1
|
Cui X, Cao C, Hao W, Pan X, Cao Y, Fu Y, Hao H, Jiao Y, Lin S, Cui S, Li R, Liu Y, Yan F. A Nanoplatform of Reversing Tumor Immunosuppressive Microenvironment Based on the NIR-II Gold Hollow Nanorod for the Treatment of Hepatocellular Carcinoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500144. [PMID: 40130748 DOI: 10.1002/smll.202500144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/16/2025] [Indexed: 03/26/2025]
Abstract
Advanced hepatocellular carcinoma (HCC) presents a strongly immunosuppressive tumor microenvironment, which enables tumor cells to evade immune cell attacks and hinder effective drug killing, thereby hindering the achievement of the desired therapeutic effect. In response, a novel nanoplatform- AuHNR@γ-Fe2O3@Lenvatinib@β-Glucan (AFLG) with surface modified β-1,3-glucan is developed, which exhibits potent immunostimulatory effect and the capability of repolarizing macrophages, to counteract the immunosuppressive conditions present in the tumor microenvironment. Leveraging the hollow structure of gold nanorods, Lenvatinib is efficiently loaded, a first-line targeted drug for HCC, which effectively inhibits tumor angiogenesis. Additionally, through atomic layer deposition, γ-Fe2O3 is generated on the hollow gold nanorod surface, endowing it with chemodynamic therapy and magnetic resonance T2-weighted imaging capabilities while excellently maintaining the gold nanorod's superior photothermal therapy and photoacoustic imaging properties under 1064 nm excitation. These AFLG NPs feature dual-modal imaging and quadruple-modal synergistic therapy capabilities, along with their powerful potential in remodeling the immunosuppressive tumor microenvironment, offering an encouraging novel approach for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xinyuan Cui
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin 2nd Rd, Shanghai, 200025, P. R. China
| | - Cheng Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Wanting Hao
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin 2nd Rd, Shanghai, 200025, P. R. China
| | - Xinni Pan
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Yu Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Yanfei Fu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Huifang Hao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Yingao Jiao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Shujing Lin
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Shengsheng Cui
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Ruokun Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin 2nd Rd, Shanghai, 200025, P. R. China
- Faculty of Medical Imaging Technology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No. 150 Ruijin 2nd Rd, Shanghai, 200025, P. R. China
| | - Yanlei Liu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin 2nd Rd, Shanghai, 200025, P. R. China
- Faculty of Medical Imaging Technology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No. 150 Ruijin 2nd Rd, Shanghai, 200025, P. R. China
| |
Collapse
|
2
|
Chen Y, Li P, Huang W, Yang N, Zhang X, Cai K, Chen Y, Xie Z, Gong J, Liao Q. Structural characterization and immunomodulatory activity of an exopolysaccharide isolated from Bifidobacterium adolescentis. Int J Biol Macromol 2025; 304:140747. [PMID: 39922339 DOI: 10.1016/j.ijbiomac.2025.140747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Bifidobacterium adolescentis is a key probiotic that has been proven to possess various bioactivities. A water-soluble heteropolysaccharide (BEP-1A) was isolated from the probiotic and systematically investigated for the first time. The molecular weight of BEP-1A was calculated to be 9.69 × 106 Da. Combined with monosaccharide composition, Fourier transform infrared (FT-IR) spectroscopy, methylation and nuclear magnetic resonance (NMR) analysis, BEP-1A was composed of mannose, glucose and galactose at a molar ratio of 0.11⁚4.30⁚1.32. The backbone included β-1,2-Glcp, β-1,3-Glcp, α-1,4-Glcp, α-1,4-Galp, α-1,6-Galp and α-1,3-Manp, with the branch at the O-2 position of α-1,6-Galp, consisting of α-1,2-Galp and α-1-Glcp. Moreover, a filamentous structure of BEP-1A was detected by scanning electron microscopy (SEM). BEP-1A presented high thermal stability based on thermogravimetric analysis (TGA). X-ray diffractometry (XRD) results revealed that BEP-1A was an amorphous molecule without a crystal structure. Furthermore, BEP-1A significantly increased the viability of RAW 264.7 macrophages, improved phagocytosis, and promoted the secretion of nitric oxide (NO), reactive oxygen species (ROS), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS). BEP-1A was also found to induce the nuclear translocation of the NF-κB subunit p65 and upregulate the phosphorylation of p65 and IκB-α, which suggested that the NF-κB pathway was involved in the BEP-1A-induced immunomodulatory effect. Overall, this study provides a theoretical basis for the development of BEP-1A as an immunomodulator in pharmaceuticals and functional foods.
Collapse
Affiliation(s)
- Ye Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Wenyi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Na Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Kaiwei Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangming District, Gongchang Road, Shenzhen, Guangdong Province 518106, China
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China.
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China.
| |
Collapse
|
3
|
Trivedi R, Upadhyay TK. Exploring the Potential of Medicinal Mushroom β-Glucans as a Natural Frontier in Prostate Cancer Treatment. Int J Med Mushrooms 2025; 27:1-11. [PMID: 40096532 DOI: 10.1615/intjmedmushrooms.2024056585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The global increase in cancer cases, particularly prostate cancer, poses a significant health challenge worldwide. Conventional treatments such as surgery, radiation therapy, hormone therapy, chemotherapy, and immunotherapy offer valuable options but are associated with limitations and potential side effects. As a result, there is growing interest in complementary therapies, including natural compounds such as β-glucans, derived from sources such as yeast and mushrooms. In this review, we explored the potential therapeutic role of medicinal mushrooms β-glucan in prostate cancer treatment. β-glucans has demonstrated anti-cancer properties in preclinical studies, including inhibition of proliferation, induction of apoptosis, and modulation of immune responses. Studies in prostate cancer cell lines and animal models have shown promising results, with β-glucan inhibiting tumor growth, inducing DNA damage, and regulating tumor markers such as p53 and prostate specific antigen. β-glucans acts through various pathways, including stimulation of dendritic cells, modulation of cytokine secretion, suppression of myeloid-derived suppressor cells, and enhancement of immune responses. Moreover, β-glucans exhibits anti-androgenic and immune-modulatory effects, making it a promising candidate for prostate cancer treatment. In this study, we also focused on the mechanism of action of β-glucans through various pathways including tumor cell death by oxidative stress created through ROS generation and autophagy. Although preclinical studies support the potential therapeutic efficacy of medicinal mushrooms β-glucans, further research is needed to elucidate its clinical utility and safety in human trials.
Collapse
Affiliation(s)
| | - Tarun Kumar Upadhyay
- Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, Gujarat-India
| |
Collapse
|
4
|
Qi BJ, Ji MX, He ZQ. Using transcriptome sequencing (RNA-Seq) to screen genes involved in β-glucan biosynthesis and accumulation during oat seed development. PeerJ 2024; 12:e17804. [PMID: 39346057 PMCID: PMC11438436 DOI: 10.7717/peerj.17804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/03/2024] [Indexed: 10/01/2024] Open
Abstract
Oat (Avena sativa L.) is an annual grass that has a high nutritional value and therapeutic benefits. β-glucan is one of the most important nutrients in oats. In this study, we investigated two oat varieties with significant differences in β-glucan content (high β-glucan oat varieties BY and low β-glucan content oat variety DY) during different filling stages. We also studied the transcriptome sequencing of seeds at different filling stages. β-glucan accumulation was highest at days 6-16 in the filling stage. Differentially expressed genes (DEGs) were selected from the dataset of transcriptome sequencing. Among them, three metabolic pathways were closely related to the biosynthesis of β-glucan by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, including xyloglucan:xyloglucosyl transferase activity, starch and sucrose metabolism, and photosynthesis. By analyzing the expression patterns of DEGs, we identified one CslF2 gene and 32 transcription factors. Five modules were thought to be positively correlated with β-glucan accumulation by weighted gene co-expression network analysis (WGCNA). Moreover, the expression levels of candidate genes obtained from the transcriptome sequencing were further validated by quantitative real-time PCR (RT-qPCR) analysis. Our study provides a novel way to identify the regulatory mechanism of β-glucan synthesis and accumulation in oat seeds and offers a possible pathway for the genetic engineering of oat breeding for higher-quality seeds.
