1
|
Kasibhatla SM, Rajan L, Shete A, Jani V, Yadav S, Joshi Y, Sahay R, Patil DY, Mohandas S, Majumdar T, Sonavane U, Joshi R, Yadav P. Construction of an immunoinformatics-based multi-epitope vaccine candidate targeting Kyasanur forest disease virus. PeerJ 2025; 13:e18982. [PMID: 40130172 PMCID: PMC11932114 DOI: 10.7717/peerj.18982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/22/2025] [Indexed: 03/26/2025] Open
Abstract
Kyasanur forest disease (KFD) is one of the neglected tick-borne viral zoonoses. KFD virus (KFDV) was initially considered endemic to the Western Ghats region of Karnataka state in India. Over the years, there have been reports of its spread to newer areas within and outside Karnataka. The absence of an effective treatment for KFD mandates the need for further research and development of novel vaccines. The present study was designed to develop a multi-epitope vaccine candidate against KFDV using immunoinformatics approaches. A total of 74 complete KFDV genome sequences were analysed for genetic recombination followed by phylogeny. Computational prediction of B- and T-cell epitopes belonging to envelope protein was performed and epitopes were prioritised based on IFN-Gamma, IL-4, IL-10 stimulation and checked for allergenicity and toxicity. The eight short-listed epitopes (three MHC-Class 1, three MHC-Class 2 and two B-cell) were then combined using various linkers to construct the vaccine candidate. Molecular docking followed by molecular simulations revealed stable interactions of the vaccine candidate with immune receptor complex namely Toll-like receptors (TLR2-TLR6). Codon optimization followed by in-silico cloning of the designed multi-epitope vaccine construct into the pET30b (+) expression vector was carried out. Immunoinformatics analysis of the multi-epitope vaccine candidate in the current study has potential to significantly accelerate the initial stages of vaccine development. Experimental validation of the potential multi-epitope vaccine candidate remains crucial to confirm effectiveness and safety in real-world conditions.
Collapse
Affiliation(s)
| | - Lekshmi Rajan
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Anita Shete
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Vinod Jani
- Centre for Development of Advanced Computing, Pune, India
| | - Savita Yadav
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Yash Joshi
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Rima Sahay
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Deepak Y. Patil
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | | | - Triparna Majumdar
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | | | - Rajendra Joshi
- Centre for Development of Advanced Computing, Pune, India
| | - Pragya Yadav
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| |
Collapse
|
2
|
Kappagoda C, Senavirathna I, Agampodi T, Agampodi SB. Role of Toll-like receptor 2 during infection of Leptospira spp: A systematic review. PLoS One 2024; 19:e0312466. [PMID: 39729468 DOI: 10.1371/journal.pone.0312466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024] Open
Abstract
The involvement of Toll-like receptor 2 (TLR2) in leptospirosis is poorly understood. Our systematic review examined its role across in-vitro, in-vivo, ex-vivo, and human studies. Original articles published in English up to January 2024, exploring the role of TLR2 during leptospirosis, were selected from databases including PubMed, Web of Science, Scopus, Trip, and Google Scholar. Cochrane guidelines and Preferred Reporting Items for Systematic Reviews and Meta-Analyses were followed by this systematic review. The National Institute of Health Quality Assessment tool, Systematic Review Centre for Laboratory Animal Experimentation risk of bias tool, and Office of Health Assessment and Translation extended tool were used to assess the risk of bias of the studies. Out of 2458 studies retrieved, 35 were selected for the systematic review. These comprised 3 human, 17 in-vitro, 5 in-vivo, 3 ex-vivo, and 7 studies with combined experimental models. We assessed the direct TLR2 expression and indirect TLR2 involvement via the secretion/mRNA expression of immune effectors during leptospirosis. Notably, we observed the secretion/mRNA expression of several cytokines (IL6, IL8, IL-1β, TNFα, IFNγ, IL10, CCL2/MCP-1, CCL10, COX2, CXCL1/KC, CXCL2/MIP2) and immune effectors (hBD2, iNOS, Fibronectin, Oxygen, and Nitrogen reactive species) as key aspects of host TLR2 responses during leptospirosis. Even though increased TLR2 expression in in-vivo and in-vitro studies was evident, human studies reported mixed results showing that the postulated effect of TLR2 response based on other studies may not be valid for human leptospirosis. Besides the role of TLR2 in response to leptospirosis, the involvement of TLR4 and TLR5 was identified in in-vitro and in-vivo studies. TLR2 expression is inconclusive during human leptospirosis and further studies are needed to examine the immune effector regulation, through TLR2 for mitigating the harmful effects and promoting effective immune responses.
Collapse
Affiliation(s)
- Chamila Kappagoda
- Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Anuradhapura, Sri Lanka
| | - Indika Senavirathna
- Department of Biochemistry, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Anuradhapura, Sri Lanka
| | - Thilini Agampodi
- Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Anuradhapura, Sri Lanka
- International Vaccine Institute, Seoul, Republic of Korea
| | - Suneth Buddhika Agampodi
- International Vaccine Institute, Seoul, Republic of Korea
- Department of Internal Medicine, Section of Infectious Diseases, School of Medicine, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
3
|
Malgwi SA, Adeleke VT, Adeleke MA, Okpeku M. Multi-epitope Based Peptide Vaccine Candidate Against Babesia Infection From Rhoptry-Associated Protein 1 (RAP-1) Antigen Using Immuno-Informatics: An In Silico Approach. Bioinform Biol Insights 2024; 18:11779322241287114. [PMID: 39691583 PMCID: PMC11650595 DOI: 10.1177/11779322241287114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/05/2024] [Indexed: 12/19/2024] Open
Abstract
Objective Babesiosis is a significant haemoparasitic infection caused by apicomplexan parasites of the genus Babesia. This infection has continuously threatened cattle farmers owing to its devastating effects on productivity and severe economic implications. Failure to curb the increase of the infection has been attributed to largely ineffective vaccines. This study was designed to develop a potential vaccine candidate. Method Rhoptry-associated protein-1 (RAP-1) was used to identify and design a potential multi-epitope vaccine candidate due to its immunogenic properties through an immunoinformatics approach. Results and conclusions A multi-epitope vaccine comprising 11 CD8+, 17 CD4+, and 3 B-cell epitopes was constructed using the AAY, GPGPG, and KK linkers. Beta-defensin-3 was added as an adjuvant to potentiate the immune response using the EAAK linker. The designed vaccine was computationally predicted to be antigenic (antigenicity scores: 0.6), soluble (solubility index: 0.730), and non-allergenic. The vaccine construct comprises 595 amino acids with a molecular weight of 64 152 kDa, an instability and aliphatic index of 13.89 and 65.82, which confers stability with a Grand average of hydropathicity (GRAVY) value of 0.122, indicating the hydrophobicity of the construct. Europe has the highest combined class population coverage, with a percentage of 96.07%, while Central America has the lowest population coverage, with a value of 22.94%. The DNA sequence of the vaccine construct was optimized and successfully cloned into a pET-28a (+) plasmid vector. Analysis of binding interactions indicated the stability of the complex when docked with Toll-like receptor-2 (TLR-2). The subunit vaccine construct was predicted to induce and boost sufficient host cellular and humoral responses in silico. However, further experimental research and analysis is required to validate the findings. Limitation This study is purely computational, and further experimental validation of these findings through in vivo and in vitro conditions is required.
Collapse
Affiliation(s)
- Samson Anjikwi Malgwi
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Victoria T Adeleke
- Discipline of Chemical Engineering, Mangosuthu University of Technology, Durban, South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
4
|
Yoon KN, Choi YH, Keum GB, Yeom SJ, Kim SS, Kim ES, Park HJ, Kim JE, Park JH, Song BS, Eun JB, Park SH, Lee JH, Lee JH, Kim HB, Kim JK. Lactiplantibacillus argentoratensis AGMB00912 alleviates diarrhea and promotes the growth performance of piglets during the weaning transition. BMC Microbiol 2024; 24:404. [PMID: 39390387 PMCID: PMC11465746 DOI: 10.1186/s12866-024-03536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Preventing post-weaning diarrhea (PWD) in weaned piglets is a crucial challenge in the swine production industry. The stress of weaning, dietary shifts from maternal milk to solid feed, and environmental changes lead to decreased microbial diversity, increased pathogen abundance, and compromised intestinal integrity. We have previously identified Lactiplantibacillus argentoratensis AGMB00912 (LA) in healthy porcine feces, which demonstrated antimicrobial activity against pathogens and enhanced short-chain fatty acid production. This research aimed to evaluate the efficacy of LA strain supplementation as a strategy to inhibit PWD and enhance overall growth performance in weaned piglets. RESULTS LA supplementation in weaned piglets significantly increased body weight gain, average daily gain, and average daily feed intake. It also alleviated diarrhea symptoms (diarrhea score and incidence). Notably, LA was found to enrich beneficial microbial populations (Lactobacillus, Anaerobutyricum, Roseburia, Lachnospiraceae, and Blautia) while reducing the abundance of harmful bacteria (Helicobacter and Campylobacter). This not only reduces the direct impact of pathogens but also improves the overall gut microbiota structure, thus enhancing the resilience of weaned piglets. LA treatment also promotes the growth of the small intestinal epithelial structure, strengthens gut barrier integrity, and increases short-chain fatty acid levels in the gut. CONCLUSIONS The study findings demonstrate the promising potential of LA in preventing PWD. Supplementation with the LA strain offers a promising feed additive for improving intestinal health and growth in piglets during the weaning transition, with the potential to significantly reduce the incidence and severity of PWD.
Collapse
Affiliation(s)
- Ki-Nam Yoon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, 56212, Republic of Korea
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yo-Han Choi
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Gi Beom Keum
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seo-Joon Yeom
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, 56212, Republic of Korea
| | - Sang-Su Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, 56212, Republic of Korea
| | - Eun Sol Kim
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hyun Ju Park
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Jo Eun Kim
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Jong-Heum Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, 56212, Republic of Korea
| | - Beom-Seok Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, 56212, Republic of Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seung-Hwan Park
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, 56212, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, 56212, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Jae-Kyung Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, 56212, Republic of Korea.
| |
Collapse
|
5
|
Janson TM, Ramenzoni LL, Hatz CR, Schlagenhauf U, Attin T, Schmidlin PR. Limosilactobacillus reuteri supernatant attenuates inflammatory responses of human gingival fibroblasts to LPS but not to elevated glucose levels. J Periodontal Res 2024; 59:974-981. [PMID: 38764133 DOI: 10.1111/jre.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/04/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024]
Abstract
AIM We investigated the in vitro effect of Limosilactobacillus reuteri DSM 17938 supernatant on the inflammatory response of human gingival fibroblasts (HGF) challenged by lipopolysaccharide (LPS) or elevated glucose levels. METHODS HGF were exposed to LPS (1 μg/mL), glucose (5, 12 mM or 25 mM), and dilutions of supernatant prepared from L. reuteri DSM 17938 (0.5 × 107, 1.0 × 107, 2.5 × 107, and 5.0 × 107 CFU/mL). After 24 h cell viability and levels of cytokines (IL-1β, IL-6 and IL-8) and TLR-2 were determined. RESULTS None of the tested L. reuteri (DSM 17938) supernatant concentrations reduced the viability of HGF. Supernatant concentrations (2.5 × 107 and 5 × 107 CFU/mL) significantly (p < .05) decreased the production of IL-1β, IL-6, IL-8, and TLR-2 in the presence of LPS. In contrast, inflammatory markers were not reduced by L. reuteri supernatant in the presence of glucose. Glucose concentrations of 12 mM and 24 mM still lead to an elevated production of the investigated biochemical mediators. CONCLUSION While L. reuteri (DSM 17938) supernatant attenuates the inflammatory response of HGF to LPS in a dose-dependent manner, elevated glucose levels suppress this action. These in vitro results support the overall anti-inflammatory efficacy of L. reuteri supplementation in plaque-associated periodontal inflammations.
