1
|
McArthur HCW, Bajur AT, Iliopoulou M, Spillane KM. Antigen mobility regulates the dynamics and precision of antigen capture in the B cell immune synapse. Proc Natl Acad Sci U S A 2025; 122:e2422528122. [PMID: 40354540 DOI: 10.1073/pnas.2422528122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/03/2025] [Indexed: 05/14/2025] Open
Abstract
B cells discriminate antigens in immune synapses by capturing them from antigen-presenting cells (APCs). This discrimination relies on the application of mechanical force to B cell receptor (BCR)-antigen bonds, allowing B cells to selectively disrupt low-affinity interactions while internalizing high-affinity antigens. Using DNA-based tension sensors combined with high-resolution imaging, we demonstrate that the magnitude, location, and timing of forces within the immune synapse are influenced by the fluidity of the antigen-presenting membrane. Transitioning antigens from a high-mobility to a low-mobility substrate significantly increases the probability and speed of antigen extraction while also improving affinity discrimination. This shift in antigen mobility also reshapes the synapse architecture, altering spatial patterns of antigen uptake. Despite these adaptations, B cells maintain consistent levels of proximal and downstream signaling pathway activation regardless of antigen mobility. They also efficiently transport internalized antigens to major histocompatibility complex class II (MHCII)-positive compartments for processing. These results demonstrate that B cells mount effective responses to antigens across diverse physical environments, though the characteristics of that environment may influence the speed and accuracy of B cell adaptation during an immune response.
Collapse
Affiliation(s)
- Hannah C W McArthur
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Anna T Bajur
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Maro Iliopoulou
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Katelyn M Spillane
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
2
|
Delecluse S, Baccianti F, Zala M, Steffens A, Drenda C, Judt D, Holland-Letz T, Poirey R, Sujobert P, Delecluse HJ. Epstein-Barr virus induces aberrant B cell migration and diapedesis via FAK-dependent chemotaxis pathways. Nat Commun 2025; 16:4581. [PMID: 40389409 PMCID: PMC12089463 DOI: 10.1038/s41467-025-59813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 05/06/2025] [Indexed: 05/21/2025] Open
Abstract
Infection with the Epstein-Barr virus (EBV) is a major risk factor for the development of cancer and autoimmune disorders. The virus enters the body in the pharynx, but EBV causes disease in distant organs, including the gut and the brain. Here we show, using in vitro culture and mouse infection models, that EBV-infected B cells display features of homing cells. Infected B cells undergo migration following paracrine CCL4 release and CCR1 induction, while CCR1 deficiency inhibits migration and, unexpectedly, proliferation of infected B cells. Furthermore, migrating EBV-infected B cells undergo CCL4-dependent diapedesis, induce ICAM-1 on endothelial cells, and disrupt the integrity of endothelial barriers. Both migration and diapedesis are regulated by FAK, with FAK inhibition blocking growth and survival of EBV-transformed B cells, as well as their spreading to spleen and brain in an animal model in vivo. Moreover, IL-10 secreted by EBV-infected B cells attracts and facilitates diapedesis of EBV-negative CD52highCD11c+ B cells, which have reported autoimmune properties. Our results thus provide mechanistic insight on EBV-induced B cell dysregulation, and also hint curbing migration as a potential target for reducing the pathogenicity of EBV-infected B cells.
Collapse
Affiliation(s)
- Susanne Delecluse
- Unit D400, DKFZ, Heidelberg, Germany
- Inserm joint unit, Heidelberg, Germany
- Department Nephrology, University of Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | | | - Manon Zala
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Alina Steffens
- Unit D400, DKFZ, Heidelberg, Germany
- Inserm joint unit, Heidelberg, Germany
- University of Heidelberg, Heidelberg, Germany
| | | | - Daniel Judt
- Unit D400, DKFZ, Heidelberg, Germany
- Inserm joint unit, Heidelberg, Germany
| | | | - Remy Poirey
- Unit D400, DKFZ, Heidelberg, Germany
- Inserm joint unit, Heidelberg, Germany
| | - Pierre Sujobert
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | | |
Collapse
|
3
|
Qu Y, Wang D, Zhang Y, Shen F, Xia B, Xu Q, Wang Q, Kong H, Zhu Y, Wang L, Willner I, Yang X, Fan C, Sun L. DNA-Engineered Modular Nanovaccines Featuring Precise Topology for Enhanced Immunogenicity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500577. [PMID: 40371439 DOI: 10.1002/adma.202500577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Multivalent display of antigens can boost subunit vaccine immunogenicity. However, owing to the inherent difficulty in programmatically controlling the topology of multivalent antigens, its impact on antigen immunogenicity remains elusive. In this study, DNA-mediated modular precision assembly is employed to organize SARS-CoV-2 receptor-binding domains (RBDs) with different topological connections while preserving their epitopes. It is found that branching-connected RBDs induced significantly higher IgG titers than linear-connected RBDs at higher antigen valency (≥4). This increase in IgG response is associated with stronger B cell proliferation, likely due to enhanced antigen-receptor synergistic interactions leading to enhanced B cell receptor signaling. Branching-connected RBDs also provided superior humoral immunity in mice and stronger protection in SARS-CoV-2-infected hamsters compared to adjuvanted RBD. This work highlights the role of antigen topology in vaccine design and offers a universal modular platform for producing more effective subunit vaccines.
Collapse
Affiliation(s)
- Yanfei Qu
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Dawei Wang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yunlong Zhang
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Fengyun Shen
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Binghui Xia
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Qin Xu
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Qisheng Wang
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Huating Kong
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Ying Zhu
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Lihua Wang
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Itamar Willner
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Xiurong Yang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhang jiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhang jiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lele Sun
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
4
|
Foster WS, Marcial-Juárez E, Linterman MA. The cellular factors that impair the germinal center in advanced age. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:862-871. [PMID: 40073096 DOI: 10.1093/jimmun/vkae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/25/2024] [Indexed: 03/14/2025]
Abstract
Long-lasting immunological memory is a core feature of the adaptive immune system that allows an organism to have a potent recall response to foreign agents that have been previously encountered. Persistent humoral immunity is afforded by long-lived memory B cells and plasma cells, which can mature in germinal centers (GCs) in secondary lymphoid organs. The development of new GC-derived immunity diminishes with age, thereby impairing our immune system's response to both natural infections and vaccinations. This review will describe the current knowledge of how aging affects the cells and microenvironment of the GC. A greater understanding of how the GC changes with age, and how to circumvent these changes, will be critical for tailoring vaccines for older people. This area of research is critical given the twenty-first century will witness a doubling of the aging population and an increased frequency of pandemics.
Collapse
Affiliation(s)
- William S Foster
- Immunology Program, Babraham Institute, Cambridge, United Kingdom
| | | | | |
Collapse
|
5
|
Dhenni R, Hoppé AC, Reynaldi A, Kyaw W, Handoko NT, Grootveld AK, Keith YH, Bhattacharyya ND, Ahel HI, Telfser AJ, McCorkindale AN, Yazar S, Bui CHT, Smith JT, Khoo WH, Boyd M, Obeid S, Milner B, Starr M, Brilot F, Milogiannakis V, Akerman A, Aggarwal A, Davenport MP, Deenick EK, Chaffer CL, Croucher PI, Brink R, Goldstein LD, Cromer D, Turville SG, Kelleher AD, Venturi V, Munier CML, Phan TG. Macrophages direct location-dependent recall of B cell memory to vaccination. Cell 2025:S0092-8674(25)00407-6. [PMID: 40300604 DOI: 10.1016/j.cell.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 08/31/2024] [Accepted: 04/02/2025] [Indexed: 05/01/2025]
Abstract
Vaccines generate long-lived plasma cells and memory B cells (Bmems) that may re-enter secondary germinal centers (GCs) to further mutate their B cell receptor upon boosting and re-exposure to antigen. We show in mouse models that lymph nodes draining the site of primary vaccination harbor a subset of Bmems that reside in the subcapsular niche, generate larger recall responses, and are more likely to re-enter GCs compared with circulating Bmems in non-draining lymph nodes. This location-dependent recall of Bmems into the GC in the draining lymph node was dependent on CD169+ subcapsular sinus macrophages (SSMs) in the subcapsular niche. In human participants, boosting of the BNT162b2 vaccine in the same arm generated more rapid secretion of broadly neutralizing antibodies, GC participation, and clonal expansion of SARS-CoV-2-specific B cells than boosting of the opposite arm. These data reveal an unappreciated role for primed draining lymph node SSMs in Bmem cell fate determination.
Collapse
Affiliation(s)
- Rama Dhenni
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Alexandra Carey Hoppé
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Arnold Reynaldi
- Infection Analytics Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Wunna Kyaw
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Nathalie Tricia Handoko
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Abigail K Grootveld
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Yuki Honda Keith
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Nayan Deger Bhattacharyya
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Holly I Ahel
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Aiden Josiah Telfser
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Andrew N McCorkindale
- Data Science Platform, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Seyhan Yazar
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Christina H T Bui
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia; Cancer Plasticity and Dormancy Program, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - James T Smith
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia; Cancer Plasticity and Dormancy Program, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Weng Hua Khoo
- Cancer Plasticity and Dormancy Program, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Mollie Boyd
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Solange Obeid
- St. Vincent's Hospital Sydney, Sydney, NSW, Australia
| | - Brad Milner
- St. Vincent's Hospital Sydney, Sydney, NSW, Australia
| | - Mitchell Starr
- St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, School of Medical Sciences, Sydney, NSW, Australia; School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Vanessa Milogiannakis
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Anouschka Akerman
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Anupriya Aggarwal
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Miles P Davenport
- Infection Analytics Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Elissa K Deenick
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Christine L Chaffer
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia; Cancer Plasticity and Dormancy Program, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Peter I Croucher
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia; Cancer Plasticity and Dormancy Program, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Robert Brink
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; Immune Biotherapies Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Leonard D Goldstein
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia; Data Science Platform, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Deborah Cromer
- Infection Analytics Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Stuart G Turville
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Anthony D Kelleher
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia; St. Vincent's Hospital Sydney, Sydney, NSW, Australia.
| | - Vanessa Venturi
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia.
| | - C Mee Ling Munier
- Immunovirology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia.
| | - Tri Giang Phan
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Zhao Y, Tian M, Tong X, Yang X, Gan L, Yong T. Emerging strategies in lymph node-targeted nano-delivery systems for tumor immunotherapy. Essays Biochem 2025; 69:EBC20253008. [PMID: 40159756 DOI: 10.1042/ebc20253008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
The emergence of immunotherapy has led to the clinical approval of several related drugs. However, their efficacy against solid tumors remains limited. As the hub of immune activation, lymph nodes (LNs) play a critical role in tumor immunotherapy by initiating and amplifying immune responses. Nevertheless, the intricate physiological structure and barriers within LNs, combined with the immunosuppressive microenvironment induced by tumor cells, significantly impede the therapeutic efficacy of immunotherapy. Engineered nanoparticles (NPs) have shown great potential in overcoming these challenges by facilitating targeted drug transport to LNs and directly or indirectly activating T cells. This review systematically examines the structural features of LNs, key factors influencing the targeting efficiency of NPs, and current strategies for remodeling the immunosuppressive microenvironment of LNs. Additionally, it discusses future opportunities for optimizing NPs to enhance tumor immunotherapy, addressing challenges in clinical translation and safety evaluation.