Collapse
Affiliation(s)
- Bing jie Qi
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Ming xue Ji
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhu qing He
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
5
|
Ibrahim MIA, Ibrahim HAH, Haga T, Ishida A, Nehira T, Matsuo K, Gad AM. Potential Bioactivities, Chemical Composition, and Conformation Studies of Exopolysaccharide-Derived Aspergillus sp. Strain GAD7. J Fungi (Basel) 2024; 10:659. [PMID: 39330418 PMCID: PMC11432975 DOI: 10.3390/jof10090659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
This research identified a marine fungal isolate, Aspergillus sp. strain GAD7, which produces an acidic and sulfated extracellular polysaccharide (EPS) with notable anticoagulant and antioxidant properties. Six fungal strains from the Egyptian Mediterranean Sea were screened for EPS production, with Aspergillus sp. strain GAD7 (EPS-AG7) being the most potent, yielding ~5.19 ± 0.017 g/L. EPS-AG7 was characterized using UV-Vis and FTIR analyses, revealing high carbohydrate (87.5%) and sulfate (24%) contents. HPLC and GC-MS analyses determined that EPS-AG7 is a heterogeneous acidic polysaccharide with an average molecular weight (Mw¯) of ~7.34 × 103 Da, composed of mannose, glucose, arabinose, galacturonic acid, galactose, and lyxose in a molar ratio of 6.6:3.9:1.8:1.3:1.1:1.0, linked through α- and β-glycosidic linkages as confirmed by NMR analysis. EPS-AG7 adopted a triple helix-like conformation, as evidenced by UV-Vis (Congo Red experiment) and circular dichroism (CD) studies. This helical arrangement demonstrated stability under various experimental conditions, including concentration, ionic strength, temperature, and lipid interactions. EPS-AG7 exhibited significant anticoagulant activity, doubling blood coagulation time at a concentration of 3.0 mg/mL, and showed significant antioxidant activity, with scavenging activities reaching up to 85.90% and 58.64% in DPPH and ABTS+ assays at 5.0 mg/mL, and EC50 values of 1.40 mg/mL and 3.80 mg/mL, respectively. These findings highlight the potential of EPS-AG7 for therapeutic applications due to its potent biological activities.
Collapse
Affiliation(s)
- Mohamed I A Ibrahim
- Research Institute for Synchrotron Radiation Science, HiSOR, Hiroshima University, Higashi-Hiroshima 739-0046, Hiroshima, Japan
- National Institute of Oceanography and Fisheries (NIOF), Cairo 4262110, Egypt
| | - Hassan A H Ibrahim
- National Institute of Oceanography and Fisheries (NIOF), Cairo 4262110, Egypt
| | - Tatsuki Haga
- Research Institute for Synchrotron Radiation Science, HiSOR, Hiroshima University, Higashi-Hiroshima 739-0046, Hiroshima, Japan
| | - Atsuhiko Ishida
- Laboratory of Molecular Brain Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8521, Hiroshima, Japan
| | - Tatsuo Nehira
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8521, Hiroshima, Japan
| | - Koichi Matsuo
- Research Institute for Synchrotron Radiation Science, HiSOR, Hiroshima University, Higashi-Hiroshima 739-0046, Hiroshima, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, Higashi-Hiroshima 739-8526, Hiroshima, Japan
- Research Institute for Semiconductor Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Hiroshima, Japan
| | - Ahmed M Gad
- National Institute of Oceanography and Fisheries (NIOF), Cairo 4262110, Egypt
| |
Collapse
|
6
|
Li PS, Wang YL, Lu LR, Zhao SH, Tian J, Liu XX, Ma QX, Kong Y, Quan JY. Preparation of a hydrolyzed yeast β-glucan chromium(III) complex and evaluation of its hypoglycemic activity and sub-acute toxicity. Int J Biol Macromol 2024; 275:133425. [PMID: 38936582 DOI: 10.1016/j.ijbiomac.2024.133425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Yeast β-glucan (BYG) possesses extremely low solubility that has limited its applications. In this study, we hydrolyzed BYG using snail enzyme to obtain hydrolyzed yeast β-glucan (HBYG) with desirable water solubility and hypoglycemic activity. On the basis of HBYG, HBYG‑chromium(III) complex (HBYG-Cr) was synthesized. The molecular weight of the complex was 4.41 × 104 Da, and the content of trivalent chromium was 8.95 %. The hydroxyl groups of HBYG participated in the coordination and formed the chromium complex. The space conformations of HBYG exhibited remarkable changes after complex formation. HBYG-Cr existed mainly in an amorphous state and presented good dispersibility, and the surface was uneven. The hypoglycemic activity of HBYG-Cr was studied in db/db and C57 mice. The results showed that HBYG-Cr had good hypoglycemic activity. Histopathological studies demonstrated that the liver, kidney, pancreas, and skeletal muscle in the treatment group were significantly improved compared with those in the diabetic model group. The sub-acute toxicity of HBYG-Cr was studied in KM mice and the results indicated that the complex did not cause adverse reactions or toxic side effects. This study broadened the application of yeast β-glucan and provided an important reference for the development of hypoglycemic functional foods and drugs.
Collapse
Affiliation(s)
- Peng-Shou Li
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Yun-Lu Wang
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Lin-Ran Lu
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Shi-Han Zhao
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Jie Tian
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Xin-Xiang Liu
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Qi-Xiang Ma
- Cancer Institute, Fudan University Cancer Hospital and Cancer Metabolism Laboratory, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yan Kong
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jian-Ye Quan
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
7
|
de Souza Theodoro S, Gonçalves Tozato ME, Warde Luis L, Goloni C, Bassi Scarpim L, Bortolo M, Cavalieri Carciofi A. β-glucans from Euglena gracilis or Saccharomyces cerevisiae effects on immunity and inflammatory parameters in dogs. PLoS One 2024; 19:e0304833. [PMID: 38820480 PMCID: PMC11142716 DOI: 10.1371/journal.pone.0304833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
Considering the differences in molecular structure and function, the effects of β-1,3-glucans from Euglena gracilis and β-1,3/1,6-glucans from Saccharomyces cerevisiae on immune and inflammatory activities in dogs were compared. Four diets were compared: control without β-glucans (CON), 0.15 mg/kg BW/day of β-1,3/1,6-glucans (Β-Y15), 0.15 mg/kg BW/day of β-1,3-glucans (Β-S15), and 0.30 mg/kg BW/day of β-1,3-glucans (Β-S30). Thirty-two healthy dogs (eight per diet) were organized in a block design. All animals were fed CON for a 42-day washout period and then sorted into one of four diets for 42 days. Blood and faeces were collected at the beginning and end of the food intake period and analysed for serum and faecal cytokines, ex vivo production of hydrogen peroxide (H2O2) and nitric oxide (NO), phagocytic activity of neutrophils and monocytes, C-reactive protein (CRP), ex vivo production of IgG, and faecal concentrations of IgA and calprotectin. Data were evaluated using analysis of covariance and compared using Tukey's test (P<0.05). Dogs fed Β-Y15 showed higher serum IL-2 than dogs fed Β-S30 (P<0.05). A higher phagocytic index of monocytes was observed in dogs fed the B-S15 diet than in those fed the other diets, and a higher neutrophil phagocytic index was observed for B-S15 and B-Y15 than in dogs fed the CON diet (P<0.05). Monocytes from dogs fed B-S15 and B-S30 produced more NO and less H2O2 than those from the CON and B-Y15 groups (P<0.05). Despite in the reference value, CRP levels were higher in dogs fed B-S15 and B-S30 diets (P<0.05). β-1,3/1,6-glucan showed cell-mediated activation of the immune system, with increased serum IL-2 and neutrophil phagocytic index, whereas β-1,3-glucan acted on the immune system by increasing the ex vivo production of NO by monocytes, neutrophil phagocytic index, and serum CRP. Calprotectin and CRP levels did not support inflammation or other health issues related to β-glucan intake. In conclusion, both β-glucan sources modulated some immune and inflammatory parameters in dogs, however, different pathways have been suggested for the recognition and action of these molecules, reinforcing the necessity for further mechanistic studies, especially for E. gracilis β-1,3-glucan.
