1
|
Ding S, Alexander E, Liang H, Kulchar RJ, Singh R, Herzog RW, Daniell H, Leong KW. Synthetic and Biogenic Materials for Oral Delivery of Biologics: From Bench to Bedside. Chem Rev 2025; 125:4009-4068. [PMID: 40168474 DOI: 10.1021/acs.chemrev.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
The development of nucleic acid and protein drugs for oral delivery has lagged behind their production for conventional nonoral routes. Over the past decade, the evolution of DNA- and RNA-based technologies combined with the innovation of state-of-the-art delivery vehicles for nucleic acids has brought rapid advancements to the biopharmaceutical field. Nucleic acid therapies have the potential to achieve long-lasting effects, or even cures, by inhibiting or editing genes, which is not possible with conventional small-molecule drugs. However, challenges and limitations must be addressed before these therapies can provide cures for chronic conditions and rare diseases, rather than only offering temporary relief. Nucleic acids and proteins face premature degradation in the acidic, enzyme-rich stomach environment and are rapidly cleared by the liver. To overcome these challenges, various delivery vehicles have been developed to transport therapeutic compounds to the intestines, where the active compounds are released and gut microbiota and mucosal immune system also play an important role. This review provides a comprehensive overview of the promises and pitfalls associated with the oral route of administration of biologics, current delivery systems, applications of orally delivered therapeutics, and the challenges and considerations for translation of nucleic acid and protein therapeutics into clinical practice.
Collapse
Affiliation(s)
- Suwan Ding
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Elena Alexander
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Huiyi Liang
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Rachel J Kulchar
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Rahul Singh
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| |
Collapse
|
2
|
Kovács Á, Hérincs Z, Papp K, Kaczmarek JZ, Larsen DN, Stage P, Bereczki L, Ujhelyi E, Pfeil T, Prechl J. In-depth immunochemical characterization of the serum antibody response using a dual-titration microspot assay. Front Immunol 2025; 16:1494624. [PMID: 40070838 PMCID: PMC11893856 DOI: 10.3389/fimmu.2025.1494624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
Antigen specific humoral immunity can be characterized by the analysis of serum antibodies. While serological assays for the measurement of specific antibody levels are available, these are not quantitative in the biochemical sense. Yet, understanding humoral immune responses quantitatively on the systemic level would need a universal, complete, quantitative, comparable measurement method of antigen specific serum antibodies of selected immunoglobulin classes. Here we describe a fluorescent, dual-titration immunoassay, which provides the biochemical parameters that are both necessary and sufficient to quantitatively characterize the humoral immune response. For validation of theory, we used recombinant receptor binding domain of SARS-CoV-2 as antigen on microspot arrays and varied the concentration of both the antigen and the serum antibodies from infected persons to obtain a measurement matrix of binding data. Both titration curves were simultaneously fitted using an algorithm based on the generalized logistic function and adapted for analyzing biochemical variables of binding. We obtained equilibrium affinity constants and concentrations for distinct antibody classes. These variables reflect the quality and the effective quantity of serum antibodies, respectively. The proposed fluorescent dual-titration microspot immunoassay can generate truly quantitative serological data that is suitable for immunological, medical and systems biological analysis.
Collapse
Affiliation(s)
- Ágnes Kovács
- Department of Biostatistics, University of Veterinary Medicine Budapest, Budapest, Hungary
- Department of Applied Analysis and Computational Mathematics, Eötvös Loránd University, Budapest, Hungary
| | | | | | | | - Daniel Nyberg Larsen
- Research and Development Department, Ovodan Biotech A/S, Odense, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Pernille Stage
- Research and Development Department, Ovodan Biotech A/S, Odense, Denmark
| | | | | | - Tamás Pfeil
- Department of Applied Analysis and Computational Mathematics, Eötvös Loránd University, Budapest, Hungary
- HUN-REN–ELTE Numerical Analysis and Large Networks Research Group, Budapest, Hungary
| | | |
Collapse
|
3
|
Ward D, Pattarapreeyakul L, Pitaksalee R, Thawong N, Sawaengdee W, Tuntigumthon S, Patterson C, Tetteh K, Campino S, Dhepakson P, Mahasirimongkol S, Clark TG. Serological insights from SARS-CoV-2 heterologous prime and boost responses in Thailand. Sci Rep 2025; 15:1519. [PMID: 39789037 PMCID: PMC11718049 DOI: 10.1038/s41598-024-84392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
During the COVID-19 pandemic, heterologous vaccination strategies were employed to alleviate the strain on vaccine supplies. The Thailand Ministry of Health adopted these strategies using vector, inactivated, and mRNA vaccines. However, this approach has introduced challenges for SARS-CoV-2 sero-epidemiology studies. Our study analysed 647 samples from healthcare workers who received CoronaVac, ChAdOx1 nCoV-19, and BNT162b2 vaccines. The serological profile encompassed responses to various SARS-CoV-2 variants and vectors, measuring IgG, IgM, and IgA isotypes, alongside IgG avidity assays. The results demonstrated that heterologous CoronaVac/ChAdOx1 nCoV-19 schedules elicited significantly stronger antibody responses compared to homologous schedules (IgG: 1.2-fold, IgM: 10.9-fold, IgA: 3.1-fold increase). Additionally, a heterologous BNT162b2 boost at 4-weeks post-initial vaccination showed greater antibody levels than a ChAdOx1 nCoV-19 boost (IgG: 1.1-fold, IgM: slight decrease, IgA: 1.5-fold increase). Using a combination of three analytes, IgG against wild-type Spike trimer, nucleoprotein and Omicron receptor binding domains, enabled the clustering of responses within a statistical Gaussian mixture model that successfully discriminates between breakthrough infections and vaccination types (F-score = 0.82). The development of statistical models to predict breakthrough infections can improve serological surveillance. Overall, our study underscores the necessity for vaccine (re-)development and the creation of serological tools to monitor vaccine performance.
Collapse
Affiliation(s)
- Daniel Ward
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Lapasrada Pattarapreeyakul
- Department of Medical Sciences, Medical Life Sciences Institute, Ministry of Public Health, 88/7 Tiwanon Road, Nonthaburi, 11000, Thailand
| | - Rujiraporn Pitaksalee
- Department of Medical Sciences, Medical Life Sciences Institute, Ministry of Public Health, 88/7 Tiwanon Road, Nonthaburi, 11000, Thailand
| | - Naphatcha Thawong
- Department of Medical Sciences, Medical Life Sciences Institute, Ministry of Public Health, 88/7 Tiwanon Road, Nonthaburi, 11000, Thailand
| | - Waritta Sawaengdee
- Department of Medical Sciences, Medical Life Sciences Institute, Ministry of Public Health, 88/7 Tiwanon Road, Nonthaburi, 11000, Thailand
| | - Suthida Tuntigumthon
- Department of Medical Sciences, Medical Life Sciences Institute, Ministry of Public Health, 88/7 Tiwanon Road, Nonthaburi, 11000, Thailand
| | - Catriona Patterson
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Kevin Tetteh
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Panadda Dhepakson
- Department of Medical Sciences, Medical Life Sciences Institute, Ministry of Public Health, 88/7 Tiwanon Road, Nonthaburi, 11000, Thailand
| | - Surakameth Mahasirimongkol
- Department of Medical Sciences, Medical Life Sciences Institute, Ministry of Public Health, 88/7 Tiwanon Road, Nonthaburi, 11000, Thailand.
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK.
- Faculty of Epidemiology and Population Health, LSHTM, London, UK.
| |
Collapse
|
4
|
Löfström E, Eringfält A, Kötz A, Tham J, Undén J. Avidity maturation of anti-spike IgG after vaccination in COVID-19 convalescent vs COVID-19 naïve patients. APMIS 2025; 133:e13489. [PMID: 39509082 DOI: 10.1111/apm.13489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Antibodies and avidity maturation contribute to long-lasting immunity, and previous COVID-19 seems to enhance the immune response after vaccination. The aim of this study was to compare the immune response after vaccination between COVID-19 convalescents and naïve patients. Blood samples from COVID-19 convalescents and naïve patients, taken 1, 3 and 6 months after the second dose of vaccine (mRNA-vaccine BNT162b2), were analysed for anti-spike IgG and avidity. Questionnaires concerning side effects were used. Thirty-one patients in the COVID-19 cohort and 30 patients in the naïve cohort were included. High levels of anti-spike IgG and avidity index were seen. Anti-spike IgG were significantly higher in the COVID-19 cohort and declining (median 1250, 566, 282 RU/ml vs 565, 187, 65 RU/ml). Avidity did not change over time (median at 6 months 78% vs 65%). The most common side effects were pain at the injection site, malaise and headache. In conclusion, high levels of anti-spike IgG after vaccination were seen and most patients developed high-avidity antibodies, although antibody levels and avidity were higher in the COVID-19 cohort. Over time, the levels of anti-spike IgG declined, yet avidity remained high. Side effects did not differ between groups and were of short duration.
Collapse
Affiliation(s)
- Emma Löfström
- Department of Clinical Sciences, Lund University, Office DCSL, Lund, Sweden
- Department of Clinical Microbiology, Hallands hospital Halmstad, Halmstad, Sweden
| | - Anna Eringfält
- Department of Clinical Microbiology, Hallands hospital Halmstad, Halmstad, Sweden
| | - Arne Kötz
- Department of Clinical Microbiology, Hallands hospital Halmstad, Halmstad, Sweden
| | - Johan Tham
- Department of Translational Medicine, Clinical Infection Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Johan Undén
- Department of Clinical Sciences, Lund University, Office DCSL, Lund, Sweden
- Department of Operation and Intensive care, Hallands hospital Halmstad, Halmstad, Sweden
| |
Collapse
|
5
|
Li Y, Yang HS, Klasse PJ, Zhao Z. The significance of antigen-antibody-binding avidity in clinical diagnosis. Crit Rev Clin Lab Sci 2025; 62:9-23. [PMID: 39041650 DOI: 10.1080/10408363.2024.2379286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Immunoglobulin G (IgG) and immunoglobulin M (IgM) testing are commonly used to determine infection status. Typically, the detection of IgM indicates an acute or recent infection, while the presence of IgG alone suggests a chronic or past infection. However, relying solely on IgG and IgM antibody positivity may not be sufficient to differentiate acute from chronic infections. This limitation arises from several factors. The prolonged presence of IgM can complicate diagnostic interpretations, and false positive IgM results often arise from antibody cross-reactivity with various antigens. Additionally, IgM may remain undetectable in prematurely collected samples or in individuals who are immunocompromised, further complicating accurate diagnosis. As a result, additional diagnostic tools are required to confirm infection status. Avidity is a measure of the strength of the binding between an antigen and antibody. Avidity-based assays have been developed for various infectious agents, including toxoplasma, cytomegalovirus (CMV), SARS-CoV-2, and avian influenza, and are promising tools in clinical diagnostics. By measuring the strength of antibody binding, they offer critical insights into the maturity of the immune response. These assays are instrumental in distinguishing between acute and chronic or past infections, monitoring disease progression, and guiding treatment decisions. The development of automated platforms has optimized the testing process by enhancing efficiency and minimizing the risk of manual errors. Additionally, the recent advent of real-time biosensor immunoassays, including the label-free immunoassays (LFIA), has further amplified the capabilities of these assays. These advances have expanded the clinical applications of avidity-based assays, making them useful tools for the diagnosis and management of various infectious diseases. This review is structured around several key aspects of IgG avidity in clinical diagnosis, including: (i) a detailed exposition of the IgG affinity maturation process; (ii) a thorough discussion of the IgG avidity assays, including the recently emerged biosensor-based approaches; and (iii) an examination of the applications of IgG avidity in clinical diagnosis. This review is intended to contribute toward the development of enhanced diagnostic tools through critical assessment of the present landscape of avidity-based testing, which allows us to identify the existing knowledge gaps and highlight areas for future investigation.
Collapse
Affiliation(s)
- Yaxin Li
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - He S Yang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Zhen Zhao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
6
|
Astakhova EA, Baranov KO, Shilova NV, Polyakova SM, Zuev EV, Poteryaev DA, Taranin AV, Filatov AV. Antibody Avidity Maturation Following Booster Vaccination with an Intranasal Adenovirus Salnavac Vaccine. Vaccines (Basel) 2024; 12:1362. [PMID: 39772024 PMCID: PMC11680177 DOI: 10.3390/vaccines12121362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The COVID-19 pandemic has led to the rapid development of new vaccines and methods of testing vaccine-induced immunity. Despite the extensive research that has been conducted on the level of specific antibodies, less attention has been paid to studying the avidity of these antibodies. The avidity of serum antibodies is associated with a vaccine showing high effectiveness and reflects the process of affinity maturation. In the context of vaccines against SARS-CoV-2, only a limited number of studies have investigated the avidity of antibodies, often solely focusing on the wild-type virus following vaccination. This study provides new insights into the avidity of serum antibodies following adenovirus-based boosters. We focused on the effects of an intranasal Salnavac booster, which is compared, using a single analytical platform, to an intramuscular Sputnik V. METHODS The avidity of RBD-specific IgGs and IgAs was investigated through ELISA using urea and biolayer interferometry. RESULTS The results demonstrated the similar avidities of serum antibodies, which were induced by both vaccines for six months post-booster. However, an increase in antibody avidity was observed for the wild-type and Delta variants, but not for the BA.4/5 variant. CONCLUSIONS Collectively, our data provide the insights into antibody avidity maturation after the adenovirus-based vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Ekaterina A. Astakhova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia;
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Moscow Center for Advanced Studies, Kulakova Street 20, 123592 Moscow, Russia
| | - Konstantin O. Baranov
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (A.V.T.)
| | - Nadezhda V. Shilova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Svetlana M. Polyakova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | | | | | - Alexander V. Taranin
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (A.V.T.)
| | - Alexander V. Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia;
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
7
|
Berber E, Ross TM. Factors Predicting COVID-19 Vaccine Effectiveness and Longevity of Humoral Immune Responses. Vaccines (Basel) 2024; 12:1284. [PMID: 39591186 PMCID: PMC11598945 DOI: 10.3390/vaccines12111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, prompted global efforts to develop vaccines to control the disease. Various vaccines, including mRNA (BNT162b2, mRNA-1273), adenoviral vector (ChAdOx1, Ad26.COV2.S), and inactivated virus platforms (BBIBP-CorV, CoronaVac), elicit high-titer, protective antibodies against the virus, but long-term antibody durability and effectiveness vary. The objective of this study is to elucidate the factors that influence vaccine effectiveness (VE) and the longevity of humoral immune responses to COVID-19 vaccines through a review of the relevant literature, including clinical and real-world studies. Here, we discuss the humoral immune response to different COVID-19 vaccines and identify factors influencing VE and antibody longevity. Despite initial robust immune responses, vaccine-induced immunity wanes over time, particularly with the emergence of variants, such as Delta and Omicron, that exhibit immune escape mechanisms. Additionally, the durability of the humoral immune responses elicited by different vaccine platforms, along with the identification of essential determinants of long-term protection-like pre-existing immunity, booster doses, hybrid immunity, and demographic factors-are critical for protecting against severe COVID-19. Booster vaccinations substantially restore neutralizing antibody levels, especially against immune-evasive variants, while individuals with hybrid immunity have a more durable and potent immune response. Importantly, comorbidities such as diabetes, cardiovascular disease, chronic kidney disease, and cancer significantly reduce the magnitude and longevity of vaccine-induced protection. Immunocompromised individuals, particularly those undergoing chemotherapy and those with hematologic malignancies, have diminished humoral responses and benefit disproportionately from booster vaccinations. Age and sex also influence immune responses, with older adults experiencing accelerated antibody decline and females generally exhibiting stronger humoral responses compared to males. Understanding the variables affecting immune protection is crucial to improving vaccine strategies and predicting VE and protection against COVID-19.
Collapse
Affiliation(s)
- Engin Berber
- Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Ted M. Ross
- Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
- Florida Research and Innovation Center, Cleveland Clinic, Florida, FL 34986, USA
| |
Collapse
|
8
|
Tasdighian S, Bechtold V, Essaghir A, Saeys Y, Burny W. An innate immune signature induced by AS01- or AS03-adjuvanted vaccines predicts the antibody response magnitude and quality consistently over time. Front Immunol 2024; 15:1412732. [PMID: 39206189 PMCID: PMC11349632 DOI: 10.3389/fimmu.2024.1412732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Background Antibody-mediated protection can depend on mechanisms varying from neutralization to Fc-dependent innate immune-cell recruitment. Adjuvanted vaccine development relies on a holistic understanding of how adjuvants modulate the quantity/titer and quality of the antibody response. Methods A Phase 2 trial (ClinicalTrials.gov: NCT00805389) evaluated hepatitis B vaccines formulated with licensed adjuvants (AS01B, AS01E, AS03, AS04 or Alum) in antigen-naïve adults. The trial investigated the role of adjuvants in shaping antibody-effector functions, and identified an innate transcriptional response shared by AS01B, AS01E and AS03. We integrated previously reported data on the innate response (gene expression, cytokine/C-reactive protein levels) and on quantitative/qualitative features of the mature antibody response (Fc-related parameters, immunoglobulin titers, avidity). Associations between the innate and humoral parameters were explored using systems vaccinology and a machine-learning framework. Results A dichotomy in responses between AS01/AS03 and AS04/Alum (with the former two contributing most to the association with the humoral response) was observed across all timepoints of this longitudinal study. The consistent patterns over time suggested a similarity in the impacts of the two-dose immunization regimen, year-long interval, and non-adjuvanted antigenic challenge given one year later. An innate signature characterized by interferon pathway-related gene expression and secreted interferon-γ-induced protein 10 and C-reactive protein, which was shared by AS01 and AS03, consistently predicted both the qualitative antibody response features and the titers. The signature also predicted from the antibody response quality, the group of adjuvants from which the administered vaccine was derived. Conclusion An innate signature induced by AS01- or AS03-adjuvanted vaccines predicts the antibody response magnitude and quality consistently over time.