Collapse
Affiliation(s)
- Yaoli Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muzi Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Tong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
7
|
Bouma RG, Wang AZ, den Haan JMM. Exploring CD169 + Macrophages as Key Targets for Vaccination and Therapeutic Interventions. Vaccines (Basel) 2025; 13:330. [PMID: 40266235 PMCID: PMC11946325 DOI: 10.3390/vaccines13030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/24/2025] Open
Abstract
CD169 is a sialic acid-binding immunoglobulin-like lectin (Siglec-1, sialoadhesin) that is expressed by subsets of tissue-resident macrophages and circulating monocytes. This receptor interacts with α2,3-linked Neu5Ac on glycoproteins as well as glycolipids present on the surface of immune cells and pathogens. CD169-expressing macrophages exert tissue-specific homeostatic functions, but they also have opposing effects on the immune response. CD169+ macrophages act as a pathogen filter, protect against infectious diseases, and enhance adaptive immunity, but at the same time pathogens also exploit them to enable further dissemination. In cancer, CD169+ macrophages in tumor-draining lymph nodes are correlated with better clinical outcomes. In inflammatory diseases, CD169 expression is upregulated on monocytes and on monocyte-derived macrophages and this correlates with the disease state. Given their role in promoting adaptive immunity, CD169+ macrophages are currently investigated as targets for vaccination strategies against cancer. In this review, we describe the studies investigating the importance of CD169 and CD169+ macrophages in several disease settings and the vaccination strategies currently under investigation.
Collapse
Affiliation(s)
- Rianne G. Bouma
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Aru Z. Wang
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Joke M. M. den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
8
|
Lee YZ, Zhang YN, Newby ML, Ward G, Gomes KB, Auclair S, DesRoberts C, Allen JD, Ward AB, Stanfield RL, He L, Crispin M, Wilson IA, Zhu J. Rational design of next-generation filovirus vaccines with glycoprotein stabilization, nanoparticle display, and glycan modification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.02.641072. [PMID: 40060701 PMCID: PMC11888476 DOI: 10.1101/2025.03.02.641072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Filoviruses pose a significant threat to human health with frequent outbreaks and high mortality. Although two vector-based vaccines are available for Ebola virus, a broadly protective filovirus vaccine remains elusive. In this study, we evaluate a general strategy for stabilizing glycoprotein (GP) structures of Ebola, Sudan, and Bundibugyo ebolaviruses and Ravn marburgvirus. A 3.2 Å-resolution crystal structure provides atomic details for the redesigned Ebola virus GP, and cryo-electron microscopy reveals how a pan-ebolavirus neutralizing antibody targets a conserved site on the Sudan virus GP (3.13 Å-resolution), in addition to a low-resolution model of antibody-bound Ravn virus GP. A self-assembling protein nanoparticle (SApNP), I3-01v9, is redesigned at the N-terminus to allow the optimal surface display of filovirus GP trimers. Following detailed in vitro characterization, the lymph node dynamics of Sudan virus GP and GP-presenting SApNPs are investigated in a mouse model. Compared with soluble GP trimer, SApNPs show ~112 times longer retention in lymph node follicles, up-to-28 times greater presentation on follicular dendritic cell dendrites, and up-to-3 times stronger germinal center reactions. Functional antibody responses induced by filovirus GP trimers and SApNPs bearing wildtype and modified glycans are assessed in mice. Our study provides a foundation for next-generation filovirus vaccine development.
Collapse
Affiliation(s)
- Yi-Zong Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yi-Nan Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maddy L. Newby
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Garrett Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Sarah Auclair
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Connor DesRoberts
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joel D. Allen
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robyn L. Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Uvax Bio, LLC, Newark, DE 19702, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
9
|
Geib K, Scharf S, Schäfer H, Hartmann S, Hansmann ML, Wurzel P. 3D examination reveals increased destruction of alpha-actin-positive structures in advanced follicular lymphoma stages. Acta Histochem 2025; 127:152232. [PMID: 39883976 DOI: 10.1016/j.acthis.2025.152232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/07/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Follicular lymphoma (FL) represents the most prevalent subtype of non-Hodgkin's-lymphoma in Western Europe and the United States. While the examination of two-dimensional histological slides remains the gold standard method for diagnosing FL stages, three-dimensional analysis provides additional insights, particularly regarding cellular morphology, spatial relationships and network connectivity. This investigation assessed the tumor-related morphological destruction of fibroreticular cell (FRC) networks bordering germinal centres in FL. A confocal laser scanning technology and a digital three-dimensional analysis system were used. Quantitive measurements included the length of fibroblastic reticular walls surrounding the germinal centres as well as the size of the gaps and holes within these structures. Three-dimensional analysis revealed progressive structural degradation and a reduction in mechanical barrier integrity, with differences observed between low- and high-grade FL. High-grade FL exhibited greater network destruction. Fibroblastic reticular cell networks' wall length demonstrated a consistent decline across all grades. The lengths of these walls and wall-like structures in FL grades 1 or 2 were similar to reactive germinal centres seen in lymphadenitis, as well as the gap size. The gaps are thought to be responsible for B- and T-cell exchange. This work demonstrated the massive destruction of neoplastic germinal centres in grades 3a and 3b FL. In grade 3b, this was accompanied by a likely dysfunctional mechanical border of the germinal centre and the near-complete loss of structural integrity. Under physiological conditions, gaps and holes regulate lymphoid traffic. Under reactive conditions, only a few specific T-cells can access the germinal centre. Under neoplastic conditions, the diameter of these gaps increases as grades increase, culminating in complete structural disruption in grade 3b. The mechanical destruction was found to begin at one pole of the germinal centre, as evidenced by localized decay and fragmentation of FRC walls on one side. Fibroblastic reticular cell networks are critical for maintaining chemokine gradients to ensure compartmentalisation of lymphoid structures. Their ongoing degradation in FL of the networks leads to a morphological loss of function. This is due to the blurring of various lymph node zones.
Collapse
Affiliation(s)
- Katharina Geib
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany.
| | - Sonja Scharf
- Department of Molecular Bioinformatics, Institute of Computer Science, Johann Wolfgang, Goethe-University, Frankfurt/Main, Hessen, Germany; Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| | - Hendrik Schäfer
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt/Main, Hessen, Germany; Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| | - Sylvia Hartmann
- Hospital of the Goethe University Frankfurt, Department of Pathology, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| | - Martin-Leo Hansmann
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt/Main, Hessen, Germany; Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| | - Patrick Wurzel
- Department of Molecular Bioinformatics, Institute of Computer Science, Johann Wolfgang, Goethe-University, Frankfurt/Main, Hessen, Germany; Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| |
Collapse
|
10
|
Palacios PA, Santibañez Á, Aguirre-Muñoz F, Gutiérrez-Vera C, Niño de Zepeda-Carrizo V, Góngora-Pimentel M, Müller M, Cáceres M, Kalergis AM, Carreño LJ. Can invariant Natural Killer T cells drive B cell fate? a look at the humoral response. Front Immunol 2025; 16:1505883. [PMID: 40040714 PMCID: PMC11876049 DOI: 10.3389/fimmu.2025.1505883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/21/2025] [Indexed: 03/06/2025] Open
Abstract
Invariant Natural Killer T (NKT) cells represent a unique subset of innate-like T cells that express both NK cell and T cell receptors. These cells are rapidly activated by glycolipid antigens presented via CD1d molecules on antigen-presenting cells (APCs), including B cells, dendritic cells (DCs), and macrophages, or through cytokine-dependent mechanisms. Their ability to produce a wide range of cytokines and express costimulatory molecules underscores their critical role in bridging innate and adaptive immunity. B cells, traditionally recognized for their role in antibody production, also act as potent APCs due to their high expression of CD1d, enabling direct interactions with iNKT cells. This interaction has significant implications for humoral immunity, influencing B cell activation, class-switch recombination (CSR), germinal center formation, and memory B cell differentiation, thus expanding the conventional paradigm of T cell-B cell interactions. While the influence of iNKT cells on B cell biology and humoral responses is well-supported, many aspects of their interaction remain unresolved. Key questions include the roles of different iNKT cell subsets, the diversity of APCs, the spatiotemporal dynamics of these interactions, especially during early activation, and the potential for distinct glycolipid ligands to modulate immune outcomes. Understanding these factors could provide valuable insights into how iNKT cells regulate B cell-mediated immunity and offer opportunities to harness these interactions in immunotherapeutic applications, such as vaccine development. In this review, we examine these unresolved aspects and propose a novel perspective on the regulatory potential of iNKT cells in humoral immunity, emphasizing their promise as a target for innovative vaccine strategies.
