemocytes was recorded after treatment of infected G. mellonella with the extract for 48 h. Transcriptional upregulation of the immune system was observed in certain antimicrobial peptides (AMPs), showing that the relative expression of galiomicin, gallerimycin, and lysozyme genes were upregulated as early as 1 h after infection. Therefore, we conclude that C. militaris aqueous extract can modulate the immune system of G. mellonella and protect against infection from C. albicans.
Collapse
Affiliation(s)
- Kiratiya Eiamthaworn
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.E.); (S.S.)
| | - David Holthaus
- Department of Gynecology and Obstetrics, Universitätsklinikum Schleswig-Holstein, 24105 Kiel, Germany;
- Robert Koch Institute, 13353 Berlin, Germany;
| | - Sureeporn Suriyaprom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.E.); (S.S.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.E.); (S.S.)
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
8
|
Bertorello S, Cei F, Fink D, Niccolai E, Amedei A. The Future Exploring of Gut Microbiome-Immunity Interactions: From In Vivo/Vitro Models to In Silico Innovations. Microorganisms 2024; 12:1828. [PMID: 39338502 PMCID: PMC11434319 DOI: 10.3390/microorganisms12091828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Investigating the complex interactions between microbiota and immunity is crucial for a fruitful understanding progress of human health and disease. This review assesses animal models, next-generation in vitro models, and in silico approaches that are used to decipher the microbiome-immunity axis, evaluating their strengths and limitations. While animal models provide a comprehensive biological context, they also raise ethical and practical concerns. Conversely, modern in vitro models reduce animal involvement but require specific costs and materials. When considering the environmental impact of these models, in silico approaches emerge as promising for resource reduction, but they require robust experimental validation and ongoing refinement. Their potential is significant, paving the way for a more sustainable and ethical future in microbiome-immunity research.
Collapse
Affiliation(s)
- Sara Bertorello
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Francesco Cei
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Dorian Fink
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
- Laboratorio Congiunto MIA-LAB (Microbiome-Immunity Axis Research for a Circular Health), University of Florence, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
- Laboratorio Congiunto MIA-LAB (Microbiome-Immunity Axis Research for a Circular Health), University of Florence, 50134 Florence, Italy
| |
Collapse
|
9
|
Wrońska AK, Kaczmarek A, Sobich J, Boguś MI. The effect of infection with the entomopathogenic fungus Conidiobolus coronatus (Entomopthorales) on eighteen cytokine-like proteins in Galleria mellonella (Lepidoptera) larvae. Front Immunol 2024; 15:1385863. [PMID: 38774871 PMCID: PMC11106378 DOI: 10.3389/fimmu.2024.1385863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
Background In response to the replace mammal research models with insects in preliminary immunological studies, interest has grown in invertebrate defense systems. The immunological response is regulated by cytokines; however, while their role in mammals is well understood, little is known of their function in insects. A suitable target for studies into insect immunology is Galleria mellonella (Lepidoptera), the wax moth: a common host for human fungal and bacterial pathogens. G. mellonella is also a perfect subject for studies into the presence of cytokine-like proteins. Specific objectives The main goal of present research was detection in insect immunocompetent cells the 18 mammalian cytokines (IL-1α, IL-1β, IL-2, IL-3, IL-6, IL-7, IL-8, IL-12, IL-13, IL-15, IL-17, IL-19, IFN-γ, TNF-α, TNF-β, GM-CSF, M-CSF, G-CSF), which play important role in immunological response and indication how their level change after fungal infection. Methodology The changes of cytokine-like proteins level were detected in hemocytes taken from G. mellonella larvae infected with entomopathogenic fungus, C. coronatus. The presence of cytokine-proteins was confirmed with using fluorescence microscopy (in cultured hemocytes) and flow cytometry (in freshly collected hemolymph). The ELISA test was used to detect changes in concentration of examined cytokine-like proteins. Results Our findings indicated the presence of eighteen cytokine-like molecules in G. mellonella hemocytes during infection with C. coronatus. The hemocytes taken from infected larvae demonstrated higher fluorescence intensity for six cytokine-like proteins (GM-CSF, M-CSF, IL-3, IL-15, IL-1β and IL-19) compared to untreated controls. ELISA test indicated significantly higher IL-3 and IL-15. M-CSF, IL-1α and IL-19 concentration in the hemolymph after fungal infection, and significantly lower TNF-β and G-CSF. Conclusions Our findings confirm that the selected cytokine-like molecules are present in insect hemocytes and that their concentrations change after fungal infection, which might suggest that they play a role in the anti-fungal immunological response.
Collapse
Affiliation(s)
| | - Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Science, Warsaw, Poland
| | - Justyna Sobich
- Museum and Institute of Zoology, Polish Academy of Science, Warsaw, Poland
- Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | | |
Collapse
|
10
|
Genç TT, Kaya S, Günay M, Çakaloğlu Ç. Humoral immune response of Galleria mellonella after mono- and co-injection with Hypericum perforatum extract and Candida albicans. APMIS 2024; 132:358-370. [PMID: 38344892 DOI: 10.1111/apm.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/24/2024] [Indexed: 04/16/2024]
Abstract
Galleria mellonella is used as a model organism to study the innate immune response of insects. In this study, the humoral immune response was assessed by examining phenoloxidase activity, fungal burden, and the expression of phenoloxidase and antimicrobial peptide genes at different time point following separate and combined injections of Hypericum perforatum extract and a nonlethal dose of Candida albicans. The administration of a plant extract at low doses increased phenoloxidase activity, while higher doses had no effect. Similarly, co-injection of a low dose of the extract with the pathogen allowed half of the yeast cells to survive after 24 h. Co-injection of plant extract with the pathogen decreased the phenoloxidase activity at the end of 4 h compared to C. albicans mono-injection. The phenoloxidase gene expressions was reduced in all experimental conditions with respect to the control. When plant extracts and the pathogen were administered together, gallerimycin and hemolin gene expressions were considerably higher compared to mono-injections of plant extracts and the pathogen. The results of this study reveal that gene activation and regulatory mechanisms may change for each immune gene, and that recognition and signaling pathways may differ depending on the involved immunoregulator.
Collapse
Affiliation(s)
- Tülay Turgut Genç
- Department of Biology, Science Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Serhat Kaya
- Department of Biology, Science Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Melih Günay
- Graduate School of Natural and Applied Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Çağla Çakaloğlu
- Graduate School of Natural and Applied Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
11
|
Spadari CDC, Borba-Santos LP, Rozental S, Ishida K. Miltefosine repositioning: A review of potential alternative antifungal therapy. J Mycol Med 2023; 33:101436. [PMID: 37774486 DOI: 10.1016/j.mycmed.2023.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Fungal infections are a global health problem with high mortality and morbidity rates. Available antifungal agents have high toxicity and pharmacodynamic and pharmacokinetic limitations. Moreover, the increased incidence of antifungal-resistant isolates and the emergence of intrinsically resistant species raise concerns about seeking alternatives for efficient antifungal therapy. In this context, we review literature data addressing the potential action of miltefosine (MFS), an anti-Leishmania and anticancer agent, as a repositioning drug for antifungal treatment. Here, we highlight the in vitro and in vivo data, MFS possible mechanisms of action, case reports, and nanocarrier-mediated MFS delivery, focusing on fungal infection therapy. Finally, many studies have demonstrated the promising antifungal action of MFS in vitro, but there is little or no data on antifungal activity in vertebrate animal models and clinical trials, so have a need to develop more research for the repositioning of MFS as an antifungal therapy.
Collapse
Affiliation(s)
| | - Luana Pereira Borba-Santos
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sonia Rozental
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kelly Ishida
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
12
|
Reis NF, de Jesus MCS, de Souza LCDSV, Alcântara LM, Rodrigues JADC, Brito SCP, Penna PDA, Vieira CS, Silva JRS, Penna BDA, Machado RLD, Mora-Montes HM, Baptista ARDS. Sporothrix brasiliensis Infection Modulates Antimicrobial Peptides and Stress Management Gene Expression in the Invertebrate Biomodel Galleria mellonella. J Fungi (Basel) 2023; 9:1053. [PMID: 37998858 PMCID: PMC10672515 DOI: 10.3390/jof9111053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Sporothrix brasiliensis is the most pathogenic species, responsible for the Brazilian cat-transmitted sporotrichosis hyperendemic. In this scenario, an investigation of the pathogen-host interaction can provide relevant information for future treatment strategies. To this end, the invertebrate Galleria mellonella has proven to be a suitable alternative for evaluating the virulence of pathogenic fungi, since the insect immune system is similar to the mammalian innate immune response. The aim of this work was to investigate phenotypic and molecular aspects of the immune response of G. mellonella throughout the S. brasiliensis infection. Hemocyte density and the evolution of the fungal load were evaluated. In parallel, RT-qPCR expression analysis of genes encoding antimicrobial peptides (Gallerimycin and Galiomycin) and stress management genes (C7 Contig 15362 and C8 Contig 19101) was conducted. The fungal load and hemocyte densities increased simultaneously and proportionally to the deleterious morphological events and larvae mortality. Gallerimycin, C7 Contig 15362 and C8 Contig 19101 genes were positively regulated (p < 0.05) at distinct moments of S. brasiliensis infection, characterizing a time-dependent and alternately modulated profile. Galiomycin gene expression remained unchanged. Our results contribute to the future proposal of potential alternative pathways for treating and consequently controlling S. brasiliensis zoonosis, a major public health issue in Latin America.
