1
|
Schneider K, Steward RA, Celorio-Mancera MDLP, Janz N, Moberg D, Wheat CW, Nylin S. Plasticity for the win: Flexible transcriptional response to host plant switches in the comma butterfly (Polygonia c-album). Mol Ecol 2024; 33:e17479. [PMID: 39036890 DOI: 10.1111/mec.17479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/30/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
Generalist plant-feeding insects are characterised by a broad host repertoire that can comprise several families or even different orders of plants. The genetic and physiological mechanisms underlying the use of such a wide host range are still not fully understood. Earlier studies indicate that the consumption of different host plants is associated with host-specific gene expression profiles. It remained, however, unclear if and how larvae can alter these profiles in the case of a changing host environment. Using the polyphagous comma butterfly (Polygonia c-album) we show that larvae can adjust their transcriptional profiles in response to a new host plant. The switch to some of the host plants, however, resulted in a larger transcriptional response and, thus, seems to be more challenging. At a physiological level, no correspondence for these patterns could be found in larval performance. This suggests that a high transcriptional but also phenotypic flexibility are essential for the use of a broad and diverse host range. We furthermore propose that host switch tests in the laboratory followed by transcriptomic investigations can be a valuable tool to examine not only plasticity in host use but also subtle and/or transient trade-offs in the evolution of host plant repertoires.
Collapse
Affiliation(s)
| | - Rachel A Steward
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Biology Department, Lund University, Lund, Sweden
| | - Maria de la Paz Celorio-Mancera
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Ecology, Environment and Plant Science, Stockholm University, Stockholm, Sweden
| | - Niklas Janz
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Dick Moberg
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | | | - Sören Nylin
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
2
|
Sellamuthu G, Naseer A, Hradecký J, Chakraborty A, Synek J, Modlinger R, Roy A. Gene expression plasticity facilitates different host feeding in Ips sexdentatus (Coleoptera: Curculionidae: Scolytinae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104061. [PMID: 38151136 DOI: 10.1016/j.ibmb.2023.104061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Host shift is ecologically advantageous and a crucial driver for herbivore insect speciation. Insects on the non-native host obtain enemy-free space and confront reduced competition, but they must adapt to survive. Such signatures of adaptations can often be detected at the gene expression level. It is astonishing how bark beetles cope with distinct chemical environments while feeding on various conifers. Hence, we aim to disentangle the six-toothed bark beetle (Ips sexdentatus) response against two different conifer defences upon host shift (Scots pine to Norway spruce). We conducted bioassay and metabolomic analysis followed by RNA-seq experiments to comprehend the beetle's ability to surpass two different terpene-based conifer defence systems. Beetle growth rate and fecundity were increased when reared exclusively on spruce logs (alternative host) compared to pine logs (native host). Comparative gene expression analysis identified differentially expressed genes (DEGs) related to digestion, detoxification, transporter activity, growth, signalling, and stress response in the spruce-feeding beetle gut. Transporter genes were highly abundant during spruce feeding, suggesting they could play a role in pumping a wide variety of endogenous and xenobiotic compounds or allelochemicals out. Trehalose transporter (TRET) is also up-regulated in the spruce-fed beetle gut to maintain homeostasis and stress tolerance. RT-qPCR and enzymatic assays further corroborated some of our findings. Taken together, the transcriptional plasticity of key physiological genes plays a crucial role after the host shift and provides vital clues for the adaptive potential of bark beetles on different conifer hosts.
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Aisha Naseer
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Jaromír Hradecký
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Amrita Chakraborty
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Forest Microbiome Team, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Jiří Synek
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Roman Modlinger
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Amit Roy
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Forest Microbiome Team, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic.
| |
Collapse
|
3
|
Matsishina NV, Ermak MV, Kim IV, Fisenko PV, Sobko OA, Klykov AG, Emel'yanov AN. Allelochemical Interactions in the Trophic System « Henosepilachna vigintioctomaculata Motschulsky- Solanum tuberosum Linneus». INSECTS 2023; 14:insects14050459. [PMID: 37233087 DOI: 10.3390/insects14050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/22/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Henosepilachna vigintioctomaculata is an intrinsic element in the agroecosystem of potato fields. The issues of relationships in the system "potato ladybird beetle-potato plant" have not yet been studied. To study the effect of potato varieties on the potato ladybird beetle, only hatched and active larvae with a hatching rate close to 100% were selected from a laboratory colony. Larvae of the first summer generation collected in potato fields were used in our study to determine the level of adrenaline in the bodies of insects, fresh potato leaves were used to study the content of glycoalkaloids, the content and activity of proteinase inhibitors. The larvae that fed on plants of varieties Belmonda, Queen Anne, Lilly, Dachny, Kazachok, Yubilyar, and Avgustin demonstrated the highest level of stress while the stress level in those that fed on variety Smak was the lowest. The damage inflicted by potato ladybird beetles on leaves of some studied potato varieties led to a progressive increase in the content of glycoalkaloids already within 24 h after the phytophages had been transferred. In most cases, the content of glycoalkoloids increased by 20% within five days. Potato ladybird beetles feeding on plants of different potato varieties caused a progressive increase in proteinase inhibitors (% of the control). Plants of variety Smak did not show a significant increase in the content of alkaloids in the herbage in response to the damage. A correlation was established between the mortality rate, the activity of proteinase inhibitors, the dynamics of glycoalkaloids, and the level of adrenaline, which could be formulated as follows: the higher the content of glycoalkaloids and the activity of proteinase inhibitors in the tissues of potato plants, the higher the level of stress in the potato ladybird beetles that feed on them.
Collapse
Affiliation(s)
- Nathalia Valerievna Matsishina
- FSBSI «FSC of Agricultural Biotechnology of the Far East Named after A.K. Chaiki», Timiryazevsky stl., Volozhenina st., 30 B, 692539 Ussuriysk, Russia
| | - Marina Vladimirovna Ermak
- FSBSI «FSC of Agricultural Biotechnology of the Far East Named after A.K. Chaiki», Timiryazevsky stl., Volozhenina st., 30 B, 692539 Ussuriysk, Russia
| | - Irina Vyacheslavovna Kim
- FSBSI «FSC of Agricultural Biotechnology of the Far East Named after A.K. Chaiki», Timiryazevsky stl., Volozhenina st., 30 B, 692539 Ussuriysk, Russia
| | - Petr Viktorovich Fisenko
- FSBSI «FSC of Agricultural Biotechnology of the Far East Named after A.K. Chaiki», Timiryazevsky stl., Volozhenina st., 30 B, 692539 Ussuriysk, Russia
| | - Olga Abdulalievna Sobko
- FSBSI «FSC of Agricultural Biotechnology of the Far East Named after A.K. Chaiki», Timiryazevsky stl., Volozhenina st., 30 B, 692539 Ussuriysk, Russia
| | - Alexey Grigorievich Klykov
- FSBSI «FSC of Agricultural Biotechnology of the Far East Named after A.K. Chaiki», Timiryazevsky stl., Volozhenina st., 30 B, 692539 Ussuriysk, Russia
| | - Alexey Nikolaevich Emel'yanov
- FSBSI «FSC of Agricultural Biotechnology of the Far East Named after A.K. Chaiki», Timiryazevsky stl., Volozhenina st., 30 B, 692539 Ussuriysk, Russia
| |
Collapse
|
4
|
Wu CY, Xiao KR, Wang LZ, Wang J, Song QS, Stanley D, Wei SJ, Zhu JY. Identification and expression profiling of serine protease-related genes in Tenebrio molitor. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21963. [PMID: 36039637 DOI: 10.1002/arch.21963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
In insects, serine proteases and serine protease homologs (SPs/SPHs) are involved in a variety of physiological processes including digestion, development, and immunity. Here, we identified 112 SP and 88 SPH genes in the genome of the yellow mealworm, Tenebrio molitor. Based on the features of domain structure, they were divided into "S" group containing single Tryp-SPc or Tryp-SPHc domain, "C" group containing 1-4 CLIP domain (CLIPA-D) and "M" group containing the CBD, CUB, EGF, Fz, Gd, LDLa, PAN, SEA, SR, Sushi, and TSP domains, and have 115, 48, and 37 gene members, respectively. According to the active sites in the catalytic triad, the putative trypsin, chymotrypsin, or elastase-like enzyme specificity of the identified SPs/SPHs were predicted. Phylogenetic and genomic location analyses revealed that gene duplication exists in the large amount of SPs/SPHs. Gene expression profiling using RNA-seq data along with real time reverse transcription-polymerase chain reaction analysis showed that most SP/SPH genes display life stage specific expression patterns, indicating their important roles in development. Many SP/SPH genes are specifically or highly expressed in the gut, salivary gland, fat body, hemocyte, ovary, and testis, suggesting that they participate in digestion, immunity, and reproduction. The findings lay the foundation for further functional characterization of SPs/SPHs in T. molitor.
Collapse
Affiliation(s)
- Chao-Yan Wu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Kai-Ran Xiao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Long-Zhang Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Jun Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Shu-Jun Wei
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
5
|
Deans CA, Sword GA, Vogel H, Behmer ST. Quantity versus quality: Effects of diet protein-carbohydrate ratios and amounts on insect herbivore gene expression. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 145:103773. [PMID: 35405259 DOI: 10.1016/j.ibmb.2022.103773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Dietary protein and digestible carbohydrates are two key macronutrients for insect herbivores, but the amounts and ratios of these two macronutrients in plant vegetative tissues can be highly variable. Typically, insect herbivores regulate their protein-carbohydrate intake by feeding selectively on nutritionally complementary plant tissues, but this may not always be possible. Interestingly, lab experiments consistently demonstrate that performance - especially growth and survival - does not vary greatly when caterpillars and nymphal grasshoppers are reared on diets that differ in their protein-carbohydrate content. This suggests insect herbivores employ post-ingestive physiological mechanisms to compensate for variation in diet protein-carbohydrate profile. However, the molecular mechanisms that underlie this compensation are not well understood. Here we explore, for the first time in an insect herbivore, the transcriptional effects of two dietary factors: protein-to-carbohydrate ratio (p:c) and total macronutrient (p + c) content. Specifically, we reared Helicoverpa zea caterpillars on three diets that varied in diet p:c ratio and one diet that varied in total p + c concentration, all within an ecologically-relevant range. We observed two key findings. Caterpillars reared on diets with elevated total p + c content showed large differences in gene expression. In contrast, only small differences in gene expression were observed when caterpillars were reared on diets with different p:c ratios (spanning from protein-biased to carbohydrate-biased). The invariable expression of many metabolic genes across these variable diets suggests that H. zea caterpillars employ a strategy of constitutive expression to deal with protein-carbohydrate imbalances rather than diet-specific changes. This is further supported by two findings. First, few genes were uniquely associated with feeding on a protein- and carbohydrate-biased diet. Second, many differentially-expressed genes were shared across protein-biased, carbohydrate-biased, and concentrated diet treatments. Our study provides insights into the post-ingestive physiological mechanisms insect herbivores employ to regulate protein-carbohydrate intake. Most notably, it suggests that H. zea, and perhaps other generalist species, use similar post-ingestive mechanisms to deal with protein-carbohydrate imbalances - regardless of the direction of the imbalance.
Collapse
Affiliation(s)
- Carrie A Deans
- Department of Entomology, Texas A&M University, TAMU 2475, College Station, TX, 77843, USA; Department of Entomology, University of Minnesota, 219 Hodson Hall, St. Paul, MN, 55108, USA.