Collapse
Affiliation(s)
- T M Janson
- Division of Periodontology and Peri-implant Diseases, Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - L L Ramenzoni
- Division of Periodontology and Peri-implant Diseases, Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - C R Hatz
- Division of Periodontology and Peri-implant Diseases, Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - U Schlagenhauf
- Division of Periodontology and Peri-implant Diseases, Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
- Department of Conservative Dentistry and Periodontology, Center for Oral Health, University Hospital Wuerzburg, Wuerzburg, Germany
| | - T Attin
- Division of Periodontology and Peri-implant Diseases, Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - P R Schmidlin
- Division of Periodontology and Peri-implant Diseases, Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Moeckli B, Delaune V, Gilbert B, Peloso A, Oldani G, El Hajji S, Slits F, Ribeiro JR, Mercier R, Gleyzolle A, Rubbia-Brandt L, Gex Q, Lacotte S, Toso C. Maternal obesity increases the risk of hepatocellular carcinoma through the transmission of an altered gut microbiome. JHEP Rep 2024; 6:101056. [PMID: 38681863 PMCID: PMC11046215 DOI: 10.1016/j.jhepr.2024.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 05/01/2024] Open
Abstract
Background & Aims Emerging evidence suggests that maternal obesity negatively impacts the health of offspring. Additionally, obesity is a risk factor for hepatocellular carcinoma (HCC). Our study aims to investigate the impact of maternal obesity on the risk for HCC development in offspring and elucidate the underlying transmission mechanisms. Methods Female mice were fed either a high-fat diet (HFD) or a normal diet (ND). All offspring received a ND after weaning. We studied liver histology and tumor load in a N-diethylnitrosamine (DEN)-induced HCC mouse model. Results Maternal obesity induced a distinguishable shift in gut microbial composition. At 40 weeks, female offspring of HFD-fed mothers (HFD offspring) were more likely to develop steatosis (9.43% vs. 3.09%, p = 0.0023) and fibrosis (3.75% vs. 2.70%, p = 0.039), as well as exhibiting an increased number of inflammatory infiltrates (4.8 vs. 1.0, p = 0.018) and higher expression of genes involved in fibrosis and inflammation, compared to offspring of ND-fed mothers (ND offspring). A higher proportion of HFD offspring developed liver tumors after DEN induction (79.8% vs. 37.5%, p = 0.0084) with a higher mean tumor volume (234 vs. 3 μm3, p = 0.0041). HFD offspring had a significantly less diverse microbiota than ND offspring (Shannon index 2.56 vs. 2.92, p = 0.0089), which was rescued through co-housing. In the principal component analysis, the microbiota profile of co-housed animals clustered together, regardless of maternal diet. Co-housing of HFD offspring with ND offspring normalized their tumor load. Conclusions Maternal obesity increases female offspring's susceptibility to HCC. The transmission of an altered gut microbiome plays an important role in this predisposition. Impact and implications The worldwide incidence of obesity is constantly rising, with more and more children born to obese mothers. In this study, we investigate the impact of maternal diet on gut microbiome composition and its role in liver cancer development in offspring. We found that mice born to mothers with a high-fat diet inherited a less diverse gut microbiome, presented chronic liver injury and an increased risk of developing liver cancer. Co-housing offspring from normal diet- and high-fat diet-fed mothers restored the gut microbiome and, remarkably, normalized the risk of developing liver cancer. The implementation of microbial screening and restoration of microbial diversity holds promise in helping to identify and treat individuals at risk to prevent harm for future generations.
Collapse
Affiliation(s)
- Beat Moeckli
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Vaihere Delaune
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Benoît Gilbert
- Department of Medicine, Division of Rheumatology, Geneva University Hospitals, 1206 Geneva, Switzerland
- Geneva Centre for Inflammation Research (GCIR), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Andrea Peloso
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Graziano Oldani
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Department of Surgery, Division of General Surgery, The University of British Columbia, Vancouver, Canada
| | - Sofia El Hajji
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Florence Slits
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Joana Rodrigues Ribeiro
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Ruben Mercier
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Adrien Gleyzolle
- Department of Diagnostics, Division of Radiology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Laura Rubbia-Brandt
- Department of Diagnostics Division of Clinical Pathology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Quentin Gex
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Stephanie Lacotte
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Christian Toso
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| |
Collapse
|
7
|
Huang Z, Teng W, Yao L, Xie K, Hang S, He R, Li Y. mTOR signaling pathway regulation HIF-1 α effects on LPS induced intestinal mucosal epithelial model damage. BMC Mol Cell Biol 2024; 25:13. [PMID: 38654163 PMCID: PMC11036631 DOI: 10.1186/s12860-024-00509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Sepsis-induced small-intestinal injury is associated with increased morbidity and mortality. Our previous study and other papers have shown that HIF-1α has a protective effect on intestinal mucosal injury in septic rats. The purpose of this study is to further verify the protective effect of HIF-1α on intestinal mucosa and its molecular mechanism in vitro experiments. METHODS Caco-2 cells were selected and experiment was divided into 2 parts. Part I: HIF-1α activator and inhibitor were used to treat lipopolysacchrides (LPS)-stimulated Caco-2 cells respectively, to explore the effect of HIF-1α on LPS induced Caco-2 cell epithelial model; Part II: mTOR activator or inhibitor combined with or without HIF-1α activator, inhibitor to treat LPS-stimulated Caco-2 cells respectively, and then the molecular mechanism of HIF-1α reducing LPS induced Caco-2 cell epithelial model damage was detected. RESULTS The results showed that HIF-1α activator decreased the permeability and up regulated tight junction (TJ) expression, while HIF-1α inhibitor had the opposite effect with the HIF-1α activator. mTOR activation increased, while mTOR inhibition decreased HIF-1α protein and expression of its downstream target molecules, which can be attenuated by HIF-1α activator or inhibitor. CONCLUSION This study once again confirmed that HIF-1α alleviates LPS-induced mucosal epithelial model damage through P70S6K signalling pathway. It is of great value to explore whether HIF-2α plays crucial roles in the regulation of mucosal epithelial model functions in the future.
Collapse
Affiliation(s)
- Zeyong Huang
- Department of Anesthesiology, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren College, 310015, Hangzhou, China
| | - Wenbin Teng
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310001, Hangzhou, China
| | - Liuxu Yao
- Rehabilitation Medicine Center, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 310014, Hangzhou, China
| | - Kai Xie
- Department of Anesthesiology, Shaoxing People's Hospital, Zhejiang University, 312000, Shaoxing, China
| | - Suqin Hang
- Department of Anesthesiology, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren College, 310015, Hangzhou, China
| | - Rui He
- Department of Anesthesiology, Shaoxing People's Hospital, Zhejiang University, 312000, Shaoxing, China.
| | - Yuhong Li
- Department of Anesthesiology, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren College, 310015, Hangzhou, China.
- Department of Anesthesiology, Shulan (Hangzhou) Hospital, Shulan International Medical College, Shuren University, 848 Dongxin Road, Xiacheng District, 310004, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Kumari P, Panigrahi AR, Yadav P, Beura SK, Singh SK. Platelets and inter-cellular communication in immune responses: Dialogue with both professional and non-professional immune cells. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:347-379. [PMID: 38762274 DOI: 10.1016/bs.apcsb.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Platelets, derived from bone marrow megakaryocytes, are essential for vascular integrity and play multifaceted roles in both physiological and pathological processes within the vasculature. Despite their small size and absence of a nucleus, platelets are increasingly recognized for their diverse immune functions. Recent research highlights their pivotal role in interactions with various immune cells, including professional cells like macrophages, dendritic cells, natural killer cells, T cells, and B cells, influencing host immune responses. Platelets also engage with non-professional immune cells, contributing to immune responses and structural maintenance, particularly in conditions like inflammation and atherosclerosis. This review underscores the emerging significance of platelets as potent immune cells, elucidating their interactions with the immune system. We explore the mechanisms of platelet activation, leading to diverse functions, such as aggregation, immunity, activation of other immune cells, and pathogen clearance. Platelets have become the predominant immune cells in circulation, involved in chronic inflammation, responses to infections, and autoimmune disorders. Their immunological attributes, including bioactive granule molecules and immune receptors, contribute to their role in immune responses. Unlike professional antigen-presenting cells, platelets process and present antigens through an MHC-I-dependent pathway, initiating T-cell immune responses. This review illuminates the unique features of platelets and their central role in modulating host immune responses in health and disease.
Collapse
Affiliation(s)
- Puja Kumari
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | | | - Pooja Yadav
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Samir Kumar Beura
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Sunil Kumar Singh
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India; Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
9
|
Domon H, Hirayama S, Isono T, Saito R, Yanagihara K, Terao Y. Lipoprotein signal peptidase-deficient Streptococcus pneumoniae exhibits impaired Toll-like receptor 2-stimulatory activity. Microbiol Immunol 2024; 68:155-159. [PMID: 38311883 DOI: 10.1111/1348-0421.13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Streptococcus pneumoniae is a causative agent of community-acquired pneumonia. Upon pneumococcal infection, innate immune cells recognize pneumococcal lipoproteins via Toll-like receptor 2 and induce inflammation. Here, we generated a strain of S. pneumoniae deficient in lipoprotein signal peptidase (LspA), a transmembrane type II signal peptidase required for lipoprotein maturation, to investigate the host immune response against this strain. Triton X-114 phase separation revealed that lipoprotein expression was lower in the LspA-deficient strain than in the wild-type strain. Additionally, the LspA-deficient strain decreased nuclear factor-κB activation and cytokine production in THP-1 cells, indicating impaired innate immune response against the strain.
Collapse
Affiliation(s)
- Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoru Hirayama
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Rui Saito
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
10
|
Payen S, Giroux MC, Gisch N, Schombel U, Fittipaldi N, Segura M, Gottschalk M. Lipoteichoic acids influence cell shape and bacterial division of Streptococcus suis serotype 2, but play a limited role in the pathogenesis of the infection. Vet Res 2024; 55:34. [PMID: 38504299 PMCID: PMC10953176 DOI: 10.1186/s13567-024-01287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Streptococcus suis serotype 2 is a major swine pathogen and a zoonotic agent, causing meningitis in both swine and humans, responsible for substantial economic losses to the swine industry worldwide. The pathogenesis of infection and the role of bacterial cell wall components in virulence have not been fully elucidated. Lipoproteins, peptidoglycan, as well as lipoteichoic acids (LTA) have all been proposed to contribute to virulence. In the present study, the role of the LTA in the pathogenesis of the infection was evaluated through the characterisation of a mutant of the S. suis serotype 2 strain P1/7 lacking the LtaS enzyme, which mediates the polymerization of the LTA poly-glycerolphosphate chain. The ltaS mutant was confirmed to completely lack LTA and displayed significant morphological defects. Although the bacterial growth of this mutant was not affected, further results showed that LTA is involved in maintaining S. suis bacterial fitness. However, its role in the pathogenesis of the infection appears limited. Indeed, LTA presence reduces self-agglutination, biofilm formation and even dendritic cell activation, which are important aspects of the pathogenesis of the infection caused by S. suis. In addition, it does not seem to play a critical role in virulence using a systemic mouse model of infection.
Collapse
Affiliation(s)
- Servane Payen
- Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Marie-Christine Giroux
- Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Ursula Schombel
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Nahuel Fittipaldi
- Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Mariela Segura
- Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Marcelo Gottschalk
- Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
11
|
Boone AC, Kulkarni RR, Cortes AL, Gaghan C, Mohammed J, Villalobos T, Esandi J, Gimeno IM. Evaluation of Adjuvant Effect of Cytosine-Guanosine-Oligodeoxynucleotide in Meat-Type Chickens Coadministered In Ovo with Herpesvirus of Turkey Vaccine. Viral Immunol 2024; 37:89-100. [PMID: 38301195 DOI: 10.1089/vim.2023.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Herpesvirus of turkey (HVT) increases activation of T cells in 1-day-old chickens when administered in ovo. This study evaluated whether adding cytosine-guanosine oligodeoxynucleotides (CpG ODNs) to the HVT vaccine could enhance the adjuvant effect of HVT. We used a CpG ODN dose of 10 μg per egg. The experimental groups were (1) diluent-only control (sham), (2) HVT, (3) HVT+CpG ODN, (4) HVT+non-CpG ODN, (5) CpG ODN, and (6) non-CpG ODN control. Cellular response evaluation included measuring the frequencies of macrophages (KUL01+MHC-II+), gamma delta T cells (γδTCR+MHC-II+), CD4+, and CD8+ T cell subsets, including double-positive (DP) cells. In addition, CD4+ and CD8+ T cell activation was evaluated by measuring the cellular expression of major histocompatibility complex class II (MHC-II), CD44 or CD28 costimulatory molecules. An adjuvant effect was considered when HVT+CpG ODN, but not HVT+non CpG ODN, or CpG ODN, or non-CpG ODN, induced significantly increased effects on any of the immune parameters examined when compared with HVT. The findings showed that (1) HVT vaccination induced significantly higher frequencies of γδ+MHC-II+ and CD4+CD28+ T cells when compared with sham chickens. Frequencies of DP and CD4+CD28+ T cells in HVT-administered birds were significantly higher than those observed in the non-CpG ODN group. (2) Groups receiving HVT+CpG ODN or CpG ODN alone were found to have significantly increased frequencies of activated CD4+ and CD8+ T cells, when compared with HVT. Our results show that CpG ODN administration in ovo with or without HVT significantly increased frequencies of activated CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Allison C Boone
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Experimental Pathology Laboratories, Inc., Durham, North Carolina, USA
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Aneg L Cortes
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Carissa Gaghan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Javid Mohammed
- Experimental Pathology Laboratories, Inc., Durham, North Carolina, USA
| | | | - Javier Esandi
- Zoetis-Global Biodevice, Durham, North Carolina, USA
| | - Isabel M Gimeno
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
12
|
Sangiorgio G, Nicitra E, Bivona D, Bonomo C, Bonacci P, Santagati M, Musso N, Bongiorno D, Stefani S. Interactions of Gram-Positive Bacterial Membrane Vesicles and Hosts: Updates and Future Directions. Int J Mol Sci 2024; 25:2904. [PMID: 38474151 DOI: 10.3390/ijms25052904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayers derived from cell membranes, released by both eukaryotic cells and bacteria into the extracellular environment. During production, EVs carry proteins, nucleic acids, and various compounds, which are then released. While Gram-positive bacteria were traditionally thought incapable of producing EVs due to their thick peptidoglycan cell walls, recent studies on membrane vesicles (MVs) in Gram-positive bacteria have revealed their significant role in bacterial physiology and disease progression. This review explores the current understanding of MVs in Gram-positive bacteria, including the characterization of their content and functions, as well as their interactions with host and bacterial cells. It offers a fresh perspective to enhance our comprehension of Gram-positive bacterial EVs.