Collapse
Affiliation(s)
- Stephanie de Souza Theodoro
- Veterinary Medicine and Surgery Department, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Maria Eduarda Gonçalves Tozato
- Veterinary Medicine and Surgery Department, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Letícia Warde Luis
- Veterinary Medicine and Surgery Department, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Camila Goloni
- Veterinary Medicine and Surgery Department, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Lucas Bassi Scarpim
- Animal Science Department, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Marcelino Bortolo
- Kemin Nutrisurance Nutrição Animal LTDA, Brasil, Vargeão, Santa Catarina, Brazil
| | - Aulus Cavalieri Carciofi
- Veterinary Medicine and Surgery Department, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| |
Collapse
|
8
|
Wang W, Zhao B, Zhang Z, Kikuchi T, Li W, Jantrawut P, Feng F, Liu F, Zhang J. Natural polysaccharides and their derivatives targeting the tumor microenvironment: A review. Int J Biol Macromol 2024; 268:131789. [PMID: 38677708 DOI: 10.1016/j.ijbiomac.2024.131789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Polysaccharides have gained attention as valuable supplements and natural medicinal resources, particularly for their anti-tumor properties. Their low toxicity and potent anti-tumor effects make them promising candidates for cancer prevention and treatment. The tumor microenvironment is crucial in tumor development and offers potential avenues for novel cancer therapies. Research indicates that polysaccharides can positively influence the tumor microenvironment. However, the structural complexity of most anti-tumor polysaccharides, often heteropolysaccharides, poses challenges for structural analysis. To enhance their pharmacological activity, researchers have modified the structure and properties of natural polysaccharides based on structure-activity relationships, and they have discovered that many polysaccharides exhibit significantly enhanced anti-tumor activity after chemical modification. This article reviews recent strategies for targeting the tumor microenvironment with polysaccharides and briefly discusses the structure-activity relationships of anti-tumor polysaccharides. It also summarises the main chemical modification methods of polysaccharides and discusses the impact of chemical modifications on the anti-tumor activity of polysaccharides. The review aims to lay a theoretical foundation for the development of anti-tumor polysaccharides and their derivatives.
Collapse
Affiliation(s)
- Wenli Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Bin Zhao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Zhongtao Zhang
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China; Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant Drug Research, Taian City Central Hospital, Taian 271000, China
| | - Takashi Kikuchi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - FuLei Liu
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China; Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant Drug Research, Taian City Central Hospital, Taian 271000, China.
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
9
|
Schiavone M, François JM, Zerbib D, Capp JP. Emerging relevance of cell wall components from non-conventional yeasts as functional ingredients for the food and feed industry. Curr Res Food Sci 2023; 7:100603. [PMID: 37840697 PMCID: PMC10568300 DOI: 10.1016/j.crfs.2023.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
Non-conventional yeast species, or non-Saccharomyces yeasts, are increasingly recognized for their involvement in fermented foods. Many of them exhibit probiotic characteristics that are mainly due to direct contacts with other cell types through various molecular components of their cell wall. The biochemical composition and/or the molecular structure of the cell wall components are currently considered the primary determinant of their probiotic properties. Here we first present the techniques that are used to extract and analyze the cell wall components of food industry-related non-Saccharomyces yeasts. We then review the current understanding of the cell wall composition and structure of each polysaccharide from these yeasts. Finally, the data exploring the potential beneficial role of their cell wall components, which could be a source of innovative functional ingredients, are discussed. Such research would allow the development of high value-added products and provide the food industry with novel inputs beyond the well-established S. cerevisiae.
Collapse
Affiliation(s)
- Marion Schiavone
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Lallemand SAS, Blagnac, France
| | - Jean M. François
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Toulouse White Biotechnology (TWB), UMS INRAE/INSA/CNRS, Toulouse, France
| | - Didier Zerbib
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
10
|
Yu L, Gao Y, Ye Z, Duan H, Zhao J, Zhang H, Narbad A, Tian F, Zhai Q, Chen W. Interaction of beta-glucans with gut microbiota: Dietary origins, structures, degradation, metabolism, and beneficial function. Crit Rev Food Sci Nutr 2023; 64:9884-9909. [PMID: 37272431 DOI: 10.1080/10408398.2023.2217727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Beta-glucan (BG), a polysaccharide comprised of interfacing glucose monomers joined via beta-glycosidic linkages, can be defined as a type of dietary fiber with high specificity based on its interaction with the gut microbiota. It can induce similar interindividual microbiota responses, thereby having beneficial effects on the human body. In this paper, we review the four main sources of BG (cereals, fungi, algae, and bacteria) and their differences in structure and content. The interaction of BG with gut microbiota and the resulting health effects have been highlighted, including immune enhancement, regulation of serum cholesterol and insulin levels, alleviation of obesity and improvement of cognitive disorders. Finally, the application of BG in food products and its beneficial effects on the gut microbiota of consumers were discussed. Although some of the mechanisms of action remain unclear, revealing the beneficial functions of BG from the perspective of gut microbiota can help provide theoretical support for the development of diets that target the regulation of microbiota.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuhang Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zi Ye
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
11
|
β-glucans obtained from beer spent yeasts as functional food grade additive: Focus on biological activity. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Lin B, Huang G. An important polysaccharide from fermentum. Food Chem X 2022; 15:100388. [PMID: 36211774 PMCID: PMC9532711 DOI: 10.1016/j.fochx.2022.100388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
Extraction, structure and modification of polysaccharides from fermentum were summarized. Structure-activity relationship and application of polysaccharides from fermentum were reviewed. It provided a strong basis for the development and application of polysaccharides from fermentum.
Fermentum is a common unicellular fungus with many biological activities attributed to β-polysaccharides. Different in vivo and in vivo experimental studies have long proven that fermentum β-polysaccharides have antioxidant, anti-tumor, and fungal toxin adsorption properties. However, there are many uncertainties regarding the relationship between the structure and biological activity of fermentum β-polysaccharides, and a systematic summary of fermentum β-polysaccharides is still lacking. Herein, we reviewed the research progress about the extraction, structure and modification, structure–activity relationship, activity and application of fermentum β-polysaccharides, compared the extraction methods of fermentum β-polysaccharide, and paid special attention to the structure–activity relationship and application of fermentum β-polysaccharide, which provided a strong basis for the development and application of fermentum β-polysaccharide.
Collapse
|
13
|
Wang J, Zheng Z, Yang H, Chen J, Xiao Y, Ji X, Zhang Z, He H, Ding B, Tang B. Effect of β-1,3/1,6-glucan on gut microbiota of yellow-feathered broilers. AMB Express 2022; 12:115. [PMID: 36066652 PMCID: PMC9448846 DOI: 10.1186/s13568-022-01458-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022] Open
Abstract
β-1,3/1,6-glucan as a prebiotic improves immune performance in animals. These functions are closely related to the effect of β-1,3/1,6-glucan on gut microbiota structure. However, the effect of β-1,3/1,6-glucan on the gut microbiota structure of broilers is unclear. The aim of this study was to confirm the effects of β-1,3/1,6-glucan on the cecal microflora structure of yellow-feathered broilers. This study monitored the antimicrobial resistance (AMR) level of Escherichia coli in feces of yellow-feathered broilers by standard broth dilution method and mastered the AMR level of chickens selected. The effects of β-1,3/1,6-glucan on gut microbiota were investigated by 16S rRNA sequencing. The results showed that the number of isolated multidrug-resistant E. coli strains accounted for 98.41%. At 14, 21, and 28 days of age, supplemented of 0.2%, 0.1%, and 0.1% β-1,3/1,6-glucan in yellow-feathered broiler diets significantly altered gut microbial composition, and beneficial bacteria Alistipes, Bacteroides and Faecalibacterium were significantly increased. These findings provide guidance and recommendations for β-1,3/1,6-glucan as a broiler feed additive to improve the growth of broilers.
Collapse
Affiliation(s)
- Jingge Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.,College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - Zibin Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.,Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jie Chen
- Zhejiang Provincial Center for Animal Disease Prevention and Control, Hangzhou, 310020, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhenming Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - Hailian He
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - Baoan Ding
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China.
