1
|
Fahmy LM, Adeuyan OO, de Jong A. CD1a and Lipids as Mediators of T Cell Activation in the Skin. J Invest Dermatol 2025:S0022-202X(25)00383-5. [PMID: 40317277 DOI: 10.1016/j.jid.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 05/07/2025]
Abstract
Despite increasing insights in cytokine pathways involved in T cell-mediated inflammatory skin diseases, the upstream T cell triggering events through antigen-presenting molecules and antigens often remain incompletely understood. Recent studies have proposed an immunopathogenic role for T cells that are activated through CD1a, a lipid antigen-presenting molecule abundantly expressed on antigen-presenting cells in human skin. These CD1a-restricted T cells are thought to play a role in psoriasis, atopic dermatitis, and allergic contact dermatitis. In this review, we discuss modes of T cell activation by CD1a proteins and lipid antigens and bacteria as well as recent insights in local and systemic functions of CD1a-restricted T cells in inflammatory skin disease.
Collapse
Affiliation(s)
- Lauren M Fahmy
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Oluwaseyi O Adeuyan
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Annemieke de Jong
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA.
| |
Collapse
|
2
|
Kim S, Cho S, Kim JH. CD1-mediated immune responses in mucosal tissues: molecular mechanisms underlying lipid antigen presentation system. Exp Mol Med 2023; 55:1858-1871. [PMID: 37696897 PMCID: PMC10545705 DOI: 10.1038/s12276-023-01053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 09/13/2023] Open
Abstract
The cluster of differentiation 1 (CD1) molecule differs from major histocompatibility complex class I and II because it presents glycolipid/lipid antigens. Moreover, the CD1-restricted T cells that recognize these self and foreign antigens participate in both innate and adaptive immune responses. CD1s are constitutively expressed by professional and nonprofessional antigen-presenting cells in mucosal tissues, namely, the skin, lung, and intestine. This suggests that CD1-reactive T cells are involved in the immune responses of these tissues. Indeed, evidence suggests that these cells play important roles in diverse diseases, such as inflammation, autoimmune disease, and infection. Recent studies elucidating the molecular mechanisms by which CD1 presents lipid antigens suggest that defects in these mechanisms could contribute to the activities of CD1-reactive T cells. Thus, improving our understanding of these mechanisms could lead to new and effective therapeutic approaches to CD1-associated diseases. In this review, we discuss the CD1-mediated antigen presentation system and its roles in mucosal tissue immunity.
Collapse
Affiliation(s)
- Seohyun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sumin Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
3
|
Zhu T, Wang R, Miller H, Westerberg LS, Yang L, Guan F, Lee P, Gong Q, Chen Y, Liu C. The interaction between iNKT cells and B cells. J Leukoc Biol 2021; 111:711-723. [PMID: 34312907 DOI: 10.1002/jlb.6ru0221-095rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Invariant natural killer T cells (iNKTs) bridge the innate immunity with the adaptive immunity and their interaction with B cells has been extensively studied. Here, we give a complete overview of these two cells, from their mechanism of interaction to clinical prospects and existing problems. In our introduction, we describe the relationship between iNKTs and B cells and explore the current research hotspots and future directions. We begin with how B cells interact and benefit from the innate and adaptive help of iNKTs. Next, we describe the multiple roles of these cells in infections, autoimmunity, and cancers. Lastly, we look into the potential immunotherapies that can be based on iNKTs and the possible treatments for infectious, autoimmune, and other diseases.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongli Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, GuiZhou Province, Zunyi, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Sarmiento Varón L, De Rosa J, Rodriguez R, Fernández PM, Billordo LA, Baz P, Beccaglia G, Spada N, Mendoza FT, Barberis CM, Vay C, Arabolaza ME, Paoli B, Arana EI. Role of Tonsillar Chronic Inflammation and Commensal Bacteria in the Pathogenesis of Pediatric OSA. Front Immunol 2021; 12:648064. [PMID: 33995367 PMCID: PMC8116894 DOI: 10.3389/fimmu.2021.648064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
Immune responses at the boundary between the host and the world beyond are complex and mucosal tissue homeostasis relies on them. Obstructive sleep apnea (OSA) is a syndrome suffered by children with hypertrophied tonsils. We have previously demonstrated that these tonsils present a defective regulatory B cell (Breg) compartment. Here, we extend those findings by uncovering the crucial role of resident pro-inflammatory B and T cells in sustaining tonsillar hypertrophy and hyperplasia by producing TNFα and IL17, respectively, in ex vivo cultures. Additionally, we detected prominent levels of expression of CD1d by tonsillar stratified as well as reticular epithelium, which have not previously been reported. Furthermore, we evidenced the hypertrophy of germinal centers (GC) and the general hyperplasia of B lymphocytes within the tissue and the lumen of the crypts. Of note, such B cells resulted mainly (IgG/IgM)+ cells, with some IgA+ cells located marginally in the follicles. Finally, by combining bacterial culture from the tonsillar core and subsequent identification of the respective isolates, we determined the most prevalent species within the cohort of OSA patients. Although the isolated species are considered normal oropharyngeal commensals in children, we confirmed their capacity to breach the epithelial barrier. Our work sheds light on the pathological mechanism underlying OSA, highlighting the relevance taken by the host immune system when defining infection versus colonization, and opening alternatives of treatment.
Collapse
Affiliation(s)
- Lindybeth Sarmiento Varón
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Javier De Rosa
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Raquel Rodriguez
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina.,Allergy and Immunology Division, Clinical Hospital 'José de San Martín', UBA, Buenos Aires, Argentina
| | - Pablo M Fernández
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina.,Department of Immunology, School of Medicine, UBA, Buenos Aires, Argentina
| | - L Ariel Billordo
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Plácida Baz
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Gladys Beccaglia
- Department of Pathology, Clinical Hospital 'José de San Martín', Buenos Aires, Argentina
| | - Nicolás Spada
- Department of Pathology, Clinical Hospital 'José de San Martín', Buenos Aires, Argentina
| | - F Tatiana Mendoza
- Department of Clinical Biochemistry and Bacteriology, School of Pharmacy and Biochemistry, Clinical Hospital 'Jose de San Martín', UBA, Buenos Aires, Argentina
| | - Claudia M Barberis
- Department of Clinical Biochemistry and Bacteriology, School of Pharmacy and Biochemistry, Clinical Hospital 'Jose de San Martín', UBA, Buenos Aires, Argentina
| | - Carlos Vay
- Department of Clinical Biochemistry and Bacteriology, School of Pharmacy and Biochemistry, Clinical Hospital 'Jose de San Martín', UBA, Buenos Aires, Argentina
| | - M Elena Arabolaza
- Pediatric Otolaryngology Division, Clinical Hospital 'José de San Martín', Buenos Aires, Argentina
| | - Bibiana Paoli
- Pediatric Otolaryngology Division, Clinical Hospital 'José de San Martín', Buenos Aires, Argentina
| | - Eloísa I Arana
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina.,Department of Immunology, School of Medicine, UBA, Buenos Aires, Argentina
| |
Collapse
|
5
|
Exploiting CD1-restricted T cells for clinical benefit. Mol Immunol 2021; 132:126-131. [PMID: 33582549 DOI: 10.1016/j.molimm.2020.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/07/2020] [Indexed: 01/11/2023]
Abstract
CD1-restricted T cells were first described over 30 years ago along with the cloning of the CD1 family. Around the same time, invariant Natural Killer cells (iNKT) were identified based on invariant TCR-alpha chains with additional expression of natural killer (NK) cell markers. About 5 years later, iNKT were shown to react with CD1d. Since then, iNKT have been shown to be a major population of CD1d-restricted T cells in humans and many animals. Like NK cells, iNKT are innate lymphocytes with rapid and wide-ranging effector potential. These activities include cytotoxicity and an unusually broad and high-level cytokine production. The development of highly-specific methods of isolating, stimulating, expanding or depleting these relatively rare cells and controlling their potent activities has stimulated considerable interest in therapeutic targeting of iNKT cells. Potential applications include cancers, inflammatory, infectious and autoimmune among other diseases. To date, most trials have targeted various cancers, there are 2 published trials in viral hepatitis and one in sickle cell lung disease. Uniform safety, evidence of immunologic activity and increasingly clinical efficacy have been seen. Approaches to targeting iNKT cells in clinical development include highly specific natural glycolipid ligands presented by CD1d and chemical analogues thereof and monoclonal antibody-based targeting of iNKT cells. In the case of iNKT cell-based therapies, novel approaches include arming them with Chimeric Antigen Receptors (CARs) and recombinant TCRs (rTCR), gene editing and allogeneic use. Controlling the iTCR:CD1d molecular interaction and consequences is a unique and promising therapeutic technology.
Collapse
|
6
|
Animal models for human group 1 CD1 protein function. Mol Immunol 2020; 130:159-163. [PMID: 33384157 DOI: 10.1016/j.molimm.2020.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/09/2020] [Indexed: 11/21/2022]
Abstract
The CD1 antigen presenting system is evolutionary conserved and found in mammals, birds and reptiles. Humans express five isoforms, of which CD1a, CD1b and CD1c represent the group 1 CD1-molecules. They are recognized by T cells that express diverse αβ-T cell receptors. Investigation of the role of group 1 CD1 function has been hampered by the fact that CD1a, CD1b and CD1c are not expressed by mice. However, other animals, such as guinea pigs or cattle, serve as alternative models and have established basic aspects of CD1-dependent, antimicrobial immune functions. Group 1 CD1 transgenic mouse models became available about ten years ago. In a series of seminal studies these mouse models coined the mechanistical understanding of the role of the corresponding CD1 restricted T cell responses. This review gives a short overview of available animal studies and the lessons that have been and still can be learned.