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, TAMU 2475, College Station, TX, 77843, USA
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, GER, 07745, USA
| | - Spencer T Behmer
- Department of Entomology, Texas A&M University, TAMU 2475, College Station, TX, 77843, USA
| |
Collapse
|
6
|
Silva-Júnior NR, Cabrera YM, Barbosa SL, Barros RDA, Barros E, Vital CE, Ramos HJO, Oliveira MGA. Intestinal proteases profiling from Anticarsia gemmatalis and their binding to inhibitors. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21792. [PMID: 33948994 DOI: 10.1002/arch.21792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/25/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Although the importance of intestinal hydrolases is recognized, there is little information on the intestinal proteome of lepidopterans such as Anticarsia gemmatalis. Thus, we carried out the proteomic analysis of the A. gemmatalis intestine to characterize the proteases by LC/MS. We examined the interactions of proteins identified with protease inhibitors (PI) using molecular docking. We found 54 expressed antigens for intestinal protease, suggesting multiple important isoforms. The hydrolytic arsenal featured allows for a more comprehensive understanding of insect feeding. The docking analysis showed that the soybean PI (SKTI) could bind efficiently with the trypsin sequences and, therefore, insect resistance does not seem to involve changing the sequences of the PI binding site. In addition, a SERPIN was identified and the interaction analysis showed the inhibitor binding site is in contact with the catalytic site of trypsin, possibly acting as a regulator. In addition, this SERPIN and the identified PI sequences can be targets for the control of proteolytic activity in the caterpillar intestine and serve as a support for the rational design of a molecule with greater stability, less prone to cleavage by proteases and viable for the control of insect pests such as A. gemmatalis.
Collapse
Affiliation(s)
- Neilier R Silva-Júnior
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
| | - Yaremis M Cabrera
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
| | - Samuel L Barbosa
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
| | - Rafael de A Barros
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
| | - Edvaldo Barros
- Núcleo de Análise de Biomoléculas, NuBioMol, Centro de Ciências Biológicas e da Saúde - CCB, Universidade Federal de Viçosa - UFV, Viçosa, Minas Gerais, Brazil
| | - Camilo E Vital
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
| | - Humberto J O Ramos
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
- Núcleo de Análise de Biomoléculas, NuBioMol, Centro de Ciências Biológicas e da Saúde - CCB, Universidade Federal de Viçosa - UFV, Viçosa, Minas Gerais, Brazil
| | - Maria Goreti A Oliveira
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
7
|
Perera OP, Shelby KS, Pierce CA, Snodgrass GL. Expression Profiles of Digestive Genes in the Gut and Salivary Glands of Tarnished Plant Bug (Hemiptera: Miridae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6273620. [PMID: 33974083 PMCID: PMC8112305 DOI: 10.1093/jisesa/ieab028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 06/12/2023]
Abstract
Host plant preference of agricultural pests may shift throughout the growing season, allowing the pests to persist on wild hosts when crops are not available. Lygus Hahn (Hemiptera: Miridae) bugs are severe pests of cotton during flowering and fruiting stages, but can persist on alternative crops, or on weed species. Diversity of digestive enzymes produced by salivary glands and gut tissues play a pivotal role in an organism's ability to utilize various food sources. Polyphagous insects produce an array of enzymes that can process carbohydrates, lipids, and proteins. In this study, the digestive enzyme repertoire of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), was identified by high-throughput sequencing followed by cDNA cloning and sequencing. This study identified 87 digestive genes, including 30 polygalacturonases (PG), one β-galactosidase, three α-glucosidases, six β-glucosidases, 28 trypsin-like proteases, three serine proteases, one apyrase-like protease, one cysteine protease, 12 lipases, and two transcripts with low similarity to a xylanase A-like genes. RNA-Seq expression profiles of these digestive genes in adult tarnished plant bugs revealed that 57 and 12 genes were differentially expressed in the salivary gland and gut (≥5-fold, P ≤ 0.01), respectively. All polygalacturonase genes, most proteases, and two xylanase-like genes were differentially expressed in salivary glands, while most of the carbohydrate and lipid processing enzymes were differentially expressed in the gut. Seven of the proteases (KF208689, KF208697, KF208698, KF208699, KF208700, KF208701, and KF208702) were not detected in either the gut or salivary glands.
Collapse
Affiliation(s)
- Omaththage P Perera
- Southern Insect Management Research Unit, USDA, Agricultural Research Service, Stoneville, MS 38776
| | - Kent S Shelby
- Biological Control of Insects Research Laboratory, USDA, Agricultural Research Service, 1503 S. Providence Road, Columbia, MO 65203
| | - Calvin A Pierce
- Southern Insect Management Research Unit, USDA, Agricultural Research Service, Stoneville, MS 38776
| | - Gordon L Snodgrass
- Southern Insect Management Research Unit, USDA, Agricultural Research Service, Stoneville, MS 38776
| |
Collapse
|
8
|
Ashouri S, Farshbaf Pourabad R. Regulation of gene expression encoding the digestive α-amylase in the larvae of Colorado potato beetle, Leptinotarsa decemlineata (Say) in response to plant protein extracts. Gene 2020; 766:145159. [PMID: 32971186 DOI: 10.1016/j.gene.2020.145159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/19/2020] [Accepted: 09/11/2020] [Indexed: 11/18/2022]
Abstract
Considering the relevance of insect α-amylases and natural α-amylase inhibitors present in plants to protect against insect damage, we investigated the effect of white bean and rapeseed protein extracts on digestive α-amylase gene expression of the Colorado potato beetle, Leptinotarsa decemlineata (Say). For this purpose, in vitro and in vivo trials were performed to determine the inhibitory activity of seed proteins on the third and fourth instar larvae. In both trials, the significant inhibitory effect of each extracts on the third and fourth instar larval α-amylase activity and considerable mortality in treatments were observed compared to control trials. In the RT-qPCR, expression ratio demonstrated that the α-amylase gene of two different larval stages grown on both proteins treated leaves had significantly differentiated expression and was up-regulated in third instar larvae and down-regulated in fourth instar larvae compared to control. Results suggest that the hyper-production of α-amylase in third instar larvae is elicited to compensate for the enzyme activity inhibition at an earlier stage and also down-regulation suggests the existence of a negative feedback of plant proteins on the last instar larvae via impaired food intake and digestive α-amylase activity in Colorado potato beetle. Therefore, disruption of the insect's digestive physiology by plant defensive proteins can be considered in the development of innovative controlling methods of this crucial potato pest.
Collapse
Affiliation(s)
- Shabnam Ashouri
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Reza Farshbaf Pourabad
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
9
|
Wu J, Lan H, Zhang ZF, Cao HH, Liu TX. Performance and Transcriptional Response of the Green Peach Aphid Myzus persicae to the Restriction of Dietary Amino Acids. Front Physiol 2020; 11:487. [PMID: 32523545 PMCID: PMC7261896 DOI: 10.3389/fphys.2020.00487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/21/2020] [Indexed: 12/22/2022] Open
Abstract
Free amino acids in the phloem sap are the dominant nitrogen source for aphids, but their availability is usually poor. Although some studies have explored the effect of dietary amino acid restriction on aphid performance, little is known about the molecular basis of these effects. Here, we examined the performance and transcriptome of the green peach aphid, Myzus persicae, fed a standard diet (Control diet) or a diet containing 50% of the total amino acids of the Control diet (Half diet). Aphid weight and fecundity were significantly reduced in the Half diet group. Transcriptomic analysis showed that a total of 1460 genes were differentially expressed between the groups were fed on the two diets, which many of them were associated with nutrient and energy metabolism. When feeding on the Half diet, aphids upregulated genes associated with the amino acid biosynthetic pathway (predominantly amino acid biosynthesis genes and some amino acid transporter genes) as well as the cysteine and serine protease genes. Furthermore, these aphids displayed increased expression of genes associated with glycolysis, which could generate intermediates for de novo amino acid biosynthesis. Consistent with this, elevated glucose levels were observed in aphids in the Half diet group. Additionally, the expression levels of several genes associated with hormonal signaling pathway were altered. Several genes related to juvenile hormone and insulin-like peptide (ILP) signaling were downregulated, including Krüppel homolog 1 (Kr-h1) and insulin-like peptide 5 (Ilp5), respectively. In contrast, several genes related to ecdysone signaling were upregulated including broad-complex core protein (Br-c) and shade (Shd). Despite their poor performances, M. persicae adapted to dietary restriction of amino acids, through upregulation of genes involved in amino acid biosynthesis, glycolysis, and protein degradation, as well as by altering the expression level of genes involved in hormone signaling pathways.
Collapse
Affiliation(s)
| | | | | | - He-He Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
10
|
Lokya V, Swathi M, Mallikarjuna N, Padmasree K. Response of Midgut Trypsin- and Chymotrypsin-Like Proteases of Helicoverpa armigera Larvae Upon Feeding With Peanut BBI: Biochemical and Biophysical Characterization of PnBBI. FRONTIERS IN PLANT SCIENCE 2020; 11:266. [PMID: 32265951 PMCID: PMC7105688 DOI: 10.3389/fpls.2020.00266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
Proteinase/Protease inhibitors (PIs) from higher plants play an important role in defense and confer resistance against various insect pests and pathogens. In the present study, Bowman-Birk Inhibitor (BBI) was purified from mature seeds of an interspecific advanced hybrid peanut variety (4368-1) using chromatographic techniques. The biochemical and biophysical characteristics such as low molecular mass, presence of several isoinhibitors and higher-ordered dimer/tetramer, predominance of antiparallel β-sheets and random coils in secondary structure, reactive sites against trypsin and chymotrypsin, broad spectrum of stability toward extreme pH and temperature along with MALDI TOF-TOF analysis (ProteomeXchange identifier PXD016933) ascertained the purified biomolecule from peanut as BBI (PnBBI). Surface plasmon resonance competitive binding analysis revealed the bifunctional PnBBI is a trypsin specific inhibitor with 1:2 stoichiometry as compared to chymotrypsin. A concentration-dependent self-association tendency of PnBBI was further confirmed by 'red shift' in the far-UV CD spectra. Furthermore, the insecticidal potential of PnBBI against Helicoverpa armigera was assessed by in vitro assays and in vivo feeding experiments. A significant reduction in larval body weight was observed with concomitant attenuation in the activity of midgut trypsin-like proteases of H. armigera (HaTPs) fed on PnBBI supplemented diet. The one and two-dimensional zymography studies revealed the disappearance of several isoforms of HaTP upon feeding with PnBBI. qRT-PCR analysis further suggests the role of PnBBI in not only inhibiting the activity of midgut trypsin and chymotrypsin-like proteases but also in modulating their expression. Taken together, the results provide a biochemical and molecular basis for introgressed resistance in peanut interspecific advanced hybrid variety against H. armigera.