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
14
|
Song Y, Shin H, Sianipar HGJ, Park JY, Lee M, Hah J, Park HS, Lee HJ, Lee S, Kang H. Oral administration of Euglena gracilis paramylon ameliorates chemotherapy-induced leukocytopenia and gut dysbiosis in mice. Int J Biol Macromol 2022; 211:47-56. [PMID: 35490767 DOI: 10.1016/j.ijbiomac.2022.04.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/05/2022]
Abstract
Euglena gracilis (EUG) is a food supplement rich in beta-glucans, which are stored in the form of granules called paramylon. We determined whether EUG improved chemotherapy-induced leukocytopenia and dysbiosis. Mice were orally administered EUG prior to gemcitabine treatment. Analyses of the blood cell count, leukocyte population in the spleen, granulocyte/macrophage-colony-stimulating factor (GM-CSF) production by splenocytes, and fecal microbiome were conducted. The recovery of total leukocytes, neutrophils, and monocytes was accelerated after a single gemcitabine treatment. A more rapid lymphocyte recovery rate was observed after four gemcitabine treatments. No difference was observed in the percentage of T, B, or myeloid cells or in the expression of Dectin-1 in the spleens of the gemcitabine and EUG/gemcitabine groups. The EUG/gemcitabine group showed an enhanced GM-CSF production by lipopolysaccharides-stimulated splenocytes. Next-generation sequencing revealed that gemcitabine-induced dysbiosis was alleviated. This study demonstrated that EUG-derived beta-glucans could act as a biological response modifier as well as prebiotics for ameliorating chemotherapy-induced adverse effects.
Collapse
Affiliation(s)
- Youngju Song
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hocheol Shin
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Ji Yun Park
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Migi Lee
- Bio-Center, Gyeonggido Business & Science Accelerator, Suwon 16229, Republic of Korea
| | - Jihye Hah
- Graduate School of East-West Medicine, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hong Shik Park
- Department of Physical Education, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyun Jeong Lee
- Department of Herbology, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Sukchan Lee
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Hee Kang
- Humanitas College, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
15
|
Zhang M, Liu H, Wang Q. Characterization of β-Glucan-Peanut Protein Isolate/Soy Protein Isolate Conjugates and Their Application on Low-Fat Sausage. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27093037. [PMID: 35566387 PMCID: PMC9099641 DOI: 10.3390/molecules27093037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Abstract
Polysaccharide-protein conjugates can improve the functional properties and expand the application field. The emulsifying, thermal properties of WSG-PPI conjugates and WSG-SPI conjugates were improved, compared to WSG, PPI and SPI. The Maillard reaction was confirmed by Fourier transform infrared spectroscopy (FT-IR). Circular dichroism (CD) exhibited that the structure of the conjugates was more expanded. Cryo-SEM and AFM demonstrated that the WSG, WSG-PPI and WSG-SPI conjugates had a morphology of a chain. When the conjugates were added as fat substitutes to low-fat sausage, the cooking yield, hardness and chewiness increased. The objective of this research was to study the emulsifying property, thermal property and structural changes of β-glucan-peanut protein isolate (WSG-PPI) conjugates and β-glucan-soy protein isolate (WSG-SPI) conjugates prepared through wet-heated Maillard reaction, and their effect on the texture of low-fat sausage.
Collapse
|
16
|
Bastos R, Oliveira PG, Gaspar VM, Mano JF, Coimbra MA, Coelho E. Brewer's yeast polysaccharides - A review of their exquisite structural features and biomedical applications. Carbohydr Polym 2022; 277:118826. [PMID: 34893243 DOI: 10.1016/j.carbpol.2021.118826] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/27/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
Recent advances on brewer's yeast cell wall polysaccharides have unraveled exquisite structural features and diverse composition with (β1→3), (β1→6), (α1→4), (β1→4)-mix-linked glucans that are recognized to interact with different cell receptors and trigger specific biological responses. Herein, a comprehensive showcase of structure-biofunctional relationships between yeast polysaccharides and their biological targets is highlighted, with a focus on polysaccharide features that govern the biomedical activity. The insolubility of β-glucans is a crucial factor for binding and activation of Dectin-1 receptor, operating as adjuvants of immune responses. Contrarily, soluble low molecular weight β-glucans have a strong inhibition of reactive oxygen species production, acting as antagonists of Dectin-1 mediated signaling. Soluble glucan-protein moieties can also act as antitumoral agents. The balance between mannoproteins-TLR2 and β-glucans-Dectin-1 receptors-activation is crucial for osteogenesis. Biomedical applications value can also be obtained from yeast microcapsules as oral delivery systems, where highly branched (β1→6)-glucans lead to higher receptor affinity.
Collapse
Affiliation(s)
- Rita Bastos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Patrícia G Oliveira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Vítor M Gaspar
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F Mano
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Elisabete Coelho
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
17
|
Chen R, Xu J, Wu W, Wen Y, Lu S, El-Seedi HR, Zhao C. Structure–immunomodulatory activity relationships of dietary polysaccharides. Curr Res Food Sci 2022; 5:1330-1341. [PMID: 36082139 PMCID: PMC9445227 DOI: 10.1016/j.crfs.2022.08.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/11/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Polysaccharides are usually composed of more than ten monosaccharide units, which are connected by linear or branched glycosidic bonds. The immunomodulatory effect of natural polysaccharides is one of the most important bioactive function. In this review, molecular weight, monosaccharide (including galactose, mannose, rhamnogalacturonan-I arabinogalactan and uronic acid), functional groups (namely sulfate, selenium, and acetyl groups), types of glycoside bond connection (including β-1,3-D-glucosyl, α-1,4-D-glucosyl, β-1,4-D-glucosyl, α-1,6-D-glucosyl, β-1,4-D-mannosyl, and β-1,4-D-Xylopyranosyl), conformation and the branching degrees are systematically identified as their contribution to the immunostimulatory activity of polysaccharides. At present, studies on the structure-activity relationships of polysaccharides are limited due to their low purity and high heterogeneity. However, it is an important step in providing useful guidance for dietary supplements with polysaccharides. The chemical structures and the process of immune responses induced are necessary to be discussed. Polysaccharides may bind with the cell surface receptors to modulate immune responses. This review mainly discusses the structure-activity relationship of dietary polysaccharides. Structure - activity relationships of polysaccharides with immune-enhancing effect are proposed. Polysaccharides with the higher molecular weight are helpful to improve immunity. Higer galactose, mannose, rhamnogalacturonan-I, arabinogalacta,n and uronic acid contents have immunoregulation.
Collapse
Affiliation(s)
- Ruoxin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingxiang Xu
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Weihao Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuxi Wen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Suyue Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 574, 751 23, Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Zhenjiang, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Corresponding author.No.15 Shangxiadian Rd, Fuzhou, 350002, China
| |
Collapse
|
18
|
Ma M, Li Y, Chen J, Wang F, Yuan L, Li Y, Zhang B, Ye D, Han D, Jin H, Hu Q. High-cell-density cultivation of the flagellate alga Poterioochromonas malhamensis for biomanufacturing the water-soluble β-1,3-glucan with multiple biological activities. BIORESOURCE TECHNOLOGY 2021; 337:125447. [PMID: 34186327 DOI: 10.1016/j.biortech.2021.125447] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
The microalga Poterioochromonas malhamensis was found to be capable of accumulating the storage β-1,3-glucan in soluble form under heterotrophic conditions. In this study, the highest biomass yield of 32.8 g L-1 was achieved by combining the utilization of ammonium chloride as the nitrogen source, simultaneous addition of vitamins B1 and B12 and maintenance of pH at 6.0. Sugar profiling and nuclear magnetic resonance analysis indicated that the P. malhamensis β-1,3-glucan was composed of glucose with the β-(1 → 3) main chain and the β-(1 → 6) side chain. Under the optimal cultivation conditions, the cellular β-1,3-glucan content was up to 55% of the cell dry weight. Moreover, the P. malhamensis β-1,3-glucan could significantly promote the fin regeneration and improve the in vivo antioxidative activity of zebrafish. This study underpins the feasibility of culturing P. malhamensis under heterotrophic conditions for producing the highly water-soluble bioactive β-1,3-glucans for food and pharmaceutical applications.