Collapse
Affiliation(s)
- Giuseppe Sangiorgio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Emanuele Nicitra
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Dalida Bivona
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Carmelo Bonomo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Paolo Bonacci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Maria Santagati
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Dafne Bongiorno
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| |
Collapse
|
13
|
Liu D, Fu L, Gong L, Li S, Li K, Liu K, Yang D. Proton-Gradient-Driven Porphyrin-Based Liposome Remote-Loaded with Imiquimod as In Situ Nanoadjuvants for Synergistically Augmented Tumor Photoimmunotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8403-8416. [PMID: 38334116 DOI: 10.1021/acsami.3c17133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Cancer immunotherapy is expected to achieve tumor treatment mainly by stimulating the patient's own immune system to kill tumor cells. However, the low immunogenicity of the tumor and the poor efficiency of tumor antigen presentation result in a variety of solid tumors that do not respond to immunotherapy. Herein, we designed a proton-gradient-driven porphyrin-based liposome (PBL) with highly efficient Toll-like receptor 7 (TLR7) agonist (imiquimod, R837) encapsulation (R837@PBL). R837@PBL rapidly released R837 in the acid microenvironment to activate the TLR in the endosome inner membrane to promote bone-marrow-derived dendritic cell maturation and enhance antigen presentation. R837@PBL upon laser irradiation triggered immunogenic cell death of tumor cells and tumor-associated antigen release after subcutaneous injection, activated TLR7, formed in situ tumor nanoadjuvants, and enhanced the antigen presentation efficiency. Photoimmunotherapy promoted the infiltration of cytotoxic T lymphocytes into tumor tissues, inhibited the growth of the treated and abscopal tumors, and exerted highly effective photoimmunotherapeutic effects. Hence, our designed in situ tumor nanoadjuvants are expected to be an effective treatment for treated and abscopal tumors, providing a novel approach for synergistic photoimmunotherapy of tumors.
Collapse
Affiliation(s)
- Dechun Liu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, Shaanxi, China
| | - Luyao Fu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, Shaanxi, China
| | - Linlin Gong
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, Shaanxi, China
| | - Shasha Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, Shaanxi, China
| | - Kunwei Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, Shaanxi, China
| | - Kunhong Liu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, Shaanxi, China
| | - Dan Yang
- Department of Pharmaceutical Sciences, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Weiyang University Park, Xi'an 710021, China
| |
Collapse
|
14
|
da Silveira BP, Barhoumi R, Bray JM, Cole-Pfeiffer HM, Mabry CJ, Burghardt RC, Cohen ND, Bordin AI. Impact of surface receptors TLR2, CR3, and FcγRIII on Rhodococcus equi phagocytosis and intracellular survival in macrophages. Infect Immun 2024; 92:e0038323. [PMID: 38018994 PMCID: PMC10790823 DOI: 10.1128/iai.00383-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023] Open
Abstract
The virulence-associated protein A (VapA) produced by virulent Rhodococcus equi allows it to replicate in macrophages and cause pneumonia in foals. It is unknown how VapA interacts with mammalian cell receptors, but intracellular replication of avirulent R. equi lacking vapA can be restored by supplementation with recombinant VapA (rVapA). Our objectives were to determine whether the absence of the surface receptors Toll-like receptor 2 (TLR2), complement receptor 3 (CR3), or Fc gamma receptor III (FcγRIII) impacts R. equi phagocytosis and intracellular replication in macrophages, and whether rVapA restoration of virulence in R. equi is dependent upon these receptors. Wild-type (WT) murine macrophages with TLR2, CR3, or FcγRIII blocked or knocked out (KO) were infected with virulent or avirulent R. equi, with or without rVapA supplementation. Quantitative bacterial culture and immunofluorescence imaging were performed. Phagocytosis of R. equi was not affected by blockade or KO of TLR2 or CR3. Intracellular replication of virulent R. equi was not affected by TLR2, CR3, or FcγRIII blockade or KO; however, avirulent R. equi replicated in TLR2-/- and CR3-/- macrophages but not in WT and FcγRIII-/-. rVapA supplementation did not affect avirulent R. equi phagocytosis but promoted intracellular replication in WT and all KO cells. By demonstrating that TLR2 and CR3 limit replication of avirulent but not virulent R. equi and that VapA-mediated virulence is independent of TLR2, CR3, or FcγRIII, our study provides novel insights into the role of these specific surface receptors in determining the entry and intracellular fate of R. equi.
Collapse
Affiliation(s)
- Bibiana Petri da Silveira
- Department of Large Animal Clinical Sciences, Equine Infectious Disease Laboratory, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Rola Barhoumi
- Department of Veterinary Integrative Biosciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Jocelyne M. Bray
- Department of Large Animal Clinical Sciences, Equine Infectious Disease Laboratory, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Hannah M. Cole-Pfeiffer
- Department of Large Animal Clinical Sciences, Equine Infectious Disease Laboratory, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Cory J. Mabry
- Department of Large Animal Clinical Sciences, Equine Infectious Disease Laboratory, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Robert C. Burghardt
- Department of Veterinary Integrative Biosciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Noah D. Cohen
- Department of Large Animal Clinical Sciences, Equine Infectious Disease Laboratory, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Angela I. Bordin
- Department of Large Animal Clinical Sciences, Equine Infectious Disease Laboratory, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| |
Collapse
|
15
|
Temchura V, Wagner JT, Damm D. Immunogenicity of Recombinant Lipid-Based Nanoparticle Vaccines: Danger Signal vs. Helping Hand. Pharmaceutics 2023; 16:24. [PMID: 38258035 PMCID: PMC10818441 DOI: 10.3390/pharmaceutics16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Infectious diseases are a predominant problem in human health. While the incidence of many pathogenic infections is controlled by vaccines, some pathogens still pose a challenging task for vaccine researchers. In order to face these challenges, the field of vaccine development has changed tremendously over the last few years. For non-replicating recombinant antigens, novel vaccine delivery systems that attempt to increase the immunogenicity by mimicking structural properties of pathogens are already approved for clinical applications. Lipid-based nanoparticles (LbNPs) of different natures are vesicles made of lipid layers with aqueous cavities, which may carry antigens and other biomolecules either displayed on the surface or encapsulated in the cavity. However, the efficacy profile of recombinant LbNP vaccines is not as high as that of live-attenuated ones. This review gives a compendious picture of two approaches that affect the immunogenicity of recombinant LbNP vaccines: (i) the incorporation of immunostimulatory agents and (ii) the utilization of pre-existing or promiscuous cellular immunity, which might be beneficial for the development of tailored prophylactic and therapeutic LbNP vaccine candidates.
Collapse
Affiliation(s)
- Vladimir Temchura
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | | | - Dominik Damm
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| |
Collapse
|
16
|
Lima Teixeira JF, Henning P, Cintra Magalhães FA, Coletto-Nunes G, Floriano-Marcelino T, Westerlund A, Movérare-Skrtic S, Oliveira GJPL, Lerner UH, Souza PPC. Osteoprotective effect by interleukin-4 (IL-4) on lipoprotein-induced periodontitis. Cytokine 2023; 172:156399. [PMID: 37898012 DOI: 10.1016/j.cyto.2023.156399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 10/30/2023]
Abstract
Lipoproteins are immunostimulatory bacterial components suggested to participate in inflammation-induced bone loss in periodontal disease through stimulation of osteoclast differentiation. Toll-like receptor 2 activation by Pam2CSK4 (PAM2), known to mimic bacterial lipoproteins, was previously shown to enhance periodontal bone resorption in mice. The anti-inflammatory cytokine interleukin-4 (IL-4) is a known inhibitor of RANKL-induced bone resorption in vitro. Here, we have investigated whether IL-4 could decrease PAM2-induced periodontal bone loss and osteoclastogenesis in vivo. In a model of periodontitis induced by gingival injections of PAM2 in mice, concomitant injections of IL-4 reduced bone loss. Histologically, IL-4 reduced the recruitment of inflammatory cells and the formation of TRAP+ osteoclasts stimulated by PAM2. Mouse bone marrow macrophages (BMMs) and neonatal calvarial osteoblasts were used to assess the effect of IL-4 on PAM2-induced osteoclastogenesis in vitro. In RANKL-primed BMMs stimulated by PAM2 Nfatc1, Ctsk, and Acp5 gene expression was up-regulated and resulted in robust formation of TRAP+ multinucleated osteoclasts, effects which were impaired by IL-4. These effects were mediated by impairment in PAM2-induced c-fos expression. In primary calvarial osteoblast cultures, IL-4 decreased PAM2-induced Tnfsf11 (encoding RANKL) mRNA and enhanced Tnfrsf11b (encoding OPG) expression. Our data demonstrate that the osteoprotective effect by IL-4 on lipoprotein-induced periodontal disease occurs through the inhibition of osteoclastogenesis by three mechanisms, one by acting directly on osteoclast progenitors, another by acting indirectly through decreasing the expression of osteoclast-regulating cytokines in osteoblasts and a third by decreasing inflammation.
Collapse
Affiliation(s)
- Jorge F Lima Teixeira
- Department of Pathology and Physiology, School of Dentistry at Araraquara, Univ. Est. Paulista - UNESP, Araraquara, Brazil
| | - Petra Henning
- Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | - Glaucia Coletto-Nunes
- Department of Pathology and Physiology, School of Dentistry at Araraquara, Univ. Est. Paulista - UNESP, Araraquara, Brazil
| | - Thais Floriano-Marcelino
- Department of Pathology and Physiology, School of Dentistry at Araraquara, Univ. Est. Paulista - UNESP, Araraquara, Brazil
| | - Anna Westerlund
- Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sofia Movérare-Skrtic
- Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Guilherme J P L Oliveira
- Department of Periodontology and Implantodontology, Dental School, Federal University of Uberlândia - UFU, Uberlândia, Brazil
| | - Ulf H Lerner
- Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pedro Paulo C Souza
- Innovation in Biomaterials Laboratory (iBioM), Faculty of Dentistry, Federal University of Goiás - UFG, Goiânia, Brazil.
| |
Collapse
|
17
|
Tsukidate T, Hespen CW, Hang HC. Small molecule modulators of immune pattern recognition receptors. RSC Chem Biol 2023; 4:1014-1036. [PMID: 38033733 PMCID: PMC10685800 DOI: 10.1039/d3cb00096f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/03/2023] [Indexed: 12/02/2023] Open
Abstract
Pattern recognition receptors (PRRs) represent a re-emerging class of therapeutic targets for vaccine adjuvants, inflammatory diseases and cancer. In this review article, we summarize exciting developments in discovery and characterization of small molecule PRR modulators, focusing on Toll-like receptors (TLRs), NOD-like receptors (NLRs) and the cGAS-STING pathway. We also highlight PRRs that are currently lacking small molecule modulators and opportunities for chemical biology and therapeutic discovery.