Collapse
Affiliation(s)
- Nathália Faria Reis
- Center for Microorganisms’ Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil; (N.F.R.); (M.C.S.d.J.); (L.C.d.S.V.d.S.); (L.M.A.); (J.A.d.C.R.); (S.C.P.B.); (R.L.D.M.)
| | - Myrela Conceição Santos de Jesus
- Center for Microorganisms’ Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil; (N.F.R.); (M.C.S.d.J.); (L.C.d.S.V.d.S.); (L.M.A.); (J.A.d.C.R.); (S.C.P.B.); (R.L.D.M.)
| | - Lais Cavalcanti dos Santos Velasco de Souza
- Center for Microorganisms’ Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil; (N.F.R.); (M.C.S.d.J.); (L.C.d.S.V.d.S.); (L.M.A.); (J.A.d.C.R.); (S.C.P.B.); (R.L.D.M.)
| | - Lucas Martins Alcântara
- Center for Microorganisms’ Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil; (N.F.R.); (M.C.S.d.J.); (L.C.d.S.V.d.S.); (L.M.A.); (J.A.d.C.R.); (S.C.P.B.); (R.L.D.M.)
| | - Julia Andrade de Castro Rodrigues
- Center for Microorganisms’ Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil; (N.F.R.); (M.C.S.d.J.); (L.C.d.S.V.d.S.); (L.M.A.); (J.A.d.C.R.); (S.C.P.B.); (R.L.D.M.)
| | - Simone Cristina Pereira Brito
- Center for Microorganisms’ Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil; (N.F.R.); (M.C.S.d.J.); (L.C.d.S.V.d.S.); (L.M.A.); (J.A.d.C.R.); (S.C.P.B.); (R.L.D.M.)
| | - Patrícia de Azambuja Penna
- Laboratory of Insect Biology, Federal Fluminense University, Niterói 24220-900, RJ, Brazil; (P.d.A.P.); (C.S.V.)
| | - Cecília Stahl Vieira
- Laboratory of Insect Biology, Federal Fluminense University, Niterói 24220-900, RJ, Brazil; (P.d.A.P.); (C.S.V.)
| | - José Rodrigo Santos Silva
- Department of Statistics and Actuarial Sciences, Federal University of Sergipe, São Cristóvão 49107-230, SE, Brazil;
| | - Bruno de Araújo Penna
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Fluminense Federal University, Niterói 24020-141, RJ, Brazil;
| | - Ricardo Luiz Dantas Machado
- Center for Microorganisms’ Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil; (N.F.R.); (M.C.S.d.J.); (L.C.d.S.V.d.S.); (L.M.A.); (J.A.d.C.R.); (S.C.P.B.); (R.L.D.M.)
| | - Hector M. Mora-Montes
- Department of Biology, Division of Natural and Exact Sciences, Campus Guanajuato, University of Guanajuato, Guanajuato 36050, Mexico;
| | - Andréa Regina de Souza Baptista
- Center for Microorganisms’ Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil; (N.F.R.); (M.C.S.d.J.); (L.C.d.S.V.d.S.); (L.M.A.); (J.A.d.C.R.); (S.C.P.B.); (R.L.D.M.)
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-630, RJ, Brazil
| |
Collapse
|
13
|
Vanhoffelen E, Michiels L, Brock M, Lagrou K, Reséndiz-Sharpe A, Vande Velde G. Powerful and Real-Time Quantification of Antifungal Efficacy against Triazole-Resistant and -Susceptible Aspergillus fumigatus Infections in Galleria mellonella by Longitudinal Bioluminescence Imaging. Microbiol Spectr 2023; 11:e0082523. [PMID: 37466453 PMCID: PMC10433797 DOI: 10.1128/spectrum.00825-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Aspergillus fumigatus is an environmental mold that causes life-threatening respiratory infections in immunocompromised patients. The plateaued effectiveness of antifungal therapy and the increasing prevalence of triazole-resistant isolates have led to an urgent need to optimize and expand the current treatment options. For the transition of in vitro research to in vivo models in the time- and resource-consuming preclinical drug development pipeline, Galleria mellonella larvae have been introduced as a valuable in vivo screening intermediate. Despite the high potential of this model, the current readouts of fungal infections in G. mellonella are insensitive, irreproducible, or invasive. To optimize this model, we aimed for the longitudinal quantification of the A. fumigatus burden in G. mellonella using noninvasive bioluminescence imaging (BLI). Larvae were infected with A. fumigatus strains expressing a red-shifted firefly luciferase, and the substrate dosage was optimized for the longitudinal visualization of the fungal burden without affecting larval health. The resulting photon flux was successfully validated for fungal quantification against colony forming units (CFU) analyses, which revealed an increased dynamic range from BLI detection. Comparison of BLI to survival rates and health index scores additionally revealed improved sensitivity for the early discrimination of differences in fungal burdens as early as 1 day after infection. This was confirmed by the improved detection of treatment efficacy against triazole-susceptible and -resistant strains. In conclusion, we established a refined G. mellonella aspergillosis model that enables the noninvasive real-time quantification of A. fumigatus by BLI. This model provides a quick and reproducible in vivo system for the evaluation of treatment options and is in line with 3Rs recommendations. IMPORTANCE Triazole-resistant Aspergillus fumigatus strains are rapidly emerging, and resistant infections are difficult to treat, causing mortality rates of up to 88%. The recent WHO priority list underscores A. fumigatus as one of the most critical fungal pathogens for which innovative antifungal treatment should be (urgently) prioritized. Here, we deliver a Galleria mellonella model for triazole-susceptible and -resistant A. fumigatus infections combined with a statistically powerful quantitative, longitudinal readout of the A. fumigatus burden for optimized preclinical antifungal screening. G. mellonella larvae are a convenient invertebrate model for in vivo antifungal screenings, but so far, the model has been limited by variable and insensitive observational readouts. We show that bioluminescence imaging-based fungal burden quantification outperforms these readouts in reliability, sensitivity, and time to the detection of treatment effects in both triazole-susceptible and -resistant infections and can thus lead to better translatability from in vitro antifungal screening results to in vivo confirmation in mouse and human studies.
Collapse
Affiliation(s)
- Eliane Vanhoffelen
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, Leuven, Belgium
| | - Lauren Michiels
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, Leuven, Belgium
| | - Matthias Brock
- School of Life Sciences, Fungal Biology Group, University of Nottingham, Nottingham, United Kingdom
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | | | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Kaczmarek A, Wrońska AK, Boguś MI. The Changes in Mitochondrial Morphology and Physiology Accompanying Apoptosis in Galleria mellonella (Lepidoptera) Immunocompetent Cells during Conidiobolus coronatus (Entomophthorales) Infection. Int J Mol Sci 2023; 24:10169. [PMID: 37373316 PMCID: PMC10299656 DOI: 10.3390/ijms241210169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, their role in insects is not fully understood; thus, more indepth studies of insect cell apoptosis are necessary. The present study investigates mitochondrial involvement during Conidiobolus coronatus-induced apoptosis in Galleria mellonella hemocytes. Previous research has shown that fungal infection could induce apoptosis in insect hemocytes. Our findings indicate that mitochondria undergo several morphological and physiological changes during fungal infection, e.g., loss of mitochondrial membrane potential, megachannel formation, disturbances in intracellular respiration, increased nonrespiratory oxygen consumption in mitochondria, decreased ATP-coupled oxygen consumption and increased non-ATP-coupled oxygen consumption, decreased extracellular and intracellular oxygen consumption, and increased extracellular pH. Our findings confirm that G. mellonella immunocompetent cells demonstrate Ca2+ overload in mitochondria, translocation of cytochrome c-like protein from mitochondrial to cytosol fraction, and higher activation of caspase-9-like protein after C. coronatus infection. Most importantly, several of the changes observed in insect mitochondria are similar to those accompanying apoptosis in mammalian cells, suggesting that the process is evolutionarily conserved.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Science, Wilcza 64, 00-679 Warsaw, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-875 Warsaw, Poland
| | - Anna Katarzyna Wrońska
- Museum and Institute of Zoology, Polish Academy of Science, Wilcza 64, 00-679 Warsaw, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-875 Warsaw, Poland
| | - Mieczysława Irena Boguś
- Museum and Institute of Zoology, Polish Academy of Science, Wilcza 64, 00-679 Warsaw, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-875 Warsaw, Poland
- Biomibo, 04-872 Warsaw, Poland
| |
Collapse
|
15
|
Hatmaker EA, Rangel-Grimaldo M, Raja HA, Pourhadi H, Knowles SL, Fuller K, Adams EM, Lightfoot JD, Bastos RW, Goldman GH, Oberlies NH, Rokas A. Genomic and Phenotypic Trait Variation of the Opportunistic Human Pathogen Aspergillus flavus and Its Close Relatives. Microbiol Spectr 2022; 10:e0306922. [PMID: 36318036 PMCID: PMC9769809 DOI: 10.1128/spectrum.03069-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Fungal diseases affect millions of humans annually, yet fungal pathogens remain understudied. The mold Aspergillus flavus can cause both aspergillosis and fungal keratitis infections, but closely related species are not considered clinically relevant. To study the evolution of A. flavus pathogenicity, we examined genomic and phenotypic traits of two strains of A. flavus and three closely related species, Aspergillus arachidicola (two strains), Aspergillus parasiticus (two strains), and Aspergillus nomiae (one strain). We identified >3,000 orthologous proteins unique to A. flavus, including seven biosynthetic gene clusters present in A. flavus strains and absent in the three nonpathogens. We characterized secondary metabolite production for all seven strains under two clinically relevant conditions, temperature and salt concentration. Temperature impacted metabolite production in all species, whereas salinity did not affect production of any species. Strains of the same species produced different metabolites. Growth under stress conditions revealed additional heterogeneity within species. Using the invertebrate fungal disease model Galleria mellonella, we found virulence of strains of the same species varied widely; A. flavus strains were not more virulent than strains of the nonpathogens. In a murine model of fungal keratitis, we observed significantly lower disease severity and corneal thickness for A. arachidicola compared to other species at 48 h postinfection, but not at 72 h. Our work identifies variations in key phenotypic, chemical, and genomic attributes between A. flavus and its nonpathogenic relatives and reveals extensive strain heterogeneity in virulence that does not correspond to the currently established clinical relevance of these species. IMPORTANCE Aspergillus flavus is a filamentous fungus that causes opportunistic human infections, such as aspergillosis and fungal keratitis, but its close relatives are considered nonpathogenic. To begin understanding how this difference in pathogenicity evolved, we characterized variation in infection-relevant genomic, chemical, and phenotypic traits between strains of A. flavus and its relatives. We found extensive variation (or strain heterogeneity) within the pathogenic A. flavus as well as within its close relatives, suggesting that strain-level differences may play a major role in the ability of these fungi to cause disease. Surprisingly, we also found that the virulence of strains from species not considered to be pathogens was similar to that of A. flavus in both invertebrate and murine models of disease. These results contrast with previous studies on Aspergillus fumigatus, another major pathogen in the genus, for which significant differences in infection-relevant chemical and phenotypic traits are observed between closely related pathogenic and nonpathogenic species.