Collapse
Affiliation(s)
- Mingyang Ma
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yanhua Li
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Jianping Chen
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Fuchen Wang
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Li Yuan
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100864, PR China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Danxiang Han
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Key Laboratory for Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100864, PR China
| | - Hu Jin
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| | - Qiang Hu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Key Laboratory for Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100864, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
19
|
Tatli Seven P, Iflazoglu Mutlu S, Seven I, Arkali G, Ozer Kaya S, Kanmaz OE. Protective role of yeast beta-glucan on lead acetate-induced hepatic and reproductive toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53668-53678. [PMID: 34036504 DOI: 10.1007/s11356-021-14398-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Lead (Pb) is one of the most common environmental pollutants and causes adverse effects on human and animal health. This study aimed to evaluate the protective role of beta-glucan against hepatic and reproductive toxicity induced by lead acetate. A total of 28 Sprague Dawley male rats were distributed into four groups (n = 7). The control group was intraperitoneally injected saline (1 ml/kg b.w.) daily for 21 days, the Pb group was intraperitoneally injected lead acetate (15 mg/kg b.w.) daily for 21 days, the beta-glucan group was orally administrated beta-glucan (50 mg/kg b.w.) daily for 21 days, and the Pb + beta-glucan group was intraperitoneally injected lead acetate (15 mg/kg b.w.) daily following the oral administration of beta-glucan (50 mg/kg b.w.) daily for 21 days. Results showed that feed intake in the Pb + beta-glucan group was significantly increased in comparison with that of the Pb group (p < 0.001). We also found that liver malondialdehyde (MDA) level was increased significantly in the Pb group (p < 0.01), while glutathione (GSH) level (p < 0.05), glutathione peroxidase (GSH-Px) (p < 0.05), and catalase (CAT) (p < 0.01) activities were reduced when they were compared with control. Moreover, Pb administration increased expression of pro-apoptotic protein Bax, the ratio of Bax/Bcl-2, and decreased the expression of the antiapoptotic protein Bcl-2 (p < 0.01). Also, Pb was found to cause a significant decrease in sperm motility (p < 0.01) and sperm concentration (p < 0.05) but increase in sperm tails and total sperm anomalies (p < 0.05). These findings were partially preserved by the administration of beta-glucan. Taken together, these results indicated that beta-glucan has the potential to alleviate the Pb-induced toxicity.
Collapse
Affiliation(s)
- Pinar Tatli Seven
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Seda Iflazoglu Mutlu
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey.
| | - Ismail Seven
- Department of Plant and Animal Production, Vocational School of Sivrice, Firat University, Elazig, Turkey
| | - Gozde Arkali
- Department of Physiology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Seyma Ozer Kaya
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | | |
Collapse
|
20
|
Wu J, Yang R, Gao M, Zhang H, Zhan X. Synthesis of functional oligosaccharides and their derivatives through cocultivation and cellular NTP regeneration. ADVANCES IN APPLIED MICROBIOLOGY 2021; 115:35-63. [PMID: 34140133 DOI: 10.1016/bs.aambs.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbohydrates play an important role in the life cycle. Among them, functional oligosaccharides show a complex and diverse structures with unique physiological activities and biological functions. However, different preparation methods directly affect the structure, molecular weight, and other functions of oligosaccharides, as well as their application fields and manufacturing costs. In the preparation of β-1,3-glucan oligosaccharides (OBGs), water insolubility of β-1,3-glucans hampers the hydrolysis efficiency. The synthesis of some functional oligosaccharides requires the consumption of energy substrates, such as ATP, CTP, and uridine triphosphate, for sugar nucleotide synthesis, leading to increased capital costs. A more economical solution to solve energy supply is to adopt microbial cocultivation or cellular nucleoside triphosphate regeneration. This review focused on the sources, preparation methods, biological activities of OBG, and the cultivation methods and applications of microbial cocultivation and fermentation. We also reviewed the preparation methods of other functional oligosaccharides, such as sialylated oligosaccharides, β-nicotinamide mononucleotide, and α-galacto-oligosaccharides.
Collapse
Affiliation(s)
- Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
| | - Ruoyu Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongtao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
21
|
Lin HC, Lin JY. Pharmacological Effects of Guava ( Psidium guajava L.) Seed Polysaccharides: GSF3 Inhibits PC-3 Prostate Cancer Cell Growth through Immunotherapy In Vitro. Int J Mol Sci 2021; 22:3631. [PMID: 33807287 PMCID: PMC8036945 DOI: 10.3390/ijms22073631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/20/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
The inhibitory effects of purified fractions isolated from guava seed polysaccharides (GSPS) including guava seed polysaccharide fraction 1 (GSF1), GSF2, and GSF3 on prostate cancer cells remain unclear. To clarify the anti-prostate cancer potential, GSPS, GSF1, GSF2, and GSF3 were isolated using Sepharose 6B gel filtration chromatography to assay their inhibitory effects on prostate PC-3 cell growth with direct action or indirect immunotherapy using either splenocyte conditioned media (SCM) or macrophage conditioned media (MCM). Correlations between cytokine profiles in the conditioned media and pro-apoptotic gene expression levels in the corresponding treated PC-3 cells were analyzed. Results showed that GSPS, GSF1, GSF2, and GSF3, particularly GSF3, through either direct action or indirect treatments using SCM or MCM, significantly (p < 0.05) inhibited PC-3 cell growth. GSF3 direct treatments increased pro-apoptotic Bax/anti-apoptotic Bcl-2 mRNA expression ratios in corresponding treated PC-3 cells. Either SCM or MCM cultured with GSF3 increased Fas mRNA expression levels in corresponding treated PC-3 cells. Both Th2-polarized and anti-inflammatory cytokine IL-10 either secreted in SCM or MCM were positively correlated with Fas mRNA expression levels in corresponding treated PC-3 cells. Our results suggest that GSF3 is a potent biological response modifier to decrease PC-3 cell growth through inducing apoptosis.
Collapse
Affiliation(s)
| | - Jin-Yuarn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan;
| |
Collapse
|
22
|
Vetvicka V, Teplyakova TV, Shintyapina AB, Korolenko TA. Effects of Medicinal Fungi-Derived β-Glucan on Tumor Progression. J Fungi (Basel) 2021; 7:250. [PMID: 33806255 PMCID: PMC8065548 DOI: 10.3390/jof7040250] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
β-Glucans have been studied in animal species, from earthworms to humans. They form a heterogenous group of glucose polymers found in fungi, plants, bacteria, and seaweed. β-Glucans have slowly emerged as an important target for the recognition of pathogens. In the current review, we highlight the major roles of mushroom-derived β-glucans on cancer progression.
Collapse
Affiliation(s)
- Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, KY 630117, USA
| | - Tamara V. Teplyakova
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo, 630559 Novosibirsk, Russia;
| | - Alexandra B. Shintyapina
- Federal Research Center of Fundamental and Translational Medicine, Federal State Budget Scientific Institution, 630117 Novosibirsk, Russia;
| | - Tatiana A. Korolenko
- Laboratory of Experimental Models of Neurodegeneration, Scientific Research Institute of Neurosciences and Medicine, Federal State Budgetary Scientific Institution, 4 Timakov St., 630117 Novosibirsk, Russia;
| |
Collapse
|
23
|
Antitumor effect of soluble β-glucan as an immune stimulant. Int J Biol Macromol 2021; 179:116-124. [PMID: 33667560 DOI: 10.1016/j.ijbiomac.2021.02.207] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/09/2021] [Accepted: 02/27/2021] [Indexed: 12/15/2022]
Abstract
β-glucans are linear polysaccharides of d-glucose monomers linked through β-glycosidic bonds and are widely present in nature. Different sources lead to their structural differences. β-glucan has long been acknowledged to be a safe and functional component. Its biological activities include lipid-lowering, hypoglycemic, antitumor and immune regulation etc. A large number of studies have shown that soluble β-glucan can bind to their receptors on the surface of immune cells, activates the pro-inflammatory response of innate immune cells, and enhances the host's antitumor defense. A variety of soluble β-glucans have been widely used in clinical antitumor studies as an immunostimulant to treat the cancer patient. In this paper, we reviewed the molecular structure, antitumor immune activities, structure-activity relationship and clinical trials of soluble β-glucans in order to provide the overall scene of β-glucans as immunostimulant to fight the cancer.
Collapse
|
24
|
Nishinari K, Fang Y. Molar mass effect in food and health. Food Hydrocoll 2021; 112:106110. [PMID: 32895590 PMCID: PMC7467918 DOI: 10.1016/j.foodhyd.2020.106110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022]
Abstract
It is demanded to supply foods with good quality for all the humans. With the advent of aging society, palatable and healthy foods are required to improve the quality of life and reduce the burden of finance for medical expenditure. Food hydrocolloids can contribute to this demand by versatile functions such as thickening, gelling, stabilising, and emulsifying, controlling texture and flavour release in food processing. Molar mass effects on viscosity and diffusion in liquid foods, and on mechanical and other physical properties of solid and semi-solid foods and films are overviewed. In these functions, the molar mass is one of the key factors, and therefore, the effects of molar mass on various health problems related to noncommunicable diseases or symptoms such as cancer, hyperlipidemia, hyperglycemia, constipation, high blood pressure, knee pain, osteoporosis, cystic fibrosis and dysphagia are described. Understanding these problems only from the viewpoint of molar mass is limited since other structural characteristics, conformation, branching, blockiness in copolymers such as pectin and alginate, degree of substitution as well as the position of the substituents are sometimes the determining factor rather than the molar mass. Nevertheless, comparison of different behaviours and functions in different polymers from the viewpoint of molar mass is expected to be useful to find a common characteristics, which may be helpful to understand the mechanism in other problems.