Collapse
|
7
|
License to Kill: When iNKT Cells Are Granted the Use of Lethal Cytotoxicity. Int J Mol Sci 2020; 21:ijms21113909. [PMID: 32486268 PMCID: PMC7312231 DOI: 10.3390/ijms21113909] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Invariant Natural Killer T (iNKT) cells are a non-conventional, innate-like, T cell population that recognize lipid antigens presented by the cluster of differentiation (CD)1d molecule. Although iNKT cells are mostly known for mediating several immune responses due to their massive and diverse cytokine release, these cells also work as effectors in various contexts thanks to their cytotoxic potential. In this Review, we focused on iNKT cell cytotoxicity; we provide an overview of iNKT cell subsets, their activation cues, the mechanisms of iNKT cell cytotoxicity, the specific roles and outcomes of this activity in various contexts, and how iNKT killing functions are currently activated in cancer immunotherapies. Finally, we discuss the future perspectives for the better understanding and potential uses of iNKT cell killing functions in tumor immunosurveillance.
Collapse
|
8
|
Abstract
Innate lymphocyte populations are emerging as key effectors in tissue homeostasis, microbial defense, and inflammatory skin disease. The cells are evolutionarily ancient and carry conserved principles of function, which can be achieved through shared or unique specific mechanisms. Recent technological and treatment advances have provided insight into heterogeneity within and between individuals and species. Similar pathways can extend through to adaptive lymphocytes, which softens the margins with innate lymphocyte populations and allows investigation of nonredundant pathways of immunity and inflammation that might be amenable to therapeutic intervention. Here, we review advances in understanding of innate lymphocyte biology with a focus on skin disease and the roles of commensal and pathogen responses and tissue homeostasis.
Collapse
Affiliation(s)
- Yi-Ling Chen
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
| | - Clare S Hardman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
| | - Koshika Yadava
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
| | - Graham Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals, Headington, Oxford OX3 7LE, United Kingdom;
| |
Collapse
|
9
|
Jaramillo-Valverde L, Levano KS, Villanueva I, Hidalgo M, Cornejo M, Mazzetti P, Cornejo-Olivas M, Sanchez C, Poterico JA, Valdivia-Silva J, Guio H. Guillain-Barre syndrome outbreak in Peru: Association with polymorphisms in IL-17, ICAM1, and CD1. Mol Genet Genomic Med 2019; 7:e00960. [PMID: 31464097 PMCID: PMC6785440 DOI: 10.1002/mgg3.960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/08/2019] [Indexed: 11/07/2022] Open
Abstract
Background Guillain–Barre Syndrome (GBS) is considered a complex disorder with significant environmental effect and genetic susceptibility. Genetic polymorphisms in CD1E, CD1A, IL‐17, and/or ICAM1 had been proposed as susceptibility genetic variants for GBS mainly in Caucasian population. This study explores the association between selected polymorphisms in these genes and GBS susceptibility in confirmed GBS cases reported in mestizo population from northern Peru during the most recent GBS outbreak of May 2018. Methods A total of nine nonrelated cases and 11 controls were sequenced for the polymorphic regions of CD1A, CD1E, IL‐17, and ICAM1. Results We found a significant protective association between heterozygous GA genotype in ICAM1 (241Gly/Arg) and GBS (p < .047). IL‐17 was monomorphic in both controls and patients. No significant differences were found in the frequency of SNPs in CD1A and CD1E between the group with GBS patients and healthy controls. Conclusion ICAM1 polymorphisms might be considered as potential genetic markers of GBS susceptibility. Further studies with larger sample size will be required to validate these findings.
Collapse
Affiliation(s)
- Luis Jaramillo-Valverde
- INBIOMEDIC Research and Technological Center, Lima, Peru.,ALBIOTEC, Lima, Peru.,School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kelly S Levano
- INBIOMEDIC Research and Technological Center, Lima, Peru.,ALBIOTEC, Lima, Peru
| | | | | | | | - Pilar Mazzetti
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru.,School of Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru.,Center for Global Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Cesar Sanchez
- INBIOMEDIC Research and Technological Center, Lima, Peru
| | - Julio A Poterico
- Servicio de Genética, Instituto Nacional de Salud del Niño San Borja (INSN-SB), Lima, Peru
| | - Julio Valdivia-Silva
- Department of Bioengineering and Chemical Engineering, Universidad de Ingenieria y Tecnologia - UTEC, Lima, Peru
| | - Heinner Guio
- INBIOMEDIC Research and Technological Center, Lima, Peru.,Universidad Científica del Sur, Lima, Peru.,Universidad de Huánuco, Huánuco, Peru
| |
Collapse
|
10
|
TLR9-mediated dendritic cell activation uncovers mammalian ganglioside species with specific ceramide backbones that activate invariant natural killer T cells. PLoS Biol 2019; 17:e3000169. [PMID: 30822302 PMCID: PMC6420026 DOI: 10.1371/journal.pbio.3000169] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/15/2019] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells represent a heterogeneous population of lipid-reactive T cells that are involved in many immune responses, mediated through T-cell receptor (TCR)–dependent and/or independent activation. Although numerous microbial lipid antigens (Ags) have been identified, several lines of evidence have suggested the existence of relevant Ags of endogenous origin. However, the identification of their precise nature as well as the molecular mechanisms involved in their generation are still highly controversial and ill defined. Here, we identified two mammalian gangliosides—namely monosialoganglioside GM3 and disialoganglioside GD3—as endogenous activators for mouse iNKT cells. These glycosphingolipids are found in Toll-like receptor-stimulated dendritic cells (DC) as several species varying in their N-acyl fatty chain composition. Interestingly, their ability to activate iNKT cells is highly dependent on the ceramide backbone structure. Thus, both synthetic GM3 and GD3 comprising a d18:1-C24:1 ceramide backbone were able to activate iNKT cells in a CD1d-dependent manner. GM3 and GD3 are not directly recognized by the iNKT TCR and required the Ag presenting cell intracellular machinery to reveal their antigenicity. We propose a new concept in which iNKT cells can rapidly respond to pre-existing self-molecules after stress-induced structural changes in CD1d-expressing cells. Moreover, these gangliosides conferred partial protection in the context of bacterial infection. Thus, this report identified new biologically relevant lipid self-Ags for iNKT cells. Although the existence of self-antigens for invariant Natural Killer T (iNKT) cells is widely accepted, their precise nature remains a matter of debate. This study shows that two mammalian ganglioside species activate iNKT cells in a CD1d-dependent manner. Invariant natural killer T (iNKT) cells are a population of unconventional T lymphocytes that activate rapidly during inflammation due to their innate-like features. They are unconventional since they do not react to peptidic antigens (Ags) presented by classical major histocompatibility complex (MHC) molecules; instead, they recognize lipid-based Ags in the context of the MHC class I-like molecule CD1d. While numerous Ags of microbial origins have been described, their endogenous Ags are far less understood and remain a matter of strong debate. Here, we report that engagement of an innate receptor on the Ag-presenting cells leads to modulation of their lipid metabolism. This results in an enrichment of particular glycosphingolipid species that differ in both the nonpolar tail and polar head structures. Among those, two species have the potential to activate iNKT cells in a CD1d-dependent manner after further intracellular modifications. Based on these data, we propose a concept that iNKT cells can rapidly respond to pre-existing self-molecules after stress-induced changes in CD1d-expressing cells. Given the presence of closely related molecules in some pathological conditions such as cancer, it will be interesting to evaluate the biological relevance of these Ags in disease states.
Collapse
|
11
|
Halder RC, Tran C, Prasad P, Wang J, Nallapothula D, Ishikawa T, Wang M, Zajonc DM, Singh RR. Self-glycerophospholipids activate murine phospholipid-reactive T cells and inhibit iNKT cell activation by competing with ligands for CD1d loading. Eur J Immunol 2018; 49:242-254. [PMID: 30508304 DOI: 10.1002/eji.201847717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/15/2018] [Accepted: 11/27/2018] [Indexed: 01/12/2023]
Abstract
Glycosphingolipids and glycerophospholipids bind CD1d. Glycosphingolipid-reactive invariant NKT-cells (iNKT) exhibit myriad immune effects, however, little is known about the functions of phospholipid-reactive T cells (PLT). We report that the normal mouse immune repertoire contains αβ T cells, which recognize self-glycerophospholipids such as phosphatidic acid (PA) in a CD1d-restricted manner and don't cross-react with iNKT-cell ligands. PA bound to CD1d in the absence of lipid transfer proteins. Upon in vivo priming, PA induced an expansion and activation of T cells in Ag-specific manner. Crystal structure of the CD1d:PA complex revealed that the ligand is centrally located in the CD1d-binding groove opening for TCR recognition. Moreover, the increased flexibility of the two acyl chains in diacylglycerol ligands and a less stringent-binding orientation for glycerophospholipids as compared with the bindings of glycosphingolipids may allow glycerophospholipids to readily occupy CD1d. Indeed, PA competed with α-galactosylceramide to load onto CD1d, leading to reduced expression of CD1d:α-galactosylceramide complexes on the surface of dendritic cells. Consistently, glycerophospholipids reduced iNKT-cell proliferation, expansion, and cytokine production in vitro and in vivo. Such superior ability of self-glycerophospholipids to compete with iNKT-cell ligands to occupy CD1d may help maintain homeostasis between the diverse subsets of lipid-reactive T cells, with important pathogenetic and therapeutic implications.