Collapse
Affiliation(s)
- E. Anne Hatmaker
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Manuel Rangel-Grimaldo
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Huzefa A. Raja
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Hadi Pourhadi
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Sonja L. Knowles
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Kevin Fuller
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Emily M. Adams
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Jorge D. Lightfoot
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Rafael W. Bastos
- Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Nicholas H. Oberlies
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Vargas-Macías AP, Gómez-Gaviria M, García-Carnero LC, Mora-Montes HM. Current Models to Study the Sporothrix-Host Interaction. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:833111. [PMID: 37746241 PMCID: PMC10512367 DOI: 10.3389/ffunb.2022.833111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 09/26/2023]
Abstract
Sporotrichosis is a worldwide distributed subcutaneous mycosis that affects mammals, including human beings. The infection is caused by members of the Sporothrix pathogenic clade, which includes Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa. The fungus can be acquired through traumatic inoculation of conidia growing in vegetal debris or by zoonotic transmission from sick animals. Although is not considered a life-threatening disease, it is an emergent health problem that affects mostly immunocompromised patients. The sporotrichosis causative agents differ in their virulence, host range, and sensitivity to antifungal drugs; therefore, it is relevant to understand the molecular bases of their pathogenesis, interaction with immune effectors, and mechanisms to acquired resistance to antifungal compounds. Murine models are considered the gold standard to address these questions; however, some alternative hosts offer numerous advantages over mammalian models, such as invertebrates like Galleria mellonella and Tenebrio molitor, or ex vivo models, which are useful tools to approach questions beyond virulence, without the ethical or budgetary features associated with the use of animal models. In this review, we analyze the different models currently used to study the host-Sporothrix interaction.
Collapse
Affiliation(s)
| | | | | | - Héctor M. Mora-Montes
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| |
Collapse
|
17
|
Bauer I, Graessle S. Fungal Lysine Deacetylases in Virulence, Resistance, and Production of Small Bioactive Compounds. Genes (Basel) 2021; 12:1470. [PMID: 34680865 PMCID: PMC8535771 DOI: 10.3390/genes12101470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
The growing number of immunocompromised patients begs for efficient therapy strategies against invasive fungal infections. As conventional antifungal treatment is increasingly hampered by resistance to commonly used antifungals, development of novel therapy regimens is required. On the other hand, numerous fungal species are industrially exploited as cell factories of enzymes and chemicals or as producers of medically relevant pharmaceuticals. Consequently, there is immense interest in tapping the almost inexhaustible fungal portfolio of natural products for potential medical and industrial applications. Both the pathogenicity and production of those small metabolites are significantly dependent on the acetylation status of distinct regulatory proteins. Thus, classical lysine deacetylases (KDACs) are crucial virulence determinants and important regulators of natural products of fungi. In this review, we present an overview of the members of classical KDACs and their complexes in filamentous fungi. Further, we discuss the impact of the genetic manipulation of KDACs on the pathogenicity and production of bioactive molecules. Special consideration is given to inhibitors of these enzymes and their role as potential new antifungals and emerging tools for the discovery of novel pharmaceutical drugs and antibiotics in fungal producer strains.
Collapse
Affiliation(s)
| | - Stefan Graessle
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
18
|
Shoukry MM, Shehata MR, Abdel Wahab AM. Synthesis, characterization, thermal degradation, docking,
DFT
calculation, and biological activity of dimethyltin(
IV
) complex with homopiperazine. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mohamed M. Shoukry
- Department of Chemistry, Faculty of Science University of Cairo Giza Egypt
| | - Mohamed R. Shehata
- Department of Chemistry, Faculty of Science University of Cairo Giza Egypt
| | | |
Collapse
|
19
|
Arastehfar A, Carvalho A, Houbraken J, Lombardi L, Garcia-Rubio R, Jenks J, Rivero-Menendez O, Aljohani R, Jacobsen I, Berman J, Osherov N, Hedayati M, Ilkit M, Armstrong-James D, Gabaldón T, Meletiadis J, Kostrzewa M, Pan W, Lass-Flörl C, Perlin D, Hoenigl M. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud Mycol 2021; 100:100115. [PMID: 34035866 PMCID: PMC8131930 DOI: 10.1016/j.simyco.2021.100115] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The airborne fungus Aspergillus fumigatus poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant A. fumigatus isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in CYP 51A are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type CYP 51A genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant A. fumigatus isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against A. fumigatus. This review paper comprehensively discusses the current clinical challenges caused by A. fumigatus and provides insights on how to address them.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - A. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - L. Lombardi
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - R. Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - J.D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA, 92093, USA
| | - O. Rivero-Menendez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, 28222, Spain
| | - R. Aljohani
- Department of Infectious Diseases, Imperial College London, London, UK
| | - I.D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - J. Berman
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
| | - N. Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, 69978, Israel
| | - M.T. Hedayati
- Invasive Fungi Research Center/Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M. Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | | | - T. Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, Barcelona, 08034, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - J. Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - W. Pan
- Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - C. Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Hoenigl
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
20
|
Mroczyńska M, Brillowska-Dąbrowska A. Virulence of Clinical Candida Isolates. Pathogens 2021; 10:pathogens10040466. [PMID: 33921490 PMCID: PMC8070227 DOI: 10.3390/pathogens10040466] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
The factors enabling Candida spp. infections are secretion of hydrolytic enzymes, adherence to surfaces, biofilm formation or morphological transition, and fitness attributes. The aim of this study was to investigate the correlation between known extracellular virulence factors and survival of Galleria mellonella larvae infected with clinical Candida. The 25 isolates were tested and the activity of proteinases among 24/24, phospholipases among 7/22, esterases among 14/23, hemolysins among 18/24, and biofilm formation ability among 18/25 isolates was confirmed. Pathogenicity investigation using G. mellonella larvae as host model demonstrated that C. albicans isolates and C. glabrata isolate were the most virulent and C. krusei isolates were avirulent. C. parapsilosis virulence was identified as varied, C. inconspicua were moderately virulent, and one C. palmioleophila isolate was of low virulence and the remaining isolates of this species were moderately virulent. According to our study, virulence of Candida isolates is related to the expression of proteases, hemolysins, and esterases.
Collapse
|
21
|
Durieux MF, Melloul É, Jemel S, Roisin L, Dardé ML, Guillot J, Dannaoui É, Botterel F. Galleria mellonella as a screening tool to study virulence factors of Aspergillus fumigatus. Virulence 2021; 12:818-834. [PMID: 33682618 PMCID: PMC7946008 DOI: 10.1080/21505594.2021.1893945] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The invertebrate Galleria mellonella has increasingly and widely been used in the last few years to study complex host–microbe interactions. Aspergillus fumigatus is one of the most pathogenic fungi causing life-threatening diseases in humans and animals. Galleria mellonella larvae has been proven as a reliable model for the analysis of pathogenesis and virulence factors, enable to screen a large number of A. fumigatus strains. This review describes the different uses of G. mellonella to study A. fumigatus and provides a comparison of the different protocols to trace fungal pathogenicity. The review also includes a summary of the diverse mutants tested in G. mellonella, and their respective contribution to A. fumigatus virulence. Previous investigations indicated that G. mellonella should be considered as an interesting tool even though a mammalian model may be required to complete and verify initial data.
Collapse
Affiliation(s)
- Marie-Fleur Durieux
- Laboratoire de Parasitologie - Mycologie, CHU de Limoges, Limoges, France.,EA 7380 Dynamic, Université Paris Est Créteil, EnvA, USC ANSES, Créteil, France
| | - Élise Melloul
- EA 7380 Dynamic, Université Paris Est Créteil, EnvA, USC ANSES, Créteil, France
| | - Sana Jemel
- EA 7380 Dynamic, Université Paris Est Créteil, EnvA, USC ANSES, Créteil, France
| | - Lolita Roisin
- EA 7380 Dynamic, Université Paris Est Créteil, EnvA, USC ANSES, Créteil, France
| | - Marie-Laure Dardé
- Laboratoire de Parasitologie - Mycologie, CHU de Limoges, Limoges, France
| | - Jacques Guillot
- EA 7380 Dynamic, Université Paris Est Créteil, EnvA, USC ANSES, Créteil, France.,École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Éric Dannaoui
- EA 7380 Dynamic, Université Paris Est Créteil, EnvA, USC ANSES, Créteil, France.,Unité de Parasitologie-mycologie, Service de Microbiologie, Université Paris Descartes, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Françoise Botterel
- EA 7380 Dynamic, Université Paris Est Créteil, EnvA, USC ANSES, Créteil, France.,Unité de Mycologie, Département de Prévention, Diagnostic Et Traitement Des Infections, Groupe Hospitalier Henri Mondor - Albert Chenevier, APHP, France
| |
Collapse
|
22
|
Fregonezi NF, Oliveira LT, Singulani JDL, Marcos CM, Dos Santos CT, Taylor ML, Mendes-Giannini MJS, de Oliveira HC, Fusco-Almeida AM. Heat Shock Protein 60, Insights to Its Importance in Histoplasma capsulatum: From Biofilm Formation to Host-Interaction. Front Cell Infect Microbiol 2021; 10:591950. [PMID: 33553002 PMCID: PMC7862341 DOI: 10.3389/fcimb.2020.591950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/04/2020] [Indexed: 12/04/2022] Open
Abstract
Heat shock proteins (Hsps) are among the most widely distributed and evolutionary conserved proteins, acting as essential regulators of diverse constitutive metabolic processes. The Hsp60 of the dimorphic fungal Histoplasma capsulatum is the major surface adhesin to mammalian macrophages and studies of antibody-mediated protection against H. capsulatum have provided insight into the complexity involving Hsp60. However, nothing is known about the role of Hsp60 regarding biofilms, a mechanism of virulence exhibited by H. capsulatum. Considering this, the present study aimed to investigate the influence of the Hsp60 on biofilm features of H. capsulatum. Also, the non-conventional model Galleria mellonella was used to verify the effect of this protein during in vivo interaction. The use of invertebrate models such as G. mellonella is highly proposed for the evaluation of pathogenesis, immune response, virulence mechanisms, and antimicrobial compounds. For that purpose, we used a monoclonal antibody (7B6) against Hsp60 and characterized the biofilm of two H. capsulatum strains by metabolic activity, biomass content, and images from scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). We also evaluated the survival rate of G. mellonella infected with both strains under blockage of Hsp60. The results showed that mAb 7B6 was effective to reduce the metabolic activity and biomass of both H. capsulatum strains. Furthermore, the biofilms of cells treated with the antibody were thinner as well as presented a lower amount of cells and extracellular polymeric matrix compared to its non-treated controls. The blockage of Hsp60 before fungal infection of G. mellonella larvae also resulted in a significant increase of the larvae survival compared to controls. Our results highlight for the first time the importance of the Hsp60 protein to the establishment of the H. capsulatum biofilms and the G. mellonella larvae infection. Interestingly, the results with Hsp60 mAb 7B6 in this invertebrate model suggest a pattern of fungus-host interaction different from those previously found in a murine model, which can be due to the different features between insect and mammalian immune cells such as the absence of Fc receptors in hemocytes. However further studies are needed to support this hypothesis