Collapse
Affiliation(s)
- Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloids Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, PR China
- Department of Food and Nutrition, Graduate School of Human Life Science, Osaka City University, Osaka, 558-6565, Japan
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
25
|
Recent advances in the application of probiotic yeasts, particularly Saccharomyces, as an adjuvant therapy in the management of cancer with focus on colorectal cancer. Mol Biol Rep 2021; 48:951-960. [PMID: 33389533 PMCID: PMC7778720 DOI: 10.1007/s11033-020-06110-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/18/2020] [Indexed: 01/31/2023]
Abstract
Today, the increasing rate of cancer-related mortality, has rendered cancer a major global challenge, and the second leading cause of death worldwide. Conventional approaches in the treatment of cancer mainly include chemotherapy, surgery, immunotherapy, and radiotherapy. However, these approaches still come with certain disadvantages, including drug resistance, and different side effects such as gastrointestinal (GI) irritation (e.g., diarrhea, mucositis). This has encouraged scientists to look for alternative therapeutic methods and adjuvant therapies for a more proper treatment of malignancies. Application of probiotics as an adjuvant therapy in the clinical management of cancer appears to be a promising strategy, with several notable advantages, e.g., increased safety, higher tolerance, and negligible GI side effects. Both in vivo and in vitro analyses have indicated the active role of yeast probiotics in mitigating the rate of cancer cell proliferation, and the induction of apoptosis through regulating the expression of cancer-related genes and cellular pathways. Strain-specific anti-cancer activities of yeast probiotics strongly suggest that their administration along with the current cancer therapies may be an efficient method to reduce the side effects of these approaches. The main purpose of this article is to evaluate the efficacy of yeast probiotics in alleviating the adverse effects associated with cancer therapies.
Collapse
|
26
|
Yang Y, Sun X, Zhao Y, Ge W, Ding Z, Liu J, Wang L, Xu X, Zhang J. Anti-tumor activity and immunogenicity of a succinoglycan riclin. Carbohydr Polym 2020; 255:117370. [PMID: 33436203 DOI: 10.1016/j.carbpol.2020.117370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/14/2022]
Abstract
Natural polysaccharides have attracted considerable interests due to diverse biological activities. Succinoglycan is an extracellular polysaccharide produced by most Agrobacterium strains. Here, we confirmed riclin was a typical succinoglycan by NMR and methylation analysis, and investigated the antitumor effects of riclin in sarcoma 180 tumor-bearing mice. The results showed that riclin inhibited the tumor growth significantly as well as cyclophosphamide (CTX). While CTX caused serious damage to spleen structure, riclin increased the spleen index and promoted lymphocytes proliferation in peripheral blood, spleen and lymph nodes. Riclin decreased splenocytes apoptosis as evidenced by alterations of B-cell lymphoma-2 family proteins and Cleaved Caspase-3 protein. Moreover, 1H nuclear magnetic resonance (NMR)-based metabolomics analysis revealed that riclin partially altered the metabolic profiles of splenocytes. In conclusion, riclin is a succinoglycan that performed strong immunogenicity and suppressed sarcoma growth in mice. Succinoglycan riclin could be a potential antitumor agent for functional food and pharmaceutical purpose.
Collapse
Affiliation(s)
- Yunxia Yang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Xiaqing Sun
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Yang Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Junhao Liu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Lei Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| |
Collapse
|
27
|
Purification, Preliminary Structural Characterization, and In Vitro Inhibitory Effect on Digestive Enzymes by β-Glucan from Qingke (Tibetan Hulless Barley). ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/2709536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background and Objective. Qingke (Tibetan hulless barley, Hordeum vulgare L.) contains a high content of β-glucan among all the cereal varieties. Although β-glucan has multiple physiological functions, the physiological function of qingke β-glucan was few studied. In this study, the β-glucan was isolated, purified, determined the structural characterization, and measured the inhibitory activity to enzymes correlating blood sugar and lipid. Methods. β-Glucan was isolated from enzymatic aqueous extract of qingke by using deproteinization, decolorization, DEAE-52 column chromatography, and sepharose CL-4B agarose gel column chromatography. The structure of the β-glucan was determined using FT-IR and 13C-NMR spectra analysis, and molecular mass by use of HPSEC-dRI-LS. The kinematic viscosity was measured. The inhibitory effects of this β-glucan on four enzymes were investigated. Results. This β-glucan had a uniform molecular weight of 201,000 Da with β-(1⟶4) as the main chain and β-(1⟶3) as a side chain. The β-glucan presented a relatively strong inhibitory activity on α-glucosidase, moderate inhibition on invertase, and a weak inhibition on α-amylase, whereas it did not inhibit lipase. Conclusion. The study indicates that the enzymatic β-glucan from qingke has the potential as natural auxiliary hypoglycemic additives in functional medicine or foods.
Collapse
|
28
|
Tian L, Li CM, Li YF, Huang TM, Chao NX, Luo GR, Mo FR. Laminarin from Seaweed ( Laminaria japonica) Inhibits Hepatocellular Carcinoma Through Upregulating Senescence Marker Protein-30. Cancer Biother Radiopharm 2020; 35:277-283. [PMID: 32159381 PMCID: PMC7247046 DOI: 10.1089/cbr.2019.3179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Objective: This study aimed at investigating the specific roles of laminarin from seaweed (Laminaria japonica) in hepatocellular carcinoma (HCC) and its potential mechanisms related to senescence marker protein-30 (SMP-30). Materials and Methods: Human HCC cell lines, including Bel-7404 and HepG2, were incubated with different concentrations of laminarin (0, 5, 15, 25, 35, and 45 mg/mL). The cell viability and apoptosis rates were detected by WST-8 cell proliferation assay and flow cytometry, respectively. Hepa 1–6 tumor-bearing mice were injected with different concentrations of laminarin (400, 800, and 1200 mg/kg·d), and tumor volume and weight were measured. The expression of SMP-30 was detected in laminarin-treated Bel-7404 and HepG2 HCC cells and LO2 normal liver cells by quantitative real-time PCR and Western blotting. Results: The treatment with laminarin (48 h) significantly decreased the viability and increased the apoptosis rates of Bel-7404 and HepG2 cells in a dose-dependent manner. The injection of laminarin also significantly decreased the tumor volumes (beginning on the 10th day) and tumor weights (30 d post-injection) of mice in a dose-dependent manner. In addition, the treatment with laminarin (35 mg/mL for 48 h) significantly upregulated SMP-30 in Bel-7404 and HepG2 cells but not in LO2 cells. Conclusion: Laminarin inhibited the proliferation of Bel-7404 and HepG2 cells and inhibited the growth of tumors in Hepa 1–6 tumor-bearing mice by upregulating SMP-30.
Collapse
Affiliation(s)
- Lin Tian
- School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Science and Technology College, Hubei Minzu University, Enshi, China
| | - Chun-Mei Li
- School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yan-Fei Li
- School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Tian-Ming Huang
- School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Nai-Xia Chao
- School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Guo-Rong Luo
- School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Human Development and Disease Research, Guangxi Medical University, Nanning, China
| | - Fa-Rong Mo
- School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Human Development and Disease Research, Guangxi Medical University, Nanning, China
| |
Collapse
|
29
|
Shamekhi S, Lotfi H, Abdolalizadeh J, Bonabi E, Zarghami N. An overview of yeast probiotics as cancer biotherapeutics: possible clinical application in colorectal cancer. Clin Transl Oncol 2020; 22:1227-1239. [PMID: 31919760 DOI: 10.1007/s12094-019-02270-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/08/2019] [Indexed: 02/07/2023]
Abstract
The previous reports have established a strong link between diet, lifestyle, and gut microbiota population with the onset of the colorectal cancer (CRC). Administration of probiotics has become a particular interest in prevention and treatment of CRC. As potential dietary complements, probiotics might be able to lower the risk of CRC and manage the safety of traditional cancer therapies such as surgery, radiation therapy, and chemotherapy. This review investigates the promising effects of probiotics as biotherapeutics, with due attention to possible clinical application of yeast probiotics in prevention and treatment of CRC. In addition, various underlying anti-cancer mechanisms are covered here based on scientific evidence and findings from numerous experimental studies. Application of probiotics as biotherapeutics in CRC, however, needs to be approved by human clinical trials. It is of prime concern, to find potential probiotic strains, effective doses for administrations and regimes, and molecular mechanisms involved in prevention and treatment.
