1
|
Lai Y, Yang X, Wei D, Wang X, Sun R, Li Y, Ji P, Bao Y, Chu T, Zhang C, Liang Q, Xu J, Zhang X, Chen Y, Wang Y. BCG-trained macrophages couple LDLR upregulation to type I IFN responses and antiviral immunity. Cell Rep 2025; 44:115493. [PMID: 40178982 DOI: 10.1016/j.celrep.2025.115493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/08/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
Trained immunity refers to memory-like responses of innate immune cells when they re-encounter pathogenic stimuli. Bacillus Calmette-Guérin (BCG) vaccination implies enhanced antiviral immunity, whereas the underlying mechanisms remain unclear. Herein, we have uncovered elevated expression of low-density lipoprotein receptor (LDLR) on BCG-trained macrophages with robust type I interferon (IFNI) production and antiviral effects both in vivo and in vitro. Consequently, cholesterol is accumulated in BCG-trained macrophages, leading to the augmentation of NFE2L1 expression and the formation of NFE2L1/IRAK1/TRIM25 complex where TRIM25 mediates IRAK1 K63 polyubiquitination to exaggerate IFNI responses in an RIG-I-dependent manner. We have also observed LDLR+ macrophages displaying heightened IFNI responses in BCG-treated human macrophages. To antagonize LDLR degradation by PCSK9 inhibitors increases IFNI responses in the macrophages and accelerated viral clearance. Our study thus couples LDLR upregulation to antiviral activity in BCG-trained macrophages, making commercial PCSK9 inhibitors potential antiviral indications in clinic.
Collapse
Affiliation(s)
- Yangdian Lai
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxu Yang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Wei
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruiming Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunfei Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Ji
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Bao
- Department of Infectious Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiancheng Chu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxing Zhang
- Department of Nephrology, Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiming Liang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xu
- Department of Infectious Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxin Zhang
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Wang S, Yan J, Song M, Xue Z, Wang Z, Diao R, Liu Q, Ruan Q, Yao C. Development of a nomogram for high antibody titre of COVID-19 convalescent plasma. Epidemiol Infect 2024; 152:e167. [PMID: 39659202 PMCID: PMC11696598 DOI: 10.1017/s0950268824001638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
This study aimed to develop a predictive tool for identifying individuals with high antibody titers crucial for recruiting COVID-19 convalescent plasma (CCP) donors and to assess the quality and storage changes of CCP. A convenience sample of 110 plasma donors was recruited, of which 75 met the study criteria. Using univariate logistic regression and random forest, 6 significant factors were identified, leading to the development of a nomogram. Receiver operating characteristic curves, calibration plots, and decision curve analysis (DCA) evaluated the nomogram's discrimination, calibration, and clinical utility. The nomogram indicated that females aged 18 to 26, blood type O, receiving 1 to 2 COVID-19 vaccine doses, experiencing 2 symptoms during infection, and donating plasma 41 to 150 days after symptom onset had higher likelihoods of high antibody titres. Nomogram's AUC was 0.853 with good calibration. DCA showed clinical benefit within 9% ~ 90% thresholds. CCP quality was qualified, with stable antibody titres over 6 months (P > 0.05). These findings highlight developing predictive tools to identify suitable CCP donors and emphasize the stability of CCP quality over time, suggesting its potential for long-term storage.
Collapse
Affiliation(s)
- Shichun Wang
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Jie Yan
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Min Song
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Zhenrui Xue
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Zerong Wang
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Ronghua Diao
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Qi Liu
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Qianying Ruan
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Chunyan Yao
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, P.R China
| |
Collapse
|
3
|
Shansky YD, Yanushevich OO, Gospodarik AV, Maev IV, Krikheli NI, Levchenko OV, Zaborovsky AV, Evdokimov VV, Solodov AA, Bely PA, Andreev DN, Serkina AN, Esiev SS, Komarova AV, Sokolov PS, Fomenko AK, Devkota MK, Tsaregorodtsev SV, Bespyatykh JA. Evaluation of serum and urine biomarkers for severe COVID-19. Front Med (Lausanne) 2024; 11:1357659. [PMID: 38510452 PMCID: PMC10951109 DOI: 10.3389/fmed.2024.1357659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction The new coronavirus disease, COVID-19, poses complex challenges exacerbated by several factors, with respiratory tissue lesions being notably significant among them. Consequently, there is a pressing need to identify informative biological markers that can indicate the severity of the disease. Several studies have highlighted the involvement of proteins such as APOA1, XPNPEP2, ORP150, CUBN, HCII, and CREB3L3 in these respiratory tissue lesions. However, there is a lack of information regarding antibodies to these proteins in the human body, which could potentially serve as valuable diagnostic markers for COVID-19. Simultaneously, it is relevant to select biological fluids that can be obtained without invasive procedures. Urine is one such fluid, but its effect on clinical laboratory analysis is not yet fully understood due to lack of study on its composition. Methods Methods used in this study are as follows: total serum protein analysis; ELISA on moderate and severe COVID-19 patients' serum and urine; bioinformatic methods: ROC analysis, PCA, SVM. Results and discussion The levels of antiAPOA1, antiXPNPEP2, antiORP150, antiCUBN, antiHCII, and antiCREB3L3 exhibit gradual fluctuations ranging from moderate to severe in both the serum and urine of COVID-19 patients. However, the diagnostic value of individual anti-protein antibodies is low, in both blood serum and urine. On the contrary, joint detection of these antibodies in patients' serum significantly increases the diagnostic value as demonstrated by the results of principal component analysis (PCA) and support vector machine (SVM). The non-linear regression model achieved an accuracy of 0.833. Furthermore, PCA aided in identifying serum protein markers that have the greatest impact on patient group discrimination. The study revealed that serum serves as a superior analyte for describing protein quantification due to its consistent composition and lack of organic salts and drug residues, which can otherwise affect protein stability.
