1
|
Hong HW, Jang J, Kim YD, Jeong TH, Lee D, Park K, Kim MS, Yoon IS, Song M, Seo MD, Yoon H, Lim D, Myung H. In vitro and in vivo efficacy studies of an engineered endolysin targeting Gram-negative pathogens. Int J Biol Macromol 2025; 302:140463. [PMID: 39884635 DOI: 10.1016/j.ijbiomac.2025.140463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Endolysins have drawn considerable attention as viable modalities for antibiotic use. The most significant obstacle for Gram-negative targeting endolysins is the presence of the outer membrane barrier. A heterologously expressed endolysin encoded by bacteriophage PBPA90 infecting Pseudomonas aeruginosa exhibited intrinsic antibacterial activity against P. aeruginosa. The antibacterial efficacy was improved by substituting 15 amino acids and by fusing cecropin A to the N-terminus. The resulting engineered endolysin, LNT103, demonstrated strong antibacterial activity, with minimum inhibitory concentrations as low as 4 μg/ml, against various Gram-negative pathogens in addition to P. aeruginosa, including Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Klebsiella aerogenes, and Enterobacter cloacae. The engineered endolysin rendered both the outer and the inner bacterial membranes permeable. It exhibited a synergistic effect with colistin, and additive effects with carbapenem antibiotics. Bacterial resistance development to LNT103 was none to minimal in vitro. Its in vivo efficacy was verified in bacteremia models of mice infected with A. baumannii. The endolysin led to a resensitization of resistant bacteria to meropenem when used in combination in vivo.
Collapse
Affiliation(s)
- Hye-Won Hong
- LyseNTech Co., Ltd., Suite 1002, Innovalley C, 253 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi-Do 13486, Republic of Korea
| | - Jaeyeon Jang
- LyseNTech Co., Ltd., Suite 1002, Innovalley C, 253 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi-Do 13486, Republic of Korea
| | - Young Deuk Kim
- LyseNTech Co., Ltd., Suite 1002, Innovalley C, 253 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi-Do 13486, Republic of Korea
| | - Tae-Hwan Jeong
- LyseNTech Co., Ltd., Suite 1002, Innovalley C, 253 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi-Do 13486, Republic of Korea
| | - Dogeun Lee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Kyungah Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi-Do 16499, Republic of Korea
| | - Min Soo Kim
- LyseNTech Co., Ltd., Suite 1002, Innovalley C, 253 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi-Do 13486, Republic of Korea
| | - In-Soo Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Miryoung Song
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yong-In, Gyeonggi-Do 17035, Republic of Korea
| | - Min-Duk Seo
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi-Do 16499, Republic of Korea; College of Pharmacy, Ajou University, Suwon, Gyeonggi-Do 16499, Republic of Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi-Do 16499, Republic of Korea; Advanced College of Bio-convergence Engineering, Ajou University, Suwon, Gyeonggi-Do 16499, South Korea
| | - Daejin Lim
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Heejoon Myung
- LyseNTech Co., Ltd., Suite 1002, Innovalley C, 253 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi-Do 13486, Republic of Korea; Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yong-In, Gyeonggi-Do 17035, Republic of Korea; The Bacteriophage Bank of Korea, Suite 1002, Innovalley C, 253 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi-Do 13486, Republic of Korea.
| |
Collapse
|
2
|
Choi D, Ryu S, Kong M. Phage-derived proteins: Advancing food safety through biocontrol and detection of foodborne pathogens. Compr Rev Food Sci Food Saf 2025; 24:e70124. [PMID: 39898971 DOI: 10.1111/1541-4337.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 02/04/2025]
Abstract
The emergence of antimicrobial-resistant foodborne pathogens poses a continuous health risk and economic burden as they can easily spread through contaminated food. Therefore, the demand for new antimicrobial agents to address this problem is steadily increasing. Similarly, the development of rapid, sensitive, and accurate pathogen detection tools is a prerequisite for ensuring food safety. Phage-derived proteins have become innovative tools for combating these pathogens because of their potent antimicrobial activity and host specificity. Phage proteins are relatively free from regulation compared to phages per se, and there are no concerns about the transduction of harmful genes. With recent progress in next-generation sequencing technology, the analysis of phage genomes has become more accessible, and numerous phage proteins with potential for biocontrol and detection have been identified. This review provides a comprehensive overview of phage protein research on food safety from 2006 to the present, a pivotal period marked by the certification of phages as Generally Recognized As Safe (GRAS). Emphasizing recent advancements, we investigated the diverse applications of various phage proteins for biocontrol and detection purposes. While highlighting the successful implementation of these proteins, we also address the current bottlenecks and propose strategies to overcome these challenges. By summarizing the current state of research on phage-derived proteins, this review contributes to a deeper understanding of their potential as effective antimicrobial agents and tools for detecting foodborne pathogens.
Collapse
Affiliation(s)
- Dahee Choi
- Department of Food Science and Biotechnology, Institute of Food and Biotechnology, Seoul National University of Science and Technology, Seoul, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Minsuk Kong
- Department of Food Science and Biotechnology, Institute of Food and Biotechnology, Seoul National University of Science and Technology, Seoul, South Korea
| |
Collapse
|
3
|
Zhang B, Song L, Wang Y, Zhang M, Chen C, Ning H, Wang L, Qiu C, Wang X, Sun C, Feng X, Han W, Wang B, Ji Y, Gu J. Therapeutic efficacy of LysGH15 against necrotising pneumonia caused by Staphylococcus aureus in a rabbit model. Front Vet Sci 2025; 12:1529870. [PMID: 39981314 PMCID: PMC11841505 DOI: 10.3389/fvets.2025.1529870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Staphylococcus aureus (S. aureus) is one of the most important zoonotic pathogens and can be transmitted to humans through the meat diet routes, causing necrotising pneumonia. Methods This study investigated the therapeutic effect of bacteriophage lysin LysGH15 on necrotising pneumonia in rabbit model caused by S. aureus. Results In the in vitro experiments, 50 μg/mL LysGH15 not only significantly reduced the viable count (approximately 3.24 × 106 CFU/g) of chicken meat stored at 4°C for 48 h but also effectively reduced the viable count of chicken meat thawed at 4°C and 30°C, with reductions of approximately 1.42 × 106 CFU/g and 2.78 × 106 CFU/g, respectively. In the in vivo experiments, a single intranasal administration of 300 μg/rabbit increased the survival rate of rabbits to 60%. At 72 h postinfection, the number of bacteria in the lung tissues of the rabbits treated with LysGH15 was 7 × 104 CFU/g, which was significantly lower than that in the lung tissues of rabbits treated with PBS (7.76 × 106 CFU/g) or linezolid (6.38 × 105 CFU/g). In addition, LysGH15 treatment alleviated lung tissue damage in infected rabbits and significantly reduced the levels of Panton-Valentine leukocidin (PVL), alpha-toxin (Hla), and the cytokines IFN-γ, TNF-α, and IL-8 in their lung tissues, similar to those in rabbits treated with linezolid. Discussion These results suggest that LysGH15 has the potential to be used as a novel antimicrobial agent for the treatment of necrotising pneumonia caused by S. aureus.
Collapse
Affiliation(s)
- Bowei Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Liran Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yongran Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Meimei Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chong Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hui Ning
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Li Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Cao Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinwu Wang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Changjiang Sun
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Feng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenyu Han
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Bin Wang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Yalu Ji
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jingmin Gu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Garcia Torres S, Henrich D, Verboket RD, Marzi I, Hahne G, Kempf VAJ, Göttig S. Bactericidal Effect of a Novel Phage Endolysin Targeting Multi-Drug-Resistant Acinetobacter baumannii. Antibiotics (Basel) 2025; 14:162. [PMID: 40001406 PMCID: PMC11851708 DOI: 10.3390/antibiotics14020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Infections with antibiotic-resistant Gram-negative pathogens represent a major global threat to public health. Acinetobacter baumannii is a highly important nosocomial pathogen causing severe and life-threatening infections, like pneumonia, wound infections, or sepsis. It is often resistant even against last-resort antibiotics, such as carbapenems, and can persist in healthcare settings. Artilysin®s are a novel class of endolysins targeted against multidrug-resistant bacteria. METHODS Antibacterial activity of Art-Top3 was determined by broth microdilution, in vitro assays and in the Galleria mellonella infection model. The toxicity of Art-Top3 on red blood cells, endothelial and epithelial cells was analyzed using the MTT assay. RESULTS Here, we report on a new Artilysin® Art-Top3 that is active against A. baumannii and led to a 105-fold reduction in viable A. baumannii after five minutes of exposure. Art-Top3 showed activity against A. baumannii biofilms in static and dynamic experimental infection models. Furthermore, upon infection with carbapenem-resistant A. baumannii patient isolates, Art-Top3 was able to rescue human primary cells in vitro and larvae of Galleria mellonella in an in vivo infection model. Art-Top3 did not lyse human red blood cells and showed activity in human serum, indicating a low toxicity and high stability of Art-Top3 in vitro. CONCLUSION Our findings collectively establish that Art-Top3 might be a candidate for novel therapeutic strategies of infections caused by multidrug-resistant A. baumannii pathogens.
Collapse
Affiliation(s)
- Sara Garcia Torres
- Goethe University Frankfurt, University Hospital, Institute of Medical Microbiology and Infection Control, 60596 Frankfurt am Main, Germany;
| | - Dirk Henrich
- Goethe University Frankfurt, University Hospital, Department of Trauma Surgery and Orthopedics, 60590 Frankfurt am Main, Germany; (D.H.); (R.D.V.); (I.M.)
| | - Rene D. Verboket
- Goethe University Frankfurt, University Hospital, Department of Trauma Surgery and Orthopedics, 60590 Frankfurt am Main, Germany; (D.H.); (R.D.V.); (I.M.)
| | - Ingo Marzi
- Goethe University Frankfurt, University Hospital, Department of Trauma Surgery and Orthopedics, 60590 Frankfurt am Main, Germany; (D.H.); (R.D.V.); (I.M.)
| | - Gernot Hahne
- Lysando Innovations Lab GmbH, 93053 Regensburg, Germany;
| | - Volkhard A. J. Kempf
- Goethe University Frankfurt, University Hospital, Institute of Medical Microbiology and Infection Control, 60596 Frankfurt am Main, Germany;
| | - Stephan Göttig
- Goethe University Frankfurt, University Hospital, Institute of Medical Microbiology and Infection Control, 60596 Frankfurt am Main, Germany;
| |
Collapse
|
5
|
Liu T, Zhang W, Li D, Xue J, Luo M, Li Z, Liu S, Zhao Y, Qin X, Dong Q. Isolation and characterization of Salmonella Typhimurium monophasic variant phage and its application in foods. Food Res Int 2025; 203:115852. [PMID: 40022374 DOI: 10.1016/j.foodres.2025.115852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 03/03/2025]
Abstract
Salmonella Typhimurium monophasic variant (STm) is an emerging Salmonella serotype that causes food poisoning through the contamination of various foods, including animal products, vegetables, and fruits. In particular, the increasing prevalence of multidrug-resistant STm highlights the urgent need to develop effective strategies to control this pathogen. In this work, a novel and broad-spectrum Salmonella phage named vB_Sal_TmvP009 was isolated and characterized. Morphological and genomic analyses revealed that phage vB_Sal_TmvP009 belonged to the genus Jerseyvirus. Phage vB_Sal_TmvP009 was tolerant to a wide range of temperatures (-20°C∼60°C) and pH values (3∼12). The optimal multiplicity of phage infection was 0.0001, and it had a shorter latent period (8 min), longer lysis period (70 min), and a burst size of 292 PFU/cell. A total of 13 Salmonella serotypes could be lysed by phage vB_Sal_TmvP009. Furthermore, phage vB_Sal_TmvP009 inhibited the growth of multidrug-resistant Salmonella in lettuce or milk with the highest suppression of 3.4 and 3.7 log CFU/mL within 24 h, respectively. The genome of phage vB_Sal_TmvP009 contains lysin and spanin protein, but no tRNA, virulence factors, or drug resistance-related genes. These findings suggest that phage vB_Sal_TmvP009 is a promising antibacterial agent for controlling Salmonella in the food industry.