Collapse
Affiliation(s)
- S Shamekhi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - J Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - E Bonabi
- Department of Medical Microbiology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - N Zarghami
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
30
|
Yuan H, Lan P, He Y, Li C, Ma X. Effect of the Modifications on the Physicochemical and Biological Properties of β-Glucan-A Critical Review. Molecules 2019; 25:E57. [PMID: 31877995 PMCID: PMC6983044 DOI: 10.3390/molecules25010057] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
β-Glucan exhibits many biological activities and functions such as stimulation of the immune system and anti-inflammatory, anti-microbial, anti-infective, anti-viral, anti-tumor, anti-oxidant, anti-coagulant, cholesterol-lowering, radio protective, and wound healing effects. It has a wide variety of uses in pharmaceutical, cosmetic, and chemical industries as well as in food processing units. However, due to its dense triple helix structure, formed by the interaction of polyhydroxy groups in the β-d-glucan molecule, it features poor solubility, which not only constrains its applications, but also inhibits its physiological function in vivo. One aim is to expand the applications for modified β-glucan with potential to prevent disease, various therapeutic purposes and as health-improving ingredients in functional foods and cosmetics. This review introduces the major modification methods required to understand the bioactivity of β-glucan and critically provides a literature survey on the structural features of this molecule and reported biological activity. We also discuss a new method to create novel opportunities to exploit maximally various properties of β-glucan, namely ultrasound-assisted enzymatic modification.
Collapse
Affiliation(s)
- Hongjie Yuan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (H.Y.); (Y.H.)
| | - Ping Lan
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China;
| | - Yan He
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (H.Y.); (Y.H.)
| | - Chengliang Li
- LB Cosmeceutical Technology Co., Ltd., Shanghai 201499, China;
| | - Xia Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (H.Y.); (Y.H.)
| |
Collapse
|
31
|
Fu Y, Shi L, Ding K. Structure elucidation and anti-tumor activity in vivo of a polysaccharide from spores of Ganoderma lucidum (Fr.) Karst. Int J Biol Macromol 2019; 141:693-699. [DOI: 10.1016/j.ijbiomac.2019.09.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/15/2019] [Accepted: 09/05/2019] [Indexed: 01/15/2023]
|
32
|
Costa CRDM, Menolli RA, Osaku EF, Tramontina R, de Melo RH, do Amaral AE, Duarte PA, de Carvalho MM, Smiderle FR, Silva JLDC, Mello RG. Exopolysaccharides from Aspergillus terreus: Production, chemical elucidation and immunoactivity. Int J Biol Macromol 2019; 139:654-664. [DOI: 10.1016/j.ijbiomac.2019.08.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/15/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
|
33
|
Chae JS, Shin H, Song Y, Kang H, Yeom CH, Lee S, Choi YS. Yeast (1 → 3)-(1 → 6)-β-d-glucan alleviates immunosuppression in gemcitabine-treated mice. Int J Biol Macromol 2019; 136:1169-1175. [DOI: 10.1016/j.ijbiomac.2019.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/20/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022]
|
34
|
Bai J, Ren Y, Li Y, Fan M, Qian H, Wang L, Wu G, Zhang H, Qi X, Xu M, Rao Z. Physiological functionalities and mechanisms of β-glucans. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
de Oliveira CAF, Vetvicka V, Zanuzzo FS. β-Glucan successfully stimulated the immune system in different jawed vertebrate species. Comp Immunol Microbiol Infect Dis 2018; 62:1-6. [PMID: 30711038 DOI: 10.1016/j.cimid.2018.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/15/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022]
Abstract
Several reports have shown the positive effects of β-glucans on the immune. Howeverthese studies have a broad experimental design including β-glucans compounds. Consequently, a study using the same β-glucan molecule, administration route and experimental design is needed to compare the effects of β-glucan across vertebrate species. For this end, during 28 days we fed four different vertebrate species: mice, dogs, piglets and chicks, with two β-glucan molecules (BG01 and BG02). We measured the serum interleukin 2 as an indicator of innate immune response, the neutrophils and monocytes phagocytosis index as a cellular response and antibody formation as an adaptive response. The results clearly showed that the different β-glucan molecules exhibited biologically differently behaviors, but both molecules stimulate the immune system in a similar pattern in these four species. This finding suggests that vertebrates shared similar mechanisms/patterns in recognizing the β-glucans and confirms the benefits of β-glucans across different vertebrate species.
Collapse
Affiliation(s)
- Carlos A F de Oliveira
- Department of Research and Development, Biorigin Company, Fazenda São José s/n, 17290-000 Macatuba, São Paulo, Brazil
| | - Vaclav Vetvicka
- University of Louisville, Department of Pathology, Louisville, KY, USA.
| | - Fábio S Zanuzzo
- Department of Research and Development, Biorigin Company, Fazenda São José s/n, 17290-000 Macatuba, São Paulo, Brazil
| |
Collapse
|
36
|
Błaszczyk K, Gajewska M, Wilczak J, Kamola D, Majewska A, Harasym J, Gromadzka-Ostrowska J. Oral administration of oat beta-glucan preparations of different molecular weight results in regulation of genes connected with immune response in peripheral blood of rats with LPS-induced enteritis. Eur J Nutr 2018; 58:2859-2873. [PMID: 30284595 PMCID: PMC6769091 DOI: 10.1007/s00394-018-1838-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/26/2018] [Indexed: 01/05/2023]
Abstract
Purpose Beta-glucans are biologically active polysaccharides having antioxidant, immunomodulatory, and antiinflammatory properties. This study investigated the transcriptomic profile in peripheral blood of rats with LPS-induced enteritis, which were fed a diet supplemented with high- (G1) and low- (G2) molecular-weight oat beta-glucans. Methods Two-color rat gene expression microarrays were applied and the analysis was performed using a common reference design to provide easy means of comparing samples from various experimental conditions against one another. Common reference sample was labeled with cyanine 3 (Cy3) and investigated samples from each experimental group: C-G0 (control group fed semi-synthetic diet), LPS-G0 (LPS-challenged group fed semi-synthetic diet), LPS-G1 (LPS-challenged group fed G1 beta-glucan enriched diet), and LPS-G2 (LPS-challenged group fed G2 beta-glucan enriched diet) were labeled with cyanine 5 (Cy5). Each microarray was performed in quadruplicate. Statistical analysis was performed using one-way ANOVA and Tukey’s HSD post-hoc test (p < 0.05). A multiple testing correction was performed using Benjamini and Hochberg False Discovery Rate < 5%. A quantitative real-time RT-PCR was performed to verify the expression of chosen transcripts. Results The microarray analyses revealed differentially expressed transcripts between: the LPS-G0 and the control groups: C-G0 (138 genes), the LPS-G1 and LPS-G0 groups (533 genes), and the LPS-G2 and LPS-G0 groups (97 genes). Several differentially expressed genes in the beta-glucan-supplemented groups encoded proteins belonging to TLR and NLR signaling pathways, as well as prostaglandin synthesis and regulation pathways. Both beta-glucans up-regulated the expression of Atg10, which belongs to the family of autophagy-related genes, suggesting a possible link between autophagy induction and beta-glucan supplementation. Conclusion The changes in gene expression observed in the peripheral blood indicate that oat beta-glucans exerted a protective effect in rats with an induced inflammatory state caused by LPS challenge. The greater number of differentially expressed genes was observed in group supplemented with G1 beta-glucan, pointing at the differences in the mode of action of high- and low-molecular-weight beta-glucans in the organism. Electronic supplementary material The online version of this article (10.1007/s00394-018-1838-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katarzyna Błaszczyk
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Małgorzata Gajewska
- Biochemistry Division, Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-787, Warsaw, Poland.