Collapse
Affiliation(s)
- Yaroslav D. Shansky
- Laboratory of Molecular Medicine, Center of Molecular Medicine and Diagnostics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Oleg O. Yanushevich
- Federal State Budgetary Educational Institution of Higher Education "Russian University of Medicine" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alina V. Gospodarik
- Laboratory of Molecular Medicine, Center of Molecular Medicine and Diagnostics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Igor V. Maev
- Federal State Budgetary Educational Institution of Higher Education "Russian University of Medicine" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Natella I. Krikheli
- Federal State Budgetary Educational Institution of Higher Education "Russian University of Medicine" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Oleg V. Levchenko
- Federal State Budgetary Educational Institution of Higher Education "Russian University of Medicine" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrew V. Zaborovsky
- Federal State Budgetary Educational Institution of Higher Education "Russian University of Medicine" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir V. Evdokimov
- Federal State Budgetary Educational Institution of Higher Education "Russian University of Medicine" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander A. Solodov
- Federal State Budgetary Educational Institution of Higher Education "Russian University of Medicine" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Petr A. Bely
- Federal State Budgetary Educational Institution of Higher Education "Russian University of Medicine" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Dmitry N. Andreev
- Federal State Budgetary Educational Institution of Higher Education "Russian University of Medicine" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anna N. Serkina
- Laboratory of Molecular Medicine, Center of Molecular Medicine and Diagnostics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Sulejman S. Esiev
- Laboratory of Molecular Medicine, Center of Molecular Medicine and Diagnostics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Department of Expertise in Doping and Drug Control, Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Anastacia V. Komarova
- Laboratory of Molecular Medicine, Center of Molecular Medicine and Diagnostics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Department of Expertise in Doping and Drug Control, Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Philip S. Sokolov
- Federal State Budgetary Educational Institution of Higher Education "Russian University of Medicine" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Aleksei K. Fomenko
- Federal State Budgetary Educational Institution of Higher Education "Russian University of Medicine" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Mikhail K. Devkota
- Federal State Budgetary Educational Institution of Higher Education "Russian University of Medicine" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Sergei V. Tsaregorodtsev
- Federal State Budgetary Educational Institution of Higher Education "Russian University of Medicine" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Julia A. Bespyatykh
- Laboratory of Molecular Medicine, Center of Molecular Medicine and Diagnostics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Department of Expertise in Doping and Drug Control, Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| |
Collapse
|
4
|
Xu J, Chen J, Wen F, Liu K, Chen Y. Detection methods and dynamic characteristics of specific antibodies in patients with COVID-19: A review of the early literature. Heliyon 2024; 10:e24580. [PMID: 38317938 PMCID: PMC10839880 DOI: 10.1016/j.heliyon.2024.e24580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a global pandemic. Early and accurate diagnosis and quarantine remain the most effective mitigation strategy. Although reverse transcriptase polymerase chain reaction (RT-qPCR) is the gold standard for COVID-19 diagnosis, recent studies suggest that nucleic acids were undetectable in a significant number of cases with clinical features of COVID-19.Serological assays for SARS-CoV-2 play a role in diagnosis of COVID-19, in understanding viral epidemiology and screening convalescent sera for therapeutic and prophylactic purposes, to better understand the immune response to the virus, and to assess the degree and duration of the response of specific antibodies. In this article, we retrieved PubMed, Embase, China National Knowledge Infrastructure (CNKI) and WEB OF SCI databases for articles and reviews published before December 1, 2022. Using "IgM, IgG,IgA, neutralizing antibody, specific antibody,COVID-19, dynamic characteristics" as keywords, and comprehensively reviewed on their basis.According to the authors' criteria, only articles deemed relevant were included, covering original articles, case series, experimental studies, reviews, and case reports. Articles on performance evaluation, opinion pieces, and technical issues were excluded. From the onset of COVID-19 symptoms, the median time of seroconversion was 11 days for immunoglobulin A (IgA), the median time of peak antibody titer was 23 (16-30 days) for IgA.Immunoglobulin M (IgM) is detected prior to immunoglobulin G (IgG), peaking 2-5 weeks post symptom onset and detectable for a minimum of 8 weeks in the immunocompetent.Neutralizing antibodies were earliest detectable within 6-7 days following disease onset, with levels increasing until days 14-22 before levelling and then decreasing, but titres were lower in clinically mild disease. Different clinical types of patients showed different antibody responses to SARS-CoV-2, with severe COVID-19 patients > non-severe COVID-19 patients > asymptomatic infected persons, but no difference in the early stage of the disease. Usually, IgM and IgA antibodies are detectable earlier than IgG antibodies.IgA antibodys plays an important role in local mucosal immunity.Detection of IgM antibodies tends to indicate recent exposure to SARS-CoV-2, whereas the detection of COVID-19 IgG antibodies indicates virus exposure some time ago. The detection of potent neutralizing antibodies in convalescent plasma is important in the context of development of therapeutics and vaccines.With the emergence of immune escape variants of SARS-CoV-2, humoral immunity is being challenged, and a detailed understanding of Specific antibodies is critical to guide vaccine design strategies and antibody-mediated therapies.
Collapse
Affiliation(s)
- Jianteng Xu
- Department of Clinical Laboratory, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jianguo Chen
- Department of Clinical Laboratory, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fazhi Wen
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210029, China
| | - KangSheng Liu
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210029, China
| | - Yajun Chen
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210029, China
| |
Collapse
|
5
|
Pathakumari B, Marty PK, Shah M, Van Keulen VP, Erskine CL, Block MS, Arias-Sanchez P, Escalante P, Peikert T. Convalescent Adaptive Immunity Is Highly Heterogenous after SARS-CoV-2 Infection. J Clin Med 2023; 12:7136. [PMID: 38002748 PMCID: PMC10672050 DOI: 10.3390/jcm12227136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The optimal detection strategies for effective convalescent immunity after SARS-CoV-2 infection and vaccination remain unclear. The objective of this study was to characterize convalescent immunity targeting the SARS-CoV-2 spike protein using a multiparametric approach. At the beginning of the pandemic, we recruited 30 unvaccinated convalescent donors who had previously been infected with COVID-19 and 7 unexposed asymptomatic controls. Peripheral blood mononuclear cells (PBMCs) were obtained from leukapheresis cones. The humoral immune response was assessed by measuring serum anti-SARS-CoV-2 spike S1 subunit IgG via semiquantitative ELISA, and T-cell immunity against S1 and S2 subunits were studied via IFN-γ enzyme-linked immunosorbent spot (ELISpot) and flow cytometric (FC) activation-induced marker (AIM) assays and the assessment of cytotoxic CD8+ T-cell function (in the subset of HLA-A2-positive patients). No single immunoassay was sufficient in identifying anti-spike convalescent immunity among all patients. There was no consistent correlation between adaptive humoral and cellular anti-spike responses. Our data indicate that the magnitude of anti-spike convalescent humoral and cellular immunity is highly heterogeneous and highlights the need for using multiple assays to comprehensively measure SARS-CoV-2 convalescent immunity. These observations might have implications for COVID-19 surveillance, and the determination of optimal vaccination strategies for emerging variants. Further studies are needed to determine the optimal assessment of adaptive humoral and cellular immunity following SARS-CoV-2 infection, especially in the context of emerging variants and unclear vaccination schedules.
Collapse
Affiliation(s)
- Balaji Pathakumari
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (B.P.); (P.K.M.); (M.S.); (V.P.V.K.); (P.A.-S.); (P.E.)
| | - Paige K. Marty
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (B.P.); (P.K.M.); (M.S.); (V.P.V.K.); (P.A.-S.); (P.E.)
| | - Maleeha Shah
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (B.P.); (P.K.M.); (M.S.); (V.P.V.K.); (P.A.-S.); (P.E.)
| | - Virginia P. Van Keulen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (B.P.); (P.K.M.); (M.S.); (V.P.V.K.); (P.A.-S.); (P.E.)
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA; (C.L.E.); (M.S.B.)
| | - Courtney L. Erskine
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA; (C.L.E.); (M.S.B.)
| | - Matthew S. Block
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA; (C.L.E.); (M.S.B.)
