1
|
Ma R, Yang X, Cui S, Obadi M, Xu B, Sun J. Innovative foam drying technique for salted egg yolk powder production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2352-2364. [PMID: 39520115 DOI: 10.1002/jsfa.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The powderization of salted egg yolks can circumvent the gelatinization issues that occur during frozen storage. In this study, salted egg yolk powder (SEYP) was prepared using microwave-assisted foam drying (MFD) technology. RESULTS The results show that, compared to traditional microwave drying and hot-air drying, the SEYP prepared by MFD exhibits a bright color and a loose structure, and shows significant improvements in emulsifying properties, lecithin retention rate and antioxidant activity (P < 0.05). The optimal microwave power for MFD of SEYP, established through principal component analysis, is 350 W, with no requirement for a cooking treatment of the salted egg yolks. Gas chromatography-mass spectrometry identified n-butanol, hexanal, nonanal, ethyl acetate, d-limonene and isopentanal as the primary volatile compounds in SEYP, contributing to its unique flavor profile. Furthermore, the SEYP prepared using MFD at 350 W also shows a reduction of 18.88% in the content of bitter-tasting amino acids compared with microwave drying. CONCLUSION In summary, MFD technology is a green and efficient drying method suitable for the preparation of flavor-type SEYP. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruipeng Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xuhua Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Sijia Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Mohammed Obadi
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jun Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Quan Q, Ma X, Feng J, Li W, Li X. Ginsenoside Rg1 improves autophagy dysfunction to ameliorate Alzheimer's disease via targeting FGR proto-oncogene. Neuropeptides 2025; 111:102514. [PMID: 40073763 DOI: 10.1016/j.npep.2025.102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
Alzheimer's disease (AD) is a neurodegeneration driven by beta-amyloid (Aβ) deposits in the brain involving autophagy dysfunction. Ginsenoside Rg1, a pharmacologically active compound found in ginseng, has possible therapeutic effects for AD. This study discovered that FGR proto-oncogene (FGR) was a therapeutic target of Rg1 in AD and it was possibly involved in autophagy. C57BL/6 J mice were injected with 5 μL (1 μg/mL) Aβ1-42 in the right lateral ventricle to establish an AD model. AD mouse hippocampus had high FGR expression. Intragastrically administered Rg1 (40 mg/kg) decreased FGR protein levels in AD mice's hippocampus and improved memory function in AD mice. Both sides of the mice hippocampal fissure were administered with 2 μL lentiviral particles (1 × 107 TU) containing FGR overexpression plasmids. FGR overexpression rendered Rg1 ineffectual in restoring memory function and reducing hippocampal neuron damage. We injected 2 μL lentiviral particles (1 × 107 TU) containing short hairpin RNA plasmids targeting FGR to the mice hippocampal fissures. FGR knockdown improved spatial memory function of AD mice, reduced hippocampal neuron apoptosis, and prevented Aβ accumulation. HT22 cells were transfected with small interfering RNA targeting FGR. FGR knockdown increased the viability of Aβ1-42 treated HT22 cells. BACE1 and LC3II/I protein levels were decreased and p62 and SIRT1 were increased in AD mice and cells with FGR knockdown. LC3 was down-regulated after inhibiting FGR expression in Aβ1-42 treated hippocampal neurons. In conclusion, Rg1 exerts anti-AD functions by targeting FGR and downregulating its expression.
Collapse
Affiliation(s)
- Qiankun Quan
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinxin Ma
- Department of Psychology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - JianJun Feng
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wanni Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xi Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
3
|
Lian S, Su J, Fatima I, Zhang Y, Kuang T, Hu H, Qu D, Si H, Sun W. Revealing the exceptional antioxidant activity of phosphorylated polysaccharides from medicinal Abrus cantoniensis Hance. Int J Biol Macromol 2024; 278:134532. [PMID: 39142474 DOI: 10.1016/j.ijbiomac.2024.134532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Abrus cantoniensis Polysaccharides (ACP) exhibit antioxidant activity and immune-regulatory functions. Abrus cantoniensis Hance widely distributed in the Guangdong and Guangxi regions of China. In this study, this research investigated the impact of phosphorylation modification on the biological activity of ACP, aiming to provide theoretical insights for its development. This research modified ACP through phosphorylation and evaluated changes in its in vitro antioxidant capacity, including free radical scavenging and resistance to cellular oxidative damage. Additionally, this research administered both native ACP and phosphorylated ACP (P-ACP) to mice to assess their protective effects against acute ethanol-induced oxidative injury. This research explored whether these effects were mediated through the Keap1-Nrf2 signaling pathway and their influence on gut microbiota. Results revealed that phosphorylation significantly enhanced ACP's antioxidant capacity and protective effects (p < 0.05). P-ACP improved mice resistance to acute oxidative injury, mitigating the adverse effects of 50 % ethanol (p < 0.05). Moreover, both ACP and P-ACP are involved in modulating the expression of the Keap1-Nrf2 signaling pathway and, to some extent, alter the composition of the gut microbiota in mice. In summary, phosphorylation modification effectively enhances ACP's antioxidant capacity and provides better protection against acute oxidative injury in mice.
Collapse
Affiliation(s)
- Shuaitao Lian
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi Grass Station, Guangxi University, Nanning 530004, Guangxi, China
| | - Jie Su
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Israr Fatima
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Zhang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi Grass Station, Guangxi University, Nanning 530004, Guangxi, China
| | - Tiantian Kuang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi Grass Station, Guangxi University, Nanning 530004, Guangxi, China
| | - Hongjie Hu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi Grass Station, Guangxi University, Nanning 530004, Guangxi, China
| | - Dongshuai Qu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi Grass Station, Guangxi University, Nanning 530004, Guangxi, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi Grass Station, Guangxi University, Nanning 530004, Guangxi, China.
| | - Wenjing Sun
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology & Pharmacy, Yulin Normal University, No. 1303 Jiaoyu East Road, Yulin 537000, Guangxi, China.
| |
Collapse
|
4
|
Shi L, He Q, Li J, Liu Y, Cao Y, Liu Y, Sun C, Pan Y, Li X, Zhao X. Polysaccharides in fruits: Biological activities, structures, and structure-activity relationships and influencing factors-A review. Food Chem 2024; 451:139408. [PMID: 38735097 DOI: 10.1016/j.foodchem.2024.139408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/23/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
Fruits are a rich source of polysaccharides, and an increasing number of studies have shown that polysaccharides from fruits have a wide range of biological functions. Here, we thoroughly review recent advances in the study of the bioactivities, structures, and structure-activity relationships of fruit polysaccharides, especially highlighting the structure-activity influencing factors such as extraction methods and chemical modifications. Different extraction methods cause differences in the primary structures of polysaccharides, which in turn lead to different polysaccharide biological activities. Differences in the degree of modification, molecular weight, substitution position, and chain conformation caused by chemical modification can all affect the biological activities of fruit polysaccharides. Furthermore, we summarize the applications of fruit polysaccharides in the fields of pharmacy and medicine, foods, cosmetics, and materials. The challenges and perspectives for fruit polysaccharide research are also discussed.
Collapse
Affiliation(s)
- Liting Shi
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Quan He
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Jing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
| | - Yilong Liu
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Yunlin Cao
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Yaqin Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Chongde Sun
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Xian Li
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoyong Zhao
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Liu S, Geng J, Chen W, Zong Y, Zhao Y, Du R, He Z. Isolation, structure, biological activity and application progress of ginseng polysaccharides from the Araliaceae family. Int J Biol Macromol 2024; 276:133925. [PMID: 39032904 DOI: 10.1016/j.ijbiomac.2024.133925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Phytopolysaccharides are a class of natural macromolecules with a range of biological activities. Ginseng, red ginseng, American ginseng, and Panax notoginseng are all members of the Araliaceae family. They are known to contain a variety of medicinal properties and are typically rich in a wide range of medicinal values. Polysaccharides represent is one of the principal active ingredients in the aforementioned plants. However, there is a paucity of detailed reports on the separation methods, structural characteristics and comparison of various pharmacological effects of these polysaccharides. This paper presents a review of the latest research reports on ginseng, red ginseng, American ginseng and ginseng polysaccharides. The differences in extraction, separation, purification, structural characterization, and pharmacological activities of the four polysaccharides are compared and clarified. Upon examination of the current research literature, it becomes evident that the extraction and separation processes of the four polysaccharides are highly similar. Modern pharmacological studies have corroborated the multiple biological activities of these polysaccharides. These activities encompass a range of beneficial effects, including antioxidant stress injury, fatigue reduction, tumor inhibition, depression alleviation, regulation of intestinal flora, immunomodulation, diabetes management, central nervous system protection, anti-aging, and improvement of skin health. This paper presents a review of studies on the extraction, purification, characterization, and bioactivities of four natural plant ginseng polysaccharides. Furthermore, the review presents the most recent research findings on their pharmacological activities. The information provides a theoretical basis for the future application of natural plant polysaccharides and offers a new perspective for the in-depth development of the medicinal value of ginseng in the clinical practice of traditional Chinese medicine.
Collapse
Affiliation(s)
- Silu Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jianan Geng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Rui Du
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education of China, Changchun 130118, China; Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer of China, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
6
|
Shah IA, Kavitake D, Tiwari S, Devi PB, Reddy GB, Jaiswal KK, Jaiswal AK, Shetty PH. Chemical modification of bacterial exopolysaccharides: Antioxidant properties and health potentials. Curr Res Food Sci 2024; 9:100824. [PMID: 39263207 PMCID: PMC11388717 DOI: 10.1016/j.crfs.2024.100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/03/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024] Open
Abstract
In recent years, there has been a burgeoning interest in the utilization of microbial exopolysaccharides (EPS) because of the added advantage of their renewable, biocompatible, and biodegradable nature in addition to intended applications. The endowed properties of bacterial EPS make them valuable candidates for a wide array of industrial applications. Modification of native EPS is known to enhance various physico-chemical and functional properties. Various modifications such as physical, chemical, biological, and enzymatic modifications were practiced improving the bioactivity of EPS. This paper comprehensively aims to review the most recent chemical modification techniques employed to modify the physico-chemical and functional changes of bacterial EPS in comparison with the unmodified forms. Chemical modification entails strategic alterations to the structure and properties of EPS through various synthetic and semi-synthetic methodologies. Emphasis is given to the antioxidant potential and functional role of these EPS derivatives in human health. Antioxidant properties reveal a significant augmentation in activity compared to their native counterparts. Such enhancement holds a strong promise for potential benefits and therapeutic applications. Chemical derivatives of EPS with overwhelming functional benefits could surely encourage EPS application, particularly as potential hydrocolloids in industrial and biomedical contexts.