Collapse
Affiliation(s)
- Vadthya Lokya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Marri Swathi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Kollipara Padmasree
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
11
|
Zhang W, Yu H, Lv Y, Bushley KE, Wickham JD, Gao S, Hu S, Zhao L, Sun J. Gene family expansion of pinewood nematode to detoxify its host defence chemicals. Mol Ecol 2020; 29:940-955. [DOI: 10.1111/mec.15378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/02/2020] [Accepted: 02/02/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology Chinese Academy of Sciences Beijing China
- Laboratory of Forest Pathogen Integrated Biology Research Institute of Forestry New Technology Chinese Academy of Forestry Beijing China
| | - Haiying Yu
- State Key Laboratory of Microbial Resources Institute of Microbiology Chinese Academy of Sciences Beijing China
| | - Yunxue Lv
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Kathryn E. Bushley
- Department of Plant and Microbial Biology University of Minnesota Twin Cities Saint Paul MN USA
| | - Jacob D. Wickham
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Shenghan Gao
- State Key Laboratory of Microbial Resources Institute of Microbiology Chinese Academy of Sciences Beijing China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources Institute of Microbiology Chinese Academy of Sciences Beijing China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology Chinese Academy of Sciences Beijing China
- CAS Center for Excellence in Biotic Interactions University of Chinese Academy of Sciences Beijing China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology Chinese Academy of Sciences Beijing China
- CAS Center for Excellence in Biotic Interactions University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
12
|
da Silva Júnior NR, Vital CE, de Almeida Barros R, Faustino VA, Monteiro LP, Barros E, de Oliveira EE, de Oliveira Ramos HJ, de Almeida Oliveira MG. Intestinal proteolytic profile changes during larval development of Anticarsia gemmatalis caterpillars. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21631. [PMID: 31587381 DOI: 10.1002/arch.21631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/26/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Soybean is one of most consumed and produced grains in the world, and Anticarsia gemmatalis is a pest that causes great damage to this crop due to severe defoliation during its larval phase. Plants have mechanisms that lead to the inhibition of proteases in the intestine of these herbivores, hampering their development. Understanding this complex protease inhibitor is important for pest control. The objective of this study was to evaluate the enzymatic profiles of the intestinal proteases of the soybean caterpillar at different instars. For this, the proteolytic profile of the gut in the third, fourth, and fifth instars were analyzed. Irreversible inhibitors of proteases were separately incubated with A. gemmatalis enzyme extracts at the third, fourth, and fifth instar to assess the contribution of these proteases to total proteolytic activity. The enzymatic extracts were also evaluated with specific substrates to confirm changes in the specific activities of trypsin-like, chymotrypsin-like, and cysteine proteases at different instars. The results showed that the protease profile of A. gemmatalis gut changes throughout its larval development. The activity of cysteine proteases was more intense in the first instar. On the contrary, the serine proteases showed major activities in the late stages of the larval phase. Zymogram analysis and protein identification by liquid chromatography-mass spectrometry indicated serine protease as the main protease class expressed in the fifth instar. These results may shift the focus from the rational development of the protease inhibitor to A. gemmatalis and other Lepidoptera, as the expression of major proteases is not constant.
Collapse
Affiliation(s)
- Neilier R da Silva Júnior
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, BIOAGRO/INCT-IPP, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Camilo E Vital
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, BIOAGRO/INCT-IPP, Universidade Federal de Viçosa, Viçosa, Brazil
- Center of Analysis of Biomolecules, NuBioMol, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Rafael de Almeida Barros
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, BIOAGRO/INCT-IPP, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Verônica A Faustino
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, BIOAGRO/INCT-IPP, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Luana P Monteiro
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, BIOAGRO/INCT-IPP, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Edvaldo Barros
- Center of Analysis of Biomolecules, NuBioMol, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Humberto J de Oliveira Ramos
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, BIOAGRO/INCT-IPP, Universidade Federal de Viçosa, Viçosa, Brazil
- Center of Analysis of Biomolecules, NuBioMol, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Maria G de Almeida Oliveira
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, BIOAGRO/INCT-IPP, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
13
|
Gartia J, Anangi R, Joshi RS, Giri AP, King GF, Barnwal RP, Chary KVR. NMR structure and dynamics of inhibitory repeat domain variant 12, a plant protease inhibitor from Capsicum annuum, and its structural relationship to other plant protease inhibitors. J Biomol Struct Dyn 2019; 38:1388-1397. [PMID: 31038412 DOI: 10.1080/07391102.2019.1607559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Although several plant protease inhibitors have been structurally characterized using X-ray crystallography, very few have been studied using NMR techniques. Here, we report an NMR study of the solution structure and dynamics of an inhibitory repeat domain (IRD) variant 12 from the wound-inducible Pin-II type proteinase inhibitor from Capsicum annuum. IRD variant 12 (IRD12) showed strong anti-metabolic activity against the Lepidopteran insect pest, Helicoverpa armigera. The NMR-derived three-dimensional structure of IRD12 reveals a three-stranded anti-parallel β-sheet rigidly held together by four disulfide bridges and shows structural homology with known IRDs. It is interesting to note that the IRD12 structure containing ∼75% unstructured part still shows substantial amount of rigidity of N-H bond vectors with respect to its molecular motion.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Janeka Gartia
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad, India
| | - Raveendra Anangi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Rakesh S Joshi
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
| | - Ashok P Giri
- CSIR - National Chemical Laboratory, Pune, India
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ravi P Barnwal
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Kandala V R Chary
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad, India.,Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India.,Indian Institute of Science Education and Research, Berhampur, Odisha, India
| |
Collapse
|
14
|
Zhao A, Li Y, Leng C, Wang P, Li Y. Inhibitory Effect of Protease Inhibitors on Larval Midgut Protease Activities and the Performance of Plutella xylostella (Lepidoptera: Plutellidae). Front Physiol 2019; 9:1963. [PMID: 30697169 PMCID: PMC6340996 DOI: 10.3389/fphys.2018.01963] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 12/31/2018] [Indexed: 11/13/2022] Open
Abstract
Plutella xylostella L. (diamondback moth) is a pest of cruciferous plants. To understand the relationship among protease inhibitors, protease activities and the growth and development of this insect, the activities of midgut proteases of P. xylostella larvae were determined in this study. Protease samples were extracted from the midguts of P. xylostella larvae, and the protease activities were determined using enzyme specific substrates. The results showed that CaCl2, EDTA, and EGTA inhibited only the trypsin. Among the common protease inhibitors, phenylmethyl sulfonyl fluorine (PMSF), Nα-p-methyl sulfonyl-L-lysine chloromethylketone (TLCK), Nα-methyl sulfonyl-L- phenylalanine chloromethyl ketone (TPCK), soybean trypsin inhibitor (STI), and PMSF inhibited the total protease, high-alkaline trypsin (a trypsin subtype with highly alkaline pH optimum), low-alkaline trypsin (another trypsin subtype with slightly alkaline pH optimum), and chymotrypsin; TLCK inhibited the total protease and high-alkaline trypsin, whereas TPCK only activated the high-alkaline trypsin activities. STI had an inhibitory effect on all the proteases. These results showed that protease inhibitors had a certain extent inhibition to protease activities in the larval midgut of P. xylostella and that STI can potentially be used for effective pest control. The development of P. xylostella was delayed in the presence of different inhibitors. These effects were also related to the concentration of the inhibitor. A higher STI concentration showed a longer lasting effect but lower effect in this study compared to that of TLCK. The protease inhibitors had some inhibitory effect on the synthesis and secretion of proteases, and interfered with the protease activity, thereby inhibiting the absorption of nutrients and delaying the growth and development of P. xylostella and reducing their ability to reproduce. These findings should provide the baseline information about using for effective pest management in the future.
Collapse
Affiliation(s)
- Aiping Zhao
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Yin Li
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Chunmeng Leng
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Ping Wang
- Department of Entomology, Cornell University, Ithaca, NY, United States
| | - Yiping Li
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|
15
|
Mohanraj SS, Tetali SD, Mallikarjuna N, Dutta-Gupta A, Padmasree K. Biochemical properties of a bacterially-expressed Bowman-Birk inhibitor from Rhynchosia sublobata (Schumach.) Meikle seeds and its activity against gut proteases of Achaea janata. PHYTOCHEMISTRY 2018; 151:78-90. [PMID: 29674106 DOI: 10.1016/j.phytochem.2018.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 06/08/2023]
Abstract
Crude proteinase inhibitors (CPIs) extracted from the seeds of Rhynchosia sublobata, a wild relative of pigeon pea showed pronounced inhibitory activity on the larval gut trypsin-like proteases of lepidopteran insect pest - Achaea janata. Consequently, a full-length cDNA of Bowman-Birk inhibitor gene (RsBBI1) was cloned from the immature seeds of R. sublobata. It contained an ORF of 360 bp encoding a 119-amino acid polypeptide (13.3 kDa) chain with an N-terminus signal sequence comprising of 22 amino acids. The amino acid sequence and phylogenetic analysis together revealed that RsBBI1 exhibited a close relation with BBIs from soybean and Phaseolus spp. A cDNA sequence corresponding to RsBBI1 mature protein (89 amino acid stretch) was expressed in E. coli. The recombinant rRsBBI1 protein with a molecular mass of 9.97 kDa was purified using trypsin affinity chromatography. The purified rRsBBI1 exhibited non-competitive mode of inhibition of both bovine trypsin (Ki of 358 ± 11 nM) and chymotrypsin (Ki of 446 ± 9 nM). Its inhibitory activity against these proteases was stable at high temperatures (>95 °C) and a wide pH range but sensitive to reduction with dithiothreitol (DTT), indicating the importance of disulphide bridges in exhibiting its activity. Also, rRsBBI1 showed significant inhibitory activity (IC50 = 70 ng) on A. janata larval gut trypsin-like proteases (AjGPs). Conversely, it showed <1% inhibitory activity (IC50 = 8 μg) on H. armigera larval gut trypsin-like proteases (HaGPs) than it has against AjGPs. Besides, in vivo feeding experiments clearly indicated the deleterious effects of rRsBBI1 on larval growth and development in A. janata which suggests it can be further exploited for such properties.
Collapse
Affiliation(s)
- Soundappan S Mohanraj
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Sarada D Tetali
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Nalini Mallikarjuna
- Legume Cell Biology, Grain Legumes Program, International Crop Research Institute for Semi-Arid Tropics, Hyderabad 502 324, India
| | - Aparna Dutta-Gupta
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Kollipara Padmasree
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India.
| |
Collapse
|
16
|
Lomate PR, Dewangan V, Mahajan NS, Kumar Y, Kulkarni A, Wang L, Saxena S, Gupta VS, Giri AP. Integrated Transcriptomic and Proteomic Analyses Suggest the Participation of Endogenous Protease Inhibitors in the Regulation of Protease Gene Expression in Helicoverpa armigera. Mol Cell Proteomics 2018; 17:1324-1336. [PMID: 29661852 DOI: 10.1074/mcp.ra117.000533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/16/2018] [Indexed: 11/06/2022] Open
Abstract
Insects adapt to plant protease inhibitors (PIs) present in their diet by differentially regulating multiple digestive proteases. However, mechanisms regulating protease gene expression in insects are largely enigmatic. Ingestion of multi-domain recombinant Capsicum annuum protease inhibitor-7 (CanPI-7) arrests growth and development of Helicoverpa armigera (Lepidoptera: Noctuidae). Using de novo RNA sequencing and proteomic analysis, we examined the response of H. armigera larvae fed on recombinant CanPI-7 at different time intervals. Here, we present evidence supporting a dynamic transition in H. armigera protease expression on CanPI-7 feeding with general down-regulation of protease genes at early time points (0.5 to 6 h) and significant up-regulation of specific trypsin, chymotrypsin and aminopeptidase genes at later time points (12 to 48 h). Further, coexpression of H. armigera endogenous PIs with several digestive protease genes were apparent. In addition to the differential expression of endogenous H. armigera PIs, we also observed a distinct novel isoform of endogenous PI in CanPI-7 fed H. armigera larvae. Based on present and earlier studies, we propose potential mechanism of protease regulation in H. armigera and subsequent adaptation strategy to cope with anti-nutritional components of plants.