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Pedro Arias-Sanchez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (B.P.); (P.K.M.); (M.S.); (V.P.V.K.); (P.A.-S.); (P.E.)
| | - Patricio Escalante
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (B.P.); (P.K.M.); (M.S.); (V.P.V.K.); (P.A.-S.); (P.E.)
| | - Tobias Peikert
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (B.P.); (P.K.M.); (M.S.); (V.P.V.K.); (P.A.-S.); (P.E.)
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA; (C.L.E.); (M.S.B.)
| |
Collapse
|
6
|
Marty PK, Pathakumari B, Shah M, Keulen VP, Erskine CL, Block MS, Arias-Sanchez P, Escalante P, Peikert T. Convalescent Adaptive Immunity is Highly Heterogenous after SARS-CoV-2 Infection. RESEARCH SQUARE 2023:rs.3.rs-3222112. [PMID: 37674707 PMCID: PMC10479471 DOI: 10.21203/rs.3.rs-3222112/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Optimal detection strategies for effective convalescent immunity after SARS-CoV-2 infection and vaccination remain unclear. The objective of this study was to characterize convalescent immunity targeting the SARS-CoV-2 spike protein using a multiparametric approach. At the beginning of the pandemic, between April 23, 2020, to May 11, 2020, we recruited 30 COVID-19 unvaccinated convalescent donors and 7 unexposed asymptomatic donors. Peripheral blood mononuclear cells (PBMCs) were obtained from leukapheresis cones. The humoral immune response was assessed by measuring serum anti-SARS-CoV-2 spike S1 subunit IgG semiquantitative ELISA and T cell immunity against S1 and S2 subunits were studied by IFN-γ Enzyme-Linked Immune absorbent Spot (ELISpot), flow cytometric (FC) activation-induced marker (AIM) assays and the assessment of cytotoxic CD8+ T-cell function (in the subset of HLA-A2 positive patients). No single immunoassay was sufficient in identifying anti-spike convalescent immunity among all patients. There was no consistent correlation between adaptive humoral and cellular anti-spike responses. Our data indicate that the magnitude of anti-spike convalescent humoral and cellular immunity is highly heterogeneous and highlights the need for using multiple assays to comprehensively measure SARS-CoV-2 convalescent immunity. These observations might have implications for COVID-19 surveillance, and optimal vaccination strategies for emerging variants. Further studies are needed to determine the optimal assessment of adaptive humoral and cellular immunity following SARSCoV-2 infection, especially in the context of emerging variants and unclear vaccination schedules.
Collapse
|
7
|
Xu J, Zheng J, Tan Y, Cai J, Xiang Y, Ling H, Li Z, Bai Q. Longitudinal Observation of Immune Response for 23 Months in COVID-19 Convalescent Patients After Infection and Vaccination. Viral Immunol 2023; 36:389-400. [PMID: 37276049 DOI: 10.1089/vim.2022.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023] Open
Abstract
To better understand dynamic changes of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) immune response, a prospective, single-center, cohort study was conducted on longitudinal immune response in 34 COVID-19 convalescent patients over 23 months in Chongqing. Two blood samples from convalescent patients were collected, first sample collected during 10-13 months (M10-13) after infection (pre-SARS-CoV-2 vaccination) and second sample collected during 20-23 months (M20-23) after infection (post-SARS-CoV-2 vaccination). The SARS-CoV-2-specific humoral and cellular immunity were traced by testing total antibody (Ab), anti-nucleocapsid (NP) immunoglobulin M (IgM), anti-NP immunoglobulin G (IgG), and anti-spike (S) IgG Abs, lymphocyte subset count, and Th1 cytokines. Healthy donors (30) were also included in the study as the uninspected healthy controls. Our data showed significant change in mean titer of SARS-CoV-2-specific Ab response from M10-13 to M20-23 included, namely, SARS-CoV-2-specific total Ab as 219 AU/mL increasing to 750.9 AU/mL; anti-NP IgM as 3.5 AU/mL decreasing significantly (p < 0.001) to 0.6 AU/mL; anti-NP IgG as 7.9 AU/mL increasing to 87.1 AU/mL; and anti-S IgG as 499.0 RU/mL increasing to 1,802.3 RU/mL. Our observations suggested that one vaccine dose might have been sufficient for COVID-19 convalescent patients. Larger sample sizes are needed to compare better immune effect of protein subunit vaccine. Besides, compared to healthy donors, patients had decreased CD3+ and CD8+ T lymphocyte counts during two periods. Patients had most cytokines recovered normally within 2 years, but IL-6 level was significantly elevated; however, IL-6 was negatively correlated with IgM and positively correlated with IgG. Changes in cytokines might have been caused by SARS-CoV-2 infection or vaccination. Patients with comorbidities were associated with decreased CD3+ and CD8+ T lymphocytes and lower Ab titers following SARS-CoV-2 vaccination. Vaccination enormously increased humoral immunity beneficial in COVID-19 convalescent patients. Elderly COVID-19 convalescent patients with comorbidities needed more attention.
Collapse
Affiliation(s)
- Jingru Xu
- College of Public Health, Chongqing Medical University, Chongqing, China
- Microbiological Laboratory, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Juan Zheng
- Department of Neurology, Chongqing Red Cross Hospital (People's Hospital of Jiangbei District), Chongqing, China
| | - Yan Tan
- Microbiological Laboratory, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Jiaojiao Cai
- Microbiological Laboratory, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Yao Xiang
- Microbiological Laboratory, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Hua Ling
- Microbiological Laboratory, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Zhifeng Li
- Microbiological Laboratory, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Qunhua Bai
- College of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Bao Y, He L, Miao B, Zhong Z, Lu G, Bai Y, Liang Q, Ling Y, Ji P, Su B, Zhao GP, Wu H, Zhang W, Wang Y, Chen Y, Xu J. BBIBP-CorV vaccination accelerates anti-viral antibody responses in heterologous Omicron infection: A retrospective observation study in Shanghai. Vaccine 2023; 41:3258-3265. [PMID: 37085449 DOI: 10.1016/j.vaccine.2023.03.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/23/2023]
Abstract
OBJECTIVES To investigate how BBIBP-CorV vaccination affecting antibody responses upon heterologous Omicron infection. METHODS 440 Omicron-infected patients were recruited in this study. Antibodies targeting SARS-CoV-2 spike protein receptor binding domain (RBD) and nucleoprotein of both wild-type (WT) and Omicron were detected by ELISA. The clinical relevance was further analyzed. RESULTS BBIBP-CorV vaccinated patients exhibited higher anti-RBD IgG levels targeting both WT and Omicron than non-vaccinated patients at different stages. By using a 3-day moving average analysis, we found that BBIBP-CorV vaccinated patients exhibited the increases in both anti-WT and Omicron RBD IgG from the onset and reached the plateau at Day 8 whereas those in non-vaccinated patients remained low during the disease. Significant increase in anti-WT RBD IgA was observed only in vaccinated patients. anti-Omicron RBD IgA levels remained low in both vaccinated and non-vaccinated patients. Clinically, severe COVID-19 only occurred in non-vaccinated group. anti-RBD IgG and IgA targeting both WT and Omicron were negatively correlated with virus load, hospitalization days and virus elimination in vaccinated patients. CONCLUSIONS BBIBP-CorV vaccination effectively reduces the severity of Omicron infected patients. The existence of humoral memory responses established through BBIBP-CorV vaccination facilitates to induce rapid recall antibody responses when encountering SARS-CoV-2 variant infection.