Collapse
Affiliation(s)
- Setareh Tasdighian
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | | | | | - Yvan Saeys
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | | |
Collapse
|
9
|
Huang S, Zhang X, Su Y, Zhuang C, Tang Z, Huang X, Chen Q, Zhu K, Hu X, Ying D, Liu X, Jiang H, Zang X, Wang Z, Yang C, Liu D, Wang Y, Tang Q, Shen W, Cao H, Pan H, Ge S, Huang Y, Wu T, Zheng Z, Zhu F, Zhang J, Xia N. Long-term efficacy of a recombinant hepatitis E vaccine in adults: 10-year results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2024; 403:813-823. [PMID: 38387470 DOI: 10.1016/s0140-6736(23)02234-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND Hepatitis E virus (HEV) is a frequently overlooked causative agent of acute hepatitis. Evaluating the long-term durability of hepatitis E vaccine efficacy holds crucial importance. METHODS This study was an extension to a randomised, double-blind, placebo-controlled, phase-3 clinical trial of the hepatitis E vaccine conducted in Dontai County, Jiangsu, China. Participants were recruited from 11 townships in Dongtai County. In the initial trial, a total of 112 604 healthy adults aged 16-65 years were enrolled, stratified according to age and sex, and randomly assigned in a 1:1 ratio to receive three doses of hepatitis E vaccine or placebo intramuscularly at month 0, month 1, and month 6. A sensitive hepatitis E surveillance system including 205 clinical sentinels, covering the entire study region, was established and maintained for 10 years after vaccination. The primary outcome was the per-protocol efficacy of hepatitis E virus vaccine to prevent confirmed hepatitis E occurring at least 30 days after administration of the third dose. Throughout the study, the participants, site investigators, and laboratory staff remained blinded to the treatment assignments. This study is registered with ClinicalTrials.gov (NCT01014845). FINDINGS During the 10-year study period from Aug 22, 2007, to Oct 31, 2017, 90 people with hepatitis E were identified; 13 in the vaccine group (0·2 per 10 000 person-years) and 77 in the placebo group (1·4 per 10 000 person-years), corresponding to a vaccine efficacy of 83·1% (95% CI 69·4-91·4) in the modified intention-to-treat analysis and 86·6% (73·0 to 94·1) in the per-protocol analysis. In the subsets of participants assessed for immunogenicity persistence, of those who were seronegative at baseline and received three doses of hepatitis E vaccine, 254 (87·3%) of 291 vaccinees in Qindong at the 8·5-year mark and 1270 (73·0%) of 1740 vaccinees in Anfeng at the 7·5-year mark maintained detectable concentrations of antibodies. INTERPRETATION Immunisation with this hepatitis E vaccine offers durable protection against hepatitis E for up to 10 years, with vaccine-induced antibodies against HEV persisting for at least 8·5 years. FUNDING National Natural Science Foundation of China, Fujian Provincial Natural Science Foundation, Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, and the Fundamental Research Funds for the Central Universities.
Collapse
Affiliation(s)
- Shoujie Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health and National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Xuefeng Zhang
- Jiangsu Provincial Centre for Disease Control and Prevention, Nanjing, China
| | - Yingying Su
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health and National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Chunlan Zhuang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health and National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Zimin Tang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health and National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Xingcheng Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health and National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Qi Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health and National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Kongxin Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health and National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Xiaowen Hu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health and National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Dong Ying
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health and National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Xiaohui Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health and National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Hanmin Jiang
- Dongtai Centre for Disease Control and Prevention, Yancheng, Jiangsu, China
| | - Xia Zang
- Dongtai Centre for Disease Control and Prevention, Yancheng, Jiangsu, China
| | - Zhongze Wang
- Dongtai Centre for Disease Control and Prevention, Yancheng, Jiangsu, China
| | - Changlin Yang
- Dongtai Centre for Disease Control and Prevention, Yancheng, Jiangsu, China
| | - Donglin Liu
- Dongtai Centre for Disease Control and Prevention, Yancheng, Jiangsu, China
| | - Yijun Wang
- Dongtai Centre for Disease Control and Prevention, Yancheng, Jiangsu, China
| | - Quan Tang
- Yancheng Centre for Disease Control and Prevention, Yancheng, Jiangsu, China
| | | | | | - Huirong Pan
- Xiamen Innovax Biotech Company, Xiamen, China
| | - Shengxiang Ge
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health and National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Yue Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health and National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Ting Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health and National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Zizheng Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health and National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Fengcai Zhu
- Jiangsu Provincial Centre for Disease Control and Prevention, Nanjing, China
| | - Jun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health and National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health and National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
10
|
Wang S, Guirakhoo F, Periasamy S, Ryan V, Wiggins J, Subramani C, Thibodeaux B, Sahni J, Hellerstein M, Kuzmina NA, Bukreyev A, Dodart JC, Rumyantsev A. RBD-Protein/Peptide Vaccine UB-612 Elicits Mucosal and Fc-Mediated Antibody Responses against SARS-CoV-2 in Cynomolgus Macaques. Vaccines (Basel) 2023; 12:40. [PMID: 38250853 PMCID: PMC10818657 DOI: 10.3390/vaccines12010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Antibodies provide critical protective immunity against COVID-19, and the Fc-mediated effector functions and mucosal antibodies also contribute to the protection. To expand the characterization of humoral immunity stimulated by subunit protein-peptide COVID-19 vaccine UB-612, preclinical studies in non-human primates were undertaken to investigate mucosal secretion and the effector functionality of vaccine-induced antibodies in antibody-dependent monocyte phagocytosis (ADMP) and antibody-dependent NK cell activation (ADNKA) assays. In cynomolgus macaques, UB-612 induced potent serum-neutralizing, RBD-specific IgG binding, ACE2 binding-inhibition antibodies, and antibodies with Fc-mediated effector functions in ADMP and ADNKA assays. Additionally, immunized animals developed mucosal antibodies in bronchoalveolar lavage fluids (BAL). The level of mucosal or serum ADMP and ADNKA antibodies was found to be UB-612 dose-dependent. Our results highlight that the novel subunit UB-612 vaccine is a potent B-cell immunogen inducing polyfunctional antibody responses contributing to anti-viral immunity and vaccine efficacy.
Collapse
Affiliation(s)
- Shixia Wang
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Farshad Guirakhoo
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Sivakumar Periasamy
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; (S.P.); (C.S.); (N.A.K.); (A.B.)
- Galveston National Laboratory, Galveston, TX 77550, USA
| | - Valorie Ryan
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Jonathan Wiggins
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Chandru Subramani
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; (S.P.); (C.S.); (N.A.K.); (A.B.)
- Galveston National Laboratory, Galveston, TX 77550, USA
| | - Brett Thibodeaux
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Jaya Sahni
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Michael Hellerstein
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Natalia A. Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; (S.P.); (C.S.); (N.A.K.); (A.B.)
- Galveston National Laboratory, Galveston, TX 77550, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; (S.P.); (C.S.); (N.A.K.); (A.B.)
- Galveston National Laboratory, Galveston, TX 77550, USA
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Jean-Cosme Dodart
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Alexander Rumyantsev
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| |
Collapse
|
11
|
da Costa HHM, Bielavsky M, Orts DJB, Araujo S, Adriani PP, Nogueira JS, Astray RM, Pandey RP, Lancellotti M, Cunha-Junior JP, Prudencio CR. Production of Recombinant Zika Virus Envelope Protein by Airlift Bioreactor as a New Subunit Vaccine Platform. Int J Mol Sci 2023; 24:13955. [PMID: 37762254 PMCID: PMC10531330 DOI: 10.3390/ijms241813955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 09/29/2023] Open
Abstract
The Zika Virus (ZIKV) is an emerging arbovirus of great public health concern, particularly in the Americas after its last outbreak in 2015. There are still major challenges regarding disease control, and there is no ZIKV vaccine currently approved for human use. Among many different vaccine platforms currently under study, the recombinant envelope protein from Zika Virus (rEZIKV) constitutes an alternative option for vaccine development and has great potential for monitoring ZIKV infection and antibody response. This study describes a method to obtain a bioactive and functional rEZIKV using an E. coli expression system, with the aid of a 5-L airlift bioreactor and following an automated fast protein liquid chromatography (FPLC) protocol, capable of obtaining high yields of approximately 20 mg of recombinant protein per liter of bacterium cultures. The purified rEZIKV presented preserved antigenicity and immunogenicity. Our results show that the use of an airlift bioreactor for the production of rEZIKV is ideal for establishing protocols and further research on ZIKV vaccines bioprocess, representing a promising system for the production of a ZIKV envelope recombinant protein-based vaccine candidate.
Collapse
Affiliation(s)
- Hernan H. M. da Costa
- Immunology Center, Adolfo Lutz Institute, São Paulo 01246-902, Brazil
- Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05508-000, Brazil
| | - Monica Bielavsky
- Immunology Center, Adolfo Lutz Institute, São Paulo 01246-902, Brazil
| | - Diego J. B. Orts
- Immunology Center, Adolfo Lutz Institute, São Paulo 01246-902, Brazil
- Laboratory of Cardiobiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, São Paulo 04023-062, Brazil
| | - Sergio Araujo
- Immunology Center, Adolfo Lutz Institute, São Paulo 01246-902, Brazil
| | - Patrícia P. Adriani
- Skinzymes Biotechnology Ltd., São Paulo 05441-040, Brazil
- Laboratory of Nanopharmaceuticals and Delivery Systems, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | | | - Renato M. Astray
- Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05508-000, Brazil
- Multi-Purpose Laboratory Butantan Institute, São Paulo 05503-900, Brazil
| | - Ramendra P. Pandey
- School of Health Sciences and Technology, UPES University, Dehradun 248007, Uttarakhand, India
| | - Marcelo Lancellotti
- Faculty of Pharmaceutical Sciences—FCF, University of Campinas—UNICAMP, Campinas 13083-871, Brazil
| | - Jair P. Cunha-Junior
- Laboratory of Immunochemistry and Immunotechnology, Department of Immunology, Federal University of Uberlândia, Uberlândia 38405-317, Brazil
| | - Carlos R. Prudencio
- Immunology Center, Adolfo Lutz Institute, São Paulo 01246-902, Brazil
- Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
12
|
Kwong KWY, Xin Y, Lai NCY, Sung JCC, Wu KC, Hamied YK, Sze ETP, Lam DMK. Oral Vaccines: A Better Future of Immunization. Vaccines (Basel) 2023; 11:1232. [PMID: 37515047 PMCID: PMC10383709 DOI: 10.3390/vaccines11071232] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Oral vaccines are gaining more attention due to their ease of administration, lower invasiveness, generally greater safety, and lower cost than injectable vaccines. This review introduces certified oral vaccines for adenovirus, recombinant protein-based, and transgenic plant-based oral vaccines, and their mechanisms for inducing an immune response. Procedures for regulatory approval and clinical trials of injectable and oral vaccines are also covered. Challenges such as instability and reduced efficacy in low-income countries associated with oral vaccines are discussed, as well as recent developments, such as Bacillus-subtilis-based and nanoparticle-based delivery systems that have the potential to improve the effectiveness of oral vaccines.
Collapse
Affiliation(s)
- Keith Wai-Yeung Kwong
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
- Oristry BioTech (HK) Limited, Hong Kong, China
- Theratide BioTech (HK) Limited, Hong Kong, China
| | - Ying Xin
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
| | - Nelson Cheuk-Yin Lai
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
- Oristry BioTech (HK) Limited, Hong Kong, China
- Theratide BioTech (HK) Limited, Hong Kong, China
| | - Johnny Chun-Chau Sung
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
- Oristry BioTech (HK) Limited, Hong Kong, China
- Theratide BioTech (HK) Limited, Hong Kong, China
| | - Kam-Chau Wu
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
| | | | - Eric Tung-Po Sze
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Dominic Man-Kit Lam
- DrD Novel Vaccines Limited, Hong Kong, China
- Torsten Wiesel International Research Institute, Sichuan University, Chengdu 610064, China
| |
Collapse
|
13
|
Pallett SJC, Heskin J, Keating F, Mazzella A, Taylor H, Patel A, Lamb G, Sturdy D, Eisler N, Denny S, Charani E, Randell P, Mughal N, Parker E, de Oliveira CR, Rayment M, Jones R, Tedder R, McClure M, Groppelli E, Davies GW, O'Shea MK, Moore LSP. Hybrid immunity in older adults is associated with reduced SARS-CoV-2 infections following BNT162b2 COVID-19 immunisation. COMMUNICATIONS MEDICINE 2023; 3:83. [PMID: 37328651 DOI: 10.1038/s43856-023-00303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/09/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Older adults, particularly in long-term care facilities (LTCF), remain at considerable risk from SARS-CoV-2. Data on the protective effect and mechanisms of hybrid immunity are skewed towards young adults precluding targeted vaccination strategies. METHODS A single-centre longitudinal seroprevalence vaccine response study was conducted with 280 LCTF participants (median 82 yrs, IQR 76-88 yrs; 95.4% male). Screening by SARS-CoV-2 polymerase chain reaction with weekly asymptomatic/symptomatic testing (March 2020-October 2021) and serology pre-/post-two-dose Pfizer-BioNTech BNT162b2 vaccination for (i) anti-nucleocapsid, (ii) quantified anti-receptor binding domain (RBD) antibodies at three time-intervals, (iii) pseudovirus neutralisation, and (iv) inhibition by anti-RBD competitive ELISA were conducted. Neutralisation activity: antibody titre relationship was assessed via beta linear-log regression and RBD antibody-binding inhibition: post-vaccine infection relationship by Wilcoxon rank sum test. RESULTS Here we show neutralising antibody titres are 9.2-fold (95% CI 5.8-14.5) higher associated with hybrid immunity (p < 0.00001); +7.5-fold (95% CI 4.6-12.1) with asymptomatic infection; +20.3-fold, 95% (CI 9.7-42.5) with symptomatic infection. A strong association is observed between antibody titre: neutralising activity (p < 0.00001) and rising anti-RBD antibody titre: RBD antibody-binding inhibition (p < 0.001), although 18/169 (10.7%) participants with high anti-RBD titre (>100BAU/ml), show inhibition <75%. Higher RBD antibody-binding inhibition values are associated with hybrid immunity and reduced likelihood of infection (p = 0.003). CONCLUSIONS Hybrid immunity in older adults was associated with considerably higher antibody titres, neutralisation and inhibition capacity. Instances of high anti-RBD titre with lower inhibition suggests antibody quantity and quality as independent potential correlates of protection, highlighting added value of measuring inhibition over antibody titre alone to inform vaccine strategy.
Collapse
Affiliation(s)
- Scott J C Pallett
- Clinical Infection Department, Chelsea and Westminster NHS Foundation Trust, London, UK
- Centre of Defence Pathology, Royal Centre for Defence Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Joseph Heskin
- Clinical Infection Department, Chelsea and Westminster NHS Foundation Trust, London, UK
| | | | - Andrea Mazzella
- Institute for Infection and Immunity, St George's University of London, London, UK
| | | | - Aatish Patel
- Clinical Infection Department, Chelsea and Westminster NHS Foundation Trust, London, UK
| | - Georgia Lamb
- Clinical Infection Department, Chelsea and Westminster NHS Foundation Trust, London, UK
| | - Deborah Sturdy
- Royal Hospital Chelsea, Royal Hospital Road, London, UK
- Chief Nurse, Adult Social Care, UK Department of Health and Social Care, London, UK
| | | | - Sarah Denny
- Clinical Infection Department, Chelsea and Westminster NHS Foundation Trust, London, UK
| | - Esmita Charani
- Clinical Infection Department, Chelsea and Westminster NHS Foundation Trust, London, UK
| | | | - Nabeela Mughal
- Clinical Infection Department, Chelsea and Westminster NHS Foundation Trust, London, UK
- North West London Pathology, London, UK
| | - Eleanor Parker
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | | | - Michael Rayment
- Clinical Infection Department, Chelsea and Westminster NHS Foundation Trust, London, UK
| | - Rachael Jones
- Clinical Infection Department, Chelsea and Westminster NHS Foundation Trust, London, UK
| | - Richard Tedder
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Myra McClure
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Elisabetta Groppelli
- Institute for Infection and Immunity, St George's University of London, London, UK
| | - Gary W Davies
- Clinical Infection Department, Chelsea and Westminster NHS Foundation Trust, London, UK
| | - Matthew K O'Shea
- Centre of Defence Pathology, Royal Centre for Defence Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, UK
- Institute of Immunology and Immunotherapy, College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK
| | - Luke S P Moore
- Clinical Infection Department, Chelsea and Westminster NHS Foundation Trust, London, UK.