Collapse
Affiliation(s)
- Purushottam R Lomate
- From the ‡Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Veena Dewangan
- From the ‡Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Neha S Mahajan
- From the ‡Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Yashwant Kumar
- From the ‡Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Abhijeet Kulkarni
- §Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, MS, India
| | - Li Wang
- ¶Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames 50011, IA
| | - Smita Saxena
- §Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, MS, India
| | - Vidya S Gupta
- From the ‡Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Ashok P Giri
- From the ‡Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India;
| |
Collapse
|
17
|
Bendre AD, Ramasamy S, Suresh CG. Analysis of Kunitz inhibitors from plants for comprehensive structural and functional insights. Int J Biol Macromol 2018; 113:933-943. [PMID: 29499268 DOI: 10.1016/j.ijbiomac.2018.02.148] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 01/11/2023]
Abstract
Legume Kunitz type trypsin inhibitor (KTI) family is one of the most versatile families of proteins. A typical KTI features a single peptide folded in β-trefoil manner, with the molecular weight about 20-22kDa and two disulphide bonds. The members are known to inhibit a wide range of serpins proteases at the same time many of them possess unique features. Copaifera langsdorffii Trypsin inhibitor (CTI) has a β-trefoil fold made up of two non-covalently bound polypeptide chains with only a single disulfide bridge. Delonix regia Trypsin inhibitor (DrTI) has one amino acid insertion between P1 and P2 of the reactive site distorting its conformation. Bauhinia bauhinioides Cruzipain inhibitor (BbCI) has a conservative β-trefoil fold but lacks disulfide bonds. Such subtle differences in structures make Kunitz inhibitors different from other inhibitor families. Most of the studies on these inhibitors are focused towards their proposed role in defense from insect pests and wounding but their exact physiological role in nature is still uncharted. Thus, it would be very interesting to closely analyze the structural details of these inhibitors in order to ascertain their biological role and other fascinating applications.
Collapse
Affiliation(s)
- Ameya D Bendre
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NCL campus, Pune 411008, India
| | - Sureshkumar Ramasamy
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, India.
| | - C G Suresh
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
18
|
Yang L, Lin Z, Fang Q, Wang J, Yan Z, Zou Z, Song Q, Ye G. The genomic and transcriptomic analyses of serine proteases and their homologs in an endoparasitoid, Pteromalus puparum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:56-68. [PMID: 28713011 DOI: 10.1016/j.dci.2017.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
In insects, serine proteases (SPs) and serine protease homologs (SPHs) constitute a large family of proteins involved in multiple physiological processes such as digestion, development, and immunity. Here we identified 145 SPs and 38 SPHs in the genome of an endoparasitoid, Pteromalus puparum. Gene duplication and tandem repeats were observed in this large SPs/SPHs family. We then analyzed the expression profiles of SP/SPH genes in response to different microbial infections (Gram-positive bacterium Micrococcus luteus, Gram-negative bacterium Escherichia coli, and entomopathogenic fungus Beauveria bassiana), as well as in different developmental stages and tissues. Some SPs/SPHs also displayed distinct expression patterns in venom gland, suggesting their specific physiological functions as venom proteins. Our finding lays groundwork for further research of SPs and SPHs expressed in the venom glands.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiale Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Double-Stranded RNA-Mediated Suppression of Trypsin-Like Serine Protease (t-SP) Triggers Over-Expression of Another t-SP Isoform in Helicoverpa armigera. Appl Biochem Biotechnol 2017; 184:746-761. [DOI: 10.1007/s12010-017-2584-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
|
20
|
Huang X, McNeill MR, Ma J, Qin X, Tu X, Cao G, Wang G, Nong X, Zhang Z. Gut Transcriptome Analysis Shows Different Food Utilization Efficiency by the Grasshopper Oedaleous asiaticus (Orthoptera: Acrididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:1831-1840. [PMID: 28525595 DOI: 10.1093/jee/tox128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Indexed: 06/07/2023]
Abstract
Oedaleus asiaticus B. Bienko is a persistent pest occurring in north Asian grasslands. We found that O. asiaticus feeding on Stipa krylovii Roshev. had higher approximate digestibility (AD), efficiency of conversion of ingested food (ECI), and efficiency of conversion of digested food (ECD), compared with cohorts feeding on Leymus chinensis (Trin.) Tzvel, Artemisia frigida Willd., or Cleistogenes squarrosa (Trin.) Keng. Although this indicated high food utilization efficiency for S. krylovii, the physiological processes and molecular mechanisms underlying these biological observations are not well understood. Transcriptome analysis was used to examine how gene expression levels in O. asiaticus gut are altered by feeding on the four plant species. Nymphs (fifth-instar female) that fed on S. krylovii had the largest variation in gene expression profiles, with a total of 88 genes significantly upregulated compared with those feeding on the other three plants, mainly including nutrition digestive genes of protein, carbohydrate, and lipid digestion. GO and KEGG enrichment also showed that feeding S. krylovii could upregulate the nutrition digestion-related molecular function, biological process, and pathways. These changes in transcripts levels indicate that the physiological processes of activating nutrition digestive enzymes and metabolism pathways can well explain the high food utilization of S. krylovii by O. asiaticus.
Collapse
Affiliation(s)
- Xunbing Huang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
- Scientific Observation and Experimental Station of Pests in Xilin Gol Rangeland, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Xilinhot, Inner Mongolia, China
| | | | - Jingchuan Ma
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
- Scientific Observation and Experimental Station of Pests in Xilin Gol Rangeland, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Xilinhot, Inner Mongolia, China
| | - Xinghu Qin
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
- Scientific Observation and Experimental Station of Pests in Xilin Gol Rangeland, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Xilinhot, Inner Mongolia, China
| | - Xiongbing Tu
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
- Scientific Observation and Experimental Station of Pests in Xilin Gol Rangeland, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Xilinhot, Inner Mongolia, China
| | - Guangchun Cao
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
- Scientific Observation and Experimental Station of Pests in Xilin Gol Rangeland, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Xilinhot, Inner Mongolia, China
| | - Guangjun Wang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
- Scientific Observation and Experimental Station of Pests in Xilin Gol Rangeland, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Xilinhot, Inner Mongolia, China
| | - Xiangqun Nong
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
- Scientific Observation and Experimental Station of Pests in Xilin Gol Rangeland, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Xilinhot, Inner Mongolia, China
| | - Zehua Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
- Scientific Observation and Experimental Station of Pests in Xilin Gol Rangeland, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Xilinhot, Inner Mongolia, China
| |
Collapse
|
21
|
Martinez M, Santamaria ME, Diaz-Mendoza M, Arnaiz A, Carrillo L, Ortego F, Diaz I. Phytocystatins: Defense Proteins against Phytophagous Insects and Acari. Int J Mol Sci 2016; 17:E1747. [PMID: 27775606 PMCID: PMC5085774 DOI: 10.3390/ijms17101747] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 01/31/2023] Open
Abstract
This review deals with phytocystatins, focussing on their potential role as defence proteins against phytophagous arthropods. Information about the evolutionary, molecular and biochemical features and inhibitory properties of phytocystatins are presented. Cystatin ability to inhibit heterologous cysteine protease activities is commented on as well as some approaches of tailoring cystatin specificity to enhance their defence function towards pests. A general landscape on the digestive proteases of phytophagous insects and acari and the remarkable plasticity of their digestive physiology after feeding on cystatins are highlighted. Biotechnological approaches to produce recombinant cystatins to be added to artificial diets or to be sprayed as insecticide-acaricide compounds and the of use cystatins as transgenes are discussed. Multiple examples and applications are included to end with some conclusions and future perspectives.
Collapse
Affiliation(s)
- Manuel Martinez
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo, Pozuelo de Alarcon, Madrid 28223, Spain.
| | - Maria Estrella Santamaria
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo, Pozuelo de Alarcon, Madrid 28223, Spain.
| | - Mercedes Diaz-Mendoza
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo, Pozuelo de Alarcon, Madrid 28223, Spain.
| | - Ana Arnaiz
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo, Pozuelo de Alarcon, Madrid 28223, Spain.
| | - Laura Carrillo
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo, Pozuelo de Alarcon, Madrid 28223, Spain.
| | - Felix Ortego
- Departamento de Biologia Medioambiental, Centro de Investigaciones Biologicas, CSIC, Ramiro de Maeztu, 9, Madrid 28040, Spain.
| | - Isabel Diaz
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo, Pozuelo de Alarcon, Madrid 28223, Spain.
| |
Collapse
|
22
|
Jadhav AR, War AR, Nikam AN, Adhav AS, Gupta VS, Sharma HC, Giri AP, Tamhane VA. Capsicum annuum proteinase inhibitor ingestion negatively impacts the growth of sorghum pest Chilo partellus and promotes differential protease expression. Biochem Biophys Rep 2016; 8:302-309. [PMID: 28955969 PMCID: PMC5614469 DOI: 10.1016/j.bbrep.2016.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 01/17/2023] Open
Abstract
Background Chilo partellus is an important insect pest infesting sorghum and maize. The larvae internalize in the stem, rendering difficulties in pest management. We investigated the effects of Capsicum annuum proteinase inhibitors (CanPIs) on C. partellus larvae by in-vitro and in-vivo experiments. Methods Recombinant CanPI-7 (with four-Inhibitory Repeat Domains, IRDs), -22 (two-IRDs) and insect proteinase activities were estimated by proteinase assays, dot blot assays and in gel activity assays. Feeding bioassays of lab reared C. partellus with CanPI-7 and -22 were performed. C. partellus proteinase gene expression was done by RT-PCR. In-silico structure prediction of proteinases and CanPI IRDs was carried out, their validation and molecular docking was done for estimating the interaction strength. Results Larval proteinases of C. partellus showed higher activity at alkaline pH and expressed few proteinase isoforms. Both CanPIs showed strong inhibition of C. partellus larval proteinases. Feeding bioassays of C. partellus with CanPIs revealed a dose dependent retardation of larval growth, reduction of pupal mass and fecundity, while larval and pupal periods increased significantly. Ingestion of CanPIs resulted in differential up-regulation of C. partellus proteinase isoforms, which were sensitive to CanPI-7 but were insensitive to CanPI-22. In-silico interaction studies indicated the strong interaction of IRD-9 (of CanPI-22) with Chilo proteinases tested. Conclusions Of the two PIs tested, CanPI-7 prevents induction of inhibitor insensitive proteinases in C. partellus so it can be explored for developing C. partellus tolerance in sorghum. General significance Ingestion of CanPIs, effectively retards C. partellus growth; while differentially regulating the proteinases. CanPI-7 and -22 ingestion led to dose-dependent growth and development retardation in Chilo partellus. Ingestion of CanPIs showed up-regulation of proteinase activity and differential proteinase isoforms in C. partellus. CanPI-7/-22 induced differential proteinases of C. partellus were sensitive to CanPI-7 and were insensitive to CanPI-22. Molecular interaction studies of C. partellus proteinases and CanPIs identified a potent inhibitor.