Collapse
Affiliation(s)
- Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Álvaro Santibañez
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fernanda Aguirre-Muñoz
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Valentina Niño de Zepeda-Carrizo
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Martín Góngora-Pimentel
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mónica Cáceres
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Brisse ME, Hickman HD. Viral Infection and Dissemination Through the Lymphatic System. Microorganisms 2025; 13:443. [PMID: 40005808 PMCID: PMC11858409 DOI: 10.3390/microorganisms13020443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Many viruses induce viremia (virus in the blood) and disseminate throughout the body via the bloodstream from the initial infection site. However, viruses must often pass through the lymphatic system to reach the blood. The lymphatic system comprises a network of vessels distinct from blood vessels, along with interconnected lymph nodes (LNs). The complex network has become increasingly appreciated as a crucial host factor that contributes to both the spread and control of viral infections. Viruses can enter the lymphatics as free virions or along with migratory cells. Once virions arrive in the LN, sinus-resident macrophages remove infectious virus from the lymph. Depending on the virus, macrophages can eliminate infection or propagate the virus. A virus released from an LN is eventually deposited into the blood. This unique pathway highlights LNs as targets for viral infection control and for modulation of antiviral response development. Here, we review the lymphatic system and viruses that disseminate through this network. We discuss infection of the LN, the generation of adaptive antiviral immunity, and current knowledge of protection within the infected node. We conclude by sharing insights from ongoing efforts to optimize lymphatic targeting by vaccines and pharmaceuticals. Understanding the lymphatic system's role during viral infection enhances our knowledge of antiviral immunity and virus-host interactions and reveals potential targets for next-generation therapies.
Collapse
Affiliation(s)
| | - Heather D. Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA;
| |
Collapse
|
12
|
Song S, Wang C, Chen Y, Zhou X, Han Y, Zhang H. Dynamic roles of tumor-infiltrating B lymphocytes in cancer immunotherapy. Cancer Immunol Immunother 2025; 74:92. [PMID: 39891668 PMCID: PMC11787113 DOI: 10.1007/s00262-024-03936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/27/2024] [Indexed: 02/03/2025]
Abstract
The amazing diversity of B cells within the tumor microenvironment is the basis for the diverse development of B cell-based immunotherapies. Here, we focus on elucidating the mechanisms of tumor intervention mediated by four tumor-infiltrating B lymphocytes. Naive B cells present the initial antigen, germinal center B cell subsets enhance antibody affinity, and immunoglobulin subtypes exert multiple immune effects, while regulatory B cells establish immune tolerance. Together they reflect the complexity of the changing dynamics of cancer immunity. Additionally, we have investigated the dynamic effects of tumor-infiltrating B lymphocytes in immunotherapy and their relationship to prognosis, providing new insights into potential treatment strategies for patients.
Collapse
Affiliation(s)
- Shishengnan Song
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Chong Wang
- Department of Thoracic Surgery, Beijing Chest Hospital Affiliated to Capital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute), 9 Beiguan Street, Tongzhou, 101149, Beijing, China
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, NT, China
| | - Xiaorong Zhou
- Department of Immunology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| | - Yi Han
- Department of Thoracic Surgery, Beijing Chest Hospital Affiliated to Capital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute), 9 Beiguan Street, Tongzhou, 101149, Beijing, China.
| | - Haijian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
13
|
Farooq MA, Johnston APR, Trevaskis NL. Impact of nanoparticle properties on immune cell interactions in the lymph node. Acta Biomater 2025; 193:65-82. [PMID: 39701340 DOI: 10.1016/j.actbio.2024.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/21/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
The lymphatic system plays an important role in health and many diseases, such as cancer, autoimmune, cardiovascular, metabolic, hepatic, viral, and other infectious diseases. The lymphatic system is, therefore, an important treatment target site for a range of diseases. Lymph nodes (LNs), rich in T cells, B cells, dendritic cells, and macrophages, are also primary sites of action for vaccines and immunotherapies. Promoting the delivery of therapeutics and vaccines to LNs can, therefore, enhance treatment efficacy and facilitate avoidance of off-target side effects by enabling a reduction in therapeutic dose. Several nanoparticle (NP) based delivery systems, such as polymeric NPs, lipid NPs, liposomes, micelles, and dendrimers, have been reported to enhance the delivery of therapeutics and/or vaccines to LNs. Specific uptake into the lymph following injection into tissues is highly dependent on particle properties, particularly particle size, as small molecules are more likely to be taken up by blood capillaries due to higher blood flow rates, whereas larger molecules and NPs can be specifically transported via the lymphatic vessels to LNs as the initial lymphatic capillaries are more permeable than blood capillaries. Once NPs enter LNs, particle properties also have an important influence on their disposition within the node and association with immune cells, which has significant implications for the design of vaccines and immunotherapies. This review article focuses on the impact of NP properties, such as size, surface charge and modification, and route of administration, on lymphatic uptake, retention, and interactions with immune cells in LNs. We suggest that optimizing all these factors can enhance the efficacy of vaccines or therapeutics with targets in the lymphatics and also be helpful for the rational design of vaccines. STATEMENT OF SIGNIFICANCE: The lymphatic system plays an essential role in health and is an important treatment target site for a range of diseases. Promoting the delivery of immunotherapies and vaccines to immune cells in lymph nodes can enhance efficacy and facilitate avoidance of off-target side effects by enabling a reduction in therapeutic dose. One of the major approaches used to deliver therapeutics and vaccines to lymph nodes is via injection in nanoparticle delivery systems. This review aims to provide an overview of the impact of nanoparticle properties, such as size, surface charge, modification, and route of administration, on lymphatic uptake, lymph node retention, and interactions with immune cells in lymph nodes. This will inform the design of future improved nanoparticle systems for vaccines and immunotherapies.
Collapse
Affiliation(s)
- Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
14
|
Girelli A, Giantesio G, Musesti A, Penta R. Multiscale computational analysis of the steady fluid flow through a lymph node. Biomech Model Mechanobiol 2024; 23:2005-2023. [PMID: 39320689 PMCID: PMC11554713 DOI: 10.1007/s10237-024-01879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/12/2024] [Indexed: 09/26/2024]
Abstract
Lymph Nodes (LNs) are crucial to the immune and lymphatic systems, filtering harmful substances and regulating lymph transport. LNs consist of a lymphoid compartment (LC) that forms a porous bulk region, and a subcapsular sinus (SCS), which is a free-fluid region. Mathematical and mechanical challenges arise in understanding lymph flow dynamics. The highly vascularized lymph node connects the lymphatic and blood systems, emphasizing its essential role in maintaining the fluid balance in the body. In this work, we describe a mathematical model in a steady setting to describe the lymph transport in a lymph node. We couple the fluid flow in the SCS governed by an incompressible Stokes equation with the fluid flow in LC, described by a model obtained by means of asymptotic homogenisation technique, taking into account the multiscale nature of the node and the fluid exchange with the blood vessels inside it. We solve this model using numerical simulations and we analyze the lymph transport inside the node to elucidate its regulatory mechanisms and significance. Our results highlight the crucial role of the microstructure of the lymph node in regularising its fluid balance. These results can pave the way to a better understanding of the mechanisms underlying the lymph node's multiscale functionalities which can be significantly affected by specific physiological and pathological conditions, such as those characterising malignant tissues.
Collapse
Affiliation(s)
- Alberto Girelli
- Dipartimento di Matematica e Fisica "N. Tartaglia", Università Cattolica del Sacro Cuore, Brescia, Italy
| | - Giulia Giantesio
- Dipartimento di Matematica e Fisica "N. Tartaglia", Università Cattolica del Sacro Cuore, Brescia, Italy
- Mathematics for Technology, Medicine and Biosciences, Università degli Studi di Ferrara, Ferrara, Italy
| | - Alessandro Musesti
- Dipartimento di Matematica e Fisica "N. Tartaglia", Università Cattolica del Sacro Cuore, Brescia, Italy
| | - Raimondo Penta
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK.
| |
Collapse
|
15
|
Conejo-Garcia JR, Lopez-Bailon LU, Anadon CM. Unraveling spontaneous humoral immune responses against human cancer: a road to novel immunotherapies. J Leukoc Biol 2024; 116:919-926. [PMID: 39190797 DOI: 10.1093/jleuko/qiae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/01/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024] Open
Abstract
In immuno-oncology, the focus has traditionally been on αβ T cells, and immune checkpoint inhibitors that primarily target PD-1 or CTLA4 in these lymphocytes have revolutionized the management of multiple human malignancies. However, recent research highlights the crucial role of B cells and the antibodies they produce in antagonizing malignant progression, offering new avenues for immunotherapy. Our group has demonstrated that dimeric Immunoglobulin A can penetrate tumor cells, neutralize oncogenic drivers in endosomes, and expel them from the cytosol. This mechanistic insight suggests that engineered antibodies targeting this pathway may effectively reach previously inaccessible targets. Investigating antibody production within intratumoral germinal centers and understanding the impact of different immunoglobulins on malignant progression could furnish new tools for the therapeutic arsenal, including the development of tumor-penetrating antibodies. This review aims to elucidate the nature of humoral adaptive immune responses in human cancer and explore how they could herald a new era of immunotherapeutic modalities. By expanding the scope of antitumor immunotherapies, these approaches have the potential to benefit a broader range of cancer patients, particularly through the utilization of tumor cell-penetrating antibodies.
Collapse
Affiliation(s)
- Jose R Conejo-Garcia
- Department of Integrative Immunobiology, Duke School of Medicine, Durham, NC 27710, United States
- Duke Cancer Institute, Duke School of Medicine, Durham, NC 27710, United States
| | - Luis U Lopez-Bailon
- Department of Integrative Immunobiology, Duke School of Medicine, Durham, NC 27710, United States
- Duke Cancer Institute, Duke School of Medicine, Durham, NC 27710, United States
| | - Carmen M Anadon
- Department of Integrative Immunobiology, Duke School of Medicine, Durham, NC 27710, United States
- Duke Cancer Institute, Duke School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
16
|
Teillaud JL, Houel A, Panouillot M, Riffard C, Dieu-Nosjean MC. Tertiary lymphoid structures in anticancer immunity. Nat Rev Cancer 2024; 24:629-646. [PMID: 39117919 DOI: 10.1038/s41568-024-00728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Tertiary lymphoid structures (TLS) are transient ectopic lymphoid aggregates where adaptive antitumour cellular and humoral responses can be elaborated. Initially described in non-small cell lung cancer as functional immune lymphoid structures associated with better clinical outcome, TLS have also been found in many other carcinomas, as well as melanomas and sarcomas, and associated with improved response to immunotherapy. The manipulation of TLS as a therapeutic strategy is now coming of age owing to the likely role of TLS in the improved survival of patients with cancer receiving immune checkpoint inhibitor treatment. TLS have also garnered considerable interest as a predictive biomarker of the response to antitumour therapies, including immune checkpoint blockade and, possibly, chemotherapy. However, several important questions still remain regarding the definition of TLS in terms of both their cellular composition and functions. Here, we summarize the current views on the composition of TLS at different stages of their development. We also discuss the role of B cells and T cells associated with TLS and their dialogue in mounting antibody and cellular antitumour responses, as well as some of the various mechanisms that negatively regulate antitumour activity of TLS. The prognostic value of TLS to the clinical outcome of patients with cancer and the relationship between TLS and the response to therapy are then addressed. Finally, we present some preclinical evidence that favours the idea that manipulating the formation and function of TLS could lead to a potent next-generation cancer immunotherapy.