Collapse
Affiliation(s)
- Nathália Ferreira Fregonezi
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Lariane Teodoro Oliveira
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Junya de Lacorte Singulani
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Caroline Maria Marcos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Claudia Tavares Dos Santos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Maria Lucia Taylor
- Unidad de Micología, Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM-Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Haroldo Cesar de Oliveira
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| |
Collapse
|
23
|
Jiang T, Tang J, Wu Z, Sun Y, Tan J, Yang L. The combined utilization of Chlorhexidine and Voriconazole or Natamycin to combat Fusarium infections. BMC Microbiol 2020; 20:275. [PMID: 32891143 PMCID: PMC7487579 DOI: 10.1186/s12866-020-01960-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background Fusarium species are the fungal pathogens most commonly responsible for the mycotic keratitis, which are resistant to the majority of currently available antifungal agents. The present study was designed to assess the efficacy of a combination of low doses chlorhexidine with two other commonly used drugs (voriconazole and natamycin) to treat Fusarium infections. Results We utilized combinations of chlorhexidine and natamycin or voriconazole against 20 clinical Fusarium strains in vitro using a checkerboard-based microdilution strategy. In order to more fully understand the synergistic interactions between voriconazole and chlorhexidine, we utilized a Galleria mellonella model to confirm the combined antifungal efficacy of chlorhexidine and voriconazole in vivo. We found that for voriconazole, natamycin, and chlorhexidine as single agents, the minimum inhibitory concentration (MIC) ranges were 2–8, 4–16, and > 16 μg/ml, respectively. In contrast, the MIC values for voriconazole and chlorhexidine were reduced to 0.25–1 and 1–2 μg/ml, respectively, when these agents were administered in combination, with synergy being observed for 90% of tested Fusarium strains. Combined chlorhexidine and natamycin treatment, in contrast, exhibited synergistic activity for only 10% of tested Fusarium strains. We observed no evidence of antagonism. Our in vivo model results further confirmed the synergistic antifungal activity of chlorhexidine and voriconazole. Conclusions Our results offer novel evidence that voriconazole and chlorhexidine exhibit synergistic activity when used to suppress the growth of Fusarium spp., and these agents may thus offer value as a combination topical antifungal treatment strategy.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Clinical Laboratory, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, 434100, China
| | - Jing Tang
- Department of Stomatology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, 434100, China
| | - Zhiqin Wu
- Department of Ophthalmology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, 434100, China
| | - Yi Sun
- Department of Dermatology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, 434100, China
| | - Jingwen Tan
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| | - Lianjuan Yang
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| |
Collapse
|
24
|
Treviño-Rangel RDJ, Villanueva-Lozano H, Méndez-Galomo KS, Solís-Villegas EM, Becerril-García MA, Montoya AM, Robledo-Leal ER, González GM. In vivo evaluation of the antifungal activity of sertraline against Aspergillus fumigatus. J Antimicrob Chemother 2020; 74:663-666. [PMID: 30403787 DOI: 10.1093/jac/dky455] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Invasive pulmonary aspergillosis is a life-threatening fungal disease principally caused by the ubiquitous mould Aspergillus fumigatus. This clinical entity is a major cause of morbidity and mortality (principally, but not restricted to, immunocompromised individuals). A few recent reports suggest in vitro fungicidal activity of sertraline against Aspergillus spp., but this activity has not yet been investigated in vivo. OBJECTIVES To evaluate the antifungal activity of sertraline in two in vivo models of aspergillosis. METHODS The antifungal activity of sertraline as monotherapy at three different doses (3, 10 and 15 mg/kg) was evaluated in Galleria mellonella and in a murine model of invasive pulmonary aspergillosis. Therapeutic efficacy parameters determined were larval survival and health index score for G. mellonella, whereas pulmonary fungal burden, galactomannan and lung histopathology were assessed in the murine model. RESULTS Sertraline treatments improved larval survival and health index score, especially at doses of 10 and 15 mg/kg. Moreover, 10 mg/kg sertraline was able to reduce pulmonary fungal burden with an efficacy comparable with that of 3 mg/kg amphotericin B and 10 mg/kg voriconazole. CONCLUSIONS To the best of our knowledge, this is the first in vivo study that evaluates the antifungal activity of sertraline against A. fumigatus, showing a possible promising option for the adjuvant treatment of pulmonary aspergillosis.
Collapse
Affiliation(s)
| | - Hiram Villanueva-Lozano
- Department of Microbiology, Faculty of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Karen S Méndez-Galomo
- Department of Microbiology, Faculty of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Elia M Solís-Villegas
- Department of Microbiology, Faculty of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Miguel A Becerril-García
- Department of Microbiology, Faculty of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Alexandra M Montoya
- Department of Microbiology, Faculty of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Efrén R Robledo-Leal
- Faculty of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Gloria M González
- Department of Microbiology, Faculty of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| |
Collapse
|
25
|
Lackner M, Obermair J, Naschberger V, Raschbichler LM, Kandelbauer C, Pallua J, Metzlaff J, Furxer S, Lass-Flörl C, Binder U. Cryptic species of Aspergillus section Terrei display essential physiological features to cause infection and are similar in their virulence potential in Galleria mellonella. Virulence 2020; 10:542-554. [PMID: 31169442 PMCID: PMC6592363 DOI: 10.1080/21505594.2019.1614382] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aspergillus species account for the majority of invasive mold infections in immunocompromised patients. Most commonly, members of the Aspergillus section Fumigati are isolated from clinical material, followed by isolates belonging to section Terrei. The section Terrei contains 16 accepted species. Six species were found to be of clinical relevance and studied for differences in growth adaptability and virulence potential. Therefore, a set of 73 isolates (22 A. terreus s.s., 8 A. alabamensis, 27 A. citrinoterreus, 2 A. floccosus, 13 A. hortai, and 1 A. neoafricanus) was studied to determine differences in (a) germination kinetics, (b) temperature tolerance, (c) oxygen stress tolerance (1% O2), and (d) a combination of the latter two. Virulence potential of phialidic (PC) and accessory conidia (AC) was studied in G. mellonella larvae, using survival as read out. Further, the formation of AC was evaluated in larval tissue. All isolates were able to grow at elevated temperature and hypoxia, with highest growth and germination rates at 37°C. A. terreus s.s., A. citrinoterreus, and A. hortai exhibited highest growth rates. Virulence potential in larvae was inoculum and temperature dependent. All species except A. floccosus formed AC and germination kinetics of AC was variable. Significantly higher virulence potential of AC was found for one A. hortai isolate. AC could be detected in larval tissue 96 h post infection. Based on these findings, cryptic species of section Terrei are well adapted to the host environment and have similar potential to cause infections.
Collapse
Affiliation(s)
- Michaela Lackner
- a Division of Hygiene and Medical Microbiology , Medical University Innsbruck , Austria
| | - Judith Obermair
- a Division of Hygiene and Medical Microbiology , Medical University Innsbruck , Austria
| | - Verena Naschberger
- a Division of Hygiene and Medical Microbiology , Medical University Innsbruck , Austria
| | | | - Carmen Kandelbauer
- a Division of Hygiene and Medical Microbiology , Medical University Innsbruck , Austria
| | - Johannes Pallua
- b Department of Pathology , Medical University Innsbruck , Austria
| | - Julia Metzlaff
- a Division of Hygiene and Medical Microbiology , Medical University Innsbruck , Austria
| | - Sibylle Furxer
- a Division of Hygiene and Medical Microbiology , Medical University Innsbruck , Austria
| | - Cornelia Lass-Flörl
- a Division of Hygiene and Medical Microbiology , Medical University Innsbruck , Austria
| | - Ulrike Binder
- a Division of Hygiene and Medical Microbiology , Medical University Innsbruck , Austria
| |
Collapse
|
26
|
Wrońska AK, Boguś MI. Heat shock proteins (HSP 90, 70, 60, and 27) in Galleria mellonella (Lepidoptera) hemolymph are affected by infection with Conidiobolus coronatus (Entomophthorales). PLoS One 2020; 15:e0228556. [PMID: 32027696 PMCID: PMC7004346 DOI: 10.1371/journal.pone.0228556] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/18/2020] [Indexed: 12/27/2022] Open
Abstract
Invertebrates are becoming more popular models for research on the immune system. The innate immunity possessed by insects shows both structural and functional similarity to the resistance displayed by mammals, and many processes occurring in insect hemocytes are similar to those that occur in mammals. The humoral immune response in insects acts by melanization, clotting and the production of reactive oxygen species and antimicrobial peptides, while the cellular immunity system is based on nodulation, encapsulation and phagocytosis. An increasingly popular insect model in biological research is Galleria mellonella, whose larvae are sensitive to infection by the entomopathogenic fungus Conidiobolus coronatus, which can also be dangerous to humans. One group of factors that modulate the response of the immune system during infection in mammals are heat shock proteins (HSPs). The aim of this study was to investigate whether infection by C. coronatus in G. mellonella hemolymph is accompanied by an increase of HSP90, HSP70, HSP60 and HSP27. Larvae (five-day-old last instar) were exposed for 24 hours to fully-grown and sporulating fungus. Hemolymph was collected either immediately after termination of exposure (F24) or 24 hours later (F48). The concentration of the HSPs in hemolymph was determined using ELISA. Immunolocalization in hemocytes was performed using fluorescence microscopy and flow cytometry. HSP90, HSP70, HSP60 and HSP27 were found to be present in the G. mellonella hemocytes. HSP60 and HSP90 predominated in healthy insects, with HSP70 and HSP27 being found in trace amounts; HSP60 and HSP27 were elevated in F24 and F48, and HSP90 was elevated in F48. The fungal infection had no effect on HSP70 levels. These findings shed light on the mechanisms underlying the interaction between the innate insect immune response and entomopathogen infection. The results of this innovative study may have a considerable impact on research concerning innate immunology and insect physiology.