Collapse
Affiliation(s)
- Tingyu Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Dezhi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiayi Xue
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Meirong Luo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sijian Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yaqi Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
6
|
Chen J, Zhao Z, Mu X, Wang M, Tang J, Bi Q. Characterization of a marine endolysin LysVPB against Vibrio parahaemolyticus. Protein Expr Purif 2025; 226:106608. [PMID: 39293536 DOI: 10.1016/j.pep.2024.106608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Currently, there is an urgent to develop safe and environmentally friendly alternatives to antibiotics for combating Vibrio parahaemolyticus. Endolysins are considered promising antibacterial agents due to their desirable range of action and ability to deal with antibiotic-resistant bacteria. While numerous Vibrio phages have been identified, the research on their endolysins is still in its infancy. In this study, a novel endolysin called LysVPB was cloned and expressed in Pichia pastoris. Phylogenetic analysis revealed that LysVPB bears little resemblance to other known endolysins, highlighting its unique nature. Homology modeling identified a putative calcium-binding site in LysVPB. The recombinant LysVPB achieved a lytic activity of 64.8 U/mL and had a molecular weight of approximately 17 kDa. LysVPB exhibited enhanced efficacy at pH 9.0, with 60 % of its maximum activity observed within the broad pH range of 6.0-10.0. The catalytic efficiency of LysVPB peaked at 30 °C but significantly declined beyond 50 °C. Ba2+, Co2+, and Cu2+ showed inhibitory effects on the activity of LysVPB, while Ca2+ can boost it to 126.8 %. Furthermore, LysVPB exhibited satisfactory efficacy against strains of V. parahaemolyticus. LysVPB is an innovative phage lysin with good characteristics that are specific to certain hosts. The modular nature of LysVPB allows for efficient domain exchange with alternative lysins as antimicrobial components and fusion with antimicrobial peptides. This opens up possibilities for engineering chimeric lysins in a broader range of target hosts with high antimicrobial effectiveness and strong activity under physiological conditions.
Collapse
Affiliation(s)
- Juan Chen
- Department of Laboratory Medicine, Qingdao Central Hospital, Qingdao, China; College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Ziyun Zhao
- Department of Laboratory Medicine, Qingdao Central Hospital, Qingdao, China
| | - Xiaofeng Mu
- Department of Laboratory Medicine, Qingdao Central Hospital, Qingdao, China
| | - Mengxin Wang
- Department of Laboratory Medicine, Qingdao Central Hospital, Qingdao, China
| | - Jun Tang
- Department of Laboratory Medicine, Qingdao Central Hospital, Qingdao, China
| | - Qingqing Bi
- Department of Laboratory Medicine, Qingdao Central Hospital, Qingdao, China.
| |
Collapse
|
7
|
Tham HY, Chong LC, Krishnan M, Khan AM, Choi SB, Tamura T, Yusoff K, Tan GH, Song AAL. Characterization of the host specificity of the SH3 cell wall binding domain of the staphylococcal phage 88 endolysin. Arch Microbiol 2025; 207:47. [PMID: 39878790 DOI: 10.1007/s00203-025-04242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
Bacteriophages produce endolysins at the end of the lytic cycle, which are crucial for lysing the host cells and releasing virion progeny. This lytic feature allows endolysins to act as effective antimicrobial alternatives when applied exogenously. Staphylococcal endolysins typically possess a modular structure with one or two enzymatically active N-terminal domains (EADs) and a C-terminal cell wall binding domain (CBD). The EADs degrade the peptidoglycan layer, leading to bacterial lysis, while the CBD binds to the specific host cell wall, and therefore, influences specificity of the endolysin. This study aimed to alter and characterize the host specificity of the CBD by exploring the impact of amino acid modifications within the CBD of a staphylococcal endolysin, Endo88. Endo88 was able to lyse Staphylococcus spp. and Enterococcus faecalis. However, despite attempts to mutate amino acids hypothesized for binding with cell wall components, the host-range was not affected but the lytic activity was severely reduced instead, although no alterations were performed on the EADs (Cysteine, histidine-dependent aminohydrolases/peptidases domain and Amidase domain). Further investigations of the CBD alone (Src homology3 domain, SH3) without the EADs suggested that binding and lytic activity may not be correlated in some cases since Endo88 and its mutants could lyse Staphylococcus epidermidis well but no binding activity was observed in the flow cytometry analysis. Molecular docking was used to gain insights on the observations for the binding and lytic activity which may help future strategies in designing enhanced engineered endolysins.
Collapse
Affiliation(s)
- Hong Yun Tham
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Li Chuin Chong
- Center for Bioinformatics School of Data Sciences, Perdana University, Damansara Heights, Kuala Lumpur, 50490, Malaysia
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, A Joint Venture Between Medical School Hannover (MHH) and Helmholtz Centre for Infection Research (HZI), 30625, Hannover, Germany
| | - Melvina Krishnan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Asif Mohammad Khan
- College of Computing and Information Technology, University of Doha for Science and Technology (UDST), Doha, Qatar
| | - Sy Bing Choi
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Wilayah Persekutuan Kuala Lumpur, Cheras, 56000, Malaysia
| | - Takashi Tamura
- Graduate School of Environmental and Life Sciences, Okayama University, Okayama, 700- 8530, Japan
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Kajang, Selangor, 43000, Malaysia
| | - Geok Hun Tan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
| |
Collapse
|
8
|
Sabur A, Khan A, Borphukan B, Razzak A, Salimullah M, Khatun M. The Unique Capability of Endolysin to Tackle Antibiotic Resistance: Cracking the Barrier. J Xenobiot 2025; 15:19. [PMID: 39997362 PMCID: PMC11856723 DOI: 10.3390/jox15010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/26/2025] Open
Abstract
The lack of new antibacterial medicines and the rapid rise in bacterial resistance to antibiotics pose a major threat to individuals and healthcare systems. Despite the availability of various antibiotics, bacterial resistance has emerged for almost every antibiotic discovered to date. The increasing prevalence of multidrug-resistant bacterial strains has rendered some infections nearly untreatable, posing severe challenges to health care. Thus, the development of alternatives to conventional antibiotics is critical for the treatment of both humans and food-producing animals. Endolysins, which are peptidoglycan hydrolases encoded by bacteriophages, represent a promising new class of antimicrobials. Preliminary research suggests that endolysins are more effective against Gram-positive bacteria than Gram-negative bacteria when administered exogenously, although they can still damage the cell wall of Gram-negative bacteria. Numerous endolysins have a modular domain structure that divides their binding and catalytic activity into distinct subunits, which helps maximize their bioengineering and potential drug development. Endolysins and endolysin-derived antimicrobials offer several advantages as antibiotic substitutes. They have a unique mechanism of action and efficacy against bacterial persisters (without requiring an active host metabolism); subsequently, they target both Gram-positive and Gram-negative bacteria (including antibiotic-resistant strains), and mycobacteria. Furthermore, there has been limited evidence of endolysin being resistant. Because these enzymes target highly conserved links, resistance may develop more slowly compared to traditional antibiotics. This review provides an overview and insight of the potential applications of endolysins as novel antimicrobials.
Collapse
Affiliation(s)
- Abdus Sabur
- Animal Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh;
| | - Angkan Khan
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh, Mohakhali, Dhaka 1212, Bangladesh;
| | - B. Borphukan
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA;
| | - Abdur Razzak
- Bioassay Department, Eurofins Biopharma, Columbia, MO 65201, USA;
| | - M. Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh;
| | - Muslima Khatun
- Molecular Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh;
| |
Collapse
|
9
|
Easwaran M, Govindaraj RG, Naderi M, Brylinski M, De Zoysa M, Shin HJ. Evaluating the antibacterial activity of engineered phage ФEcSw endolysin against multidrug-resistant Escherichia coli strain Sw1. Int J Antimicrob Agents 2025; 65:107395. [PMID: 39612993 DOI: 10.1016/j.ijantimicag.2024.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
OBJECTIVE The emergence of bacteriophage-encoded endolysins hold significant promise as novel antibacterial agents, particularly against the growing threat of antibiotic-resistant bacteria. Therefore, we investigated the phage ФEcSw endolysin to enhance the lytic activity against multi-drug-resistant Escherichia coli Sw1 through site-directed mutagenesis (SDM) guided by in silico identification of critical residues. METHODS A computational analysis was conducted to elucidate the protein folding pattern, identify the active domains, and recognize critical residues of ФEcSw endolysin. Structural similarity-based docking simulations were employed to identify residues potentially involved in both recognition and cleavage of the bacterial peptidoglycan. Phage endolysin was amplified, cloned, expressed, and purified from phage ФEcSw. Pure endolysin (EL) activity was subsequently validated through SDM. RESULTS Our studies revealed both open and closed conformations of ФEcSw endolysin within specific residue ranges (51-60 and 128-141). Notably, the active site was identified and contains the crucial catalytic residues, Glu19 and Asp34. A time-kill assay demonstrated that the holin (HL) - EL effectively reduced E. coli Sw1 growth by 46% within 12 h. Furthermore, treatment with HL, EL, and HL-EL significantly increased bacterial membrane permeability (11%, 74%, and 85%, respectively) within just 1 h. Importantly, SDM identified a double mutant (K19/H34) of the endolysin exhibiting the highest lytic activity compared to the wild-type and other mutants (E19D, E19K, D34E, and D34H) due to increase net charge from +3.23 to +6.29. CONCLUSIONS Our findings demonstrate that phage endolysins and HLs or engineered endolysin hold significant potential as therapeutic agents to combat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Maheswaran Easwaran
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Rajiv Gandhi Govindaraj
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA; HotSpot Therapeutics, Boston, MA, USA
| | - Misagh Naderi
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA; Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, USA
| | - Mahanama De Zoysa
- College of Veterinary Medicine, Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun-Jin Shin
- College of Veterinary Medicine, Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
10
|
Cremelie E, Vázquez R, Briers Y. A comparative guide to expression systems for phage lysin production. Essays Biochem 2024; 68:645-659. [PMID: 39290148 DOI: 10.1042/ebc20240019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Phage lysins, bacteriophage-encoded enzymes tasked with degrading their host's cell wall, are increasingly investigated and engineered as novel antibacterials across diverse applications. Their rapid action, tuneable specificity, and low likelihood of resistance development make them particularly interesting. Despite numerous application-focused lysin studies, the art of their recombinant production remains relatively undiscussed. Here, we provide an overview of the available expression systems for phage lysin production and discuss key considerations guiding the choice of a suitable recombinant host. We systematically surveyed recent literature to evaluate the hosts used in the lysin field and cover various recombinant systems, including the well-known bacterial host Escherichia coli or yeast Saccharomyces cerevisiae, as well as plant, mammalian, and cell-free systems. Careful analysis of the limited studies expressing lysins in various hosts suggests a host-dependent effect on activity. Nonetheless, the multitude of available expression systems should be further leveraged to accommodate the growing interest in phage lysins and their expanding range of applications.
Collapse
Affiliation(s)
- Emma Cremelie
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Roberto Vázquez
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Nakonieczna A, Topolska-Woś A, Łobocka M. New bacteriophage-derived lysins, LysJ and LysF, with the potential to control Bacillus anthracis. Appl Microbiol Biotechnol 2024; 108:76. [PMID: 38194144 PMCID: PMC10776502 DOI: 10.1007/s00253-023-12839-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 01/10/2024]
Abstract
Bacillus anthracis is an etiological agent of anthrax, a severe zoonotic disease that can be transmitted to people and cause high mortalities. Bacteriophages and their lytic enzymes, endolysins, have potential therapeutic value in treating infections caused by this bacterium as alternatives or complements to antibiotic therapy. They can also be used to identify and detect B. anthracis. Endolysins of two B. anthracis Wbetavirus phages, J5a and F16Ba which were described by us recently, differ significantly from the best-known B. anthracis phage endolysin PlyG from Wbetavirus genus bacteriophage Gamma and a few other Wbetavirus genus phages. They are larger than PlyG (351 vs. 233 amino acid residues), contain a signal peptide at their N-termini, and, by prediction, have a different fold of cell binding domain suggesting different structural basis of cell epitope recognition. We purified in a soluble form the modified versions of these endolysins, designated by us LysJ and LysF, respectively, and depleted of signal peptides. Both modified endolysins could lyse the B. anthracis cell wall in zymogram assays. Their activity against the living cells of B. anthracis and other species of Bacillus genus was tested by spotting on the layers of bacteria in soft agar and by assessing the reduction of optical density of bacterial suspensions. Both methods proved the effectiveness of LysJ and LysF in killing the anthrax bacilli, although the results obtained by each method differed. Additionally, the lytic efficiency of both proteins was different, which apparently correlates with differences in their amino acid sequence. KEY POINTS: • LysJ and LysF are B. anthracis-targeting lysins differing from lysins studied so far • LysJ and LysF could be overproduced in E. coli in soluble and active forms • LysJ and LysF are active in killing cells of B. anthracis virulent strains.