- North West London Pathology, London, UK.
- Imperial College London, NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, London, UK.
| |
Collapse
|
14
|
Hajilooi M, Keramat F, Moazenian A, Rastegari-Pouyani M, Solgi G. The quantity and quality of anti-SARS-CoV-2 antibodies show contrariwise association with COVID-19 severity: lessons learned from IgG avidity. Med Microbiol Immunol 2023; 212:203-220. [PMID: 37103583 PMCID: PMC10133916 DOI: 10.1007/s00430-023-00763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/07/2023] [Indexed: 04/28/2023]
Abstract
Gaining more appreciation on the protective/damaging aspects of anti-SARS-CoV-2 immunity associated with disease severity is of great importance. This study aimed to evaluate the avidity of serum IgG antibodies against SARS-CoV-2 spike (S) and nucleocapsid (N) in hospitalized symptomatic COVID-19 patients and asymptomatic RT-PCR-confirmed SARS-CoV-2 carriers as well as to compare antibody avidities with respect to vaccination status, vaccination dose and reinfection status. Serum levels of anti-S and anti-N IgG were determined using specific ELISA kits. Antibody avidity was determined by urea dissociation assay and expressed as avidity index (AI) value. Despite higher IgG levels in the symptomatic group, AI values of both anti-S and anti-N IgG were significantly lower in this group compared to asymptomatic individuals. In both groups, anti-S AI values were elevated in one-dose and two-dose vaccinees versus unvaccinated subjects, although significant differences were only detected in the symptomatic group. However, anti-N avidity showed no significant difference between the vaccinated and unvaccinated subgroups. Almost all vaccinated patients of different subgroups (based on vaccine type) had higher anti-S IgG avidity, while the statistical significance was detected only between those receiving Sinopharm compared to the unvaccinated subgroup. Also, statistically significant differences in antibody AIs were only found between primarily infected individuals of the two groups. Our findings indicate a key role for anti-SARS-CoV-2 IgG avidity in protection from symptomatic COVID-19 and calls for the incorporation of antibody avidity measurement into the current diagnostic tests to predict effective immunity toward SARS-CoV-2 infection or even for prognostic purposes.
Collapse
Affiliation(s)
- Mehrdad Hajilooi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd, Opposite to Lona Park, P.O. Box 6517838736, Hamadan, Iran
| | - Fariba Keramat
- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Infectious Diseases, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Moazenian
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd, Opposite to Lona Park, P.O. Box 6517838736, Hamadan, Iran
| | - Mohsen Rastegari-Pouyani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd, Opposite to Lona Park, P.O. Box 6517838736, Hamadan, Iran.
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Ghasem Solgi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd, Opposite to Lona Park, P.O. Box 6517838736, Hamadan, Iran.
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
15
|
Al-Hatamleh MA, Abusalah MA, Hatmal MM, Alshaer W, Ahmad S, Mohd-Zahid MH, Rahman ENSE, Yean CY, Alias IZ, Uskoković V, Mohamud R. Understanding the challenges to COVID-19 vaccines and treatment options, herd immunity and probability of reinfection. J Taibah Univ Med Sci 2023; 18:600-638. [PMID: 36570799 PMCID: PMC9758618 DOI: 10.1016/j.jtumed.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/29/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Unlike pandemics in the past, the outbreak of coronavirus disease 2019 (COVID-19), which rapidly spread worldwide, was met with a different approach to control and measures implemented across affected countries. The lack of understanding of the fundamental nature of the outbreak continues to make COVID-19 challenging to manage for both healthcare practitioners and the scientific community. Challenges to vaccine development and evaluation, current therapeutic options, convalescent plasma therapy, herd immunity, and the emergence of reinfection and new variants remain the major obstacles to combating COVID-19. This review discusses these challenges in the management of COVID-19 at length and highlights the mechanisms needed to provide better understanding of this pandemic.
Collapse
Affiliation(s)
- Mohammad A.I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Mai A. Abusalah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan
| | - Ma'mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman, Jordan
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Manali H. Mohd-Zahid
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Engku Nur Syafirah E.A. Rahman
- Department of Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Chan Y. Yean
- Department of Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Iskandar Z. Alias
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
16
|
Yu M, Charles A, Cagigi A, Christ W, Österberg B, Falck-Jones S, Azizmohammadi L, Åhlberg E, Falck-Jones R, Svensson J, Nie M, Warnqvist A, Hellgren F, Lenart K, Arcoverde Cerveira R, Ols S, Lindgren G, Lin A, Maecker H, Bell M, Johansson N, Albert J, Sundling C, Czarnewski P, Klingström J, Färnert A, Loré K, Smed-Sörensen A. Delayed generation of functional virus-specific circulating T follicular helper cells correlates with severe COVID-19. Nat Commun 2023; 14:2164. [PMID: 37061513 PMCID: PMC10105364 DOI: 10.1038/s41467-023-37835-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 04/03/2023] [Indexed: 04/17/2023] Open
Abstract
Effective humoral immune responses require well-orchestrated B and T follicular helper (Tfh) cell interactions. Whether these interactions are impaired and associated with COVID-19 disease severity is unclear. Here, longitudinal blood samples across COVID-19 disease severity are analysed. We find that during acute infection SARS-CoV-2-specific circulating Tfh (cTfh) cells expand with disease severity. SARS-CoV-2-specific cTfh cell frequencies correlate with plasmablast frequencies and SARS-CoV-2 antibody titers, avidity and neutralization. Furthermore, cTfh cells but not other memory CD4 T cells, from severe patients better induce plasmablast differentiation and antibody production compared to cTfh cells from mild patients. However, virus-specific cTfh cell development is delayed in patients that display or later develop severe disease compared to those with mild disease, which correlates with delayed induction of high-avidity neutralizing antibodies. Our study suggests that impaired generation of functional virus-specific cTfh cells delays high-quality antibody production at an early stage, potentially enabling progression to severe disease.
Collapse
Affiliation(s)
- Meng Yu
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Afandi Charles
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Alberto Cagigi
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Wanda Christ
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Björn Österberg
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Falck-Jones
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lida Azizmohammadi
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eric Åhlberg
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ryan Falck-Jones
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Julia Svensson
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mu Nie
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Warnqvist
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrika Hellgren
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Klara Lenart
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rodrigo Arcoverde Cerveira
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sebastian Ols
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Gustaf Lindgren
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ang Lin
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Holden Maecker
- The Human Immune Monitoring Center, Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Max Bell
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Niclas Johansson
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Paulo Czarnewski
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Jonas Klingström
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
17
|
Helfgott DC, Racine-Brzostek S, Short KJ, Zhao Z, Christos P, Nino I, Niu T, Contreras J, Ritchie EK, Desai P, Samuel M, Roboz GJ. Immunogenicity of COVID-19 mRNA vaccines in patients with acute myeloid leukemia and myelodysplastic syndrome. Leuk Lymphoma 2023; 64:662-670. [PMID: 36282213 DOI: 10.1080/10428194.2022.2131414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Immunocompromised patients are susceptible to complications from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The mRNA vaccines BNT162b2 and mRNA-1273 are effective in immunocompetent adults, but have diminished activity in immunocompromised patients. We measured anti-spike SARS-CoV-2 antibody (anti-S) response, avidity, and surrogate neutralizing antibody activity in COVID-19 vaccinated patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Anti-S was induced in 89% of AML and 88% of MDS patients, but median levels were significantly lower than in healthy controls. SARS-CoV-2 antibody avidity and neutralizing activity from AML patients were significantly lower than controls. Antibody avidity was significantly greater in patients after mRNA-1273 versus BNT162b2; there were trends toward higher anti-S levels and greater neutralizing antibody activity after mRNA-1273 vaccination. Patients with AML and MDS are likely to respond to COVID-19 mRNA vaccination, but differences in anti-S levels, avidity, and neutralizing antibody activity may affect clinical outcomes and require further study.
Collapse
Affiliation(s)
- David C Helfgott
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, The New York Presbyterian Hospital, New York, NY, USA
| | - Sabrina Racine-Brzostek
- Department of Pathology and Laboratory Medicine, Translational Research Program, Weill Cornell Medicine, The New York Presbyterian Hospital, New York, NY, USA
| | - Kelsey J Short
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, The New York Presbyterian Hospital, New York, NY, USA
| | - Zhen Zhao
- Department of Pathology and Laboratory Medicine, Translational Research Program, Weill Cornell Medicine, The New York Presbyterian Hospital, New York, NY, USA
| | - Paul Christos
- Department of Biostatistics, Weill Cornell Medicine, New York, NY, USA
| | - Itzel Nino
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, The New York Presbyterian Hospital, New York, NY, USA
| | - Tina Niu
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, The New York Presbyterian Hospital, New York, NY, USA
| | - Jorge Contreras
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, The New York Presbyterian Hospital, New York, NY, USA
| | - Ellen K Ritchie
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, The New York Presbyterian Hospital, New York, NY, USA
| | - Pinkal Desai
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, The New York Presbyterian Hospital, New York, NY, USA
| | - Michael Samuel
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, The New York Presbyterian Hospital, New York, NY, USA
| | - Gail J Roboz
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, The New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
18
|
Hasibuan AS, Koesnoe S, Widhani A, Muhadi M, Shatri H, Ginanjar E, Yunihastuti E, Soewondo P, Aman Nasution S, Djauzi S, Dina Liastuti L, Koento T, Sumariyono S, Mulyantini A. Incidence and Associated Factors of SARS-CoV-2 Infection Post-mRNA-1273 Booster Vaccination in Health-Care Workers. Vaccines (Basel) 2023; 11:481. [PMID: 36851358 PMCID: PMC9963908 DOI: 10.3390/vaccines11020481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The COVID-19 pandemic has caused significant morbidity and mortality worldwide, especially among health-care workers. One of the most important preventive measures is vaccination. This study examined factors associated with the incidence rate of SARS-CoV-2 infection after mRNA-1273 booster vaccination (preceded by the CoronaVac primary vaccination) and the antibody profile of health-care workers at one of the tertiary hospitals in Indonesia. This was a combined retrospective cohort and cross-sectional study. Three hundred health-care workers who were given the mRNA-1273 booster vaccine a minimum of 5 months prior to this study were randomly selected. Participants were then interviewed about their history of COVID-19 vaccination, history of SARS-CoV-2 infection, and comorbidities. Blood samples were taken to assess IgG sRBD antibody levels. The median antibody level was found to be 659 BAU/mL (min 37 BAU/mL, max 5680 BAU/mL, QIR 822 BAU/mL) after the booster, and this was not related to age, sex, comorbidities, or adverse events following immunization (AEFI) after the booster. SARS-CoV-2 infection after the booster was correlated with higher antibody levels. In sum, 56 participants (18.6%) experienced SARS-CoV-2 infection after the mRNA-1273 booster vaccination within 5 months. Incidence per person per month was 3.2%. Age, sex, diabetes mellitus type 2, hypertension, obesity, and post-booster AEFI were not related to COVID-19 incidence after the booster. History of SARS-CoV-2 infection before the booster vaccination was significantly associated with a reduced risk of SARS-CoV-2 infection after booster vaccination, with a relative risk (RR) of 0.21 (95% CI 0.09-0.45, p < 0.001).
Collapse
Affiliation(s)
- Anshari Saifuddin Hasibuan
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia/Cipto Mangunkusumo General Hospital, Jakarta 10430, Indonesia
| | - Sukamto Koesnoe
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia/Cipto Mangunkusumo General Hospital, Jakarta 10430, Indonesia
| | - Alvina Widhani
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia/Cipto Mangunkusumo General Hospital, Jakarta 10430, Indonesia
| | - Muhadi Muhadi
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia/Cipto Mangunkusumo General Hospital, Jakarta 10430, Indonesia
| | - Hamzah Shatri
- Division of Psychosomatic and Palliative Care, Department of Internal Medicine, Faculty of Medicine, University of Indonesia/Cipto Mangunkusumo General Hospital, Jakarta 10430, Indonesia
| | - Eka Ginanjar
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia/Cipto Mangunkusumo General Hospital, Jakarta 10430, Indonesia
| | - Evy Yunihastuti
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia/Cipto Mangunkusumo General Hospital, Jakarta 10430, Indonesia
| | - Pradana Soewondo
- Division of Endocrine System, Metabolism and Diabetes, Department of Internal Medicine, Faculty of Medicine, University of Indonesia/Cipto Mangunkusumo General Hospital, Jakarta 10430, Indonesia
| | | | - Samsuridjal Djauzi
- Adult Immunization Task Force, Indonesian Society of Internal Medicine, Jakarta 10430, Indonesia
| | | | | | | | | |
Collapse
|
19
|
da Costa HHM, Orts DJB, Moura AD, Duarte-Neto AN, Cirqueira CS, Réssio RA, Kanamura CT, Miguita K, Ferreira JE, Santos RTM, Adriani PP, Cunha-Junior JP, Astray RM, Catarino RM, Lancelotti M, Prudencio CR. RBD and Spike DNA-Based Immunization in Rabbits Elicited IgG Avidity Maturation and High Neutralizing Antibody Responses against SARS-CoV-2. Viruses 2023; 15:555. [PMID: 36851769 PMCID: PMC9959588 DOI: 10.3390/v15020555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023] Open
Abstract
Neutralizing antibodies (nAbs) are a critical part of coronavirus disease 2019 (COVID-19) research as they are used to gain insight into the immune response to severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infections. Among the technologies available for generating nAbs, DNA-based immunization methods are an alternative to conventional protocols. In this pilot study, we investigated whether DNA-based immunization by needle injection in rabbits was a viable approach to produce a functional antibody response. We demonstrated that three doses of DNA plasmid carrying the gene encoding the full-length spike protein (S) or the receptor binding domain (RBD) of SARS-CoV-2 induced a time-dependent increase in IgG antibody avidity maturation. Moreover, the IgG antibodies displayed high cross neutralization by live SARS-CoV-2 and pseudoviruses neutralization assays. Thus, we established a simple, low cost and feasible DNA-based immunization protocol in rabbits that elicited high IgG avidity maturation and nAbs production against SARS-CoV-2, highlighting the importance of DNA-based platforms for developing new immunization strategies against SARS-CoV-2 and future emerging epidemics.
Collapse
Affiliation(s)
- Hernan H. M. da Costa
- Immunology Center, Institute Adolfo Lutz, São Paulo 01246-902, Brazil
- Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo 05508-000, Brazil
| | - Diego J. B. Orts
- Immunology Center, Institute Adolfo Lutz, São Paulo 01246-902, Brazil
| | - Andrew D. Moura
- Immunology Center, Institute Adolfo Lutz, São Paulo 01246-902, Brazil
| | | | | | - Rodrigo A. Réssio
- Pathology Center, Institute Adolfo Lutz, São Paulo 01246-902, Brazil
| | | | - Karen Miguita
- Pathology Center, Institute Adolfo Lutz, São Paulo 01246-902, Brazil
| | | | | | - Patricia P. Adriani
- Skinzymes Biotechnology Ltd., São Paulo 05441-040, Brazil
- Laboratory of Nanopharmaceuticals and Delivery Systems, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Jair P. Cunha-Junior
- Laboratory of Immunochemistry and Immunotechnology, Department of Immunology, Federal University of Uberlândia, Uberlândia 38405-317, Brazil
| | - Renato M. Astray
- Multi-Purpose Laboratory, Butantan Institute, São Paulo 05503-900, Brazil
| | | | - Marcelo Lancelotti
- Faculty of Pharmaceutical Sciences, Campinas State University, Campinas 13083-871, Brazil
| | - Carlos R. Prudencio
- Immunology Center, Institute Adolfo Lutz, São Paulo 01246-902, Brazil
- Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
20
|
Li K, Dodds M, Spreng RL, Abraha M, Huntwork RHC, Dahora LC, Nyanhete T, Dutta S, Wille-Reece U, Jongert E, Ewer KJ, Hill AVS, Jin C, Hill J, Pollard AJ, Munir Alam S, Tomaras GD, Dennison SM. A tool for evaluating heterogeneity in avidity of polyclonal antibodies. Front Immunol 2023; 14:1049673. [PMID: 36875126 PMCID: PMC9978818 DOI: 10.3389/fimmu.2023.1049673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Diversity in specificity of polyclonal antibody (pAb) responses is extensively investigated in vaccine efficacy or immunological evaluations, but the heterogeneity in antibody avidity is rarely probed as convenient tools are lacking. Here we have developed a polyclonal antibodies avidity resolution tool (PAART) for use with label-free techniques, such as surface plasmon resonance and biolayer interferometry, that can monitor pAb-antigen interactions in real time to measure dissociation rate constant (kd ) for defining avidity. PAART utilizes a sum of exponentials model to fit the dissociation time-courses of pAb-antigens interactions and resolve multiple kd contributing to the overall dissociation. Each kd value of pAb dissociation resolved by PAART corresponds to a group of antibodies with similar avidity. PAART is designed to identify the minimum number of exponentials required to explain the dissociation course and guards against overfitting of data by parsimony selection of best model using Akaike information criterion. Validation of PAART was performed using binary mixtures of monoclonal antibodies of same specificity but differing in kd of the interaction with their epitope. We applied PAART to examine the heterogeneity in avidities of pAb from malaria and typhoid vaccinees, and individuals living with HIV-1 that naturally control the viral load. In many cases, two to three kd were dissected indicating the heterogeneity of pAb avidities. We showcase examples of affinity maturation of vaccine induced pAb responses at component level and enhanced resolution of heterogeneity in avidity when antigen-binding fragments (Fab) are used instead of polyclonal IgG antibodies. The utility of PAART can be manifold in examining circulating pAb characteristics and could inform vaccine strategies aimed to guide the host humoral immune response.