Collapse
Affiliation(s)
- Taku Tsukidate
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
| | - Charles W Hespen
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
- Department of Immunology and Microbiology and Department of Chemistry, Scripps Research, La Jolla California 92037 USA
| |
Collapse
|
18
|
Liu R, Sun B. Lactic Acid Bacteria and Aging: Unraveling the Interplay for Healthy Longevity. Aging Dis 2023; 15:AD.2023.0926. [PMID: 37962461 PMCID: PMC11272207 DOI: 10.14336/ad.2023.0926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 11/15/2023] Open
Abstract
Lactic Acid Bacteria (LAB) are beneficial microorganisms widely utilized in food fermentation processes and as probiotic supplements. They offer multifarious health benefits, including enhancing digestion, strengthening immune mechanisms, and mitigating inflammation. Recent studies suggest that LAB might be instrumental in the anti-aging domain, modulating key molecular pathways involved in the aging continuum, such as IL-13, TNF-α, mTOR, IFN-γ, TGF-β, AMPK, and GABA. The TLR family, particularly TLR2, appears pivotal during the primary cellular interactions with bacteria and their byproducts. Concurrently, the Sirtuin family, predominantly Sirtuin-1, plays diverse roles upon cellular stimuli by bacterial components. The potential anti-aging benefits postulated include restoring gut balance, enhancing antioxidant potential, and fortifying cognitive and mental faculties. However, the current body of evidence is still embryonic and calls for expansive human trials and deeper mechanistic analyses. The safety and optimal consumption metrics for LAB also warrant rigorous evaluation. Future research trajectories should identify specific LAB strains with potent anti-aging properties and unravel the underlying biological pathways. Given the promising implications, LAB strains stand as potential dietary contenders to foster healthy aging and enrich the quality of life among the elderly population.
Collapse
Affiliation(s)
- Rui Liu
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, China
| | - Bo Sun
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
19
|
Xu Y, Xie C, Liu Y, Qin X, Liu J. An update on our understanding of Gram-positive bacterial membrane vesicles: discovery, functions, and applications. Front Cell Infect Microbiol 2023; 13:1273813. [PMID: 37860067 PMCID: PMC10582989 DOI: 10.3389/fcimb.2023.1273813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized particles released from cells into the extracellular environment, and are separated from eukaryotic cells, bacteria, and other organisms with cellular structures. EVs alter cell communication by delivering their contents and performing various functions depending on their cargo and release into certain environments or other cells. The cell walls of Gram-positive bacteria have a thick peptidoglycan layer and were previously thought to be unable to produce EVs. However, recent studies have demonstrated that Gram-positive bacterial EVs are crucial for health and disease. In this review, we have summarized the formation, composition, and characteristics of the contents, resistance to external stress, participation in immune regulation, and other functions of Gram-positive bacterial EVs, as well as their application in clinical diagnosis and treatment, to provide a new perspective to further our understanding of Gram-positive bacterial EVs.
Collapse
Affiliation(s)
| | | | | | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| |
Collapse
|
20
|
Leo M, Schmitt LI, Mairinger F, Roos A, Hansmann C, Hezel S, Skuljec J, Pul R, Schara-Schmidt U, Kleinschnitz C, Hagenacker T. Analysis of Free Circulating Messenger Ribonucleic Acids in Serum Samples from Late-Onset Spinal Muscular Atrophy Patients Using nCounter NanoString Technology. Cells 2023; 12:2374. [PMID: 37830588 PMCID: PMC10572204 DOI: 10.3390/cells12192374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
5q-related Spinal muscular atrophy (SMA) is a hereditary multi-systemic disorder leading to progressive muscle atrophy and weakness caused by the degeneration of spinal motor neurons (MNs) in the ventral horn of the spinal cord. Three SMN-enhancing drugs for SMA treatment are available. However, even if these drugs are highly effective when administrated early, several patients do not benefit sufficiently or remain non-responders, e.g., adults suffering from late-onset SMA and starting their therapy at advanced disease stages characterized by long-standing irreversible loss of MNs. Therefore, it is important to identify additional molecular targets to expand therapeutic strategies for SMA treatment and establish prognostic biomarkers related to the treatment response. Using high-throughput nCounter NanoString technology, we analyzed serum samples of late-onset SMA type 2 and type 3 patients before and six months under nusinersen treatment. Four genes (AMIGO1, CA2, CCL5, TLR2) were significantly altered in their transcript counts in the serum of patients, where differential expression patterns were dependent on SMA subtype and treatment response, assessed with outcome scales. No changes in gene expression were observed six months after nusinersen treatment, compared to healthy controls. These alterations in the transcription of four genes in SMA patients qualified those genes as potential SMN-independent therapeutic targets to complement current SMN-enhancing therapies.
Collapse
Affiliation(s)
- Markus Leo
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany; (L.-I.S.); (S.H.); (J.S.); (R.P.); (C.K.); (T.H.)
| | - Linda-Isabell Schmitt
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany; (L.-I.S.); (S.H.); (J.S.); (R.P.); (C.K.); (T.H.)
| | - Fabian Mairinger
- Institute for Pathology, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany;
| | - Andreas Roos
- Department of Pediatric Neurology, Center for Neuromuscular Disorders, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany; (A.R.); (U.S.-S.)
| | - Christina Hansmann
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany; (L.-I.S.); (S.H.); (J.S.); (R.P.); (C.K.); (T.H.)
| | - Stefanie Hezel
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany; (L.-I.S.); (S.H.); (J.S.); (R.P.); (C.K.); (T.H.)
| | - Jelena Skuljec
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany; (L.-I.S.); (S.H.); (J.S.); (R.P.); (C.K.); (T.H.)
| | - Refik Pul
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany; (L.-I.S.); (S.H.); (J.S.); (R.P.); (C.K.); (T.H.)
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Center for Neuromuscular Disorders, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany; (A.R.); (U.S.-S.)
| | - Christoph Kleinschnitz
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany; (L.-I.S.); (S.H.); (J.S.); (R.P.); (C.K.); (T.H.)
| | - Tim Hagenacker
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany; (L.-I.S.); (S.H.); (J.S.); (R.P.); (C.K.); (T.H.)
| |
Collapse
|
21
|
Gussak A, Ferrando ML, Schrama M, van Baarlen P, Wells JM. Precision Genome Engineering in Streptococcus suis Based on a Broad-Host-Range Vector and CRISPR-Cas9 Technology. ACS Synth Biol 2023; 12:2546-2560. [PMID: 37602730 PMCID: PMC10510748 DOI: 10.1021/acssynbio.3c00110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Indexed: 08/22/2023]
Abstract
Streptococcussuis is an important zoonotic pathogen that causes severe invasive disease in pigs and humans. Current methods for genome engineering of S. suis rely on the insertion of antibiotic resistance markers, which is time-consuming and labor-intensive and does not allow the precise introduction of small genomic mutations. Here we developed a system for CRISPR-based genome editing in S. suis, utilizing linear DNA fragments for homologous recombination (HR) and a plasmid-based negative selection system for bacteria not edited by HR. To enable the use of this system in other bacteria, we engineered a broad-host-range replicon in the CRISPR plasmid. We demonstrated the utility of this system to rapidly introduce multiple gene deletions in successive rounds of genome editing and to make precise nucleotide changes in essential genes. Furthermore, we characterized a mechanism by which S. suis can escape killing by a targeted Cas9-sgRNA complex in the absence of HR. A characteristic of this new mechanism is the presence of very slow-growing colonies in a persister-like state that may allow for DNA repair or the introduction of mutations, alleviating Cas9 pressure. This does not impact the utility of CRISPR-based genome editing because the escape colonies are easily distinguished from genetically edited clones due to their small colony size. Our CRISPR-based editing system is a valuable addition to the genetic toolbox for engineering of S. suis, as it accelerates the process of mutant construction and simplifies the removal of antibiotic markers between successive rounds of genome editing.
Collapse
Affiliation(s)
- Alex Gussak
- Host-Microbe Interactomics, Animal
Sciences, Wageningen University, 6708 WD Wageningen, The Netherlands
| | | | | | - Peter van Baarlen
- Host-Microbe Interactomics, Animal
Sciences, Wageningen University, 6708 WD Wageningen, The Netherlands
| | - Jerry Mark Wells
- Host-Microbe Interactomics, Animal
Sciences, Wageningen University, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
22
|
Ait Djebbara S, Mcheik S, Percier P, Segueni N, Poncelet A, Truyens C. The macrophage infectivity potentiator of Trypanosoma cruzi induces innate IFN-γ and TNF-α production by human neonatal and adult blood cells through TLR2/1 and TLR4. Front Immunol 2023; 14:1180900. [PMID: 37304288 PMCID: PMC10250606 DOI: 10.3389/fimmu.2023.1180900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
We previously identified the recombinant (r) macrophage (M) infectivity (I) potentiator (P) of the protozoan parasite Trypanosoma cruzi (Tc) (rTcMIP) as an immuno-stimulatory protein that induces the release of IFN-γ, CCL2 and CCL3 by human cord blood cells. These cytokines and chemokines are important to direct a type 1 adaptive immune response. rTcMIP also increased the Ab response and favored the production of the Th1-related isotype IgG2a in mouse models of neonatal vaccination, indicating that rTcMIP could be used as a vaccine adjuvant to enhance T and B cell responses. In the present study, we used cord and adult blood cells, and isolated NK cells and human monocytes to investigate the pathways and to decipher the mechanism of action of the recombinant rTcMIP. We found that rTcMIP engaged TLR1/2 and TLR4 independently of CD14 and activated the MyD88, but not the TRIF, pathway to induce IFN-γ production by IL-15-primed NK cells, and TNF-α secretion by monocytes and myeloid dendritic cells. Our results also indicated that TNF-α boosted IFN-γ expression. Though cord blood cells displayed lower responses than adult cells, our results allow to consider rTcMIP as a potential pro-type 1 adjuvant that might be associated to vaccines administered in early life or later.
Collapse
Affiliation(s)
- Sarra Ait Djebbara
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Saria Mcheik
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pauline Percier
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Service Immune Response, Sciensano, Brussels, Belgium
| | - Noria Segueni
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Antoine Poncelet
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Carine Truyens
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
23
|
Pergolizzi S, Fumia A, D'Angelo R, Mangano A, Lombardo GP, Giliberti A, Messina E, Alesci A, Lauriano ER. Expression and function of toll-like receptor 2 in vertebrate. Acta Histochem 2023; 125:152028. [PMID: 37075649 DOI: 10.1016/j.acthis.2023.152028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Toll-like receptors (TLRs) are essential for identifying and detecting pathogen-associated molecular patterns (PAMPs) produced by a variety of pathogens, including viruses and bacteria. Since TLR2 is the only TLR capable of creating functional heterodimers with more than two other TLR types, it is very important for vertebrate immunity. TLR2 not only broadens the variety of PAMPs that it can recognize but has also the potential to diversify the subsequent signaling cascades. TLR2 is ubiquitous, which is consistent with the wide variety of tasks and functions it serves. Immune cells, endothelial cells, and epithelial cells have all been found to express TLR2. This review aims to gather currently available information about the preservation of this intriguing immunological molecule in the phylum of vertebrates.
Collapse
Affiliation(s)
- Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico "G. Martino", 98124 Messina, Italy
| | - Roberta D'Angelo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Angelica Mangano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Giorgia Pia Lombardo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Angelo Giliberti
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Emmanuele Messina
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
24
|
Boone AC, Kulkarni RR, Cortes AL, Villalobos T, Esandi J, Gimeno IM. In ovo HVT vaccination enhances cellular responses at hatch and addition of poly I:C offers minimal adjuvant effects. Vaccine 2023; 41:2514-2523. [PMID: 36894394 DOI: 10.1016/j.vaccine.2023.02.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/09/2023]
Abstract
In ovo vaccination with herpesvirus of turkey (HVT) hastens immunocompetence in chickens and the recommended dose (RD) of 6080 plaque-forming-units (PFU) offers the most optimal effects. In previous studies conducted in egg-type chickens, in ovo vaccination with HVT enhanced lymphoproliferation, wing-web thickness with phytohemagglutinin-L (PHA-L), and increased spleen and lung interferon-gamma(IFN-γ) andToll-like receptor 3 (TLR3) transcripts. Here, we evaluated the cellular mechanisms by which HVT-RD can hasten immunocompetence in one-day-old meat-type chickens, and also determined if HVT adjuvantation with a TLR3 agonist, polyinosinic-polycytidylic acid (poly(I:C)), could enhance vaccine-induced responses and provide dose-sparing effects. Compared to sham-inoculated chickens, HVT-RD significantly increased transcription of splenic TLR3 and IFN γ receptor 2 (R2), and lung IFN γ R2, while the splenic IL-13 transcription was found decreased. Additionally, these birds showed increased wing-web thickness following PHA-L inoculation. The thickness was due to an innate inflammatory cell population, CD3+ T cells, and edema. In another experiment, HVT-1/2 (3040 PFU) supplemented with 50 μg poly(I:C) [HVT-1/2 + poly(I:C)] was administered in ovo and immune responses were compared with those produced by HVT-RD, HVT-1/2, 50 μg poly(I:C), and sham-inoculated. Immunophenotyping of splenocytes showed HVT-RD induced a significantly higher frequency of CD4+, CD4+MHC-II+, CD8+CD44+, and CD4+CD28+ T cells compared to sham-inoculated chickens, and CD8+MHC-II+, CD4+CD8+, CD4+CD8+CD28+, and CD4+CD8+CD44+ T cells compared to all groups. Treatment groups, except HVT-1/2 + poly(I:C), had significantly higher frequencies of γδ T cells and all groups induced significantly higher frequencies of activated monocytes/macrophages, compared to sham-inoculated chickens. Poly(I:C)-induced dose-sparing effect was only observed in the frequency of activated monocytes/macrophages. No differences in the humoral responses were observed. Collectively, HVT-RD downregulated IL-13 transcripts (Th2 immune response) and had strong immunopotentiation effects on innate immune responses and the activation of T cells. However addition of poly(I:C) offered a minimal adjuvant/dose-sparing effect.