Collapse
Affiliation(s)
- Ramesh Chandra Halder
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Cynthia Tran
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Priti Prasad
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.,Molecular Toxicology Interdepartmental Program, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Jing Wang
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Dhiraj Nallapothula
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Tatsuya Ishikawa
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Meiying Wang
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Dirk M Zajonc
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA, USA.,Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Ram Raj Singh
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.,Molecular Toxicology Interdepartmental Program, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
12
|
Hapil FZ, Wingender G. The interaction between invariant Natural Killer T cells and the mucosal microbiota. Immunology 2018; 155:164-175. [PMID: 29893412 DOI: 10.1111/imm.12958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 02/06/2023] Open
Abstract
The surface of mammalian bodies is colonized by a multitude of microbial organisms, which under normal conditions support the host and are considered beneficial commensals. This requires, however, that the composition of the commensal microbiota is tightly controlled and regulated. The host immune system plays an important role in the maintenance of this microbiota composition. Here we focus on the contribution of one particular immune cell type, invariant Natural Killer T (iNKT) cells, in this process. The iNKT cells are a unique subset of T cells characterized by two main features. First, they express an invariant T-cell receptor that recognizes glycolipid antigens presented by CD1d, a non-polymorphic major histocompatibility complex class I-like molecule. Second, iNKT cells develop as effector/memory cells and swiftly exert effector functions, like cytokine production and cytotoxicity, after activation. We outline the influence that the mucosal microbiota can have on iNKT cells, and how iNKT cells contribute to the maintenance of the microbiota composition.
Collapse
Affiliation(s)
| | - Gerhard Wingender
- Izmir Biomedicine and Genome Center, Balcova/Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova/Izmir, Turkey
| |
Collapse
|
13
|
Lepore M, Mori L, De Libero G. The Conventional Nature of Non-MHC-Restricted T Cells. Front Immunol 2018; 9:1365. [PMID: 29963057 PMCID: PMC6010553 DOI: 10.3389/fimmu.2018.01365] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/01/2018] [Indexed: 12/17/2022] Open
Abstract
The definition “unconventional T cells” identifies T lymphocytes that recognize non-peptide antigens presented by monomorphic antigen-presenting molecules. Two cell populations recognize lipid antigens and small metabolites presented by CD1 and MR1 molecules, respectively. A third cell population expressing the TCR Vγ9Vδ2 is stimulated by small phosphorylated metabolites. In the recent past, we have learnt a lot about the selection, tissue distribution, gene transcription programs, mode of expansion after antigen recognition, and persistence of these cells. These studies depict their functions in immune homeostasis and diseases. Current investigations are revealing that unconventional T cells include distinct sub-populations, which display unexpected similarities to classical MHC-restricted T cells in terms of TCR repertoire diversity, antigen specificity variety, functional heterogeneity, and naïve-to-memory differentiation dynamic. This review discusses the latest findings with a particular emphasis on these T cells, which appear to be more conventional than previously appreciated, and with the perspective of using CD1 and MR1-restricted T cells in vaccination and immunotherapy.
Collapse
Affiliation(s)
- Marco Lepore
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
14
|
McCarthy NE, Eberl M. Human γδ T-Cell Control of Mucosal Immunity and Inflammation. Front Immunol 2018; 9:985. [PMID: 29867962 PMCID: PMC5949325 DOI: 10.3389/fimmu.2018.00985] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/20/2018] [Indexed: 01/26/2023] Open
Abstract
Human γδ T-cells include some of the most common "antigen-specific" cell types in peripheral blood and are enriched yet further at mucosal barrier sites where microbial infection and tumors often originate. While the γδ T-cell compartment includes multiple subsets with highly flexible effector functions, human mucosal tissues are dominated by host stress-responsive Vδ1+ T-cells and microbe-responsive Vδ2+ T-cells. Widely recognized for their potent cytotoxicity, emerging data suggest that γδ T-cells also exert strong influences on downstream adaptive immunity to pathogens and tumors, in particular via activation of antigen-presenting cells and/or direct stimulation of other mucosal leukocytes. These unique functional attributes and lack of MHC restriction have prompted considerable interest in therapeutic targeting of γδ T-cells. Indeed, several drugs already in clinical use, including vedolizumab, infliximab, and azathioprine, likely owe their efficacy in part to modulation of γδ T-cell function. Recent clinical trials of Vδ2+ T-cell-selective treatments indicate a good safety profile in human patients, and efficacy is set to increase as more potent/targeted drugs continue to be developed. Key advances will include identifying methods of directing γδ T-cell recruitment to specific tissues to enhance host protection against invading pathogens, or alternatively, retaining these cells in the circulation to limit peripheral inflammation and/or improve responses to blood malignancies. Human γδ T-cell control of mucosal immunity is likely exerted via multiple mechanisms that induce diverse responses in other types of tissue-resident leukocytes. Understanding the microenvironmental signals that regulate these functions will be critical to the development of new γδ T-cell-based therapies.
Collapse
Affiliation(s)
- Neil E. McCarthy
- Centre for Immunobiology, Bart’s and The London School of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
15
|
Schönrich G, Raftery MJ. CD1-Restricted T Cells During Persistent Virus Infections: "Sympathy for the Devil". Front Immunol 2018; 9:545. [PMID: 29616036 PMCID: PMC5868415 DOI: 10.3389/fimmu.2018.00545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/02/2018] [Indexed: 12/12/2022] Open
Abstract
Some of the clinically most important viruses persist in the human host after acute infection. In this situation, the host immune system and the viral pathogen attempt to establish an equilibrium. At best, overt disease is avoided. This attempt may fail, however, resulting in eventual loss of viral control or inadequate immune regulation. Consequently, direct virus-induced tissue damage or immunopathology may occur. The cluster of differentiation 1 (CD1) family of non-classical major histocompatibility complex class I molecules are known to present hydrophobic, primarily lipid antigens. There is ample evidence that both CD1-dependent and CD1-independent mechanisms activate CD1-restricted T cells during persistent virus infections. Sophisticated viral mechanisms subvert these immune responses and help the pathogens to avoid clearance from the host organism. CD1-restricted T cells are not only crucial for the antiviral host defense but may also contribute to tissue damage. This review highlights the two edged role of CD1-restricted T cells in persistent virus infections and summarizes the viral immune evasion mechanisms that target these fascinating immune cells.
Collapse
Affiliation(s)
- Günther Schönrich
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin J Raftery
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
16
|
Torina A, Guggino G, La Manna MP, Sireci G. The Janus Face of NKT Cell Function in Autoimmunity and Infectious Diseases. Int J Mol Sci 2018; 19:ijms19020440. [PMID: 29389901 PMCID: PMC5855662 DOI: 10.3390/ijms19020440] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 12/19/2022] Open
Abstract
Natural killer T cells (NKT) are a subset of T lymphocytes bridging innate and adaptive immunity. These cells recognize self and microbial glycolipids bound to non-polymorphic and highly conserved CD1d molecules. Three NKT cell subsets, type I, II, and NKT-like expressing different antigen receptors (TCR) were described and TCR activation promotes intracellular events leading to specific functional activities. NKT can exhibit different functions depending on the secretion of soluble molecules and the interaction with other cell types. NKT cells act as regulatory cells in the defense against infections but, on the other hand, their effector functions can be involved in the pathogenesis of several inflammatory disorders due to their exposure to different microbial or self-antigens, respectively. A deep understanding of the biology and functions of type I, II, and NKT-like cells as well as their interplay with cell types acting in innate (neuthrophils, innate lymphoid cells, machrophages, and dendritic cells) and adaptive immunity (CD4⁺,CD8⁺, and double negative T cells) should be important to design potential immunotherapies for infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Alessandra Torina
- Experimental Zooprophylactic Institute of Sicily, Via Marinuzzi 3, 90100 Palermo, Italy.
| | - Giuliana Guggino
- Biomedical Department of Internal and Specialized Medicine, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90100 Palermo, Italy.
| | - Marco Pio La Manna
- Department of Biopathology and Medical Biotechnology, Section of General Pathology, University of Palermo, Via del Vespro 129, 90100 Palermo, Italy.
- Central Laboratory Advanced Diagnostic and Biological Research, University Hospital, Via del Vespro 129, 90100 Palermo, Italy.
| | - Guido Sireci
- Department of Biopathology and Medical Biotechnology, Section of General Pathology, University of Palermo, Via del Vespro 129, 90100 Palermo, Italy.
- Central Laboratory Advanced Diagnostic and Biological Research, University Hospital, Via del Vespro 129, 90100 Palermo, Italy.
| |
Collapse
|
17
|
van Puijvelde GH, Kuiper J. NKT cells in cardiovascular diseases. Eur J Pharmacol 2017; 816:47-57. [DOI: 10.1016/j.ejphar.2017.03.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/10/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
|
18
|
Huang S, Moody DB. Donor-unrestricted T cells in the human CD1 system. Immunogenetics 2016; 68:577-96. [PMID: 27502318 PMCID: PMC5915868 DOI: 10.1007/s00251-016-0942-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023]
Abstract
The CD1 and MHC systems are specialized for lipid and peptide display, respectively. Here, we review evidence showing how cellular CD1a, CD1b, CD1c, and CD1d proteins capture and display many cellular lipids to T cell receptors (TCRs). Increasing evidence shows that CD1-reactive T cells operate outside two classical immunogenetic concepts derived from the MHC paradigm. First, because CD1 proteins are non-polymorphic in human populations, T cell responses are not restricted to the donor's genetic background. Second, the simplified population genetics of CD1 antigen-presenting molecules can lead to simplified patterns of TCR usage. As contrasted with donor-restricted patterns of MHC-TCR interaction, the donor-unrestricted nature of CD1-TCR interactions raises the prospect that lipid agonists and antagonists of T cells could be developed.