Collapse
Affiliation(s)
- Irshad Ahmad Shah
- Department of Food Science and Technology, Pondicherry University, Pondicherry, 605014, India
| | - Digambar Kavitake
- Biochemistry Division, ICMR - National Institute of Nutrition, Hyderabad, 500007, India
| | - Swati Tiwari
- Department of Food Science and Technology, Pondicherry University, Pondicherry, 605014, India
| | - Palanisamy Bruntha Devi
- Department of Food Science and Technology, Pondicherry University, Pondicherry, 605014, India
| | - G Bhanuprakash Reddy
- Biochemistry Division, ICMR - National Institute of Nutrition, Hyderabad, 500007, India
| | - Krishna Kumar Jaiswal
- Bioprocess Engineering Laboratory, Department of Green Energy Technology, Pondicherry University, Puducherry, 605014, India
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland
| | | |
Collapse
|
7
|
Xu Y, Bian S, Shang L, Wang X, Bai X, Zhang W. Phytochemistry, pharmacological effects and mechanism of action of volatile oil from Panax ginseng C.A.Mey: a review. Front Pharmacol 2024; 15:1436624. [PMID: 39193331 PMCID: PMC11347760 DOI: 10.3389/fphar.2024.1436624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Panax ginseng (P. ginseng), a traditional and highly valued botanical drug, has been used for thousands of years and is known around the world for its uses in food, medicine, and healthcare. The comprehensive study of P. ginseng is crucial for the quality assurance of medicinal materials and optimal resource utilization. Despite being present in trace amounts, P. ginseng volatile oil has a wide range of chemical metabolites with important medicinal potential. The volatile oil has shown promise in defending the cardiovascular system, as well as in terms of its ability of antibacterial, anti-aging, anti-platelet coagulation, anti-inflammatory, support the nervous system nutritionally, and shield it from harm. Due to its low composition and lack of thorough investigation, P. ginseng volatile oil's therapeutic applicability is still restricted although it exhibited many benefits. This review aims to provide insights into the chemical composition, extraction processes, pharmacological effects, and mechanisms of action of P. ginseng volatile oil, and to provide theoretical support and guidelines for future research and clinical application.
Collapse
Affiliation(s)
- Yanan Xu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shuai Bian
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
| | - LiYing Shang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xin Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyuan Bai
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wei Zhang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
8
|
Khodadadi Yazdi M, Seidi F, Hejna A, Zarrintaj P, Rabiee N, Kucinska-Lipka J, Saeb MR, Bencherif SA. Tailor-Made Polysaccharides for Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:4193-4230. [PMID: 38958361 PMCID: PMC11253104 DOI: 10.1021/acsabm.3c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Polysaccharides (PSAs) are carbohydrate-based macromolecules widely used in the biomedical field, either in their pure form or in blends/nanocomposites with other materials. The relationship between structure, properties, and functions has inspired scientists to design multifunctional PSAs for various biomedical applications by incorporating unique molecular structures and targeted bulk properties. Multiple strategies, such as conjugation, grafting, cross-linking, and functionalization, have been explored to control their mechanical properties, electrical conductivity, hydrophilicity, degradability, rheological features, and stimuli-responsiveness. For instance, custom-made PSAs are known for their worldwide biomedical applications in tissue engineering, drug/gene delivery, and regenerative medicine. Furthermore, the remarkable advancements in supramolecular engineering and chemistry have paved the way for mission-oriented biomaterial synthesis and the fabrication of customized biomaterials. These materials can synergistically combine the benefits of biology and chemistry to tackle important biomedical questions. Herein, we categorize and summarize PSAs based on their synthesis methods, and explore the main strategies used to customize their chemical structures. We then highlight various properties of PSAs using practical examples. Lastly, we thoroughly describe the biomedical applications of tailor-made PSAs, along with their current existing challenges and potential future directions.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Division
of Electrochemistry and Surface Physical Chemistry, Faculty of Applied
Physics and Mathematics, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
- Advanced
Materials Center, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
| | - Farzad Seidi
- Jiangsu
Co−Innovation Center for Efficient Processing and Utilization
of Forest Resources and International Innovation Center for Forest
Chemicals and Materials, Nanjing Forestry
University, Nanjing 210037, China
| | - Aleksander Hejna
- Institute
of Materials Technology, Poznan University
of Technology, PL-61-138 Poznań, Poland
| | - Payam Zarrintaj
- School
of Chemical Engineering, Oklahoma State
University, 420 Engineering
North, Stillwater, Oklahoma 74078, United States
| | - Navid Rabiee
- Department
of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Justyna Kucinska-Lipka
- Department
of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department
of Pharmaceutical Chemistry, Medical University
of Gdańsk, J.
Hallera 107, 80-416 Gdańsk, Poland
| | - Sidi A. Bencherif
- Chemical
Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
9
|
Zhang XX, Zhang WW, Ni ZJ, Thakur K, Zhang JG, Khan MR, Xu WD, Wei ZJ. Effects of different chemical modifications on physicochemical and antioxidation properties of Lycium barbarum seed dreg polysaccharides. Food Chem X 2024; 22:101271. [PMID: 38495455 PMCID: PMC10944119 DOI: 10.1016/j.fochx.2024.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 02/07/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Recent studies have witnessed that chemical modification can improve the physicochemical and functional properties of plants' polysaccharides. Herein, we modified the natural Lycium barbarum seed dreg polysaccharides (LBSDPs) by sulfation (S-LBSDPs), phosphorylation (P-LBSDPs), and carboxymethylation (C-LBSDPs), and evaluated the chemical composition and antioxidant activity of their derivatives. Natural polysaccharides and their derivatives exhibited typical polysaccharide absorption peaks and characteristic group absorption peaks in FT-IR spectra along with maximum UV absorption. After modification, the total sugar and protein contents of the derivatives were decreased, whereas the uronic acid content was increased. Among the three derivatives, sulfated polysaccharides displayed excellent thermal stability. S-LBSDP and P-LBSDP showed the highest ABTS radical scavenging and reducing power while S-LBSDPs and C-LBSDPs showed better DPPH radical scavenging effect, and P-LBSDPs showed considerable Fe2+ chelating ability. Our data indicate that chemical modifications can impart a positive effect on the antioxidant potential of plant-derived polysaccharides.
Collapse
Affiliation(s)
- Xiu-Xiu Zhang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Wang-Wei Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Zhi-Jing Ni
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Kiran Thakur
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Jian-Guo Zhang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wen-Di Xu
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Zhao-Jun Wei
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| |
Collapse
|
10
|
Mao X, Chen J, Yao Y, Liu D, Wang H, Chen Y. Progress in phosphorylation of natural products. Mol Biol Rep 2024; 51:697. [PMID: 38802698 DOI: 10.1007/s11033-024-09596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Natural medicines are a valuable resource for the development of new drugs. However, factors such as low solubility and poor bioavailability of certain constituents have hindered their efficacy and potential as pharmaceuticals. Structural modification of natural products has emerged as an important research area for drug development. Phosphorylation groups, as crucial endogenous active groups, have been extensively utilized for structural modification and development of new drugs based on natural molecules. Incorporating phosphate groups into natural molecules not only enhances their stability, bioavailability, and pharmacological properties, but also improves their biological activity by altering their charge, hydrogen bonding, and spatial structure. This review summarizes the phosphorylation mechanism, modification approaches, and biological activity enhancement of natural medicines. Notably, compounds such as polysaccharides, flavonoids, terpenoids, anthraquinones, and coumarins exhibit increased antioxidation, anticancer, antiviral, immune regulatory, Antiaging, enzyme inhibition, bacteriostasis, liver protection, and lipid-lowering effects following phosphorylation modification.
Collapse
Affiliation(s)
- Xiaoran Mao
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiaqi Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yingrui Yao
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Defu Liu
- Department of Pharmacy, Characteristic Medical Center of PAP, Tianjin, 300162, China
| | - Haiying Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yuzhou Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
11
|
Yang SH, Wang XL, Zhang HN, Zhu LF, Qu SH, Zhang MY, Zhang H, Liu PF. Phosphorylation Modification, Structural Characterization, Antioxidant and DNA Protection Capacities of Polysaccharides from Asarum Sieboldii Miq. Chem Biodivers 2024; 21:e202301781. [PMID: 38146649 DOI: 10.1002/cbdv.202301781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 12/27/2023]
Abstract
Polysaccharide from Asarum sieboldii Miq (ASP) was extracted and five phosphorylation polysaccharides with different degree of substitution were obtained, namely ASPP1, ASPP2, ASPP3, ASPP4, and ASPP5 (ASPPs). The physical and chemical structure and biological activities were studied. The results suggested that the carbohydrate and protein content were reduced while uronic acid was increased after phosphorylation modification. The molecular weight of ASPPs was significantly lower than that of ASP. ASPPs were acidic heteropolysaccharides mainly composed of galacturonic acid, galactose, glucose, fructose, and arabinose. The UV-vis spectrum indicated that the polysaccharides did not contain nucleic acid or protein after modification. The Fourier transform infrared spectrum demonstrated that ASPPs contained characteristic absorption peaks of P=O and P-O-C near 1270 and 980 cm-1 . ASPPs presented a triple helix conformation, but it was not presented in ASP. The scanning electron microscopy analysis showed that the surface topography and particle structure of ASP were different after modification. Compared with ASP, ASPPs enhanced the activity to scavenge DPPH and ABTS free radicals and possessed more protective ability to DNA oxidation caused by OH⋅, GS⋅, and AAPH free radicals. These results suggest that chemical modification is beneficial for the exploitation and utilization of natural polysaccharides.
Collapse
Affiliation(s)
- Shun-He Yang
- College of Tobacco Science, Henan Agricultural University/Flavors and Fragrance Engineering & Technology Research Center of Henan Province, Zhengzhou, China, 450046
| | - Xiao-Li Wang
- College of Animal Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China, 450046
| | - Hao-Nan Zhang
- College of Tobacco Science, Henan Agricultural University/Flavors and Fragrance Engineering & Technology Research Center of Henan Province, Zhengzhou, China, 450046
| | - Li-Fei Zhu
- College of Animal Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China, 450046
| | - Shu-Hao Qu
- College of Animal Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China, 450046
| | - Ming-Yue Zhang
- College of Tobacco Science, Henan Agricultural University/Flavors and Fragrance Engineering & Technology Research Center of Henan Province, Zhengzhou, China, 450046
| | - Hong Zhang
- College of Tobacco Science, Henan Agricultural University/Flavors and Fragrance Engineering & Technology Research Center of Henan Province, Zhengzhou, China, 450046
| | - Peng-Fei Liu
- College of Tobacco Science, Henan Agricultural University/Flavors and Fragrance Engineering & Technology Research Center of Henan Province, Zhengzhou, China, 450046
| |
Collapse
|
12
|
Liu J, Wang H, Luo J, Chen T, Xi Q, Sun J, Wei L, Zhang Y. Synergism of fermented feed and ginseng polysaccharide on growth performance, intestinal development, and immunity of Xuefeng black-bone chickens. BMC Vet Res 2024; 20:13. [PMID: 38184589 PMCID: PMC10770880 DOI: 10.1186/s12917-023-03859-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024] Open
Abstract
Microbial fermented feed (MF) is considered a valuable strategy to bring advantages to livestock and is widely practiced. Oral supplementation of Ginseng polysaccharide (Gps) eliminated weight loss in chickens following vaccination. This study investigated the effects of the combined use of Gps and MF on growth performance and immune indices in Xuefeng black-bone chickens. A total of 400 Xuefeng black-bone chickens at the age of 1 day were randomly assigned to four groups. Normal feed group (Control group), ginseng polysaccharide (200 mg/kg) group (Gps group), microbially fermented feed (completely replace the normal feed) group (MF group), and microbially fermented feed and add ginseng polysaccharide just before use (MF + Gps group). Each group contained 5 pens per treatment and 20 birds per pen. The body weight and average daily gain in the Gps, MF, and MF + Gps groups increased significantly (P < 0.01), while the feed conversion ratio decreased significantly (P < 0.01). The combined use of MF and Gps showed a synergistic effect. There was no significant difference in villus height (cecal) between the experimental group and the Con group. The crypt depth of the three experimental groups exhibited a significantly lower value compared to the Control group (P < 0.05). The V/C ratio of the Gps group and MF + Gps was significantly increased (P < 0.05), but there was no significant difference in the MF group. Moreover, the diarrhea rate of the Gps and the MF + Gps groups was lower than that of the Con group, while that of the MF + Gps group decreased the mortality rate (P < 0.05). The serum tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) levels in the MF, Gps, and MF + Gps groups decreased significantly (P < 0.01), the serum immunoglobulin G (IgG) levels increased significantly (P < 0.01), while the combination of MF and Gps had a synergistic effect. The combined use of Gps and MF not only further improved growth performance and immune parameters, but also reduced the diarrhea rate and mortality.