Collapse
Affiliation(s)
- Allison C Boone
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC 27607, United States; Experimental Pathology Laboratories Inc, 615 Davis Drive Ste. 500, Durham, NC 27713, United States.
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC 27607, United States.
| | - Aneg L Cortes
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC 27607, United States.
| | | | - Javier Esandi
- Zoetis-Global Biodevice, 1040 Swabia Ct, Durham, NC 27703, United States.
| | - Isabel M Gimeno
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC 27607, United States.
| |
Collapse
|
25
|
Park MK, Park HK, Yu HS. Toll-like receptor 2 mediates Acanthamoeba-induced allergic airway inflammatory response in mice. PLoS Negl Trop Dis 2023; 17:e0011085. [PMID: 36706056 PMCID: PMC9882781 DOI: 10.1371/journal.pntd.0011085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Repeated intranasal exposure to Acanthamoeba has been revealed to induce allergic airway inflammatory responses in mice. Based on the role of toll-like receptors (TLRs) in the pathogenesis of allergic asthma, TLRs form a link between innate and adaptive immune responses, and play an important role in the activation of various cells in the innate immune system. METHODOLOGY/PRINCIPAL FINDINGS To determine the TLRs that are related to these immune responses, we assessed the expression levels of inflammation-related genes in mouse lung epithelial (MLE)-12 cells treated with excretory-secretory proteins (ES-P) of the Acanthamoeba strain (KA/E2) with or without the TLR antagonists. The expression levels of inflammation-related genes, such as eotaxin, TARC, macrophage-derived chemokine (MDC), and TSLP, in the TLR2 and TLR9 antagonist treatment groups were decreased, compared to those in the ES-P alone or other TLR antagonist treatment groups. In particular, a greater decrease in the relevant gene expression levels was found in the TLR2 antagonist treatment group than in the TLR9 antagonist treatment group. Allergic airway inflammation was evaluated in the wild-type (WT) and TLR2 knockout (KO) groups following KA/E2 exposure. Based on the results, allergic airway inflammatory responses (airway resistance value, inflammatory cell infiltration, Th2-related cytokine expression, mucin production, and metaplasia of lung epithelial cells and goblet cells) by KA/E2 were reduced in the TLR2 KO groups. In addition, TLR2 knockout BMDCs displayed lower activation of surface markers owing to ES-P stimulation than normal BMDCs, and KA/E2 ES-P-treated TLR2-depleted BMDCs produced fewer Th2 cytokine-expressing cells from naïve T cells than WT BMDCs. When ES-P was administered after primary lung cells were obtained from WT and TLR2 KO mice, the expression levels of inflammation-related genes were found to be significantly decreased in TLR2 KO cells compared to those in WT cells. CONCLUSIONS These results suggest that TLR2 is involved in lung inflammatory response activation in KA/E2 intranasal infection, especially in airway tissue.
Collapse
Affiliation(s)
- Mi-Kyung Park
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hye-Kyung Park
- Department of Internal Medicine, Pusan National University Hospital, Busan, Republic of Korea
- * E-mail: ;
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
- * E-mail: ;
| |
Collapse
|
26
|
Hatton AA, Guerra FE. Scratching the Surface Takes a Toll: Immune Recognition of Viral Proteins by Surface Toll-like Receptors. Viruses 2022; 15:52. [PMID: 36680092 PMCID: PMC9863796 DOI: 10.3390/v15010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Early innate viral recognition by the host is critical for the rapid response and subsequent clearance of an infection. Innate immune cells patrol sites of infection to detect and respond to invading microorganisms including viruses. Surface Toll-like receptors (TLRs) are a group of pattern recognition receptors (PRRs) that can be activated by viruses even before the host cell becomes infected. However, the early activation of surface TLRs by viruses can lead to viral clearance by the host or promote pathogenesis. Thus, a plethora of research has attempted to identify specific viral ligands that bind to surface TLRs and mediate progression of viral infection. Herein, we will discuss the past two decades of research that have identified specific viral proteins recognized by cell surface-associated TLRs, how these viral proteins and host surface TLR interactions affect the host inflammatory response and outcome of infection, and address why controversy remains regarding host surface TLR recognition of viral proteins.
Collapse
Affiliation(s)
- Alexis A. Hatton
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Fermin E. Guerra
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
27
|
Miyata S. Glial functions in the blood-brain communication at the circumventricular organs. Front Neurosci 2022; 16:991779. [PMID: 36278020 PMCID: PMC9583022 DOI: 10.3389/fnins.2022.991779] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The circumventricular organs (CVOs) are located around the brain ventricles, lack a blood-brain barrier (BBB) and sense blood-derived molecules. This review discusses recent advances in the importance of CVO functions, especially glial cells transferring periphery inflammation signals to the brain. The CVOs show size-limited vascular permeability, allowing the passage of molecules with molecular weight <10,000. This indicates that the lack of an endothelial cell barrier does not mean the free movement of blood-derived molecules into the CVO parenchyma. Astrocytes and tanycytes constitute a dense barrier at the distal CVO subdivision, preventing the free diffusion of blood-derived molecules into neighboring brain regions. Tanycytes in the CVOs mediate communication between cerebrospinal fluid and brain parenchyma via transcytosis. Microglia and macrophages of the CVOs are essential for transmitting peripheral information to other brain regions via toll-like receptor 2 (TLR2). Inhibition of TLR2 signaling or depletion of microglia and macrophages in the brain eliminates TLR2-dependent inflammatory responses. In contrast to TLR2, astrocytes and tanycytes in the CVOs of the brain are crucial for initiating lipopolysaccharide (LPS)-induced inflammatory responses via TLR4. Depletion of microglia and macrophages augments LPS-induced fever and chronic sickness responses. Microglia and macrophages in the CVOs are continuously activated, even under normal physiological conditions, as they exhibit activated morphology and express the M1/M2 marker proteins. Moreover, the microglial proliferation occurs in various regions, such as the hypothalamus, medulla oblongata, and telencephalon, with a marked increase in the CVOs, due to low-dose LPS administration, and after high-dose LPS administration, proliferation is seen in most brain regions, except for the cerebral cortex and hippocampus. A transient increase in the microglial population is beneficial during LPS-induced inflammation for attenuating sickness response. Transient receptor potential receptor vanilloid 1 expressed in astrocytes and tanycytes of the CVOs is responsible for thermoregulation upon exposure to a warm environment less than 37°C. Alternatively, Nax expressed in astrocytes and tanycytes of the CVOs is crucial for maintaining body fluid homeostasis. Thus, recent findings indicate that glial cells in the brain CVOs are essential for initiating neuroinflammatory responses and maintaining body fluid and thermal homeostasis.
Collapse
|
28
|
Mohammad M, Ali A, Nguyen MT, Götz F, Pullerits R, Jin T. Staphylococcus aureus lipoproteins in infectious diseases. Front Microbiol 2022; 13:1006765. [PMID: 36262324 PMCID: PMC9574248 DOI: 10.3389/fmicb.2022.1006765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Infections with the Gram-positive bacterial pathogen Staphylococcus aureus remain a major challenge for the healthcare system and demand new treatment options. The increasing antibiotic resistance of S. aureus poses additional challenges, consequently inflicting a huge strain in the society due to enormous healthcare costs. S. aureus expresses multiple molecules, including bacterial lipoproteins (Lpps), which play a role not only in immune response but also in disease pathogenesis. S. aureus Lpps, the predominant ligands of TLR2, are important for bacterial survival as they maintain the metabolic activity of the bacteria. Moreover, Lpps possess many diverse properties that are of vital importance for the bacteria. They also contribute to host cell invasion but so far their role in different staphylococcal infections has not been fully defined. In this review, we summarize the current knowledge about S. aureus Lpps and their distinct roles in various infectious disease animal models, such as septic arthritis, sepsis, and skin and soft tissue infections. The molecular and cellular response of the host to S. aureus Lpp exposure is also a primary focus.
Collapse
Affiliation(s)
- Majd Mohammad
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Abukar Ali
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Minh-Thu Nguyen
- Section of Medical and Geographical Infectiology, Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Friedrich Götz
- Department of Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Rille Pullerits
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
29
|
Pereverzeva L, Otto NA, Roelofs JJTH, de Vos AF, van der Poll T. Myeloid liver kinase B1 contributes to lung inflammation induced by lipoteichoic acid but not by viable Streptococcus pneumoniae. Respir Res 2022; 23:241. [PMID: 36096803 PMCID: PMC9465928 DOI: 10.1186/s12931-022-02168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Liver kinase B1 (Lkb1, gene name Stk11) functions as a tumor suppressor in cancer. Myeloid cell Lkb1 potentiates lung inflammation induced by the Gram-negative bacterial cell wall component lipopolysaccharide and in host defense during Gram-negative pneumonia. Here, we sought to investigate the role of myeloid Lkb1 in lung inflammation elicited by the Gram-positive bacterial cell wall component lipoteichoic acid (LTA) and during pneumonia caused by the Gram-positive respiratory pathogen Streptococcus pneumoniae (Spneu).
Methods
Alveolar and bone marrow derived macrophages (AMs, BMDMs) harvested from myeloid-specific Lkb1 deficient (Stk11-ΔM) and littermate control mice were stimulated with LTA or Spneu in vitro. Stk11-ΔM and control mice were challenged via the airways with LTA or infected with Spneu in vivo.
Results
Lkb1 deficient AMs and BMDMs produced less tumor necrosis factor (TNF)α upon activation by LTA or Spneu. During LTA-induced lung inflammation, Stk11-ΔM mice had reduced numbers of AMs in the lungs, as well as diminished cytokine release and neutrophil recruitment into the airways. During pneumonia induced by either encapsulated or non-encapsulated Spneu, Stk11-ΔM and control mice had comparable bacterial loads and inflammatory responses in the lung, with the exception of lower TNFα levels in Stk11-ΔM mice after infection with the non-encapsulated strain.
Conclusion
Myeloid Lkb1 contributes to LTA-induced lung inflammation, but is not important for host defense during pneumococcal pneumonia.
Collapse
|
30
|
Bae M, Cassilly CD, Liu X, Park SM, Tusi BK, Chen X, Kwon J, Filipčík P, Bolze AS, Liu Z, Vlamakis H, Graham DB, Buhrlage SJ, Xavier RJ, Clardy J. Akkermansia muciniphila phospholipid induces homeostatic immune responses. Nature 2022; 608:168-173. [PMID: 35896748 PMCID: PMC9328018 DOI: 10.1038/s41586-022-04985-7] [Citation(s) in RCA: 207] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/16/2022] [Indexed: 12/12/2022]
Abstract
Multiple studies have established associations between human gut bacteria and host physiology, but determining the molecular mechanisms underlying these associations has been challenging1-3. Akkermansia muciniphila has been robustly associated with positive systemic effects on host metabolism, favourable outcomes to checkpoint blockade in cancer immunotherapy and homeostatic immunity4-7. Here we report the identification of a lipid from A. muciniphila's cell membrane that recapitulates the immunomodulatory activity of A. muciniphila in cell-based assays8. The isolated immunogen, a diacyl phosphatidylethanolamine with two branched chains (a15:0-i15:0 PE), was characterized through both spectroscopic analysis and chemical synthesis. The immunogenic activity of a15:0-i15:0 PE has a highly restricted structure-activity relationship, and its immune signalling requires an unexpected toll-like receptor TLR2-TLR1 heterodimer9,10. Certain features of the phospholipid's activity are worth noting: it is significantly less potent than known natural and synthetic TLR2 agonists; it preferentially induces some inflammatory cytokines but not others; and, at low doses (1% of EC50) it resets activation thresholds and responses for immune signalling. Identifying both the molecule and an equipotent synthetic analogue, its non-canonical TLR2-TLR1 signalling pathway, its immunomodulatory selectivity and its low-dose immunoregulatory effects provide a molecular mechanism for a model of A. muciniphila's ability to set immunological tone and its varied roles in health and disease.