Collapse
Affiliation(s)
- Shouxiong Huang
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - D Branch Moody
- Divison of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
19
|
Abstract
CD1- and MHC-related molecule-1 (MR1)-restricted T lymphocytes recognize nonpeptidic antigens, such as lipids and small metabolites, and account for a major fraction of circulating and tissue-resident T cells. They represent a readily activated, long-lasting population of effector cells and contribute to the early phases of immune response, orchestrating the function of other cells. This review addresses the main aspects of their immunological functions, including antigen and T cell receptor repertoires, mechanisms of nonpeptidic antigen presentation, and the current evidence for their participation in human and experimental diseases.
Collapse
Affiliation(s)
- Lucia Mori
- Department of Biomedicine, Basel University Hospital and Basel University, CH-4031 Basel, Switzerland; , , .,Singapore Immunology Network, A*STAR, 138648 Singapore
| | - Marco Lepore
- Department of Biomedicine, Basel University Hospital and Basel University, CH-4031 Basel, Switzerland; , ,
| | - Gennaro De Libero
- Department of Biomedicine, Basel University Hospital and Basel University, CH-4031 Basel, Switzerland; , , .,Singapore Immunology Network, A*STAR, 138648 Singapore
| |
Collapse
|
20
|
Van Rhijn I, van Berlo T, Hilmenyuk T, Cheng TY, Wolf BJ, Tatituri RVV, Uldrich AP, Napolitani G, Cerundolo V, Altman JD, Willemsen P, Huang S, Rossjohn J, Besra GS, Brenner MB, Godfrey DI, Moody DB. Human autoreactive T cells recognize CD1b and phospholipids. Proc Natl Acad Sci U S A 2016; 113:380-5. [PMID: 26621732 PMCID: PMC4720340 DOI: 10.1073/pnas.1520947112] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In contrast with the common detection of T cells that recognize MHC, CD1a, CD1c, or CD1d proteins, CD1b autoreactive T cells have been difficult to isolate in humans. Here we report the development of polyvalent complexes of CD1b proteins and carbohydrate backbones (dextramers) and their use in identifying CD1b autoreactive T cells from human donors. Activation is mediated by αβ T-cell receptors (TCRs) binding to CD1b-phospholipid complexes, which is sufficient to activate autoreactive responses to CD1b-expressing cells. Using mass spectrometry and T-cell responses to scan through the major classes of phospholipids, we identified phosphatidylglycerol (PG) as the immunodominant lipid antigen. T cells did not discriminate the chemical differences that distinguish mammalian PG from bacterial PG. Whereas most models of T-cell recognition emphasize TCR discrimination of differing self and foreign structures, CD1b autoreactive T cells recognize lipids with dual self and foreign origin. PG is rare in the cellular membranes that carry CD1b proteins. However, bacteria and mitochondria are rich in PG, so these data point to a more general mechanism of immune detection of infection- or stress-associated lipids.
Collapse
Affiliation(s)
- Ildiko Van Rhijn
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, The Netherlands;
| | - Twan van Berlo
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, The Netherlands
| | - Tamara Hilmenyuk
- Department of Microbiology & Immunology, Peter Doherty Institute, University of Melbourne, Parkville, VIC 3010, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tan-Yun Cheng
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Benjamin J Wolf
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Raju V V Tatituri
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Adam P Uldrich
- Department of Microbiology & Immunology, Peter Doherty Institute, University of Melbourne, Parkville, VIC 3010, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, VIC 3010, Australia
| | - Giorgio Napolitani
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | | | - Peter Willemsen
- Central Veterinary Institute, Wageningen University, 8219 PH Lelystad, The Netherlands
| | - Shouxiong Huang
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Jamie Rossjohn
- Infection and Immunity Program, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, Cardiff University, Cardiff CF10 3XQ, United Kingdom
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Michael B Brenner
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115;
| | - Dale I Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute, University of Melbourne, Parkville, VIC 3010, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, VIC 3010, Australia
| | - D Branch Moody
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
21
|
Dellabona P, Consonni M, de Lalla C, Casorati G. Group 1 CD1-restricted T cells and the pathophysiological implications of self-lipid antigen recognition. ACTA ACUST UNITED AC 2015; 86:393-405. [PMID: 26514448 DOI: 10.1111/tan.12689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
T cell responses are generally regarded as specific for protein-derived peptide antigens. This is based on the molecular paradigm dictated by the T cell receptor (TCR) recognition of peptide-major histocompatibility complexs, which provides the molecular bases of the specificity and restriction of the T cell responses. An increasing number of findings in the last 20 years have challenged this paradigm, by showing the existence of T cells specific for lipid antigens presented by CD1 molecules. CD1-restricted T cells have been proven to be frequent components of the immune system and to recognize exogenous lipids, derived from pathogenic bacteria, as well as cell-endogenous self-lipids. This represents a young and exciting area of research in immunology with intriguing biological bases and a potential direct impact on human health.
Collapse
Affiliation(s)
- P Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - M Consonni
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - C de Lalla
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - G Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
22
|
Abstract
Over two decades ago, it was discovered that the human T-cell repertoire contains T cells that do not recognize peptide antigens in the context of MHC molecules but instead respond to lipid antigens presented by CD1 antigen-presenting molecules. The ability of T cells to 'see' lipid antigens bound to CD1 enables these lymphocytes to sense changes in the lipid composition of cells and tissues as a result of infections, inflammation, or malignancies. Although foreign lipid antigens have been shown to function as antigens for CD1-restricted T cells, many CD1-restricted T cells do not require foreign antigens for activation but instead can be activated by self-lipids presented by CD1. This review highlights recent developments in the field, including the identification of common mammalian lipids that function as autoantigens for αβ and γδ T cells, a novel mode of T-cell activation whereby CD1a itself rather than lipids serves as the autoantigen, and various mechanisms by which the activation of CD1-autoreactive T cells is regulated. As CD1 can induce T-cell effector functions in the absence of foreign antigens, multiple mechanisms are in place to regulate this self-reactivity, and stimulatory CD1-lipid complexes appear to be tightly controlled in space and time.
Collapse
|
23
|
Salio M, Cerundolo V. Regulation of Lipid Specific and Vitamin Specific Non-MHC Restricted T Cells by Antigen Presenting Cells and Their Therapeutic Potentials. Front Immunol 2015; 6:388. [PMID: 26284072 PMCID: PMC4517378 DOI: 10.3389/fimmu.2015.00388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/13/2015] [Indexed: 12/17/2022] Open
Abstract
Since initial reports, more than 25 years ago, that T cells recognize lipids in the context on non-polymorphic CD1 molecules, our understanding of antigen presentation to non-peptide-specific T cell populations has deepened. It is now clear that αβ T cells bearing semi-invariant T cell receptor, as well as subsets of γδ T cells, recognize a variety of self and non-self lipids and contribute to shaping immune responses via cross talk with dendritic cells and B cells. Furthermore, it has been demonstrated that small molecules derived from the microbial riboflavin biosynthetic pathway (vitamin B2) bind monomorphic MR1 molecules and activate mucosal-associated invariant T cells, another population of semi-invariant T cells. Novel insights in the biological relevance of non-peptide-specific T cells have emerged with the development of tetrameric CD1 and MR1 molecules, which has allowed accurate enumeration and functional analysis of CD1- and MR1-restricted T cells in humans and discovery of novel populations of semi-invariant T cells. The phenotype and function of non-peptide-specific T cells will be discussed in the context of the known distribution of CD1 and MR1 molecules by different subsets of antigen-presenting cells at steady state and following infection. Concurrent modulation of CD1 transcription and lipid biosynthetic pathways upon TLR stimulation, coupled with efficient lipid antigen processing, result in the increased cell surface expression of antigenic CD1-lipid complexes. Similarly, MR1 expression is almost undetectable in resting APC and it is upregulated following bacterial infection, likely due to stabilization of MR1 molecules by microbial antigens. The tight regulation of CD1 and MR1 expression at steady state and during infection may represent an important mechanism to limit autoreactivity, while promoting T cell responses to foreign antigens.
Collapse
Affiliation(s)
- Mariolina Salio
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Gao Y, Williams AP. Role of Innate T Cells in Anti-Bacterial Immunity. Front Immunol 2015; 6:302. [PMID: 26124758 PMCID: PMC4463001 DOI: 10.3389/fimmu.2015.00302] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/27/2015] [Indexed: 01/12/2023] Open
Abstract
Innate T cells are a heterogeneous group of αβ and γδ T cells that respond rapidly (<2 h) upon activation. These innate T cells also share a non MHC class I or II restriction requirement for antigen recognition. Three major populations within the innate T cell group are recognized, namely, invariant NKT cells, mucosal associated invariant T cells, and gamma delta T cells. These cells recognize foreign/self-lipid presented by non-classical MHC molecules, such as CD1d, MR1, and CD1a. They are activated during the early stages of bacterial infection and act as a bridge between the innate and adaptive immune systems. In this review, we focus on the functional properties of these three innate T cell populations and how they are purposed for antimicrobial defense. Furthermore, we address the mechanisms through which their effector functions are targeted for bacterial control and compare this in human and murine systems. Lastly, we speculate on future roles of these cell types in therapeutic settings such as vaccination.