Collapse
Affiliation(s)
- Kan Li
- Center for Human Systems Immunology, Duke University, Durham, NC, United States
- Department of Surgery, Duke University, Durham, NC, United States
| | - Michael Dodds
- Integrated Drug Development, Certara, Seattle, WA, United States
| | - Rachel L. Spreng
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Milite Abraha
- Center for Human Systems Immunology, Duke University, Durham, NC, United States
- Department of Surgery, Duke University, Durham, NC, United States
| | - Richard H. C. Huntwork
- Center for Human Systems Immunology, Duke University, Durham, NC, United States
- Department of Surgery, Duke University, Durham, NC, United States
| | - Lindsay C. Dahora
- Center for Human Systems Immunology, Duke University, Durham, NC, United States
- Department of Immunology, Duke University, Durham, NC, United States
| | - Tinashe Nyanhete
- Center for Human Systems Immunology, Duke University, Durham, NC, United States
- Department of Immunology, Duke University, Durham, NC, United States
| | - Sheetij Dutta
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Ulrike Wille-Reece
- PATH's Center for Vaccine Innovation and Access, Washington, DC, United States
| | | | - Katie J. Ewer
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Adrian V. S. Hill
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Center, Oxford, United Kingdom
| | - Celina Jin
- Oxford Vaccine Group and Department of Pediatrics, University of Oxford, Oxford, United Kingdom
| | - Jennifer Hill
- Oxford Vaccine Group and Department of Pediatrics, University of Oxford, Oxford, United Kingdom
| | - Andrew J. Pollard
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Center, Oxford, United Kingdom
- Oxford Vaccine Group and Department of Pediatrics, University of Oxford, Oxford, United Kingdom
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
- Department of Pathology, Duke University, Durham, NC, United States
| | - Georgia D. Tomaras
- Center for Human Systems Immunology, Duke University, Durham, NC, United States
- Department of Surgery, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
- Department of Immunology, Duke University, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - S. Moses Dennison
- Center for Human Systems Immunology, Duke University, Durham, NC, United States
- Department of Surgery, Duke University, Durham, NC, United States
| |
Collapse
|
21
|
Kudryashova AM, Manuylov VA, Murzina AA, Kaira AN, Borisova OV. DYNAMICS IN MATURATION OF SARS-COV-2 RBD-SPECIFIC IGG ANTIBODY AVIDITY DEPENDING ON IMMUNIZATION TIMEFRAME AND TYPE. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2023. [DOI: 10.15789/2220-7619-dim-2049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The aim is to study the dynamics of avidity maturation of IgG antibodies to RBD SARS-CoV-2 depending on the type of immunization (vaccination or infection), as well as on the duration and frequency of immunization.
Materials and methods. The study was performed on two cohort collected at two time of the COVID-19 pandemic. We established a cohort of 87 convalescents from COVID-19 of the pandemic in spring- winter 2020. The second cohort collected in September 2021 from 204 individuals and are represented by two groups.
The first group (n=64) vaccinations with Gam-Covid-Vac and did not report a COVID-19 disease. Hybrid immunity (second group) was achieved after a SARS-CoV-2 breakthrough infection in naive individuals, who had received a two-dose COVID-19 vaccination Gam-Covid-Vac during the spring-summer of 2021.
Results and conclusions. This study allowed to determine the dynamics of avidity maturation IgG antibodies to RBD SARS-CoV-2 associated with the type and order of antigen exposure in the form of vaccination or infection.
In this article, we showed that the most effective immunity is formed in COVID-19 convalescents and then two steps vaccination Sputnik V.
Comparison of "hybrid" immunity individuals with vaccinated and COVID-19 convalescents was shown significantly higher (p0.001) and median level was 228 BAU/ml versus 75 or 119 BAU/ml, and higher level of avidity index (IA 90.5% vs. 54.5 and 76.6, respectively, p0.001).
Comparison immunization COVID-19 convalescents with vaccination a of two Sputnik V vaccination was shown that vaccination leads to higher IgG levels (median values in groups 119 and 75 BAU/ml, p0.001) and to a higher avidity index (76.6% vs. 54.5%).
It should be noted, in patients with "hybrid" immunity, the median level of avidity index was 25% versus 14.8% and 16% in COVID-19 convalescents and vaccinated (p0.001) and in 8 individuals it was higher than 50% in the test with 8M urea as a denaturing agent.
Thus, the more rapid induction of high-avidity antibodies was in vaccination individuals the early stages of immunization (up to 4 months), during the period when IgG maturation has not yet been completed.
Our results showed what during this period vaccination leads to the production of antibodies with avidity index a median level of 82% versus 36% in COVID-19 convalescents the same period.
Collapse
|
22
|
Nielsen CM, Barrett JR, Davis C, Fallon JK, Goh C, Michell AR, Griffin C, Kwok A, Loos C, Darko S, Laboune F, Tekman M, Diouf A, Miura K, Francica JR, Ransier A, Long CA, Silk SE, Payne RO, Minassian AM, Lauffenburger DA, Seder RA, Douek DC, Alter G, Draper SJ. Delayed boosting improves human antigen-specific Ig and B cell responses to the RH5.1/AS01B malaria vaccine. JCI Insight 2023; 8:e163859. [PMID: 36692019 PMCID: PMC9977309 DOI: 10.1172/jci.insight.163859] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/30/2022] [Indexed: 01/24/2023] Open
Abstract
Modifications to vaccine delivery that increase serum antibody longevity are of great interest for maximizing efficacy. We have previously shown that a delayed fractional (DFx) dosing schedule (0-1-6 month) - using AS01B-adjuvanted RH5.1 malaria antigen - substantially improves serum IgG durability as compared with monthly dosing (0-1-2 month; NCT02927145). However, the underlying mechanism and whether there are wider immunological changes with DFx dosing were unclear. Here, PfRH5-specific Ig and B cell responses were analyzed in depth through standardized ELISAs, flow cytometry, systems serology, and single-cell RNA-Seq (scRNA-Seq). Data indicate that DFx dosing increases the magnitude and durability of circulating PfRH5-specific B cells and serum IgG1. At the peak antibody magnitude, DFx dosing was distinguished by a systems serology feature set comprising increased FcRn binding, IgG avidity, and proportion of G2B and G2S2F IgG Fc glycans, alongside decreased IgG3, antibody-dependent complement deposition, and proportion of G1S1F IgG Fc glycan. Concomitantly, scRNA-Seq data show a higher CDR3 percentage of mutation from germline and decreased plasma cell gene expression in circulating PfRH5-specific B cells. Our data, therefore, reveal a profound impact of DFx dosing on the humoral response and suggest plausible mechanisms that could enhance antibody longevity, including improved FcRn binding by serum Ig and a potential shift in the underlying cellular response from circulating short-lived plasma cells to nonperipheral long-lived plasma cells.
Collapse
Affiliation(s)
| | | | - Christine Davis
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
| | - Jonathan K. Fallon
- Ragon Institute of Massachusetts General Hospital (MGH), MIT and Harvard, Boston, Massachusetts, USA
| | - Cyndi Goh
- University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Ashlin R. Michell
- Ragon Institute of Massachusetts General Hospital (MGH), MIT and Harvard, Boston, Massachusetts, USA
| | - Catherine Griffin
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
| | - Andrew Kwok
- University of Oxford, Oxford, Oxfordshire, United Kingdom
- Wellcome Center for Human Genetics, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Carolin Loos
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
- Ragon Institute of Massachusetts General Hospital (MGH), MIT and Harvard, Boston, Massachusetts, USA
| | - Samuel Darko
- Vaccine Research Center, NIAID/NIH, Bethesda, Maryland, USA
| | - Farida Laboune
- Vaccine Research Center, NIAID/NIH, Bethesda, Maryland, USA
| | - Mehmet Tekman
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, USA
| | | | - Amy Ransier
- Vaccine Research Center, NIAID/NIH, Bethesda, Maryland, USA
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, USA
| | - Sarah E. Silk
- University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Ruth O. Payne
- University of Oxford, Oxford, Oxfordshire, United Kingdom
| | | | | | | | | | - Galit Alter
- Ragon Institute of Massachusetts General Hospital (MGH), MIT and Harvard, Boston, Massachusetts, USA
| | | |
Collapse
|
23
|
Portilho AI, Santos JS, Trzewikoswki de Lima G, Lima GG, De Gaspari E. Study of avidity-ELISA: Comparison of chaotropic agents, incubation temperature and affinity maturation after meningococcal immunization. J Immunol Methods 2023; 512:113387. [PMID: 36442652 DOI: 10.1016/j.jim.2022.113387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 10/14/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
The avidity index (AI) measures the binding strength between the antibody and the antigen, reflecting the affinity maturation. It can be measured by a modified ELISA, adding a chaotropic agent to disrupt the antigen x antibody interaction. However, details of the protocols used affect the final results. We compared the AI of mice sera after a three-dose immunization with meningococcal antigens using different adjuvants. The AI was assessed using potassium thiocyanate (KSCN) and urea as chaotropic agents, incubated at 4 °C, room temperature (RT) and 37 °C. KSCN presented statistically different results when the incubation was set at 4 °C vs RT and 4 °C vs 37 °C, thus, the mean AI obtained were lower. For Urea, 4 °C vs 37 °C presented relevant differences. Using whole-cells suspensions or OMVs as coating antigen provided similar results in some protocols. Thus, the affinity maturation was assessed after each immunization dose and adjuvant use (aluminium hydroxide and dimethyldioctadecylammonium bromide) supported affinity maturation. It is important to study the AI as a functional parameter of humoral response, and both KSCN and Urea are suitable chaotropic agents, however, the protocols should be standardized considering the nature of the antigen, the chaotropic activity and overall laboratory conditions. Adjuvants are important tools to improve antibody avidity following immunization.
Collapse
Affiliation(s)
- Amanda Izeli Portilho
- Immunology Center, Adolfo Lutz Institute, São Paulo, SP, Brazil; Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, SP, Brazil.
| | | | - Gabriela Trzewikoswki de Lima
- Immunology Center, Adolfo Lutz Institute, São Paulo, SP, Brazil; Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, SP, Brazil
| | - Gabrielle Gimenes Lima
- Immunology Center, Adolfo Lutz Institute, São Paulo, SP, Brazil; Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, SP, Brazil.
| | - Elizabeth De Gaspari
- Immunology Center, Adolfo Lutz Institute, São Paulo, SP, Brazil; Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
24
|
Antibody and T cell responses against wild-type and Omicron SARS-CoV-2 after third-dose BNT162b2 in adolescents. Signal Transduct Target Ther 2022; 7:397. [PMID: 36517469 PMCID: PMC9748396 DOI: 10.1038/s41392-022-01282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/15/2022] Open
Abstract
The high effectiveness of the third dose of BNT162b2 in healthy adolescents against Omicron BA.1 has been reported in some studies, but immune responses conferring this protection are not yet elucidated. In this analysis, our study (NCT04800133) aims to evaluate the humoral and cellular responses against wild-type and Omicron (BA.1, BA.2 and/or BA.5) SARS-CoV-2 before and after a third dose of BNT162b2 in healthy adolescents. At 5 months after 2 doses, S IgG, S IgG Fc receptor-binding, and neutralising antibody responses waned significantly, yet neutralising antibodies remained detectable in all tested adolescents and S IgG avidity increased from 1 month after 2 doses. The antibody responses and S-specific IFN-γ+ and IL-2+ CD8+ T cell responses were significantly boosted in healthy adolescents after a homologous third dose of BNT162b2. Compared to adults, humoral responses for the third dose were non-inferior or superior in adolescents. The S-specific IFN-γ+ and IL-2+ CD4+ and CD8+ T cell responses in adolescents and adults were comparable or non-inferior. Interestingly, after 3 doses, adolescents had preserved S IgG, S IgG avidity, S IgG FcγRIIIa-binding, against Omicron BA.2, as well as preserved cellular responses against BA.1 S and moderate neutralisation levels against BA.1, BA.2 and BA.5. Sera from 100 and 96% of adolescents tested at 1 and 5 months after two doses could also neutralise BA.1. Our study found high antibody and T cell responses, including potent cross-variant reactivity, after three doses of BNT162b2 vaccine in adolescents in its current formulation, suggesting that current vaccines can be protective against symptomatic Omicron disease.
Collapse
|
25
|
Nakashima K, Ishida M, Matsui H, Yoshida C, Nagai T, Shiraga M, Nakaoka H, Otsuka Y, Nakagama Y, Kaku N, Nitahara Y, Kido Y, Hirota Y. Immunogenicity and safety of COVID-19 vaccine in lung cancer patients receiving anticancer treatment: A prospective multicenter cohort study. Hum Vaccin Immunother 2022; 18:2140549. [PMID: 36369871 DOI: 10.1080/21645515.2022.2140549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study assessed the immunogenicity and safety of the BNT162b2 mRNA vaccine in lung cancer patients receiving anticancer treatment. We enrolled lung cancer patients receiving anticancer treatment and non-cancer patients; all participants were fully vaccinated with the BNT162b2 vaccine. Blood samples were collected before the first and second vaccinations and 4 ± 1 weeks after the second vaccination. Anti-severe respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein S1 subunit receptor-binding domain antibody titers were measured using the Architect SARS-CoV-2 IgG II Quant and Elecsys Anti-SARS-CoV-2 S assays. Fifty-five lung cancer patients and 38 non-cancer patients were included in the immunogenicity analysis. Lung cancer patients showed significant increase in the geometric mean antibody concentration, which was significantly lower than that in the non-cancer patients after the first (30 vs. 121 AU/mL, p < .001 on Architect; 4.0 vs 1.2 U/mL, p < .001 on Elecsys) and second vaccinations (1632 vs. 3472 AU/mL, p = .005 on Architect; 213 vs 573 A/mL, p = .002 on Elecsys). The adjusted odds ratio (aOR) for seroprotection was significantly lower (p < .05) in lung cancer patients than that in non-cancer patients. Analysis of the anticancer treatment types showed that the aOR for seroprotection was significantly lower (p < .05) in lung cancer patients receiving cytotoxic agents. They showed no increase in adverse reactions. BNT162b2 vaccination in lung cancer patients undergoing anticancer treatment significantly increased (p < .05) antibody titers and showed acceptable safety. Immunogenicity in these patients could be inadequate compared with that in non-cancer patients.
Collapse
Affiliation(s)
- Kei Nakashima
- Department of Pulmonology, Kameda Medical Center, Kamogawa, Chiba, Japan
| | | | - Hiroki Matsui
- Clinical Research Support Office, Kameda Medical Center, Kamogawa, Chiba, Japan
| | - Chihiro Yoshida
- Department of Pulmonology, Kameda Medical Center, Kamogawa, Chiba, Japan
| | - Tatsuya Nagai
- Department of Pulmonology, Kameda Medical Center, Kamogawa, Chiba, Japan
| | - Minoru Shiraga
- Department of Pulmonology, Chikamori Hospital, Kochi, Japan
| | | | - Yoshihito Otsuka
- Department of Laboratory medicine, Kameda Medical Center, Kamogawa, Chiba, Japan
| | - Yu Nakagama
- Department of Virology & Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Natsuko Kaku
- Department of Virology & Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yuko Nitahara
- Department of Virology & Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yasutoshi Kido
- Department of Virology & Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoshio Hirota
- Clinical Epidemiology Research Center, SOUSEIKAI Medical Group (Medical Co. LTA), Fukuoka, Japan
| |
Collapse
|
26
|
Bauer G, Struck F, Staschik E, Maile J, Wochinz‐Richter K, Motz M, Soutschek E. Differential avidity determination of IgG directed towards the receptor-binding domain (RBD) of SARS-CoV-2 wild-type and its variants in one assay: Rational tool for the assessment of protective immunity. J Med Virol 2022; 94:5294-5303. [PMID: 35851961 PMCID: PMC9349558 DOI: 10.1002/jmv.28006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/02/2022] [Accepted: 07/14/2022] [Indexed: 12/15/2022]
Abstract
The avidity (binding strength) of IgG directed towards the receptor-binding domain (RBD) of spike protein has been recognized as a central marker in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serology. It seems to be linked to increased infection-neutralization potential and therefore might indicate protective immunity. Using a prototype line assay based on the established recomLine SARS-CoV-2 assay, supplemented with RBD of the delta and the omicron variant, differential avidity determination of IgG directed towards RBD of wild-type (WT) SARS-CoV-2 and distinct variants was possible within one assay. Our data confirm that natural SARS-CoV-2 infection or one vaccination step lead to low avidity IgG, whereas further vaccination steps gradually increase avidity to high values. High avidity is not reached by infection alone. After infection with WT SARS-CoV-2 or vaccination based on mRNA WT, the avidity of cross-reacting IgG directed towards RBD of the delta variant only showed marginal differences compared to IgG directed towards RBD WT. In contrast, the avidity of IgG cross-reacting with RBD of the omicron variant was always much lower than for IgG RBD WT, except after the third vaccination step. Therefore, parallel avidity testing of RBD WT and omicron seems to be mandatory for a significant assessment of protective immunity towards SARS-CoV-2.