Collapse
Affiliation(s)
- Aleksandra Nakonieczna
- Military Institute of Hygiene and Epidemiology, Biological Threats Identification and Countermeasure Center, 24-100, Puławy, Poland.
| | | | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, 02-106, Warsaw, Poland
| |
Collapse
|
12
|
Ajose DJ, Adekanmbi AO, Kamaruzzaman NF, Ateba CN, Saeed SI. Combating antibiotic resistance in a one health context: a plethora of frontiers. ONE HEALTH OUTLOOK 2024; 6:19. [PMID: 39487542 PMCID: PMC11531134 DOI: 10.1186/s42522-024-00115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/20/2024] [Indexed: 11/04/2024]
Abstract
One of the most significant medical advancements of the 20th century was the discovery of antibiotics, which continue to play a vital tool in the treatment and prevention of diseases in humans and animals. However, the imprudent use of antibiotics in all fields of One-Health and concerns about antibiotic resistance among bacterial pathogens have raised interest in antibiotic use restrictions on a global scale. Despite the failure of conventional antimicrobial agents, only about 15 new antibiotics have been introduced clinically since year 2000 to date. Moreover, there has been reports of resistance to some of these new antibiotics. This has necessitated a need to search for alternative strategies to combat antimicrobial resistant pathogens. Thus, this review compiles and evaluates the approaches-natural compounds, phage treatment, and nanomaterials-that are being used and/or suggested as the potential substitutes for conventional antibiotics.
Collapse
Affiliation(s)
- Daniel Jesuwenu Ajose
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa.
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| | - Abimbola Olumide Adekanmbi
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Nor Fadhilah Kamaruzzaman
- Nanotechnology Research Group Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, 16100, Malaysia
| | - Collins Njie Ateba
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Shamsaldeen Ibrahim Saeed
- College of Veterinary Medicine, University of Juba, P.O. Box 82, Juba, Central Equatoria, South Sudan.
- Department of microbiology, Faculty of Veterinary Science, University of Nyala, P.O. Box 155, Nyala, Sudan.
- Nanotechnology Research Group Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, 16100, Malaysia.
| |
Collapse
|
13
|
Khan A, Joshi HM. Combating chlorine-resistant marine Klebsiella pneumoniae biofilms with chlorine-tolerant bacteriophages. CHEMOSPHERE 2024; 368:143782. [PMID: 39571947 DOI: 10.1016/j.chemosphere.2024.143782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
Biofilm formation presents a significant challenge in health care, food industries, water distribution systems, etc. In addition to their inherent resistance to various stresses and biocides, emerging resistance against widely used biocides like chlorine is a growing concern. The strong link between chlorine resistance and the development of antibiotic resistance among microbes further exacerbates this issue. Therefore, it is highly desirable to devise a method to mitigate the problems associated with biofilms formed by Chlorine Resistant Bacteria (CRB). In this study, a highly chlorine resistant, biofilm-forming Klebsiella pneumoniae was isolated from the cooling water system of a nuclear power plant employing continuous chlorination for biofilm control. Interestingly, K. pneumoniae was found to enhance biofilm formation under the influence of increasing concentrations of chlorine, highlighting the limitations of chlorination-based biofilm control measures. As a remedial measure, chlorine resistant bacteriophages specific to K. pneumoniae were successfully isolated from the same water sample. These bacteriophages effectively inhibited planktonic growth biofilm formation and removed preformed biofilms. Whole-genome sequencing of two of the promising bacteriophages confirmed their identity as novel bacteriophages specific to K. pneumoniae. The absence of any antibiotic-resistant gene, virulent factor(s), or gene associated with the lysogenic life cycle further supports their suitability for environmental applications. This study provides valuable insights into the prevalence of chlorine resistant, pathogenic bacteria in cooling water distribution systems. It also highlights the promising application of bacteriophages to mitigate chlorine resistant bacteria and their biofilms.
Collapse
Affiliation(s)
- Atif Khan
- Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamil Nadu, India; Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Hiren M Joshi
- Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamil Nadu, India; Homi Bhabha National Institute, Mumbai, Maharashtra, India.
| |
Collapse
|
14
|
Chu D, Lan J, Liang L, Xia K, Li L, Yang L, Liu H, Zhang T. The antibacterial activity of a novel highly thermostable endolysin, LysKP213, against Gram-negative pathogens is enhanced when combined with outer membrane permeabilizing agents. Front Microbiol 2024; 15:1454618. [PMID: 39439944 PMCID: PMC11493673 DOI: 10.3389/fmicb.2024.1454618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Phages and phage-encoded lytic enzymes are promising antimicrobial agents. In this study, we report the isolation and identification of bacteriophage KP2025 from Klebsiella pneumoniae. Bioinformatics analysis of KP2025 revealed a putative endolysin, LysKP213, containing a T4-like_lys domain. Purified LysKP213 was found to be highly thermostable, retaining approximately 44.4% of its lytic activity after 20 h of incubation at 95°C, and approximately 57.5% residual activity after 30 min at 121°C. Furthermore, when administered in combination with polymyxin B or fused at the N-terminus with the antimicrobial peptide cecropin A (CecA), LysKP213 exhibited increased antibacterial activity against Gram-negative pathogens, including K. pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Escherichia coli, both in vitro and in vivo. These results indicated that LysKP213 is a highly thermostable endolysin that, when combined with or fused with an outer membrane permeabilizer, has enhanced antibacterial activity and is a candidate agent for the control of infections by Gram-negative pathogens.
Collapse
Affiliation(s)
- Dingjian Chu
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, China
| | - Jing Lan
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, China
| | - Lu Liang
- Guiyang Maternal and Child Health Hospital, Guiyang, China
| | - Kaide Xia
- Guiyang Maternal and Child Health Hospital, Guiyang, China
| | - Linlin Li
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lan Yang
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongmei Liu
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, China
| | - Tingting Zhang
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, China
| |
Collapse
|
15
|
Pattnaik A, Pati S, Samal SK. Bacteriophage as a potential biotherapeutics to combat present-day crisis of multi-drug resistant pathogens. Heliyon 2024; 10:e37489. [PMID: 39309956 PMCID: PMC11416503 DOI: 10.1016/j.heliyon.2024.e37489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
The rise of Multi-Drug Resistant (MDR) bacterial pathogens to most, if not all, currently available antibacterial agents has become a global threat. As a consequence of the antibiotic resistance epidemic, phage therapy has emerged as a potential alternative to conventional antibiotics. Despite the high therapeutic advantages of phage therapy, they have not yet been successfully used in the clinic due to various limitations of narrow host specificity compared to antibiotics, poor adhesion on biofilm surface, and susceptibility to both human and bacterial defences. This review focuses on the antibacterial effect of bacteriophage and their recent clinical trials with a special emphasis on the underlying mechanism of lytic phage action with the help of endolysin and holin. Furthermore, recent clinical trials of natural and modified endolysins and some marketed products have also been emphasized with future prospective.
Collapse
Affiliation(s)
- Ananya Pattnaik
- ICMR-Regional Medical Research Center, Bhubaneswar, Odisha, India
- KSBT, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Sanghamitra Pati
- ICMR-Regional Medical Research Center, Bhubaneswar, Odisha, India
| | | |
Collapse
|
16
|
Wang C, Zhao J, Lin Y, Lwin SZC, El-Telbany M, Masuda Y, Honjoh KI, Miyamoto T. Characterization of Two Novel Endolysins from Bacteriophage PEF1 and Evaluation of Their Combined Effects on the Control of Enterococcus faecalis Planktonic and Biofilm Cells. Antibiotics (Basel) 2024; 13:884. [PMID: 39335057 PMCID: PMC11428236 DOI: 10.3390/antibiotics13090884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Endolysin, a bacteriophage-derived lytic enzyme, has emerged as a promising alternative antimicrobial agent against rising multidrug-resistant bacterial infections. Two novel endolysins LysPEF1-1 and LysPEF1-2 derived from Enterococcus phage PEF1 were cloned and overexpressed in Escherichia coli to test their antimicrobial efficacy against multidrug-resistant E. faecalis strains and their biofilms. LysPEF1-1 comprises an enzymatically active domain and a cell-wall-binding domain originating from the NLPC-P60 and SH3 superfamilies, while LysPEF1-2 contains a putative peptidoglycan recognition domain that belongs to the PGRP superfamily. LysPEF1-1 was active against 89.86% (62/69) of Enterococcus spp. tested, displaying a wider antibacterial spectrum than phage PEF1. Moreover, two endolysins demonstrated lytic activity against additional gram-positive and gram-negative species pretreated with chloroform. LysPEF1-1 showed higher activity against multidrug-resistant E. faecalis strain E5 than LysPEF1-2. The combination of two endolysins effectively reduced planktonic cells of E5 in broth and was more efficient at inhibiting biofilm formation and removing biofilm cells of E. faecalis JCM 7783T than used individually. Especially at 4 °C, they reduced viable biofilm cells by 4.5 log after 2 h of treatment on glass slide surfaces. The results suggest that two novel endolysins could be alternative antimicrobial agents for controlling E. faecalis infections.
Collapse
Affiliation(s)
- Chen Wang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
| | - Junxin Zhao
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yunzhi Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
| | - Su Zar Chi Lwin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
| | - Mohamed El-Telbany
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Facultuy of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.M.); (K.-i.H.)
| | - Ken-ichi Honjoh
- Department of Bioscience and Biotechnology, Facultuy of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.M.); (K.-i.H.)
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Facultuy of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.M.); (K.-i.H.)
| |
Collapse
|
17
|
Choi YJ, Kim S, Dahal RH, Kim J. A Novel Truncated CHAP Modular Endolysin, CHAP SAP26-161, That Lyses Staphylococcus aureus, Acinetobacter baumannii, and Clostridioides difficile, and Exhibits Therapeutic Effects in a Mouse Model of A. baumannii Infection. J Microbiol Biotechnol 2024; 34:1718-1726. [PMID: 39081246 PMCID: PMC11380504 DOI: 10.4014/jmb.2402.02042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 08/29/2024]
Abstract
Development of novel antibacterial agents is imperative due to the increasing threat of antibiotic-resistant pathogens. This study aimed to develop the enhanced antibacterial activity and in-vivo efficacy of a novel truncated endolysin, CHAPSAP26-161, derived from the endolysin LysSAP26, against multidrug-resistant bacteria. CHAPSAP26-161 exhibited higher protein purification efficiency in E. coli and antibacterial activity than LysSAP26. Moreover, CHAPSAP26-161 showed the higher lytic activity against A. baumannii with minimal bactericidal concentrations (MBCs) of 5-10 μg/ml, followed by Staphylococcus aureus with MBCs of 10-25 μg/ml. Interestingly, CHAPSAP26-161 could lyse anaerobic bacteria, such as Clostridioides difficile, with MBCs of 25-50 μg/ml. At pH 4-8 and temperatures of 4°C-45°C, CHAPSAP26-161 maintained antibacterial activity without remarkable difference. The lytic activity of CHAPSAP26-161 was increased with Zn2+. In vivo tests demonstrated the therapeutic effects of CHAPSAP26-161 in murine systemic A. baumannii infection model. In conclusion, CHAPSAP26-161, a truncated endolysin that retains only the CHAP domain from LysSAP26, demonstrated enhanced protein purification efficiency and antibacterial activity compared to LysSAP26. It further displayed broad-spectrum antibacterial effects against S. aureus, A. baumannii, and C. difficile. Our in vitro and in-vivo results of CHAPSAP26-161 highlights its promise as an innovative therapeutic option against those bacteria with multiple antibiotic resistance.