Collapse
Affiliation(s)
- Jean-Luc Teillaud
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
| | - Ana Houel
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
- Transgene, Illkirch-Graffenstaden, France
| | - Marylou Panouillot
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
- Sanofi, Vitry-sur-Seine, France
| | - Clémence Riffard
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
| | - Marie-Caroline Dieu-Nosjean
- Sorbonne University UMRS1135, Paris, France.
- Inserm U1135, Paris, France.
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France.
| |
Collapse
|
17
|
Melo-Silva CR, Sigal LJ. Innate and adaptive immune responses that control lymph-borne viruses in the draining lymph node. Cell Mol Immunol 2024; 21:999-1007. [PMID: 38918577 PMCID: PMC11364670 DOI: 10.1038/s41423-024-01188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
The interstitial fluids in tissues are constantly drained into the lymph nodes (LNs) as lymph through afferent lymphatic vessels and from LNs into the blood through efferent lymphatics. LNs are strategically positioned and have the appropriate cellular composition to serve as sites of adaptive immune initiation against invading pathogens. However, for lymph-borne viruses, which disseminate from the entry site to other tissues through the lymphatic system, immune cells in the draining LN (dLN) also play critical roles in curbing systemic viral dissemination during primary and secondary infections. Lymph-borne viruses in tissues can be transported to dLNs as free virions in the lymph or within infected cells. Regardless of the entry mechanism, infected myeloid antigen-presenting cells, including various subtypes of dendritic cells, inflammatory monocytes, and macrophages, play a critical role in initiating the innate immune response within the dLN. This innate immune response involves cellular crosstalk between infected and bystander innate immune cells that ultimately produce type I interferons (IFN-Is) and other cytokines and recruit inflammatory monocytes and natural killer (NK) cells. IFN-I and NK cell cytotoxicity can restrict systemic viral spread during primary infections and prevent serious disease. Additionally, the memory CD8+ T-cells that reside or rapidly migrate to the dLN can contribute to disease prevention during secondary viral infections. This review explores the intricate innate immune responses orchestrated within dLNs that contain primary viral infections and the role of memory CD8+ T-cells following secondary infection or CD8+ T-cell vaccination.
Collapse
Affiliation(s)
- Carolina R Melo-Silva
- Department of Microbiology and Immunology, Thomas Jefferson University, Bluemle Life Sciences Building Room 709, 233 South 10th Street, Philadelphia, PA, 19107, USA.
| | - Luis J Sigal
- Department of Microbiology and Immunology, Thomas Jefferson University, Bluemle Life Sciences Building Room 709, 233 South 10th Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
18
|
Purić E, Nilsson UJ, Anderluh M. Galectin-8 inhibition and functions in immune response and tumor biology. Med Res Rev 2024; 44:2236-2265. [PMID: 38613488 DOI: 10.1002/med.22041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 03/03/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
Galectins are among organisms' most abundantly expressed lectins (carbohydrate-binding proteins) that specifically bind β-galactosides. They act not only outside the cell, where they bind to extracellular matrix glycans, but also inside the cell, where they have a significant impact on signaling pathways. Galectin-8 is a galectin family protein encoded by the LGALS8 gene. Its role is evident in both T- and B-cell immunity and in the innate immune response, where it acts directly on dendritic cells and induces some pro-inflammatory cytokines. Galectin-8 also plays an important role in the defense against bacterial and viral infections. It is known to promote antibacterial autophagy by recognizing and binding glycans present on the vacuolar membrane, thus acting as a danger receptor. The most important role of galectin-8 is the regulation of cancer growth, metastasis, tumor progression, and tumor cell survival. Importantly, the expression of galectins is typically higher in tumor tissues than in noncancerous tissues. In this review article, we focus on galectin-8 and its function in immune response, microbial infections, and cancer. Given all of these functions of galectin-8, we emphasize the importance of developing new and selective galectin-8 inhibitors and report the current status of their development.
Collapse
Affiliation(s)
- Edvin Purić
- Department of Pharmaceutical Chemistry, University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Ulf J Nilsson
- Department of Chemistry, Lund University, Lund, Sweden
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| |
Collapse
|
19
|
Xu C, Nedergaard M, Fowell DJ, Friedl P, Ji N. Multiphoton fluorescence microscopy for in vivo imaging. Cell 2024; 187:4458-4487. [PMID: 39178829 PMCID: PMC11373887 DOI: 10.1016/j.cell.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/26/2024]
Abstract
Multiphoton fluorescence microscopy (MPFM) has been a game-changer for optical imaging, particularly for studying biological tissues deep within living organisms. MPFM overcomes the strong scattering of light in heterogeneous tissue by utilizing nonlinear excitation that confines fluorescence emission mostly to the microscope focal volume. This enables high-resolution imaging deep within intact tissue and has opened new avenues for structural and functional studies. MPFM has found widespread applications and has led to numerous scientific discoveries and insights into complex biological processes. Today, MPFM is an indispensable tool in many research communities. Its versatility and effectiveness make it a go-to technique for researchers investigating biological phenomena at the cellular and subcellular levels in their native environments. In this Review, the principles, implementations, capabilities, and limitations of MPFM are presented. Three application areas of MPFM, neuroscience, cancer biology, and immunology, are reviewed in detail and serve as examples for applying MPFM to biological research.
Collapse
Affiliation(s)
- Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Alle 3B, 2200 Copenhagen, Denmark; University of Rochester Medical School, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Deborah J Fowell
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Peter Friedl
- Department of Medical BioSciences, Radboud University Medical Centre, Geert Grooteplein 26-28, Nijmegen HB 6500, the Netherlands
| | - Na Ji
- Department of Neuroscience, Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
20
|
Rodrigues KA, Zhang YJ, Aung A, Morgan DM, Maiorino L, Yousefpour P, Gibson G, Ozorowski G, Gregory JR, Amlashi P, Buckley M, Ward AB, Schief WR, Love JC, Irvine DJ. Vaccines combining slow delivery and follicle targeting of antigens increase germinal center B cell clonal diversity and clonal expansion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608655. [PMID: 39229011 PMCID: PMC11370361 DOI: 10.1101/2024.08.19.608655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Vaccines incorporating slow delivery, multivalent antigen display, or immunomodulation through adjuvants have an important role to play in shaping the humoral immune response. Here we analyzed mechanisms of action of a clinically relevant combination adjuvant strategy, where phosphoserine (pSer)-tagged immunogens bound to aluminum hydroxide (alum) adjuvant (promoting prolonged antigen delivery to draining lymph nodes) are combined with a potent saponin nanoparticle adjuvant termed SMNP (which alters lymph flow and antigen entry into lymph nodes). When employed with a stabilized HIV Env trimer antigen in mice, this combined adjuvant approach promoted substantial enhancements in germinal center (GC) and antibody responses relative to either adjuvant alone. Using scRNA-seq and scBCR-seq, we found that the alum-pSer/SMNP combination both increased the diversity of GC B cell clones and increased GC B cell clonal expansion, coincident with increases in the expression of Myc and the proportion of S-phase GC B cells. To gain insight into the source of these changes in the GC response, we analyzed antigen biodistribution and structural integrity in draining lymph nodes and found that the combination adjuvant approach, but not alum-pSer delivery or SMNP alone, promoted accumulation of highly intact antigen on follicular dendritic cells, reflecting an integration of the slow antigen delivery and altered lymph node uptake effects of these two adjuvants. These results demonstrate how adjuvants with complementary mechanisms of action impacting vaccine biodistribution and kinetics can synergize to enhance humoral immunity.
Collapse
Affiliation(s)
- Kristen A. Rodrigues
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Harvard-MIT Health Sciences and Technology Program, Institute for Medical Engineering and Science; Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
| | - Yiming J. Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
| | - Aereas Aung
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
| | - Duncan M. Morgan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Department of Chemical Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
| | - Laura Maiorino
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
| | - Parisa Yousefpour
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
| | - Grace Gibson
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037 USA
| | - Gabriel Ozorowski
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037 USA
| | - Justin R. Gregory
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
| | - Parastoo Amlashi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
| | - Maureen Buckley
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
| | - Andrew B. Ward
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037 USA
| | - William R. Schief
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Department of Chemical Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Howard Hughes Medical Institute; Chevy Chase, MD 20815 USA
| |
Collapse
|
21
|
Cinti I, Vezyrgianni K, Denton AE. Unravelling the contribution of lymph node fibroblasts to vaccine responses. Adv Immunol 2024; 164:1-37. [PMID: 39523027 DOI: 10.1016/bs.ai.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Vaccination is one of the most effective medical interventions, saving millions of lives and reducing the morbidity of infections across the lifespan, from infancy to older age. The generation of plasma cells and memory B cells that produce high affinity class switched antibodies is central to this protection, and these cells are the ultimate output of the germinal centre response. Optimal germinal centre responses require different immune cells to interact with one another in the right place and at the right time and this delicate cellular ballet is coordinated by a network of interconnected stromal cells. In this review we will discuss the various types of lymphoid stromal cells and how they coordinate immune cell homeostasis, the induction and maintenance of the germinal centre response, and how this is disorganised in older bodies.