Collapse
Affiliation(s)
- Yifang Gao
- Academic Unit of Cancer Sciences, Faculty of Medicine and Institute for Life Sciences, University of Southampton and NIHR Cancer Research UK Experimental Cancer Medicine Centre , Southampton , UK
| | - Anthony P Williams
- Academic Unit of Cancer Sciences, Faculty of Medicine and Institute for Life Sciences, University of Southampton and NIHR Cancer Research UK Experimental Cancer Medicine Centre , Southampton , UK ; Wessex Investigational Sciences Hub (WISH) Laboratory, Department of Allergy, Asthma and Clinical Immunology, University Hospital Southampton NHS Foundation Trust , Southampton , UK
| |
Collapse
|
25
|
Lepore M, de Lalla C, Gundimeda SR, Gsellinger H, Consonni M, Garavaglia C, Sansano S, Piccolo F, Scelfo A, Häussinger D, Montagna D, Locatelli F, Bonini C, Bondanza A, Forcina A, Li Z, Ni G, Ciceri F, Jenö P, Xia C, Mori L, Dellabona P, Casorati G, De Libero G. A novel self-lipid antigen targets human T cells against CD1c(+) leukemias. ACTA ACUST UNITED AC 2014; 211:1363-77. [PMID: 24935257 PMCID: PMC4076585 DOI: 10.1084/jem.20140410] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
T cells that recognize self-lipids presented by CD1c are frequent in the peripheral blood of healthy individuals and kill transformed hematopoietic cells, but little is known about their antigen specificity and potential antileukemia effects. We report that CD1c self-reactive T cells recognize a novel class of self-lipids, identified as methyl-lysophosphatidic acids (mLPAs), which are accumulated in leukemia cells. Primary acute myeloid and B cell acute leukemia blasts express CD1 molecules. mLPA-specific T cells efficiently kill CD1c(+) acute leukemia cells, poorly recognize nontransformed CD1c-expressing cells, and protect immunodeficient mice against CD1c(+) human leukemia cells. The identification of immunogenic self-lipid antigens accumulated in leukemia cells and the observed leukemia control by lipid-specific T cells in vivo provide a new conceptual framework for leukemia immune surveillance and possible immunotherapy.
Collapse
Affiliation(s)
- Marco Lepore
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudia de Lalla
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - S Ramanjaneyulu Gundimeda
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland
| | - Heiko Gsellinger
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland
| | - Michela Consonni
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudio Garavaglia
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sebastiano Sansano
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland
| | - Francesco Piccolo
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Andrea Scelfo
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Daniel Häussinger
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland
| | - Daniela Montagna
- Laboratorio di Immunologia, Dipartimento di Pediatria, Università di Pavia and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology, IRCCS Bambino Gesù Hospital, 00165 Rome, Italy
| | - Chiara Bonini
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Attilio Bondanza
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandra Forcina
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Zhiyuan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guanghui Ni
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Fabio Ciceri
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Paul Jenö
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland
| | - Chengfeng Xia
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research, Singapore 138648
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research, Singapore 138648
| |
Collapse
|
26
|
De Libero G, Mori L. The T-Cell Response to Lipid Antigens of Mycobacterium tuberculosis. Front Immunol 2014; 5:219. [PMID: 24904574 PMCID: PMC4033098 DOI: 10.3389/fimmu.2014.00219] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 04/30/2014] [Indexed: 11/13/2022] Open
Abstract
T-cells recognize lipid antigens presented by dedicated antigen-presenting molecules that belong to the CD1 family. This review discusses the structural properties of CD1 molecules, the nature of mycobacterial lipid antigens, and the phenotypic and functional properties of T-cells recognizing mycobacterial lipids. In humans, the five CD1 genes encode structurally similar glycoproteins that recycle in and thus survey different cellular endosomal compartments. The structure of the CD1-lipid-binding pockets, their mode of intracellular recycling and the type of CD1-expressing antigen-presenting cells all contribute to diversify lipid immunogenicity and presentation to T-cells. Mycobacteria produce a large variety of lipids, which form stable complexes with CD1 molecules and stimulate specific T-cells. The structures of antigenic lipids may be greatly different from each other and each lipid may induce unique T-cells capable of discriminating small lipid structural changes. The important functions of some lipid antigens within mycobacterial cells prevent the generation of negative mutants capable of escaping this type of immune response. T-cells specific for lipid antigens are stimulated in tuberculosis and exert protective functions. The mechanisms of antigen recognition, the type of effector functions and the mode of lipid-specific T-cell priming are discussed, emphasizing recent evidence of the roles of lipid-specific T-cells in tuberculosis.
Collapse
Affiliation(s)
- Gennaro De Libero
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR) , Singapore , Singapore ; Experimental Immunology, Department of Biomedicine, University Hospital Basel , Basel , Switzerland
| | - Lucia Mori
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR) , Singapore , Singapore
| |
Collapse
|
27
|
Dowds CM, Kornell SC, Blumberg RS, Zeissig S. Lipid antigens in immunity. Biol Chem 2014; 395:61-81. [PMID: 23999493 PMCID: PMC4128234 DOI: 10.1515/hsz-2013-0220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/27/2013] [Indexed: 02/07/2023]
Abstract
Lipids are not only a central part of human metabolism but also play diverse and critical roles in the immune system. As such, they can act as ligands of lipid-activated nuclear receptors, control inflammatory signaling through bioactive lipids such as prostaglandins, leukotrienes, lipoxins, resolvins, and protectins, and modulate immunity as intracellular phospholipid- or sphingolipid-derived signaling mediators. In addition, lipids can serve as antigens and regulate immunity through the activation of lipid-reactive T cells, which is the topic of this review. We will provide an overview of the mechanisms of lipid antigen presentation, the biology of lipid-reactive T cells, and their contribution to immunity.
Collapse
Affiliation(s)
- C. Marie Dowds
- Department of Internal Medicine I, University Medical Center
Schleswig-Holstein, Schittenhelmstraße 12, D-24105 Kiel,
Germany
| | - Sabin-Christin Kornell
- Department of Internal Medicine I, University Medical Center
Schleswig-Holstein, Schittenhelmstraße 12, D-24105 Kiel,
Germany
| | - Richard S. Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham
and Women’s Hospital, Harvard Medical School, 75 Francis Street,
Boston, MA 02115, USA
| | - Sebastian Zeissig
- Department of Internal Medicine I, University Medical Center
Schleswig-Holstein, Schittenhelmstraße 12, D-24105 Kiel,
Germany
| |
Collapse
|
28
|
Ly D, Kasmar AG, Cheng TY, de Jong A, Huang S, Roy S, Bhatt A, van Summeren RP, Altman JD, Jacobs WR, Adams EJ, Minnaard AJ, Porcelli SA, Moody DB. CD1c tetramers detect ex vivo T cell responses to processed phosphomycoketide antigens. ACTA ACUST UNITED AC 2013; 210:729-41. [PMID: 23530121 PMCID: PMC3620358 DOI: 10.1084/jem.20120624] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
CD1c tetramers loaded with a phospholipid antigen from M. tuberculosis are recognized by human T cells. CD1c is expressed with high density on human dendritic cells (DCs) and B cells, yet its antigen presentation functions are the least well understood among CD1 family members. Using a CD1c-reactive T cell line (DN6) to complete an organism-wide survey of M. tuberculosis lipids, we identified C32 phosphomycoketide (PM) as a previously unknown molecule and a CD1c-presented antigen. CD1c binding and presentation of mycoketide antigens absolutely required the unusual, mycobacteria-specific lipid branching patterns introduced by polyketide synthase 12 (pks12). Unexpectedly, one TCR responded to diversely glycosylated and unglycosylated forms of mycoketide when presented by DCs and B cells. Yet cell-free systems showed that recognition was mediated only by the deglycosylated phosphoantigen. These studies identify antigen processing of a natural bacterial antigen in the human CD1c system, indicating that cells act on glycolipids to generate a highly simplified neoepitope composed of a sugar-free phosphate anion. Using knowledge of this processed antigen, we generated human CD1c tetramers, and demonstrate that CD1c–PM complexes stain T cell receptors (TCRs), providing direct evidence for a ternary interaction among CD1c-lipid-TCR. Furthermore, PM-loaded CD1c tetramers detect fresh human T cells from peripheral blood, demonstrating a polyclonal response to PM antigens in humans ex vivo.
Collapse
Affiliation(s)
- Dalam Ly
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Immune evasion, immunopathology and the regulation of the immune system. Pathogens 2013; 2:71-91. [PMID: 25436882 PMCID: PMC4235712 DOI: 10.3390/pathogens2010071] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/26/2022] Open
Abstract
Costs and benefits of the immune response have attracted considerable attention in the last years among evolutionary biologists. Given the cost of parasitism, natural selection should favor individuals with the most effective immune defenses. Nevertheless, there exists huge variation in the expression of immune effectors among individuals. To explain this apparent paradox, it has been suggested that an over-reactive immune system might be too costly, both in terms of metabolic resources and risks of immune-mediated diseases, setting a limit to the investment into immune defenses. Here, we argue that this view neglects one important aspect of the interaction: the role played by evolving pathogens. We suggest that taking into account the co-evolutionary interactions between the host immune system and the parasitic strategies to overcome the immune response might provide a better picture of the selective pressures that shape the evolution of immune functioning. Integrating parasitic strategies of host exploitation can also contribute to understand the seemingly contradictory results that infection can enhance, but also protect from, autoimmune diseases. In the last decades, the incidence of autoimmune disorders has dramatically increased in wealthy countries of the northern hemisphere with a concomitant decrease of most parasitic infections. Experimental work on model organisms has shown that this pattern may be due to the protective role of certain parasites (i.e., helminths) that rely on the immunosuppression of hosts for their persistence. Interestingly, although parasite-induced immunosuppression can protect against autoimmunity, it can obviously favor the spread of other infections. Therefore, we need to think about the evolution of the immune system using a multidimensional trade-off involving immunoprotection, immunopathology and the parasitic strategies to escape the immune response.