Collapse
Affiliation(s)
- Abhilash R Jadhav
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, Maharashtra, India
| | - Abdul R War
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Ashwini N Nikam
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, Maharashtra, India
| | - Anmol S Adhav
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, Maharashtra, India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Hari C Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Vaijayanti A Tamhane
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, Maharashtra, India
| |
Collapse
|
23
|
Souza TP, Dias RO, Castelhano EC, Brandão MM, Moura DS, Silva-Filho MC. Comparative analysis of expression profiling of the trypsin and chymotrypsin genes from Lepidoptera species with different levels of sensitivity to soybean peptidase inhibitors. Comp Biochem Physiol B Biochem Mol Biol 2016; 196-197:67-73. [PMID: 26944308 DOI: 10.1016/j.cbpb.2016.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 11/18/2022]
Abstract
Peptidase inhibitors (PIs) are essential proteins involved in plant resistance to herbivorous insects, yet many insect species are able to escape the negative effects of these molecules. We compared the effects of acute and chronic ingestion of soybean peptidase inhibitors (SPIs) on Spodoptera frugiperda and Diatraea saccharalis, two Lepidoptera species with different sensitivities to SPI ingestion. We analyzed the trypsin and chymotrypsin gene expression profiles in both species. Acute exposure of S. frugiperda to the inhibitors activated seven genes (SfChy5, SfChy9, SfChy19, SfChy22, SfTry6, SfTry8, and SfTry10), whereas chronic exposure activated 16 genes (SfChy2, SfChy4, SfChy5, SfChy8, SfChy9, SfChy11, SfChy12, SfChy15, SfChy17, SfChy21, SfChy22, SfTry6, SfTry8, SfTry9, SfTry10, and SfTry12). By contrast, the challenge of D. saccharalis with SPIs did not differentially induce the expression of trypsin- or chymotrypsin-encoding genes, with the exception of DsChy7. Bayesian phylogenetic analysis of S. frugiperda trypsin protein sequences revealed two gene clades: one composed of genes responsive to the SPIs and a second composed of the unresponsive genes. D. saccharalis trypsin proteins were clustered nearest to the S. frugiperda unresponsive genes. Overall, our findings support a hypothesized mechanism of resistance of Noctuidae moths to SPIs, involving gene number expansion of trypsin and chymotrypsin families and regulation of gene expression, which could also explain the variable susceptibility between S. frugiperda and D. saccharalis to these plant inhibitors.
Collapse
Affiliation(s)
- Thais P Souza
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13400-918 Piracicaba, SP, Brazil
| | - Renata O Dias
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13400-918 Piracicaba, SP, Brazil
| | - Elaine C Castelhano
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13400-918 Piracicaba, SP, Brazil
| | - Marcelo M Brandão
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Cândido Rondon, 400, 13083-875 Campinas, SP, Brazil
| | - Daniel S Moura
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13400-918 Piracicaba, SP, Brazil
| | - Marcio C Silva-Filho
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13400-918 Piracicaba, SP, Brazil.
| |
Collapse
|
24
|
Genome-wide identification and expression profiling of serine proteases and homologs in the diamondback moth, Plutella xylostella (L.). BMC Genomics 2015; 16:1054. [PMID: 26653876 PMCID: PMC4676143 DOI: 10.1186/s12864-015-2243-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/25/2015] [Indexed: 12/02/2022] Open
Abstract
Background Serine proteases (SPs) are crucial proteolytic enzymes responsible for digestion and other processes including signal transduction and immune responses in insects. Serine protease homologs (SPHs) lack catalytic activity but are involved in innate immunity. This study presents a genome-wide investigation of SPs and SPHs in the diamondback moth, Plutella xylostella (L.), a globally-distributed destructive pest of cruciferous crops. Results A total of 120 putative SPs and 101 putative SPHs were identified in the P. xylostella genome by bioinformatics analysis. Based on the features of trypsin, 38 SPs were putatively designated as trypsin genes. The distribution, transcription orientation, exon-intron structure and sequence alignments suggested that the majority of trypsin genes evolved from tandem duplications. Among the 221 SP/SPH genes, ten SP and three SPH genes with one or more clip domains were predicted and designated as PxCLIPs. Phylogenetic analysis of CLIPs in P. xylostella, two other Lepidoptera species (Bombyx mori and Manduca sexta), and two more distantly related insects (Drosophila melanogaster and Apis mellifera) showed that seven of the 13 PxCLIPs were clustered with homologs of the Lepidoptera rather than other species. Expression profiling of the P. xylostella SP and SPH genes in different developmental stages and tissues showed diverse expression patterns, suggesting high functional diversity with roles in digestion and development. Conclusions This is the first genome-wide investigation on the SP and SPH genes in P. xylostella. The characterized features and profiled expression patterns of the P. xylostella SPs and SPHs suggest their involvement in digestion, development and immunity of this species. Our findings provide a foundation for further research on the functions of this gene family in P. xylostella, and a better understanding of its capacity to rapidly adapt to a wide range of environmental variables including host plants and insecticides. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2243-4) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Mishra M, Lomate PR, Joshi RS, Punekar SA, Gupta VS, Giri AP. Ecological turmoil in evolutionary dynamics of plant-insect interactions: defense to offence. PLANTA 2015; 242:761-771. [PMID: 26159435 DOI: 10.1007/s00425-015-2364-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/01/2015] [Indexed: 06/04/2023]
Abstract
Available history manifests contemporary diversity that exists in plant-insect interactions. A radical thinking is necessary for developing strategies that can co-opt natural insect-plant mutualism, ecology and environmental safety for crop protection since current agricultural practices can reduce species richness and evenness. The global environmental changes, such as increased temperature, CO₂ and ozone levels, biological invasions, land-use change and habitat fragmentation together play a significant role in re-shaping the plant-insect multi-trophic interactions. Diverse natural products need to be studied and explored for their biological functions as insect pest control agents. In order to assure the success of an integrated pest management strategy, human activities need to be harmonized to minimize the global climate changes. Plant-insect interaction is one of the most primitive and co-evolved associations, often influenced by surrounding changes. In this review, we account the persistence and evolution of plant-insect interactions, with particular focus on the effect of climate change and human interference on these interactions. Plants and insects have been maintaining their existence through a mutual service-resource relationship while defending themselves. We provide a comprehensive catalog of various defense strategies employed by the plants and/or insects. Furthermore, several important factors such as accelerated diversification, imbalance in the mutualism, and chemical arms race between plants and insects as indirect consequences of human practices are highlighted. Inappropriate implementation of several modern agricultural practices has resulted in (i) endangered mutualisms, (ii) pest status and resistance in insects and (iii) ecological instability. Moreover, altered environmental conditions eventually triggered the resetting of plant-insect interactions. Hence, multitrophic approaches that can harmonize human activities and minimize their interference in native plant-insect interactions are needed to maintain natural balance between the existence of plants and insects.
Collapse
Affiliation(s)
- Manasi Mishra
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, MS, India
| | | | | | | | | | | |
Collapse
|
26
|
Santamaría ME, González-Cabrera J, Martínez M, Grbic V, Castañera P, Díaz L, Ortego F. Digestive proteases in bodies and faeces of the two-spotted spider mite, Tetranychus urticae. JOURNAL OF INSECT PHYSIOLOGY 2015; 78:69-77. [PMID: 25960286 DOI: 10.1016/j.jinsphys.2015.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 05/04/2023]
Abstract
Digestive proteases of the phytophagous mite Tetranychus urticae have been characterised by comparing their activity in body and faecal extracts. Aspartyl, cathepsin B- and L-like and legumain activities were detected in both mite bodies and faeces, with a specific activity of aspartyl and cathepsin L-like proteases about 5- and 2-fold higher, respectively, in mite faeces than in bodies. In general, all these activities were maintained independently of the host plant where the mites were reared (bean, tomato or maize). Remarkably, this is the first report in a phytophagous mite of legumain-like activity, which was characterised for its ability to hydrolyse the specific substrate Z-VAN-AMC, its activation by DTT and inhibition by IAA but not by E-64. Gel free nanoLC-nanoESI-QTOF MS/MS proteomic analysis of mite faeces resulted in the identification of four cathepsins L and one aspartyl protease (from a total of the 29 cathepsins L, 27 cathepsins B, 19 legumains and two aspartyl protease genes identified the genome of this species). Gene expression analysis reveals that four cathepsins L and the aspartyl protease identified in the mite faeces, but also two cathepsins B and two legumains that were not detected in the faeces, were expressed at high levels in the spider mite feeding stages (larvae, nymphs and adults) relative to embryos. Taken together, these results indicate a digestive role for cysteine and aspartyl proteases in T. urticae. The expression of the cathepsins B and L, legumains and aspartyl protease genes analysed in our study increased in female adults after feeding on Arabidopsis plants over-expressing the HvCPI-6 cystatin, that specifically targets cathepsins B and L, or the CMe trypsin inhibitor that targets serine proteases. This unspecific response suggests that in addition to compensation for inhibitor-targeted enzymes, the increase in the expression of digestive proteases in T. urticae may act as a first barrier against ingested plant defensive proteins.
Collapse
Affiliation(s)
- María E Santamaría
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain; Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus Montegancedo, Autovía M40 (Km 38), 28223 Pozuelo de Alarcón, Madrid, Spain; Department of Biology WSC 339/341, The University of Western Ontario, 1151 Richmond St, London, ON N6A 5B7, Canada
| | - Joel González-Cabrera
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Manuel Martínez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus Montegancedo, Autovía M40 (Km 38), 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Vojislava Grbic
- Department of Biology WSC 339/341, The University of Western Ontario, 1151 Richmond St, London, ON N6A 5B7, Canada
| | - Pedro Castañera
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Lsabel Díaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus Montegancedo, Autovía M40 (Km 38), 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Félix Ortego
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| |
Collapse
|
27
|
Simon JC, d'Alencon E, Guy E, Jacquin-Joly E, Jaquiery J, Nouhaud P, Peccoud J, Sugio A, Streiff R. Genomics of adaptation to host-plants in herbivorous insects. Brief Funct Genomics 2015; 14:413-23. [DOI: 10.1093/bfgp/elv015] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Hosseininejad AS, Naseri B, Razmjou J. Comparative feeding performance and digestive physiology of Helicoverpa armigera (Lepidoptera: Noctuidae) larvae-fed 11 corn hybrids. JOURNAL OF INSECT SCIENCE (ONLINE) 2015; 15:179. [PMID: 25688090 PMCID: PMC4535127 DOI: 10.1093/jisesa/ieu179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/10/2014] [Indexed: 06/04/2023]
Abstract
This study aimed to evaluate the feeding responses and digestive proteolytic and amylolytic activity of Helicoverpa armigera (Hübner) on 11 corn (Zea mays L.) hybrids at 25 ± 1°C, 65 ± 5% relative humidity (RH), and a photoperiod of 16:8 (L:D) h. The fourth- and fifth-instar larvae fed on hybrid K47*K19 had the highest weight of food consumption and those reared on hybrid KSC705 had the lowest value of food consumption. The highest weight gain of the larvae was observed when H. armigera were fed hybrid KLM78*MO17 and lowest when they were fed hybrids K36 * MO17, KSC705, and K35 * K36. Pupal weight of H. armigera was heaviest when larvae were fed hybrid K47*K19 and lightest when they were fed hybrid KSC705. The highest proteolytic activity of the fourth-instar larvae was observed when they were fed hybrid KSC705, and the lowest activity was observed when they were fed hybrid K47*A67. Fifth-instar larvae that fed on hybrid K47*K19 showed the highest proteolytic activity. Fourth-instar larvae that fed on hybrid K36*MO17 showed the highest amylase activity. The fifth-instar larvae fed on hybrid K47*A67 showed the maximum amylase activity and those reared on the K48*K18 showed the minimum activity. Our results indicated that K36 * MO17, KSC705, and K48 * K18 were the most unsuitable hybrids for feeding H. armigera.