Collapse
Affiliation(s)
- Yoon-Jung Choi
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Shukho Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ram Hari Dahal
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jungmin Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
18
|
Zhydzetski A, Głowacka-Grzyb Z, Bukowski M, Żądło T, Bonar E, Władyka B. Agents Targeting the Bacterial Cell Wall as Tools to Combat Gram-Positive Pathogens. Molecules 2024; 29:4065. [PMID: 39274911 PMCID: PMC11396672 DOI: 10.3390/molecules29174065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
The cell wall is an indispensable element of bacterial cells and a long-known target of many antibiotics. Penicillin, the first discovered beta-lactam antibiotic inhibiting the synthesis of cell walls, was successfully used to cure many bacterial infections. Unfortunately, pathogens eventually developed resistance to it. This started an arms race, and while novel beta-lactams, either natural or (semi)synthetic, were discovered, soon upon their application, bacteria were developing resistance. Currently, we are facing the threat of losing the race since more and more multidrug-resistant (MDR) pathogens are emerging. Therefore, there is an urgent need for developing novel approaches to combat MDR bacteria. The cell wall is a reasonable candidate for a target as it differentiates not only bacterial and human cells but also has a specific composition unique to various groups of bacteria. This ensures the safety and specificity of novel antibacterial agents that target this structure. Due to the shortage of low-molecular-weight candidates for novel antibiotics, attention was focused on peptides and proteins that possess antibacterial activity. Here, we describe proteinaceous agents of various origins that target bacterial cell wall, including bacteriocins and phage and bacterial lysins, as alternatives to classic antibiotic candidates for antimicrobial drugs. Moreover, advancements in protein chemistry and engineering currently allow for the production of stable, specific, and effective drugs. Finally, we introduce the concept of selective targeting of dangerous pathogens, exemplified by staphylococci, by agents specifically disrupting their cell walls.
Collapse
Affiliation(s)
- Aliaksandr Zhydzetski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Zuzanna Głowacka-Grzyb
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Tomasz Żądło
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Emilia Bonar
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Benedykt Władyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| |
Collapse
|
19
|
Wilkinson HN, Stafford AR, Rudden M, Rocha NDC, Kidd AS, Iveson S, Bell AL, Hart J, Duarte A, Frieling J, Janssen F, Röhrig C, de Rooij B, Ekhart PF, Hardman MJ. Selective Depletion of Staphylococcus aureus Restores the Skin Microbiome and Accelerates Tissue Repair after Injury. J Invest Dermatol 2024; 144:1865-1876.e3. [PMID: 38307323 DOI: 10.1016/j.jid.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 02/04/2024]
Abstract
Our skin is home to a diverse community of commensal microorganisms integral to cutaneous function. However, microbial dysbiosis and barrier perturbation increase the risk of local and systemic infection. Staphylococcus aureus is a particularly problematic bacterial pathogen, with high levels of antimicrobial resistance and direct association with poor healing outcome. Innovative approaches are needed to selectively kill skin pathogens, such as S aureus, without harming the resident microbiota. In this study, we provide important data on the selectivity and efficacy of an S aureus-targeted endolysin (XZ.700) within the complex living skin/wound microbiome. Initial cross-species comparison using Nanopore long-read sequencing identified the translational potential of porcine rather than murine skin for human-relevant microbiome studies. We therefore performed an interventional study in pigs to assess the impact of endolysin administration on the microbiome. XZ.700 selectively inhibited endogenous porcine S aureus in vivo, restoring microbial diversity and promoting multiple aspects of wound repair. Subsequent mechanistic studies confirmed the importance of this microbiome modulation for effective healing in human skin. Taken together, these findings strongly support further development of S aureus-targeted endolysins for future clinical management of skin and wound infections.
Collapse
Affiliation(s)
- Holly N Wilkinson
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, The University of Hull, Hull, United Kingdom; Skin Research Centre, Hull York Medical School, The University of York, Heslington, United Kingdom.
| | - Amber R Stafford
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, The University of Hull, Hull, United Kingdom
| | - Michelle Rudden
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, The University of Hull, Hull, United Kingdom; Skin Research Centre, Hull York Medical School, The University of York, Heslington, United Kingdom
| | - Nina D C Rocha
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, The University of Hull, Hull, United Kingdom
| | - Alexandria S Kidd
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, The University of Hull, Hull, United Kingdom
| | - Sammi Iveson
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, The University of Hull, Hull, United Kingdom
| | | | | | - Ana Duarte
- Micreos Pharma B.V., Bilthoven, The Netherlands
| | | | | | | | | | | | - Matthew J Hardman
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, The University of Hull, Hull, United Kingdom; Skin Research Centre, Hull York Medical School, The University of York, Heslington, United Kingdom
| |
Collapse
|
20
|
Park W, Park M, Chun J, Hwang J, Kim S, Choi N, Kim SM, Kim S, Jung S, Ko KS, Kweon DH. Delivery of endolysin across outer membrane of Gram-negative bacteria using translocation domain of botulinum neurotoxin. Int J Antimicrob Agents 2024; 64:107216. [PMID: 38795926 DOI: 10.1016/j.ijantimicag.2024.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/08/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
The emergence of multidrug-resistant pathogens has outpaced the development of new antibiotics, leading to renewed interest in endolysins. Endolysins have been investigated as novel biocontrol agents for Gram-positive bacteria. However, their efficacy against Gram-negative species is limited by the barrier presented by their outer membrane, which prevents endolysin access to the peptidoglycan substrate. Here, we used the translocation domain of botulinum neurotoxin to deliver endolysin across the outer membrane of Gram-negative bacteria. The translocation domain selectively interacts with and penetrates membranes composed of anionic lipids, which have been used in nature to deliver various proteins into animal cells. In addition to the botulinum neurotoxin translocation domain, we have fused bacteriophage-derived receptor binding protein to endolysins. This allows the attached protein to efficiently bind to a broad spectrum of Gram-negative bacteria. By attaching these target-binding and translocation machineries to endolysins, we aimed to develop an engineered endolysin with broad-spectrum targeting and enhanced antibacterial activity against Gram-negative species. To validate our strategy, we designed engineered endolysins using two well-known endolysins, T5 and LysPA26, and tested them against 23 strains from six species of Gram-negative bacteria, confirming that our machinery can act broadly. In particular, we observed a 2.32 log reduction in 30 min with only 0.5 µM against an Acinetobacter baumannii isolate. We also used the SpyTag/SpyCatcher system to easily attach target-binding proteins, thereby improving its target-binding ability. Overall, our newly developed endolysin engineering strategy may be a promising approach to control multidrug-resistant Gram-negative bacterial strains.
Collapse
Affiliation(s)
- Wonbeom Park
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Myungseo Park
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea; Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Jihwan Chun
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Jaehyeon Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Suhyun Kim
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Nayoon Choi
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Soo Min Kim
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - SeungJoo Kim
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Sangwon Jung
- Research Center, MVRIX, Anyang, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea; Research Center, MVRIX, Anyang, Republic of Korea.
| |
Collapse
|
21
|
Cho Y, Park K, Park J, An J, Myung H, Yoon H. Exploring the therapeutic potential of endolysin CD27L_EAD against Clostridioides difficile infection. Int J Antimicrob Agents 2024; 64:107222. [PMID: 38810936 DOI: 10.1016/j.ijantimicag.2024.107222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/06/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVES Clostridioides difficile has emerged as a major cause of life-threatening diarrheal disease. Conventional antibiotics used in current standards of care exacerbate the emergence of antibiotic-resistant strains and pose a risk of recurrent C. difficile infection (CDI). Thus, there is an urgent need for alternative therapeutics that selectively eliminate C. difficile without disturbing the commensal microbiota. This study aimed to explore the potential of endolysins as an alternative therapeutic agent to antibiotics. Endolysin is a bacteriophage-derived peptidoglycan hydrolase that aids in the release of phage progeny during the final stage of infection. METHODS In order to exploit endolysin as a therapeutic agent against CDI, the bactericidal activity of 23 putative endolysins was compared and ΦCD27 endolysin CD27L was selected and modified to CD27L_EAD by cleaving the cell-wall binding domain of CD27L. RESULTS CD27L_EAD exhibited greater bacteriolytic activity than CD27L and its activity was stable over a wide range of salt concentrations and pH conditions. CD27L_EAD was added to a co-culture of human gut microbiota with C. difficile and the bacterial community structure was analyzed. CD27L_EAD did not impair the richness and diversity of the bacterial population but remarkably attenuated the abundance of C. difficile. Furthermore, the co-administration of vancomycin exerted synergistic bactericidal activity against C. difficile. β-diversity analysis revealed that CD27L_EAD did not significantly disturb the composition of the microbial community, whereas the abundance of some species belonging to the family Lachnospiraceae decreased after CD27L_EAD treatment. CONCLUSIONS This study provides insights into endolysin as a prospective therapeutic agent for the treatment of CDI without damaging the normal gut microbiota.
Collapse
Affiliation(s)
- Youngjin Cho
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Kyungah Park
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Jeongseok Park
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Jieun An
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Heejoon Myung
- LyseNTech Co., Ltd., Seongnam, South Korea; Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin, South Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea; Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea.
| |
Collapse
|
22
|
Zhang Y, Li R, Zou G, Guo Y, Wu R, Zhou Y, Chen H, Zhou R, Lavigne R, Bergen PJ, Li J, Li J. Discovery of Antimicrobial Lysins from the "Dark Matter" of Uncharacterized Phages Using Artificial Intelligence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404049. [PMID: 38899839 PMCID: PMC11348152 DOI: 10.1002/advs.202404049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Indexed: 06/21/2024]
Abstract
The rapid rise of antibiotic resistance and slow discovery of new antibiotics have threatened global health. While novel phage lysins have emerged as potential antibacterial agents, experimental screening methods for novel lysins pose significant challenges due to the enormous workload. Here, the first unified software package, namely DeepLysin, is developed to employ artificial intelligence for mining the vast genome reservoirs ("dark matter") for novel antibacterial phage lysins. Putative lysins are computationally screened from uncharacterized Staphylococcus aureus phages and 17 novel lysins are randomly selected for experimental validation. Seven candidates exhibit excellent in vitro antibacterial activity, with LLysSA9 exceeding that of the best-in-class alternative. The efficacy of LLysSA9 is further demonstrated in mouse bloodstream and wound infection models. Therefore, this study demonstrates the potential of integrating computational and experimental approaches to expedite the discovery of new antibacterial proteins for combating increasing antimicrobial resistance.
Collapse
Affiliation(s)
- Yue Zhang
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryCollege of Food Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Runze Li
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryCollege of Food Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Geng Zou
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryCollege of Food Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Yating Guo
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Renwei Wu
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Yang Zhou
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
| | - Huanchun Chen
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Rui Zhou
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Rob Lavigne
- Department of BiosystemsLaboratory of Gene TechnologyKU LeuvenLeuven3001Belgium
| | - Phillip J. Bergen
- Monash Biomedicine Discovery InstituteDepartment of MicrobiologyFaculty of MedicineNursing and Health SciencesMonash UniversityMelbourne3800Australia
| | - Jian Li
- Monash Biomedicine Discovery InstituteDepartment of MicrobiologyFaculty of MedicineNursing and Health SciencesMonash UniversityMelbourne3800Australia
| | - Jinquan Li
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryCollege of Food Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
- College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518000China
| |
Collapse
|
23
|
Kakkar A, Kandwal G, Nayak T, Jaiswal LK, Srivastava A, Gupta A. Engineered bacteriophages: A panacea against pathogenic and drug resistant bacteria. Heliyon 2024; 10:e34333. [PMID: 39100447 PMCID: PMC11295868 DOI: 10.1016/j.heliyon.2024.e34333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Antimicrobial resistance (AMR) is a major global concern; antibiotics and other regular treatment methods have failed to overcome the increasing number of infectious diseases. Bacteriophages (phages) are viruses that specifically target/kill bacterial hosts without affecting other human microbiome. Phage therapy provides optimism in the current global healthcare scenario with a long history of its applications in humans that has now reached various clinical trials. Phages in clinical trials have specific requirements of being exclusively lytic, free from toxic genes with an enhanced host range that adds an advantage to this requisite. This review explains in detail the various phage engineering methods and their potential applications in therapy. To make phages more efficient, engineering has been attempted using techniques like conventional homologous recombination, Bacteriophage Recombineering of Electroporated DNA (BRED), clustered regularly interspaced short palindromic repeats (CRISPR)-Cas, CRISPY-BRED/Bacteriophage Recombineering with Infectious Particles (BRIP), chemically accelerated viral evolution (CAVE), and phage genome rebooting. Phages are administered in cocktail form in combination with antibiotics, vaccines, and purified proteins, such as endolysins. Thus, phage therapy is proving to be a better alternative for treating life-threatening infections, with more specificity and fewer detrimental consequences.