Collapse
Affiliation(s)
- Yujie Bao
- Department of Infectious Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Liheng He
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Benjie Miao
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhengrong Zhong
- Department of Clinical Diagnosis, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guanzhu Lu
- Department of Infectious Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yupan Bai
- Department of Infectious Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qiming Liang
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunchao Ling
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ping Ji
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guo-Ping Zhao
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hao Wu
- Department of Otorhinolaryngology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wenhong Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai China
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases (20dz2261100), Shanghai 200025, China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yingying Chen
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jie Xu
- Department of Infectious Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
9
|
Serwanga J, Ankunda V, Sembera J, Kato L, Oluka GK, Baine C, Odoch G, Kayiwa J, Auma BO, Jjuuko M, Nsereko C, Cotten M, Onyachi N, Muwanga M, Lutalo T, Fox J, Musenero M, Kaleebu P. Rapid, early, and potent Spike-directed IgG, IgM, and IgA distinguish asymptomatic from mildly symptomatic COVID-19 in Uganda, with IgG persisting for 28 months. Front Immunol 2023; 14:1152522. [PMID: 37006272 PMCID: PMC10060567 DOI: 10.3389/fimmu.2023.1152522] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/28/2023] [Indexed: 04/04/2023] Open
Abstract
Introduction Understanding how spike (S)-, nucleoprotein (N)-, and RBD-directed antibody responses evolved in mild and asymptomatic COVID-19 in Africa and their interactions with SARS-CoV-2 might inform development of targeted treatments and vaccines. Methods Here, we used a validated indirect in-house ELISA to characterise development and persistence of S- and N-directed IgG, IgM, and IgA antibody responses for 2430 SARS-CoV-2 rt-PCR-diagnosed Ugandan specimens from 320 mild and asymptomatic COVID-19 cases, 50 uninfected contacts, and 54 uninfected non-contacts collected weekly for one month, then monthly for 28 months. Results During acute infection, asymptomatic patients mounted a faster and more robust spike-directed IgG, IgM, and IgA response than those with mild symptoms (Wilcoxon rank test, p-values 0.046, 0.053, and 0.057); this was more pronounced in males than females. Spike IgG antibodies peaked between 25 and 37 days (86.46; IQR 29.47-242.56 BAU/ml), were significantly higher and more durable than N- and RBD IgG antibodies and lasted for 28 months. Anti-spike seroconversion rates consistently exceeded RBD and nucleoprotein rates. Spike- and RBD-directed IgG antibodies were positively correlated until 14 months (Spearman's rank correlation test, p-values 0.0001 to 0.05), although RBD diminished faster. Significant anti-spike immunity persisted without RBD. 64% and 59% of PCR-negative, non-infected non-contacts and suspects, exhibited baseline SARS-CoV-2 N-IgM serological cross-reactivity, suggesting undetected exposure or abortive infection. N-IgG levels waned after 787 days, while N-IgM levels remained undetectable throughout. Discussion Lower N-IgG seroconversion rates and the absence of N-IgM indicate that these markers substantially underestimate the prior exposure rates. Our findings provide insights into the development of S-directed antibody responses in mild and asymptomatic infections, with varying degrees of symptoms eliciting distinct immune responses, suggesting distinct pathogenic pathways. These longer-lasting data inform vaccine design, boosting strategies, and surveillance efforts in this and comparable settings.
Collapse
Affiliation(s)
- Jennifer Serwanga
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Violet Ankunda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Jackson Sembera
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Laban Kato
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Gerald Kevin Oluka
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Claire Baine
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Geoffrey Odoch
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - John Kayiwa
- Department of Virology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Betty Oliver Auma
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Mark Jjuuko
- Department of Internal Medicine, Masaka Regional Referral Hospital, Masaka, Uganda
| | - Christopher Nsereko
- Department of Internal Medicine, Entebbe Regional Referral Hospital, Entebbe, Uganda
| | - Matthew Cotten
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Nathan Onyachi
- Department of Internal Medicine, Masaka Regional Referral Hospital, Masaka, Uganda
| | - Moses Muwanga
- Department of Internal Medicine, Entebbe Regional Referral Hospital, Entebbe, Uganda
| | - Tom Lutalo
- Department of Epidemiology and Data Management, Uganda Virus Research Institute, Entebbe, Uganda
| | - Julie Fox
- Guy’s and St Thomas’ National Health Services Foundation Trust, King’s College London, London, United Kingdom
| | - Monica Musenero
- Science, Technology, and Innovation Secretariat, Office of the President, Government of Uganda, Kampala, Uganda
| | - Pontiano Kaleebu
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| |
Collapse
|
10
|
Qaseem A, Yost J, Etxeandia-Ikobaltzeta I, Forciea MA, Abraham GM, Miller MC, Obley AJ, Humphrey LL, Akl EA, Andrews R, Dunn A, Haeme R, Kansagara DL, Tschanz MP. What Is the Antibody Response and Role in Conferring Natural Immunity After SARS-CoV-2 Infection? Rapid, Living Practice Points From the American College of Physicians (Version 2). Ann Intern Med 2022; 175:556-565. [PMID: 35073153 PMCID: PMC8803138 DOI: 10.7326/m21-3272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
DESCRIPTION The Scientific Medical Policy Committee (SMPC) of the American College of Physicians (ACP) developed these living, rapid practice points to summarize the current best available evidence on the antibody response to SARS-CoV-2 infection and protection against reinfection with SARS-CoV-2. This is version 2 of the ACP practice points, which serves to update version 1, published on 16 March 2021. These practice points do not evaluate vaccine-acquired immunity or cellular immunity. METHODS The SMPC developed this version of the living, rapid practice points based on an updated living, rapid, systematic review conducted by the Portland VA Research Foundation and funded by the Agency for Healthcare Research and Quality. PRACTICE POINT 1 Do not use SARS-CoV-2 antibody tests for the diagnosis of SARS-CoV-2 infection. PRACTICE POINT 2 Do not use SARS-CoV-2 antibody tests to predict the degree or duration of natural immunity conferred by antibodies against reinfection, including natural immunity against different variants. RETIREMENT FROM LIVING STATUS Although natural immunity remains a topic of scientific interest, this topic is being retired from living status given the availability of effective vaccines for SARS-CoV-2 and widespread recommendations for and prevalence of their use. Currently, vaccination is the best clinical recommendation for preventing infection, reinfection, and serious illness from SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Amir Qaseem
- American College of Physicians, Philadelphia, Pennsylvania (A.Q., I.E.)
| | - Jennifer Yost
- American College of Physicians, Philadelphia, and Villanova University, Villanova, Pennsylvania (J.Y.)
| | | | | | - George M Abraham
- University of Massachusetts Medical School/Saint Vincent Hospital, Worcester, Massachusetts (G.M.A.)
| | | | - Adam J Obley
- Portland Veterans Affairs Medical Center and Oregon Health & Science University, Portland, Oregon (A.J.O., L.L.H.)