Collapse
Affiliation(s)
- A S Hosseininejad
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - B Naseri
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - J Razmjou
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
29
|
Lomate PR, Mahajan NS, Kale SM, Gupta VS, Giri AP. Identification and expression profiling of Helicoverpa armigera microRNAs and their possible role in the regulation of digestive protease genes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 54:129-137. [PMID: 25263090 DOI: 10.1016/j.ibmb.2014.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 06/03/2023]
Abstract
The present investigation is an effort to determine the possible roles of microRNAs (miRNAs) in the regulation of protease gene expression in Helicoverpa armigera upon exposure to plant protease inhibitors (PIs). Using Illumina platform, deep sequencing of 12 small RNA libraries was performed from H. armigera larvae fed on artificial diet (AD) or recombinant Capsicum annuum PI-7 (rCanPI-7) incorporated diet, at various time intervals (0.5, 2, 6, 12, 24, and 48 h). Sequencing data were analyzed with miRDeep2 software; a total of 186 unique miRNAs were identified from all the 12 libraries, out of which 96 were conserved while 90 were novel. These miRNAs showed all the conserved characteristics of insect miRNAs. Homology analysis revealed that most of the identified miRNAs were insect-specific, and more than 50 miRNAs were Lepidoptera-specific. Several candidate miRNAs (conserved and novel) were differentially expressed in rCanPI-7 fed larvae as compared to the larvae fed on AD. H. armigera miRNAs were found to have target sites in several protease genes as well as in protease regulation related genes such as serine PI and immune reactive PI. As expected, negative correlation in the relative abundance of miRNAs and their target mRNAs was evident from qualitative real time polymerase chain reaction analysis. The investigation revealed potential roles of miRNAs in H. armigera protease gene regulation.
Collapse
Affiliation(s)
- Purushottam R Lomate
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, MS, India
| | - Neha S Mahajan
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, MS, India
| | - Sandip M Kale
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, MS, India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, MS, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, MS, India.
| |
Collapse
|
30
|
Joshi RS, Gupta VS, Giri AP. Differential antibiosis against Helicoverpa armigera exerted by distinct inhibitory repeat domains of Capsicum annuum proteinase inhibitors. PHYTOCHEMISTRY 2014; 101:16-22. [PMID: 24559910 DOI: 10.1016/j.phytochem.2014.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/16/2014] [Accepted: 01/22/2014] [Indexed: 05/21/2023]
Abstract
Plant defensive serine proteinase inhibitors (PIs) are known to have negative impact on digestive physiology of herbivore insects and thus have a crucial role in plant protection. Here, we have assessed the efficacy and specificity of three previously characterized inhibitory repeat domain (IRD) variants from Capsicum annuum PIs viz., IRD-7, -9 and -12 against gut proteinases from Helicoverpa armigera. Comparative study of in silico binding energy revealed that IRD-9 possesses higher affinity towards H. armigera serine proteinases as compared to IRD-7 and -12. H. armigera fed on artificial diet containing 5 TIU/g of recombinant IRD proteins exhibited differential effects on larval growth, survival rate and other nutritional parameters. Major digestive gut trypsin and chymotrypsin genes were down regulated in the IRD fed larvae, while few of them were up-regulated, this indicate alterations in insect digestive physiology. The results corroborated with proteinase activity assays and zymography. These findings suggest that the sequence variations among PIs reflect in their efficacy against proteinases in vitro and in vivo, which also could be used for developing tailor-made multi-domain inhibitor gene(s).
Collapse
Affiliation(s)
- Rakesh S Joshi
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (MS), India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (MS), India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (MS), India.
| |
Collapse
|
31
|
Structural, evolutionary and functional analysis of APN genes in the Lepidoptera Bombyx mori. Gene 2013; 535:303-11. [PMID: 24286860 DOI: 10.1016/j.gene.2013.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/07/2013] [Accepted: 11/09/2013] [Indexed: 12/27/2022]
Abstract
Aminopeptidases N (APNs), the receptors of Bacillus thuringiensis (Bt) toxin in the lepidopteran midgut, are involved in the Bt pathogen infection mechanism. In the present work, we screened 102 APNs from SilkDB, ButterflyBase and MonarchBase; 16 APNs were identified from the silkworm (Bombyx mori) and 24 from the monarch butterfly (Danaus plexippus). Syntenic and phylogenetic tree analysis showed that APN genes have developed multi-family genes before evolutionary divergence of the Lepidoptera. The tissue-expression pattern shows some BmAPNs are specifically or highly expressed in the midgut. Bacillus bombysepticus (Bb) is a specific pathogen of B. mori, leading to acute fuliginosa septicemia of the larva. BmAPNs were modulated by real time quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis after Bb or Bt oral infection. There were different patterns of induced expression between Bb and Bt challenges, suggesting that B. mori has different responses to infection by the specific pathogen Bb and the nonspecific pathogen Bt. Research on BmAPNs will help us to better understand the evolutionary conservation and functions in Bb or Bt pathogen interaction with the host and to apply this knowledge in agricultural and forestry pest control.
Collapse
|
32
|
Abstract
In vertebrates and invertebrates, morphological and functional features of gastrointestinal (GI) tracts generally reflect food chemistry, such as content of carbohydrates, proteins, fats, and material(s) refractory to rapid digestion (e.g., cellulose). The expression of digestive enzymes and nutrient transporters approximately matches the dietary load of their respective substrates, with relatively modest excess capacity. Mechanisms explaining differences in hydrolase activity between populations and species include gene copy number variations and single-nucleotide polymorphisms. Transcriptional and posttranscriptional adjustments mediate phenotypic changes in the expression of hydrolases and transporters in response to dietary signals. Many species respond to higher food intake by flexibly increasing digestive compartment size. Fermentative processes by symbiotic microorganisms are important for cellulose degradation but are relatively slow, so animals that rely on those processes typically possess special enlarged compartment(s) to maintain a microbiota and other GI structures that slow digesta flow. The taxon richness of the gut microbiota, usually identified by 16S rRNA gene sequencing, is typically an order of magnitude greater in vertebrates than invertebrates, and the interspecific variation in microbial composition is strongly influenced by diet. Many of the nutrient transporters are orthologous across different animal phyla, though functional details may vary (e.g., glucose and amino acid transport with K+ rather than Na+ as a counter ion). Paracellular absorption is important in many birds. Natural toxins are ubiquitous in foods and may influence key features such as digesta transit, enzymatic breakdown, microbial fermentation, and absorption.
Collapse
Affiliation(s)
- William H Karasov
- Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | |
Collapse
|
33
|
Ningshen TJ, Chaitanya R, Hari PP, Vimala Devi P, Dutta-Gupta A. Characterization and regulation of Bacillus thuringiensis Cry toxin binding aminopeptidases N (APNs) from non-gut visceral tissues, Malpighian tubule and salivary gland: Comparison with midgut-specific APN in the moth Achaea janata. Comp Biochem Physiol B Biochem Mol Biol 2013; 166:194-202. [DOI: 10.1016/j.cbpb.2013.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 01/05/2023]
|
34
|
Crava CM, Bel Y, Jakubowska AK, Ferré J, Escriche B. Midgut aminopeptidase N isoforms from Ostrinia nubilalis: activity characterization and differential binding to Cry1Ab and Cry1Fa proteins from Bacillus thuringiensis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:924-935. [PMID: 23933214 DOI: 10.1016/j.ibmb.2013.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 06/02/2023]
Abstract
Aminopeptidase N (APN) isoforms from Lepidoptera are known for their involvement in the mode of action of insecticidal Cry proteins from Bacillus thuringiensis. These enzymes belong to a protein family with at least eight different members that are expressed simultaneously in the midgut of lepidopteran larvae. Here, we focus on the characterization of the APNs from Ostrinia nubilalis (OnAPNs) to identify potential Cry receptors. We expressed OnAPNs in insect cells using a baculovirus system and analyzed their enzymatic activity by probing substrate specificity and inhibitor susceptibility. The interaction with Cry1Ab and Cry1Fa proteins (both found in transgenic insect-resistant maize) was evaluated by ligand blot assays and immunocytochemistry. Ligand blots of brush border membrane proteins showed that both Cry proteins bound mainly to a 150 kDa-band, in which OnAPNs were greatly represented. Binding analysis of Cry proteins to the cell-expressed OnAPNs showed that OnAPN1 interacted with both Cry1Ab and Cry1Fa, whereas OnAPN3a and OnAPN8 only bound to Cry1Fa. Two isoforms, OnAPN2 and OnAPN3b, did not interact with any of these two proteins. This work provides the first evidence of a differential role of OnAPN isoforms in the mode of action of Cry proteins in O. nubilalis.
Collapse
Affiliation(s)
- Cristina M Crava
- Department of Genetics, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| | | | | | | | | |
Collapse
|
35
|
Plasticity of protease gene expression in Helicoverpa armigera upon exposure to multi-domain Capsicum annuum protease inhibitor. Biochim Biophys Acta Gen Subj 2013; 1830:3414-20. [DOI: 10.1016/j.bbagen.2013.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/25/2013] [Accepted: 03/14/2013] [Indexed: 11/21/2022]
|
36
|
Chikate YR, Tamhane VA, Joshi RS, Gupta VS, Giri AP. Differential protease activity augments polyphagy in Helicoverpa armigera. INSECT MOLECULAR BIOLOGY 2013; 22:258-72. [PMID: 23432026 DOI: 10.1111/imb.12018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Helicoverpa armigera (Lepidoptera: Noctuidae) and other polyphagous agricultural pests are extending their plant host range and emerging as serious agents in restraining crop productivity. Dynamic regulation, coupled with a diversity of digestive and detoxifying enzymes, play a crucial role in the adaptation of polyphagous insects. To investigate the functional intricacy of serine proteases in the development and polyphagy of H. armigera, we profiled the expression of eight trypsin-like and four chymotrypsin-like phylogenetically diverse mRNAs from different life stages of H. armigera reared on nutritionally distinct host plants. These analyses revealed diet- and stage-specific protease expression patterns. The trypsins expressed showed structural variations, which might result in differential substrate specificity and interaction with inhibitors. Protease profiles in the presence of inhibitors and their mass spectrometric analyses revealed insight into their differential activity. These findings emphasize the differential expression of serine proteases and their consequences for digestive physiology in promoting polyphagy in H. armigera.
Collapse
Affiliation(s)
- Y R Chikate
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | | | | | | | | |
Collapse
|
37
|
García M, Farinós GP, Castañera P, Ortego F. Digestion, growth and reproductive performance of the zoophytophagous rove beetle Philonthus quisquiliarius (Coleoptera: Staphylinidae) fed on animal and plant based diets. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1334-1342. [PMID: 22841887 DOI: 10.1016/j.jinsphys.2012.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/06/2012] [Accepted: 07/16/2012] [Indexed: 06/01/2023]
Abstract
The zoophytophagous feeding habits of larvae and adults of the rove beetle, Philonthus quisquiliarius (Gyllenhal) (Coleoptera: Staphylinidae), are reported for the first time. This study evaluates the effects of different feeding regimes on its growth and reproductive performance (i.e., larval growth, adult weight gain, consumption, fecundity and fertility) and digestive physiology. Larvae presented similar growth rates when fed on living animal or on green plant material for 48 h. However, higher consumption rates and lower efficiencies of conversion of digested matter to body mass were obtained when leaves were consumed. Adults presented also positive weight gains regardless of the food consumed (plant or animal material). Interestingly, the highest weight gain rate and efficiency of digestion resulted when adults fed on a rearing diet containing nutrients from both animals and plants. Moreover, we have found negative effects upon P. quisquiliarius fecundity and fertility when supplemental plant nutrients were removed from the optimum rearing diet. Physiological adaptations to allow trophic switching between predation and phytophagy have been found, such as the higher ratio of α-amylase activity to protease activity to deal with the inverted protein-carbohydrate ratio of plant versus animal tissues. Furthermore, this species has an arsenal of digestive proteases whose activity is affected by the type of diet ingested. All together, our results suggest that P. quisquiliarius needs certain nutrients, which are obtained only from plant material. This knowledge will help to understand the complex trophic interactions that occur in agroecosystems.