Collapse
Affiliation(s)
- Isabella Cinti
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Kassandra Vezyrgianni
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Alice E Denton
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom.
| |
Collapse
|
22
|
Iliopoulou M, Bajur AT, McArthur HCW, Gabai M, Coyle C, Ajao F, Köchl R, Cope AP, Spillane KM. Extracellular matrix rigidity modulates physical properties of subcapsular sinus macrophage-B cell immune synapses. Biophys J 2024; 123:2282-2300. [PMID: 37840242 PMCID: PMC11331050 DOI: 10.1016/j.bpj.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/17/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023] Open
Abstract
Subcapsular sinus macrophages (SSMs) play a key role in immune defense by forming immunological barriers that control the transport of antigens from lymph into lymph node follicles. SSMs participate in antibody responses by presenting antigens directly to naive B cells and by supplying antigens to follicular dendritic cells to propagate germinal center reactions. Despite the prominent roles that SSMs play during immune responses, little is known about their cell biology because they are technically challenging to isolate and study in vitro. Here, we used multicolor fluorescence microscopy to identify lymph node-derived SSMs in culture. We focused on the role of SSMs as antigen-presenting cells, and found that their actin cytoskeleton regulates the spatial organization and mobility of multivalent antigens (immune complexes [ICs]) displayed on the cell surface. Moreover, we determined that SSMs are mechanosensitive cells that respond to changes in extracellular matrix rigidity by altering the architecture of the actin cytoskeleton, leading to changes in cell morphology, membrane topography, and IC mobility. Changes to extracellular matrix rigidity also modulate actin remodeling by both SSMs and B cells when they form an immune synapse. This alters synapse duration but not IC internalization nor NF-κB activation in the B cell. Taken together, our data reveal that the mechanical microenvironment may influence B cell responses by modulating physical characteristics of antigen presentation by SSMs.
Collapse
Affiliation(s)
- Maro Iliopoulou
- Department of Physics, King's College London, London, United Kingdom
| | - Anna T Bajur
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell & Molecular Biophysics, King's College London, London, United Kingdom
| | | | - Michael Gabai
- Department of Physics, King's College London, London, United Kingdom
| | - Carl Coyle
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom
| | - Favour Ajao
- Department of Physics, King's College London, London, United Kingdom
| | - Robert Köchl
- Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Andrew P Cope
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom
| | - Katelyn M Spillane
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell & Molecular Biophysics, King's College London, London, United Kingdom.
| |
Collapse
|
23
|
Nambiar D, Le QT, Pucci F. A case for the study of native extracellular vesicles. Front Oncol 2024; 14:1430971. [PMID: 39091922 PMCID: PMC11292793 DOI: 10.3389/fonc.2024.1430971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 08/04/2024] Open
Abstract
Three main areas of research revolve around extracellular vesicles (EVs): their use as early detection diagnostics for cancer prevention, engineering of EVs or other enveloped viral-like particles for therapeutic purposes and to understand how EVs impact biological processes. When investigating the biology of EVs, it is important to consider strategies able to track and alter EVs directly in vivo, as they are released by donor cells. This can be achieved by suitable engineering of EV donor cells, either before implantation or directly in vivo. Here, we make a case for the study of native EVs, that is, EVs released by cells living within a tissue. Novel genetic approaches to detect intercellular communications mediated by native EVs and profile recipient cells are discussed. The use of Rab35 dominant negative mutant is proposed for functional in vivo studies on the roles of native EVs. Ultimately, investigations on native EVs will tremendously advance our understanding of EV biology and open novel opportunities for therapy and prevention.
Collapse
Affiliation(s)
- Dhanya Nambiar
- Department of Radiation Oncology, Stanford University, Stanford, CA, United States
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University, Stanford, CA, United States
| | - Ferdinando Pucci
- Otolaryngology Department, Head and Neck Surgery, Oregon Health & Science University, Portland, OR, United States
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
24
|
Du Q, Dickinson A, Nakuleswaran P, Maghami S, Alagoda S, Hook AL, Ghaemmaghami AM. Targeting Macrophage Polarization for Reinstating Homeostasis following Tissue Damage. Int J Mol Sci 2024; 25:7278. [PMID: 39000385 PMCID: PMC11242417 DOI: 10.3390/ijms25137278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Tissue regeneration and remodeling involve many complex stages. Macrophages are critical in maintaining micro-environmental homeostasis by regulating inflammation and orchestrating wound healing. They display high plasticity in response to various stimuli, showing a spectrum of functional phenotypes that vary from M1 (pro-inflammatory) to M2 (anti-inflammatory) macrophages. While transient inflammation is an essential trigger for tissue healing following an injury, sustained inflammation (e.g., in foreign body response to implants, diabetes or inflammatory diseases) can hinder tissue healing and cause tissue damage. Modulating macrophage polarization has emerged as an effective strategy for enhancing immune-mediated tissue regeneration and promoting better integration of implantable materials in the host. This article provides an overview of macrophages' functional properties followed by discussing different strategies for modulating macrophage polarization. Advances in the use of synthetic and natural biomaterials to fabricate immune-modulatory materials are highlighted. This reveals that the development and clinical application of more effective immunomodulatory systems targeting macrophage polarization under pathological conditions will be driven by a detailed understanding of the factors that regulate macrophage polarization and biological function in order to optimize existing methods and generate novel strategies to control cell phenotype.
Collapse
Affiliation(s)
- Qiran Du
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Anna Dickinson
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Pruthvi Nakuleswaran
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK;
| | - Savindu Alagoda
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Andrew L. Hook
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Amir M. Ghaemmaghami
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
25
|
Fooksman DR, Jing Z, Park R. New insights into the ontogeny, diversity, maturation and survival of long-lived plasma cells. Nat Rev Immunol 2024; 24:461-470. [PMID: 38332373 DOI: 10.1038/s41577-024-00991-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
Plasma cells are unique immune effectors, capable of producing large amounts of high-affinity antibodies that protect against pathogenic infections. Although most plasma cells have short lifespans, certain conditions or vaccinations can give rise to long-lived plasma cells (LLPCs) that provide individuals with lifelong protection against pathogen exposure. The nature of these LLPCs is poorly understood; however, recent studies have shed new light on the ontogeny, diversity, maturation and survival of these unique cells. Whereas LLPCs had been thought to arise preferentially from germinal centres, novel genetic tools have revealed that they can originate from various stages throughout the humoral response. Furthermore, new single-cell analyses have shown that mouse and human plasma cells are heterogeneous and may undergo further maturation in situ in the bone marrow niche. Finally, plasma cells were previously considered to be sessile cells maintained in fixed survival niches, but new data show that plasma cell subsets can differentially migrate and organize into clusters that may be associated with survival niches. These descriptive findings provide new insights into how cell-intrinsic programmes and extrinsic factors may regulate the longevity of plasma cells in various contexts, which suggest new research avenues for their functional validation.
Collapse
Affiliation(s)
- David R Fooksman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Zhixin Jing
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Rosa Park
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
26
|
Karakousi T, Mudianto T, Lund AW. Lymphatic vessels in the age of cancer immunotherapy. Nat Rev Cancer 2024; 24:363-381. [PMID: 38605228 DOI: 10.1038/s41568-024-00681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
Lymphatic transport maintains homeostatic health and is necessary for immune surveillance, and yet lymphatic growth is often associated with solid tumour development and dissemination. Although tumour-associated lymphatic remodelling and growth were initially presumed to simply expand a passive route for regional metastasis, emerging research puts lymphatic vessels and their active transport at the interface of metastasis, tumour-associated inflammation and systemic immune surveillance. Here, we discuss active mechanisms through which lymphatic vessels shape their transport function to influence peripheral tissue immunity and the current understanding of how tumour-associated lymphatic vessels may both augment and disrupt antitumour immune surveillance. We end by looking forward to emerging areas of interest in the field of cancer immunotherapy in which lymphatic vessels and their transport function are likely key players: the formation of tertiary lymphoid structures, immune surveillance in the central nervous system, the microbiome, obesity and ageing. The lessons learnt support a working framework that defines the lymphatic system as a key determinant of both local and systemic inflammatory networks and thereby a crucial player in the response to cancer immunotherapy.
Collapse
Affiliation(s)
- Triantafyllia Karakousi
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Tenny Mudianto
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
27
|
Ali FEM, Ibrahim IM, Althagafy HS, Hassanein EHM. Role of immunotherapies and stem cell therapy in the management of liver cancer: A comprehensive review. Int Immunopharmacol 2024; 132:112011. [PMID: 38581991 DOI: 10.1016/j.intimp.2024.112011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Liver cancer (LC) is the sixth most common disease and the third most common cause of cancer-related mortality. The WHO predicts that more than 1 million deaths will occur from LC by 2030. Hepatocellular carcinoma (HCC) is a common form of primary LC. Today, the management of LC involves multiple disciplines, and multimodal therapy is typically selected on an individual basis, considering the intricate interactions between the patient's overall health, the stage of the tumor, and the degree of underlying liver disease. Currently, the treatment of cancers, including LC, has undergone a paradigm shift in the last ten years because of immuno-oncology. To treat HCC, immune therapy approaches have been developed to enhance or cause the body's natural immune response to specifically target tumor cells. In this context, immune checkpoint pathway inhibitors, engineered cytokines, adoptive cell therapy, immune cells modified with chimeric antigen receptors, and therapeutic cancer vaccines have advanced to clinical trials and offered new hope to cancer patients. The outcomes of these treatments are encouraging. Additionally, treatment using stem cells is a new approach for restoring deteriorated tissues because of their strong differentiation potential and capacity to release cytokines that encourage cell division and the formation of blood vessels. Although there is no proof that stem cell therapy works for many types of cancer, preclinical research on stem cells has shown promise in treating HCC. This review provides a recent update regarding the impact of immunotherapy and stem cells in HCC and promising outcomes.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan.
| | - Islam M Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| |
Collapse
|
28
|
Mahtani T, Sheth H, Smith LK, Benedict L, Brecier A, Ghasemlou N, Treanor B. The ion channel TRPV5 regulates B-cell signaling and activation. Front Immunol 2024; 15:1386719. [PMID: 38694510 PMCID: PMC11061418 DOI: 10.3389/fimmu.2024.1386719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/28/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction B-cell activation triggers the release of endoplasmic reticulum calcium stores through the store-operated calcium entry (SOCE) pathway resulting in calcium influx by calcium release-activated calcium (CRAC) channels on the plasma membrane. B-cell-specific murine knockouts of SOCE do not impact humoral immunity suggesting that alternative channels may be important. Methods We identified a member of the calcium-permeable transient receptor potential (TRP) ion channel family, TRPV5, as a candidate channel expressed in B cells by a quantitative polymerase chain reaction (qPCR) screen. To further investigate the role of TRPV5 in B-cell responses, we generated a murine TRPV5 knockout (KO) by CRISPR-Cas9. Results We found TRPV5 polarized to B-cell receptor (BCR) clusters upon stimulation in a PI3K-RhoA-dependent manner. TRPV5 KO mice have normal B-cell development and mature B-cell numbers. Surprisingly, calcium influx upon BCR stimulation in primary TRPV5 KO B cells was not impaired; however, differential expression of other calcium-regulating proteins, such as ORAI1, may contribute to a compensatory mechanism for calcium signaling in these cells. We demonstrate that TRPV5 KO B cells have impaired spreading and contraction in response to membrane-bound antigen. Consistent with this, TRPV5 KO B cells have reduced BCR signaling measured through phospho-tyrosine residues. Lastly, we also found that TRPV5 is important for early T-dependent antigen specific responses post-immunization. Discussion Thus, our findings identify a role for TRPV5 in BCR signaling and B-cell activation.