Collapse
|
30
|
Kelly H, Mandraju R, Coelho-dos-Reis JGA, Tsuji M. Effects of HIV-1-induced CD1c and CD1d modulation and endogenous lipid presentation on CD1c-restricted T-cell activation. BMC Immunol 2013; 14:4. [PMID: 23347583 PMCID: PMC3571928 DOI: 10.1186/1471-2172-14-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/16/2013] [Indexed: 11/29/2022] Open
Abstract
Background It has been shown that human immunodeficiency virus (HIV)-1 infection induces the production of endogenous lipids required for effective viral production, and the cluster of differentiation (CD)1 molecule CD1d is downregulated by HIV-1 infection. However, the role of endogenous lipid presentation and the implications of CD1 downregulation by HIV-1 infection have not yet been characterized. Results In this study, we observed downregulation of both CD1c and CD1d expression through a Vpu-dependent and Nef-independent mechanism, and the concomitant HIV-1-induced production of host cholesterol decreased the extent of CD1c and CD1d modulation. While the modest downregulation of CD1c by HIV-1 infection decreased the ability of CD1c-restricted T cells to respond and secrete interferon-γ, the cholesterol upregulation in the same cells by HIV-1 infection appears to limit the downregulation of CD1c. Conclusions The two conflicting HIV-1-mediated changes in CD1c expression appear to minimize the modulation of CD1c expression, thus leading the host to maintain a CD1c-restricted T-cell response against HIV-1.
Collapse
Affiliation(s)
- Halonna Kelly
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|
31
|
Adams EJ, Luoma AM. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. Annu Rev Immunol 2013; 31:529-61. [PMID: 23298204 DOI: 10.1146/annurev-immunol-032712-095912] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The MHC fold is found in proteins that have a range of functions in the maintenance of an organism's health, from immune regulation to fat metabolism. Well adapted for antigen presentation, as seen for peptides in the classical MHC molecules and for lipids in CD1 molecules, the MHC fold has also been modified to perform Fc-receptor activity (e.g., FcRn) and for roles in host homeostasis (e.g., with HFE and ZAG). The more divergent MHC-like molecules, such as some of those that interact with the NKG2D receptor, represent the minimal MHC fold, doing away with the α3 domain and β2m while maintaining the α1/α2 platform domain for receptor engagement. Viruses have also co-opted the MHC fold for immune-evasive functions. The variations on the theme of a β-sheet topped by two semiparallel α-helices are discussed in this review, highlighting the fantastic adaptability of this fold for good and for bad.
Collapse
Affiliation(s)
- Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
32
|
Rhost S, Löfbom L, Rynmark BM, Pei B, Månsson JE, Teneberg S, Blomqvist M, Cardell SL. Identification of novel glycolipid ligands activating a sulfatide-reactive, CD1d-restricted, type II natural killer T lymphocyte. Eur J Immunol 2012; 42:2851-60. [PMID: 22777932 DOI: 10.1002/eji.201142350] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 06/01/2012] [Accepted: 07/04/2012] [Indexed: 12/20/2022]
Abstract
Sulfatide-reactive CD1d-restricted natural killer T (NKT) lymphocytes belong to the type II NKT cell subset with diverse TCRs, and have been found to regulate experimental auto-immune encephalomyelitis, tumor immunity, and experimental hepatitis in murine models. NKT cells can be activated by self-lipids presented by CD1d, manifested as autoreactivity. The identity of most of these self-lipids remains unknown. By isolating lipids from a CD1d-expressing, highly stimulatory antigen presenting cell, we identified isoforms of β-glucosylceramide (GlcCer), with sphingosine and fatty acid chain lengths of C24:0 and C16:0, that activated a sulfatide-reactive type II NKT cell hybridoma. A screen of structurally related glycosphingolipids demonstrated β-galactosylceramide (GalCer) as another ligand, and further, that the lysoforms were the most potent isoform of the glycosphingo-lipid ligands, followed by isoforms with a long fatty acid chain of C24. Thus, the same type II NKT cell was activated by several ligands, namely sulfatide, GlcCer, and GalCer. However, CD1d-dependent reactivity to antigen presenting cells lacking all GlcCer-based glycosphingolipids, or all glycosphingolipids, was maintained. This suggests that other endogenous, nonglycosphingolipid, lipid ligands contribute to steady-state autoreactivity by type II NKT cells.
Collapse
Affiliation(s)
- Sara Rhost
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bine S, Haziot A, Malikova I, Pelletier J, Charron D, Boucraut J, Mooney N, Gelin C. Alteration of CD1 expression in multiple sclerosis. Clin Exp Immunol 2012; 169:10-6. [PMID: 22670773 DOI: 10.1111/j.1365-2249.2012.04586.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Studies of multiple sclerosis (MS) have concentrated mainly on antigen presentation of peptides derived from the myelin sheath, while the implication of lipid antigen has been less explored in this pathology. As the extracellular environment regulates expression of the lipid antigen-presenting molecule CD1, we have examined whether sera from patients alters CD1 surface expression in monocyte-derived dendritic cells. We have shown that: (i) CD1 group 1 proteins were highly expressed in the presence of MS sera; (ii) sera from MS patients differentially regulated CD1 group 1 versus CD1 group 2 molecular expression; and (iii) CD1 was expressed strongly in monocytes from MS patients under immunosuppressive treatment. Overall, these results reveal that CD1 expression is modified in MS and provide novel information on the regulation of lipid antigen presentation in myeloid cells.
Collapse
Affiliation(s)
- S Bine
- INSERM, UMR-S, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Andoh Y, Ogura H, Satoh M, Shimano K, Okuno H, Fujii S, Ishimori N, Eshima K, Tamauchi H, Otani T, Nakai Y, Van Kaer L, Tsutsui H, Onoé K, Iwabuchi K. Natural killer T cells are required for lipopolysaccharide-mediated enhancement of atherosclerosis in apolipoprotein E-deficient mice. Immunobiology 2012; 218:561-9. [PMID: 22954709 DOI: 10.1016/j.imbio.2012.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 07/11/2012] [Accepted: 07/14/2012] [Indexed: 12/12/2022]
Abstract
Lipopolysaccharide (LPS) has been shown to accelerate atherosclerosis and to increase the prevalence of IL-4-producing natural killer T (NKT) cells in various tissues. However, the role of NKT cells in the development of LPS-induced atherosclerotic lesions has not been fully tested in NKT cell-deficient mice. Here, we examined the lesion development in apolipoprotein E knockout (apoE-KO) mice and apoE-KO mice on an NKT cell-deficient, CD1d knockout (CD1d-KO) background (apoE-CD1d double knockout; DKO). LPS (0.5 μg/g body weight/wk) or phosphate-buffered saline (PBS) was intraperitoneally administered to apoE-KO and DKO mice (8-wk old) for 5 wk and atherosclerotic lesion areas were quantified thereafter. Consistent with prior reports, NKT cell-deficient DKO mice showed milder atherosclerotic lesions than apoE-KO mice. Notably, LPS administration significantly increased the lesion size in apoE-KO, but not in DKO mice, compared to PBS controls. Our findings suggest that LPS, and possibly LPS-producing bacteria, aggravate the development of atherosclerosis primarily through NKT cell activation and subsequent collaboration with NK cells.
Collapse
Affiliation(s)
- Yasuhiro Andoh
- Division of Immunobiology, Research Section of Pathophysiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Issazadeh-Navikas S. NKT cell self-reactivity: evolutionary master key of immune homeostasis? J Mol Cell Biol 2011; 4:70-8. [PMID: 22167750 DOI: 10.1093/jmcb/mjr035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Complex immune responses have evolved to protect multicellular organisms against the invasion of pathogens. This has exerted strong developmental pressure for specialized functions that can also limit damage to self-tissue. Two arms of immunity, the innate and adaptive immune systems, have evolved for quick, non-specific immune responses to pathogens and more efficient, long-lasting ones upon specific recognition of recurrent pathogens. Specialized cells have arisen as the sentinels of these functions, including macrophages, natural killer (NK), and T and B-lymphocytes. Interestingly, a population of immune cells that can exert both of these complex functions, NKT cells, not only share common functions but also exhibit shared cell surface markers of cells of both arms of the immune system. These features, in combination with sophisticated maintenance of immune homeostasis, will be discussed. The recent finding of self-peptide reactivity of NKT cells in the context of CD1d, with capacity to regulate multiple autoimmune and inflammatory conditions, motivates the current proposal that self-reactive NKT cells might be the ancestral link between present NK and T cells. Their parallel selection through evolution by higher vertebrates could be related to their central function as master regulators of immune homeostasis that in part is shared with regulatory T cells. Hypothetical views on how self-reactive NKT cells secure such a central role will also be proposed.