Collapse
Affiliation(s)
- Jie Liu
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya, 572000, Hainan, China
- Institute of Animal Husbandry and Veterinary Medicine, Hainan Key Laboratory for Tropical Animal Breeding and Disease Research, Hainan Academy of Agricultural Sciences, Haikou, 571100, Hainan, China
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Huan Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Limin Wei
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya, 572000, Hainan, China.
- Institute of Animal Husbandry and Veterinary Medicine, Hainan Key Laboratory for Tropical Animal Breeding and Disease Research, Hainan Academy of Agricultural Sciences, Haikou, 571100, Hainan, China.
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Shen Q, Guo Y, Wang K, Zhang C, Ma Y. A Review of Chondroitin Sulfate's Preparation, Properties, Functions, and Applications. Molecules 2023; 28:7093. [PMID: 37894574 PMCID: PMC10609508 DOI: 10.3390/molecules28207093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Chondroitin sulfate (CS) is a natural macromolecule polysaccharide that is extensively distributed in a wide variety of organisms. CS is of great interest to researchers due to its many in vitro and in vivo functions. CS production derives from a diverse number of sources, including but not limited to extraction from various animals or fish, bio-synthesis, and fermentation, and its purity and homogeneity can vary greatly. The structural diversity of CS with respect to sulfation and saccharide content endows this molecule with distinct complexity, allowing for functional modification. These multiple functions contribute to the application of CS in medicines, biomaterials, and functional foods. In this article, we discuss the preparation of CS from different sources, the structure of various forms of CS, and its binding to other relevant molecules. Moreover, for the creation of this article, the functions and applications of CS were reviewed, with an emphasis on drug discovery, hydrogel formation, delivery systems, and food supplements. We conclude that analyzing some perspectives on structural modifications and preparation methods could potentially influence future applications of CS in medical and biomaterial research.
Collapse
Affiliation(s)
- Qingshan Shen
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kangyu Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanli Ma
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
| |
Collapse
|
14
|
Liu T, Ren Q, Wang S, Gao J, Shen C, Zhang S, Wang Y, Guan F. Chemical Modification of Polysaccharides: A Review of Synthetic Approaches, Biological Activity and the Structure-Activity Relationship. Molecules 2023; 28:6073. [PMID: 37630326 PMCID: PMC10457902 DOI: 10.3390/molecules28166073] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Natural polysaccharides are macromolecular substances with great potential owing to their wide biological activity and low toxicity. However, not all polysaccharides have significant pharmacodynamic activity; hence, appropriate chemical modification methods can be selected according to the unique structural characteristics of polysaccharides to assist in enhancing and promoting the presentation of their biological activities. This review summarizes research progress on modified polysaccharides, including common chemical modification methods, the change in biological activity following modification, and the factors affecting the biological activity of chemically modified polysaccharides. At the same time, the difficulties and challenges associated with the structural modification of natural polysaccharides are also outlined in this review. Thus, research on polysaccharide structure modification is critical for improving the development and utilization of sugar products.
Collapse
Affiliation(s)
- Tianbo Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Qianqian Ren
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Shuang Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Jianing Gao
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Congcong Shen
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Shengyu Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Feng Guan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China
| |
Collapse
|
15
|
Su J, Su Q, Hu S, Ruan X, Ouyang S. Research Progress on the Anti-Aging Potential of the Active Components of Ginseng. Nutrients 2023; 15:3286. [PMID: 37571224 PMCID: PMC10421173 DOI: 10.3390/nu15153286] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Aging is a cellular state characterized by a permanent cessation of cell division and evasion of apoptosis. DNA damage, metabolic dysfunction, telomere damage, and mitochondrial dysfunction are the main factors associated with senescence. Aging increases β-galactosidase activity, enhances cell spreading, and induces Lamin B1 loss, which further accelerate the aging process. It is associated with a variety of diseases, such as Alzheimer's disease, Parkinson's, type 2 diabetes, and chronic inflammation. Ginseng is a traditional Chinese medicine with anti-aging effects. The active components of ginseng, including saponins, polysaccharides, and active peptides, have antioxidant, anti-apoptotic, neuroprotective, and age-delaying effects. DNA damage is the main factor associated with aging, and the mechanism through which the active ingredients of ginseng reduce DNA damage and delay aging has not been comprehensively described. This review focuses on the anti-aging mechanisms of the active ingredients of ginseng. Furthermore, it broadens the scope of ideas for further research on natural products and aging.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Qiaofen Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shan Hu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Xinglin Ruan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China;
| | - Songying Ouyang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
- Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
16
|
Huang L, Li HJ, Wu YC. Processing technologies, phytochemistry, bioactivities and applications of black ginseng-a novel manufactured ginseng product: A comprehensive review. Food Chem 2023; 407:134714. [PMID: 36495746 DOI: 10.1016/j.foodchem.2022.134714] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022]
Abstract
Black ginseng is a novel manufactured ginseng product, and the application of black ginseng products in market is increasing in recent years. Black ginseng is prepared by steaming and fermentation, but not as mature as processing red ginseng. Therefore, complete proposals for preparation techniques are firstly presented. Additionally, there are also abundant chemical components in black ginseng, including ginsenosides, polysaccharides, amino acids, polyphenols, flavonoids, etc. Among them, ginsenosides, polysaccharides and phenolic compounds are the main ingredients, making health benefits of black ginseng stronger than other ginseng products. Therefore, black ginseng as a functional food has come to the market in various forms, such as candies, tea, porridge, soup, etc. The improvement in nutrition, flavor, and safety has exhibited a broad prospect for black ginseng products in food industry. Accordingly, preparation technologies, phytochemistry, health benefits and application of black ginseng are comprehensively evaluated.
Collapse
Affiliation(s)
- Li Huang
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, PR China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, PR China
| | - Yan-Chao Wu
- Weihai Jinyiyang Pharmaceutical Co., Ltd, Wendeng District, Weihai 264400, PR China.
| |
Collapse
|
17
|
Yu S, Duan M, Zeng R, Chen F, Zhong W, Sun J, Xu J, Li D, Zheng Y, Liu X, Pang J, Wu C. Preparation, characterization and biological activity of phosphorylated surface deacetylated chitin nanofibers. Int J Biol Macromol 2023; 233:123492. [PMID: 36736984 DOI: 10.1016/j.ijbiomac.2023.123492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Phosphorylation is a key route to achieve varieties of biological activities for polysaccharides. Here, we report the phosphorylated surface deacetylated chitin nanofibers (PS-ChNFs) using the sodium tripolyphosphate/sodium trimetaphosphate (STPP/STMP) method. Response surface methodology (RSM) was employed to optimize in this study. Under optimal conditions, a maximum degree of substitution (DS) of 0.13 was obtained. In addition, the structures of PS-ChNFs were investigated by Fourier transform infrared spectroscopy (FT-IR), Nuclear Magnetic Resonance spectra (NMR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM) and (Energy Dispersive Spectroscopy-mapping) EDS-mapping. The findings revealed that the FT-IR spectroscopy and XPS analysis confirmed the appearance of phosphate groups in PS-ChNFs. The 31P NMR results indicate that the PS-ChNFs structure has characteristic peaks of P elements. SEM images showed that PS-ChNFs had a rough surface with many cavities, but the P elements on the surface of the EDS-mapping are uniformly distributed throughout the sample without any enrichment. Antioxidant and antibacterial test showed that PS-ChNFs had significant scavenging effect on free radicals and antibacterial effect. The above results indicate that the chemical modification of PS-ChNFs was successful.
Collapse
Affiliation(s)
- Shan Yu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
| | - Mengxia Duan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
| | - Ronghuai Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Fujie Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Weiquan Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jishuai Sun
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Jingting Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Danjie Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yafeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
| | - Xiaoyan Liu
- School of Food and Health, Beijing Technology and Business University; Beijing 100048, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.
| |
Collapse
|
18
|
20(S)-Ginsenoside Rh1 inhibits cisplatin-induced hearing loss by inhibiting the MAPK signaling pathway and suppressing apoptosis in vitro. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119461. [PMID: 36931607 DOI: 10.1016/j.bbamcr.2023.119461] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
As an anticancer drug, cisplatin is widely used, but its clinical application is restricted due to its severe side effects of ototoxicity. Therefore, this study was dedicated to assessing the benefit of ginsenoside extract, 20(S)-Ginsenoside Rh1 (Rh1), on cisplatin-induced ototoxicity. HEI-OC1 cells and neonatal cochlear explants were cultured. Cleaved caspase-3, TUNEL, and MitoSOX Red were observed in vitro by immunofluorescence staining. CCK8 and LDH cytotoxicity assays were detected to measure cell viability and cytotoxicity. Our results showed that Rh1 significantly increased cell viability, reduced cytotoxicity, and alleviated cisplatin-induced apoptosis. In addition, Rh1 pretreatment decreased the excessive accumulation of intracellular reactive oxygen species. Mechanistic studies indicated that Rh1 pretreatment reversed the increase of apoptotic protein expression, accumulation of mitochondrial ROS, and activation of the MAPK signaling pathway. These results suggested that Rh1 can act as an antioxidant and anti-apoptotic agent against cisplatin-induced hearing loss by suppressing the excessive accumulation of mitochondrial ROS, activation of MAPK signaling pathway and apoptosis.