Collapse
Affiliation(s)
- Georg Bauer
- Institute of Virology, Medical CenterUniversity of FreiburgFreiburgGermany,Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | | | | | | | | | | | | |
Collapse
|
27
|
Monroe JM, Haralambieva IH, Warner ND, Grill DE, Quach HQ, Kennedy RB. Longitudinal antibody titer, avidity, and neutralizing responses after SARS-CoV-2 infection. Heliyon 2022; 8:e11676. [PMID: 36439767 PMCID: PMC9675084 DOI: 10.1016/j.heliyon.2022.e11676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/05/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
While waning immunity and SARS-CoV-2 variant immune escape continue to result in high infection rates worldwide, associations between longitudinal quantitative, qualitative, and functional humoral immune responses after SARS-CoV-2 infection remain unclear. In this study, we found significant waning of antibody against Spike S1 (R = -0.32, p = 0.035) and N protein (R = -0.39, p = 0.008), while RBD antibody moderately decreased (R = -0.19, p = 0.203). Likewise, neutralizing antibody titer (ND50) waned over time (R = -0.46, p = 0.001). In contrast, antibody avidity increased significantly over time for Spike S1 (R = 0.62, p = 6.0e-06), RBD (R = 0.54, p = 2.0e-04), and N (R = 0.33, p = 0.025) antibodies. Across all humoral responses, ND50 strongly associated with Spike S1 (R = 0.85, p = 2.7e-13) and RBD (R = 0.78, p = 2.9e-10) antibodies. Our findings provide longitudinal insight into humoral immune responses after infection and imply the potential of Spike S1/RBD antibody titer as surrogate correlates of protection.
Collapse
Affiliation(s)
- Jonathon M. Monroe
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Iana H. Haralambieva
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Diane E. Grill
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Huy Quang Quach
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
28
|
Xu W, Song D, Liu J, Han X, Xu J, Zhu A, Long F. Development of chemiluminescent lab-on-fiber immunosensors for rapid point-of-care testing of anti-SARS-CoV-2 antibodies and evaluation of longitudinal immune response kinetics following three-dose inactivation virus vaccination. J Med Virol 2022; 95:e28190. [PMID: 36180404 PMCID: PMC9539144 DOI: 10.1002/jmv.28190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 01/11/2023]
Abstract
Developing reliable, rapid, and quantitative point-of-care testing (POCT) technology of SARS-CoV-2-specific antibodies and understanding longitudinal vaccination response kinetics are highly required to restrain the ongoing coronavirus disease 2019 (COVID-19) pandemic. We demonstrate a novel portable, sensitive, and rapid chemiluminescent lab-on-fiber detection platform for detection of anti-SARS-CoV-2 antibodies: the chemiluminescent lab-on-fiber immunosensor (c-LOFI). Using SARS-CoV-2 Spike S1 RBD protein functionalized fiber bio-probe, the c-LOFI can detect anti-SARS-CoV-2 immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies with high sensitivity based on their respective horseradish peroxidase-labeled secondary antibodies. The limits of detection of anti-SARS-CoV-2 IgG and IgM antibodies were 0.6 and 0.3 ng/ml, respectively. The c-LOFI was successfully applied for direct detection of anti-SARS-CoV-2 antibodies in whole blood samples with simple dilution, which can serve as a finger prick test to rapidly detect antibodies. Furthermore, the longitudinal immune response (>12 months) kinetics following three-dose inactivated virus vaccines was evaluated based on anti-SARS-CoV-2 IgG detection results, which can provide important significance for understanding the immune mechanism against COVID-19 and identify individuals who may benefit from the vaccination and booster vaccination. The c-LOFI has great potential to become a sensitive, low-cost, rapid, high-frequency POCT tool for the detection of both SARS-CoV-2-specific antibodies and other biomarkers.
Collapse
Affiliation(s)
- Wenjuan Xu
- School of Environment and Natural ResourcesRenmin University of ChinaBeijing100872China
| | - Dan Song
- School of Environment and Natural ResourcesRenmin University of ChinaBeijing100872China
| | - Jiayao Liu
- School of Environment and Natural ResourcesRenmin University of ChinaBeijing100872China
| | - Xiangzhi Han
- School of Environment and Natural ResourcesRenmin University of ChinaBeijing100872China
| | - Jiaxin Xu
- School of Environment and Natural ResourcesRenmin University of ChinaBeijing100872China
| | - Anna Zhu
- State Key Laboratory of NBC Protection for CivilianBeijing102205China
| | - Feng Long
- School of Environment and Natural ResourcesRenmin University of ChinaBeijing100872China,Department of ChemistryRenmin University of ChinaBeijing100872China
| |
Collapse
|
29
|
Rössler A, Kimpel J, Fleischer V, Huber S, von Laer D, Borena W, Würzner R. Regimen of Coronavirus Disease 2019 Vaccination Influences Extent and Kinetics of Antibody Avidity. J Infect Dis 2022; 226:1909-1912. [PMID: 36111560 PMCID: PMC9494481 DOI: 10.1093/infdis/jiac379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/14/2022] [Indexed: 12/31/2022] Open
Abstract
We investigated antibody titers and avidity after heterologous versus homologous coronavirus disease 2019 vaccination over 6 months after the second dose. We found a significantly higher avidity in regimens including at least 1 dose of the adenoviral vector vaccine ChAdOx1-S compared with 2 doses of the mRNA vaccine BNT162b2.
Collapse
Affiliation(s)
| | | | - Verena Fleischer
- Institute of Hygiene and Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria
| | - Silke Huber
- Institute of Hygiene and Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria
| | - Dorothee von Laer
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria
| | - Wegene Borena
- Correspondence: Wegene Borena, MD, PhD, Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria ()
| | | | | |
Collapse
|
30
|
Antibody Avidity and Neutralizing Response against SARS-CoV-2 Omicron Variant after Infection or Vaccination. J Immunol Res 2022; 2022:4813199. [PMID: 36093434 PMCID: PMC9453088 DOI: 10.1155/2022/4813199] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/08/2022] [Indexed: 01/11/2023] Open
Abstract
Background The recently emerged SARS-CoV-2 Omicron variant exhibits several mutations on the spike protein, enabling it to escape the immunity elicited by natural infection or vaccines. Avidity is the strength of binding between an antibody and its specific epitope. The SARS-CoV-2 spike protein binds to its cellular receptor with high affinity and is the primary target of neutralizing antibodies. Therefore, protective antibodies should show high avidity. This study aimed at investigating the avidity of receptor-binding domain (RBD) binding antibodies and their neutralizing activity against the Omicron variant in SARS-CoV-2 infected patients and vaccinees. Methods Samples were collected from 42 SARS-CoV-2 infected patients during the first pandemic wave, 50 subjects who received 2 doses of mRNA vaccine before the Omicron wave, 44 subjects who received 3 doses of mRNA vaccine, and 35 subjects who received heterologous vaccination (2 doses of adenovirus-based vaccine plus mRNA vaccine) during the Omicron wave. Samples were tested for the avidity of RBD-binding IgG and neutralizing antibodies against the wild-type SARS-CoV-2 virus and the Omicron variant. Results In patients, RBD-binding IgG titers against the wild-type virus increased with time, but remained low. High neutralizing titers against the wild-type virus were not matched by high avidity or neutralizing activity against the Omicron variant. Vaccinees showed higher avidity than patients. Two vaccine doses elicited the production of neutralizing antibodies, but low avidity for the wild-type virus; antibody levels against the Omicron variant were even lower. Conversely, 3 doses of vaccine elicited high avidity and high neutralizing antibodies against both the wild-type virus and the Omicron variant. Conclusions Repeated vaccination increases antibody avidity against the spike protein of the Omicron variant, suggesting that antibodies with high avidity and high neutralizing potential increase cross-protection against variants that carry several mutations on the RBD.
Collapse
|
31
|
Geisen UM, Rose R, Neumann F, Ciripoi M, Vullriede L, Reid HM, Berner DK, Bertoglio F, Hoff P, Hust M, Longardt AC, Lorentz T, Martini GR, Saggau C, Schirmer JH, Schubert M, Sümbül M, Tran F, Voß M, Zeuner R, Morrison PJ, Bacher P, Fickenscher H, Gerdes S, Peipp M, Schreiber S, Krumbholz A, Hoyer BF. The long term vaccine-induced anti-SARS-CoV-2 immune response is impaired in quantity and quality under TNFα blockade. J Med Virol 2022; 94:5780-5789. [PMID: 35945627 PMCID: PMC9538219 DOI: 10.1002/jmv.28063] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 01/06/2023]
Abstract
The humoral immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination in patients with chronic inflammatory disease (CID) declines more rapidly with tumor necrosis factor-α (TNF-α) inhibition. Furthermore, the efficacy of current vaccines against Omicron variants of concern (VOC) including BA.2 is limited. Alterations within immune cell populations, changes in IgG affinity, and the ability to neutralize a pre-VOC strain and the BA.2 virus were investigated in these at-risk patients. Serum levels of anti-SARS-CoV-2 IgG, IgG avidity, and neutralizing antibodies (NA) were determined in anti-TNF-α patients (n = 10) and controls (n = 24 healthy individuals; n = 12 patients under other disease-modifying antirheumatic drugs, oDMARD) before and after the second and third vaccination by ELISA, immunoblot and live virus neutralization assay. SARS-CoV-2-specific B- and T cell subsets were analysed by multicolor flow cytometry. Six months after the second vaccination, anti-SARS-CoV-2 IgG levels, IgG avidity and anti-pre-VOC NA titres were significantly reduced in anti-TNF-α recipients compared to controls (healthy individuals: avidity: p ≤ 0.0001; NA: p = 0.0347; oDMARDs: avidity: p = 0.0012; NA: p = 0.0293). The number of plasma cells was increased in anti-TNF-α patients (Healthy individuals: p = 0.0344; oDMARDs: p = 0.0254), while the absolute number of SARS-CoV-2-specific plasma cells 7 days after 2nd vaccination were comparable. Even after a third vaccination, these patients had lower anti-BA.2 NA titres compared to both other groups. We show a reduced SARS-CoV-2 neutralizing capacity in patients under TNF-α blockade. In this cohort, the plasma cell response appears to be less specific and shows stronger bystander activation. While these effects were observable after the first two vaccinations and with older VOC, the differences in responses to BA.2 were enhanced.
Collapse
Affiliation(s)
- Ulf Martin Geisen
- Medical Department I, Rheumatology and Clinical ImmunologyUniversity Medical Center Schleswig‐Holstein Campus KielKielGermany
| | - Ruben Rose
- Institute for Infection Medicine, Christian‐Albrecht University of Kiel and University Medical Center Schleswig‐HolsteinKielGermany
| | | | - Maria Ciripoi
- Medical Department I, Rheumatology and Clinical ImmunologyUniversity Medical Center Schleswig‐Holstein Campus KielKielGermany
| | - Lena Vullriede
- Medical Department I, Rheumatology and Clinical ImmunologyUniversity Medical Center Schleswig‐Holstein Campus KielKielGermany
| | - Hayley M. Reid
- Medical Department I, Rheumatology and Clinical ImmunologyUniversity Medical Center Schleswig‐Holstein Campus KielKielGermany
| | - Dennis Kristopher Berner
- Medical Department I, Rheumatology and Clinical ImmunologyUniversity Medical Center Schleswig‐Holstein Campus KielKielGermany
| | - Federico Bertoglio
- Department of BiotechnologyInstitute of Biochemistry, Biotechnology, and Bioinformatics, Technische Universität BraunschweigBraunschweigGermany
| | - Paula Hoff
- Department of Rheumatology, Endokrinologikum‐GruppeBerlinGermany
| | - Michael Hust
- Department of BiotechnologyInstitute of Biochemistry, Biotechnology, and Bioinformatics, Technische Universität BraunschweigBraunschweigGermany
| | | | | | - Gabriela Rios Martini
- Institute of ImmunologyUniversity Medical Center Schleswig‐HolsteinKielGermany,Department for DermatologyUniversity Medical Center Schleswig‐HolsteinKielGermany
| | - Carina Saggau
- Institute of ImmunologyUniversity Medical Center Schleswig‐HolsteinKielGermany
| | - Jan Henrik Schirmer
- Medical Department I, Rheumatology and Clinical ImmunologyUniversity Medical Center Schleswig‐Holstein Campus KielKielGermany
| | - Maren Schubert
- Department of BiotechnologyInstitute of Biochemistry, Biotechnology, and Bioinformatics, Technische Universität BraunschweigBraunschweigGermany
| | - Melike Sümbül
- Department for DermatologyUniversity Medical Center Schleswig‐HolsteinKielGermany
| | - Florian Tran
- Institute of Clinical Molecular BiologyChristian‐Albrecht University of KielKielGermany,Department for Internal Medicine IUniversity Medical Center Schleswig‐HolsteinKiel
| | - Mathias Voß
- Institute for Infection Medicine, Christian‐Albrecht University of Kiel and University Medical Center Schleswig‐HolsteinKielGermany
| | - Rainald Zeuner
- Medical Department I, Rheumatology and Clinical ImmunologyUniversity Medical Center Schleswig‐Holstein Campus KielKielGermany
| | - Peter J. Morrison
- Department for DermatologyUniversity Medical Center Schleswig‐HolsteinKielGermany
| | - Petra Bacher
- Institute of ImmunologyUniversity Medical Center Schleswig‐HolsteinKielGermany,Institute of Clinical Molecular BiologyChristian‐Albrecht University of KielKielGermany
| | - Helmut Fickenscher
- Institute for Infection Medicine, Christian‐Albrecht University of Kiel and University Medical Center Schleswig‐HolsteinKielGermany
| | - Sascha Gerdes
- Department for DermatologyUniversity Medical Center Schleswig‐HolsteinKielGermany
| | - Matthias Peipp
- Department of Internal Medicine II, Division of Antibody‐Based ImmunotherapyUniversity Medical Center Schleswig‐HolsteinKielGermany
| | - Stefan Schreiber
- Institute of Clinical Molecular BiologyChristian‐Albrecht University of KielKielGermany,Department for Internal Medicine IUniversity Medical Center Schleswig‐HolsteinKiel
| | - Andi Krumbholz
- Institute for Infection Medicine, Christian‐Albrecht University of Kiel and University Medical Center Schleswig‐HolsteinKielGermany,Labor Dr. Krause und Kollegen MVZ GmbHKielGermany
| | - Bimba Franziska Hoyer
- Medical Department I, Rheumatology and Clinical ImmunologyUniversity Medical Center Schleswig‐Holstein Campus KielKielGermany
| |
Collapse
|
32
|
Matsuura T, Fukushima W, Nakagama Y, Kido Y, Kase T, Kondo K, Kaku N, Matsumoto K, Suita A, Komiya E, Mukai E, Nitahara Y, Konishi A, Kasamatsu A, Nakagami-Yamaguchi E, Ohfuji S, Kaneko Y, Kaneko A, Kakeya H, Hirota Y. Kinetics of anti-SARS-CoV-2 antibody titer in healthy adults up to 6 months after BNT162b2 vaccination measured by two immunoassays: A prospective cohort study in Japan. Vaccine 2022; 40:5631-5640. [PMID: 36028457 PMCID: PMC9376311 DOI: 10.1016/j.vaccine.2022.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/03/2022] [Accepted: 08/10/2022] [Indexed: 01/07/2023]
Abstract
Background Although several assays are used to measure anti-receptor-binding domain (RBD) antibodies induced after severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccination, the assays are not fully comparable in practice. This study evaluated the immunogenicity of the BNT162b2 mRNA vaccine in healthy adults using two immunoassays. Methods This prospective cohort study included SARS-CoV-2-naïve adults, predominantly healthcare workers, aged 20–64 years, who received two BNT162b2 vaccine doses between March and May 2021. Blood samples were collected before the first vaccination (S0), before the second vaccination (S1), 4 weeks after the second vaccination (S2), and 6 months after the second vaccination (S3). anti-RBD antibodies were measured using the Architect SARS-CoV-2 IgG II Quant (Abbott Laboratory) and Elecsys anti-SARS-CoV-2 S (Roche Diagnostics) assays. Results Among the 385 participants, the geometric mean antibody titers (GMTs) on the Architect assay (AU/mL) were 7.5, 693, 7007, and 1030 for S0, S1, S2, and S3, respectively. The corresponding GMTs on the Elecsys assay (U/mL) were 0.40, 24, 928, and 659, respectively. The GMT ratio (S3/S2) was 0.15 on the Architect and 0.71 on the Elecsys assay. The correlation between antibody titers measured with the two assays were strong at all time points after vaccination (Spearman's correlation coefficient: 0.74 to 0.86, P < 0.01 for all). GMT was significantly lower in the older age group after vaccination (P < 0.01), with no significant differences according to sex. Seroprotection (≥5458 AU/mL on the Architect assay and ≥ 753 U/mL on the Elecsys) at each time point was 0 %, 1 %, 67 %, and 1 % on the Architect assay and 0 %, 1 %, 62 %, and 43 % on the Elecsys, respectively. Conclusions Two BNT162b2 vaccine doses resulted in adequate anti-RBD antibody response, which varied by age. As the two assays showed different kinetics, the results of single immunoassays should be interpreted with caution.