Collapse
Affiliation(s)
- Shohreh Issazadeh-Navikas
- Neuroinflammation Unit, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen Biocentre, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
37
|
Joyce S, Girardi E, Zajonc DM. NKT cell ligand recognition logic: molecular basis for a synaptic duet and transmission of inflammatory effectors. THE JOURNAL OF IMMUNOLOGY 2011; 187:1081-9. [PMID: 21772035 DOI: 10.4049/jimmunol.1001910] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NKT cells that express the semi-invariant TCR are innate-like lymphocytes whose functions are regulated by self and foreign glycolipid ligands presented by the Ag-presenting, MHC class I-like molecule CD1d. Activation of NKT cells in vivo results in rapid release of copious amounts of effector cytokines and chemokines with which they regulate innate and adaptive immune responses to pathogens, certain types of cancers, and self-antigens. The nature of CD1d-restricted ligands, the manner in which they are recognized, and the unique effector functions of NKT cells suggest an immunoregulatory role for this T cell subset. Their ability to respond fast and our ability to steer NKT cell cytokine response to altered lipid ligands make them an important target for vaccine design and immunotherapies against autoimmune diseases. This review summarizes our current understanding of CD1d-restricted ligand recognition by NKT cells and how these innate-like lymphocytes regulate inflammation.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | |
Collapse
|
38
|
Haig NA, Guan Z, Li D, McMichael A, Raetz CRH, Xu XN. Identification of self-lipids presented by CD1c and CD1d proteins. J Biol Chem 2011; 286:37692-701. [PMID: 21900247 DOI: 10.1074/jbc.m111.267948] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CD1 family consists of five proteins that are related to the peptide-presenting MHC class I family. T cells can recognize the presentation of both foreign and self-derived lipids on four CD1 family members. The identities of the self-lipids capable of stimulating autoreactive T cell responses remain elusive or controversial. Here, we employed mass spectrometry to analyze the lipid content of highly purified CD1c and CD1d protein samples. We report the identification of 11 novel self-lipids presented by CD1c and nine by CD1d. Rigorous controls provide strong evidence that the identified lipids were specifically loaded into the lipid-binding site of the CD1 molecules. The diverse but distinct population of lipids identified from each CD1 family member implies each present a different subset of self-lipids, and the enrichment of particular motifs indicates that the lipids that are presented by CD1 family members could be predicted. Finally, our results imply the CD1 system surveys the endoplasmic reticulum, Golgi apparatus, and/or secretory compartments, in addition to its well characterized surveillance of the endocytic and lysosomal compartments.
Collapse
Affiliation(s)
- Neil A Haig
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | | | | | | | | | | |
Collapse
|
39
|
Kasmar AG, van Rhijn I, Cheng TY, Turner M, Seshadri C, Schiefner A, Kalathur RC, Annand JW, de Jong A, Shires J, Leon L, Brenner M, Wilson IA, Altman JD, Moody DB. CD1b tetramers bind αβ T cell receptors to identify a mycobacterial glycolipid-reactive T cell repertoire in humans. ACTA ACUST UNITED AC 2011; 208:1741-7. [PMID: 21807869 PMCID: PMC3171094 DOI: 10.1084/jem.20110665] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glucose monomycolate–loaded CD1b tetramers identify a subset of CD4+ T cells in patients with Mycobacterium tuberculosis infection. Microbial lipids activate T cells by binding directly to CD1 and T cell receptors (TCRs) or by indirect effects on antigen-presenting cells involving induction of lipid autoantigens, CD1 transcription, or cytokine release. To distinguish among direct and indirect mechanisms, we developed fluorescent human CD1b tetramers and measured T cell staining. CD1b tetramer staining of T cells requires glucose monomycolate (GMM) antigens, is specific for TCR structure, and is blocked by a recombinant clonotypic TCR comprised of TRAV17 and TRBV4-1, proving that CD1b–glycolipid complexes bind the TCR. GMM-loaded tetramers brightly stain a small subpopulation of blood-derived cells from humans infected with Mycobacterium tuberculosis, providing direct detection of a CD1b-reactive T cell repertoire. Polyclonal T cells from patients sorted with tetramers are activated by GMM antigens presented by CD1b. Whereas prior studies emphasized CD8+ and CD4−CD8− CD1b-restricted clones, CD1b tetramer-based studies show that nearly all cells express the CD4 co-receptor. These findings prove a cognate mechanism whereby CD1b–glycolipid complexes bind to TCRs. CD1b tetramers detect a natural CD1b-restricted T cell repertoire ex vivo with unexpected features, opening a new investigative path to study the human CD1 system.
Collapse
Affiliation(s)
- Anne G Kasmar
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Uncini A, Notturno F, Pace M, Caporale CM. Polymorphism of CD1 and SH2D2A genes in inflammatory neuropathies. J Peripher Nerv Syst 2011; 16 Suppl 1:48-51. [DOI: 10.1111/j.1529-8027.2011.00307.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Nakken B, Varga T, Szatmari I, Szeles L, Gyongyosi A, Illarionov PA, Dezso B, Gogolak P, Rajnavolgyi E, Nagy L. Peroxisome Proliferator-Activated Receptor γ-Regulated Cathepsin D Is Required for Lipid Antigen Presentation by Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:240-7. [DOI: 10.4049/jimmunol.1002421] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
de Lalla C, Lepore M, Piccolo FM, Rinaldi A, Scelfo A, Garavaglia C, Mori L, De Libero G, Dellabona P, Casorati G. High-frequency and adaptive-like dynamics of human CD1 self-reactive T cells. Eur J Immunol 2011; 41:602-10. [PMID: 21246542 DOI: 10.1002/eji.201041211] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 11/19/2010] [Accepted: 11/29/2010] [Indexed: 11/08/2022]
Abstract
CD1 molecules present lipid antigens to T cells. An intriguing subset of human T cells recognize CD1-expressing cells without deliberately added lipids. Frequency, subset distribution, clonal composition, naïve-to-memory dynamic transition of these CD1 self-reactive T cells remain largely unknown. By screening libraries of T-cell clones, generated from CD4(+) or CD4(-) CD8(-) double negative (DN) T cells sorted from the same donors, and by limiting dilution analysis, we find that the frequency of CD1 self-reactive T cells is unexpectedly high in both T-cell subsets, in the range of 1/10-1/300 circulating T cells. These T cells predominantly recognize CD1a and CD1c and express diverse TCRs. Frequency comparisons of T-cell clones from sorted naïve and memory compartments of umbilical cord and adult blood show that CD1 self-reactive T cells are naïve at birth and undergo an age-dependent increase in the memory compartment, suggesting a naïve/memory adaptive-like population dynamics. CD1 self-reactive clones exhibit mostly Th1 and Th0 functional activities, depending on the subset and on the CD1 isotype restriction. These findings unveil the unanticipated relevance of self-lipid T-cell response in humans and clarify the basic parameters of the lipid-specific T-cell physiology.
Collapse
Affiliation(s)
- Claudia de Lalla
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, DIBIT, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hofstetter AR, Sullivan LC, Lukacher AE, Brooks AG. Diverse roles of non-diverse molecules: MHC class Ib molecules in host defense and control of autoimmunity. Curr Opin Immunol 2010; 23:104-10. [PMID: 20970974 DOI: 10.1016/j.coi.2010.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 09/27/2010] [Indexed: 10/18/2022]
Abstract
While the prime function of classical MHC class I molecules (MHC-I) is to present peptide antigens to pathogen-specific cytotoxic T cells, non-classical MHC-I antigens perform a diverse array of functions in both innate and adaptive immunity. In this review we summarize recent evidence that non classical MHC-I molecules are not only recognized by pathogen-specific T cells but that they also serve as immunoregulatory molecules by stimulating a number of distinct non-conventional T cell subsets.
Collapse
Affiliation(s)
- Amelia R Hofstetter
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | | | | | | |
Collapse
|
44
|
Darmoise A, Teneberg S, Bouzonville L, Brady RO, Beck M, Kaufmann SHE, Winau F. Lysosomal alpha-galactosidase controls the generation of self lipid antigens for natural killer T cells. Immunity 2010; 33:216-28. [PMID: 20727792 DOI: 10.1016/j.immuni.2010.08.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 04/01/2010] [Accepted: 08/04/2010] [Indexed: 10/19/2022]
Abstract
Natural Killer T (NKT) cells are lipid-reactive, CD1d-restricted T lymphocytes important in infection, cancer, and autoimmunity. In addition to foreign antigens, NKT cells react with endogenous self lipids. However, in the face of stimulating self antigen, it remains unclear how overstimulation of NKT cells is avoided. We hypothesized that constantly degraded endogenous antigen only accumulates upon inhibition of alpha-galactosidase A (alpha-Gal-A) in lysosomes. Here, we show that alpha-Gal-A deficiency caused vigorous activation of NKT cells. Moreover, microbes induced inhibition of alpha-Gal-A activity in antigen-presenting cells. This temporary enzyme block depended on Toll-like receptor (TLR) signaling and ultimately triggered lysosomal lipid accumulation. Thus, we present TLR-dependent negative regulation of alpha-Gal-A as a mechanistic link between pathogen recognition and self lipid antigen induction for NKT cells.
Collapse
Affiliation(s)
- Alexandre Darmoise
- Immune Disease Institute, Program in Cellular and Molecular Medicine at Children's Hospital, Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Chuang K, Elford EL, Tseng J, Leung B, Harris HW. An expanding role for apolipoprotein E in sepsis and inflammation. Am J Surg 2010; 200:391-7. [PMID: 20409531 PMCID: PMC2909338 DOI: 10.1016/j.amjsurg.2009.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 10/19/2009] [Accepted: 10/27/2009] [Indexed: 11/28/2022]
Abstract
BACKGROUND Apolipoprotein E (apoE), a component of plasma lipoproteins, plays an important, but poorly defined role in sepsis. We have shown that injecting apoE increases septic mortality in a rat model of gram-negative bacterial sepsis, with concomitant hepatic natural killer T (NKT) cell proliferation and activation. The presumed mechanism for this apoE-mediated mortality is that apoE can bind and traffic antigens, presumed to include lipopolysaccharide (LPS), and promote activation of dendritic cells (DC) with subsequent NKT activation and cytokine release. Thus, we sought to prove that LPS was the antigen responsible for the increased NKT activation enhanced by the presence of apoE. METHODS We isolated murine marrow-derived DCs, pulsed them with lipid antigen (LPS, and positive controls alpha-galactosylceramide [alpha-GalCer] and isoglobotrihexosylceramide 3 [iGb3]) with or without apoE, and then cocultured the DCs with hybridoma NKTs. NKT activation was measured by interleukin-2 (IL-2) supernatant levels using enzyme-linked immunosorbent assay (ELISA). RESULTS LPS at different concentrations was a weak stimulus for NKT activation regardless of apoE presence. When apoE was present, iGb3, an endogenous ligand analog, elicited more than a 2-fold increase in IL-2 response when compared with iGb3 alone (P < .05). CONCLUSIONS These results indicate an endogenous ligand, not LPS, may be responsible for NKT activation. A molecular remnant similar to iGb3 could act as a damage-associated molecular pattern and play a prominent role in animal models of sepsis.