Collapse
|
19
|
Bai L, Xu D, Zhou YM, Zhang YB, Zhang H, Chen YB, Cui YL. Antioxidant Activities of Natural Polysaccharides and Their Derivatives for Biomedical and Medicinal Applications. Antioxidants (Basel) 2022; 11:2491. [PMID: 36552700 PMCID: PMC9774958 DOI: 10.3390/antiox11122491] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Many chronic diseases such as Alzheimer's disease, diabetes, and cardiovascular diseases are closely related to in vivo oxidative stress caused by excessive reactive oxygen species (ROS). Natural polysaccharides, as a kind of biomacromolecule with good biocompatibility, have been widely used in biomedical and medicinal applications due to their superior antioxidant properties. In this review, scientometric analysis of the highly cited papers in the Web of Science (WOS) database finds that antioxidant activity is the most widely studied and popular among pharmacological effects of natural polysaccharides. The antioxidant mechanisms of natural polysaccharides mainly contain the regulation of signal transduction pathways, the activation of enzymes, and the scavenging of free radicals. We continuously discuss the antioxidant activities of natural polysaccharides and their derivatives. At the same time, we summarize their applications in the field of pharmaceutics/drug delivery, tissue engineering, and antimicrobial food additives/packaging materials. Overall, this review provides up-to-date information for the further development and application of natural polysaccharides with antioxidant activities.
Collapse
Affiliation(s)
- Lu Bai
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Dong Xu
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yan-Ming Zhou
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yong-Bo Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yi-Bing Chen
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
20
|
Huo N, Ameer K, Wu Z, Yan S, Jiang G, Ramachandraiah K. Preparation, characterization, structural analysis and antioxidant activities of phosphorylated polysaccharide from Sanchi ( Panax notoginseng) flower. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4603-4614. [PMID: 36276535 PMCID: PMC9579234 DOI: 10.1007/s13197-022-05539-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 06/16/2023]
Abstract
In this study, phosphorylation effects on the monosaccharide composition, structural attributes, morphology and radical-scavenging activities of Sanchi (Panax notoginseng) flower polysaccharides were investigated. Sanchi flower phosphorylated polysaccharides mainly comprised of Man, Rha, GluA, GalA, Glu, Gal and Xyl, but lacked GluN, Rib, Arab and Fuc in their compositions. FTIR analysis of phosphorylated polysaccharides showed an emergence of new absorption peak around spectral region of 1254 cm-1. NMR and FTIR analyses were indicative of the successful phosphorylation of the Sanchi flower polysaccharides. The introduction of phosphate groups into polysaccharides led to the induction of pore-like structures in polysaccharides configuration. Phosphorylation of polysaccharides led to concentration-dependent increasing tendencies in radical-scavenging activities. These findings demonstrated the positive impact of phosphorylation on Sanchi flower polysaccharides, which could potentially be used as a therapeutic agent.
Collapse
Affiliation(s)
- Nailin Huo
- School of Public Health, Jilin Medical University, Jilin, 132013 China
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, 40100 Pakistan
| | - Zhaogen Wu
- School of Public Health, Jilin Medical University, Jilin, 132013 China
| | - Shengnan Yan
- Jilin Zixin Pharmaceutical Industrial Co., Ltd., Changchun, 130000 China
| | - Guihun Jiang
- School of Public Health, Jilin Medical University, Jilin, 132013 China
| | | |
Collapse
|
21
|
Ahmad MM, Chatha SAS, Hussain AI, Khan I. Chemical modification and antioxidant activities of Carissa carandas fruit polysaccharides. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Yue B, Zong G, Tao R, Wei Z, Lu Y. Crosstalk between traditional Chinese medicine-derived polysaccharides and the gut microbiota: A new perspective to understand traditional Chinese medicine. Phytother Res 2022; 36:4125-4138. [PMID: 36100366 DOI: 10.1002/ptr.7607] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/04/2022] [Accepted: 08/20/2022] [Indexed: 11/09/2022]
Abstract
Polysaccharide is a kind of macromolecule polymer composed of monosaccharides connected by glycosidic bonds. Traditional Chinese medicine (TCM), composed of various bioactive ingredients, is usually rich in polysaccharides. In recent years, extensive research on TCM polysaccharides has demonstrated their pharmacological effects. Polysaccharides can hardly be catabolized by enzymes encoded by the human genome but can be degraded to absorbable metabolites by bacteria inhabiting the colon. Hence, the gut microbiota plays a vital role in degrading TCM polysaccharides into short-chain fatty acids (SCFAs) which exert physiological functions locally and systemically. Besides, TCM polysaccharides can also modulate the composition and activities of the gut microbiota by promoting the growth of beneficial bacteria and inhibiting the colonization of pathogenic bacteria, ultimately restoring gut homeostasis and improving human health. In this review, we discuss the extraction and pharmacological effects of TCM polysaccharides, various functions of the gut microbiota, and the interactions between TCM polysaccharides and the gut microbiota, illuminating the mechanisms of TCM polysaccharides modulating host physiology via the gut microbiota. To firmly establish the clinical efficacy of TCM polysaccharides, further high-quality studies especially clinical trials are needed. Generally, discussion on the interplay between TCM polysaccharides and the gut microbiota is expected to elucidate their application prospects and inspire new thoughts in the development of TCM.
Collapse
Affiliation(s)
- Bingjie Yue
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Gangfan Zong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruizhi Tao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
23
|
Zhang X, Liu T, Wang X, Zhou L, Qi J, An S. Structural characterization, antioxidant activity and anti-inflammatory of the phosphorylated polysaccharide from Pholiota nameko. Front Nutr 2022; 9:976552. [PMID: 36118783 PMCID: PMC9471013 DOI: 10.3389/fnut.2022.976552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, a novel polysaccharide (SPN) was extracted by high-temperature pressure method and purified by a DEAE-52 column and a Sephadx G-100 gel column. PPN was obtained after phosphorylation of SPN. The differences of structural features, antioxidant activity, and anti-inflammatory effect of the two polysaccharides were investigated by chemical methods and RAW 264.7 cell model. SPN (Mw = 15.8 kDa) and PPN (Mw = 27.7 kDa) are an acidic polysaccharide with β-pyranose configuration, mainly containing rhamnose, mannose, glucose, arabinose, and galacose. FI-IR, NMR, and SEM spectra showed phosphorylation of SPN changed its structure. In methylation analysis, the major chains of SPN and PPN were 1,4-linked Glcp, 1,6-linked Galp, 1,2-linked Rhap, and 1.6-linked Manp with terminals of t-linked Glcp, t-linked Araf. The side chain of SPN was 1,4,6-linked Galp, 1,2,5-linked Araf, while the side chain of PPN was 1,4,6-linked Galp, 1,2,4-linked Glcp. In antioxidant activity experiments, the free radical scavenging rate of PPN was stronger than that of SPN. Also, PPN always has better anti-inflammatory on RAW 264.7 cells induced by LPS than that of SPN in same concentration, and it plays an anti-inflammatory role by inhibiting PI3K/AKT/mTOR pathway. The results indicated polysaccharide could significantly improve its antioxidant and anti-inflammatory function after phosphorylation. This study provides a potentially antioxidant and anti-inflammatory health food and drug.
Collapse
Affiliation(s)
- Xu Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| | - Tingting Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Xi Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Lanying Zhou
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| | - Ji Qi
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| | - Siyu An
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| |
Collapse
|
24
|
New Therapeutic Approaches to and Mechanisms of Ginsenoside Rg1 against Neurological Diseases. Cells 2022; 11:cells11162529. [PMID: 36010610 PMCID: PMC9406801 DOI: 10.3390/cells11162529] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Neurological diseases, including Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), stroke, cerebral infarction, ischemia-reperfusion injury, depression and, stress, have high incidence and morbidity and often lead to disability. However, there is no particularly effective medication against them. Therefore, finding drugs with a suitable efficacy, low toxicity and manageable effects to improve the quality of life of patients is an urgent problem. Ginsenoside Rg1 (Rg1) is the main active component of ginseng and has a variety of pharmacological effects. In this review, we focused on the therapeutic potential of Rg1 for improving neurological diseases. We introduce the mechanisms of Ginsenoside Rg1 in neurological diseases, including apoptosis, neuroinflammation, the microRNA (miRNA) family, the mitogen-activated protein kinase (MAPK) family, oxidative stress, nuclear factor-κB (NF-κB), and learning and memory of Rg1 in neurological diseases. In addition, Rg1 can also improve neurological diseases through the interaction of different signal pathways. The purpose of this review is to explore more in-depth ideas for the clinical treatment of neurological diseases (including PD, AD, HD, stroke, cerebral infarction, ischemia–reperfusion injury, depression, and stress). Therefore, Rg1 is expected to become a new therapeutic method for the clinical treatment of neurological diseases.
Collapse
|
25
|
Li Z, Wei Y, Wang Y, Zhang R, Zhang C, Wang C, Yan X. Preparation of Highly Substituted Sulfated Alfalfa Polysaccharides and Evaluation of Their Biological Activity. Foods 2022; 11:foods11050737. [PMID: 35267371 PMCID: PMC8909867 DOI: 10.3390/foods11050737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Alfalfa polysaccharides (AP) receive wide attention in the field of medicine, because of their anti-inflammatory property. However, AP has high molecular weight and poor water solubility, resulting in low biological activity. We wanted to obtain highly bioactive alfalfa polysaccharides for further research. Herein, we successfully synthesized highly substituted sulfated alfalfa polysaccharides (SAP) via the chlorosulfonic acid (CSA)-pyridine (Pyr) method, which was optimized using response surface methodology (RSM). Under the best reaction conditions, that is, the reaction temperature, time, and ratio of CSA to Pyr being 55 °C, 2.25 h, and 1.5:1, respectively, the maximum degree of substitution of SAP can reach up to 0.724. Fourier transform infrared spectroscopy also confirmed the existence of sulfonic acid groups on SAP. Despite the increased average molecular weight of SAP, its water solubility is improved, which is beneficial for its biological activity. Further in vitro results showed that SAP exhibited better antioxidant activity and antibacterial ability than AP. Besides, the former can efficiently enhance the viability of oxidatively stressed intestinal epithelial cells compared with the latter. Furthermore, SAP has the potential to inhibit obesity. It is concluded that sulfation modification could improve the antioxidant, antibacterial, bovine intestinal epithelial cells’ proliferation-promoting, and the obesity inhibition abilities of AP. The improvement of AP biological activity may provide references for the utilization of plant extracts that have weaker biological activity.