Collapse
Affiliation(s)
- Tomoka Matsuura
- Department of Public Health, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan; Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Japan.
| | - Wakaba Fukushima
- Department of Public Health, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan; Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Japan
| | - Yu Nakagama
- Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Japan; Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Japan
| | - Yasutoshi Kido
- Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Japan; Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Japan
| | - Tetsuo Kase
- Department of Public Health, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan; Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Japan
| | - Kyoko Kondo
- Management Bureau, Osaka Metropolitan University Hospital, Japan
| | - Natsuko Kaku
- Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Japan; Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Japan
| | - Kazuhiro Matsumoto
- Department of Public Health, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Asae Suita
- Department of Public Health, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Eriko Komiya
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Japan
| | - Emiko Mukai
- Department of Public Health, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yuko Nitahara
- Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Japan
| | - Ayako Konishi
- Department of Public Health, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Ayane Kasamatsu
- Department of Public Health, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Etsuko Nakagami-Yamaguchi
- Department of Medical Quality and Safety Science, Graduate School of Medicine, Osaka Metropolitan University, Japan
| | - Satoko Ohfuji
- Department of Public Health, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan; Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Japan
| | - Yukihiro Kaneko
- Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Japan; Department of Bacteriology, Graduate School of Medicine, Osaka Metropolitan University, Japan
| | - Akira Kaneko
- Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Japan; Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Japan
| | - Hiroshi Kakeya
- Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Japan; Department of Infection Control Science, Graduate School of Medicine, Osaka Metropolitan University, Japan
| | - Yoshio Hirota
- Clinical Epidemiology Research Center, SOUSEIKAI Medical Group (Medical Co. LTA), Fukuoka, Japan
| |
Collapse
|
33
|
Rothen DA, Krenger PS, Nonic A, Balke I, Vogt AS, Chang X, Manenti A, Vedovi F, Resevica G, Walton SM, Zeltins A, Montomoli E, Vogel M, Bachmann MF, Mohsen MO. Intranasal administration of a virus like particles-based vaccine induces neutralizing antibodies against SARS-CoV-2 and variants of concern. Allergy 2022; 77:2446-2458. [PMID: 35403221 PMCID: PMC9111403 DOI: 10.1111/all.15311] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND The highly contagious SARS-CoV-2 is mainly transmitted by respiratory droplets and aerosols. Consequently, people are required to wear masks and maintain a social distance to avoid spreading of the virus. Despite the success of the commercially available vaccines, the virus is still uncontained globally. Given the tropism of SARS-CoV-2, a mucosal immune reaction would help to reduce viral shedding and transmission locally. Only seven out of hundreds of ongoing clinical trials are testing the intranasal delivery of a vaccine against COVID-19. METHODS In the current study, we evaluated the immunogenicity of a traditional vaccine platform based on virus-like particles (VLPs) displaying RBD of SARS-CoV-2 for intranasal administration in a murine model. The candidate vaccine platform, CuMVTT -RBD, has been optimized to incorporate a universal T helper cell epitope derived from tetanus-toxin and is self-adjuvanted with TLR7/8 ligands. RESULTS CuMVTT -RBD vaccine elicited a strong systemic RBD- and spike-IgG and IgA antibodies of high avidity. Local immune response was assessed, and our results demonstrate a strong mucosal antibody and plasma cell production in lung tissue. Furthermore, the induced systemic antibodies could efficiently recognize and neutralize different variants of concern (VOCs). CONCLUSION Our data demonstrate that intranasal administration of CuMVTT -RBD induces a protective systemic and local specific antibody response against SARS-CoV-2 and its VOCs.
Collapse
Affiliation(s)
- Dominik A. Rothen
- Department of Rheumatology and ImmunologyUniversity HospitalBernSwitzerland
- Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Pascal S. Krenger
- Department of Rheumatology and ImmunologyUniversity HospitalBernSwitzerland
- Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Aleksandra Nonic
- Department of Rheumatology and ImmunologyUniversity HospitalBernSwitzerland
- Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Ina Balke
- Latvian Biomedical Research & Study CentreRigaLatvia
| | - Anne‐Cathrine S. Vogt
- Department of Rheumatology and ImmunologyUniversity HospitalBernSwitzerland
- Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Xinyue Chang
- Department of Rheumatology and ImmunologyUniversity HospitalBernSwitzerland
- Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | | | | | | | | | | | - Emanuele Montomoli
- VisMederi S.r.l.SienaItaly
- Department of Molecular and Developmental MedicineUniversity of SienaSienaItaly
| | - Monique Vogel
- Department of Rheumatology and ImmunologyUniversity HospitalBernSwitzerland
- Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Martin F. Bachmann
- Department of Rheumatology and ImmunologyUniversity HospitalBernSwitzerland
- Department of BioMedical ResearchUniversity of BernBernSwitzerland
- Nuffield Department of MedicineThe Jenner InstituteUniversity of OxfordOxfordUK
| | - Mona O. Mohsen
- Department of Rheumatology and ImmunologyUniversity HospitalBernSwitzerland
- Department of BioMedical ResearchUniversity of BernBernSwitzerland
- Saiba AGPfaeffikonSwitzerland
| |
Collapse
|
34
|
Garcia L, Woudenberg T, Rosado J, Dyer AH, Donnadieu F, Planas D, Bruel T, Schwartz O, Prazuck T, Velay A, Fafi-Kremer S, Batten I, Reddy C, Connolly E, McElheron M, Kennelly SP, Bourke NM, White MT, Pelleau S. Kinetics of the SARS-CoV-2 Antibody Avidity Response Following Infection and Vaccination. Viruses 2022; 14:1491. [PMID: 35891471 PMCID: PMC9321390 DOI: 10.3390/v14071491] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
Serological assays capable of measuring antibody responses induced by previous infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been critical tools in the response to the COVID-19 pandemic. In this study, we use bead-based multiplex assays to measure IgG and IgA antibodies and IgG avidity to five SARS-CoV-2 antigens (Spike (S), receptor-binding domain (RBD), Nucleocapsid (N), S subunit 2, and Membrane-Envelope fusion (ME)). These assays were performed in several cohorts of healthcare workers and nursing home residents, who were followed for up to eleven months after SARS-CoV-2 infection or up to six months after vaccination. Our results show distinct kinetic patterns of antibody quantity (IgG and IgA) and avidity. While IgG and IgA antibody levels waned over time, with IgA antibody levels waning more rapidly, avidity increased with time after infection or vaccination. These contrasting kinetic patterns allow for the estimation of time since previous SARS-CoV-2 infection. Including avidity measurements in addition to antibody levels in a classification algorithm for estimating time since infection led to a substantial improvement in accuracy, from 62% to 78%. The inclusion of antibody avidity in panels of serological assays can yield valuable information for improving serosurveillance during SARS-CoV-2 epidemics.
Collapse
Affiliation(s)
- Laura Garcia
- Infectious Diseases Epidemiology and Analytics Unit, Department of Global Health, Institut Pasteur, Université Paris Cité, 75015 Paris, France; (L.G.); (T.W.); (J.R.); (F.D.)
| | - Tom Woudenberg
- Infectious Diseases Epidemiology and Analytics Unit, Department of Global Health, Institut Pasteur, Université Paris Cité, 75015 Paris, France; (L.G.); (T.W.); (J.R.); (F.D.)
| | - Jason Rosado
- Infectious Diseases Epidemiology and Analytics Unit, Department of Global Health, Institut Pasteur, Université Paris Cité, 75015 Paris, France; (L.G.); (T.W.); (J.R.); (F.D.)
| | - Adam H. Dyer
- Tallaght University Hospital, Tallaght, D24 NR0A Dublin, Ireland; (A.H.D.); (S.P.K.)
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland; (I.B.); (C.R.); (E.C.); (M.M.); (N.M.B.)
| | - Françoise Donnadieu
- Infectious Diseases Epidemiology and Analytics Unit, Department of Global Health, Institut Pasteur, Université Paris Cité, 75015 Paris, France; (L.G.); (T.W.); (J.R.); (F.D.)
| | - Delphine Planas
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Université Paris Cité, 75015 Paris, France; (D.P.); (T.B.); (O.S.)
| | - Timothée Bruel
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Université Paris Cité, 75015 Paris, France; (D.P.); (T.B.); (O.S.)
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Université Paris Cité, 75015 Paris, France; (D.P.); (T.B.); (O.S.)
| | - Thierry Prazuck
- CHR d’Orléans, Service de Maladies Infectieuses, 45100 Orléans, France;
| | - Aurélie Velay
- CHU de Strasbourg, Laboratoire de Virologie, CEDEX, 67091 Strasbourg, France; (A.V.); (S.F.-K.)
- Unité Mixte de Recherche Scientifique Immuno-Rhumathologie Moléculaire (IRM UMR-S) 1109, Strasbourg University, Institut National de la Santé et de la Recherche Médicale (INSERM), CEDEX, 67084 Strasbourg, France
| | - Samira Fafi-Kremer
- CHU de Strasbourg, Laboratoire de Virologie, CEDEX, 67091 Strasbourg, France; (A.V.); (S.F.-K.)
- Unité Mixte de Recherche Scientifique Immuno-Rhumathologie Moléculaire (IRM UMR-S) 1109, Strasbourg University, Institut National de la Santé et de la Recherche Médicale (INSERM), CEDEX, 67084 Strasbourg, France
| | - Isabella Batten
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland; (I.B.); (C.R.); (E.C.); (M.M.); (N.M.B.)
| | - Conor Reddy
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland; (I.B.); (C.R.); (E.C.); (M.M.); (N.M.B.)
| | - Emma Connolly
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland; (I.B.); (C.R.); (E.C.); (M.M.); (N.M.B.)
| | - Matt McElheron
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland; (I.B.); (C.R.); (E.C.); (M.M.); (N.M.B.)
| | - Sean P. Kennelly
- Tallaght University Hospital, Tallaght, D24 NR0A Dublin, Ireland; (A.H.D.); (S.P.K.)
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland; (I.B.); (C.R.); (E.C.); (M.M.); (N.M.B.)
| | - Nollaig M. Bourke
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland; (I.B.); (C.R.); (E.C.); (M.M.); (N.M.B.)
| | - Michael T. White
- Infectious Diseases Epidemiology and Analytics Unit, Department of Global Health, Institut Pasteur, Université Paris Cité, 75015 Paris, France; (L.G.); (T.W.); (J.R.); (F.D.)
| | - Stéphane Pelleau
- Infectious Diseases Epidemiology and Analytics Unit, Department of Global Health, Institut Pasteur, Université Paris Cité, 75015 Paris, France; (L.G.); (T.W.); (J.R.); (F.D.)
| |
Collapse
|
35
|
Blanas A, Karsjens H, de Ligt A, Huijbers EJ, van Loon K, Denisov SS, Durukan C, Engbersen DJ, Groen J, Hennig S, Hackeng TM, van Beijnum JR, Griffioen AW. Vaccination with a bacterial peptide conjugated to SARS-CoV-2 RBD accelerates immunity and protects against COVID-19. iScience 2022; 25:104719. [PMID: 35813877 PMCID: PMC9252865 DOI: 10.1016/j.isci.2022.104719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Poor immunogenicity of critical epitopes can hamper vaccine efficacy. To boost immune recognition of non- or low-immunogenic antigens, we developed a vaccine platform based on the conjugation of a target protein to a chimeric designer peptide (CDP) of bacterial origin. Here, we exploited this immune Boost (iBoost) technology to enhance the immune response against the receptor-binding domain (RBD) of the SARS-CoV-2 spike glycoprotein. Despite its fundamental role during viral infection, RBD is only moderately immunogenic. Immunization studies in mice showed that the conjugation of CDP to RBD induced superior immune responses compared to RBD alone. CDP-RBD elicited cross-reactive antibodies against the variants of concern Delta and Omicron. Furthermore, hamsters vaccinated with CDP-RBD developed potent neutralizing antibody responses and were fully protected from lung lesion formation upon challenge with SARS-CoV-2. In sum, we show that the iBoost conjugate vaccine technology provides a valuable tool for both quantitatively and qualitatively enhancing anti-viral immunity. An iBoost-based CDP-RBD conjugate vaccine against SARS-CoV-2 Induction of potent RBD-specific humoral and cellular responses CDP-RBD vaccination protects hamsters from lung lesion formation
Collapse
Affiliation(s)
- Athanasios Blanas
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Haiko Karsjens
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Aafke de Ligt
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Elisabeth J.M. Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Karlijn van Loon
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Stepan S. Denisov
- School for Cardiovascular Sciences, Department of Biochemistry, Maastricht University, Maastricht, the Netherlands
| | - Canan Durukan
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | - Jan Groen
- Intravacc, Institute for Translational Vaccinology, Bilthoven, the Netherlands
| | - Sven Hennig
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Tilman M. Hackeng
- School for Cardiovascular Sciences, Department of Biochemistry, Maastricht University, Maastricht, the Netherlands
| | | | - Arjan W. Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Corresponding author
| |
Collapse
|
36
|
Manuylov V, Burgasova O, Borisova O, Smetanina S, Vasina D, Grigoriev I, Kudryashova A, Semashko M, Cherepovich B, Kharchenko O, Kleymenov D, Mazunina E, Tkachuk A, Gushchin V. Avidity of IgG to SARS-CoV-2 RBD as a Prognostic Factor for the Severity of COVID-19 Reinfection. Viruses 2022; 14:v14030617. [PMID: 35337024 PMCID: PMC8949074 DOI: 10.3390/v14030617] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 12/19/2022] Open
Abstract
The avidity index (AI) of IgG to the RBD of SARS-CoV-2 was determined for 71 patients with a mild (outpatient) course of COVID-19, including 39 primarily and 36 secondarily reinfected, and 92 patients with a severe (hospital) course of COVID-19, including 82 primarily and 10 secondarily infected. The AI was shown to correlate with the severity of repeated disease. In the group of outpatients with a mild course, the reinfected patients had significantly higher median AIs than those with primary infections (82.3% vs. 37.1%, p < 0.0001). At the same time, in patients with a severe course of COVID-19, reinfected patients still had low-avidity antibodies (median AI of 28.4% vs. 25% in the primarily infected, difference not significant, p > 0.05). This suggests that the presence of low-avidity IgG to RBD during reinfection is a negative prognostic factor, in which a patient’s risk of developing COVID-19 in a severe form is significantly increased. Thus, patients with IgG of low avidity (AI ≤ 40%) had an 89 ± 20.5% chance of a severe course of recurrent COVID-19, whereas the detection of high-avidity antibodies (AI ≥ 50%) gave a probability of 94 ± 7.9% for a mild course of recurrent disease (p < 0.05).
Collapse
Affiliation(s)
- Victor Manuylov
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (O.B.); (D.V.); (I.G.); (M.S.); (D.K.); (E.M.); (A.T.); (V.G.)
- MedipalTech LLC, 141981 Dubna, Russia
- Correspondence: ; Tel.: +7-968-4040-955
| | - Olga Burgasova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (O.B.); (D.V.); (I.G.); (M.S.); (D.K.); (E.M.); (A.T.); (V.G.)
- Medical Institute, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Olga Borisova
- Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia; (O.B.); (A.K.); (B.C.); (O.K.)
| | | | - Daria Vasina
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (O.B.); (D.V.); (I.G.); (M.S.); (D.K.); (E.M.); (A.T.); (V.G.)
| | - Igor Grigoriev
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (O.B.); (D.V.); (I.G.); (M.S.); (D.K.); (E.M.); (A.T.); (V.G.)
| | - Alexandra Kudryashova
- Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia; (O.B.); (A.K.); (B.C.); (O.K.)
| | - Maria Semashko
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (O.B.); (D.V.); (I.G.); (M.S.); (D.K.); (E.M.); (A.T.); (V.G.)
| | - Bogdan Cherepovich
- Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia; (O.B.); (A.K.); (B.C.); (O.K.)
| | - Olga Kharchenko
- Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia; (O.B.); (A.K.); (B.C.); (O.K.)
| | - Denis Kleymenov
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (O.B.); (D.V.); (I.G.); (M.S.); (D.K.); (E.M.); (A.T.); (V.G.)
| | - Elena Mazunina
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (O.B.); (D.V.); (I.G.); (M.S.); (D.K.); (E.M.); (A.T.); (V.G.)
| | - Artem Tkachuk
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (O.B.); (D.V.); (I.G.); (M.S.); (D.K.); (E.M.); (A.T.); (V.G.)
| | - Vladimir Gushchin
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (O.B.); (D.V.); (I.G.); (M.S.); (D.K.); (E.M.); (A.T.); (V.G.)
| |
Collapse
|
37
|
Portilho AI, Gimenes Lima G, De Gaspari E. Enzyme-Linked Immunosorbent Assay: An Adaptable Methodology to Study SARS-CoV-2 Humoral and Cellular Immune Responses. J Clin Med 2022; 11:1503. [PMID: 35329828 PMCID: PMC8948777 DOI: 10.3390/jcm11061503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
The Enzyme-Linked Immunosorbent Assay is a versatile technique, which can be used for several applications. It has enormously contributed to the study of infectious diseases. This review highlights how this methodology supported the science conducted in COVID-19 pandemics, allowing scientists to better understand the immune response against SARS-CoV-2. ELISA can be modified to assess the functionality of antibodies, as avidity and neutralization, respectively by the standardization of avidity-ELISA and surrogate-neutralization methods. Cellular immunity can also be studied using this assay. Products secreted by cells, like proteins and cytokines, can be studied by ELISA or its derivative Enzyme-linked immunospot (ELISpot) assay. ELISA and ELISA-based methods aided the area of immunology against infectious diseases and is still relevant, for example, as a promising approach to study the differences between natural and vaccine-induced immune responses against SARS-CoV-2.