Collapse
Affiliation(s)
- Kelley Chuang
- Department of Surgery, University of California, San Francisco, East Bay, Oakland, USA
| | | | | | | | | |
Collapse
|
46
|
Activation state and intracellular trafficking contribute to the repertoire of endogenous glycosphingolipids presented by CD1d [corrected]. Proc Natl Acad Sci U S A 2010; 107:3052-7. [PMID: 20133624 DOI: 10.1073/pnas.0915056107] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Myeloid antigen-presenting cells (APC) express CD1d molecules that present exogenous and endogenous lipid antigens that activate CD1d-restricted T cells, natural killer T (NKT) cells. NKT cell activation has been shown to mediate the potent downstream activation of other immune cells through cell-cell interactions and rapid, prolific cytokine production. Foreign antigens are not required for NKT cell activation. The endogenous lipids bound to CD1d are sufficient for activation of NKT cells in the setting of Toll-like receptor-induced cytokines. The most potent NKT cell antigens identified are glycosphingolipids (GSL). The GSL repertoire of endogenous ligands bound to CD1d molecules that are expressed in myeloid APC at steady state and in the setting of activation has not been delineated. This report identifies the range of GSL bound to soluble murine CD1d (mCD1d) molecules that sample the endoplasmic reticulum/secretory routes and cell surface-cleaved mCD1d that also samples the endocytic system. Specific GSL species are preferentially bound by mCD1d and do not solely reflect cellular GSL. GM1a and GD1a are prominent CD1d ligands for molecules following both the ER/secretory and lysosomal trafficking routes, whereas GM2 was eluted from soluble CD1d but not lysosomal trafficking CD1d. Further, after LPS activation, the quantities of soluble CD1d-bound GM3 and GM1a markedly increased. A unique alpha-galactose-terminating GSL was also found to be preferentially bound to mCD1d at steady state, and it increased with APC activation. Together, these studies identify the range of GSL presented by CD1d and how presentation varies based on CD1d intracellular trafficking and microbial activation.
Collapse
|
47
|
Abstract
Both Helicobacter pylori and Campylobacter jejuni are highly prevalent Gram-negative microaerophilic bacteria which are gastrointestinal pathogens of humans; H. pylori colonizes the gastroduodenal compartment and C. jejuni the intestinal mucosa. Although H. pylori causes chronic gastric infection leading to gastritis, peptic ulcers and eventually gastric cancer while C. jejuni causes acute infection inducing diarrhoeal disease, the endotoxin molecules of both bacterial species contrastingly contribute to their pathogenesis and the autoimmune sequelae each induces. Compared with enterobacterial endotoxin, that of H. pylori has significantly lower endotoxic and immuno-activities, the molecular basis for which is the underphosphorylation and underacylation of the lipid A component that interacts with immune receptors. This induction of low immunological responsiveness by endotoxin may aid the prolongation of H. pylori infection and therefore infection chronicity. On the other hand, this contrasts with acute infection-causing C. jejuni where overt inflammation contributes to pathology and diarrhoea production, and whose endotoxin is immunologically and endotoxically active. Futhermore, both H. pylori and C. jejuni exhibit molecular mimicry in the saccharide components of their endotoxins which can induce autoreactive antibodies; H. pylori expresses mimicry of Lewis and some ABO blood group antigens, C. jejuni mimicry of gangliosides. The former has been implicated in influencing the development of inflammation and gastric atrophy (a precursor of gastic cancer), the latter is central to the development of the neurological disorder Guillain-Barré syndrome. Both diseases raise important questions concerning infection-induced autoimmunity awaiting to be addressed.
Collapse
Affiliation(s)
- Anthony P Moran
- Laboratory of Molecular Biochemistry, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| |
Collapse
|
48
|
Abstract
Saposins or sphingolipid activator proteins (SAPs) are small, nonenzymatic glycoproteins that are ubiquitously present in lysosomes. SAPs comprise the five molecules saposins A-D and the GM2 activator protein. Saposins are essential for sphingolipid degradation and membrane digestion. On the one hand, they bind the respective hydrolases required to catabolize sphingolipid molecules; on the other hand, saposins can interact with intralysosomal membrane structures to render lipids accessible to their degrading enzymes. Thus, saposins bridge the physicochemical gap between lipid substrate and hydrophilic hydrolases. Accordingly, defects in saposin function can lead to lysosomal lipid accumulation. In addition to their specific functions in sphingolipid metabolism, saposins have membrane-perturbing properties. At the low pH of lysosomes, saposins get protonated and exhibit a high binding affinity for anionic phospholipids. Based on their universal principle to interact with membrane bilayers, we present the immunological functions of saposins with regard to lipid antigen presentation to CD1-restricted T cells, processing of apoptotic bodies for antigen delivery and cross-priming, as well as their potential antimicrobial impact.
Collapse
Affiliation(s)
- Alexandre Darmoise
- Program in Cellular and Molecular Medicine at Children's Hospital, Immune Disease Institute, Department of Pathology, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
49
|
Cernadas M, Cavallari M, Watts G, Mori L, De Libero G, Brenner MB. Early recycling compartment trafficking of CD1a is essential for its intersection and presentation of lipid antigens. THE JOURNAL OF IMMUNOLOGY 2009; 184:1235-41. [PMID: 20026739 DOI: 10.4049/jimmunol.0804140] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A major step in understanding differences in the nature of Ag presentation was the realization that MHC class I samples peptides transported to the endoplasmic reticulum from the cytosol, whereas MHC class II samples peptides from lysosomes. In contrast to MHC class I and II molecules that present protein Ags, CD1 molecules present lipid Ags for recognition by specific T cells. Each of the five members of the CD1 family (CD1a-e) localizes to a distinct subcompartment of endosomes. Accordingly, it has been widely assumed that the distinct trafficking of CD1 isoforms must also have evolved to enable them to sample lipid Ags that traffic via different routes. Among the CD1 isoforms, CD1a is unusual because it does not have a tyrosine-based cytoplasmic sorting motif and uniquely localizes to the early endocytic recycling compartment. This led us to predict that CD1a might have evolved to focus on lipids that localize to early endocytic/recycling compartments. Strikingly, we found that the glycolipid Ag sulfatide also localized almost exclusively to early endocytic and recycling compartments. Consistent with colocalization of CD1a and sulfatide, wild-type CD1a molecules efficiently presented sulfatide to CD1a-restricted, sulfatide-specific T cells. In contrast, CD1a:CD1b tail chimeras, that retain the same Ag-binding capacity as CD1a but traffic based on the cytoplasmic tail of CD1b to lysosomes, failed to present sulfatide efficiently. Thus, the intracellular trafficking route of CD1a is essential for efficient presentation of lipid Ags that traffic through the early endocytic and recycling pathways.
Collapse
Affiliation(s)
- Manuela Cernadas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
50
|
Trottein F, Schaffer L, Ivanov S, Paget C, Vendeville C, Cazet A, Groux-Degroote S, Lee S, Krzewinski-Recchi MA, Faveeuw C, Head SR, Gosset P, Delannoy P. Glycosyltransferase and sulfotransferase gene expression profiles in human monocytes, dendritic cells and macrophages. Glycoconj J 2009; 26:1259-74. [PMID: 19533340 PMCID: PMC2967374 DOI: 10.1007/s10719-009-9244-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 02/02/2023]
Abstract
Using a focused glycan-gene microarray, we compared the glycosyltransferase (GT) and sulfotransferase gene expression profiles of human monocytes, dendritic cells (DCs) and macrophages (Mphis), isolated or differentiated from the same donors. Microarray analysis indicated that monocytes express transcripts for a full set of enzymes involved in the biosynthesis of multi-multiantennary branched N-glycans, potentially elongated by poly-N-acetyl-lactosamine chains, and of mucin-type Core 1 and Core 2 sialylated O-glycans. Monocytes also express genes involved in the biosynthesis and modification of glycosaminoglycans, but display a limited expression of GTs implicated in glycolipid synthesis. Among genes expressed in monocytes (90 out of 175), one third is significantly modulated in DCs and Mphi respectively, most of them being increased in both cell types relative to monocytes. These changes might potentially enforce the capacity of differentiated cells to synthesize branched N-glycans and mucin-type O-glycans and to remodel cell surface proteoglycans. Stimulation of DCs and Mphis with lipopolysaccharide caused a general decrease in gene expression, mainly affecting genes found to be positively modulated during the differentiation steps. Interestingly, although a similar set of enzymes are modulated in the same direction in mature DCs and Mphis, cell specific genes are also differentially regulated during maturation, a phenomenon that may sustain functional specificities. Validation of this analysis was provided by quantitative real-time PCR and flow cytometry of cell surface glycan antigens. Collectively, this study implies an important modification of the pattern of glycosylation in DCs and Mphis undergoing differentiation and maturation with potential biological consequences.
Collapse
|