| | - Linda L Humphrey
- Portland Veterans Affairs Medical Center and Oregon Health & Science University, Portland, Oregon (A.J.O., L.L.H.)
| | | | | | | | | | | | | |
Collapse
|
11
|
Adi W, Biswas D, Shelef MA, Yesilkoy F. Multiplexed COVID-19 antibody quantification from human sera using label-free nanoplasmonic biosensors. BIOMEDICAL OPTICS EXPRESS 2022; 13:2130-2143. [PMID: 35519285 PMCID: PMC9045896 DOI: 10.1364/boe.454919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 05/25/2023]
Abstract
Serological assays that can reveal immune status against COVID-19 play a critical role in informing individual and public healthcare decisions. Currently, antibody tests are performed in central clinical laboratories, limiting broad access to diverse populations. Here we report a multiplexed and label-free nanoplasmonic biosensor that can be deployed for point-of-care antibody profiling. Our optical imaging-based approach can simultaneously quantify antigen-specific antibody response against SARS-CoV-2 spike and nucleocapsid proteins from 50 µL of human sera. To enhance the dynamic range, we employed multivariate data processing and multi-color imaging and achieved a quantification range of 0.1-100 µg/mL. We measured sera from a COVID-19 acute and convalescent (N = 24) patient cohort and negative controls (N = 5) and showed highly sensitive and specific past-infection diagnosis. Our results were benchmarked against an electrochemiluminescence assay and showed good concordance (R∼0.87). Our integrated nanoplasmonic biosensor has the potential to be used in epidemiological sero-profiling and vaccine studies.
Collapse
Affiliation(s)
- Wihan Adi
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dhruv Biswas
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Miriam A. Shelef
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Filiz Yesilkoy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
12
|
De Vito D, Di Ciaula A, Palmieri VO, Trerotoli P, Larocca AMV, Montagna MT, Portincasa P. Reduced COVID-19 mortality linked with early antibodies against SARS-CoV-2, irrespective of age. Eur J Intern Med 2022; 98:77-82. [PMID: 35177308 PMCID: PMC8841161 DOI: 10.1016/j.ejim.2022.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND COVID-19 pandemic has generated a million deaths worldwide. The efficiency of the immune system can modulate individual vulnerability with variable outcomes. However, the relationships between disease severity and the titer of antibodies produced against SARS-CoV-2 in non-vaccinated, recently infected subjects need to be fully elucidated. METHODS A total of 99 patients admitted to a COVID-unit underwent clinical assessment and measurement of serum levels of anti-spike protein (S1) IgM, and anti-nucleocapsid protein IgG. Patients were stratified according to the clinical outcome (i.e., discharged at home or in-hospital death). RESULTS Following hospitalization, 18 died during the hospital stay. They were older, had lymphopenia, a higher co-morbidity rate, and longer hospital stay than 81 patients who were discharged after healing. Patients in this latter group had, at hospital admittance, 7.9-fold higher serum concentration of IgM, and 2.4-fold higher IgG levels. Multivariate Cox regression models indicated age and anti-nucleocapsid protein IgG concentration at admission as independently associated with the risk of in-hospital death. CONCLUSIONS An efficient immunological response during the early phase of COVID-19 protects from mortality, irrespective of age. Advanced age is a critical risk factor for poor outcome in infected subjects. Further studies must explore potential therapeutic strategies able to restore a valid functional humoral immunity in elderly patients with poor antibody response during the early stage of COVID-19 infection.
Collapse
Affiliation(s)
- Danila De Vito
- Department of Basic Medical Sciences, Neurosciences, and Sense Organs, Medical School, University of Bari Aldo Moro.
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Medical School, Bari, Italy
| | - Vincenzo O Palmieri
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Medical School, Bari, Italy
| | - Paolo Trerotoli
- Section of Medical Statistics, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Medical School, Bari, Italy
| | - Angela Maria Vittoria Larocca
- Section of Hygiene, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Medical School, Bari, Italy
| | - Maria Teresa Montagna
- Section of Hygiene, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Medical School, Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Medical School, Bari, Italy.
| |
Collapse
|
13
|
Dhawan M, Priyanka, Parmar M, Angural S, Choudhary OP. Convalescent plasma therapy against the emerging SARS-CoV-2 variants: Delineation of the potentialities and risks. Int J Surg 2022; 97:106204. [PMID: 34974199 PMCID: PMC8717699 DOI: 10.1016/j.ijsu.2021.106204] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has resulted in a catastrophic pandemic and severely impacted people's livelihoods worldwide. In addition, the emergence of SARS-CoV-2 variants has posed a severe threat to humankind. Due to the dearth of therapeutic options during the commencement of the pandemic, convalescent plasma therapy (CPT) played a significant part in the management of patients with severe form of COVID-19. Several recent studies have proposed various protective effects of CPT, such as antiviral, anti-inflammatory, anti-thrombotic, and immunomodulatory actions, curtailing the devastating consequences of the SARS-CoV-2 infection. On the contrary, several clinical studies have raised some serious concerns about the effectiveness and reliability of CPT in the management of patients with COVID-19. The protective effects of CPT in severely ill patients are yet to be proved. Moreover, the emergence of SARS-CoV-2 variants has raised concerns about the effectiveness of CPT against COVID-19. Therefore, to establish concrete evidence of the efficacy of CPT and adjudicate its inclusion in the management of COVID-19, an updated review of present literature is required, which could help in the development of an efficient therapeutic regimen to treat COVID-19 amid the emergence of new viral variants.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141004, Punjab, India,The Trafford Group of Colleges, Manchester, WA14 5PQ, UK
| | - Priyanka
- Independent Researcher, 07, Type IV Quarter, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, 796015, Mizoram, India
| | - Manisha Parmar
- Department of Veterinary Microbiology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Steffy Angural
- Department of Medical Lab Technology, Faculty of Applied Health Sciences, GNA University, Phagwara-Hoshiarpur Road, Sri Hargobindgarh, 144401, Punjab, India,Corresponding author
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy and Histology, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, 796015, Mizoram, India,Corresponding author
| |
Collapse
|
14
|
Alshami A, Al Attas R, Anan H, Al Maghrabi A, Ghandorah S, Mohammed A, Alhalimi A, Al-Jishi J, Alqahtani H. Durability of Antibody Responses to SARS-CoV-2 Infection and Its Relationship to Disease Severity Assessed Using a Commercially Available Assay. Front Microbiol 2021; 12:770727. [PMID: 34925278 PMCID: PMC8678500 DOI: 10.3389/fmicb.2021.770727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Assessing the humoral immune response to SARS-CoV-2 is crucial for inferring protective immunity from reinfection and for assessing vaccine efficacy. Data regarding the durability and sustainability of SARS-CoV-2 antibodies are conflicting. In this study, we aimed to determine the seroconversion rate of SARS-CoV-2 infection in a cohort of reverse-transcriptase polymerase chain reaction (RT–PCR)-confirmed SARS-CoV-2 infections and the antibody dynamics, durability, and the correlation of antibody titers with disease severity using the commercially available SARS-CoV-2 anti-spike (S1/S2) protein. Methods: A total of 342 subjects with PCR-confirmed COVID-19 were enrolled. A total of 395 samples were collected at different time points (0–204) after the onset of symptoms or from the day of positive PCR in asymptomatic patients. Demographics, clinical presentation and the date of PCR were collected. All samples were tested using the automated commercial chemiluminescent system (DiaSorin SARS-CoV-2 S1/S2 IgG) on the LIAISONXL® platform (LIAISON). Results: The seroconversion rate for samples collected 14 days after the onset of infection was much higher than that for samples collected before 14 days (79.4% vs. 39.4%). The rate of seroconversion in symptomatic participants (62.1%) was similar to that of asymptomatic participants (56.1%) (p = 0.496). The IgG titer distribution was also similar across both groups (p = 0.142), with a median IgG level of 27.86 AU/ml (3.8–85.5) and 15 AU/ml (3.8–58.85) in symptomatic and asymptomatic participants, respectively. However, IgG titers were significantly higher in ICU patients, with a median of 104 AU/ml (3.8–179) compared to 34 AU/ml (3.8–70) in the non-ICU participants (p < 0.0001). Furthermore, the median time to seroconversion occurred significantly faster in ICU patients than in non-ICU participants (19 versus 47 days) (P < 0.0001). IgG titers were also higher in subjects ≥50 years compared to those <50 years (p < 0.009), male compared to female (p < 0.054) and non-Saudi compared to Saudi (p < 0.003). Approximately 74% of all samples tested beyond 120 days were positive. Conclusion: Antibodies can persist in circulation for longer than 4 months after COVID-19 infection. The majority of patients with COVID-19 mounted humoral immune responses to SARS-CoV-2 infection that strongly correlated with disease severity, older age and male gender. However, the population of individuals who tested negative should be further evaluated.