Collapse
Affiliation(s)
- Amanda Izeli Portilho
- Immunology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, SP, Brazil; (A.I.P.); (G.G.L.)
- Graduate Program Interunits in Biotechnology, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| | - Gabrielle Gimenes Lima
- Immunology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, SP, Brazil; (A.I.P.); (G.G.L.)
- Graduate Program Interunits in Biotechnology, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| | - Elizabeth De Gaspari
- Immunology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, SP, Brazil; (A.I.P.); (G.G.L.)
- Graduate Program Interunits in Biotechnology, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| |
Collapse
|
38
|
González Viacava MB, Varese A, Mazzitelli I, Lanari L, Ávila L, García Vampa MJ, Geffner J, Cascone O, Dokmetjian JC, de Roodt AR, Fingermann M. Immune Maturation Effects on Viral Neutralization and Avidity of Hyperimmunized Equine Anti-SARS-CoV-2 Sera. Antibodies (Basel) 2022; 11:3. [PMID: 35076465 PMCID: PMC8788445 DOI: 10.3390/antib11010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 01/19/2023] Open
Abstract
Mass-vaccination against COVID-19 is still a distant goal for most low-to-middle income countries. The experience gained through decades producing polyclonal immunotherapeutics (such as antivenoms) in many of those countries is being redirected to develop similar products able to neutralize SARS-CoV-2 infection. In this study we analyzed the biological activity (viral neutralization or NtAb) and immunochemical properties of hyperimmune horses' sera (HHS) obtained during initial immunization (I) and posterior re-immunization (R) cycles using the RBD domain of the SARS-CoV-2 spike protein as antigen. HHS at the end of the R cycle showed higher NtAb titers when compared to those after the I cycle (35,585 vs. 7000 mean NtAb, respectively). Moreover, this increase paralleled an increase in avidity (95.2% to 65.2% mean avidity units, respectively). The results presented herein are relevant for manufacturers of these therapeutic tools against COVID-19.
Collapse
Affiliation(s)
- Myriam Belén González Viacava
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS “Dr. Carlos G. Malbrán”, Vélez Sársfield 563, Buenos Aires 1282, Argentina; (M.B.G.V.); (L.L.); (L.Á.); (M.J.G.V.); (O.C.); (J.C.D.); (A.R.d.R.)
| | - Augusto Varese
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Paraguay 2155, 11th Floor, Buenos Aires 1113, Argentina; (A.V.); (I.M.); (J.G.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires 1425, Argentina
| | - Ignacio Mazzitelli
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Paraguay 2155, 11th Floor, Buenos Aires 1113, Argentina; (A.V.); (I.M.); (J.G.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires 1425, Argentina
| | - Laura Lanari
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS “Dr. Carlos G. Malbrán”, Vélez Sársfield 563, Buenos Aires 1282, Argentina; (M.B.G.V.); (L.L.); (L.Á.); (M.J.G.V.); (O.C.); (J.C.D.); (A.R.d.R.)
| | - Lucía Ávila
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS “Dr. Carlos G. Malbrán”, Vélez Sársfield 563, Buenos Aires 1282, Argentina; (M.B.G.V.); (L.L.); (L.Á.); (M.J.G.V.); (O.C.); (J.C.D.); (A.R.d.R.)
| | - María Julia García Vampa
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS “Dr. Carlos G. Malbrán”, Vélez Sársfield 563, Buenos Aires 1282, Argentina; (M.B.G.V.); (L.L.); (L.Á.); (M.J.G.V.); (O.C.); (J.C.D.); (A.R.d.R.)
| | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Paraguay 2155, 11th Floor, Buenos Aires 1113, Argentina; (A.V.); (I.M.); (J.G.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires 1425, Argentina
| | - Osvaldo Cascone
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS “Dr. Carlos G. Malbrán”, Vélez Sársfield 563, Buenos Aires 1282, Argentina; (M.B.G.V.); (L.L.); (L.Á.); (M.J.G.V.); (O.C.); (J.C.D.); (A.R.d.R.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires 1425, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires (UBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| | - José Christian Dokmetjian
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS “Dr. Carlos G. Malbrán”, Vélez Sársfield 563, Buenos Aires 1282, Argentina; (M.B.G.V.); (L.L.); (L.Á.); (M.J.G.V.); (O.C.); (J.C.D.); (A.R.d.R.)
| | - Adolfo Rafael de Roodt
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS “Dr. Carlos G. Malbrán”, Vélez Sársfield 563, Buenos Aires 1282, Argentina; (M.B.G.V.); (L.L.); (L.Á.); (M.J.G.V.); (O.C.); (J.C.D.); (A.R.d.R.)
- Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires 1113, Argentina
| | - Matías Fingermann
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS “Dr. Carlos G. Malbrán”, Vélez Sársfield 563, Buenos Aires 1282, Argentina; (M.B.G.V.); (L.L.); (L.Á.); (M.J.G.V.); (O.C.); (J.C.D.); (A.R.d.R.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires 1425, Argentina
| |
Collapse
|
39
|
Long-term decay of anti-RBD IgG titers after BNT162b2 vaccination is not mirrored by loss of neutralizing bioactivity against SARS-CoV-2. Clin Chim Acta 2022; 524:11-17. [PMID: 34843705 PMCID: PMC8630423 DOI: 10.1016/j.cca.2021.11.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Long-term kinetics of anti-RBD IgG and neutralizing antibodies were analyzed in a cohort of COVID-19 naïve health care workers (HCW) undergoing SARS-CoV-2 vaccination. METHODS An anti-RBD IgG immunoassay and a surrogate virus neutralization test (sVNT) were performed at different time points up to 6 months after vaccination in 57 HCWs. Values of anti-RBD IgG predicting an high neutralizing bioactivity (>60%) were also calculated. RESULTS Mean (range) values of anti-RBD IgG were 294.7 (11.6-1554), 2583 (398-8391), 320.4 (42.3-1134) BAU/mL at T1 (21 days after the 1st dose [T0]), T2 (30 days after the 2nd dose) and T3 (+180 days after T0), respectively. Mean (range) percentages of neutralization (NS%) were 24 (0-76), 86 (59-96) and 82 (52-99) at T1, T2 and T3, respectively. Anti-RBD IgG values and NS% were positively correlated at T2 and T3 while anti-RBD IgG value predicting a NS% > 60 markedly differed at T2 and T3 (594 vs. 108 BAU/mL, respectively). CONCLUSION While a high neutralizing bioactivity was maintained at least 6 months after vaccination in almost all individuals, the mean values of anti-RBD-IgG showed a marked decline at 6 months. The absolute value of anti-RBD IgG is a poor marker of neutralizing bioactivity.
Collapse
|
40
|
Struck F, Schreiner P, Staschik E, Wochinz‐Richter K, Schulz S, Soutschek E, Motz M, Bauer G. Vaccination versus infection with SARS-CoV-2: Establishment of a high avidity IgG response versus incomplete avidity maturation. J Med Virol 2021; 93:6765-6777. [PMID: 34387884 PMCID: PMC8427118 DOI: 10.1002/jmv.27270] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
Avidity is defined as the binding strength of immunoglobulin G (IgG) toward its target epitope. Avidity is directly related to affinity, as both processes are determined by the best fit of IgG to epitopes. We confirm and extend data on incomplete avidity maturation of IgG toward severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleoprotein (NP), spike protein-1 (S1), and its receptor-binding domain (RBD) in coronavirus disease 2019 (COVID-19) patients. In SARS-CoV-2-infected individuals, an initial rise in avidity maturation was ending abruptly, leading to IgG of persistently low or intermediate avidity. Incomplete avidity maturation might facilitate secondary SARS-CoV-2 infections and thus prevent the establishment of herd immunity. Incomplete avidity maturation after infection with SARS-CoV-2 (with only 11.8% of cases showing finally IgG of high avidity, that is, an avidity index > 0.6) was contrasted by regular and rapid establishment of high avidity in SARS-CoV-2 naïve individuals after two vaccination steps with the BioNTech messenger RNA (mRNA) Vaccine (78% of cases with high avidity). One vaccination step was not sufficient for induction of complete avidity maturation in vaccinated SARS-CoV-2 naïve individuals, as it induced high avidity only in 2.9% of cases within 3 weeks. However, one vaccination step was sufficient to induce high avidity in individuals with previous SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Georg Bauer
- Institute of VirologyMedical Center–University of FreiburgFreiburgGermany
- Faculty of MedicineUniversity of FreiburgFreiburgGermany
| |
Collapse
|
41
|
Hassan SS, Lundstrom K, Barh D, Silva RJS, Andrade BS, Azevedo V, Choudhury PP, Palu G, Uhal BD, Kandimalla R, Seyran M, Lal A, Sherchan SP, Azad GK, Aljabali AAA, Brufsky AM, Serrano-Aroca Á, Adadi P, Abd El-Aziz TM, Redwan EM, Takayama K, Rezaei N, Tambuwala M, Uversky VN. Implications derived from S-protein variants of SARS-CoV-2 from six continents. Int J Biol Macromol 2021; 191:934-955. [PMID: 34571123 PMCID: PMC8462006 DOI: 10.1016/j.ijbiomac.2021.09.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 01/19/2023]
Abstract
The spike (S) protein is a critical determinant of the infectivity and antigenicity of SARS-CoV-2. Several mutations in the S protein of SARS-CoV-2 have already been detected, and their effect in immune system evasion and enhanced transmission as a cause of increased morbidity and mortality are being investigated. From pathogenic and epidemiological perspectives, S proteins are of prime interest to researchers. This study focused on the unique variants of S proteins from six continents: Asia, Africa, Europe, Oceania, South America, and North America. In comparison to the other five continents, Africa had the highest percentage of unique S proteins (29.1%). The phylogenetic relationship implies that unique S proteins from North America are significantly different from those of the other five continents. They are most likely to spread to the other geographic locations through international travel or naturally by emerging mutations. It is suggested that restriction of international travel should be considered, and massive vaccination as an utmost measure to combat the spread of the COVID-19 pandemic. It is also further suggested that the efficacy of existing vaccines and future vaccine development must be reviewed with careful scrutiny, and if needed, further re-engineered based on requirements dictated by new emerging S protein variants.
Collapse
Affiliation(s)
- Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur 721140, West Bengal, India.
| | | | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, WB, India; Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Raner Jośe Santana Silva
- Department of Biological Sciences (DCB), Graduate Program in Genetics and Molecular Biology (PPGGBM), State University of Santa Cruz (UESC), Rodovia Ilheus-Itabuna, km 16, 45662-900 Ilheus, BA, Brazil
| | - Bruno Silva Andrade
- Laboratory of Bioinformatics and Computational Chemistry, Department of Biological Sciences, State University of Southwest Bahia (UESB), Jequié 45206-190, Brazil.
| | - Vasco Azevedo
- Laborat'orio de Geńetica Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciˆencias Biol'ogicas, Universidade Federal de Minas Gerais, Belo Horizonte CEP 31270-901, Brazil.
| | - Pabitra Pal Choudhury
- Applied Statistics Unit, Indian Statistical Institute, 203 B T Road, Kolkata 700108, India
| | - Giorgio Palu
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy.
| | - Bruce D Uhal
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana, India
| | - Murat Seyran
- Doctoral Studies in Natural and Technical Sciences (SPL 44), University of Vienna, W¨ahringer Straße, A-1090 Vienna, Austria
| | - Amos Lal
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA 70112, USA.
| | | | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Faculty of Pharmacy, Irbid 566, Jordan.
| | - Adam M Brufsky
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigaci'on Traslacional San Alberto Magno, Universidad Cat́olica de Valencia San Vicente Ḿartir, c/Guillem de Castro, 94, 46001 Valencia, Spain.
| | - Parise Adadi
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt; Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| | - Elrashdy M Redwan
- Faculty of Science, Department of Biological Science, King Abdulazizi University, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab, Alexandria 21934, Egypt.
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| | - Murtaza Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, Dolgoprudny, 141700, Russia.
| |
Collapse
|
42
|
Igawa G, Yamamoto T, Baba Y, Shinozuka K, Yuri M, Wakita M, Misawa S, Miida T, Ai T, Tabe Y. Clinical Evaluation of Siemens SARS-CoV-2 Total Antibody assay and IgG assay using the Dimension EXL 200 in the Tokyo Metropolitan area. Heliyon 2021; 7:e08393. [PMID: 34805572 PMCID: PMC8592641 DOI: 10.1016/j.heliyon.2021.e08393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/17/2021] [Accepted: 11/10/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND We evaluated the efficacy of the Siemens SARS-CoV-2 Total Antibody assay (CV2T) and IgG assay (CV2G) that can detect antibodies against the receptor binding domain of S antigen in patients with COVID-19 in a Tokyo metropolitan area. METHODS Sensitivity and antibody levels were examined by CV2T and CV2G on Dimension EXL 200 using 236 serum samples obtained from 79 RT-PCR confirmed COVID-19 patients at multiple time points and were compared with disease severity by the World Health Organization criteria. The assay specificity was evaluated using samples collected before the COVID-19 pandemic. RESULTS The sensitivity of CV2T and CV2G were low (16.7-21.4%) in days 0-6 and increased to 43.8-52.5% in days 7-13 and to 80.8-90.0% in days 14-20. The seroprevalences persisted after day 21 to days past 42 regardless of disease severity. In every day grouping, mean antibody levels were higher in severe cases than in mild cases with a significant difference in days 14-20 and days 20-27. The specificity was 97.9 % (95% CI; 92.8-99.8) for CV2T and 99.0 % (95% CI; 94.6-100) for CV2G. CONCLUSIONS Our results indicate a high specificity and high sensitivity at 14 days of CV2T and CV2G as antibody detection assays.
Collapse
Affiliation(s)
- Gene Igawa
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Takamasa Yamamoto
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Yuna Baba
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Konomi Shinozuka
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Maiko Yuri
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Mitsuru Wakita
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Shigeki Misawa
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Tomohiko Ai
- Department of Clinical Laboratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yoko Tabe
- Department of Clinical Laboratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
- Department of Next Generation Hematology Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
43
|
Schardt JS, Pornnoppadol G, Desai AA, Park KS, Zupancic JM, Makowski EK, Smith MD, Chen H, Garcia de Mattos Barbosa M, Cascalho M, Lanigan TM, Moon JJ, Tessier PM. Discovery and characterization of high-affinity, potent SARS-CoV-2 neutralizing antibodies via single B cell screening. Sci Rep 2021; 11:20738. [PMID: 34671080 PMCID: PMC8528929 DOI: 10.1038/s41598-021-99401-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022] Open
Abstract
Monoclonal antibodies that target SARS-CoV-2 with high affinity are valuable for a wide range of biomedical applications involving novel coronavirus disease (COVID-19) diagnosis, treatment, and prophylactic intervention. Strategies for the rapid and reliable isolation of these antibodies, especially potent neutralizing antibodies, are critical toward improved COVID-19 response and informed future response to emergent infectious diseases. In this study, single B cell screening was used to interrogate antibody repertoires of immunized mice and isolate antigen-specific IgG1+ memory B cells. Using these methods, high-affinity, potent neutralizing antibodies were identified that target the receptor-binding domain of SARS-CoV-2. Further engineering of the identified molecules to increase valency resulted in enhanced neutralizing activity. Mechanistic investigation revealed that these antibodies compete with ACE2 for binding to the receptor-binding domain of SARS-CoV-2. These antibodies may warrant further development for urgent COVID-19 applications. Overall, these results highlight the potential of single B cell screening for the rapid and reliable identification of high-affinity, potent neutralizing antibodies for infectious disease applications.