Collapse
Affiliation(s)
- Zhiwei Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.L.); (Y.W.); (Y.W.); (R.Z.); (C.Z.)
| | - Yuanhao Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.L.); (Y.W.); (Y.W.); (R.Z.); (C.Z.)
| | - Yawen Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.L.); (Y.W.); (Y.W.); (R.Z.); (C.Z.)
| | - Ran Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.L.); (Y.W.); (Y.W.); (R.Z.); (C.Z.)
| | - Chuanjie Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.L.); (Y.W.); (Y.W.); (R.Z.); (C.Z.)
| | - Caixing Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225000, China
- Correspondence: (C.W.); (X.Y.); Tel./Fax: +86-514-8797-2208 (X.Y.)
| | - Xuebing Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.L.); (Y.W.); (Y.W.); (R.Z.); (C.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (C.W.); (X.Y.); Tel./Fax: +86-514-8797-2208 (X.Y.)
| |
Collapse
|
26
|
Guo R, Chen M, Ding Y, Yang P, Wang M, Zhang H, He Y, Ma H. Polysaccharides as Potential Anti-tumor Biomacromolecules —A Review. Front Nutr 2022; 9:838179. [PMID: 35295918 PMCID: PMC8919066 DOI: 10.3389/fnut.2022.838179] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/27/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer, as one of the most life-threatening diseases, has attracted the attention of researchers to develop drugs with minimal side effects. The bioactive macromolecules, such as the polysaccharides, are considered the potential candidates against cancer due to their anti-tumor activities and non-toxic characteristics. The present review provides an overview on polysaccharides' extraction, isolation, purification, mechanisms for their anti-tumor activities, structure-activity relationships, absorption and metabolism of polysaccharides, and the applications of polysaccharides in anti-tumor therapy. Numerous research showed extraction methods of polysaccharides had a significant influence on their activities. Additionally, the anti-tumor activities of the polysaccharides are closely related to their structure, while molecular modification and high bioavailability may enhance the anti-tumor activity. Moreover, most of the polysaccharides exerted an anti-tumor activity mainly through the cell cycle arrest, anti-angiogenesis, apoptosis, and immunomodulation mechanisms. Also, recommendations were made to utilize the polysaccharides against cancer.
Collapse
Affiliation(s)
- Rui Guo
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Min Chen
- The Laboratory Animal Research Center, Jiangsu University, Zhenjiang, China
| | - Yangyang Ding
- The Laboratory Animal Research Center, Jiangsu University, Zhenjiang, China
| | - Pengyao Yang
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Mengjiao Wang
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haihui Zhang
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuanqing He
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
- The Laboratory Animal Research Center, Jiangsu University, Zhenjiang, China
- *Correspondence: Yuanqing He
| | - Haile Ma
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
27
|
Qian S, Yu Y, Ma J, Diao E, Ye S, Gao J, Liu Y, Hu W. Evaluation of a novel phosphorylated corn straw xylan for enhancement of thermal stability, crystallinity and functional activity. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shiquan Qian
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| | - Yuting Yu
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| | - Jing Ma
- School of Life Sciences Anhui Agricultural University Hefei 230036 China
| | - Enjie Diao
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| | - Shijia Ye
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| | - Jiamin Gao
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| | - Ying Liu
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| | - Weicheng Hu
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| |
Collapse
|
28
|
Ahmad MM. Recent trends in chemical modification and antioxidant activities of plants-based polysaccharides: A review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
29
|
Zhang Z, Huang X, Li S, Zhang C, Luo K. Preparation and characterization of Zein-sulfated Cardamine hupingshanensis polysaccharide composite films. Food Sci Nutr 2021; 9:6737-6745. [PMID: 34925803 PMCID: PMC8645725 DOI: 10.1002/fsn3.2625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 02/01/2023] Open
Abstract
Cardamine hupingshanensis polysaccharide (CHP) was modified by the sulfur trioxide-pyridine method to obtain the sulfated C. hupingshanensis polysaccharide (SCHP) with a substitution degree of 0.72. The spectral results revealed that the sulfate group was successfully introduced to CHP. In the in vitro antioxidant assay, SCHP showed the highest scavenging rate of hydroxyl radicals, ABTS, and DPPH. Different concentrations of SCHP were chosen to form a compound with Zein to prepare novel bioactive films successfully. The functional and characterization studies of the films were also conducted. The scavenging ability of the films for hydroxyl radicals, ABTS, and DPPH was improved by adding different concentrations of SCHP. Although the films showed a decrease in transparency with the addition of 4 mg/ml SCHP, there was an improvement in tensile strength compared to films without the addition of SCHP. These findings indicate that Zein-SCHP films can be used as a functional food packaging material with antioxidant properties.
Collapse
Affiliation(s)
- Zimu Zhang
- College of Biology and Science TechnologyHubei min Zu UniversityEnshiChina
| | - XiuFang Huang
- College of Biology and Science TechnologyHubei min Zu UniversityEnshiChina
| | - ShiChan Li
- College of Biology and Science TechnologyHubei min Zu UniversityEnshiChina
| | - Chi Zhang
- College of Biology and Science TechnologyHubei min Zu UniversityEnshiChina
| | - Kai Luo
- College of Biology and Science TechnologyHubei min Zu UniversityEnshiChina
| |
Collapse
|
30
|
Wang Y, Shen C, Huo K, Cai D, Zhao G. Antioxidant activity of yeast mannans and their growth-promoting effect on Lactobacillus strains. Food Funct 2021; 12:10423-10431. [PMID: 34596192 DOI: 10.1039/d1fo01470f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Yeast mannans from Saccharomyces cerevisiae (123.2 kDa, 40.5 kDa and 21.3 kDa) were prepared. The scavenging abilities of Fe2+, OH˙, and O2˙- and protective capacities against lipid peroxidation and oxidative DNA damage increased with the reduction of the molecular weights of yeast mannans. The highest scavenging abilities of Fe2+, OH˙ and O2˙- (25.32%, 70.8%, and 61.5%) were observed with YM-90, and it showed an anti-lipid peroxidation capacity of 65.82%, which was much stronger than that of vitamin C (VC), with a thiobarbituric acid-reactive substance (TBARS) inhibition rate of 80.41%. However, the highest DPPH scavenging rate (88.7%) was exhibited by YM-30. In addition, the growth-promoting effect of yeast mannans on Lactobacillus strains was further confirmed, and a 54.2% increment of Lactobacillus plantarum ZWR5 cell viability was achieved by YM-90. The results indicated the potential industrial applications of this yeast mannan technology in therapeutic and nutraceutical production.
Collapse
Affiliation(s)
- Yong Wang
- Fermentation Technology Innovation Center of Hebei Province, College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China.
| | - Chongyu Shen
- Fermentation Technology Innovation Center of Hebei Province, College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China.
| | - Kai Huo
- Fermentation Technology Innovation Center of Hebei Province, College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China.
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Guoqun Zhao
- Fermentation Technology Innovation Center of Hebei Province, College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China.
| |
Collapse
|
31
|
Zhou S, Huang G. Preparation, structure and activity of polysaccharide phosphate esters. Biomed Pharmacother 2021; 144:112332. [PMID: 34673422 DOI: 10.1016/j.biopha.2021.112332] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 11/18/2022] Open
Abstract
Polysaccharides have anti-virus, anti-cancer, anti-oxidation, immune regulation, hypoglycemia and other biological activities. Because of their safety, fewer side effects and other advantages, polysaccharides are considered as ideal raw materials in food and drugs. The biological activity of polysaccharides can be improved by structural modification (such as sulfation, carboxymethylation, phosphorylation, etc.), and even new biological activity can be generated. In this review, the recent advances in the phosphorylation of polysaccharides were reviewed from the perspectives of modification methods, structures, biological activities and structure-activity relationships.
Collapse
Affiliation(s)
- Shiyang Zhou
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
32
|
Zhang Z, Huang X, Li S, Luo K. Determining the Structure and In Vitro Antioxidant Activity of Sulfated Polysaccharides from
Cardamine hupingshanensis. STARCH-STARKE 2021. [DOI: 10.1002/star.202100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zimu Zhang
- College of Biology and Science Technology Hubei min Zu University Enshi 445000 China
| | - Xiufang Huang
- College of Biology and Science Technology Hubei min Zu University Enshi 445000 China
| | - Shichan Li
- College of Biology and Science Technology Hubei min Zu University Enshi 445000 China
| | - Kai Luo
- College of Biology and Science Technology Hubei min Zu University Enshi 445000 China
| |
Collapse
|
33
|
Wu X, Huang J, Wang J, Xu Y, Yang X, Sun M, Shi J. Multi-Pharmaceutical Activities of Chinese Herbal Polysaccharides in the Treatment of Pulmonary Fibrosis: Concept and Future Prospects. Front Pharmacol 2021; 12:707491. [PMID: 34489700 PMCID: PMC8418122 DOI: 10.3389/fphar.2021.707491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary fibrosis is a fatal chronic progressive respiratory disease, characterized by continuous scarring of the lung parenchyma, leading to respiratory failure and death. The incidence of PF has increased over time. There are drugs, yet, there are some limitations. Hence, it is of importance to find new therapies and new drugs to replace the treatment of pulmonary fibrosis. In recent years, there have been a great number of research reports on the treatment of traditional Chinese medicine polysaccharides in various system fields. Among them, the treatment of PF has also gained extensive attention. This review summarized the source of polysaccharides, the drug activity of traditional Chinese medicine, and the protective effects on targets of Pulmonary fibrosis. We hope it can inspire researchers to design and develop polysaccharides, serving as a reference for potential clinical therapeutic drugs.
Collapse
Affiliation(s)
- Xianbo Wu
- School of Sports Medicine and Health, Chegdu Sport University, Chengdu, China
| | - Jianli Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yihua Xu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chegdu Sport University, Chengdu, China
| | - Minghan Sun
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
34
|
Qi H, Zhang Z, Liu J, Chen Z, Huang Q, Li J, Chen J, Wang M, Zhao D, Wang Z, Li X. Comparisons of Isolation Methods, Structural Features, and Bioactivities of the Polysaccharides from Three Common Panax Species: A Review of Recent Progress. Molecules 2021; 26:4997. [PMID: 34443587 PMCID: PMC8400370 DOI: 10.3390/molecules26164997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 12/27/2022] Open
Abstract
Panax spp. (Araliaceae family) are widely used medicinal plants and they mainly include Panax ginseng C.A. Meyer, Panax quinquefolium L. (American ginseng), and Panax notoginseng (notoginseng). Polysaccharides are the main active ingredients in these plants and have demonstrated diverse pharmacological functions, but comparisons of isolation methods, structural features, and bioactivities of these polysaccharides have not yet been reported. This review summarizes recent advances associated with 112 polysaccharides from ginseng, 25 polysaccharides from American ginseng, and 36 polysaccharides from notoginseng and it compares the differences in extraction, purification, structural features, and bioactivities. Most studies focus on ginseng polysaccharides and comparisons are typically made with the polysaccharides from American ginseng and notoginseng. For the extraction, purification, and structural analysis, the processes are similar for the polysaccharides from the three Panax species. Previous studies determined that 55 polysaccharides from ginseng, 18 polysaccharides from American ginseng, and 9 polysaccharides from notoginseng exhibited anti-tumor activity, immunoregulatory effects, anti-oxidant activity, and other pharmacological functions, which are mediated by multiple signaling pathways, including mitogen-activated protein kinase, nuclear factor kappa B, or redox balance pathways. This review can provide new insights into the similarities and differences among the polysaccharides from the three Panax species, which can facilitate and guide further studies to explore the medicinal properties of the Araliaceae family used in traditional Chinese medicine.
Collapse
Affiliation(s)
- Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China; (Z.Z.); (M.W.)