Collapse
Affiliation(s)
- Munhyung Bae
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA, USA
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Chelsi D Cassilly
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA, USA
| | - Xiaoxi Liu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA, USA
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sung-Moo Park
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Betsabeh Khoramian Tusi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiangjun Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaeyoung Kwon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA, USA
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Ganeung, South Korea
| | - Pavel Filipčík
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- SBGrid Consortium, Harvard Medical School, Blavatnik Institute, Boston, MA, USA
| | | | - Zehua Liu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara J Buhrlage
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA, USA
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA, USA.
| |
Collapse
|
31
|
Kaur A, Baldwin J, Brar D, Salunke DB, Petrovsky N. Toll-like receptor (TLR) agonists as a driving force behind next-generation vaccine adjuvants and cancer therapeutics. Curr Opin Chem Biol 2022; 70:102172. [PMID: 35785601 DOI: 10.1016/j.cbpa.2022.102172] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 01/06/2023]
Abstract
Until recently, the development of new human adjuvants was held back by a poor understanding of their mechanisms of action. The field was revolutionized by the discovery of the toll-like receptors (TLRs), innate immune receptors that directly or indirectly are responsible for detecting pathogen-associated molecular patterns (PAMPs) and respond to them by activating innate and adaptive immune pathways. Hundreds of ligands targeting various TLRs have since been identified and characterized as vaccine adjuvants. This work has important implications not only for the development of vaccines against infectious diseases but also for immuno-therapies against cancer, allergy, Alzheimer's disease, drug addiction and other diseases. Each TLR has its own specific tissue localization and downstream gene signalling pathways, providing researchers the opportunity to precisely tailor adjuvants with specific immune effects. TLR agonists can be combined with other TLR or alternative adjuvants to create combination adjuvants with synergistic or modulatory effects. This review provides an introduction to the various classes of TLR adjuvants and their respective signalling pathways. It provides an overview of recent advancements in the TLR field in the past 2-3 years and discusses criteria for selecting specific TLR adjuvants based on considerations, such as disease mechanisms and correlates of protection, TLR immune biasing capabilities, route of administration, antigen compatibility, new vaccine technology platforms, and age- and species-specific effects.
Collapse
Affiliation(s)
- Arshpreet Kaur
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | | | - Deshkanwar Brar
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | - Deepak B Salunke
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia.
| |
Collapse
|
32
|
Fu Y, Zhang S, Zhao N, Xing L, Li T, Liu X, Bao J, Li J. Effect of mild intermittent cold stimulation on thymus immune function in broilers. Poult Sci 2022; 101:102073. [PMID: 36058173 PMCID: PMC9450148 DOI: 10.1016/j.psj.2022.102073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/07/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
This study aims to assess the effect of intermittent and mild cold stimulation (IMCS) on thymus function and the ability of 1-day-old male Ross 308 broilers to withstand cold. Four hundred broilers were reared under normal and mild cold temperatures at 3°C below the normal feeding temperature and were subjected to acute cold stress (ACS) at 10°C on d 50 at 7 am for 6 h, 12 h, and 24 h. We determined the expression levels of toll-like receptors (TLRs), cytokines and avian β-defencins (AvBDs), encoding genes in thymus of broilers at 22, 36, 43, and 50 d of age, and the serum ACTH and cortisol (CORT) levels at 50 d of age. At D22 and D36, the mRNA expression levels of TLRs and AvBDs genes in CS groups were generally significantly decreased (P < 0.05). The lowest expression levels were found in birds submitted to intermittent and mild cold stimulation training for 5 h (CS5 group) on d 22 and 36 of development (P < 0.05). At D43 and D49 after IMCS, mRNA expression levels of most TLRs and AvBDs were significantly lower than those in CC group (P < 0.05), and that mRNA expression levels of all TLRs and most AvBDs in CS5 group had the same change trend with age as those in CC group (P > 0.05). At D22 and D36, mRNA expression levels of different cytokines in each CS groups were different (P < 0.05). mRNA expression levels of IL-2, IL-4, IL-6, IL-8, IL-17, and IFN-α all reached the highest values in the CS5 group at D36 (P < 0.05). The levels of ACTH and CORT in all IMCS-treated birds changed in varying degrees after ACS, but there was no significant change in CS5 group (P > 0.05). Collectively, different cold stimulation schemes could modulate thymus immune function of broilers by maintaining homeostasis and enhancing cold resistance. In particular, the optimal cold adaptation scheme was at 3°C below the conventional feeding temperature for 5 h.
Collapse
|
33
|
Öhlmann S, Krieger AK, Gisch N, Meurer M, de Buhr N, von Köckritz-Blickwede M, Schütze N, Baums CG. d-Alanylation of Lipoteichoic Acids in Streptococcus suis Reduces Association With Leukocytes in Porcine Blood. Front Microbiol 2022; 13:822369. [PMID: 35509315 PMCID: PMC9058155 DOI: 10.3389/fmicb.2022.822369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus suis (S. suis) is a common swine pathogen but also poses a threat to human health in causing meningitis and severe cases of streptococcal toxic shock-like syndrome (STSLS). Therefore, it is crucial to understand how S. suis interacts with the host immune system during bacteremia. As S. suis has the ability to introduce d-alanine into its lipoteichoic acids (LTAs), we investigated the working hypothesis that cell wall modification by LTA d-alanylation influences the interaction of S. suis with porcine blood immune cells. We created an isogenic mutant of S. suis strain 10 by in-frame deletion of the d-alanine d-alanyl carrier ligase (DltA). d-alanylation of LTAs was associated with reduced phagocytosis of S. suis by porcine granulocytes, reduced deposition of complement factor C3 on the bacterial surface, increased hydrophobicity of streptococci, and increased resistance to cationic antimicrobial peptides (CAMPs). At the same time, survival of S. suis was not significantly increased by LTA d-alanylation in whole blood of conventional piglets with specific IgG. However, we found a distinct cytokine pattern as IL-1β but not tumor necrosis factor (TNF)-α levels were significantly reduced in blood infected with the ΔdltA mutant. In contrast to TNF-α, activation and secretion of IL-1β are inflammasome-dependent, suggesting a possible influence of LTA d-alanylation on inflammasome regulation. Especially in the absence of specific antibodies, the association of S. suis with porcine monocytes was reduced by d-alanylation of its LTAs. This dltA-dependent phenotype was also observed with a non-encapsulated dltA double mutant indicating that it is independent of capsular polysaccharides. High antibody levels caused high levels of S. suis—monocyte—association followed by inflammatory cell death and strong production of both IL-1β and TNF-α, while the influence of LTA d-alanylation of the streptococci became less visible. In summary, the results of this study expand previous findings on d-alanylation of LTAs in S. suis and suggest that this pathogen specifically modulates association with blood leukocytes through this modification of its surface.
Collapse
Affiliation(s)
- Sophie Öhlmann
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Ann-Kathrin Krieger
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Marita Meurer
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicole de Buhr
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicole Schütze
- Institute of Immunology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Christoph Georg Baums
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
- *Correspondence: Christoph Georg Baums,
| |
Collapse
|
34
|
Jahn K, Kohler TP, Swiatek LS, Wiebe S, Hammerschmidt S. Platelets, Bacterial Adhesins and the Pneumococcus. Cells 2022; 11:cells11071121. [PMID: 35406684 PMCID: PMC8997422 DOI: 10.3390/cells11071121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 01/25/2023] Open
Abstract
Systemic infections with pathogenic or facultative pathogenic bacteria are associated with activation and aggregation of platelets leading to thrombocytopenia and activation of the clotting system. Bacterial proteins leading to platelet activation and aggregation have been identified, and while platelet receptors are recognized, induced signal transduction cascades are still often unknown. In addition to proteinaceous adhesins, pathogenic bacteria such as Staphylococcus aureus and Streptococcus pneumoniae also produce toxins such as pneumolysin and alpha-hemolysin. They bind to cellular receptors or form pores, which can result in disturbance of physiological functions of platelets. Here, we discuss the bacteria-platelet interplay in the context of adhesin–receptor interactions and platelet-activating bacterial proteins, with a main emphasis on S. aureus and S. pneumoniae. More importantly, we summarize recent findings of how S. aureus toxins and the pore-forming toxin pneumolysin of S. pneumoniae interfere with platelet function. Finally, the relevance of platelet dysfunction due to killing by toxins and potential treatment interventions protecting platelets against cell death are summarized.
Collapse
|
35
|
Szamosvári D, Bae M, Bang S, Tusi BK, Cassilly CD, Park SM, Graham DB, Xavier RJ, Clardy J. Lyme Disease, Borrelia burgdorferi, and Lipid Immunogens. J Am Chem Soc 2022; 144:2474-2478. [PMID: 35129341 DOI: 10.1021/jacs.1c12202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human immune system detects potentially pathogenic microbes with receptors that respond to microbial metabolites. While the overall immune signaling pathway is known in considerable detail, the initial molecular signals, the microbially produced immunogens, for important diseases like Lyme disease (LD) are often not well-defined. The immunogens for LD are produced by the spirochete Borrelia burgdorferi, and a galactoglycerolipid (1) has been identified as a key trigger for the inflammatory immune response that characterizes LD. This report corrects the original structural assignment of 1 to 3, a change of an α-galactopyranose to an α-galactofuranose headgroup. The seemingly small change has important implications for the diagnosis, prevention, and treatment of LD.
Collapse
Affiliation(s)
- Dávid Szamosvári
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| | - Munhyung Bae
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| | - Sunghee Bang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| | - Betsabeh Khoramian Tusi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Chelsi D Cassilly
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| | - Sung-Moo Park
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| |
Collapse
|
36
|
Radakovics K, Battin C, Leitner J, Geiselhart S, Paster W, Stöckl J, Hoffmann-Sommergruber K, Steinberger P. A Highly Sensitive Cell-Based TLR Reporter Platform for the Specific Detection of Bacterial TLR Ligands. Front Immunol 2022; 12:817604. [PMID: 35087538 PMCID: PMC8786796 DOI: 10.3389/fimmu.2021.817604] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/17/2021] [Indexed: 12/04/2022] Open
Abstract
Toll-like receptors (TLRs) are primary pattern recognition receptors (PRRs), which recognize conserved microbial components. They play important roles in innate immunity but also in the initiation of adaptive immune responses. Impurities containing TLR ligands are a frequent problem in research but also for the production of therapeutics since TLR ligands can exert strong immunomodulatory properties even in minute amounts. Consequently, there is a need for sensitive tools to detect TLR ligands with high sensitivity and specificity. Here we describe the development of a platform based on a highly sensitive NF-κB::eGFP reporter Jurkat JE6-1 T cell line for the detection of TLR ligands. Ectopic expression of TLRs and their coreceptors and CRISPR/Cas9-mediated deletion of endogenously expressed TLRs was deployed to generate reporter cell lines selectively expressing functional human TLR2/1, TLR2/6, TLR4 or TLR5 complexes. Using well-defined agonists for the respective TLR complexes we could demonstrate high specificity and sensitivity of the individual reporter lines. The limit of detection for LPS was below 1 pg/mL and ligands for TLR2/1 (Pam3CSK4), TLR2/6 (Fsl-1) and TLR5 (flagellin) were detected at concentrations as low as 1.0 ng/mL, 0.2 ng/mL and 10 pg/mL, respectively. We showed that the JE6-1 TLR reporter cells have the utility to characterize different commercially available TLR ligands as well as more complex samples like bacterially expressed proteins or allergen extracts. Impurities in preparations of microbial compounds as well as the lack of specificity of detection systems can lead to erroneous results and currently there is no consensus regarding the involvement of TLRs in the recognition of several molecules with proposed immunostimulatory functions. This reporter system represents a highly suitable tool for the definition of structural requirements for agonists of distinct TLR complexes.
Collapse
Affiliation(s)
- Katharina Radakovics
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Claire Battin
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sabine Geiselhart
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Paster
- Clinical Cell Biology and FACS Core Unit, St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - Johannes Stöckl
- Division Regulation of the Immune System, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Karin Hoffmann-Sommergruber
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
37
|
Kaur A, Piplani S, Kaushik D, Fung J, Sakala IG, Honda-Okubo Y, Mehta SK, Petrovsky N, Salunke DB. Stereoisomeric Pam2CS Based TLR2 Agonists: Synthesis, Structural Modelling and Activity as Vaccine Adjuvants. RSC Med Chem 2022; 13:622-637. [PMID: 35694694 PMCID: PMC9132229 DOI: 10.1039/d1md00372k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
Lipopeptides including diacylated Pam2CSK4 as well as triacylated Pam3CSK4 act as ligands of Toll-like receptor (TLR)-2, a promising target for the development of vaccine adjuvants. The highly investigated Pam2CSK4 and...