Collapse
Affiliation(s)
- John S. Schardt
- grid.214458.e0000000086837370Departments of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Ghasidit Pornnoppadol
- grid.214458.e0000000086837370Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Alec A. Desai
- grid.214458.e0000000086837370Departments of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Kyung Soo Park
- grid.214458.e0000000086837370Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Jennifer M. Zupancic
- grid.214458.e0000000086837370Departments of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Emily K. Makowski
- grid.214458.e0000000086837370Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Matthew D. Smith
- grid.214458.e0000000086837370Departments of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Hongwei Chen
- grid.214458.e0000000086837370Departments of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | | | - Marilia Cascalho
- grid.214458.e0000000086837370Department of Surgery, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Thomas M. Lanigan
- grid.214458.e0000000086837370Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI USA
| | - James J. Moon
- grid.214458.e0000000086837370Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Peter M. Tessier
- grid.214458.e0000000086837370Departments of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370University of Michigan, North Campus Research Complex, B10-179, 2800 Plymouth Road, Ann Arbor, MI 48109 USA
| |
Collapse
|
44
|
Zhou Z, Zhang X, Li Q, Fu L, Wang M, Liu S, Wu J, Nie J, Zhang L, Zhao C, Jiang F, An Y, Yu B, Zheng H, Wang Y, Zhao A, Huang W. Unmethylated CpG motif-containing genomic DNA fragments of bacillus calmette-guerin improves immune response towards a DNA vaccine for COVID-19. Vaccine 2021; 39:6050-6056. [PMID: 34521552 PMCID: PMC8413458 DOI: 10.1016/j.vaccine.2021.08.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 12/25/2022]
Abstract
The development of an effective vaccine to control the global coronavirus disease-2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus- 2 (SARS-CoV-2) is of utmost importance. In this study, a synthetic DNA-based vaccine candidate, known as pSV10-SARS-CoV-2, expressing the SARS-CoV-2 spike protein was designed and tested in 39 BALB/c mice with BC01, an adjuvant derived from unmethylated CpG motif-containing DNA fragments from the Bacillus Calmette-Guerin genome. Mice vaccinated with pSV10-SARS-CoV-2 with BC01 produced early neutralizing antibodies and developed stronger humoral and cellular immune responses compared to mice that received the DNA vaccine only. Moreover, sera from mice vaccinated with pSV10-SARS-CoV-2 with BC01 can neutralize certain variants, including 614G, 614G + 472 V, 452R, 483A, 501Y.V2, and B.1.1.7. The results of this study demonstrate that the addition of BC01 to a DNA-vaccine for COVID-19 could elicit more effective neutralizing antibody titers for disease prevention.
Collapse
Affiliation(s)
- Zehua Zhou
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No.31 Huatuo Street, Daxing District, Beijing 102629, China; Beijing Minhai Biotechnology Co., Ltd, China
| | - Xinyu Zhang
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No.31 Huatuo Street, Daxing District, Beijing 102629, China; College of Life Science, Jilin University, Changchun, China
| | - Qianqian Li
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No.31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Lili Fu
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No.31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Meiyu Wang
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No.31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Shuo Liu
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No.31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Jiajing Wu
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No.31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Jianhui Nie
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No.31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Li Zhang
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No.31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Chenyan Zhao
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No.31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Fei Jiang
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No.31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Yimeng An
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No.31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Bin Yu
- College of Life Science, Jilin University, Changchun, China
| | - Haifa Zheng
- Beijing Minhai Biotechnology Co., Ltd, China
| | - Youchun Wang
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No.31 Huatuo Street, Daxing District, Beijing 102629, China.
| | - Aihua Zhao
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No.31 Huatuo Street, Daxing District, Beijing 102629, China.
| | - Weijin Huang
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No.31 Huatuo Street, Daxing District, Beijing 102629, China.
| |
Collapse
|
45
|
Dynamics of IgG-avidity and antibody levels after Covid-19. J Clin Virol 2021; 144:104986. [PMID: 34563862 PMCID: PMC8451979 DOI: 10.1016/j.jcv.2021.104986] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND A potentially important aspect of the humoral immune response to Covid-19 is avidity, the overall binding strength between antibody and antigen. As low avidity is associated with a risk of re- infection in several viral infections, avidity might be of value to predict risk for reinfection with covid-19. OBJECTIVES The purpose of this study was to describe the maturation of IgG avidity and the antibody-levels over time in patients with PCR-confirmed non-severe covid-19. STUDY DESIGN Prospective longitudinal cohort study including patients with RT-PCR confirmed covid-19. Blood samples were drawn 1, 3 and 6 months after infection. Antibody levels and IgG-avidity were analysed. RESULTS The majority had detectable s- and n-antibodies (88,1%, 89,1%, N = 75). The level of total n-antibodies significantly increased from 1 to 3 months (median value 28,3 vs 39,3 s/co, p<0.001) and significantly decreased from 3 to 6 months (median value 39,3 vs 17,1 s/co, p<0.001). A significant decrease in the IgG anti-spike levels (median value 37,6, 24,1 and 18,2 RU/ml, p<0.001) as well as a significant increase in the IgG-avidity index (median values 51,6, 66,0 and 71,0%, p<0.001) were seen from 1 to 3 to 6 months. CONCLUSION We found a significant ongoing increase in avidity maturation after Covid-19 whilst the levels of antibodies were declining, suggesting a possible aspect of long-term immunity.
Collapse
|
46
|
Moura AD, da Costa HHM, Correa VA, de S Lima AK, Lindoso JAL, De Gaspari E, Hong MA, Cunha-Junior JP, Prudencio CR. Assessment of avidity related to IgG subclasses in SARS-CoV-2 Brazilian infected patients. Sci Rep 2021; 11:17642. [PMID: 34480056 PMCID: PMC8417219 DOI: 10.1038/s41598-021-95045-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/05/2021] [Indexed: 01/07/2023] Open
Abstract
SARS-CoV-2 is considered a global emergency, resulting in an exacerbated crisis in the health public in the world. Although there are advances in vaccine development, it is still limited for many countries. On the other hand, an immunological response that mediates protective immunity or indicates that predict disease outcome in SARS-CoV-2 infection remains undefined. This work aimed to assess the antibody levels, avidity, and subclasses of IgG to RBD protein, in symptomatic patients with severe and mild forms of COVID-19 in Brazil using an adapted in-house RBD-IgG ELISA. The RBD IgG-ELISA showed 100% of specificity and 94.3% of sensibility on detecting antibodies in the sera of hospitalized patients. Patients who presented severe COVID-19 had higher anti-RBD IgG levels compared to patients with mild disease. Additionally, most patients analyzed displayed low antibody avidity, with 64.4% of the samples of patients who recovered from the disease and 84.6% of those who died in this avidity range. Our data also reveals an increase of IgG1 and IgG3 levels since the 8th day after symptoms onset, while IgG4 levels maintained less detectable during the study period. Surprisingly, patients who died during 8-14 and 15-21 days also showed higher anti-RBD IgG4 levels in comparison with the recovered (P < 0.05), suggesting that some life-threatening patients can elicit IgG4 to RBD antibody response in the first weeks of symptoms onset. Our findings constitute the effort to clarify IgG antibodies' kinetics, avidity, and subclasses against SARS-CoV-2 RBD in symptomatic patients with COVID-19 in Brazil, highlighting the importance of IgG antibody avidity in association with IgG4 detection as tool laboratory in the follow-up of hospitalized patients with more significant potential for life-threatening.
Collapse
Affiliation(s)
- Andrew D Moura
- Center of Immunology, Institute Adolfo Lutz, São Paulo, Brazil
| | | | - Victor A Correa
- Center of Immunology, Institute Adolfo Lutz, São Paulo, Brazil
| | | | - José A L Lindoso
- Institute of Infectology Emilio Ribas, São Paulo, Brazil
- Department of Infectious Disease, School of Medicine, São Paulo University, São Paulo, Brazil
- Laboratory of Protozoology, Institute of Tropical Medicine, São Paulo, Brazil
| | | | - Marisa A Hong
- Center of Immunology, Institute Adolfo Lutz, São Paulo, Brazil
| | - Jair P Cunha-Junior
- Laboratory of Immunochemistry and Immunotechnology, Department of Immunology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | |
Collapse
|
47
|
Pang NYL, Pang ASR, Chow VT, Wang DY. Understanding neutralising antibodies against SARS-CoV-2 and their implications in clinical practice. Mil Med Res 2021; 8:47. [PMID: 34465396 PMCID: PMC8405719 DOI: 10.1186/s40779-021-00342-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/25/2021] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 is a newly identified member of the coronavirus family that has caused the Coronavirus disease 2019 (COVID-19) pandemic. This rapidly evolving and unrelenting SARS-CoV-2 has disrupted the lives and livelihoods of millions worldwide. As of 23 August 2021, a total of 211,373,303 COVID-19 cases have been confirmed globally with a death toll of 4,424,341. A strong understanding of the infection pathway of SARS-CoV-2, and how our immune system responds to the virus is highly pertinent for guiding the development and improvement of effective treatments. In this review, we discuss the current understanding of neutralising antibodies (NAbs) and their implications in clinical practice. The aspects include the pathophysiology of the immune response, particularly humoral adaptive immunity and the roles of NAbs from B cells in infection clearance. We summarise the onset and persistence of IgA, IgM and IgG antibodies, and we explore their roles in neutralising SARS-CoV-2, their persistence in convalescent individuals, and in reinfection. Furthermore, we also review the applications of neutralising antibodies in the clinical setting-from predictors of disease severity to serological testing to vaccinations, and finally in therapeutics such as convalescent plasma infusion.
Collapse
Affiliation(s)
- Natalie Yan-Lin Pang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | | | - Vincent T Chow
- Department of Microbiology and Immunology, National University of Singapore, Science Drive 2, Singapore, 117545, Singapore. .,Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| | - De-Yun Wang
- Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore. .,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore.
| |
Collapse
|
48
|
Struck F, Schreiner P, Staschik E, Wochinz-Richter K, Schulz S, Soutschek E, Motz M, Bauer G. Incomplete IgG avidity maturation after seasonal coronavirus infections. J Med Virol 2021; 94:186-196. [PMID: 34427932 DOI: 10.1002/jmv.27291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022]
Abstract
In classical viral infections, the avidity of immunoglobulin G (IgG) is low during acute infection and high a few months later. As recently reported, SARS-CoV-2 infections are not following this scheme, but they are rather characterized by incomplete avidity maturation. This study was performed to clarify whether infection with seasonal coronaviruses also leads to incomplete avidity maturation. The avidity of IgG toward the nucleoprotein (NP) of the seasonal coronaviruses 229E, NL63, OC43, HKU1 and of SARS-CoV-2 was determined in the sera from 88 healthy, SARS-CoV-2-negative subjects and in the sera from 70 COVID-19 outpatients, using the recomLine SARS-CoV-2 assay with recombinant antigens. In the sera from SARS-CoV-2-negative subjects, incomplete avidity maturation (persistent low and intermediate avidity indices) was the lowest for infections with the alpha-coronaviruses 229E (33.3%) and NL63 (61.3%), and the highest for the beta-coronaviruses OC43 (77.5%) and HKU1 (71.4%). In the sera from COVID-19 patients, the degree of incomplete avidity maturation of IgG toward NP of 223E, OC43, and HKU1 was not significantly different from that found in SARS-CoV-2-negative subjects, but a significant increase in avidity was observed for IgG toward NP of NL63. Though there was no cross-reaction between SARS-CoV-2 and seasonal coronaviruses, higher concentrations of IgG directed toward seasonal coronaviruses seemed to indirectly increase avidity maturation of IgG directed toward SARS-CoV-2. Our data show that incomplete IgG avidity maturation represents a characteristic consequence of coronavirus infections. This raises problems for the serological differentiation between acute and past infections and may be important for the biology of coronaviruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Georg Bauer
- Institute of Virology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
49
|
Portilho AI, Silva VO, Ahagon CM, Matsuda EM, de Oliveira EL, da Silveira EPR, de Souza Lima AK, Lindoso JAL, de Campos IB, Hong MA, De Gaspari E, de Macedo Brígido LF. Humoral response to spike S1 and S2 and nucleocapsid proteins on microarray after SARS-CoV-2 infection. J Med Virol 2021; 94:178-185. [PMID: 34428312 PMCID: PMC8661980 DOI: 10.1002/jmv.27290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/08/2022]
Abstract
Many aspects of the humoral immune response to severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), such as its role in protection after natural infection, are still unclear. We evaluated IgA and IgG response to spike subunits 1 and 2 (S1 and S2) and Nucleocapsid proteins of SARS‐COV‐2 in serum samples of 109 volunteers with viral RNA detected or seroconversion with different clinical evolution (asymptomatic, mild, moderate, and severe coronavirus disease 2019), using the ViraChip® Test Kit. We observed that the quantification of antibodies to all antigens had a positive correlation to disease severity, which was strongly associated with the presence of comorbidities. Seroreversion was not uncommon even during the short (median of 77 days) observation, occurring in 15% of mild‐asymptomatic cases at a median of 55 days for IgG and 46 days for IgA. The time to reach the maximal antibody response did not differ significantly among recovered and deceased volunteers. Our study illustrated the dynamic of anti‐S1, anti‐N, and anti‐S2 IgA and IgG antibodies, and suggests that high production of IgG and IgA does not guarantee protection to disease severity and that functional responses that have been studied by other groups, such as antibody avidity, need further attention. Symptomatic SARS‐CoV‐2 infection generally elicits strong humoral immune response. IgA and IgG titers to three viral antigens (S1, S2 and N) correlate to severity of COVID‐19 disease. Seroreversion is not uncommon and may occur few months after SARS‐CoV‐2 infection. Elucidation of functional characteristics of antibodies are necessary to better understand disease pathogenesis and may guide vaccine boosting strategies.
Collapse
Affiliation(s)
- Amanda I Portilho
- Institute Adolfo Lutz, Center of Immunology, São Paulo, Sao Paulo, Brazil
| | - Valéria O Silva
- Institute Adolfo Lutz, Center of Virology, São Paulo, Sao Paulo, Brazil
| | - Cintia M Ahagon
- Institute Adolfo Lutz, Center of Virology, São Paulo, Sao Paulo, Brazil
| | - Elaine M Matsuda
- Department of Santo André Health, Infectious Diseases Outpatient Clinic, Santo André, Sao Paulo, Brazil
| | | | | | | | - José A L Lindoso
- Institute of Infectology Emilio Ribas, São Paulo, Sao Paulo, Brazil
| | - Ivana B de Campos
- Institute Adolfo Lutz, Santo André Regional Center, Santo André, São Paulo, Brazil
| | - Marisa A Hong
- Institute Adolfo Lutz, Center of Immunology, São Paulo, Sao Paulo, Brazil
| | | | | |
Collapse
|
50
|
Neumann F, Rose R, Römpke J, Grobe O, Lorentz T, Fickenscher H, Krumbholz A. Development of SARS-CoV-2 Specific IgG and Virus-Neutralizing Antibodies after Infection with Variants of Concern or Vaccination. Vaccines (Basel) 2021; 9:700. [PMID: 34202276 PMCID: PMC8310178 DOI: 10.3390/vaccines9070700] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
The humoral immunity after SARS-CoV-2 infection or vaccination was examined. Convalescent sera after infection with variants of concern (VOCs: B.1.1.7, n = 10; B.1.351, n = 1) and sera from 100 vaccinees (Pfizer/BioNTech, BNT162b2, n = 33; Moderna, mRNA-1273, n = 11; AstraZeneca, ChAdOx1 nCoV-19/AZD1222, n = 56) were tested for the presence of immunoglobulin G (IgG) directed against the viral spike (S)-protein, its receptor-binding domain (RBD), the nucleoprotein (N) and for virus-neutralizing antibodies (VNA). For the latter, surrogate assays (sVNT) and a Vero-cell based neutralization test (cVNT) were used. Maturity of IgG was determined by measuring the avidity in an immunoblot (IB). Past VOC infection resulted in a broad reactivity of anti-S IgG (100%), anti-RBD IgG (100%), and anti-N IgG (91%), while latter were absent in 99% of vaccinees. Starting approximately two weeks after the first vaccine dose, anti-S IgG (75-100%) and particularly anti-RBD IgG (98-100%) were detectable. After the second dose, their titers increased and were higher than in the convalescents. The sVNT showed evidence of VNA in 91% of convalescents and in 80-100%/100% after first/second vaccine dose, respectively. After the second dose, an increase in VNA titer and IgGs of high avidity were demonstrated by cVNT and IB, respectively. Re-vaccination contributes to a more robust immune response.
Collapse
Affiliation(s)
- Franziska Neumann
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, D-24106 Kiel, Germany; (F.N.); (O.G.); (T.L.)
| | - Ruben Rose
- Institut für Infektionsmedizin, Christian-Albrechts-Universität zu Kiel und Universitätsklinikum Schleswig-Holstein, Campus Kiel, Brunswiker Straße 4, D-24105 Kiel, Germany; (R.R.); (H.F.)
| | - Janine Römpke
- Städtisches Krankenhaus Kiel, Chemnitzstraße 33, D-24116 Kiel, Germany;
| | - Olaf Grobe
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, D-24106 Kiel, Germany; (F.N.); (O.G.); (T.L.)
| | - Thomas Lorentz
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, D-24106 Kiel, Germany; (F.N.); (O.G.); (T.L.)
| | - Helmut Fickenscher
- Institut für Infektionsmedizin, Christian-Albrechts-Universität zu Kiel und Universitätsklinikum Schleswig-Holstein, Campus Kiel, Brunswiker Straße 4, D-24105 Kiel, Germany; (R.R.); (H.F.)
| | - Andi Krumbholz
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, D-24106 Kiel, Germany; (F.N.); (O.G.); (T.L.)
- Institut für Infektionsmedizin, Christian-Albrechts-Universität zu Kiel und Universitätsklinikum Schleswig-Holstein, Campus Kiel, Brunswiker Straße 4, D-24105 Kiel, Germany; (R.R.); (H.F.)
| |
Collapse
|