Collapse
Affiliation(s)
- Matías García
- Laboratorio de Interacción Planta-Insecto, Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
38
|
Hemati SA, Naseri B, Ganbalani GN, Dastjerdi HR, Golizadeh A. Digestive proteolytic and amylolytic activities and feeding responses of Helicoverpa armigera (Lepidoptera: Noctuidae) on different host plants. JOURNAL OF ECONOMIC ENTOMOLOGY 2012; 105:1439-1446. [PMID: 22928327 DOI: 10.1603/ec11345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Digestive proteolytic and amylolytic activities and feeding responses of fifth instar larvae of Helicoverpa armigera (Hübner) on different host plants including chickpea (cultivars Arman, Hashem, Azad, and Binivich), common bean (cultivar Khomein), white kidney bean (cultivar Dehghan), red kidney bean (cultivar Goli), cowpea (cultivar Mashhad), tomato (cultivar Meshkin), and potato (cultivars Agria and Satina) were studied under laboratory conditions (25 +/- 1 degrees C, 65 +/- 5% RH and a photoperiod of 16:8 [L:D] h). Our results showed that the highest protease activity in optimal pH was on cultivar Dehghan (8.717 U/mg) and lowest one was on Meshkin (3.338 U/mg). In addition, the highest amylase activity in optimal pH was on cultivar Dehghan (0.340 mU/mg) and lowest was on Meshkin (0.088 mU/mg). The larval weight of fifth instar H. armigera showed significant difference, being heaviest on Binivich (125.290 +/- 5.050 mg) and lightest on Meshkin (22.773 +/- 0.575 mg). Furthermore, the highest and lowest values of food consumed were on Goli (362.800 +/- 27.500 mg) and Satina (51.280 +/- 4.500 mg), respectively. In addition, the lowest values of prepupal and pupal weight were on Meshkin (32.413 +/- 0.980 and 41.820 +/- 1.270 mg, respectively). The results indicated that tomato (Meshkin) was unsuitable host for feeding fifth instar larvae of H. armigera.
Collapse
Affiliation(s)
- S A Hemati
- Department of Plant Protection, Faculty of Agriculture, University of Mohaghegh Ardabili, P.O. Box 56199-11367, Ardabil, Iran
| | | | | | | | | |
Collapse
|
39
|
Silva AX, Bacigalupe LD, Luna-Rudloff M, Figueroa CC. Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: Aphididae) II: Costs and benefits. PLoS One 2012; 7:e36810. [PMID: 22685539 PMCID: PMC3369902 DOI: 10.1371/journal.pone.0036810] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/06/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Among herbivorous insects that have exploited agro-ecosystems, the peach-potato aphid, Myzus persicae, is recognized as one of the most important agricultural pests worldwide. Uses over 400 plant species and has evolved different insecticides resistance mechanisms. As M. persicae feeds upon a huge diversity of hosts, it has been exposed to a wide variety of plant allelochemicals, which probably have promoted a wide range of detoxification systems. METHODOLOGY/PRINCIPAL FINDINGS In this work we (i) evaluated whether insecticide resistance mutations (IRM) in M. persicae can give an advantage in terms of reproductive fitness when aphids face two hosts, pepper (Capsicum annuum) a suitable host and radish (Raphanus sativus) the unfavorable host and (ii) examined the transcriptional expression of six genes that are known to be up-regulated in response to insecticides. Our results show a significant interaction between host and IRM on the intrinsic rate of increase (r(m)). Susceptible genotypes (not carrying insensitivity mutations) had a higher r(m) on pepper, and the transcriptional levels of five genes increased on radish. The r(m) relationship was reversed on the unfavorable host; genotypes with multiple IRM exhibited higher r(m), without altering the transcriptional levels of the studied genes. Genotypes with one IRM kept a similar r(m) on both hosts, but they increased the transcriptional levels of two genes. CONCLUSIONS/SIGNIFICANCE Although we have studied only nine genotypes, overall our results are in agreement with the general idea that allelochemical detoxification systems could constitute a pre-adaptation for the development of insecticide resistance. Genotypes carrying IRM exhibited a higher r(m) than susceptible genotypes on radish, the more unfavorable host. Susceptible genotypes should be able to tolerate the defended host by up-regulating some metabolic genes that are also responding to insecticides. Hence, our results suggest that the trade-off among resistance mechanisms might be quite complex, with a multiplicity of costs and benefits depending on the environment.
Collapse
Affiliation(s)
- Andrea X. Silva
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Leonardo D. Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Manuela Luna-Rudloff
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Christian C. Figueroa
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
40
|
Chougule NP, Bonning BC. Toxins for transgenic resistance to hemipteran pests. Toxins (Basel) 2012; 4:405-29. [PMID: 22822455 PMCID: PMC3398418 DOI: 10.3390/toxins4060405] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 05/16/2012] [Accepted: 05/25/2012] [Indexed: 01/13/2023] Open
Abstract
The sap sucking insects (Hemiptera), which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt) has provided effective plant protection against some insect pests, Bt toxins exhibit little toxicity against sap sucking insects. Indeed, the pest status of some Hemiptera on Bt-transgenic plants has increased in the absence of pesticide application. The increased pest status of numerous hemipteran species, combined with increased prevalence of resistance to chemical insecticides, provides impetus for the development of biologically based, alternative management strategies. Here, we provide an overview of approaches toward transgenic resistance to hemipteran pests.
Collapse
Affiliation(s)
| | - Bryony C. Bonning
- Author to whom correspondence should be addressed; ; Tel.: +1-515-294-1989; Fax: +1-515-294-5957
| |
Collapse
|
41
|
Sarate P, Tamhane V, Kotkar H, Ratnakaran N, Susan N, Gupta V, Giri A. Developmental and digestive flexibilities in the midgut of a polyphagous pest, the cotton bollworm, Helicoverpa armigera. JOURNAL OF INSECT SCIENCE (ONLINE) 2012; 12:42. [PMID: 22954360 PMCID: PMC3476687 DOI: 10.1673/031.012.4201] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 01/09/2012] [Indexed: 05/31/2023]
Abstract
Developmental patterns and survival of the cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), a polyphagous insect pest, have been studied with reference to the effect of diet on major gut digestive enzymes (amylases, proteases, and lipases). Significant correlations between nutritional quality of the diet and larval and pupal mass were observed when H. armigera larvae were fed on various host plants viz. legumes (chickpea and pigeonpea), vegetables (tomato and okra), flowers (rose and marigold), and cereals (sorghum and maize). Larvae fed on diets rich in proteins and/or carbohydrates (pigeonpea, chickpea, maize, and sorghum) showed higher larval mass and developed more rapidly than larvae fed on diets with low protein and carbohydrate content (rose, marigold, okra, and tomato). Low calorific value diets like rose and marigold resulted in higher mortality (25-35%) of H. armigera. Even with highly varying development efficiency and larval/pupal survival rates, H. armigera populations feeding on different diets completed their life cycles. Digestive enzymes of H. armigera displayed variable expression levels and were found to be regulated on the basis of macromolecular composition of the diet. Post-ingestive adaptations operating at the gut level, in the form of controlled release of digestive enzymes, might be a key factor contributing to the physiological plasticity in H. armigera.
Collapse
Affiliation(s)
- P.J. Sarate
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (M.S.), India
- these authors contributed equally to the work
| | - V.A. Tamhane
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (M.S.), India
| | - H.M. Kotkar
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (M.S.), India
- these authors contributed equally to the work
| | - N. Ratnakaran
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (M.S.), India
| | - N. Susan
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (M.S.), India
| | - V.S. Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (M.S.), India
| | - A.P. Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (M.S.), India
| |
Collapse
|
42
|
Waniek PJ, Pacheco Costa JE, Jansen AM, Costa J, Araújo CAC. Cathepsin L of Triatoma brasiliensis (Reduviidae, Triatominae): sequence characterization, expression pattern and zymography. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:178-187. [PMID: 22100382 DOI: 10.1016/j.jinsphys.2011.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 11/06/2011] [Accepted: 11/08/2011] [Indexed: 05/31/2023]
Abstract
Triatoma brasiliensis is considered one of the main vectors of Chagas disease commonly found in semi-arid areas of northeastern Brazil. These insects use proteases, such as carboxypeptidase B, aminopeptidases and different cathepsins for blood digestion. In the present study, two genes encoding cathepsin L from the midgut of T. brasiliensis were identified and characterized. Mature T. brasiliensis cathepsin L-like proteinases (TBCATL-1, TBCATL-2) showed a high level of identity to the cathepsin L-like proteinases of other insects, with highest similarity to Rhodnius prolixus. Both cathepsin L transcripts were highly abundant in the posterior midgut region, the main region of the blood digestion. Determination of the pH in the whole intestine of unfed T. brasiliensis revealed alkaline conditions in the anterior midgut region (stomach) and acidic conditions in the posterior midgut region (small intestine). Gelatine in-gel zymography showed the activity of at least four distinct proteinases in the small intestine and the cysteine proteinase inhibitors transepoxysuccinyl-l-leucylamido-(4-guanidino)butane (E-64) and cathepsin B inhibitor and N-(l-3-trans-propylcarbamoyl-oxirane-2-carbonyl)-l-isoleucyl-l-proline (CA-074) were employed to characterize enzymatic activity. E-64 fully inhibited cysteine proteinase activity, whereas in the samples treated with CA-074 residual proteinase activity was detectable. Thus, proteolytic activity could at least partially be ascribed to cathepsin L. Western blot analysis using specific anti cathepsin L antibodies confirmed the presence of cathepsin L in the lumen of the small intestine of the insects.
Collapse
Affiliation(s)
- Peter J Waniek
- Laboratório de Biologia de Tripanosomatídeos, FIOCRUZ, Avenida Brasil, 4365 Manguinhos, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
43
|
Naseri B, Fathipour Y, Moharramipour S, Hosseininaveh V, Gatehouse AMR. Digestive proteolytic and amylolytic activities of Helicoverpa armigera in response to feeding on different soybean cultivars. PEST MANAGEMENT SCIENCE 2010; 66:1316-23. [PMID: 20712044 DOI: 10.1002/ps.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/23/2010] [Accepted: 06/18/2010] [Indexed: 05/29/2023]
Abstract
BACKGROUND Digestive proteolytic and amylolytic activities of the larvae of Helicoverpa armigera (Hübner) fed either on artificial diet or on different soybean cultivars (356, M4, M7, M9, Clark, Sahar, JK, BP, Williams, L17, Zane, Gorgan3 and DPX) and response of the larvae to feeding on some soybean-based protease inhibitors were studied. RESULTS The highest general and specific proteolytic activities were in artificial-diet-fed larvae. Although the highest general proteolytic activity was in the larvae fed on L17, M4 and Sahar cultivars, the lowest tryptic activity was on L17 and Sahar, which may be due to the presence of some serine protease inhibitors in these two cultivars, resulting in hyperproduction of chymotrypsin- and elastase-like enzymes in response to the inhibition of these enzymes. The highest amylolytic activity was on M4, and the lowest was on Williams and DPX. General proteolytic activity of SKTI-fed larvae was the highest compared with SBBI- and STI-fed larvae. CONCLUSION The findings demonstrated that the cultivars L17 and Sahar were partially resistant to this pest, probably because of some secondary chemicals or proteinaceous protease inhibitors of these cultivars.