Collapse
Affiliation(s)
- Anuja Kakkar
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Garima Kandwal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Tanmayee Nayak
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Lav Kumar Jaiswal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Amit Srivastava
- University of Jyväskylä, Nanoscience Centre, Department of Biological and Environmental Science, 40014, Jyväskylä, Finland
| | - Ankush Gupta
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| |
Collapse
|
24
|
Camacho-Beltrán E, Morales-Aguilar JJ, López-Meyer M, Rincón-Enríquez G, Quiñones-Aguilar EE. Complete genome sequence of the Exiguobacterium bacteriophage. Microbiol Resour Announc 2024; 13:e0034224. [PMID: 38860812 PMCID: PMC11256790 DOI: 10.1128/mra.00342-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024] Open
Abstract
We purified a lytic bacteriophage from soil collected in Guasave, Sinaloa: phiExGM16. This bacteriophage was isolated using the host, Exiguobacterium acetilycum. Its 17.6 kb genome contains 33 putative genes and shows a cover of 64% with 76.37% of nucleotide identity to Microbacterium phage Noelani.
Collapse
Affiliation(s)
- Erika Camacho-Beltrán
- Laboratorio de Fitopatología, Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Zapopan, Jalisco, Mexico
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR-Unidad Sinaloa), Guasave, Sinaloa, Mexico
| | - Juan José Morales-Aguilar
- Universidad Autónoma de Occidente, Unidad Regional Guasave. Avenida Universidad S/N Colonia Villa Universidad, Guasave, Sinaloa, Mexico
| | - Melina López-Meyer
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR-Unidad Sinaloa), Guasave, Sinaloa, Mexico
| | - Gabriel Rincón-Enríquez
- Laboratorio de Fitopatología, Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Zapopan, Jalisco, Mexico
| | - Evangelina Esmeralda Quiñones-Aguilar
- Laboratorio de Fitopatología, Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Zapopan, Jalisco, Mexico
| |
Collapse
|
25
|
Zeng T, Liu S, Zou P, Yao X, Chen Q, Wei L, Wang Q, Zhang C, Zheng Y, Yu R. Create artilysins from a recombinant library to serve as bactericidal and antibiofilm agents targeting Pseudomonas aeruginosa. Int J Biol Macromol 2024; 273:132990. [PMID: 38857719 DOI: 10.1016/j.ijbiomac.2024.132990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/11/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Pseudomonas aeruginosa is a critical pathogen and novel treatments are urgently needed. The out membrane of P. aeruginosa facilitates biofilm formation and antibiotic resistance, and hinders the exogenous application against Gram-negative bacteria of endolysins. Engineered endolysins are investigated for enhancing antimicrobial activity, exemplified by artilysins. Nevertheless, existing research predominantly relies on laborious and time-consuming approaches of individually artilysin identification. This study proposes a novel strategy for expedited artilysin discovery using a recombinant artilysin library comprising proteins derived from 38 antimicrobial peptides and 8 endolysins. In this library, 19 colonies exhibited growth inhibition against P. aeruginosa exceeding 50 %, and three colonies were designated as dutarlysin-1, dutarlysin-2 and dutarlysin-3. Remarkably, dutarlysin-1, dutarlysin-2 and dutarlysin-3 demonstrated rapid and enhanced antibacterial activity, even minimum inhibitory concentration of them killed approximately 4.93 lg units, 6.75 lg units and 5.36 lg units P. aeruginosa, respectively. Dutarlysins were highly refractory to P. aeruginosa resistance development. Furthermore, 2 μmol/L dutarlysin-1 and dutarlysin-3 effectively eradicated over 76 % of the mature biofilm. These dutarlysins exhibited potential broad-spectrum activity against hospital susceptible Gram-negative bacteria. These results supported the effectiveness of this artilysins discovery strategy and suggested dutarlysin-1 and dutarlysin-3 could be promising antimicrobial agents for combating P. aeruginosa.
Collapse
Affiliation(s)
- Ting Zeng
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Shuang Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Peixuan Zou
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Xin Yao
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Qiexin Chen
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Long Wei
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Qiantao Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Chun Zhang
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yongxiang Zheng
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| | - Rong Yu
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
26
|
Nakonieczna A, Abramowicz K, Kwiatek M, Kowalczyk E. Lysins as a powerful alternative to combat Bacillus anthracis. Appl Microbiol Biotechnol 2024; 108:366. [PMID: 38850320 PMCID: PMC11162388 DOI: 10.1007/s00253-024-13194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
This review gathers all, to the best of our current knowledge, known lysins, mainly bacteriophage-derived, that have demonstrated activity against Bacillus anthracis strains. B. anthracis is a spore-forming, toxin-producing bacteria, naturally dwelling in soil. It is best known as a potential biowarfare threat, an etiological agent of anthrax, and a severe zoonotic disease. Anthrax can be treated with antibiotics (ciprofloxacin, penicillin, doxycycline); however, their administration may take up even to 60 days, and different factors can compromise their effectiveness. Bacterial viruses, bacteriophages (phages), are natural enemies of bacteria and use their lytic enzymes, endolysins (lysins), to specifically kill bacterial cells. Harnessing the potential of lysins to combat bacterial infections holds promise for diminishing antibiotic usage and, consequently, addressing the escalating antibiotic resistance in bacteria. In this context, we list the lysins with the activity against B. anthracis, providing a summary of their lytic properties in vitro and the outcomes observed in animal models. Bacillus cereus strain ATCC 4342/RSVF1, a surrogate for B. anthracis, was also included as a target bacteria. KEY POINTS: • More than a dozen different B. anthracis lysins have been identified and studied. • They fall into three blocks regarding their amino acid sequence similarity and most of them are amidases. • Lysins could be used in treating B. anthracis infections.
Collapse
Affiliation(s)
- Aleksandra Nakonieczna
- Military Institute of Hygiene and Epidemiology, Biological Threats Identification and Countermeasure Center, Puławy, 24-100, Poland.
| | - Karolina Abramowicz
- Military Institute of Hygiene and Epidemiology, Biological Threats Identification and Countermeasure Center, Puławy, 24-100, Poland
| | - Magdalena Kwiatek
- Military Institute of Hygiene and Epidemiology, Biological Threats Identification and Countermeasure Center, Puławy, 24-100, Poland
| | | |
Collapse
|
27
|
Li Z, Baidoun R, Brown AC. Toxin-triggered liposomes for the controlled release of antibiotics to treat infections associated with the gram-negative bacterium, Aggregatibacter actinomycetemcomitans. Colloids Surf B Biointerfaces 2024; 238:113870. [PMID: 38555763 PMCID: PMC11148792 DOI: 10.1016/j.colsurfb.2024.113870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
Antibiotic resistance has become an urgent threat to health care in recent years. The use of drug delivery systems provides advantages over conventional administration of antibiotics and can slow the development of antibiotic resistance. In the current study, we developed a toxin-triggered liposomal antibiotic delivery system, in which the drug release is enabled by the leukotoxin (LtxA) produced by the Gram-negative pathogen, Aggregatibacter actinomycetemcomitans. LtxA has previously been shown to mediate membrane disruption by promoting a lipid phase change in nonlamellar lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-methyl (N-methyl-DOPE). In addition, LtxA has been observed to bind strongly and nearly irreversibly to membranes containing large amounts of cholesterol. Here, we designed a liposomal delivery system composed of N-methyl-DOPE and cholesterol to take advantage of these interactions. Specifically, we hypothesized that liposomes composed of N-methyl-DOPE and cholesterol, encapsulating antibiotics, would be sensitive to LtxA, enabling controlled antibiotic release. We observed that liposomes composed of N-methyl-DOPE were sensitive to the presence of low concentrations of LtxA, and cholesterol increased the extent and kinetics of content release. The liposomes were stable under various storage conditions for at least 7 days. Finally, we showed that antibiotic release occurs selectively in the presence of an LtxA-producing strain of A. actinomycetemcomitans but not in the presence of a non-LtxA-expressing strain. Together, these results demonstrate that the designed liposomal vehicle enables toxin-triggered delivery of antibiotics to LtxA-producing strains of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Ziang Li
- Department of Chemical and Biomolecular Engineering, Lehigh University, 5 E Packer Ave, Bethlehem, PA 18015, USA
| | - Rani Baidoun
- Department of Chemical and Biomolecular Engineering, Lehigh University, 5 E Packer Ave, Bethlehem, PA 18015, USA
| | - Angela C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, 5 E Packer Ave, Bethlehem, PA 18015, USA.
| |
Collapse
|
28
|
Vander Elst N. Bacteriophage-derived endolysins as innovative antimicrobials against bovine mastitis-causing streptococci and staphylococci: a state-of-the-art review. Acta Vet Scand 2024; 66:20. [PMID: 38769566 PMCID: PMC11106882 DOI: 10.1186/s13028-024-00740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024] Open
Abstract
Bacteriophage-encoded endolysins, peptidoglycan hydrolases breaking down the Gram-positive bacterial cell wall, represent a groundbreaking class of novel antimicrobials to revolutionize the veterinary medicine field. Wild-type endolysins exhibit a modular structure, consisting of enzymatically active and cell wall-binding domains, that enable genetic engineering strategies for the creation of chimeric fusion proteins or so-called 'engineered endolysins'. This biotechnological approach has yielded variants with modified lytic spectrums, introducing new possibilities in antimicrobial development. However, the discovery of highly similar endolysins by different groups has occasionally resulted in the assignment of different names that complicate a straightforward comparison. The aim of this review was to perform a homology-based comparison of the wild-type and engineered endolysins that have been characterized in the context of bovine mastitis-causing streptococci and staphylococci, grouping homologous endolysins with ≥ 95.0% protein sequence similarity. Literature is explored by homologous groups for the wild-type endolysins, followed by a chronological examination of engineered endolysins according to their year of publication. This review concludes that the wild-type endolysins encountered persistent challenges in raw milk and in vivo settings, causing a notable shift in the field towards the engineering of endolysins. Lead candidates that display robust lytic activity are nowadays selected from screening assays that are performed under these challenging conditions, often utilizing advanced high-throughput protein engineering methods. Overall, these recent advancements suggest that endolysins will integrate into the antibiotic arsenal over the next decade, thereby innovating antimicrobial treatment against bovine mastitis-causing streptococci and staphylococci.
Collapse
Affiliation(s)
- Niels Vander Elst
- Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, Solnavägen 9, 17165, Solna, Stockholm, Sweden.
| |
Collapse
|
29
|
Lim J, Myung H, Lim D, Song M. Antimicrobial peptide thanatin fused endolysin PA90 (Tha-PA90) for the control of Acinetobacter baumannii infection in mouse model. J Biomed Sci 2024; 31:36. [PMID: 38622637 PMCID: PMC11020296 DOI: 10.1186/s12929-024-01027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/08/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND This study addresses the urgent need for infection control agents driven by the rise of drug-resistant pathogens such as Acinetobacter baumannii. Our primary aim was to develop and assess a novel endolysin, Tha-PA90, designed to combat these challenges. METHODS Tha-PA90 incorporates an antimicrobial peptide (AMP) called thanatin at its N-terminus, enhancing bacterial outer membrane permeability and reducing host immune responses. PA90 was selected as the endolysin component. The antibacterial activity of the purified Tha-PA90 was evaluated using an in vitro colony-forming unit (CFU) reduction assay and a membrane permeability test. A549 cells were utilized to measure the penetration into the cytosol and the cytotoxicity of Tha-PA90. Finally, infection control was monitored in A. baumannii infected mice following the intraperitoneal administration of Tha-PA90. RESULTS Tha-PA90 demonstrated remarkable in vitro efficacy, completely eradicating A. baumannii strains, even drug-resistant variants, at a low concentration of 0.5 μM. Notably, it outperformed thanatin, achieving only a < 3-log reduction at 4 μM. Tha-PA90 exhibited 2-3 times higher membrane permeability than a PA90 and thanatin mixture or PA90 alone. Tha-PA90 was found within A549 cells' cytosol with no discernible cytotoxic effects. Furthermore, Tha-PA90 administration extended the lifespan of A. baumannii-infected mice, reducing bacterial loads in major organs by up to 3 logs. Additionally, it decreased proinflammatory cytokine levels (TNF-α and IL-6), reducing the risk of sepsis from rapid bacterial lysis. Our findings indicate that Tha-PA90 is a promising solution for combating drug-resistant A. baumannii. Its enhanced efficacy, low cytotoxicity, and reduction of proinflammatory responses render it a potential candidate for infection control. CONCLUSIONS This study underscores the significance of engineered endolysins in addressing the pressing challenge of drug-resistant pathogens and offers insights into improved infection management strategies.