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jiaqi Liu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Zhaoqiang Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China; (Z.Z.); (M.W.)
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Mingxing Wang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China; (Z.Z.); (M.W.)
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Zeyu Wang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| |
Collapse
|
35
|
Zhao XY, Zhang F, Pan W, Yang YF, Jiang XY. Clinical potentials of ginseng polysaccharide for treating gestational diabetes mellitus. World J Clin Cases 2021; 9:4959-4979. [PMID: 34307546 PMCID: PMC8283579 DOI: 10.12998/wjcc.v9.i19.4959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is the most common glucose metabolism complication or cause of potential impaired glucose tolerance that can occur either before or during pregnancy and lactation. The prevalence of GDM and its related complications in young women is increasing, and this condition may cause serious outcomes and health hazards to the foetus. However, traditional oral hypoglycaemic drugs have potential safety hazards; therefore, it is urgent to develop new, safe, effective, and easily administered agents and remedies. Ginseng polysaccharide (GPS), which is isolated from Panax (P.) ginseng C. A. Meyer, exhibits notably promising biological activities and effects; specifically, it has been shown to lower blood glucose with mild, safe, and nontoxic characteristics, and it can also improve human bodily functions. Hence, we hypothesise that GPS might be used as an additional therapy and candidate agent for treating GDM. This review innovatively summarizes the available reports and evidence from basic studies to analyze the potential for and feasibility of using GPS as a new therapeutic agent for treating GDM. Additionally, for the first time, this review provides a rationale for the use of GPS. Our summarized results show that GPS may be developed as a novel antidiabetic drug and a remedy for use in preventing and treating GDM, with great application prospects.
Collapse
Affiliation(s)
- Xuan-Yin Zhao
- First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, Guizhou Province, China
| | - Fang Zhang
- First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, Guizhou Province, China
| | - Wei Pan
- Maternal and Child Health Hospital of Guiyang, Guiyang 550002, Guizhou Province, China
| | - Yi-Fang Yang
- First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, Guizhou Province, China
| | - Xiao-Ya Jiang
- First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, Guizhou Province, China
| |
Collapse
|
36
|
Akhter KF, Mumin MA, Lui EMK, Charpentier PA. Transdermal nanotherapeutics: Panax quinquefolium polysaccharide nanoparticles attenuate UVB-induced skin cancer. Int J Biol Macromol 2021; 181:221-231. [PMID: 33774070 DOI: 10.1016/j.ijbiomac.2021.03.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Ultraviolet (UV) radiation is known to cause an imbalance of the endogenous antioxidant system leading to an increase in skin cancer. Panax quinquefolium (American ginseng) polysaccharides (GPS) can inhibit such an imbalance due to its anti-oxidative and anti-inflammatory properties. The aim of this study was to investigate the therapeutic effects of topical formulations containing GPS nanoparticles (NPs) to inhibit UVB induced oxidative damage and skin cancer. Photoaging was conducted under UVB irradiation with a dose of 300 mJ/cm2 on SKH1 hairless mice. The treatment groups (n = 5) were as follows: sham control, native GPS, GPS NPs and fluorescent labeled GPS NPs. To compare the photoprotective performance, the topical formulations were applied before and after UVB induction (pre-treatment and post-treatment), followed by sacrificing the animals. Then, skin and blood samples were collected, and inflammatory cytokines production was measured using ELISA. Compared to the sham control, GPS NPs pre-treated mice skin and blood samples exhibited a significant lowering in all cytokine production. In addition, skin histology analysis showed that pre-treatment of GPS NPs prevented epidermal damage and proliferation. The results support that topical formulation containing GPS NPs can inhibit UVB induced oxidative damage and skin cancer.
Collapse
Affiliation(s)
- Kazi Farida Akhter
- Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada; Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Md Abdul Mumin
- Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Edmund M K Lui
- Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Paul A Charpentier
- Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada; Biomedical Engineering, University of Western Ontario, London, Ontario N6A 3K7, Canada.
| |
Collapse
|
37
|
Xia S, Zhai Y, Wang X, Fan Q, Dong X, Chen M, Han T. Phosphorylation of polysaccharides: A review on the synthesis and bioactivities. Int J Biol Macromol 2021; 184:946-954. [PMID: 34182000 DOI: 10.1016/j.ijbiomac.2021.06.149] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022]
Abstract
Polysaccharides are macromolecules obtained from a wide range of sources and are known to have diverse biological activities. The biological activities of polysaccharides depend on their structure and physicochemical properties, including water solubility, monosaccharide composition, degree of branching, molecular structure, and molecular weight. Phosphorylation is a commonly used chemical modification method that improves the physicochemical properties of native polysaccharides, thus enhancing their biological activity, or even imparting novel biological activity. Therefore, phosphorylated polysaccharides have attracted increasing attention owing to their antioxidant, antitumor, antiviral, immunomodulatory, and hepatoprotective effects. In this review, we have discussed recent advances in the phosphorylation of polysaccharides, and the methods used for phosphorylation, structural characterization, and determination of biological activities, to provide a theoretical basis for the use of polysaccharides. The structure-activity relationship of phosphorylated polysaccharides and their use in the food and pharmaceutical industries needs to be further studied.
Collapse
Affiliation(s)
- Shunli Xia
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Yongcong Zhai
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Xue Wang
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Qirui Fan
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Xiaoyi Dong
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Mei Chen
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Tao Han
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China; Key Laboratory of Pharmacology and Toxicology of Traditional Chinese Medicine of Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
38
|
Liu J, Nile SH, Xu G, Wang Y, Kai G. Systematic exploration of Astragalus membranaceus and Panax ginseng as immune regulators: Insights from the comparative biological and computational analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153077. [PMID: 31477352 DOI: 10.1016/j.phymed.2019.153077] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/18/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Immune system plays a decisive role for defending various pathogenic microorganisms. Astragalus membranaceus (AM) and Panax ginseng (PG) are two tonic herbs used in traditional Chinese medicine (TCM) as immune booster and help to control diseases with their healthy synergistic effect on immune system. PURPOSE This study was aimed to investigate the promote effect and molecular mechanisms of AM and PG on immune system as booster and to control the target diseases using animal and computational systematic study. METHODS Computational models including absorption, distribution, metabolism, and elimination (ADME) with weighted ensemble similarity (WES) algorithm-based models and ClueGo network analysis were used to find the potential bioactive compounds targets and pathways, which were responsible for immune regulation. Viscera index analysis, proliferation activity of splenic lymphocytes and cytotoxic activity of NK cells assays were performed to validate the effect of AM and PG on immune system of long-term administrated mice. Metabonomic study of mice plasma was conducted to investigate effect of AM and PG on the endogenous metabolic perturbations, together with correlation analysis. RESULTS AM and PG simultaneously showed the ability to strengthen the immune system function including enhancement of spleen and thymus index, proliferation of splenic lymphocytes and cytotoxic activity of NK cells. Besides, the different molecular mechanisms of AM and PG on immune regulation were also investigated by analyzing the potential bioactive compounds, enzymes actions and pathways. Quercetin, formononetin and kaempferol were the main immune-related compounds in AM, while ginsenoside Ra1, ginsenoside Rh1 and kaempferol in PG. About 10 target proteins were found close to immune regulation, including acetylcholinesterase (ACHE, common target in AM and PG), sphingosine kinase 1(SPHK1), cytidine deaminase (CDA), and Choline O-acetyltransferase (CHAT). Glycerophospholipid metabolism was regulated in both AM and PG groups. Pyrimidine metabolism and sphingolipid metabolism were considered as the special pathway in AM groups. Energy metabolism and glycerolipid metabolism were the special pathways in PG groups. CONCLUSION A novel comprehensive molecular mechanism analysis method was established and applied to clarify the scientific connotation of AM and PG as immune regulation, with similar herbal tonic effect provided in clinical practice of TCM, which can provide a new line of research for drug development (immune booster) using AM and PG.
Collapse
Affiliation(s)
- Junqiu Liu
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Guoliang Xu
- Research Center for Differentiation and Development of Basic Theory of TCM, University of Jiangxi TCM, Nanchang, PR China
| | - Yuesheng Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China.
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
39
|
Wang N, Wang X, He M, Zheng W, Qi D, Zhang Y, Han CC. Ginseng polysaccharides: A potential neuroprotective agent. J Ginseng Res 2021; 45:211-217. [PMID: 33841001 PMCID: PMC8020291 DOI: 10.1016/j.jgr.2020.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/30/2020] [Accepted: 09/05/2020] [Indexed: 12/26/2022] Open
Abstract
The treatments of nervous system diseases (NSDs) have long been difficult issues for researchers because of their complexity of pathogenesis. With the advent of aging society, searching for effective treatments of NSDs has become a hot topic. Ginseng polysaccharides (GP), as the main biologically active substance in ginseng, has various biological properties in immune-regulation, anti-oxidant, anti-inflammation and etc. Considering the association between the effects of GP and the pathogenesis of neurological disorders, many related experiments have been conducted in recent years. In this paper, we reviewed previous studies about the effects and mechanisms of GP on diseases related to nervous system. We found GP play an ameliorative role on NSDs through the regulation of immune system, inflammatory response, oxidative damage and signaling pathway. Structure-activity relationship was also discussed and summarized. In addition, we provided new insights into GP as promising neuroprotective agent for its further development and utilization.
Collapse
Key Words
- AG, Arabinogalactan
- BBB, Blood–brain barrier
- BDNF, Brain-derived neurotrophic factor
- GP, Ginseng polysaccharides
- Ginseng
- HG, Homogalacturonan
- IFN-γ, Interferon-γ
- IL-17α, Interleukin-17 α
- MS, Multiple sclerosis
- Molecular mechanism
- NSDs, Nervous system diseases
- Nervous system
- Polysaccharides
- RG, Rhamnogalacturonan
- TNF-α, tumor necrosis factor-α
Collapse
Affiliation(s)
- Na Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Xianlei Wang
- National Oceanographic Center, Qingdao, 88 Xuzhou Road, Qingdao, Shandong, 266071, People’s Republic of China
| | - Mengjiao He
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Wenxiu Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Dongmei Qi
- Experimental center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Yongqing Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Chun-chao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| |
Collapse
|
40
|
Soheili M, Karimian M, Hamidi G, Salami M. Alzheimer's disease treatment: The share of herbal medicines. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:123-135. [PMID: 33953850 PMCID: PMC8061323 DOI: 10.22038/ijbms.2020.50536.11512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/07/2020] [Indexed: 11/25/2022]
Abstract
One of the most frequent forms of dementia in neurological disorders is Alzheimer's disease (AD). It is a chronic neurodegenerative disease characterized by impaired learning and memory. Pathological symptoms as extracellular amyloid-beta (Aβ) plaques and intracellular accumulation of neurofibrillary tangles occur in AD. Due to the aging of the population and increased prevalence of AD, discovery of new therapeutic agents with the highest effectiveness and fewer side effect seems to be necessary. Numerous synthetic medicines such as tacrine, donepezil, galantamine, rivastigmine, memantine, glutathione, ascorbic acid, ubiquinone, ibuprofen, and ladostigil are routinely used for reduction of the symptoms and prevention of disease progression. Nowadays, herbal medicines have attracted popular attention for numerous beneficial effects with little side effects. Lavandula angustifolia, Ginkgo biloba, Melissa officinalis, Crocus sativus, Ginseng, Salvia miltiorrhiza, and Magnolia officinalis have been widely used for relief of symptoms of some neurological disorders. This paper reviews the therapeutic effects of phytomedicines with prominent effects against various factors implicated in the emergence and progression of AD.