Collapse
Affiliation(s)
- Anna Katarzyna Wrońska
- Polish Academy of Sciences, Witold Stefański Institute of Parasitology, Warsaw, Poland
- * E-mail:
| | - Mieczysława Irena Boguś
- Polish Academy of Sciences, Witold Stefański Institute of Parasitology, Warsaw, Poland
- BIOMIBO, Warsaw, Poland
| |
Collapse
|
27
|
Singulani JDL, Galeane MC, Ramos MD, Gomes PC, Dos Santos CT, de Souza BM, Palma MS, Fusco Almeida AM, Mendes Giannini MJS. Antifungal Activity, Toxicity, and Membranolytic Action of a Mastoparan Analog Peptide. Front Cell Infect Microbiol 2019; 9:419. [PMID: 31867293 PMCID: PMC6908851 DOI: 10.3389/fcimb.2019.00419] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/25/2019] [Indexed: 11/13/2022] Open
Abstract
Invasive fungal infections, such as cryptococcosis and paracoccidioidomycosis are associated with significant rates of morbidity and mortality. Cryptococcosis, caused by Cryptococcus neoformans, is distributed worldwide and has received much attention as a common complication in patients with HIV. Invasive fungal infections are usually treated with a combination of amphotericin B and azoles. In addition, 5-fluorocytosine (5-FC) is applied in cryptococcosis, specifically to treat central nervous system infection. However, host toxicity, high cost, emerging number of resistant strains, and difficulty in developing new selective antifungals pose challenges. The need for new antifungals has therefore prompted a screen for inhibitory peptides, which have multiple mechanisms of action. The honeycomb moth Galleria mellonella has been widely used as a model system for evaluating efficacy of antifungal agents. In this study, a peptide analog from the mastoparan class of wasps (MK58911) was tested against Cryptococcus spp. and Paracoccidioides spp. In addition, peptide toxicity tests on lung fibroblasts (MRC5) and glioblastoma cells (U87) were performed. Subsequent tests related to drug interaction and mechanism of action were also performed, and efficacy and toxicity of the peptide were evaluated in vivo using the G. mellonella model. Our results reveal promising activity of the peptide, with an MIC in the range of 7.8-31.2 μg/mL, and low toxicity in MRC and U87 cells (IC50 > 500 μg/mL). Taken together, these results demonstrate that MK58911 is highly toxic in fungal cells, but not mammalian cells (SI > 16). The mechanism of toxicity involved disruption of the plasma membrane, leading to death of the fungus mainly by necrosis. In addition, no interaction with the drugs amphotericin B and fluconazole was found either in vitro or in vivo. Finally, the peptide showed no toxic effects on G. mellonella, and significantly enhanced survival rates of larvae infected with C. neoformans. Although not statistically significant, treatment of larvae with all doses of MK58911 showed a similar trend in decreasing the fungal burden of larvae. These effects were independent of any immunomodulatory activity. Overall, these results present a peptide with potential for use as a new antifungal drug to treat systemic mycoses.
Collapse
Affiliation(s)
- Junya de Lacorte Singulani
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Mariana Cristina Galeane
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Marina Dorisse Ramos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Paulo César Gomes
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Claudia Tavares Dos Santos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Bibiana Monson de Souza
- Department of Biology, Center for the Study of Social Insects, Institute of Biosciences, São Paulo State University-UNESP, Rio Claro, Brazil
| | - Mario Sergio Palma
- Department of Biology, Center for the Study of Social Insects, Institute of Biosciences, São Paulo State University-UNESP, Rio Claro, Brazil
| | - Ana Marisa Fusco Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | | |
Collapse
|
28
|
Ribeiro F, Rossoni R, Barros P, Santos J, Fugisaki L, Leão M, Junqueira J. Action mechanisms of probiotics on
Candida
spp. and candidiasis prevention: an update. J Appl Microbiol 2019; 129:175-185. [DOI: 10.1111/jam.14511] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/18/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Affiliation(s)
- F.C. Ribeiro
- Department of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University/UNESP Sao Jose dos Campos Brazil
| | - R.D. Rossoni
- Department of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University/UNESP Sao Jose dos Campos Brazil
| | - P.P. Barros
- Department of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University/UNESP Sao Jose dos Campos Brazil
| | - J.D. Santos
- Department of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University/UNESP Sao Jose dos Campos Brazil
| | - L.R.O. Fugisaki
- Department of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University/UNESP Sao Jose dos Campos Brazil
| | - M.P.V. Leão
- Bioscience Basic Institute University of Taubaté Bom Conselho Taubaté SP Brazil
| | - J.C. Junqueira
- Department of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University/UNESP Sao Jose dos Campos Brazil
| |
Collapse
|
29
|
Morio F, Lombardi L, Binder U, Loge C, Robert E, Graessle D, Bodin M, Lass-Flörl C, Butler G, Le Pape P. Precise genome editing using a CRISPR-Cas9 method highlights the role of CoERG11 amino acid substitutions in azole resistance in Candida orthopsilosis. J Antimicrob Chemother 2019; 74:2230-2238. [DOI: 10.1093/jac/dkz204] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/25/2019] [Accepted: 04/09/2019] [Indexed: 01/08/2023] Open
Abstract
AbstractBackgroundAzoles are one of the main antifungal classes for the treatment of candidiasis. In the current context of emerging drug resistance, most studies have focused on Candida albicans, Candida glabrata or Candida auris but, so far, less is known about the underlying mechanisms of resistance in other species, including Candida orthopsilosis.ObjectivesWe investigated azole resistance in a C. orthopsilosis clinical isolate recovered from a patient with haematological malignancy receiving fluconazole prophylaxis.MethodsAntifungal susceptibility to fluconazole was determined in vitro (CLSI M27-A3) and in vivo (in a Galleria mellonella model of invasive candidiasis). The CoERG11 gene was then sequenced and amino acid substitutions identified were mapped on the predicted 3D structure of CoErg11p. A clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) genome-editing strategy was used to introduce relevant mutations into a fluconazole-susceptible C. orthopsilosis isolate.ResultsCompared with unrelated C. orthopsilosis isolates, the clinical isolate exhibited both in vitro and in vivo fluconazole resistance. Sequencing of the CoERG11 gene identified several amino acid substitutions, including two possibly involved in fluconazole resistance (L376I and G458S). Both mutations mapped close to the active site of CoErg11p. Engineering these mutations in a different genetic background using CRISPR-Cas9 demonstrated that G458S, but not L376I, confers resistance to fluconazole and voriconazole.ConclusionsOur data show that the G458S amino acid substitution in CoERG11p, but not L376I, contributes to azole resistance in C. orthopsilosis. In addition to highlighting the potential of CRISPR-Cas9 technology for precise genome editing in the field of antifungal resistance, we discuss some points that are critical to improving its efficiency.
Collapse
Affiliation(s)
- Florent Morio
- Laboratoire de Parasitologie-Mycologie, CHU de Nantes, Nantes, France
- Département de Parasitologie et Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155 – IICiMed, Faculté de Pharmacie, Nantes, France
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Lisa Lombardi
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Ulrike Binder
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Tirol, Austria
| | - Cédric Loge
- Département de Chimie Thérapeutique, Université de Nantes, Nantes Atlantique Universités, EA1155 – IICiMed, Faculté de Pharmacie, Nantes, France
| | - Estelle Robert
- Département de Parasitologie et Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155 – IICiMed, Faculté de Pharmacie, Nantes, France
| | - Denise Graessle
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Tirol, Austria
| | - Marine Bodin
- Département de Parasitologie et Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155 – IICiMed, Faculté de Pharmacie, Nantes, France
| | - Cornelia Lass-Flörl
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Tirol, Austria
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Patrice Le Pape
- Laboratoire de Parasitologie-Mycologie, CHU de Nantes, Nantes, France
- Département de Parasitologie et Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155 – IICiMed, Faculté de Pharmacie, Nantes, France
| |
Collapse
|
30
|
Llopis-Torregrosa V, Vaz C, Monteoliva L, Ryman K, Engstrom Y, Gacser A, Gil C, Ljungdahl PO, Sychrová H. Trk1-mediated potassium uptake contributes to cell-surface properties and virulence of Candida glabrata. Sci Rep 2019; 9:7529. [PMID: 31101845 PMCID: PMC6525180 DOI: 10.1038/s41598-019-43912-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/25/2019] [Indexed: 11/16/2022] Open
Abstract
The absence of high-affinity potassium uptake in Candida glabrata, the consequence of the deletion of the TRK1 gene encoding the sole potassium-specific transporter, has a pleiotropic effect. Here, we show that in addition to changes in basic physiological parameters (e.g., membrane potential and intracellular pH) and decreased tolerance to various cell stresses, the loss of high affinity potassium uptake also alters cell-surface properties, such as an increased hydrophobicity and adherence capacity. The loss of an efficient potassium uptake system results in diminished virulence as assessed by two insect host models, Drosophila melanogaster and Galleria mellonella, and experiments with macrophages. Macrophages kill trk1Δ cells more effectively than wild type cells. Consistently, macrophages accrue less damage when co-cultured with trk1Δ mutant cells compared to wild-type cells. We further show that low levels of potassium in the environment increase the adherence of C. glabrata cells to polystyrene and the propensity of C. glabrata cells to form biofilms.
Collapse
Affiliation(s)
- Vicent Llopis-Torregrosa
- Department of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, 14220, Prague 4, Czech Republic
| | - Catarina Vaz
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid and IRYCIS, Madrid, Spain
| | - Lucia Monteoliva
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid and IRYCIS, Madrid, Spain
| | - Kicki Ryman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691, Stockholm, Sweden
| | - Ylva Engstrom
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691, Stockholm, Sweden
| | - Attila Gacser
- Department of Microbiology, University of Szeged Interdisciplinary Excellence Centre, Szeged, Hungary.,MTA-SZTE "Lendület" "Mycobiome" Research Group, University of Szeged, Szeged, Hungary
| | - Concha Gil
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid and IRYCIS, Madrid, Spain
| | - Per O Ljungdahl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691, Stockholm, Sweden
| | - Hana Sychrová
- Department of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, 14220, Prague 4, Czech Republic.
| |
Collapse
|
31
|
Barros PPD, Rossoni RD, Ribeiro FDC, Silva MP, Souza CMD, Jorge AOC, Junqueira JC. Two sporulated Bacillus enhance immunity in Galleria mellonella protecting against Candida albicans. Microb Pathog 2019; 132:335-342. [PMID: 31100407 DOI: 10.1016/j.micpath.2019.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
The aim of this study was to evaluate the effects of Bacillus subtilis and Bacillus atrophaeus on Galleria mellonella immunity challenged by Candida albicans. Firstly, we analyzed the susceptibility of G. mellonella to bacilli (vegetative and sporulating forms). It was found that both vegetative and sporulating forms were not pathogenic to G. mellonella at a concentration of 1 × 104 cells/larva. Next, larvae were pretreated with two species of Bacillus, in the vegetative and sporulating forms, and then challenged with C. albicans. In addition, the gene expression of antimicrobial peptides (AMPs) such as Gallerimycin, Gloverin, Cecropin-D and Galiomicin was investigated. Survival rates increased in the Bacillus treated larvae compared with control larvae inoculated with C. albicans only. Cells and spores of Bacillus spp. upregulated Gloverin, Galiomicin and Gallerimycin genes in relation to the control group (PBS + PBS). When these larvae were infected with C. albicans, the group pretreated with spores of B. atrophaeus and B. subtilis showed a greater increase in expression of Galiomycin (49.08-fold and 13.50-fold) and Gallerimycin (27.88-fold and 68.15-fold), respectively, compared to the group infected with C. albicans only (p = 0.0001). After that, we investigated the effects of B. subtilis and B. atrophaeus on immune system of G. mellonella evaluating the number of hemocytes, quantification of melanization, cocoon formation and colony forming units (CFU) count. Hemocyte count increased in response to stimulation by Bacillus, and a higher increase was achieved when larvae were inoculated with B. subtilis spores (p = 0.0011). In the melanization assay, all groups tested demonstrated lower production of melanin compared to that in the phosphate-buffered saline (PBS) group. In addition, full cocoon formation was observed in all groups analyzed, which corresponded to a healthier wax worm. Hemolymph culture revealed higher growth of B. atrophaeus and B. subtilis in the groups inoculated with spores. We concluded that spores and cells of B. atrophaeus and B. subtilis stimulated the immune system of G. mellonella larvae and protected them of C. albicans infection.