Collapse
Affiliation(s)
- Arshpreet Kaur
- Department of Chemistry and Centre for Advanced Studies, Panjab University Chandigarh India
| | - Sakshi Piplani
- Vaxine Pty Ltd Warradale Australia
- College of Medicine and Public Health, Flinders University Adelaide Australia
| | - Deepender Kaushik
- Department of Chemistry and Centre for Advanced Studies, Panjab University Chandigarh India
| | - Johnson Fung
- Vaxine Pty Ltd Warradale Australia
- College of Medicine and Public Health, Flinders University Adelaide Australia
| | - Isaac G Sakala
- Vaxine Pty Ltd Warradale Australia
- College of Medicine and Public Health, Flinders University Adelaide Australia
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd Warradale Australia
- College of Medicine and Public Health, Flinders University Adelaide Australia
| | - Surinder K Mehta
- Department of Chemistry and Centre for Advanced Studies, Panjab University Chandigarh India
| | - Nikolai Petrovsky
- Vaxine Pty Ltd Warradale Australia
- College of Medicine and Public Health, Flinders University Adelaide Australia
| | - Deepak B Salunke
- Department of Chemistry and Centre for Advanced Studies, Panjab University Chandigarh India
- National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University Chandigarh India
| |
Collapse
|
38
|
Toll-Like Receptors (TLRs), NOD-Like Receptors (NLRs), and RIG-I-Like Receptors (RLRs) in Innate Immunity. TLRs, NLRs, and RLRs Ligands as Immunotherapeutic Agents for Hematopoietic Diseases. Int J Mol Sci 2021; 22:ijms222413397. [PMID: 34948194 PMCID: PMC8704656 DOI: 10.3390/ijms222413397] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
The innate immune system plays a pivotal role in the first line of host defense against infections and is equipped with patterns recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Several classes of PRRS, including Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) recognize distinct microbial components and directly activate immune cells. TLRs are transmembrane receptors, while NLRs and RLRs are intracellular molecules. Exposure of immune cells to the ligands of these receptors activates intracellular signaling cascades that rapidly induce the expression of a variety of overlapping and unique genes involved in the inflammatory and immune responses. The innate immune system also influences pathways involved in cancer immunosurveillance. Natural and synthetic agonists of TLRs, NLRs, or RLRs can trigger cell death in malignant cells, recruit immune cells, such as DCs, CD8+ T cells, and NK cells, into the tumor microenvironment, and are being explored as promising adjuvants in cancer immunotherapies. In this review, we provide a concise overview of TLRs, NLRs, and RLRs: their structure, functions, signaling pathways, and regulation. We also describe various ligands for these receptors and their possible application in treatment of hematopoietic diseases.
Collapse
|
39
|
Nouri Y, Weinkove R, Perret R. T-cell intrinsic Toll-like receptor signaling: implications for cancer immunotherapy and CAR T-cells. J Immunother Cancer 2021; 9:jitc-2021-003065. [PMID: 34799397 PMCID: PMC8606765 DOI: 10.1136/jitc-2021-003065] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2021] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are evolutionarily conserved molecules that specifically recognize common microbial patterns, and have a critical role in innate and adaptive immunity. Although TLRs are highly expressed by innate immune cells, particularly antigen-presenting cells, the very first report of a human TLR also described its expression and function within T-cells. Gene knock-out models and adoptive cell transfer studies have since confirmed that TLRs function as important costimulatory and regulatory molecules within T-cells themselves. By acting directly on T-cells, TLR agonists can enhance cytokine production by activated T-cells, increase T-cell sensitivity to T-cell receptor stimulation, promote long-lived T-cell memory, and reduce the suppressive activity of regulatory T-cells. Direct stimulation of T-cell intrinsic TLRs may be a relevant mechanism of action of TLR ligands currently under clinical investigation as cancer immunotherapies. Finally, chimeric antigen receptor (CAR) T-cells afford a new opportunity to specifically exploit T-cell intrinsic TLR function. This can be achieved by expressing TLR signaling domains, or domains from their signaling partner myeloid differentiation primary response 88 (MyD88), within or alongside the CAR. This review summarizes the expression and function of TLRs within T-cells, and explores the relevance of T-cell intrinsic TLR expression to the benefits and risks of TLR-stimulating cancer immunotherapies, including CAR T-cells.
Collapse
Affiliation(s)
- Yasmin Nouri
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Robert Weinkove
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand.,Department of Pathology & Molecular Medicine, University of Otago, Wellington, Wellington, New Zealand.,Wellington Blood & Cancer Centre, Capital and Coast District Health Board, Wellington, New Zealand
| | - Rachel Perret
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
40
|
Getachew A, Hussain M, Huang X, Li Y. Toll-like receptor 2 signaling in liver pathophysiology. Life Sci 2021; 284:119941. [PMID: 34508761 DOI: 10.1016/j.lfs.2021.119941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022]
Abstract
Chronic liver diseases (CLD) are among the major cause of mortality and morbidity worldwide. Despite current achievements in the area of hepatitis virus, chronic alcohol abuse and high-fat diet are still fueling an epidemic of severe liver disease, for which, an effective therapy has yet not been discovered. In particular, the therapeutic regimens that could prevent the progression of fibrosis and, in turn, aid cirrhotic liver to develop a robust regenerative capability are intensively needed. To this context, a better understanding of the signaling pathways regulating hepatic disease development may be of critical value. In general, the liver responds to various insults with an orchestrated healing process involving variety of signaling pathways. One such pathway is the TLR2 signaling pathway, which essentially regulates adult liver pathogenesis and thus has emerged as an attractive target to treat liver disease. TLR2 is expressed by different liver cells, including Kupffer cells (KCs), hepatocytes, and hepatic stellate cells (HSCs). From a pathologic perspective, the crosstalk between antigens and TLR2 may preferentially trigger a distinctive set of signaling mechanisms in these liver cells and, thereby, induce the production of inflammatory and fibrogenic cytokines that can initiate and prolong liver inflammation, ultimately leading to fibrosis. In this review, we summarize the currently available evidence regarding the role of TLR2 signaling in hepatic disease progression. We first elaborate its pathological involvement in liver-disease states, such as inflammation, fibrosis, and cirrhosis. We then discuss how therapeutic targeting of this pathway may help to alleviate its disease-related functioning.
Collapse
Affiliation(s)
- Anteneh Getachew
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Muzammal Hussain
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xinping Huang
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yinxiong Li
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China.
| |
Collapse
|
41
|
Parra-Izquierdo I, Lakshmanan HHS, Melrose AR, Pang J, Zheng TJ, Jordan KR, Reitsma SE, McCarty OJT, Aslan JE. The Toll-Like Receptor 2 Ligand Pam2CSK4 Activates Platelet Nuclear Factor-κB and Bruton's Tyrosine Kinase Signaling to Promote Platelet-Endothelial Cell Interactions. Front Immunol 2021; 12:729951. [PMID: 34527000 PMCID: PMC8435771 DOI: 10.3389/fimmu.2021.729951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022] Open
Abstract
Circulating platelets establish a variety of immunological programs and orchestrate inflammatory responses at the endothelium. Platelets express the innate immunity family of Toll-like receptors (TLRs). While TLR2/TLR1 ligands are known to activate platelets, the effects of TLR2/TLR6 ligands on platelet function remain unclear. Here, we aim to determine whether the TLR2/TLR6 agonists Pam2CSK4 and FSL-1 activate human platelets. In addition, human umbilical vein endothelial cells (HUVECs) and platelets were co-cultured to analyze the role of platelet TLR2/TLR6 on inflammation and adhesion to endothelial cells. Pam2CSK4, but not FSL-1, induced platelet granule secretion and integrin αIIbβ3 activation in a concentration-dependent manner. Moreover, Pam2CSK4 promoted platelet aggregation and increased platelet adhesion to collagen-coated surfaces. Mechanistic studies with blocking antibodies and pharmacologic inhibitors demonstrated that the TLR2/Nuclear factor-κB axis, Bruton’s-tyrosine kinase, and a secondary ADP feedback loop are involved in Pam2CSK4-induced platelet functional responses. Interestingly, Pam2CSK4 showed cooperation with immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling to enhance platelet activation. Finally, the presence of platelets increased inflammatory responses in HUVECs treated with Pam2CSK4, and platelets challenged with Pam2CSK4 showed increased adhesion to HUVECs under static and physiologically relevant flow conditions. Herein, we define a functional role for platelet TLR2-mediated signaling, which may represent a druggable target to dampen excessive platelet activation in thrombo-inflammatory diseases.
Collapse
Affiliation(s)
- Iván Parra-Izquierdo
- Knight Cardiovascular Institute and Division of Cardiology, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Hari Hara Sudhan Lakshmanan
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Alexander R Melrose
- Knight Cardiovascular Institute and Division of Cardiology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Jiaqing Pang
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Tony J Zheng
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Kelley R Jordan
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Stéphanie E Reitsma
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Owen J T McCarty
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Division of Hematology and Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Joseph E Aslan
- Knight Cardiovascular Institute and Division of Cardiology, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
42
|
Kardani K, Sadat SM, Kardani M, Bolhassani A. The next generation of HCV vaccines: a focus on novel adjuvant development. Expert Rev Vaccines 2021; 20:839-855. [PMID: 34114513 DOI: 10.1080/14760584.2021.1941895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Considerable efforts have been made to treat and prevent acute and chronic infections caused by the hepatitis C virus (HCV). Current treatments are unable to protect people from reinfection. Hence, there is a need for development of both preventive and therapeutic HCV vaccines. Many vaccine candidates are in development to fight against HCV, but their efficacy has so far proven limited partly due to low immunogenicity. AREAS COVERED We explore development of novel and powerful adjuvants to achieve an effective HCV vaccine. The basis for developing strong adjuvants is to understand the innate immunity pathway, which subsequently stimulates humoral and cellular immune responses. We have also investigated immunogenicity of developed adjuvants that have been used in recent studies available in online databases such as PubMed, PMC, ScienceDirect, Google Scholar, etc. EXPERT OPINION Adjuvants are used as a part of vaccine formulation to boost vaccine immunogenicity and antigen delivery. Several FDA-approved adjuvants are used in licensed human vaccines. Unfortunately, no adjuvant has yet been proven to boost HCV immune responses to the extent needed for an effective vaccine. One of the promising approaches for developing an effective adjuvant is the combination of various adjuvants to trigger several innate immune responses, leading to activation of adaptive immunity.[Figure: see text].
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Mona Kardani
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
43
|
Getachew A, Yang Z, Huang X, Wu F, Liu YY, Yan C, Yang F, Li Y. Generation of a TLR2 homozygous knockout human embryonic stem cell line WAe001-A-64 using CRISPR/Cas9 editing. Stem Cell Res 2021; 54:102401. [PMID: 34058685 DOI: 10.1016/j.scr.2021.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/16/2021] [Accepted: 05/15/2021] [Indexed: 11/18/2022] Open
Abstract
Toll-like receptor 2 (TLR2) is a pattern recognition receptor which plays an important role in innate immune system. In humans it's encoded by the TLR2 gene and also been designated as CD282. Using CRISPR/Cas9 gene editing technology, we have established a TLR2 mutant WAe001-A-64 cell line from the original embryonic stem cell line H1. It has adopted two biallelic deletions in exon 3 of TLR2 which resulted in a frame shift and early termination in the translation of TLR2. Moreover, WAe001-A-64 has maintained the normal karyotype, pluripotent phenotype, parental cell morphology and the ability to differentiate into three germ layers.
Collapse
Affiliation(s)
- Anteneh Getachew
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of China Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhen Yang
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of China Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xinping Huang
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of China Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Feima Wu
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yan Ying Liu
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of China Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Chen Yan
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Fan Yang
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yinxiong Li
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of China Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
44
|
Yang J, Wang J, Huang K, Zhu M, Liu Q, Liu G, Chen F, Zhang H, Qin S. Selenium enriched Bacillus subtilis yb-1114246 activated the TLR2-NF-κB1 signaling pathway to regulate chicken intestinal β-defensin 1 expression. Food Funct 2021; 12:5913-5926. [PMID: 34028482 DOI: 10.1039/d1fo01158h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to investigate the effects and potential signaling pathway of selenium-enriched Bacillus subtilis (SEBS) on beta defensin 1 (BD1) expression in chicken intestine. Chinese Huainan Partridge chickens (500 individuals) were randomly allocated into five groups, including control, inorganic Se, B. subtilis, SEBS, and a mixture of Se and B. subtilis (Se-BS). After 56 d of feeding, chicken ileal mucous membranes were harvested to detect differences in expression of BD1. The results indicated that BD1 was produced in intestinal crypt cells and secreted into the lumen through the villi brush border. BD1 was up-regulated in distal ileum segments colonized by SEBS and B. subtilis. Chicken primary intestinal crypt cells were cultured and grouped into control, inorganic Se, B. subtilis, SEBS, and Se-BS treatments to identify the receptor of B. subtilis. Results indicated that B. subtilis and SEBS were recognized by toll-like receptor 2 (TLR2), stimulating the NF-κB1 signaling pathway to increase expression of BD-1, which was further enhanced when combined with Se. Pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 were up-regulated with B. subtilis supplementation, and inhibited under the action of Se. In conclusion, B. subtilis and SEBS were recognized by the TLR2 receptor in the ileal mucous membrane, which activated the TLR2-MyD88-NF-κB1 signaling pathway to upregulate BD1 expression. In addition, Se enhanced recognition of B. subtilis and reduced levels of pro-inflammatory factors caused by estrogenic B. subtilis supplementation.