Collapse
Affiliation(s)
- Masoud Soheili
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Gholamali Hamidi
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
41
|
Guo M, Shao S, Wang D, Zhao D, Wang M. Recent progress in polysaccharides from Panax ginseng C. A. Meyer. Food Funct 2020; 12:494-518. [PMID: 33331377 DOI: 10.1039/d0fo01896a] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Panax ginseng C. A. Meyer (P. ginseng) has a long history of medicinal use and can treat a variety of diseases. P. ginseng contains a variety of active ingredients, such as saponins, polypeptides, volatile oils, and polysaccharides. Among them, saponins have always been considered as the main components responsible for its pharmacological activities. However, more and more studies have shown that polysaccharides play an indispensable role in the medicinal value of ginseng. Modern biological and medical studies have found that ginseng polysaccharides have complex structural characteristics and diverse biological activities, such as immune regulation, anti-tumor, antioxidant, hypoglycemic, and anti-radiation functions, among others. Additionally, the structural characteristics of ginseng polysaccharides are closely related to their activity. In this review, the research background, extraction, purification, structural characteristics, and biological activities of ginseng polysaccharides from different parts of P. ginseng (roots, flowers stems and leaves, and berries) under different growth conditions (artificially cultivated ginseng, mountain ginseng, and wild ginseng) are summarized. The structural characteristics of purified polysaccharides were reviewed. Meanwhile, their biological activities were introduced, and some possible mechanisms were listed. Furthermore, the structure-activity relationship of polysaccharides was discussed. Some research perspectives for the study of ginseng polysaccharides were also provided.
Collapse
Affiliation(s)
- Mingkun Guo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | | | | | | | | |
Collapse
|
42
|
Zhang C, Li CX, Shao Q, Chen WB, Ma L, Xu WH, Li YX, Huang SC, Ma YB. Effects of Glycyrrhiza polysaccharide in diet on growth performance, serum antioxidant capacity, and biochemistry of broilers. Poult Sci 2020; 100:100927. [PMID: 33518321 PMCID: PMC7936193 DOI: 10.1016/j.psj.2020.12.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
In the present study, we analyzed the effects of Glycyrrhiza polysaccharide (GCP) on growth performance, serum antioxidant capacity, and biochemistry of broilers. A total of 600, one-day-old AA broilers randomly divided into 5 treatment groups with 6 replicate pens of 20 birds per cage received dietary supplementation with GCP (0, 200, 500, 1,000, and 1,500 mg/kg) for 42 d. The supplementation of GCP linearly decreased (P < 0.05) feed conversion rate on day 22 to 42. Dietary supplementation with GCP reduced (P < 0.05) serum total cholesterol on day 21 and 42 and linearly improved (P < 0.05) albumin and high-density lipoprotein cholesterol. Dietary supplementation with 1,000 or 1,500 mg/kg GCP significantly increased (P < 0.05) serum total superoxide dismutase (T-SOD) activity on day 21 and 42 and reduced (P < 0.05) serum malondialdehyde content on 21 d. Dietary supplementation with 1,000 or 1,500 mg/kg GCP significantly improved (P < 0.05) interleukin-1β (IL-1β) and interferon-γ (IFN-γ) expressions in liver on day 21 and 42. At the end of the experiment, we randomly selected 20 broilers from 3 treatment groups (0, 1,000, and 1,500 mg/kg), respectively, to perform an lipopolysaccharide (LPS)-induced acute stress experiment. The 60 broilers were divided into 6 treatment groups with 10 birds per cage. The experiment was designed as a 3 × 2 factorial arrangement with GCP (0, 1,000, or 1,500 mg/kg) and LPS (injection of saline or 1 mg/kg body weight) levels as treatments. When the grouping was finished, the broilers were immediately intraperitoneally injected with LPS or normal saline. Six hours after challenged, serum antioxidant and liver immunity were analyzed. The results showed that dietary GCP prevented LPS-induced reductions in T-SOD activity and increases in malonaldehyde content (P < 0.05). Also, dietary GCP supplementation mitigated the LPS-induced increase in IL-1β and IFN-γ in the liver. Supplementation with 1,500 mg/kg GCP showed the most optimal effect in broilers. GCP has the potential to be used as feed additive in broilers.
Collapse
Affiliation(s)
- C Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, PR China.
| | - C X Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Q Shao
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, PR China
| | - W B Chen
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, PR China
| | - L Ma
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, PR China
| | - W H Xu
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Y X Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, PR China
| | - S C Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Y B Ma
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, PR China
| |
Collapse
|
43
|
Mailahn DH, Iarocz LEB, Nobre PC, Perin G, Sinott A, Pesarico AP, Birmann PT, Savegnago L, Silva MS. A greener protocol for the synthesis of phosphorochalcogenoates: Antioxidant and free radical scavenging activities. Eur J Med Chem 2020; 213:113052. [PMID: 33272781 DOI: 10.1016/j.ejmech.2020.113052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 10/22/2022]
Abstract
In this contribution, a metal- and base-free protocol has been developed for the synthesis of phosphorochalcogenoates (Se and Te) by using DMSO as solvent at 50 °C. A variety of phosphorochalcogenoates were prepared from diorganyl dichalcogenides and H-phosphonates, leading to the formation of a Chal-P(O) bond, in a rapid procedure with good to excellent yields. A full structural elucidation of products was accessed by 1D and 2D NMR, IR, CGMS, and HRMS analyses, and a stability evaluation of the phosphorochalcogenoates was performed for an effective operational description of this simple and feasible method. Typical 77Se{1H} (δSe = 866.0 ppm), 125Te{1H} (δTe = 422.0 ppm) and 31P{1H} (δP = -1.0, -13.0 and -15.0 ppm) NMR chemical shifts were imperative to confirm the byproducts, in which this stability study was also important to select some products for pharmacological screening. The phosphorochalcogenoates were screened in vitro and ex vivo tests for the antioxidant potential and free radical scavenging activity, as well as to investigation toxicity in mice through of the plasma levels of markers of renal and hepatic damage. The pharmacological screening of phosphorochalcogenoates indicated that compounds have antioxidant propriety in different assays and not changes plasma levels of markers of renal and hepatic damage, with excision of 3g compound that increased plasma creatinine levels and decreased plasma urea levels when compared to control group in the blood mice. Thus, these compounds can be promising synthetic antioxidants that provide protection against oxidative diseases.
Collapse
Affiliation(s)
- Daniela H Mailahn
- LASOL - CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Lucas E B Iarocz
- LASOL - CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Patrick C Nobre
- LASOL - CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Gelson Perin
- LASOL - CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Airton Sinott
- Programa de Pós-Graduação Em Biotecnologia, Grupo de Pesquisa Em Neurobiotecnologia, Centro de Biotecnologia, Universidade Federal de Pelotas, RS, Brazil
| | - Ana Paula Pesarico
- Programa de Pós-Graduação Em Biotecnologia, Grupo de Pesquisa Em Neurobiotecnologia, Centro de Biotecnologia, Universidade Federal de Pelotas, RS, Brazil
| | - Paloma T Birmann
- Programa de Pós-Graduação Em Biotecnologia, Grupo de Pesquisa Em Neurobiotecnologia, Centro de Biotecnologia, Universidade Federal de Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Programa de Pós-Graduação Em Biotecnologia, Grupo de Pesquisa Em Neurobiotecnologia, Centro de Biotecnologia, Universidade Federal de Pelotas, RS, Brazil.
| | - Márcio S Silva
- LASOL - CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|
44
|
Zhang Y, Li X, Yang Q, Zhang C, Song X, Wang W, Jia L, Zhang J. Antioxidation, anti-hyperlipidaemia and hepatoprotection of polysaccharides from Auricularia auricular residue. Chem Biol Interact 2020; 333:109323. [PMID: 33212049 DOI: 10.1016/j.cbi.2020.109323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/30/2020] [Accepted: 11/12/2020] [Indexed: 11/15/2022]
Abstract
As hyperlipidemia was a pathological progress by lipid dysfunctions, the present object was to investigate the hypolipidemic and hepatoprotective effects of Auricularia auricular residue polysaccharides (RPS) against HFE (high-fat emulsion) toxicities in mice. The structure analysis showed that the RPS was pyranose-polysaccharides mainly composed of glucose with the weight-average molecular weight of 2.00 × 105 Da. The in vivo experiments demonstrated that the RPS had potential hepatoprotections by enhancing the antioxidant and anti-hyperlipidaemia status, and could inhibit the increasing body weights. Besides, the RPS could improve the glucose utilization with the oral glucose tolerance test (120 min) of 5.04 ± 0.12 mmol/L at the dose of 400 mg/kg bw. The results in present study demonstrated that RPS could be used as a functional foods and natural medicines against the HFE-induced hyperlipidemia and its complications.
Collapse
Affiliation(s)
- Yiwen Zhang
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, PR China
| | - XuePing Li
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Qihang Yang
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Chen Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Tai'an, 271018, PR China
| | - Xinling Song
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Wenshuai Wang
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, PR China.
| |
Collapse
|
45
|
Wan X, Guo H, Liang Y, Zhou C, Liu Z, Li K, Niu F, Zhai X, Wang L. The physiological functions and pharmaceutical applications of inulin: A review. Carbohydr Polym 2020; 246:116589. [PMID: 32747248 DOI: 10.1016/j.carbpol.2020.116589] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
Inulin (IN), a fructan-type plant polysaccharide, is widely found in nature. The major plant sources of IN include chicory, Jerusalem artichoke, dahlia etc. Studies have found that IN possessed a wide array of biological activities, e.g. as a prebiotic to improve the intestinal microbe environment, regulating blood sugar, regulating blood lipids, antioxidant, anticancer, immune regulation and so on. Currently, IN is widely used in the food and pharmaceutical industries. IN can be used as thickener, fat replacer, sweetener and water retaining agent in the food industry. IN also can be applied in the pharmaceutics as stabilizer, drug carrier, and auxiliary therapeutic agent for certain diseases such as constipation and diabetes. This paper reviews the physiological functions of IN and its applications in the field of pharmaceutics, analyzes its present research status and future research direction. This review will serve as a one-in-all resource for the researchers who are interested to work on IN.