Collapse
Affiliation(s)
- Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Felipe de Camargo Ribeiro
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Michelle Peneluppi Silva
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Cheyenne Marçal de Souza
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Antonio Olavo Cardoso Jorge
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| |
Collapse
|
32
|
Rossoni RD, Ribeiro FDC, dos Santos HFS, dos Santos JD, Oliveira NDS, Dutra MTDS, de Lapena SAB, Junqueira JC. Galleria mellonella as an experimental model to study human oral pathogens. Arch Oral Biol 2019; 101:13-22. [DOI: 10.1016/j.archoralbio.2019.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 12/28/2022]
|
33
|
Mirkov I, Popov Aleksandrov A, Lazovic B, Glamoclija J, Kataranovski M. Usefulness of animal models of aspergillosis in studying immunity against Aspergillus infections. J Mycol Med 2019; 29:84-96. [DOI: 10.1016/j.mycmed.2019.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/28/2018] [Accepted: 01/14/2019] [Indexed: 01/08/2023]
|
34
|
Le Pape P, Ximenes RM, Ariza B, Iriarte J, Alvarado J, Robert E, Sierra C, Montañez A, Álvarez-Moreno C. First case of Aspergillus caelatus airway colonization in a Chronic Obstructive Pulmonary Disease patient. Int J Infect Dis 2019; 81:85-90. [DOI: 10.1016/j.ijid.2019.01.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 11/16/2022] Open
|
35
|
Animal Models to Study Mucormycosis. J Fungi (Basel) 2019; 5:jof5020027. [PMID: 30934788 PMCID: PMC6617025 DOI: 10.3390/jof5020027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Mucormycosis is a rare but often fatal or debilitating infection caused by a diverse group of fungi. Animal models have been crucial in advancing our knowledge of mechanisms influencing the pathogenesis of mucormycoses, and to evaluate therapeutic strategies. This review describes the animal models established for mucormycosis, summarizes how they have been applied to study mucormycoses, and discusses the advantages and limitations of the different model systems.
Collapse
|
36
|
Monk BC, Sagatova AA, Hosseini P, Ruma YN, Wilson RK, Keniya MV. Fungal Lanosterol 14α-demethylase: A target for next-generation antifungal design. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140206. [PMID: 30851431 DOI: 10.1016/j.bbapap.2019.02.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 12/19/2022]
Abstract
The cytochrome P450 enzyme lanosterol 14α-demethylase (LDM) is the target of the azole antifungals used widely in medicine and agriculture as prophylaxis or treatments of infections or diseases caused by fungal pathogens. These drugs and agrochemicals contain an imidazole, triazole or tetrazole substituent, with one of the nitrogens in the azole ring coordinating as the sixth axial ligand to the LDM heme iron. Structural studies show that this membrane bound enzyme contains a relatively rigid ligand binding pocket comprised of a deeply buried heme-containing active site together with a substrate entry channel and putative product exit channel that reach to the membrane. Within the ligand binding pocket the azole antifungals have additional affinity determining interactions with hydrophobic side-chains, the polypeptide backbone and via water-mediated hydrogen bond networks. This review will describe the tools that can be used to identify and characterise the next generation of antifungals targeting LDM, with the goal of obtaining highly potent broad-spectrum fungicides that will be able to avoid target and drug efflux mediated antifungal resistance.
Collapse
Affiliation(s)
- Brian C Monk
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Alia A Sagatova
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Parham Hosseini
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Yasmeen N Ruma
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Rajni K Wilson
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Mikhail V Keniya
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
37
|
Singkum P, Suwanmanee S, Pumeesat P, Luplertlop N. A powerful in vivo alternative model in scientific research: Galleria mellonella. Acta Microbiol Immunol Hung 2019; 66:31-55. [PMID: 30816806 DOI: 10.1556/030.66.2019.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Murine models are suggested as the gold standard for scientific research, but they have many limitations of ethical and logistical concern. Then, the alternative host models have been developed to use in many aspects especially in invertebrate animals. These models are selected for many areas of research including genetics, physiology, biochemistry, evolution, disease, neurobiology, and behavior. During the past decade, Galleria mellonella has been used for several medical and scientific researches focusing on human pathogens. This model commonly used their larvae stage due to their easy to use, non-essential special tools or special technique, inexpensive, short life span, and no specific ethical requirement. Moreover, their innate immune response close similarly to mammals, which correlate with murine immunity. In this review, not only the current knowledge of characteristics and immune response of G. mellonella, and the practical use of these larvae in medical mycology research have been presented, but also the better understanding of their limitations has been provided.
Collapse
Affiliation(s)
- Pantira Singkum
- 1 Faculty of Tropical Medicine, Department of Microbiology and ImmunologyMahidol University, Bangkok, Thailand
| | - San Suwanmanee
- 1 Faculty of Tropical Medicine, Department of Microbiology and ImmunologyMahidol University, Bangkok, Thailand
| | - Potjaman Pumeesat
- 1 Faculty of Tropical Medicine, Department of Microbiology and ImmunologyMahidol University, Bangkok, Thailand
- 2 Faculty of Science and Technology, Department of Medical TechnologyBansomdejchaopraya Rajabhat University, Bangkok, Thailand
| | - Natthanej Luplertlop
- 1 Faculty of Tropical Medicine, Department of Microbiology and ImmunologyMahidol University, Bangkok, Thailand
| |
Collapse
|
38
|
Liu Y, Huang X, Liu H, Xi L, Cooper CR. Increased virulence of albino mutant of Fonsecaea monophora in Galleria mellonella. Med Mycol 2019; 57:1018-1023. [PMID: 30759240 DOI: 10.1093/mmy/myz007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/17/2018] [Accepted: 01/26/2019] [Indexed: 01/07/2023] Open
Abstract
Abstract
Fonsecaea monophora has been the predominant pathogen of chromoblastomycosis in Southern China, but its pathogenic mechanism remains unclear. New models are needed to study this infection. In the current study, we examined the role of melanin on the pathogenicity of F. monophora in Galleria mellonella model using melanin and albino strain. Interestingly, the albino mutant strain displayed higher pathogenicity compared to the melanin stain and restoration of melanin of albino mutant could reverse the pathogenicity. Histopathology showed that inflammatory nodules were bigger than that infected with albino cells, which suggested that melanized cells could trigger a robust cellular immune response of G. mellonella than albino cells. The activated immune response in G. mellonella induced by melanized cells might explain the decreased virulence of melanized cells in larvae model. While further study was needed to gain full insights into the molecular immunological mechanism in G. mellonella activated by melanin.
Collapse
Affiliation(s)
- Yinghui Liu
- Dermatology department, Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Dermatology, Sun Yat-Sun Memorial Hospital, Sun Yat-Sun University, Guangzhou, China
- Department of Biological Sciences, Youngstown State University, One University Plaza, Youngstown, OH, USA
| | - Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongfang Liu
- Department of Biological Sciences, Youngstown State University, One University Plaza, Youngstown, OH, USA
| | - Liyan Xi
- Dermatology department, Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Dermatology, Sun Yat-Sun Memorial Hospital, Sun Yat-Sun University, Guangzhou, China
| | - Chester R Cooper
- Department of Biological Sciences, Youngstown State University, One University Plaza, Youngstown, OH, USA
| |
Collapse
|
39
|
Lu M, Yang X, Yu C, Gong Y, Yuan L, Hao L, Sun S. Linezolid in Combination With Azoles Induced Synergistic Effects Against Candida albicans and Protected Galleria mellonella Against Experimental Candidiasis. Front Microbiol 2019; 9:3142. [PMID: 30766527 PMCID: PMC6365414 DOI: 10.3389/fmicb.2018.03142] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 12/04/2018] [Indexed: 12/11/2022] Open
Abstract
The incidence of resistant Candida isolates has increased continuously in recent decades, especially Candida albicans. To overcome this resistance, research on antifungal sensitizers has attracted considerable attention. Linezolid was found to inhibit the growth of Pythium insidiosum and synergize with amphotericin B against Cryptococcus neoformans. The objective of this study was to determine the interactions of linezolid and azoles against C. albicans in vitro and in vivo. In vitro, linezolid combined with azoles induced synergistic effects not only against some susceptible C. albicans isolates, but also against all tested resistant C. albicans isolates. For all resistant isolates, exposure to the combination of linezolid with azoles induced a significant decrease in the minimum inhibitory concentrations (MIC) of azoles, from >512 to 0.5–1 μg/mL for fluconazole, from >16 to 0.25–1 μg/mL for itraconazole, and from >16 to 0.03–0.25 μg/mL for voriconazole. Additionally, linezolid synergized with fluconazole against biofilms that were preformed for ≤ 12 h from both susceptible and resistant C. albicans, and the sessile MIC of fluconazole decreased from >1024 to 1–4 μg/mL. In vivo, linezolid plus azoles prolonged the survival rate of infected Galleria mellonella larvae twofold compared with the azole monotherapy group, significantly decreased the fungal burden of the infected larvae, and reduced the damage of resistant C. albicans to the larval tissue. These findings will contribute to antifungal agent discovery and new approaches for the treatment of candidiasis caused by C. albicans.