Collapse
Affiliation(s)
- Trisha Mahtani
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Hena Sheth
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - L. K. Smith
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Leshawn Benedict
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Aurelie Brecier
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Bebhinn Treanor
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Zareein A, Mahmoudi M, Jadhav SS, Wilmore J, Wu Y. Biomaterial engineering strategies for B cell immunity modulations. Biomater Sci 2024; 12:1981-2006. [PMID: 38456305 PMCID: PMC11019864 DOI: 10.1039/d3bm01841e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
B cell immunity has a penetrating effect on human health and diseases. Therapeutics aiming to modulate B cell immunity have achieved remarkable success in combating infections, autoimmunity, and malignancies. However, current treatments still face significant limitations in generating effective long-lasting therapeutic B cell responses for many conditions. As the understanding of B cell biology has deepened in recent years, clearer regulation networks for B cell differentiation and antibody production have emerged, presenting opportunities to overcome current difficulties and realize the full therapeutic potential of B cell immunity. Biomaterial platforms have been developed to leverage these emerging concepts to augment therapeutic humoral immunity by facilitating immunogenic reagent trafficking, regulating T cell responses, and modulating the immune microenvironment. Moreover, biomaterial engineering tools have also advanced our understanding of B cell biology, further expediting the development of novel therapeutics. In this review, we will introduce the general concept of B cell immunobiology and highlight key biomaterial engineering strategies in the areas including B cell targeted antigen delivery, sustained B cell antigen delivery, antigen engineering, T cell help optimization, and B cell suppression. We will also discuss our perspective on future biomaterial engineering opportunities to leverage humoral immunity for therapeutics.
Collapse
Affiliation(s)
- Ali Zareein
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
- The BioInspired Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Mina Mahmoudi
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
- The BioInspired Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Shruti Sunil Jadhav
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
| | - Joel Wilmore
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Yaoying Wu
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
- The BioInspired Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
30
|
Krimpenfort LT, Degn SE, Heesters BA. The follicular dendritic cell: At the germinal center of autoimmunity? Cell Rep 2024; 43:113869. [PMID: 38431843 DOI: 10.1016/j.celrep.2024.113869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/09/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024] Open
Abstract
Autoimmune diseases strain healthcare systems worldwide as their incidence rises, and current treatments put patients at risk for infections. An increased understanding of autoimmune diseases is required to develop targeted therapies that do not impair normal immune function. Many autoimmune diseases present with autoantibodies, which drive local or systemic inflammation. This indicates the presence of autoreactive B cells that have escaped tolerance. An important step in the development of autoreactive B cells is the germinal center (GC) reaction, where they undergo affinity maturation toward cognate self-antigen. Follicular dendritic cells (FDCs) perform the essential task of antigen presentation to B cells during the affinity maturation process. However, in recent years, it has become clear that FDCs play a much more active role in regulation of GC processes. Here, we evaluate the biology of FDCs in the context of autoimmune disease, with the goal of informing future therapeutic strategies.
Collapse
Affiliation(s)
- Luc T Krimpenfort
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Søren E Degn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Balthasar A Heesters
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
31
|
Sam G, Plain K, Chen S, Islam A, Westman ME, Marsh I, Stenos J, Graves SR, Rehm BHA. Synthetic Particulate Subunit Vaccines for the Prevention of Q Fever. Adv Healthc Mater 2024; 13:e2302351. [PMID: 38198823 PMCID: PMC11468694 DOI: 10.1002/adhm.202302351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/10/2023] [Indexed: 01/12/2024]
Abstract
Coxiella burnetti is an intracellular bacterium that causes Q fever, a disease of worldwide importance. Q-VAX® , the approved human Q fever vaccine, is a whole cell vaccine associated with safety concerns. Here a safe particulate subunit vaccine candidate is developed that is ambient-temperature stable and can be cost-effectively manufactured. Endotoxin-free Escherichia coli is bioengineered to efficiently self-assemble biopolymer particles (BPs) that are densely coated with either strings of 18 T-cell epitopes (COX-BP) or two full-length immunodominant antigens (YbgF-BP-Com1) all derived from C. burnetii. BP vaccine candidates are ambient-temperature stable. Safety and immunogenicity are confirmed in mice and guinea pig (GP) models. YbgF-BP-Com1 elicits specific and strong humoral immune responses in GPs with IgG titers that are at least 1 000 times higher than those induced by Q-VAX® . BP vaccine candidates are not reactogenic. After challenge with C. burnetii, YbgF-BP-Com1 vaccine leads to reduced fever responses and pathogen burden in the liver and the induction of proinflammatory cytokines IL-12 and IFN-γ inducible protein (IP-10) when compared to negative control groups. These data suggest that YbgF-BP-Com1 induces functional immune responses reducing infection by C. burnetii. Collectively, these findings illustrate the potential of BPs as effective antigen carrier for Q fever vaccine development.
Collapse
Affiliation(s)
- Gayathri Sam
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityBrisbaneQLD4111Australia
| | - Karren Plain
- Elizabeth Macarthur Agricultural InstituteNSW Department of Primary IndustriesMenangleNSW2568Australia
| | - Shuxiong Chen
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityBrisbaneQLD4111Australia
| | - Aminul Islam
- Australian Rickettsial Reference LaboratoryUniversity HospitalGeelongVIC3220Australia
| | - Mark E. Westman
- Elizabeth Macarthur Agricultural InstituteNSW Department of Primary IndustriesMenangleNSW2568Australia
| | - Ian Marsh
- Elizabeth Macarthur Agricultural InstituteNSW Department of Primary IndustriesMenangleNSW2568Australia
| | - John Stenos
- Australian Rickettsial Reference LaboratoryUniversity HospitalGeelongVIC3220Australia
| | - Stephen R. Graves
- Elizabeth Macarthur Agricultural InstituteNSW Department of Primary IndustriesMenangleNSW2568Australia
- Australian Rickettsial Reference LaboratoryUniversity HospitalGeelongVIC3220Australia
| | - Bernd H. A. Rehm
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityBrisbaneQLD4111Australia
- Menzies Health Institute QueenslandGriffith UniversityGold CoastQLD4222Australia
| |
Collapse
|
32
|
Aung A, Irvine DJ. Modulating Antigen Availability in Lymphoid Organs to Shape the Humoral Immune Response to Vaccines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:171-178. [PMID: 38166252 PMCID: PMC10768795 DOI: 10.4049/jimmunol.2300500] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/06/2023] [Indexed: 01/04/2024]
Abstract
Primary immune responses following vaccination are initiated in draining lymph nodes, where naive T and B cells encounter Ag and undergo coordinated steps of activation. For humoral immunity, the amount of Ag present over time, its localization to follicles and follicular dendritic cells, and the Ag's structural state all play important roles in determining the subsequent immune response. Recent studies have shown that multiple elements of vaccine design can impact Ag availability in lymphoid tissues, including the choice of adjuvant, physical form of the immunogen, and dosing kinetics. These vaccine design elements affect the transport of Ag to lymph nodes, Ag's localization in the tissue, the duration of Ag availability, and the structural integrity of the Ag. In this review, we discuss these findings and their implications for engineering more effective vaccines, particularly for difficult to neutralize pathogens.
Collapse
Affiliation(s)
- Aereas Aung
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
33
|
De Martin A, Stanossek Y, Pikor NB, Ludewig B. Protective fibroblastic niches in secondary lymphoid organs. J Exp Med 2024; 221:e20221220. [PMID: 38038708 PMCID: PMC10691961 DOI: 10.1084/jem.20221220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
Fibroblastic reticular cells (FRCs) are specialized fibroblasts of secondary lymphoid organs that provide the structural foundation of the tissue. Moreover, FRCs guide immune cells to dedicated microenvironmental niches where they provide lymphocytes and myeloid cells with homeostatic growth and differentiation factors. Inflammatory processes, including infection with pathogens, induce rapid morphological and functional adaptations that are critical for the priming and regulation of protective immune responses. However, adverse FRC reprogramming can promote immunopathological tissue damage during infection and autoimmune conditions and subvert antitumor immune responses. Here, we review recent findings on molecular pathways that regulate FRC-immune cell crosstalk in specialized niches during the generation of protective immune responses in the course of pathogen encounters. In addition, we discuss how FRCs integrate immune cell-derived signals to ensure protective immunity during infection and how therapies for inflammatory diseases and cancer can be developed through improved understanding of FRC-immune cell interactions.