Collapse
Affiliation(s)
- Alanoud Alshami
- Department of Epidemiology and Biostatistics, King Fahad Specialist Hospital-Dammam, Dammam, Saudi Arabia
- *Correspondence: Alanoud Alshami,
| | - Rabab Al Attas
- Division of Immunology, Department of Pathology and Laboratory Medicine, King Fahad Specialist Hospital-Dammam, Dammam, Saudi Arabia
| | - Hadeel Anan
- Department of Epidemiology and Biostatistics, King Fahad Specialist Hospital-Dammam, Dammam, Saudi Arabia
| | | | - Salim Ghandorah
- Division of Immunology, Department of Pathology and Laboratory Medicine, King Fahad Specialist Hospital-Dammam, Dammam, Saudi Arabia
| | - Amani Mohammed
- Division of Immunology, Department of Pathology and Laboratory Medicine, King Fahad Specialist Hospital-Dammam, Dammam, Saudi Arabia
| | | | - Jumana Al-Jishi
- Division of Infectious Disease, Department of Internal Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Hadi Alqahtani
- Division of Infectious Disease, Department of Pediatrics, King Fahad Specialist Hospital-Dammam, Dammam, Saudi Arabia
| |
Collapse
|
15
|
Maharjan PM, Choe S. Plant-Based COVID-19 Vaccines: Current Status, Design, and Development Strategies of Candidate Vaccines. Vaccines (Basel) 2021; 9:992. [PMID: 34579229 PMCID: PMC8473425 DOI: 10.3390/vaccines9090992] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023] Open
Abstract
The prevalence of the coronavirus disease 2019 (COVID-19) pandemic in its second year has led to massive global human and economic losses. The high transmission rate and the emergence of diverse SARS-CoV-2 variants demand rapid and effective approaches to preventing the spread, diagnosing on time, and treating affected people. Several COVID-19 vaccines are being developed using different production systems, including plants, which promises the production of cheap, safe, stable, and effective vaccines. The potential of a plant-based system for rapid production at a commercial scale and for a quick response to an infectious disease outbreak has been demonstrated by the marketing of carrot-cell-produced taliglucerase alfa (Elelyso) for Gaucher disease and tobacco-produced monoclonal antibodies (ZMapp) for the 2014 Ebola outbreak. Currently, two plant-based COVID-19 vaccine candidates, coronavirus virus-like particle (CoVLP) and Kentucky Bioprocessing (KBP)-201, are in clinical trials, and many more are in the preclinical stage. Interim phase 2 clinical trial results have revealed the high safety and efficacy of the CoVLP vaccine, with 10 times more neutralizing antibody responses compared to those present in a convalescent patient's plasma. The clinical trial of the CoVLP vaccine could be concluded by the end of 2021, and the vaccine could be available for public immunization thereafter. This review encapsulates the efforts made in plant-based COVID-19 vaccine development, the strategies and technologies implemented, and the progress accomplished in clinical trials and preclinical studies so far.
Collapse
Affiliation(s)
- Puna Maya Maharjan
- G+FLAS Life Sciences, 123 Uiryodanji-gil, Osong-eup, Heungdeok-gu, Cheongju-si 28161, Korea;
| | - Sunghwa Choe
- G+FLAS Life Sciences, 38 Nakseongdae-ro, Gwanak-gu, Seoul 08790, Korea
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
16
|
Gégout Petit A, Jeulin H, Legrand K, Jay N, Bochnakian A, Vallois P, Schvoerer E, Guillemin F. Seroprevalence of SARS-CoV-2, Symptom Profiles and Sero-Neutralization in a Suburban Area, France. Viruses 2021; 13:v13061076. [PMID: 34200070 PMCID: PMC8230202 DOI: 10.3390/v13061076] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 01/28/2023] Open
Abstract
The World Health Organisation recommends monitoring the circulation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We investigated anti-SARS-CoV-2 total immunoglobulin (IgT) antibody seroprevalence and in vitro sero-neutralization in Nancy, France, in spring 2020. Individuals were randomly sampled from electoral lists and invited with household members over 5 years old to be tested for anti-SARS-CoV-2 (IgT, i.e., IgA/IgG/IgM) antibodies by ELISA (Bio-rad); the sero-neutralization activity was evaluated on Vero CCL-81 cells. Among 2006 individuals, the raw seroprevalence was 2.1% (95% confidence interval 1.5 to 2.9), was highest for 20- to 34-year-old participants (4.7% (2.3 to 8.4)), within than out of socially deprived area (2.5% vs. 1%, p = 0.02) and with than without intra-family infection (p < 10-6). Moreover, 25% of participants presented at least one COVID-19 symptom associated with SARS-CoV-2 positivity (p < 10-13), with highly discriminant anosmia or ageusia (odds ratio 27.8 [13.9 to 54.5]); 16.3% (6.8 to 30.7) of seropositive individuals were asymptomatic. Positive sero-neutralization was demonstrated in vitro for 31/43 seropositive subjects. Regarding the very low seroprevalence, a preventive effect of the lockdown in March 2020 can be assumed for the summer, but a second COVID-19 wave, as expected, could be subsequently observed in this poorly immunized population.