Collapse
Affiliation(s)
- Mengjiao Lu
- School of Pharmaceutical Sciences, Shandong University, Ji'nan, China.,Department of Pharmacy, Baodi People's Hospital, Tianjin, China
| | - Xinmei Yang
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Ji'nan, China
| | - Cuixiang Yu
- Department of Respiration Medicine, Qianfoshan Hospital Affiliated to Shandong University, Ji'nan, China
| | - Ying Gong
- School of Pharmaceutical Sciences, Shandong University, Ji'nan, China
| | - Lei Yuan
- Department of Pharmacy, Baodi People's Hospital, Tianjin, China
| | - Lina Hao
- Qilu Children's Hospital of Shandong University, Ji'nan, China
| | - Shujuan Sun
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Ji'nan, China
| |
Collapse
|
40
|
Pereira TC, de Barros PP, Fugisaki LRDO, Rossoni RD, Ribeiro FDC, de Menezes RT, Junqueira JC, Scorzoni L. Recent Advances in the Use of Galleria mellonella Model to Study Immune Responses against Human Pathogens. J Fungi (Basel) 2018; 4:jof4040128. [PMID: 30486393 PMCID: PMC6308929 DOI: 10.3390/jof4040128] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022] Open
Abstract
The use of invertebrates for in vivo studies in microbiology is well established in the scientific community. Larvae of Galleria mellonella are a widely used model for studying pathogenesis, the efficacy of new antimicrobial compounds, and immune responses. The immune system of G. mellonella larvae is structurally and functionally similar to the innate immune response of mammals, which makes this model suitable for such studies. In this review, cellular responses (hemocytes activity: phagocytosis, nodulation, and encapsulation) and humoral responses (reactions or soluble molecules released in the hemolymph as antimicrobial peptides, melanization, clotting, free radical production, and primary immunization) are discussed, highlighting the use of G. mellonella as a model of immune response to different human pathogenic microorganisms.
Collapse
Affiliation(s)
- Thais Cristine Pereira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Luciana Ruano de Oliveira Fugisaki
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Felipe de Camargo Ribeiro
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Raquel Teles de Menezes
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| |
Collapse
|
41
|
Li Y, Spiropoulos J, Cooley W, Khara JS, Gladstone CA, Asai M, Bossé JT, Robertson BD, Newton SM, Langford PR. Galleria mellonella - a novel infection model for the Mycobacterium tuberculosis complex. Virulence 2018; 9:1126-1137. [PMID: 30067135 PMCID: PMC6086298 DOI: 10.1080/21505594.2018.1491255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Animal models have long been used in tuberculosis research to understand disease pathogenesis and to evaluate novel vaccine candidates and anti-mycobacterial drugs. However, all have limitations and there is no single animal model which mimics all the aspects of mycobacterial pathogenesis seen in humans. Importantly mice, the most commonly used model, do not normally form granulomas, the hallmark of tuberculosis infection. Thus there is an urgent need for the development of new alternative in vivo models. The insect larvae, Galleria mellonella has been increasingly used as a successful, simple, widely available and cost-effective model to study microbial infections. Here we report for the first time that G. mellonella can be used as an infection model for members of the Mycobacterium tuberculosis complex. We demonstrate a dose-response for G. mellonella survival infected with different inocula of bioluminescent Mycobacterium bovis BCG lux, and demonstrate suppression of mycobacterial luminesence over 14 days. Histopathology staining and transmission electron microscopy of infected G. mellonella phagocytic haemocytes show internalization and aggregation of M. bovis BCG lux in granuloma-like structures, and increasing accumulation of lipid bodies within M. bovis BCG lux over time, characteristic of latent tuberculosis infection. Our results demonstrate that G. mellonella can act as a surrogate host to study the pathogenesis of mycobacterial infection and shed light on host-mycobacteria interactions, including latent tuberculosis infection.
Collapse
Affiliation(s)
- Yanwen Li
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK
| | - John Spiropoulos
- b Department of Pathology , Animal and Plant Health Agency , Addlestone , UK
| | - William Cooley
- b Department of Pathology , Animal and Plant Health Agency , Addlestone , UK
| | - Jasmeet Singh Khara
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK.,c Department of Pharmacy , National University of Singapore , Singapore
| | - Camilla A Gladstone
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK
| | - Masanori Asai
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK
| | - Janine T Bossé
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK
| | - Brian D Robertson
- d MRC Centre for Molecular Bacteriology and Infection, Department of Medicine , Imperial College London , London , UK
| | - Sandra M Newton
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK
| | - Paul R Langford
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK
| |
Collapse
|
42
|
Standardization of G. mellonella Larvae to Provide Reliable and Reproducible Results in the Study of Fungal Pathogens. J Fungi (Basel) 2018; 4:jof4030108. [PMID: 30200639 PMCID: PMC6162639 DOI: 10.3390/jof4030108] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 12/24/2022] Open
Abstract
In the past decade, Galleria mellonella (wax moth) larvae have become widely used as a non-mammalian infection model. However, the full potential of this infection model has yet to be realised, limited by the variable quality of larvae used and the lack of standardised procedures. Here, we review larvae suitable for research, protocols for dosing larvae, and methods for scoring illness in larvae infected with fungal pathogens. The development of standardised protocols for carrying out our experimental work will allow high throughput screens to be developed, changing the way in which we evaluate panels of mutants and strains. It will also enable the in vivo screening of potential antimicrobials at an earlier stage in the research and development cycle.
Collapse
|
43
|
Beekman CN, Meckler L, Kim E, Bennett RJ. Galleria mellonella as an insect model for P. destructans, the cause of White-nose Syndrome in bats. PLoS One 2018; 13:e0201915. [PMID: 30183704 PMCID: PMC6124720 DOI: 10.1371/journal.pone.0201915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
Pseudogymnoascus destructans is the fungal pathogen responsible for White-nose Syndrome (WNS), a disease that has killed millions of bats in North America over the last decade. A major obstacle to research on P. destructans has been the lack of a tractable infection model for monitoring virulence. Here, we establish a high-throughput model of infection using larvae of Galleria mellonella, an invertebrate used to study host-pathogen interactions for a wide range of microbial species. We demonstrate that P. destructans can kill G. mellonella larvae in an inoculum-dependent manner when infected larvae are housed at 13°C or 18°C. Larval killing is an active process, as heat-killed P. destructans spores caused significantly decreased levels of larval death compared to live spores. We also show that fungal spores that were germinated prior to inoculation were able to kill larvae 3–4 times faster than non-germinated spores. Lastly, we identified chemical inhibitors of P. destructans and used G. mellonella to evaluate these inhibitors for their ability to reduce virulence. We demonstrate that amphotericin B can effectively block larval killing by P. destructans and thereby establish that this infection model can be used to screen biocontrol agents against this fungal pathogen.
Collapse
Affiliation(s)
- Chapman N. Beekman
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI United States of America
| | - Lauren Meckler
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI United States of America
| | - Eleanor Kim
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI United States of America
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI United States of America
- * E-mail:
| |
Collapse
|
44
|
Van Dijck P, Sjollema J, Cammue BPA, Lagrou K, Berman J, d’Enfert C, Andes DR, Arendrup MC, Brakhage AA, Calderone R, Cantón E, Coenye T, Cos P, Cowen LE, Edgerton M, Espinel-Ingroff A, Filler SG, Ghannoum M, Gow NA, Haas H, Jabra-Rizk MA, Johnson EM, Lockhart SR, Lopez-Ribot JL, Maertens J, Munro CA, Nett JE, Nobile CJ, Pfaller MA, Ramage G, Sanglard D, Sanguinetti M, Spriet I, Verweij PE, Warris A, Wauters J, Yeaman MR, Zaat SA, Thevissen K. Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:300-326. [PMID: 29992128 PMCID: PMC6035839 DOI: 10.15698/mic2018.07.638] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Abstract
Unlike superficial fungal infections of the skin and nails, which are the most common fungal diseases in humans, invasive fungal infections carry high morbidity and mortality, particularly those associated with biofilm formation on indwelling medical devices. Therapeutic management of these complex diseases is often complicated by the rise in resistance to the commonly used antifungal agents. Therefore, the availability of accurate susceptibility testing methods for determining antifungal resistance, as well as discovery of novel antifungal and antibiofilm agents, are key priorities in medical mycology research. To direct advancements in this field, here we present an overview of the methods currently available for determining (i) the susceptibility or resistance of fungal isolates or biofilms to antifungal or antibiofilm compounds and compound combinations; (ii) the in vivo efficacy of antifungal and antibiofilm compounds and compound combinations; and (iii) the in vitro and in vivo performance of anti-infective coatings and materials to prevent fungal biofilm-based infections.
Collapse
Affiliation(s)
- Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Leuven, Belgium
| | - Jelmer Sjollema
- University of Groningen, University Medical Center Groningen, Department of BioMedical Engineering, Groningen, The Netherlands
| | - Bruno P. A. Cammue
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Katrien Lagrou
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- Clinical Department of Laboratory Medicine and National Reference Center for Mycosis, UZ Leuven, Belgium
| | - Judith Berman
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Christophe d’Enfert
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - David R. Andes
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Maiken C. Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Axel A. Brakhage
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Dept. Microbiology and Molecular Biology, Friedrich Schiller University Jena, Institute of Microbiology, Jena, Germany
| | - Richard Calderone
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington DC, USA
| | - Emilia Cantón
- Severe Infection Research Group: Medical Research Institute La Fe (IISLaFe), Valencia, Spain
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- ESCMID Study Group for Biofilms, Switzerland
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Belgium
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Mira Edgerton
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY USA
| | | | - Scott G. Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mahmoud Ghannoum
- Center for Medical Mycology, Department of Dermatology, University Hospitals Cleveland Medical Center and Case Western Re-serve University, Cleveland, OH, USA
| | - Neil A.R. Gow
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Hubertus Haas
- Biocenter - Division of Molecular Biology, Medical University Innsbruck, Innsbruck, Austria
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry; Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, USA
| | - Elizabeth M. Johnson
- National Infection Service, Public Health England, Mycology Reference Laboratory, Bristol, UK
| | | | | | - Johan Maertens
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium and Clinical Department of Haematology, UZ Leuven, Leuven, Belgium
| | - Carol A. Munro
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jeniel E. Nett
- University of Wisconsin-Madison, Departments of Medicine and Medical Microbiology & Immunology, Madison, WI, USA
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, USA
| | - Michael A. Pfaller
- Departments of Pathology and Epidemiology, University of Iowa, Iowa, USA
- JMI Laboratories, North Liberty, Iowa, USA
| | - Gordon Ramage
- ESCMID Study Group for Biofilms, Switzerland
- College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne
| | - Maurizio Sanguinetti
- Institute of Microbiology, Università Cattolica del Sacro Cuore, IRCCS-Fondazione Policlinico "Agostino Gemelli", Rome, Italy
| | - Isabel Spriet
- Pharmacy Dpt, University Hospitals Leuven and Clinical Pharmacology and Pharmacotherapy, Dpt. of Pharmaceutical and Pharma-cological Sciences, KU Leuven, Belgium
| | - Paul E. Verweij
- Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center, Nijmegen, the Netherlands (omit "Nijmegen" in Radboud University Medical Center)
| | - Adilia Warris
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Joost Wauters
- KU Leuven-University of Leuven, University Hospitals Leuven, Department of General Internal Medicine, Herestraat 49, B-3000 Leuven, Belgium
| | - Michael R. Yeaman
- Geffen School of Medicine at the University of California, Los Angeles, Divisions of Molecular Medicine & Infectious Diseases, Har-bor-UCLA Medical Center, LABioMed at Harbor-UCLA Medical Center
| | - Sebastian A.J. Zaat
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Am-sterdam, Netherlands
| | - Karin Thevissen
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
45
|
A phenylthiazole derivative demonstrates efficacy on treatment of the cryptococcosis & candidiasis in animal models. Future Sci OA 2018; 4:FSO305. [PMID: 30057783 PMCID: PMC6060395 DOI: 10.4155/fsoa-2018-0001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022] Open
Abstract
Aim: In this work we test 2-(2-(cyclohexylmethylene)hydrazinyl)-4-phenylthiazole (CHT) against Cryptococcus spp. and Candida albicans. Methods: The ability of CHT to act in biofilm and also to interfere with C. albicans adhesion was evaluated, as well as the efficiency of the CHT in cryptococcosis and candidiasis invertebrate and murine models. Results & conclusion: In the present work we verified that CHT is found to inhibit Cryptococcus and C. albicans affecting biofilm in both and inhibited adhesion of Candida to human buccal cells. When we evaluated in vivo, CHT prolonged survival of Galleria mellonella after infections with Cryptococcusgattii, Cryptococcusneoformans or C. albicans and promoted a reduction in the fungal burden to the organs in the murine models. These results demonstrate CHT therapeutic potential. Candida spp. and Cryptococcus spp. cause thousands of deaths each year. In general, antifungal drugs have several limitations to their use, and there are a limited number of these drugs available to be used in the treatments of fungal diseases. This work contributes to the search for new antifungal drugs for the treatment of candidiasis and cryptococcosis, aiming in the future, after all necessary tests, to serve as a basis for the production of drugs that could be used in the treatment of patients with these fungal diseases.