Collapse
Affiliation(s)
- Jiajun Yang
- School of Animal Science and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China212400 and College of Animal Science and Technology, Chinese Agricultural University, Beijing, China100093.
| | - Jing Wang
- School of Animal Science and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China212400 and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China210095
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China210095
| | - Mengling Zhu
- School of Animal Science and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China212400
| | - Qinxing Liu
- School of Animal Science and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China212400
| | - Guofang Liu
- School of Animal Science and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China212400
| | - Fu Chen
- College of Animal Science and Technology, Chinese Agricultural University, Beijing, China100093.
| | - Hao Zhang
- College of Animal Science and Technology, Chinese Agricultural University, Beijing, China100093.
| | - Shunyi Qin
- Key Laboratory of Agricultural Animal Breeding and Healthy Breeding of Tianjin, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China300384.
| |
Collapse
|
45
|
Tanaka S, Gauthier JM, Terada Y, Takahashi T, Li W, Hashimoto K, Higashikubo R, Hachem RR, Bharat A, Ritter JH, Nava RG, Puri V, Krupnick AS, Gelman AE, Kreisel D. Bacterial products in donor airways prevent the induction of lung transplant tolerance. Am J Transplant 2021; 21:353-361. [PMID: 32786174 PMCID: PMC7775268 DOI: 10.1111/ajt.16256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/17/2020] [Accepted: 08/03/2020] [Indexed: 01/25/2023]
Abstract
Although postoperative bacterial infections can trigger rejection of pulmonary allografts, the impact of bacterial colonization of donor grafts on alloimmune responses to transplanted lungs remains unknown. Here, we tested the hypothesis that bacterial products present within donor grafts at the time of implantation promote lung allograft rejection. Administration of the toll-like receptor 2 (TLR2) agonist Pam3 Cys4 to Balb/c wild-type grafts triggered acute cellular rejection after transplantation into B6 wild-type recipients that received perioperative costimulatory blockade. Pam3 Cys4 -triggered rejection was associated with an expansion of CD8+ T lymphocytes and CD11c+ CD11bhi MHC (major histocompatibility complex) class II+ antigen-presenting cells within the transplanted lungs. Rejection was prevented when lungs were transplanted into TLR2-deficient recipients but not when MyD88-deficient donors were used. Adoptive transfer of B6 wild-type monocytes, but not T cells, following transplantation into B6 TLR2-deficient recipients restored the ability of Pam3 Cys4 to trigger acute cellular rejection. Thus, we have demonstrated that activation of TLR2 by a bacterial lipopeptide within the donor airways prevents the induction of lung allograft tolerance through a process mediated by recipient-derived monocytes. Our work suggests that donor lungs harboring bacteria may precipitate an inflammatory response that can facilitate allograft rejection.
Collapse
Affiliation(s)
- Satona Tanaka
- Department of Surgery, Washington University, Saint Louis, MO
| | | | - Yuriko Terada
- Department of Surgery, Washington University, Saint Louis, MO
| | | | - Wenjun Li
- Department of Surgery, Washington University, Saint Louis, MO
| | - Kohei Hashimoto
- Department of Surgery, Washington University, Saint Louis, MO
| | | | | | - Ankit Bharat
- Department of Surgery, Northwestern University, Chicago, IL
| | - Jon H. Ritter
- Department of Pathology & Immunology, Washington University, Saint Louis, MO
| | - Ruben G. Nava
- Department of Surgery, Washington University, Saint Louis, MO
| | - Varun Puri
- Department of Surgery, Washington University, Saint Louis, MO
| | | | - Andrew E. Gelman
- Department of Surgery, Washington University, Saint Louis, MO,Department of Pathology & Immunology, Washington University, Saint Louis, MO
| | - Daniel Kreisel
- Department of Surgery, Washington University, Saint Louis, MO,Department of Pathology & Immunology, Washington University, Saint Louis, MO
| |
Collapse
|
46
|
Tobita K, Hoshi F, Ohki T, Watanabe I. Protein denature extracts of Lactobacillus crispatus KT-11 strain promote interleukin 12p40 production via Toll-like receptor 2 in J774.1 cell culture. J Food Biochem 2020; 45:e13599. [PMID: 33368417 DOI: 10.1111/jfbc.13599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/28/2020] [Accepted: 12/12/2020] [Indexed: 12/13/2022]
Abstract
The objective of the present study is to investigate the mechanism and the cell components of Lactobacillus crispatus KT-11 strain (KT-11) that induce interleukin (IL)-12p40 production. IL-12p40 production induced by KT-11 was decreased in the presence of inhibitors of extracellular signal-regulated kinase or nuclear factor kappa B. Guanidine hydrochloride, urea or lithium chloride extract of KT-11 induced IL-12p40 production, but production was suppressed in the presence of Toll-like receptor 2-specific neutralizing antibody. These findings suggest that the protein denature extracts of KT-11 promote IL-12p40 production via Toll-like receptor 2 in J774.1 cells. PRACTICAL APPLICATIONS: Heat-treated lactic acid bacteria are added to some foods because it is easier to store and transport, and have less interference with other food ingredients compared with living lactic acid bacteria. Heat-treated Lactobacillus crispatus KT-11 strain (KT-11) is included in some foods because of good handling characteristics and good dispersibility in the food product. We have previously reported that the administration of KT-11 led to beneficial health effects through the regulation of the immune system in mice, but the mechanism is not clear. We found that protein denature extracts, which may include proteins such as SLP and SLAPs, of KT-11 cells promoted IL-12p40 production via TLR2 in the J774.1 cell culture. This result will contribute to providing more effective lactic acid bacteria functional food.
Collapse
|
47
|
Kaur A, Kaushik D, Piplani S, Mehta SK, Petrovsky N, Salunke DB. TLR2 Agonistic Small Molecules: Detailed Structure-Activity Relationship, Applications, and Future Prospects. J Med Chem 2020; 64:233-278. [PMID: 33346636 DOI: 10.1021/acs.jmedchem.0c01627] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are the pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) in microbial species. Among the various TLRs, TLR2 has a special place due to its ability to sense the widest repertoire of PAMPs owing to its heterodimerization with either TLR1 or TLR6, broadening its ligand diversity against pathogens. Various scaffolds are reported to activate TLR2, which include naturally occurring lipoproteins, synthetic lipopeptides, and small heterocyclic molecules. We described a detailed SAR in TLR2 agonistic scaffolds and also covered the design and chemistry for the conjugation of TLR2 agonists to antigens, carbohydrates, polymers, and fluorophores. The approaches involved in delivery of TLR2 agonists such as lipidation of antigen, conjugation to polymers, phosphonic acids, and other linkers to achieve surface adsorption, liposomal formulation, and encapsulating nanoparticles are elaborated. The crystal structure analysis and computational modeling are also included with the structural features that facilitate TLR2 activation.
Collapse
Affiliation(s)
- Arshpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Deepender Kaushik
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Sakshi Piplani
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, Australia 5046.,College of Medicine and Public Health, Flinders University, Bedford Park, Australia, 5042
| | - Surinder K Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, Australia 5046.,College of Medicine and Public Health, Flinders University, Bedford Park, Australia, 5042
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.,National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh 160014, India
| |
Collapse
|
48
|
Ernst O, Failayev H, Athamna M, He H, Tsfadia Y, Zor T. A dual and conflicting role for imiquimod in inflammation: A TLR7 agonist and a cAMP phosphodiesterase inhibitor. Biochem Pharmacol 2020; 182:114206. [DOI: 10.1016/j.bcp.2020.114206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022]
|
49
|
Iovino F, Nannapaneni P, Henriques-Normark B, Normark S. The impact of the ancillary pilus-1 protein RrgA of Streptococcus pneumoniae on colonization and disease. Mol Microbiol 2020; 113:650-658. [PMID: 32185835 DOI: 10.1111/mmi.14451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Abstract
The Gram-positive bacterium Streptococcus pneumoniae, the pneumococcus, is an important commensal resident of the human nasopharynx. Carriage is usually asymptomatic, however, S. pneumoniae can become invasive and spread from the upper respiratory tract to the lungs causing pneumonia, and to other organs to cause severe diseases such as bacteremia and meningitis. Several pneumococcal proteins important for its disease-causing capability have been described and many are expressed on the bacterial surface. The surface located pneumococcal type-1 pilus has been associated with virulence and the inflammatory response, and it is present in 20%-30% of clinical isolates. Its tip protein RrgA has been shown to be a major adhesin to human cells and to promote invasion through the blood-brain barrier. In this review we discuss recent findings of the impact of RrgA on bacterial colonization of the upper respiratory tract and on pneumococcal virulence, and use epidemiological data and genome-mining to suggest trade-off mechanisms potentially explaining the rather low prevalence of pilus-1 expressing pneumococci in humans.
Collapse
Affiliation(s)
- Federico Iovino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Priyanka Nannapaneni
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Singapore Centre on Environmental Life Sciences Engineering (SCELSE) and Lee Kong Chian School of Medicine (LKC), Nanyang Technological University (NTU), Singapore, Singapore
| | - Staffan Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Singapore Centre on Environmental Life Sciences Engineering (SCELSE) and Lee Kong Chian School of Medicine (LKC), Nanyang Technological University (NTU), Singapore, Singapore
| |
Collapse
|
50
|
Kim KI, Lee UH, Cho M, Jung SH, Min EY, Park JW. Transcriptome analysis based on RNA-seq of common innate immune responses of flounder cells to IHNV, VHSV, and HIRRV. PLoS One 2020; 15:e0239925. [PMID: 32986779 PMCID: PMC7521715 DOI: 10.1371/journal.pone.0239925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022] Open
Abstract
Viral hemorrhagic septicemia virus (VHSV) and hirame rhabdovirus (HIRRV) belong to the genus Novirhabdovirus and are the causative agents of a serious disease in cultured flounder. However, infectious hematopoietic necrosis virus (IHNV), a prototype of the genus Novirhabdovirus, does not cause disease in flounder. To determine whether IHNV growth is restricted in flounder cells, we compared the growth of IHNV with that of VHSV and HIRRV in hirame natural embryo (HINAE) cells infected with novirhabdoviruses at 1 multiplicity of infection. Unexpectedly, we found that IHNV grew as well as VHSV and HIRRV. For successful growth in host cells, viruses modulate innate immune responses exerted by virus-infected cells. Our results suggest that IHNV, like VHSV and HIRRV, has evolved the ability to overcome the innate immune response of flounder cells. To determine the innate immune response genes of virus-infected HINAE cells which are commonly modulated by the three novirhabdoviruses, we infected HINAE cells with novirhabdoviruses at multiplicity of infection (MOI) 1 and performed an RNA sequencing-based transcriptome analysis at 24 h post-infection. We discovered ~12,500 unigenes altered by novirhabdovirus infection and found that many of these were involved in multiple cellular pathways. After novirhabdovirus infection, 170 genes involved in the innate immune response were differentially expressed compared to uninfected cells. Among them, 9 genes changed expression by more than 2-fold and were commonly modulated by all three novirhabdoviruses. Interferon regulatory factor 8 (IRF8), C-X-C motif chemokine receptor 1 (CXCR1), Toll/interleukin-1 receptor domain-containing adapter protein (TIRAP), cholesterol 25-hydroxylase (CH25H), C-X-C motif chemokine ligand 11, duplicate 5 (CXCL11.5), and Toll-like receptor 2 (TLR2) were up-regulated, whereas C-C motif chemokine receptor 6a (CCR6a), interleukin-12a (IL12a), and Toll-like receptor 1 (TLR1) were down-regulated. These genes have been reported to be involved in antiviral responses and, thus, their modulation may be critical for the growth of novirhabdovirus in flounder cells. This is the first report to identify innate immune response genes in flounder that are commonly modulated by IHNV, VHSV, and HIRRV. These data will provide new insights into how novirhabdoviruses survive the innate immune response of flounder cells.
Collapse
Affiliation(s)
- Kwang Il Kim
- Pathology Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Unn Hwa Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Miyoung Cho
- Pathology Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Sung-Hee Jung
- Pathology Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Eun Young Min
- Pathology Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
- * E-mail:
| |
Collapse
|