Collapse
Affiliation(s)
- Jeonghyun Lim
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin, 17035, Republic of Korea
| | - Heejoon Myung
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin, 17035, Republic of Korea
- LyseNTech Co., Ltd., Seongnam-Si, 13486, Republic of Korea
| | - Daejin Lim
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Miryoung Song
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin, 17035, Republic of Korea.
| |
Collapse
|
30
|
Wang J, Zhang M, Pei J, Yi W, Fan L, Wang C, Xiao X. Isolation and identification of a novel phage targeting clinical multidrug-resistant Corynebacterium striatum isolates. Front Cell Infect Microbiol 2024; 14:1361045. [PMID: 38572320 PMCID: PMC10987712 DOI: 10.3389/fcimb.2024.1361045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Over the past decade, Corynebacterium striatum (C. striatum), an emerging multidrug-resistant (MDR) pathogen, has significantly challenged healthcare settings, especially those involving individuals with weakened immune systems. The rise of these superbugs necessitates innovative solutions. Methods This study aimed to isolate and characterize bacteriophages targeting MDR-C. striatum. Utilizing 54 MDR-C. striatum isolates from a local hospital as target strains, samples were collected from restroom puddles for phage screening. Dot Plaque and Double-layer plate Assays were employed for screening. Results A novel temperate bacteriophage, named CSP1, was identified through a series of procedures, including purification, genome extraction, sequencing, and one-step growth curves. CSP1 possesses a 39,752 base pair circular double-stranded DNA genome with HK97-like structural proteins and potential for site-specific recombination. It represents a new species within the unclassified Caudoviricetes class, as supported by transmission electron microscopy, genomic evolutionary analysis, and collinearity studies. Notably, CSP1 infected and lysed 21 clinical MDR-C. striatum isolates, demonstrating a wide host range. The phage remained stable in conditions ranging from -40 to 55°C, pH 4 to 12, and in 0.9% NaCl buffer, showing no cytotoxicity. Discussion The identification of CSP1 as the first phage targeting clinical C. striatum strains opens new possibilities in bacteriophage therapy research, and the development of diagnostic and therapeutic tools against pathogenic bacteria.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Pathogen Biology, School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| | - Meng Zhang
- Department of Pathogen Biology, School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| | - Jiao Pei
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Wei Yi
- Department of Pathogen Biology, School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| | - Li Fan
- Department of Pathogen Biology, School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| | - Chunhua Wang
- Department of Clinical Laboratory, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xiao Xiao
- Department of Pathogen Biology, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
31
|
Wang M, Zhang J, Wei J, Jiang L, Jiang L, Sun Y, Zeng Z, Wang Z. Phage-inspired strategies to combat antibacterial resistance. Crit Rev Microbiol 2024; 50:196-211. [PMID: 38400715 DOI: 10.1080/1040841x.2023.2181056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
Antimicrobial resistance (AMR) in clinically priority pathogensis now a major threat to public health worldwide. Phages are bacterial parasites that efficiently infect or kill specific strains and represent the most abundant biological entities on earth, showing great attraction as potential antibacterial therapeutics in combating AMR. This review provides a summary of phage-inspired strategies to combat AMR. We firstly cover the phage diversity, and then explain the biological principles of phage therapy that support the use of phages in the post-antimicrobial era. Furthermore, we state the versatility methods of phage therapy both from direct access as well as collateral access. Among the direct access approaches, we discuss the use of phage cocktail therapy, phage-encoded endolysins and the bioengineering for function improvement of used phages or endolysins. On the other hand, we introduce the collateral access, including the phages antimicrobial immunity combined therapy and phage-based novel antibacterial mimic molecules. Nowadays, more and more talented and enthusiastic scientist, doctors, pharmacists, media, authorities, and industry are promoting the progress of phage therapy, and proposed more phages-inspired strategy to make them more tractable to combat AMR and benefit more people, more animal and diverse environment in "one health" framework.
Collapse
Affiliation(s)
- Mianzhi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Junxuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jingyi Wei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lei Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Li Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongxue Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhenling Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, China
| |
Collapse
|
32
|
Golosova NN, Matveev AL, Tikunova NV, Khlusevich YA, Kozlova YN, Morozova VV, Babkin IV, Ushakova TA, Zhirakovskaya EV, Panina EA, Ryabchikova EI, Tikunov AY. Bacteriophage vB_SepP_134 and Endolysin LysSte_134_1 as Potential Staphylococcus-Biofilm-Removing Biological Agents. Viruses 2024; 16:385. [PMID: 38543751 PMCID: PMC10975630 DOI: 10.3390/v16030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 05/23/2024] Open
Abstract
Bacteria of the genus Staphylococcus are significant challenge for medicine, as many species are resistant to multiple antibiotics and some are even to all of the antibiotics we use. One of the approaches to developing new therapeutics to treat staphylococcal infections is the use of bacteriophages specific to these bacteria or the lytic enzymes of such bacteriophages, which are capable of hydrolyzing the cell walls of these bacteria. In this study, a new bacteriophage vB_SepP_134 (St 134) specific to Staphylococcus epidermidis was described. This podophage, with a genome of 18,275 bp, belongs to the Andhravirus genus. St 134 was able to infect various strains of 12 of the 21 tested coagulase-negative Staphylococcus species and one clinical strain from the Staphylococcus aureus complex. The genes encoding endolysin (LysSte134_1) and tail tip lysin (LysSte134_2) were identified in the St 134 genome. Both enzymes were cloned and produced in Escherichia coli cells. The endolysin LysSte134_1 demonstrated catalytic activity against peptidoglycans isolated from S. aureus, S. epidermidis, Staphylococcus haemolyticus, and Staphylococcus warneri. LysSte134_1 was active against S. aureus and S. epidermidis planktonic cells and destroyed the biofilms formed by clinical strains of S. aureus and S. epidermidis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Artem Y. Tikunov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (N.N.G.); (N.V.T.); (Y.A.K.); (Y.N.K.); (V.V.M.); (I.V.B.); (T.A.U.); (E.A.P.); (E.I.R.)
| |
Collapse
|
33
|
Szymanski CM. Bacteriophages and their unique components provide limitless resources for exploitation. Front Microbiol 2024; 15:1342544. [PMID: 38380101 PMCID: PMC10877033 DOI: 10.3389/fmicb.2024.1342544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Affiliation(s)
- Christine M. Szymanski
- Department of Microbiology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
34
|
Tung CW, Julianingsih D, Canagarajah C, Sellers G, Scriba A, Alvarado-Martínez Z, Tabashsum Z, Biswas D. The effectiveness of endolysin ENDO-1252 from Salmonella bacteriophage-1252 against nontyphoidal Salmonella enterica. FEMS Microbiol Lett 2024; 371:fnae051. [PMID: 38970360 DOI: 10.1093/femsle/fnae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024] Open
Abstract
Salmonella enterica (S. enterica) is the most common food and waterborne pathogen worldwide. The growing trend of antibiotic-resistant S. enterica poses severe healthcare threats. As an alternative antimicrobial agent, bacteriophage-encoded endolysins (endolysins) are a potential agent in controlling S. enterica infection. Endolysins are enzymes that particularly target the peptidoglycan layer of bacterial cells, leading to their rupture and destruction. However, the application of endolysins against Gram-negative bacteria is limited due to the presence of the outer membrane in the cell wall, which hinders the permeation of externally applied endolysins. This study aimed the prokaryotic expression system to produce the recombinant endolysin ENDO-1252, encoded by the Salmonella bacteriophage-1252 associated with S. Enteritidis. Subsequently, ENDO-1252 had strong lytic activity not only against S. Enteritidis but also against S. Typhimurium. In addition, ENDO-1252 showed optimal thermostability and lytic activity at 25°C with a pH of 7.0. In combination with 0.1 mM EDTA, the effect of 120 µg of ENDO-1252 for 6 hours exhibited the highest lytic activity, resulting in a reduction of 1.15 log or 92.87% on S. Enteritidis. These findings suggest that ENDO-1252 can be used as a potential and innovative antibacterial agent for controlling the growth of S. Enteritidis.
Collapse
Affiliation(s)
- Chuan-Wei Tung
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20740, United States
| | - Dita Julianingsih
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20740, United States
| | - Christa Canagarajah
- Department of Biology, University of Maryland, College Park, College Park, MD 20740, United States
| | - George Sellers
- Department of Biology, University of Maryland, College Park, College Park, MD 20740, United States
| | - Aaron Scriba
- Department of Biology, University of Maryland, College Park, College Park, MD 20740, United States
| | - Zabdiel Alvarado-Martínez
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland, College Park, MD 20740, United States
| | - Zajeba Tabashsum
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland, College Park, MD 20740, United States
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20740, United States
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland, College Park, MD 20740, United States
| |
Collapse
|
35
|
Golosova NN, Khlusevich YA, Morozova VV, Matveev AL, Kozlova YN, Tikunov AY, Panina EA, Tikunova NV. Characterization of a Thermostable Endolysin of the Aeribacillus Phage AeriP45 as a Potential Staphylococcus Biofilm-Removing Agent. Viruses 2024; 16:93. [PMID: 38257793 PMCID: PMC10819204 DOI: 10.3390/v16010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Multidrug-resistant Gram-positive bacteria, including bacteria from the genus Staphylococcus, are currently a challenge for medicine. Therefore, the development of new antimicrobials is required. Promising candidates for new antistaphylococcal drugs are phage endolysins, including endolysins from thermophilic phages against other Gram-positive bacteria. In this study, the recombinant endolysin LysAP45 from the thermophilic Aeribacillus phage AP45 was obtained and characterized. The recombinant endolysin LysAP45 was produced in Escherichia coli M15 cells. It was shown that LysAP45 is able to hydrolyze staphylococcal peptidoglycans from five species and eleven strains. Thermostability tests showed that LysAP45 retained its hydrolytic activity after incubation at 80 °C for at least 30 min. The enzymatically active domain of the recombinant endolysin LysAP45 completely disrupted biofilms formed by multidrug-resistant S. aureus, S. haemolyticus, and S. epidermidis. The results suggested that LysAP45 is a novel thermostable antimicrobial agent capable of destroying biofilms formed by various species of multidrug-resistant Staphylococcus. An unusual putative cell-binding domain was found at the C-terminus of LysAP45. No domains with similar sequences were found among the described endolysins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nina V. Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (N.N.G.); (V.V.M.); (A.L.M.); (Y.N.K.); (A.Y.T.); (E.A.P.)
| |
Collapse
|
36
|
Khan FM, Chen JH, Zhang R, Liu B. A comprehensive review of the applications of bacteriophage-derived endolysins for foodborne bacterial pathogens and food safety: recent advances, challenges, and future perspective. Front Microbiol 2023; 14:1259210. [PMID: 37869651 PMCID: PMC10588457 DOI: 10.3389/fmicb.2023.1259210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Foodborne diseases are caused by food contaminated by pathogenic bacteria such as Escherichia coli, Salmonella, Staphylococcus aureus, Listeria monocytogenes, Campylobacter, and Clostridium, a critical threat to human health. As a novel antibacterial agent against foodborne pathogens, endolysins are peptidoglycan hydrolases encoded by bacteriophages that lyse bacterial cells by targeting their cell wall, notably in Gram-positive bacteria due to their naturally exposed peptidoglycan layer. These lytic enzymes have gained scientists' interest in recent years due to their selectivity, mode of action, engineering potential, and lack of resistance mechanisms. The use of endolysins for food safety has undergone significant improvements, which are summarized and discussed in this review. Endolysins can remove bacterial biofilms of foodborne pathogens and their cell wall-binding domain can be employed as a tool for quick detection of foodborne pathogens. We explained the applications of endolysin for eliminating pathogenic bacteria in livestock and various food matrices, as well as the limitations and challenges in use as a dietary supplement. We also highlight the novel techniques of the development of engineering endolysin for targeting Gram-negative bacterial pathogens. In conclusion, endolysin is safe and effective against foodborne pathogens and has no adverse effect on human cells and beneficial microbiota. As a result, endolysin could be employed as a functional bio-preservative agent to improve food stability and safety and maintain the natural taste of food quality.