Collapse
Affiliation(s)
- Xinhuan Wan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hao Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiyu Liang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changzheng Zhou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zihao Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kunwei Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengju Niu
- Shandong Institute of Traditional Chinese Medicine, Ji'nan, China
| | - Xin Zhai
- Department of Ecology and Evolution, University of Chicago, Chicago, USA
| | - Lizhu Wang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
46
|
Ren Y, Ai J, Liu X, Liang S, Zheng Y, Deng X, Li Y, Wang J, Deng X, Chen LL. Anticoagulant active ingredients identification of total saponin extraction of different Panax medicinal plants based on grey relational analysis combined with UPLC-MS and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:112955. [PMID: 32422355 DOI: 10.1016/j.jep.2020.112955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/28/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional use, Panax medicinal plants (ginseng, red ginseng, notoginseng, Panax japonicus, and Panacis majoris rhizoma) have different bioactivities from each other, even under different dosages, but their chemical compositions are very similar; so the question is, what is the primary effective substance induced the different efficacy, and how to identify them from a group of chemical constituents? AIM OF THE STUDY The goal of this research was to provide a strategy to determine the effective substance in Panax genus medicinal plants responsible for the anticoagulant response. MATERIALS AND METHODS This research used ultra-high performance liquid chromatography coupled with mass spectrometry (UPLC-MS) to analyze the saponin chemical compositions of different concentration ethanol extraction of notoginseng and the ginseng genus medical plant 75% ethanol extraction (Panax ginseng, red ginseng, Panax japonicus, Panacis majoris rhizome), and used four coagulation factors (PT, TT, APTT, Fib) to evaluate the anticoagulant activity of the extracts. Grey correlation analysis was applied to establish the spectral effect relationship and give the anticoagulant potency of different saponins. Network pharmacology and molecular docking were adopted to clarify and verify the possible mechanisms of anticoagulant action. RESULTS The results showed that the blood physiological regulation activities of Panax medicinal plants were different according to the solvent concentration, processing, species and dosage. Overall, the most suitable solvent for extraction of SQ was 75% ethanol; At low dosage (10-100 mg/mL), the anticoagulant effect of Panax medical plants was: ZJS > ZZS > SQ > RS > HS, and at high doses (100-1000 mg/mL) was: SQ > ZJS > ZZS > RS > HS. GRA and molecular docking results showed the contribution of some components (NG-R2, NG-Fc/G-Ra1/G-Ra2, G-Rc, G-Rk3, and G-Rh4) to the whole anticoagulant activity of the drug were increased, while the effect of CS-IVa was just decreased with the increase of dosage; the anticoagulant effect of G-Rg3 (the main anticoagulant component) is mainly related to the targets F2, AR, RHO, ACR, MB, GZMB, B2M, CA2, CAT, and PAPOLA. CONCLUSION This study determined the effective substance of anti-coagulation of ginseng genus herbal medicines and the regulation of different anticoagulant effects of TCM by changing various influencing conditions, including processing method, extraction method, and dose. It also provided an effective strategy for effective substances identification of multicomponent, multifunction, and multipurpose herbal medicine.
Collapse
Affiliation(s)
- Yongshen Ren
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, PR China.
| | - Jiao Ai
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, PR China.
| | - Xinqiao Liu
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, PR China.
| | - Shuai Liang
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, PR China.
| | - Yao Zheng
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, PR China.
| | - Xin Deng
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, PR China.
| | - Yan Li
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, PR China.
| | - Jing Wang
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, PR China.
| | - Xukun Deng
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, PR China.
| | - Lin-Lin Chen
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| |
Collapse
|
47
|
Karmazyn M, Gan XT. Chemical components of ginseng, their biotransformation products and their potential as treatment of hypertension. Mol Cell Biochem 2020; 476:333-347. [PMID: 32940821 DOI: 10.1007/s11010-020-03910-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
Ginseng is an ancient perennial herb belonging to the family Araliaceae and genus Panax which has been used for medical therapeutics for thousands of years, particularly in China and other Asian cultures although increasing interest in ginseng has recently emerged in western societies. Ginseng is a complex substance containing dozens of bioactive and potentially effective therapeutic compounds. Among the most studied are the ginsenosides, which are triterpene saponins possessing a wide array of potential therapeutic effects for many conditions. The quantity and type of ginsenoside vary greatly depending on ginseng species and their relative quantity in a given ginseng species is greatly affected by extraction processes as well as by subjecting ginseng to various procedures such as heating. Adding to the complexity of ginsenosides is their ability to undergo biotransformation to bioactive metabolites such as compound K by enteric bacteria following ingestion. Many ginsenosides exert vasodilatating effects making them potential candidates for the treatment of hypertension. Their vascular effects are likely dependent on eNOS activation resulting in the increased production of NO. One proposed end-mechanism involves the activation of calcium-activated potassium channels in vascular smooth cells resulting in reduced calcium influx and a vasodilatating effect, although other mechanisms have been proposed as discussed in this review.
Collapse
|
48
|
Network Pharmacology to Uncover the Biological Basis of Spleen Qi Deficiency Syndrome and Herbal Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2974268. [PMID: 32908629 PMCID: PMC7474375 DOI: 10.1155/2020/2974268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
Spleen qi deficiency (SQD) syndrome is one of the basic traditional Chinese medicine (TCM) syndromes related to various diseases including chronic inflammation and hypertension and guides the use of many herbal formulae. However, the biological basis of SQD syndrome has not been clearly elucidated due to the lack of appropriate methodologies. Here, we propose a network pharmacology strategy integrating computational, clinical, and experimental investigation to study the biological basis of SQD syndrome. From computational aspects, we used a powerful disease gene prediction algorithm to predict the SQD syndrome biomolecular network which is significantly enriched in biological functions including immune regulation, oxidative stress, and lipid metabolism. From clinical aspects, SQD syndrome is involved in both the local and holistic disorders, that is, the digestive diseases and the whole body's dysfunctions. We, respectively, investigate SQD syndrome-related digestive diseases including chronic gastritis and irritable bowel syndrome and the whole body's dysfunctions such as chronic fatigue syndrome and hypertension. We found innate immune and oxidative stress modules of SQD syndrome biomolecular network dysfunction in chronic gastritis patients and irritable bowel syndrome patients. Lymphocyte modules were downregulated in chronic fatigue syndrome patients and hypertension patients. From experimental aspects, network pharmacology analysis suggested that targets of Radix Astragali and other four herbs commonly used for SQD syndrome are significantly enriched in the SQD syndrome biomolecular network. Experiments further validated that Radix Astragali ingredients promoted immune modules such as macrophage proliferation and lymphocyte proliferation. These findings indicate that the biological basis of SQD syndrome is closely related to insufficient immune response including decreased macrophage activity and reduced lymphocyte proliferation. This study not only demonstrates the potential biological basis of SQD syndrome but also provides a novel strategy for exploring relevant molecular mechanisms of disease-syndrome-herb from the network pharmacology perspective.
Collapse
|
49
|
Hu Z, Zhou H, Zhao J, Sun J, Li M, Sun X. Microwave-assisted extraction, characterization and immunomodulatory activity on RAW264.7 cells of polysaccharides from Trichosanthes kirilowii Maxim seeds. Int J Biol Macromol 2020; 164:2861-2872. [PMID: 32810537 PMCID: PMC7428752 DOI: 10.1016/j.ijbiomac.2020.08.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 01/15/2023]
Abstract
Microwave-assisted extraction of polysaccharides from Trichosanthes kirilowii Maxim seeds (TKMSP) was optimized using Response surface methodology (RSM) base on Central composite design (CCD). The optimum extraction conditions are detailed as follows: liquid-solid ratio 42 mL/g, extraction temperature 80 °C, microwave power 570 W, extraction time 26 min. Under this conditions, the mean value of TKMSP yield 2.43 ± 0.45% (n = 3), which was consistent closely with the predicted value (2.44%). The five polysaccharides (TKMSP-1, TKMSP-2, TKMSP-3, TKMSP-4 and TKMSP-5) were isolated from TKMSP by DEAE-52. TKMSP-1, TKMSP-2 and TKMSP-4 were common in containing Man, Rib, Rha, GluA, GalA, Glu, Gal, Xyl, Arab and Fuc. However, there was no Fuc in TKMSP-3, while TKMSP-5 lacked GluA, GalA and Fuc. UV–vis and FT-IR analysis combined with molecular weight determination further indicated that the five fractions were polydisperse polysaccharides. A significant difference was achieved in the structural characterization of these five fractions. TKMSP exhibited immunosuppressive activity on RAW264.7 cells. It can be applied as a potential immunosuppressant agent in medicine. Microwave-assisted extraction of TKMSP optimized by RSM base on CCD. The five polydisperse polysaccharides were isolated from TKMSP. The structure characterizations of the five polysaccharides were analyzed. TKMSP-3 exhibited significant inhibition of RAW264.7 proliferation.
Collapse
Affiliation(s)
- Zhengyu Hu
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China; College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Hongli Zhou
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China; Engineering Research Center for Agricultural Resources and Comprehensive Utilization of Jilin Provence, Jilin Institute of Chemical Technology, Jilin 132022, China.
| | - JingLi Zhao
- Institution of Pharmaceutical and Environmental Technology, Jilin Vocational College of Industry and Technology, Jilin 132013, China
| | - JiaQi Sun
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China; Engineering Research Center for Agricultural Resources and Comprehensive Utilization of Jilin Provence, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Mei Li
- Jilin Cancer Hospital, Huguang Road 1018, Chaoyang District, Changchun 130012, China.
| | - Xinshun Sun
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| |
Collapse
|
50
|
Wang R, Liang X, Long Z, Wang X, Yang L, Lu B, Gao J. An LCI-like protein APC 2 protects ginseng root from Fusarium solani infection. J Appl Microbiol 2020; 130:165-178. [PMID: 32639629 DOI: 10.1111/jam.14771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 11/29/2022]
Abstract
AIMS We aimed to purify an antimicrobial protein from Bacillus amyloliquefaciens FS6 culture supernatant, verify its antimicrobial activity against Fusarium solani and evaluate its biocontrol potential for ginseng root rot. METHODS AND RESULTS The antimicrobial protein was purified from FS6 culture supernatant using ammonium sulphate precipitation, anion exchange and gel chromatography. Based on mass spectrometry results, the purified protein was identified as an antimicrobial protein of the LCI family and was designated APC2 . The APC2 recombinant protein expressed in Escherichia coli (BL21) significantly inhibited F. solani and decreased the infection and spread of F. solani in ginseng root. An overexpressing APC2 strain FS6-APC2 was constructed and shown to have enhanced antimicrobial activity compared to the wild-type strain FS6. CONCLUSIONS The APC2 protein shows strong antimicrobial activity against F. solani, reduces the incidence and severity of ginseng root rot caused by F. solani and exhibits a great biocontrol potential. SIGNIFICANCE AND IMPACT OF THE STUDY This study reports the inhibitory activity of APC2 protein (LCI family) against F. solani and its protective efficacy on ginseng root rot. These findings provide a scientific basis for future research on the biocontrol mechanism, as well as the development and application of FS6.
Collapse
Affiliation(s)
- R Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, China
| | - X Liang
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, China
| | - Z Long
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, China
| | - X Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, China
| | - L Yang
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, China
| | - B Lu
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, China
| | - J Gao
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|