Collapse
Affiliation(s)
- Anne Gégout Petit
- IECL, Université de Lorraine, CNRS, Inria, F-54000 Nancy, France; (A.G.P.); (P.V.)
| | - Hélène Jeulin
- LCPME, Université de Lorraine, CNRS, F-54000 Nancy, France;
- Laboratoire de Virologie, CHRU de Nancy Brabois, F-54500 Vandoeuvre-lès-Nancy, France
- Correspondence: ; Tel.: +33-383-153-467
| | - Karine Legrand
- CIC Epidémiologie Clinique, CHRU-Nancy, Inserm, Université de Lorraine, F-54000 Nancy, France; (K.L.); (A.B.); (F.G.)
| | - Nicolas Jay
- LORIA, CHRU-Nancy, Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France;
| | - Agathe Bochnakian
- CIC Epidémiologie Clinique, CHRU-Nancy, Inserm, Université de Lorraine, F-54000 Nancy, France; (K.L.); (A.B.); (F.G.)
| | - Pierre Vallois
- IECL, Université de Lorraine, CNRS, Inria, F-54000 Nancy, France; (A.G.P.); (P.V.)
| | - Evelyne Schvoerer
- LCPME, Université de Lorraine, CNRS, F-54000 Nancy, France;
- Laboratoire de Virologie, CHRU de Nancy Brabois, F-54500 Vandoeuvre-lès-Nancy, France
| | - Francis Guillemin
- CIC Epidémiologie Clinique, CHRU-Nancy, Inserm, Université de Lorraine, F-54000 Nancy, France; (K.L.); (A.B.); (F.G.)
| |
Collapse
|
17
|
Qaseem A, Yost J, Etxeandia-Ikobaltzeta I, Forciea MA, Abraham GM, Miller MC, Obley AJ, Humphrey LL, Centor RM, Akl EA, Andrews R, Bledsoe TA, Haeme R, Kansagara DL. What Is the Antibody Response and Role in Conferring Natural Immunity After SARS-CoV-2 Infection? Rapid, Living Practice Points From the American College of Physicians (Version 1). Ann Intern Med 2021; 174:828-835. [PMID: 33721518 PMCID: PMC8017476 DOI: 10.7326/m20-7569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
DESCRIPTION The widespread availability of SARS-CoV-2 antibody tests raises important questions for clinicians, patients, and public health professionals related to the appropriate use and interpretation of these tests. The Scientific Medical Policy Committee (SMPC) of the American College of Physicians developed these rapid, living practice points to summarize the current and best available evidence on the antibody response to SARS-CoV-2 infection, antibody durability after initial infection with SARS-CoV-2, and antibody protection against reinfection with SARS-CoV-2. METHODS The SMPC developed these rapid, living practice points based on a rapid and living systematic evidence review done by the Portland VA Research Foundation and funded by the Agency for Healthcare Research and Quality. Ongoing literature surveillance is planned through December 2021. When new studies are identified and a full update of the evidence review is published, the SMPC will assess the new evidence and any effect on the practice points. PRACTICE POINT 1 Do not use SARS-CoV-2 antibody tests for the diagnosis of SARS-CoV-2 infection. PRACTICE POINT 2 Antibody tests can be useful for the purpose of estimating community prevalence of SARS-CoV-2 infection. PRACTICE POINT 3 Current evidence is uncertain to predict presence, level, or durability of natural immunity conferred by SARS-CoV-2 antibodies against reinfection (after SARS-CoV-2 infection).
Collapse
Affiliation(s)
- Amir Qaseem
- American College of Physicians, Philadelphia, Pennsylvania (A.Q., I.E.)
| | - Jennifer Yost
- American College of Physicians, Philadelphia, and Villanova University, Villanova, Pennsylvania (J.Y.)
| | | | | | - George M Abraham
- University of Massachusetts Medical School and Saint Vincent Hospital, Worcester, Massachusetts (G.M.A.)
| | | | - Adam J Obley
- Portland Veterans Affairs Medical Center and Oregon Health & Science University, Portland, Oregon (A.J.O., L.L.H.)
| | - Linda L Humphrey
- Portland Veterans Affairs Medical Center and Oregon Health & Science University, Portland, Oregon (A.J.O., L.L.H.)
| | | | | | | | | | | | | |
Collapse
|
18
|
Arkhipova-Jenkins I, Helfand M, Armstrong C, Gean E, Anderson J, Paynter RA, Mackey K. Antibody Response After SARS-CoV-2 Infection and Implications for Immunity : A Rapid Living Review. Ann Intern Med 2021; 174:811-821. [PMID: 33721517 PMCID: PMC8025942 DOI: 10.7326/m20-7547] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The clinical significance of the antibody response after SARS-CoV-2 infection remains unclear. PURPOSE To synthesize evidence on the prevalence, levels, and durability of detectable antibodies after SARS-CoV-2 infection and whether antibodies to SARS-CoV-2 confer natural immunity. DATA SOURCES MEDLINE (Ovid), Embase, CINAHL, Cochrane Central Register of Controlled Trials, ClinicalTrials.gov, World Health Organization global literature database, and Covid19reviews.org from 1 January through 15 December 2020, limited to peer-reviewed publications available in English. STUDY SELECTION Primary studies characterizing the prevalence, levels, and duration of antibodies in adults with SARS-CoV-2 infection confirmed by reverse transcriptase polymerase chain reaction (RT-PCR); reinfection incidence; and unintended consequences of antibody testing. DATA EXTRACTION Two investigators sequentially extracted study data and rated quality. DATA SYNTHESIS Moderate-strength evidence suggests that most adults develop detectable levels of IgM and IgG antibodies after infection with SARS-CoV-2 and that IgG levels peak approximately 25 days after symptom onset and may remain detectable for at least 120 days. Moderate-strength evidence suggests that IgM levels peak at approximately 20 days and then decline. Low-strength evidence suggests that most adults generate neutralizing antibodies, which may persist for several months like IgG. Low-strength evidence also suggests that older age, greater disease severity, and presence of symptoms may be associated with higher antibody levels. Some adults do not develop antibodies after SARS-CoV-2 infection for reasons that are unclear. LIMITATIONS Most studies were small and had methodological limitations; studies used immunoassays of variable accuracy. CONCLUSION Most adults with SARS-CoV-2 infection confirmed by RT-PCR develop antibodies. Levels of IgM peak early in the disease course and then decline, whereas IgG peaks later and may remain detectable for at least 120 days. PRIMARY FUNDING SOURCE Agency for Healthcare Research and Quality. (PROSPERO: CRD42020207098).