Collapse
Affiliation(s)
- Fazal Mehmood Khan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Jie-Hua Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| |
Collapse
|
37
|
Abdurahman MA, Durukan İ, Dinçer T, Pektaş S, Karataş E, Kiliç AO. Staphylococcus aureus Bacteriophage 52 Endolysin Exhibits Anti-Biofilm and Broad Antibacterial Activity Against Gram-Positive Bacteria. Protein J 2023; 42:596-606. [PMID: 37634214 DOI: 10.1007/s10930-023-10145-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
Bacteriophage endolysins have been shown to hold great promise as new antibacterial agents for animal and human health in food preservation. In the present study, endolysin from Staphylococcus aureus subsp. aureus ATCC 27692-B1 bacteriophage 52 (LysSA52) was cloned, expressed, and characterized for its antimicrobial properties. Following DNA extraction from bacteriophage 52, a 1446-bp DNA fragment containing the endolysin gene (lysSA52) was obtained by PCR amplification and cloned into pET SUMO expression vector. The positive clone was validated by sequencing and open-reading frame analysis. The LysSA52 sequence shared high homology with staphylococcal phage endolysins of the SA12, SA13, and DSW2 phages and others. The cloned lysSA52 gene encoding 481 amino acids endolysin was expressed in Escherichia coli BL21 with a calculated molecular mass of 66 kDa (LysSA52). This recombinant endolysin LysSA52 exhibited lytic activity against 8 of 10 Gram-positive bacteria via agar spot-on lawn antimicrobial assay, including methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Streptococcus pneumonia, Streptococcus pyogenes, Enterococcus faecium, Enterococcus faecalis, and Bacillus atrophaeus. In addition, the 0.50 mg/mL, LysSA52 endolysins reduced about 60% of the biofilms of S. aureus and S. epidermidis established on a microtiter plate in 12 h treatment. The data from this study indicate that LysSA52 endolysin could be used as an antibacterial protein to prevent and treat infections caused by staphylococci and several other Gram-positive pathogenic bacteria irrespective of their antibiotic resistance.
Collapse
Affiliation(s)
- Mujib Abdulkadir Abdurahman
- Department of Medical Microbiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, 61080, Turkey
- Department of Microbial, Cellular, and Molecular Biology, Faculty of Natural Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - İnci Durukan
- Department of Medical Microbiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, 61080, Turkey
| | - Tuba Dinçer
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Serap Pektaş
- Department of Chemistry, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, Turkey
| | - Ersin Karataş
- Department of Medical Services and Techniques, Patnos Vocational School, Ağrı İbrahim Çeçen University, Ağrı, Turkey
| | - Ali Osman Kiliç
- Department of Medical Microbiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, 61080, Turkey.
| |
Collapse
|
38
|
Li Z, Baidoun R, Brown AC. Toxin-Triggered Liposomes for the Controlled Release of Antibiotics to Treat Infections Associated with Gram-Negative Bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559931. [PMID: 37808632 PMCID: PMC10557637 DOI: 10.1101/2023.09.28.559931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Antibiotic resistance has become an urgent threat to health care in recent years. The use of drug delivery systems provides advantages over conventional administration of antibiotics and can slow the development of antibiotic resistance. In the current study, we developed a toxin-triggered liposomal antibiotic delivery system, in which the drug release is enabled by the leukotoxin (LtxA) produced by the Gram-negative pathogen, Aggregatibacter actinomycetemcomitans. LtxA has previously been shown to mediate membrane disruption by promoting a lipid phase change in nonlamellar lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-methyl (N-methyl-DOPE). In addition, LtxA has been observed to bind strongly and nearly irreversibly to membranes containing large amounts of cholesterol. Here, we designed a liposomal delivery system composed of N-methyl-DOPE and cholesterol to take advantage of these interactions. Specifically, we hypothesized that liposomes composed of N-methyl-DOPE and cholesterol, encapsulating antibiotics, would be sensitive to LtxA, enabling controlled antibiotic release. We observed that liposomes composed of N-methyl-DOPE were sensitive to the presence of low concentrations of LtxA, and cholesterol increased the extent and kinetics of content release. The liposomes were stable under various storage conditions for at least 7 days. Finally, we showed that antibiotic release occurs selectively in the presence of an LtxA-producing strain of A. actinomycetemcomitans but not in the presence of a non-LtxA-expressing strain. Together, these results demonstrate that the designed liposomal vehicle enables toxin-triggered delivery of antibiotics to LtxA-producing strains of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Ziang Li
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA
| | - Rani Baidoun
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA
- Current Affiliation: Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA
| |
Collapse
|
39
|
Cui L, Veeranarayanan S, Thitiananpakorn K, Wannigama DL. Bacteriophage Bioengineering: A Transformative Approach for Targeted Drug Discovery and Beyond. Pathogens 2023; 12:1179. [PMID: 37764987 PMCID: PMC10534869 DOI: 10.3390/pathogens12091179] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Bacteriophages, the viruses that infect and replicate within bacteria, have long been recognized as potential therapeutic agents against bacterial infections [...].
Collapse
Affiliation(s)
- Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Tochigi 329-0498, Japan; (S.V.); (K.T.)
| | - Srivani Veeranarayanan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Tochigi 329-0498, Japan; (S.V.); (K.T.)
| | - Kanate Thitiananpakorn
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Tochigi 329-0498, Japan; (S.V.); (K.T.)
| | - Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan;
| |
Collapse
|
40
|
Shah S, Das R, Chavan B, Bajpai U, Hanif S, Ahmed S. Beyond antibiotics: phage-encoded lysins against Gram-negative pathogens. Front Microbiol 2023; 14:1170418. [PMID: 37789862 PMCID: PMC10542408 DOI: 10.3389/fmicb.2023.1170418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Antibiotics remain the frontline agents for treating deadly bacterial pathogens. However, the indiscriminate use of these valuable agents has led to an alarming rise in AMR. The antibiotic pipeline is insufficient to tackle the AMR threat, especially with respect to the WHO critical category of priority Gram-negative pathogens, which have become a serious problem as nosocomial and community infections and pose a threat globally. The AMR pandemic requires solutions that provide novel antibacterial agents that are not only effective but against which bacteria are less likely to gain resistance. In this regard, natural or engineered phage-encoded lysins (enzybiotics) armed with numerous features represent an attractive alternative to the currently available antibiotics. Several lysins have exhibited promising efficacy and safety against Gram-positive pathogens, with some in late stages of clinical development and some commercially available. However, in the case of Gram-negative bacteria, the outer membrane acts as a formidable barrier; hence, lysins are often used in combination with OMPs or engineered to overcome the outer membrane barrier. In this review, we have briefly explained AMR and the initiatives taken by different organizations globally to tackle the AMR threat at different levels. We bring forth the promising potential and challenges of lysins, focusing on the WHO critical category of priority Gram-negative bacteria and lysins under investigation for these pathogens, along with the challenges associated with developing them as therapeutics within the existing regulatory framework.
Collapse
Affiliation(s)
- Sanket Shah
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Ritam Das
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Bhakti Chavan
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Sarmad Hanif
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Syed Ahmed
- Techinvention Lifecare Private Limited, Mumbai, India
| |
Collapse
|
41
|
Petrzik K. Peptidoglycan Endopeptidase from Novel Adaiavirus Bacteriophage Lyses Pseudomonas aeruginosa Strains as Well as Arthrobacter globiformis and A. pascens Bacteria. Microorganisms 2023; 11:1888. [PMID: 37630448 PMCID: PMC10458142 DOI: 10.3390/microorganisms11081888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
A novel virus lytic for Pseudomonas aeruginosa has been purified. Its viral particles have a siphoviral morphology with a head 60 nm in diameter and a noncontractile tail 184 nm long. The dsDNA genome consists of 16,449 bp, has cohesive 3' termini, and encodes 28 putative proteins in a single strain. The peptidoglycan endopeptidase encoded by ORF 16 was found to be the lytic enzyme of this virus. The recombinant, purified enzyme was active up to 55 °C in the pH range 6-9 against all tested isolates of P. aeruginosa, but, surprisingly, also against the distant Gram-positive micrococci Arthrobacter globiformis and A. pascens. Both this virus and its endolysin are further candidates for possible treatment against P. aeruginosa and probably also other bacteria.
Collapse
Affiliation(s)
- Karel Petrzik
- Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branisovska 1160/31, 370 05 Ceske Budejovice, Czech Republic
| |
Collapse
|
42
|
Chen K, Guan Y, Hu R, Cui X, Liu Q. Characterization of the LysP2110-HolP2110 Lysis System in Ralstonia solanacearum Phage P2110. Int J Mol Sci 2023; 24:10375. [PMID: 37373522 DOI: 10.3390/ijms241210375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Ralstonia solanacearum, a pathogen causing widespread bacterial wilt disease in numerous crops, currently lacks an optimal control agent. Given the limitations of traditional chemical control methods, including the risk of engendering drug-resistant strains and environmental harm, there is a dire need for sustainable alternatives. One alternative is lysin proteins that selectively lyse bacteria without contributing to resistance development. This work explored the biocontrol potential of the LysP2110-HolP2110 system of Ralstonia solanacearum phage P2110. Bioinformatics analyses pinpointed this system as the primary phage-mediated host cell lysis mechanism. Our data suggest that LysP2110, a member of the Muraidase superfamily, requires HolP2110 for efficient bacterial lysis, presumably via translocation across the bacterial membrane. LysP2110 also exhibits broad-spectrum antibacterial activity in the presence of the outer membrane permeabilizer EDTA. Additionally, we identified HolP2110 as a distinct holin structure unique to the Ralstonia phages, underscoring its crucial role in controlling bacterial lysis through its effect on bacterial ATP levels. These findings provide valuable insights into the function of the LysP2110-HolP2110 lysis system and establish LysP2110 as a promising antimicrobial agent for biocontrol applications. This study underpins the potential of these findings in developing effective and environment-friendly biocontrol strategies against bacterial wilt and other crop diseases.
Collapse
Affiliation(s)
- Kaihong Chen
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yanhui Guan
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ronghua Hu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiaodong Cui
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Qiongguang Liu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
43
|
Euler CW, Raz A, Hernandez A, Serrano A, Xu S, Andersson M, Zou G, Zhang Y, Fischetti VA, Li J. PlyKp104, a Novel Phage Lysin for the Treatment of Klebsiella pneumoniae, Pseudomonas aeruginosa, and Other Gram-Negative ESKAPE Pathogens. Antimicrob Agents Chemother 2023; 67:e0151922. [PMID: 37098944 PMCID: PMC10190635 DOI: 10.1128/aac.01519-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/30/2023] [Indexed: 04/27/2023] Open
Abstract
Klebsiella pneumoniae and Pseudomonas aeruginosa are two leading causes of burn and wound infections, pneumonia, urinary tract infections, and more severe invasive diseases, which are often multidrug resistant (MDR) or extensively drug resistant. Due to this, it is critical to discover alternative antimicrobials, such as bacteriophage lysins, against these pathogens. Unfortunately, most lysins that target Gram-negative bacteria require additional modifications or outer membrane permeabilizing agents to be bactericidal. We identified four putative lysins through bioinformatic analysis of Pseudomonas and Klebsiella phage genomes in the NCBI database and then expressed and tested their intrinsic lytic activity in vitro. The most active lysin, PlyKp104, exhibited >5-log killing against K. pneumoniae, P. aeruginosa, and other Gram-negative representatives of the multidrug-resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, K. pneumonia, Acinetobacter baumannii, P. aeruginosa, and Enterobacter species) without further modification. PlyKp104 displayed rapid killing and high activity over a wide pH range and in high concentrations of salt and urea. Additionally, pulmonary surfactants and low concentrations of human serum did not inhibit PlyKp104 activity in vitro. PlyKp104 also significantly reduced drug-resistant K. pneumoniae >2 logs in a murine skin infection model after one treatment of the wound, suggesting that this lysin could be used as a topical antimicrobial against K. pneumoniae and other MDR Gram-negative infections.