| | - Jacek Wilczak
- Dietetics Division, Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-787, Warsaw, Poland
| | - Dariusz Kamola
- Dietetics Division, Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-787, Warsaw, Poland
| | - Alicja Majewska
- Biochemistry Division, Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-787, Warsaw, Poland
| | - Joanna Harasym
- BIO-REF@LAB, Department of Biotechnology and Food Analysis, Faculty of Engineering and Economics, Wrocław University of Economics, Komandorska 118/120, 53-345, Wrocław, Poland
| | - Joanna Gromadzka-Ostrowska
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| |
Collapse
|
37
|
Liu F, Wang Z, Liu J, Li W. Radioprotective effect of orally administered beta-d-glucan derived from Saccharomyces cerevisiae. Int J Biol Macromol 2018; 115:572-579. [DOI: 10.1016/j.ijbiomac.2018.04.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 10/17/2022]
|
38
|
Jin Y, Li P, Wang F. β-glucans as potential immunoadjuvants: A review on the adjuvanticity, structure-activity relationship and receptor recognition properties. Vaccine 2018; 36:5235-5244. [PMID: 30049632 DOI: 10.1016/j.vaccine.2018.07.038] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/03/2018] [Accepted: 07/15/2018] [Indexed: 12/18/2022]
Abstract
β-glucans, a group of polysaccharides exist in many organism species such as mushrooms, yeasts, oats, barley, seaweed, but not mammalians, have a variety of biological activities and applications in drugs and other healthcare products. In recent years, β-glucans have been studied as adjuvants in anti-infection vaccines as well as immunomodulators in anti-cancer immunotherapy. β-glucans can regulate immune responses when administered alone and can connect innate and adaptive immunity to improve immunogenicity of vaccines. When β-glucans act as immunostimulants or adjuvants, a set of receptors have been revealed to recognize β-glucans, including dectin-1, complement receptor 3 (CR3), CD5, lactosylceramide, and so on. Therefore, this review is mainly focused on the application of β-glucans as immune adjuvants, the receptors of β-glucans, as well as their structure and activity relationship which will benefit future research of β-glucans.
Collapse
Affiliation(s)
- Yiming Jin
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhuaxi Road, Jinan 250012, China
| | - Pingli Li
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan 250012, China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhuaxi Road, Jinan 250012, China.
| |
Collapse
|
39
|
Zhang B, Chen X, Ge S, Peng C, Zhang S, Chen X, Liu T, Zhang W. Arginine methyltransferase inhibitor-1 inhibits sarcoma viability in vitro and in vivo. Oncol Lett 2018; 16:2161-2166. [PMID: 30008914 PMCID: PMC6036477 DOI: 10.3892/ol.2018.8929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 04/16/2018] [Indexed: 01/02/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) are a class of epigenetic modified enzymes that are overexpressed in a various types of cancer and serve pivotal functions in malignant transformation. Arginine methyltransferase inhibitor-1 (AMI-1) is a symmetrical sulfonated urea that inhibits the activity of type I PRMT in vitro. However, previous studies demonstrated that AMI-1 may also inhibit the activity of type II PRMT5 in vitro. To the best of our knowledge, the present study provides the first evidence that AMI-1 may significantly inhibit the viability of mouse sarcoma 180 (S180) and human osteosarcoma U2OS cells. Additionally, the results demonstrated that AMI-1 downregulated the activities of PRMT5, the symmetric dimethylation of histone 4 and histone 3 (a PRMT5-specific epigenetic mark) in a mouse xenograft model of S180 and induced apoptosis in S180 cells. Taken together, the results suggest that AMI-1 may exhibit antitumor effects against sarcoma cells by targeting PRMT5.
Collapse
Affiliation(s)
- Baolai Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xue Chen
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Suyin Ge
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Caili Peng
- Day-Care Unit, Gansu Provincial People's Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Su Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Tao Liu
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wenkai Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
40
|
Zhai X, Yuan S, Yang X, Zou P, Shao Y, Abd El-Aty A, Hacımüftüoğlu A, Wang J. Growth-inhibition of S180 residual-tumor by combination of cyclophosphamide and chitosan oligosaccharides in vivo. Life Sci 2018; 202:21-27. [DOI: 10.1016/j.lfs.2018.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 01/24/2023]
|
41
|
Yu J, Ji H, Liu A. Preliminary Structural Characteristics of Polysaccharides from Pomelo Peels and Their Antitumor Mechanism on S180 Tumor-Bearing Mice. Polymers (Basel) 2018; 10:polym10040419. [PMID: 30966454 PMCID: PMC6415451 DOI: 10.3390/polym10040419] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 12/14/2022] Open
Abstract
In this study, the polysaccharides (PPs) from pomelo peels were investigated for their structural characteristics and antitumor mechanism on sarcoma S180-bearing mice. Components, FT-IR, and GC analysis showed that PPs, mainly composed of glucose, were typical acid polysaccharides with α-d-pyranoid glucose containing 74.52% carbohydrate and 16.33% uronic acid. The in vivo antitumor tests revealed that PPs could effectively suppress the transplanted S180 tumors growth, as well as protect the immune organs, improve proliferation ability of splenic lymphocytes and killing activity of NK cells in tumor-bearing mice. Furthermore, the levels of serum cytokines (IL-2, IFN-γ and TNF-α) and the proportion of CD4⁺ T cells in peripheral blood of mice bearing S180 tumors were also significantly increased after treatment with PPs. Meanwhile, the transplanted S180 tumor cells exhibited obvious apoptotic phenotype after PPs treatment by arresting the cell cycle in S phase, down-regulating the Bcl-2 expressions and up-regulating the Bax levels. These data showed that PPs were mainly composed of glucose with α-d-pyranoid ring and could induce apoptosis of solid tumor cells by enhancing the antitumor immunity of tumor-bearing mice, which would provide a theoretical basis for the practical application in food and medical industries.
Collapse
Affiliation(s)
- Juan Yu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Haiyu Ji
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Anjun Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
42
|
Sun S, Ji H, Feng Y, Kang Y, Yu J, Liu A. A novel mechanism of tumor-induced thymic atrophy in mice bearing H22 hepatocellular carcinoma. Cancer Manag Res 2018; 10:417-424. [PMID: 29551914 PMCID: PMC5842769 DOI: 10.2147/cmar.s157512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Background Thymic atrophy was discovered in tumor-bearing mice in recent years. Methods Flow cytometry was carried out including Annexin V-FITC/PI double staining, PI staining, Terminal dUTP nick-end labeling, CD3-FITC/CD19-PE and CD8-FITC/CD4-PE double staining. Enzyme-linked immunosorbent assay and polymerase chain reaction were also investigated. Results According to our experiments, we demonstrated that no signs of apoptosis in thymocytes were found in H22-bearing mice, while the proportions of CD4+ T cells and CD8+ T cells in thymuses were remarkably increased, the opposite tendency was found in peripheral bloods, and only CD3+CD8+ T cells were discovered in H22 solid tumors. We further discovered that the level of thymosin alpha 1 (Tα1) and the expression of Wnt4 in thymus of H22-bearing mice were significantly improved than control, which indicated the active proliferation and differentiation of thymocytes. Our study revealed that CD8+ T cells could not effectively eliminate H22 cells independently when CD4+ T cells were suppressed by tumors, while the body would only enhance the differentiation and maturation of T cells in thymuses and release them to solid tumor to reinforce antitumor immunocompetence, leading to a vicious cycle which finally led to thymic atrophy. Conclusion Our data propose a novel mechanism of tumor-induced thymic atrophy regulated by abnormal immunoreaction and may provide new ideas for the immunotherapy of tumors.
Collapse
Affiliation(s)
- Sujun Sun
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Haiyu Ji
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yingying Feng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Kang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Juan Yu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Anjun Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
43
|
Beta-glucans and cancer: The influence of inflammation and gut peptide. Eur J Med Chem 2017; 142:486-492. [PMID: 28964548 DOI: 10.1016/j.ejmech.2017.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 12/13/2022]
Abstract
Dietary β-glucans are soluble fibers with potentially health-promoting effects. Gut peptides are important signals in the regulation of energy and glucose homeostasis. This article reviews the effects of different enriched β-glucan food consumption on immune responses, inflammation, gut hormone and cancer. Gut hormones are influenced by enriched β-glucan food consumption and levels of such peptide as YY, ghrelin, glucagon-like peptide 1 and 2 in humans influence serum glucose concentration as well as innate and adaptive immunity. Cancer cell development is also regulated by obesity and glucose dishomeostasy that are influenced by β-glucan food consumption that in turn regulated gut hormones.
Collapse
|