Collapse
Affiliation(s)
- Angelina De Martin
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Yves Stanossek
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Natalia Barbara Pikor
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| |
Collapse
|
34
|
Brooks JF, Riggs J, Mueller JL, Mathenge R, Wholey WY, Meyer AR, Yoda ST, Vykunta VS, Nielsen HV, Cheng W, Zikherman J. Molecular basis for potent B cell responses to antigen displayed on particles of viral size. Nat Immunol 2023; 24:1762-1777. [PMID: 37653247 PMCID: PMC10950062 DOI: 10.1038/s41590-023-01597-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
Multivalent viral epitopes induce rapid, robust and T cell-independent humoral immune responses, but the biochemical basis for such potency remains incompletely understood. We take advantage of a set of liposomes of viral size engineered to display affinity mutants of the model antigen (Ag) hen egg lysozyme. Particulate Ag induces potent 'all-or-none' B cell responses that are density dependent but affinity independent. Unlike soluble Ag, particulate Ag induces signal amplification downstream of the B cell receptor by selectively evading LYN-dependent inhibitory pathways and maximally activates NF-κB in a manner that mimics T cell help. Such signaling induces MYC expression and enables even low doses of particulate Ag to trigger robust B cell proliferation in vivo in the absence of adjuvant. We uncover a molecular basis for highly sensitive B cell responses to viral Ag display that is independent of encapsulated nucleic acids and is not merely accounted for by avidity and B cell receptor cross-linking.
Collapse
Affiliation(s)
- Jeremy F Brooks
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - Julianne Riggs
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - James L Mueller
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - Raisa Mathenge
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - Wei-Yun Wholey
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Alexander R Meyer
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Sekou-Tidiane Yoda
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Vivasvan S Vykunta
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - Hailyn V Nielsen
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - Wei Cheng
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
35
|
Sam G, Stenos J, Graves SR, Rehm BHA. Q fever immunology: the quest for a safe and effective vaccine. NPJ Vaccines 2023; 8:133. [PMID: 37679410 PMCID: PMC10484952 DOI: 10.1038/s41541-023-00727-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Q fever is an infectious zoonotic disease, caused by the Gram-negative bacterium Coxiella burnetii. Transmission occurs from livestock to humans through inhalation of a survival form of the bacterium, the Small Cell Variant, often via handling of animal parturition products. Q fever manifests as an acute self-limiting febrile illness or as a chronic disease with complications such as vasculitis and endocarditis. The current preventative human Q fever vaccine Q-VAX poses limitations on its worldwide implementation due to reactogenic responses in pre-sensitized individuals. Many strategies have been undertaken to develop a universal Q fever vaccine but with little success to date. The mechanisms of the underlying reactogenic responses remain only partially understood and are important factors in the development of a safe Q fever vaccine. This review provides an overview of previous and current experimental vaccines developed for use against Q fever and proposes approaches to develop a vaccine that establishes immunological memory while eliminating harmful reactogenic responses.
Collapse
Affiliation(s)
- Gayathri Sam
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - John Stenos
- Australian Rickettsial Reference Laboratory, University Hospital, Geelong, VIC, 3220, Australia
| | - Stephen R Graves
- Australian Rickettsial Reference Laboratory, University Hospital, Geelong, VIC, 3220, Australia
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW, 2567, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia.
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
| |
Collapse
|
36
|
Valipour B, Majidi G, Dizaji Asl K, Nozad Charoudeh H. Cord blood derived NK cells activated in counter with tumor cells. Cell Tissue Bank 2023; 24:551-560. [PMID: 36456837 DOI: 10.1007/s10561-022-10056-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022]
Abstract
NK cells are initially known for their ability to kill tumor cells with no prior sensitization. Production of mature and long lasting NK cells from Umbilical Cord Blood (UCB) by using cytokines could be a promising method for immunotherapy. NK cells were generated from cord blood cells using IL2, IL7, and IL15 cytokines and measured expression of CD57 and NKp46 markers. Afterward, their capacity in the elimination of malignant cells (Reh cell line) was evaluated by assessment of interferon-γ (as cytokine production sign) and CD107-a expression (as cytotoxic function symptom) using flow cytometry. Our results showed efficient NKp46 + , and CD57 + NK cells generated on day 14. Also, expression of CD107-a and IFN-γ following co-culture with Reh cell lines significantly increased in comparison to the control. Taken together, we have reported one of the best culture conditions for the generation of CD57 + NK cells with on feeder cells and showed appropriate capacity in counter reh cell lines as a target.
Collapse
Affiliation(s)
- Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Ghazal Majidi
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756, Iran
| | - Khadijeh Dizaji Asl
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756, Iran
| | | |
Collapse
|
37
|
D'Rozario J, Knoblich K, Lütge M, Shibayama CP, Cheng HW, Alexandre YO, Roberts D, Campos J, Dutton EE, Suliman M, Denton AE, Turley SJ, Boyd RL, Mueller SN, Ludewig B, Heng TSP, Fletcher AL. Fibroblastic reticular cells provide a supportive niche for lymph node-resident macrophages. Eur J Immunol 2023; 53:e2250355. [PMID: 36991561 PMCID: PMC10947543 DOI: 10.1002/eji.202250355] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
The lymph node (LN) is home to resident macrophage populations that are essential for immune function and homeostasis, but key factors controlling this niche are undefined. Here, we show that fibroblastic reticular cells (FRCs) are an essential component of the LN macrophage niche. Genetic ablation of FRCs caused rapid loss of macrophages and monocytes from LNs across two in vivo models. Macrophages co-localized with FRCs in human LNs, and murine single-cell RNA-sequencing revealed that FRC subsets broadly expressed master macrophage regulator CSF1. Functional assays containing purified FRCs and monocytes showed that CSF1R signaling was sufficient to support macrophage development. These effects were conserved between mouse and human systems. These data indicate an important role for FRCs in maintaining the LN parenchymal macrophage niche.
Collapse
Affiliation(s)
- Joshua D'Rozario
- Department of Biochemistry and Molecular Biology, and Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Konstantin Knoblich
- Department of Biochemistry and Molecular Biology, and Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Mechthild Lütge
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | - Hung-Wei Cheng
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Yannick O Alexandre
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Melbourne, Australia
| | - David Roberts
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Joana Campos
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Emma E Dutton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Muath Suliman
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Alice E Denton
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Shannon J Turley
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Richard L Boyd
- Cartherics Pty Ltd, Hudson Institute for Medical Research, Clayton, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Melbourne, Australia
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Tracy S P Heng
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Australia
| | - Anne L Fletcher
- Department of Biochemistry and Molecular Biology, and Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
38
|
Alexander S, Moghadam MG, Rothenbroker M, Y T Chou L. Addressing the in vivo delivery of nucleic-acid nanostructure therapeutics. Adv Drug Deliv Rev 2023; 199:114898. [PMID: 37230305 DOI: 10.1016/j.addr.2023.114898] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
DNA and RNA nanostructures are being investigated as therapeutics, vaccines, and drug delivery systems. These nanostructures can be functionalized with guests ranging from small molecules to proteins with precise spatial and stoichiometric control. This has enabled new strategies to manipulate drug activity and to engineer devices with novel therapeutic functionalities. Although existing studies have offered encouraging in vitro or pre-clinical proof-of-concepts, establishing mechanisms of in vivo delivery is the new frontier for nucleic-acid nanotechnologies. In this review, we first provide a summary of existing literature on the in vivo uses of DNA and RNA nanostructures. Based on their application areas, we discuss current models of nanoparticle delivery, and thereby highlight knowledge gaps on the in vivo interactions of nucleic-acid nanostructures. Finally, we describe techniques and strategies for investigating and engineering these interactions. Together, we propose a framework to establish in vivo design principles and advance the in vivo translation of nucleic-acid nanotechnologies.
Collapse
Affiliation(s)
- Shana Alexander
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | | - Meghan Rothenbroker
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Leo Y T Chou
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| |
Collapse
|
39
|
Yura Y, Hamada M. Outline of Salivary Gland Pathogenesis of Sjögren's Syndrome and Current Therapeutic Approaches. Int J Mol Sci 2023; 24:11179. [PMID: 37446355 DOI: 10.3390/ijms241311179] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disease characterized by the involvement of exocrine glands such as the salivary and lacrimal glands. The minor salivary glands, from which tissue samples may be obtained, are important for the diagnosis, evaluation of therapeutic efficacy, and genetic analyses of SS. In the onset of SS, autoantigens derived from the salivary glands are recognized by antigen-presenting dendritic cells, leading to the activation of T and B cells, cytokine production, autoantibody production by plasma cells, the formation of ectopic germinal centers, and the destruction of salivary gland epithelial cells. A recent therapeutic approach with immune checkpoint inhibitors for malignant tumors enhances the anti-tumor activity of cytotoxic effector T cells, but also induces SS-like autoimmune disease as an adverse event. In the treatment of xerostomia, muscarinic agonists and salivary gland duct cleansing procedure, as well as sialendoscopy, are expected to ameliorate symptoms. Clinical trials on biological therapy to attenuate the hyperresponsiveness of B cells in SS patients with systemic organ involvement have progressed. The efficacy of treatment with mesenchymal stem cells and chimeric antigen receptor T cells for SS has also been investigated. In this review, we will provide an overview of the pathogenesis of salivary gland lesions and recent trends in therapeutic approaches for SS.
Collapse
Affiliation(s)
- Yoshiaki Yura
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Masakazu Hamada
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| |
Collapse
|
40
|
Carrasco YR. Building the synapse engine to drive B lymphocyte function. Immunol Lett 2023; 260:S0165-2478(23)00112-8. [PMID: 37369313 DOI: 10.1016/j.imlet.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
B cell receptor (BCR)-mediated antigen-specific recognition activates B lymphocytes and drives the humoral immune response. This enables the generation of antibody-producing plasma cells, the effector arm of the B cell immune response, and of memory B cells, which confer protection against additional encounters with antigen. B cells search for cognate antigen in the complex cellular microarchitecture of secondary lymphoid organs, where antigens are captured and exposed on the surface of different immune cells. While scanning the cell network, the BCR can be stimulated by a specific antigen and elicit the establishment of the immune synapse with the antigen-presenting cell. At the immune synapse, an integrin-enriched supramolecular domain is assembled at the periphery of the B cell contact with the antigen-presenting cell, ensuring a stable and long-lasting interaction. The coordinated action of the actomyosin cytoskeleton and the microtubule network in the inner B cell space provides a structural framework that integrates signaling events and antigen uptake through the generation of traction forces and organelle polarization. Accordingly, the B cell immune synapse can be envisioned as a temporal engine that drives the molecular mechanisms needed for successful B cell activation. Here, I review different aspects of the B cell synapse engine and provide insights into other aspects poorly known or virtually unexplored.