Collapse
Affiliation(s)
- Chad W. Euler
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Assaf Raz
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, New York, USA
| | - Anaise Hernandez
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, New York, USA
| | - Anna Serrano
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
| | - Siyue Xu
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Martin Andersson
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yue Zhang
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
44
|
Varotsou C, Premetis GE, Labrou NE. Characterization and Engineering Studies of a New Endolysin from the Propionibacterium acnes Bacteriophage PAC1 for the Development of a Broad-Spectrum Artilysin with Altered Specificity. Int J Mol Sci 2023; 24:ijms24108523. [PMID: 37239874 DOI: 10.3390/ijms24108523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The emergence of multidrug-resistant (MDR) bacteria has risen rapidly, leading to a great threat to global public health. A promising solution to this problem is the exploitation of phage endolysins. In the present study, a putative N-acetylmuramoyl-L-alanine type-2 amidase (NALAA-2, EC 3.5.1.28) from Propionibacterium bacteriophage PAC1 was characterized. The enzyme (PaAmi1) was cloned into a T7 expression vector and expressed in E. coli BL21 cells. Kinetics analysis using turbidity reduction assays allowed the determination of the optimal conditions for lytic activity against a range of Gram-positive and negative human pathogens. The peptidoglycan degradation activity of PaAmi1 was confirmed using isolated peptidoglycan from P. acnes. The antibacterial activity of PaAmi1 was investigated using live P. acnes cells growing on agar plates. Two engineered variants of PaAmi1 were designed by fusion to its N-terminus two short antimicrobial peptides (AMPs). One AMP was selected by searching the genomes of Propionibacterium bacteriophages using bioinformatics tools, whereas the other AMP sequence was selected from the antimicrobial peptide databases. Both engineered variants exhibited improved lytic activity towards P. acnes and the enterococci species Enterococcus faecalis and Enterococcus faecium. The results of the present study suggest that PaAmi1 is a new antimicrobial agent and provide proof of concept that bacteriophage genomes are a rich source of AMP sequences that can be further exploited for designing novel or improved endolysins.
Collapse
Affiliation(s)
- Christina Varotsou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece
| | - Georgios E Premetis
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece
| |
Collapse
|
45
|
Premetis GE, Stathi A, Papageorgiou AC, Labrou NE. Structural and functional features of a broad-spectrum prophage-encoded enzybiotic from Enterococcus faecium. Sci Rep 2023; 13:7450. [PMID: 37156923 PMCID: PMC10167349 DOI: 10.1038/s41598-023-34309-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
Multidrug-resistant (MDR) bacteria have become a growing threat to public health. The gram-positive Enterococcus faecium is classified by WHO as a high-priority pathogen among the global priority list of antibiotic-resistant bacteria. Peptidoglycan-degrading enzymes (PDEs), also known as enzybiotics, are useful bactericidal agents in the fight against resistant bacteria. In this work, a genome-based screening approach of the genome of E. faecium allowed the identification of a putative PDE gene with predictive amidase activity (EfAmi1; EC 3.5.1.28) in a prophage-integrated sequence. EfAmi1 is composed by two domains: a N-terminal Zn2+-dependent N-acetylmuramoyl-L-alanine amidase-2 (NALAA-2) domain and a C-terminal domain with unknown structure and function. The full-length gene of EfAmi1 was cloned and expressed as a 6xHis-tagged protein in E. coli. EfAmi1 was produced as a soluble protein, purified, and its lytic and antimicrobial activities were investigated using turbidity reduction and Kirby-Bauer disk-diffusion assays against clinically isolated bacterial pathogens. The crystal structure of the N-terminal amidase-2 domain was determined using X-ray crystallography at 1.97 Å resolution. It adopts a globular fold with several α-helices surrounding a central five-stranded β-sheet. Sequence comparison revealed a cluster of conserved amino acids that defines a putative binding site for a buried zinc ion. The results of the present study suggest that EfAmi1 displays high lytic and antimicrobial activity and may represent a promising new antimicrobial in the post-antibiotic era.
Collapse
Affiliation(s)
- Georgios E Premetis
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece
| | - Angeliki Stathi
- Department of Microbiology, "Aghia Sophia" Children's Hospital, 11527, Athens, Greece
| | | | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece.
| |
Collapse
|
46
|
Mehmood Khan F, Manohar P, Singh Gondil V, Mehra N, Kayode Oyejobi G, Odiwuor N, Ahmad T, Huang G. The applications of animal models in phage therapy: An update. Hum Vaccin Immunother 2023; 19:2175519. [PMID: 36935353 PMCID: PMC10072079 DOI: 10.1080/21645515.2023.2175519] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
The rapid increase in antibiotic resistance presents a dire situation necessitating the need for alternative therapeutic agents. Among the current alternative therapies, phage therapy (PT) is promising. This review extensively summarizes preclinical PT approaches in various in-vivo models. PT has been evaluated in several recent clinical trials. However, there are still several unanswered concerns due to a lack of appropriate regulation and pharmacokinetic data regarding the application of phages in human therapeutic procedures. In this review, we also presented the current state of PT and considered how animal models can be used to adapt these therapies for humans. The development of realistic solutions to circumvent these constraints is critical for advancing this technology.
Collapse
Affiliation(s)
- Fazal Mehmood Khan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China.,Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Prasanth Manohar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Vijay Singh Gondil
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Nancy Mehra
- Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Greater Kayode Oyejobi
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,Department of Microbiology, Osun State University, Osogbo, Nigeria.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Nelson Odiwuor
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,International College, University of Chinese Academy of Sciences, Beijing, China.,Microbiology, Sino-Africa Joint Research Centre, Nairobi, Kenya
| | - Tauseef Ahmad
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Guangtao Huang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
47
|
Abdelrahman F, Gangakhedkar R, Nair G, El-Didamony G, Askora A, Jain V, El-Shibiny A. Pseudomonas Phage ZCPS1 Endolysin as a Potential Therapeutic Agent. Viruses 2023; 15:520. [PMID: 36851734 PMCID: PMC9961711 DOI: 10.3390/v15020520] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
The challenge of antibiotic resistance has gained much attention in recent years due to the rapid emergence of resistant bacteria infecting humans and risking industries. Thus, alternatives to antibiotics are being actively searched for. In this regard, bacteriophages and their enzymes, such as endolysins, are a very attractive alternative. Endolysins are the lytic enzymes, which are produced during the late phase of the lytic bacteriophage replication cycle to target the bacterial cell walls for progeny release. Here, we cloned, expressed, and purified LysZC1 endolysin from Pseudomonas phage ZCPS1. The structural alignment, molecular dynamic simulation, and CD studies suggested LysZC1 to be majorly helical, which is highly similar to various phage-encoded lysozymes with glycoside hydrolase activity. Our endpoint turbidity reduction assay displayed the lytic activity against various Gram-positive and Gram-negative pathogens. Although in synergism with EDTA, LysZC1 demonstrated significant activity against Gram-negative pathogens, it demonstrated the highest activity against Bacillus cereus. Moreover, LysZC1 was able to reduce the numbers of logarithmic-phase B. cereus by more than 2 log10 CFU/mL in 1 h and also acted on the stationary-phase culture. Remarkably, LysZC1 presented exceptional thermal stability, pH tolerance, and storage conditions, as it maintained the antibacterial activity against its host after nearly one year of storage at 4 °C and after being heated at temperatures as high as 100 °C for 10 min. Our data suggest that LysZC1 is a potential candidate as a therapeutic agent against bacterial infection and an antibacterial bio-control tool in food preservation technology.
Collapse
Affiliation(s)
- Fatma Abdelrahman
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, 6th of October City 12578, Egypt
| | - Rutuja Gangakhedkar
- Microbiology and Molecular Biology Laboratory, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Gokul Nair
- Microbiology and Molecular Biology Laboratory, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Gamal El-Didamony
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed Askora
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, 6th of October City 12578, Egypt
- Faculty of Environmental Agricultural Sciences, Arish University, Arish 45511, Egypt
| |
Collapse
|
48
|
Kudinova A, Grishin A, Grunina T, Poponova M, Bulygina I, Gromova M, Choudhary R, Senatov F, Karyagina A. Antibacterial and Anti-Biofilm Properties of Diopside Powder Loaded with Lysostaphin. Pathogens 2023; 12:pathogens12020177. [PMID: 36839449 PMCID: PMC9959908 DOI: 10.3390/pathogens12020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Diopside-based ceramic is a perspective biocompatible material with numerous potential applications in the field of bone prosthetics. Implantable devices and materials are often prone to colonization and biofilm formation by pathogens such as Staphylococcus aureus, which in the case of bone grafting leads to osteomyelitis, an infectious bone and bone marrow injury. To lower the risk of bacterial colonization, implanted materials can be impregnated with antimicrobials. In this work, we loaded the antibacterial enzyme lysostaphin on diopside powder and studied the antibacterial and antibiofilm properties of such material to probe the utility of this approach for diopside-based prosthetic materials. METHODS Diopside powder was synthesized by the solid-state method, lysostaphin was loaded on diopside by adsorption, the release of lysostaphin from diopside was monitored by ELISA, and antibacterial and anti-biofilm activity was assessed by standard microbiological procedures. RESULTS AND CONCLUSIONS Lysostaphin released from diopside powder showed high antibacterial activity against planktonic bacteria and effectively destroyed 24-h staphylococcal biofilms. Diopside-based materials possess a potential for the development of antibacterial bone grafting materials.
Collapse
Affiliation(s)
- Alina Kudinova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
| | - Alexander Grishin
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia
- Correspondence: (A.G.); (A.K.)
| | - Tatiana Grunina
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia
| | - Maria Poponova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
| | - Inna Bulygina
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
- Center for Biomedical Engineering, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
| | - Maria Gromova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
| | - Rajan Choudhary
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kipsala Street 6A, LV-1048 Riga, Latvia
| | - Fedor Senatov
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
- Center for Biomedical Engineering, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
| | - Anna Karyagina
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
- Center for Biomedical Engineering, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence: (A.G.); (A.K.)
| |
Collapse
|
49
|
Shymialevich D, Wójcicki M, Wardaszka A, Świder O, Sokołowska B, Błażejak S. Application of Lytic Bacteriophages and Their Enzymes to Reduce Saprophytic Bacteria Isolated from Minimally Processed Plant-Based Food Products-In Vitro Studies. Viruses 2022; 15:9. [PMID: 36680050 PMCID: PMC9865725 DOI: 10.3390/v15010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to isolate phage enzymes and apply them in vitro for eradication of the dominant saprophytic bacteria isolated from minimally processed food. Four bacteriophages-two Enterobacter-specific and two Serratia-specific, which produce lytic enzymes-were used in this research. Two methods of phage enzyme isolation were tested, namely precipitation with acetone and ultracentrifugation. It was found that the number of virions could be increased almost 100 times due to the extension of the cultivation time (72 h). The amplification of phage particles and lytic proteins was dependent on the time of cultivation. Considering the influence of isolated enzymes on the growth kinetics of bacterial hosts, proteins isolated with acetone after 72-hour phage propagation exhibited the highest inhibitory effect. The reduction of bacteria count was dependent on the concentration of enzymes in the lysates. The obtained results indicate that phages and their lytic enzymes could be used in further research aiming at the improvement of microbiological quality and safety of minimally processed food products.
Collapse
Affiliation(s)
- Dziyana Shymialevich
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Artur Wardaszka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Stanisław Błażejak
- Department of Biotechnology and Food Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences (WULS–SGGW), Nowoursynowska 166 Street, 02-776 Warsaw, Poland
| |
Collapse
|
50
|
Antimicrobial effect of endolysins LYSDERM-S and LYSDERM-T1 and endolysin-ubiquitin combination on methicillin-resistant Staphylococcus aureus. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|