Collapse
|
46
|
Matsumoto Y, Ishii M, Shimizu K, Kawamoto S, Sekimizu K. [A Silkworm Infection Model to Evaluate Antifungal Drugs for Cryptococcosis]. Med Mycol J 2018; 58:E131-E137. [PMID: 29187715 DOI: 10.3314/mmj.17.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The development of effective drugs against fungal diseases involves performing infection experiments in animals to evaluate candidate therapeutic compounds. Cryptococcus neoformans is a pathogenic fungus that causes deep mycosis, resulting in respiratory illness and meningitis. Here we describe a silkworm system established to evaluate the safety and efficacy of therapeutic drugs against infection by Cryptococcus neoformans and the advantages of this system over other animal models. The silkworm assay system has two major advantages: 1) silkworms are less expensive to rear and their use is less problematic than that of mammals in terms of animal welfare, and 2) in vivo screenings for identifying candidate drugs can be easily performed using a large number of silkworms. The pharmacokinetics of compounds are consistent between silkworms and mammals. Moreover, the ED50 values of antibiotics are concordant between mammalian and silkworm infection models. Furthermore, the body size of silkworms makes them easy to handle in experimental procedures compared with other invertebrate infectious experimental systems, and accurate amounts of pathogens and chemicals can be injected fairly easily. These advantages of silkworms as a host animal make them useful for screening candidate drugs for cryptococcosis.
Collapse
Affiliation(s)
| | - Masaki Ishii
- Teikyo University Institute of Medical Mycology.,Genome Pharmaceuticals Institute Co. Ltd
| | - Kiminori Shimizu
- Department of Biological Science and Technology, Tokyo University of Science
| | | | - Kazuhisa Sekimizu
- Teikyo University Institute of Medical Mycology.,Genome Pharmaceuticals Institute Co. Ltd
| |
Collapse
|
47
|
Scorzoni L, de Paula E Silva ACA, de Oliveira HC, Marcos CM, Singulani JDL, Fusco-Almeida AM, Mendes-Giannini MJS. Can passage in Galleria mellonella activate virulence factors of Paracoccidioides brasiliensis as in the murine model? Med Mycol 2018. [PMID: 28637229 DOI: 10.1093/mmy/myx045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a fungal disease restricted to Latin countries, and its etiologic agents derive from the Paracoccidioides genus. Attenuation or loss of virulence in Paracoccidioides spp. following successive subculturing has been described. However, virulence can be recovered by passage in mammalian host. In this study, the recovery of adhesion of P. brasiliensis through passage in mice was compared to that in the insect Galleria mellonella. Analysis of in vitro fungal-host cell interaction, gene expression of adhesins, and analysis of the survival curves revealed that Galleria mellonella is useful for the reactivation of P. brasiliensis adhesion.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Brasil
| | - Ana Carolina Alves de Paula E Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Brasil
| | - Haroldo Cesar de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Brasil
| | - Caroline Maria Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Brasil
| | - Junya de Lacorte Singulani
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Brasil
| | - Ana Marisa Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Brasil
| | - Maria José Soares Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Brasil
| |
Collapse
|
48
|
Borman AM. Of mice and men and larvae: Galleria mellonella to model the early host-pathogen interactions after fungal infection. Virulence 2017; 9:9-12. [PMID: 28933671 PMCID: PMC5955190 DOI: 10.1080/21505594.2017.1382799] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Andrew M Borman
- a UK National Mycology Reference Laboratory (MRL) , Public Health England South-West , Bristol , UK
| |
Collapse
|
49
|
Dos Santos JD, de Alvarenga JA, Rossoni RD, García MT, Moraes RM, Anbinder AL, Cardoso Jorge AO, Junqueira JC. Immunomodulatory effect of photodynamic therapy in Galleria mellonella infected with Porphyromonas gingivalis. Microb Pathog 2017; 110:507-511. [PMID: 28757273 DOI: 10.1016/j.micpath.2017.07.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 12/21/2022]
Abstract
Porphyromonas gingivalis is an important pathogen in the development of periodontal disease. Our study investigated if the treatment with antimicrobial photodynamic therapy (aPDT) that employs a nontoxic dye, followed by irradiation with harmless visible light can attenuate the experimental infection of P. gingivalis in Galleria mellonella. Firstly, different concentrations of P. gingivalis ranging from 102 to 106 cells/larva were injected into the animal to obtain a lethal concentration. Next, the following groups of G. mellonella infected with P. gingivalis were evaluated: inoculation of the photosensitizer and application of laser (P + L+), inoculation of physiologic solution and application of laser (P-L+), inoculation the photosensitizer without laser (P + L-) and inoculation of physiologic solution without Laser (P-L-). The effects of aPDT on infection by P. gingivalis were evaluated by survival curve analysis and hemocytes count. A lethal concentration of 106 cells/larva was adopted for evaluating the effects of aPDT on experimental infection with P. gingivalis. We found that after 120 s of PDT application, the death of G. mellonella was significantly lower compared to the control groups (p = 0.0010). Moreover, the hemocyte density in the P+L+ group was increased by 9.6 × 106 cells/mL (2.62-fold increase) compared to the infected larvae with no treatment (L-P- group) (p = 0.0175). Finally, we verified that the aPDT led to a significant reduction of the number of P. gingivalis cells in G. mellonella hemolymph. In conclusion, PDT application was effective against P. gingivalis infection by increasing the survival of G. mellonella and was able to increase the circulating hemocytes indicating that PDT activates the G. mellonella immune system.
Collapse
Affiliation(s)
- Jéssica Diane Dos Santos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ. Estadual Paulista, São José dos Campos, SP, Brazil.
| | - Janaína Araújo de Alvarenga
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ. Estadual Paulista, São José dos Campos, SP, Brazil
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ. Estadual Paulista, São José dos Campos, SP, Brazil
| | - Maíra Terra García
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ. Estadual Paulista, São José dos Campos, SP, Brazil
| | - Renata Mendonça Moraes
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ. Estadual Paulista, São José dos Campos, SP, Brazil
| | - Ana Lia Anbinder
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ. Estadual Paulista, São José dos Campos, SP, Brazil
| | - Antonio Olavo Cardoso Jorge
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ. Estadual Paulista, São José dos Campos, SP, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ. Estadual Paulista, São José dos Campos, SP, Brazil
| |
Collapse
|
50
|
Barnoy S, Gancz H, Zhu Y, Honnold CL, Zurawski DV, Venkatesan MM. The Galleria mellonella larvae as an in vivo model for evaluation of Shigella virulence. Gut Microbes 2017; 8:335-350. [PMID: 28277944 PMCID: PMC5570432 DOI: 10.1080/19490976.2017.1293225] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Shigella spp. causing bacterial diarrhea and dysentery are human enteroinvasive bacterial pathogens that are orally transmitted through contaminated food and water and cause bacillary dysentery. Although natural Shigella infections are restricted to humans and primates, several smaller animal models are used to analyze individual steps in pathogenesis. No animal model fully duplicates the human response and sustaining the models requires expensive animals, costly maintenance of animal facilities, veterinary services and approved animal protocols. This study proposes the development of the caterpillar larvae of Galleria mellonella as a simple, inexpensive, informative, and rapid in-vivo model for evaluating virulence and the interaction of Shigella with cells of the insect innate immunity. Virulent Shigella injected through the forelegs causes larvae death. The mortality rates were dependent on the Shigella strain, the infectious dose, and the presence of the virulence plasmid. Wild-type S. flexneri 2a, persisted and replicated within the larvae, resulting in haemocyte cell death, whereas plasmid-cured mutants were rapidly cleared. Histology of the infected larvae in conjunction with fluorescence, immunofluorescence, and transmission electron microscopy indicate that S. flexneri reside within a vacuole of the insect haemocytes that ultrastructurally resembles vacuoles described in studies with mouse and human macrophage cell lines. Some of these bacteria-laden vacuoles had double-membranes characteristic of autophagosomes. These results suggest that G. mellonella larvae can be used as an easy-to-use animal model to understand Shigella pathogenesis that requires none of the time and labor-consuming procedures typical of other systems.
Collapse
Affiliation(s)
- Shoshana Barnoy
- Department of Enteric Infections, Bacterial Diseases Branch (BDB), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Hanan Gancz
- Wound Infections Department, BDB, Walter Reed Army Institute of Research, Silver Spring Maryland, USA
| | - Yuewei Zhu
- Department of Enteric Infections, Bacterial Diseases Branch (BDB), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Cary L. Honnold
- Department of Pathology, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Daniel V. Zurawski
- Wound Infections Department, BDB, Walter Reed Army Institute of Research, Silver Spring Maryland, USA
| | - Malabi M. Venkatesan
- Department of Enteric Infections, Bacterial Diseases Branch (BDB), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA,CONTACT Malabi M. Venkatesan Chief, Dept. of Enteric Infections, Bacterial Diseases Branch, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD. 20910
| |
Collapse
|