Collapse
Affiliation(s)
- Irina Arkhipova-Jenkins
- Scientific Resource Center for the AHRQ Evidence-based Practice Center Program, Portland VA Research Foundation, and VA Portland Health Care System, Portland, Oregon (I.A.J., C.A., E.G., R.A.P.)
| | - Mark Helfand
- Scientific Resource Center for the AHRQ Evidence-based Practice Center Program, Portland VA Research Foundation, VA Evidence Synthesis Program, and VA Portland Health Care System, Portland, Oregon (M.H.)
| | - Charlotte Armstrong
- Scientific Resource Center for the AHRQ Evidence-based Practice Center Program, Portland VA Research Foundation, and VA Portland Health Care System, Portland, Oregon (I.A.J., C.A., E.G., R.A.P.)
| | - Emily Gean
- Scientific Resource Center for the AHRQ Evidence-based Practice Center Program, Portland VA Research Foundation, and VA Portland Health Care System, Portland, Oregon (I.A.J., C.A., E.G., R.A.P.)
| | - Joanna Anderson
- VA Evidence Synthesis Program and VA Portland Health Care System, Portland, Oregon (J.A., K.M.)
| | - Robin A Paynter
- Scientific Resource Center for the AHRQ Evidence-based Practice Center Program, Portland VA Research Foundation, and VA Portland Health Care System, Portland, Oregon (I.A.J., C.A., E.G., R.A.P.)
| | - Katherine Mackey
- VA Evidence Synthesis Program and VA Portland Health Care System, Portland, Oregon (J.A., K.M.)
| |
Collapse
|
19
|
Epidemiological feature, viral shedding, and antibody seroconversion among asymptomatic SARS-CoV-2 carriers and symptomatic/presymptomatic COVID-19 patients. J Infect Public Health 2021; 14:845-851. [PMID: 34118734 PMCID: PMC8154191 DOI: 10.1016/j.jiph.2021.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/01/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
Background Novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is pandemic. However, data concerning the epidemiological features, viral shedding, and antibody dynamics between asymptomatic SARS-CoV-2 carriers and COVID-19 patients remain controversial. Methods We enrolled 193 SARS-CoV-2 infected subjects in Ningbo and Zhoushan, Zhejiang, China, from January 21 to March 6, 2020. All subjects were followed up to monitor the dynamics of serum antibody immunoglobulin M (IgM) and IgG against SARS-CoV-2 using colloidal gold-labeled and enzyme-linked immunosorbent assays. Results Of those, 31 were asymptomatic SARS-CoV-2 carriers, 148 symptomatic COVID-19 patients, and 14 presymptomatic COVID-19 patients. Compared to symptomatic COVID-19 patients, asymptomatic carriers were younger and had higher levels of white blood cell and lymphocyte, lower level of C-reactive protein, and shorter viral shedding duration. Conversion of IgM from positive to negative was shorter in asymptomatic carriers than in COVID-19 patients (7.5 vs. 25.5 days, P = 0.030). The proportion of those persistently seropositive for IgG against SARS-CoV-2 was higher in COVID-19 patients than in asymptomatic carriers (66.1% vs. 33.3%, P = 0.037). Viral load was higher in symptomatic patients than presymptomatic patients (P = 0.003) and asymptomatic carriers (P = 0.004). Viral shedding duration was longer in presymptomatic COVID-19 patients than in asymptomatic carriers (48.0 vs. 24.0 days, P = 0.002). Asymptomatic carriers acquired infection more from intra-familial transmission than did COVID-19 patients (89.0% vs. 61.0%, P = 0.028). In 4 familial clusters of SARS-CoV-2 infection, asymptomatic carriers were mainly children and young adults while severe COVID-19 was mainly found in family members older than 60 years with comorbidities. Conclusion Asymptomatic carriers might have a higher antiviral immunity to clear SARS-CoV-2 than symptomatic COVID-19 patients and this antiviral immunity should be contributable to innate and adaptive cellular immunity rather than humoral immunity. The severity of COVID-19 is associated with older age and comorbidities in familial clustering cases.
Collapse
|
20
|
Immune profiles of a COVID-19 adolescent with mild symptoms and anti-viral antibody deficiency. FUNDAMENTAL RESEARCH 2021. [PMCID: PMC7889007 DOI: 10.1016/j.fmre.2021.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
Bavaro DF, Laghetti P, Milano E, Brindicci G, Volpe A, Lagioia A, Saracino A, Monno L. Anti-spike S1 receptor-binding domain antibodies against SARS-CoV-2 persist several months after infection regardless of disease severity. J Med Virol 2021; 93:3158-3164. [PMID: 33590900 PMCID: PMC8014088 DOI: 10.1002/jmv.26878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Data regarding the immunological memory and long‐time kinetics of immunoglobulin (IgG) against viral nucleoprotein (NP) and spike protein S1 receptor‐binding domain (S1RBD) of Severe Acute Respiratory Syndrome‐associated Coronavirus 2 (SARS‐CoV‐2) are lacking. All consecutive COVID‐19 patients admitted to our Clinic between March 1, 2020, and May 1, 2020, who were tested at hospital admission for anti‐S1RBD and anti‐NP IgG were enrolled. Serum samples were tested for anti‐SARS‐CoV‐2 antibodies with the use of two commercially available enzyme‐linked immunosorbent assays. Results are expressed as optical density measurements at 450 nm (OD450). Overall, 111 patients were included; the median (q1–q3) age was 57 (49–73) years, 59 (53%) males. According to disease severity, 31 (28%), 47 (42%), and 33 (30%) patients were considered affected by mild/moderate, severe, and critical SARS‐CoV‐2 infection, respectively. During hospitalization, patients with the critical disease showed a higher peak value of both anti‐NP (median OD450: 3.66 vs. 3.06 vs. 3.00 respectively, p = .043) and anti‐S1RBD IgG (median OD450: 2.33 vs. 1.6 vs. 0.91, respectively, p < .001). By testing 48 subjects 6 months or above from discharge, a significant decrease of anti‐NP IgG was observed (r: −0.5838; p < .0001), whereas anti‐S1RBD IgG showed only a modest reduction (r: −0.1507; p = .0647). Accordingly, 10 (21%) and 2 (4%) patients had a negative serological status for anti‐NP and anti‐S1RBD IgG, respectively; no association with clinical severity was found. IgGs against SARS‐CoV‐2 persisted several months after discharge, regardless of disease severity, suggesting that vaccination could be a valid strategy to fight the pandemic. ‐Antibodies against SARS‐CoV‐2 persisted several months after the disease. ‐ Infection severity apparently did not affect IgG seroconversion. ‐ SARS‐CoV‐2 vaccination could be a valid strategy to fight the pandemic.
Collapse
Affiliation(s)
- Davide F Bavaro
- Clinic of Infectious Diseases, University Hospital Policlinico, University of Bari, Bari, Italy
| | - Paola Laghetti
- Clinic of Infectious Diseases, University Hospital Policlinico, University of Bari, Bari, Italy
| | - Eugenio Milano
- Clinic of Infectious Diseases, University Hospital Policlinico, University of Bari, Bari, Italy
| | - Gaetano Brindicci
- Clinic of Infectious Diseases, University Hospital Policlinico, University of Bari, Bari, Italy
| | - Anna Volpe
- Clinic of Infectious Diseases, University Hospital Policlinico, University of Bari, Bari, Italy
| | - Antonella Lagioia
- Clinic of Infectious Diseases, University Hospital Policlinico, University of Bari, Bari, Italy
| | - Annalisa Saracino
- Clinic of Infectious Diseases, University Hospital Policlinico, University of Bari, Bari, Italy
| | - Laura Monno
- Clinic of Infectious Diseases, University Hospital Policlinico, University of Bari, Bari, Italy
| |
Collapse
|