Collapse
Affiliation(s)
- Bahram Naseri
- Department of Entomology, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
44
|
Erlandson MA, Hegedus DD, Baldwin D, Noakes A, Toprak U. Characterization of the Mamestra configurata (Lepidoptera: Noctuidae) larval midgut protease complement and adaptation to feeding on artificial diet, Brassica species, and protease inhibitor. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 75:70-91. [PMID: 20824821 DOI: 10.1002/arch.20381] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The midgut protease profiles from 5th instar Mamestra configurata larvae fed various diets (standard artificial diet, low protein diet, low protein diet with soybean trypsin inhibitor [SBTI], or Brassica napus) were characterized by one-dimensional enzymography in gelatin gels. The gut protease profile of larvae fed B. napus possessed protease activities of molecular masses of approximately 33 and 55 kDa, which were not present in the guts of larvae fed artificial diet. Similarly, larvae fed artificial diet had protease activities of molecular masses of approximately 21, 30, and 100 kDa that were absent in larvae fed B. napus. Protease profiles changed within 12 to 24 h after switching larvae from artificial diet to plant diet and vice versa. The gut protease profiles from larvae fed various other brassicaceous species and lines having different secondary metabolite profiles did not differ despite significant differences in larval growth rates on the different host plants. Genes encoding putative digestive proteolytic enzymes, including four carboxypeptidases, five aminopeptidases, and 48 serine proteases, were identified in cDNA libraries from 4th instar M. configurata midgut tissue. Many of the protease-encoding genes were expressed at similar levels on all diets; however, three chymoptrypsin-like genes (McSP23, McSP27, and McSP37) were expressed at much higher levels on standard artificial diet and diet containing SBTI as was the trypsin-like gene McSP34. The expression of the trypsin-like gene McSP50 was highest on B. napus. The adaptation of M. configurata digestive biochemistry to different diets is discussed in the context of the flexibility of polyphagous insects to changing diet sources.
Collapse
Affiliation(s)
- Martin A Erlandson
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada.
| | | | | | | | | |
Collapse
|
45
|
Liu Y, Sui YP, Wang JX, Zhao XF. Characterization of the trypsin-like protease (Ha-TLP2) constitutively expressed in the integument of the cotton bollworm, Helicoverpa armigera. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2009; 72:74-87. [PMID: 19557747 DOI: 10.1002/arch.20324] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Trypsins belong to the serine endoproteases. They are the most important proteases in insects because of their key roles in food digestion and zymogens activation. But there has been little study of the trypsins in the integuments of insects. In this work, we cloned a trypsin-like protease gene from Helicoverpa armigera and named it trypsin-like protease 2 (Ha-TLP2). Semi-quantitative reverse transcription PCR analysis showed that Ha-TLP2 is constitutively expressed in the integument and can be down-regulated by 20-hydroxyecdysone (20E) and up-regulated by the juvenile hormone (JH) analog methoprene. Immunohistochemistry showed that Ha-TLP2 is located not only in the epidermis, but also in new and old cuticles. Immunoblotting and gelatin-SDS-PAGE revealed that Ha-TLP2 is constitutively expressed with activity in the integument during larval feeding, molting, and metamorphosis. This evidence suggests that Ha-TLP2 is involved in the remodeling of the integument.
Collapse
Affiliation(s)
- Yang Liu
- School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | | | | | | |
Collapse
|
46
|
Sui YP, Wang JX, Zhao XF. The impacts of classical insect hormones on the expression profiles of a new digestive trypsin-like protease (TLP) from the cotton bollworm, Helicoverpa armigera. INSECT MOLECULAR BIOLOGY 2009; 18:443-452. [PMID: 19469806 DOI: 10.1111/j.1365-2583.2009.00884.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Trypsin proteinases perform important roles in the protein digestion of an insect midgut. A 1042 bp full-length cDNA was cloned from Helicoverpa armigera. The gene encoded a 32 kDa protein, with a predicted isoelectric point of 5.7. The amino acid sequence of the protein had a trypsin-like serine protease domain, and the gene was named Ha-TLP. The expression of the gene was tissue-specific and the transcript of Ha-TLP existed only in the midgut and was not found in the head-thorax, integument, fat body and haemocytes from 5th instar larvae, with similar expression levels between those in feeding larvae and in molting larvae. In the midgut, the gene transcription level declined from 6th instar 72 h after the larvae entered the wandering stage, and disappeared from 6th instar at 96 h until the pupal stage. By immunohistochemistry, Ha-TLP was detected in the cytoplasm of the midgut epithelial cells of the 6th instar feeding stage worms. The expression of Ha-TLP could be up-regulated by a juvenile hormone (JH) analog methoprene and down-regulated by 20-hydroxyecdysone (20E). These facts indicate that Ha-TLP was involved in food digestion during larval growth and probably up-regulated by JH and suppressed by extra 20E in vivo.
Collapse
Affiliation(s)
- Y-P Sui
- School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | | | | |
Collapse
|
47
|
Kotkar HM, Sarate PJ, Tamhane VA, Gupta VS, Giri AP. Responses of midgut amylases of Helicoverpa armigera to feeding on various host plants. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:663-670. [PMID: 19450602 DOI: 10.1016/j.jinsphys.2009.05.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/06/2009] [Accepted: 05/07/2009] [Indexed: 05/27/2023]
Abstract
Midgut digestive amylases and proteinases of Helicoverpa armigera, a polyphagous and devastating insect pest of economic importance have been studied. We also identified the potential of a sorghum amylase inhibitor against H. armigera midgut amylase. Amylase activities were detected in all the larval instars, pupae, moths and eggs; early instars had lower amylase levels which steadily increased up to the sixth larval instar. Qualitative and quantitative differences in midgut amylases of H. armigera upon feeding on natural and artificial diets were evident. Natural diets were categorized as one or more members of legumes, vegetables, flowers and cereals belonging to different plant families. Amylase activity and isoform patterns varied depending on host plant and/or artificial diet. Artificial diet-fed H. armigera larvae had comparatively high amylase activity and several unique amylase isoforms. Correlation of amylase and proteinase activities of H. armigera with the protein and carbohydrate content of various diets suggested that H. armigera regulates the levels of these digestive enzymes in response to macromolecular composition of the diet. These adjustments in the digestive enzymes of H. armigera may be to obtain better nourishment from the diet and avoid toxicity due to nutritional imbalance. H. armigera, a generalist feeder experiences a great degree of nutritional heterogeneity in its diet. An investigation of the differences in enzyme levels in response to macronutrient balance and imbalance highlight their importance in insect nutrition.
Collapse
Affiliation(s)
- Hemlata M Kotkar
- Plant Molecular Biology Unit, National Chemical Laboratory, Division of Biochemical Sciences, M.S., India
| | | | | | | | | |
Collapse
|
48
|
Srinivasan A, Giri AP, Gupta VS. Structural and functional diversities in lepidopteran serine proteases. Cell Mol Biol Lett 2009; 11:132-54. [PMID: 16847755 PMCID: PMC6275901 DOI: 10.2478/s11658-006-0012-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 02/16/2006] [Indexed: 12/02/2022] Open
Abstract
Primary protein-digestion in Lepidopteran larvae relies on serine proteases like trypsin and chymotrypsin. Efforts toward the classification and characterization of digestive proteases have unraveled a considerable diversity in the specificity and mechanistic classes of gut proteases. Though the evolutionary significance of mutations that lead to structural diversity in serine proteases has been well characterized, detailing the resultant functional diversity has continually posed a challenge to researchers. Functional diversity can be correlated to the adaptation of insects to various host-plants as well as to exposure of insects to naturally occurring antagonistic biomolecules such as plant-derived protease inhibitors (PIs) and lectins. Current research is focused on deciphering the changes in protease specificities and activities arising from altered amino acids at the active site, specificity-determining pockets and other regions, which influence activity. Some insight has been gained through in silico modeling and simulation experiments, aided by the limited availability of characterized proteases. We examine the structurally and functionally diverse Lepidopteran serine proteases, and assess their influence on larval digestive processes and on overall insect physiology.
Collapse
Affiliation(s)
- Ajay Srinivasan
- Plant Molecular Biology Group, Division of Biochemical Sciences, National Chemical Laboratory, Pune, 411008 India
| | - Ashok P. Giri
- Plant Molecular Biology Group, Division of Biochemical Sciences, National Chemical Laboratory, Pune, 411008 India
| | - Vidya S. Gupta
- Plant Molecular Biology Group, Division of Biochemical Sciences, National Chemical Laboratory, Pune, 411008 India
| |
Collapse
|
49
|
Sui YP, Liu XB, Chai LQ, Wang JX, Zhao XF. Characterization and influences of classical insect hormones on the expression profiles of a molting carboxypeptidase A from the cotton bollworm (Helicoverpa armigera). INSECT MOLECULAR BIOLOGY 2009; 18:353-363. [PMID: 19523067 DOI: 10.1111/j.1365-2583.2009.00879.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Molting is a very important physiological behavior to arthropods. During molting, integument apolysis occurs, which is the digestion and absorption of the old endocuticle for new cuticle formation. Proteases play critical roles in this process. Molting carboxypeptidase A (Ha-CPA) is characterized from Helicoverpa armigera. The Ha-CPA transcript was mainly present in the integument from the 5th instar larvae. In the integument, the transcription level of the gene reached its peak at the 5th instar molting stage and the 6th instar prepupal stage, respectively. The examination of immunohistochemistry revealed that Ha-CPA could distribute into the molting fluid in the molting- and prepupal-stage larvae. The expression of Ha-CPA could be up-regulated by 20-hydroxyecdysone (20E). These facts indicate that Ha-CPA participates in the apolysis of the integument during larval molting and metamorphosis.
Collapse
Affiliation(s)
- Y-P Sui
- Shandong University, Jinan, China
| | | | | | | | | |
Collapse
|
50
|
Coates BS, Sumerford DV, Hellmich RL, Lewis LC. Mining an Ostrinia nubilalis midgut expressed sequence tag (EST) library for candidate genes and single nucleotide polymorphisms (SNPs). INSECT MOLECULAR BIOLOGY 2008; 17:607-620. [PMID: 19133073 DOI: 10.1111/j.1365-2583.2008.00833.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Genes expressed in lepidopteran midgut tissues are involved in digestion and Bacillus thuringiensis (Bt) toxin resistance traits. Five hundred and thirty five unique transcripts were annotated from 1745 high quality O. nubilalis larval midgut expressed sequence tags (ESTs). Full-length cDNA sequence of 12 putative serine proteinase genes and 3 partial O. nubilalis aminopeptidase N protein genes, apn1, apn3, and apn4, were obtained, and genes may have roles in plant feeding and Bt toxin resistance traits of Ostrinia larvae. The EST library was not normalized and insert frequencies reflect transcript levels under the initial treatment conditions and redundancy of inserts from highly expressed transcripts allowed prediction of putative single nucleotide polymorphisms (SNPs). Ten di-, tri- or tetranucleotide repeat unit microsatellite loci were identified, and minisatellite repeats were observed within the C-termini of two encoded serine proteinases. Molecular markers showed polymorphism at 28 SNP loci and one microsatellite locus, and Mendelian inheritance indicated that markers were applicable to genome mapping applications. This O. nubilalis larval midgut EST collection is a resource for gene discovery, expression information, and allelic variation for use in genetic marker development.
Collapse
Affiliation(s)
- B S Coates
- USDA-ARS, Corn Insect and Crop Genetics Research Unit, Genetics Laboratory, Iowa State University, Ames, Iowa 50011, USA.
| | | | | | | |
Collapse
|