Collapse
Affiliation(s)
- Yolanda R Carrasco
- B Lymphocyte Dynamics Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, 28049, Spain.
| |
Collapse
|
41
|
García-Ferreras R, Osuna-Pérez J, Ramírez-Santiago G, Méndez-Pérez A, Acosta-Moreno AM, Del Campo L, Gómez-Sánchez MJ, Iborra M, Herrero-Fernández B, González-Granado JM, Sánchez-Madrid F, Carrasco YR, Boya P, Martínez-Martín N, Veiga E. Bacteria-instructed B cells cross-prime naïve CD8 + T cells triggering effective cytotoxic responses. EMBO Rep 2023:e56131. [PMID: 37184882 DOI: 10.15252/embr.202256131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
In addition to triggering humoral responses, conventional B cells have been described in vitro to cross-present exogenous antigens activating naïve CD8+ T cells. Nevertheless, the way B cells capture these exogenous antigens and the physiological roles of B cell-mediated cross-presentation remain poorly explored. Here, we show that B cells capture bacteria by trans-phagocytosis from previously infected dendritic cells (DC) when they are in close contact. Bacterial encounter "instructs" the B cells to acquire antigen cross-presentation abilities, in a process that involves autophagy. Bacteria-instructed B cells, henceforth referred to as BacB cells, rapidly degrade phagocytosed bacteria, process bacterial antigens and cross-prime naïve CD8+ T cells which differentiate into specific cytotoxic cells that efficiently control bacterial infections. Moreover, a proof-of-concept experiment shows that BacB cells that have captured bacteria expressing tumor antigens could be useful as novel cellular immunotherapies against cancer.
Collapse
Affiliation(s)
- Raquel García-Ferreras
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Jesús Osuna-Pérez
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Guillermo Ramírez-Santiago
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Almudena Méndez-Pérez
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Andrés M Acosta-Moreno
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Lara Del Campo
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Departamento de Biología Celular, Facultad de Odontología, Universidad Complutense de Madrid, Madrid, Spain
| | - María J Gómez-Sánchez
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Department of Immunology, School of Medicine, Complutense University of Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Marta Iborra
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Beatriz Herrero-Fernández
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - José M González-Granado
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Sánchez-Madrid
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Hospital Universitario de la Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, Madrid, Spain
| | - Yolanda R Carrasco
- Department of Immunology & Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Patricia Boya
- Department of Neuroscience, University of Fribourg, Fribourg, Switzerland
| | | | - Esteban Veiga
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
42
|
Schriek P, Villadangos JA. Trogocytosis and cross-dressing in antigen presentation. Curr Opin Immunol 2023; 83:102331. [PMID: 37148582 DOI: 10.1016/j.coi.2023.102331] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/08/2023]
Abstract
Antigen (Ag)-presenting cells capture or synthesize Ags that are processed into peptides bound and displayed on the plasma membrane by major histocompatibility complex (MHC) molecules. Here, we review a mechanism that enables cells to present Ag-loaded MHC molecules that they have not produced themselves, namely trogocytosis. During trogocytosis, a cell acquires fragments from another living cell without, in most cases, affecting the viability of the donor cell. The trogocytic cell can incorporate into its own plasma membrane (becoming cross-dressed) proteins acquired from the donor cell, including intact Ag and MHC molecules. Trogocytosis and cross-dressing expand the immunological functions that immune and nonimmune cells are able to carry out, with both beneficial and deleterious consequences.
Collapse
Affiliation(s)
- Patrick Schriek
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia.
| |
Collapse
|
43
|
Arroz-Madeira S, Bekkhus T, Ulvmar MH, Petrova TV. Lessons of Vascular Specialization From Secondary Lymphoid Organ Lymphatic Endothelial Cells. Circ Res 2023; 132:1203-1225. [PMID: 37104555 PMCID: PMC10144364 DOI: 10.1161/circresaha.123.322136] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
Secondary lymphoid organs, such as lymph nodes, harbor highly specialized and compartmentalized niches. These niches are optimized to facilitate the encounter of naive lymphocytes with antigens and antigen-presenting cells, enabling optimal generation of adaptive immune responses. Lymphatic vessels of lymphoid organs are uniquely specialized to perform a staggering variety of tasks. These include antigen presentation, directing the trafficking of immune cells but also modulating immune cell activation and providing factors for their survival. Recent studies have provided insights into the molecular basis of such specialization, opening avenues for better understanding the mechanisms of immune-vascular interactions and their applications. Such knowledge is essential for designing better treatments for human diseases given the central role of the immune system in infection, aging, tissue regeneration and repair. In addition, principles established in studies of lymphoid organ lymphatic vessel functions and organization may be applied to guide our understanding of specialization of vascular beds in other organs.
Collapse
Affiliation(s)
- Silvia Arroz-Madeira
- Department of Oncology, University of Lausanne, Switzerland (S.A.M., T.V.P.)
- Ludwig Institute for Cancer Research Lausanne, Switzerland (S.A.M., T.V.P.)
| | - Tove Bekkhus
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden (T.B., M.H.U.)
| | - Maria H. Ulvmar
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden (T.B., M.H.U.)
| | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne, Switzerland (S.A.M., T.V.P.)
- Ludwig Institute for Cancer Research Lausanne, Switzerland (S.A.M., T.V.P.)
| |
Collapse
|
44
|
Gurwicz N, Stoler-Barak L, Schwan N, Bandyopadhyay A, Meyer-Hermann M, Shulman Z. Tingible body macrophages arise from lymph node-resident precursors and uptake B cells by dendrites. J Exp Med 2023; 220:213834. [PMID: 36705667 PMCID: PMC9900388 DOI: 10.1084/jem.20222173] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Antibody affinity maturation depends on the formation of germinal centers (GCs) in lymph nodes. This process generates a massive number of apoptotic B cells, which are removed by a specialized subset of phagocytes, known as tingible body macrophages (TBMs). Although defects in these cells are associated with pathological conditions, the identity of their precursors and the dynamics of dying GC B cell disposal remained unknown. Here, we demonstrate that TBMs originate from pre-existing lymph node-resident precursors that enter the lymph node follicles in a GC-dependent manner. Intravital imaging shows that TBMs are stationary cells that selectively phagocytose GC B cells via highly dynamic protrusions and accommodate the final stages of B cell apoptosis. Cell-specific depletion and chimeric mouse models revealed that GC B cells drive TBM formation from bone marrow-derived precursors stationed within lymphoid organs prior to the immune challenge. Understanding TBM dynamics and function may explain the emergence of various antibody-mediated autoimmune conditions.
Collapse
Affiliation(s)
- Neta Gurwicz
- Department of Systems Immunology, Weizmann Institute of Science , Rehovot, Israel
| | - Liat Stoler-Barak
- Department of Systems Immunology, Weizmann Institute of Science , Rehovot, Israel
| | - Niklas Schwan
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research , Braunschweig, Germany
| | - Arnab Bandyopadhyay
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research , Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research , Braunschweig, Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig , Braunschweig, Germany
| | - Ziv Shulman
- Department of Systems Immunology, Weizmann Institute of Science , Rehovot, Israel
| |
Collapse
|
45
|
Onkanga IO, Sang H, Hamilton R, Ondigo BN, Jaoko W, Odiere MR, Ganley-Leal L. CD193
(
CCR3
) expression by B cells correlates with reduced
IgE
production in paediatric schistosomiasis. Parasite Immunol 2023; 45:e12979. [PMID: 36971331 DOI: 10.1111/pim.12979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/21/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
We demonstrate that CD193, the eotaxin receptor, is highly expressed on circulating B cells in paediatric schistosomiasis mansoni. CD193 plays a role in directing granulocytes into sites of allergic-like inflammation in the mucosa, but little is known about its functional significance on human B cells. We sought to characterize CD193 expression and its relationship with S. mansoni infection. We found that CD193+ B cells increased with the intensity of schistosome infection. In addition, a significant negative association was observed between CD193 expression by B cells and IgE production. Decreased IgE levels are generally associated with susceptibility to re-infection. B cell stimulation with eotaxin-1 increased CD193 levels whereas IL-4 led to a reduction. This was supported by plasma levels of eotaxin-1 correlating with CD193 levels on B cells and other cells. In contrast, CD193 expression was induced on naive B cells with a combination of IL-10 and schistosome antigens. Whereas T cells had a modest increase in CD193 expression, only B cell CD193 appeared functionally chemotactic to eotaxin-1. Thus, CD193+ B cells, which co-express CXCR5, may be enroute to sites with allergic-like inflammation, such as gastrointestinal follicles, or even to Th2 granulomas, which develop around parasite eggs. Overall, our results suggest that schistosome infection may promote CD193 expression and suppress IgE via IL-10 and other undefined mechanisms related to B cell trafficking. This study adds to our understanding of why young children may have poor immunity. Nonetheless, praziquantel treatment was shown to reduce percentages of circulating CD193+ B cells lending hope for future vaccine efforts.
Collapse
Affiliation(s)
- I O Onkanga
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- KAVI-Institute of Clinical Research, and Department of Medical Microbiology & Immunology, University of Nairobi, Nairobi, Kenya
| | - H Sang
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - R Hamilton
- Elegance Biotechnologies, LLC, Wayne, Pennsylvania, USA
| | - B N Ondigo
- Department of Biochemistry and Molecular Biology, Faculty of Science, Egerton University, Egerton, Kenya
| | - W Jaoko
- KAVI-Institute of Clinical Research, and Department of Medical Microbiology & Immunology, University of Nairobi, Nairobi, Kenya
| | - M R Odiere
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - L Ganley-Leal
- Elegance Biotechnologies, LLC, Wayne, Pennsylvania, USA
| |
Collapse
|
46
|
Brooks JF, Riggs J, Mueller JL, Mathenge R, Wholey WY, Yoda ST, Vykunta VS, Cheng W, Zikherman J. Molecular basis for potent B cell responses to antigen displayed on particles of viral size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528761. [PMID: 36824873 PMCID: PMC9949087 DOI: 10.1101/2023.02.15.528761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although it has long been appreciated that multivalent antigens - and particularly viral epitope display - produce extremely rapid, robust, and T-independent humoral immune responses, the biochemical basis for such potency has been incompletely understood. Here we take advantage of a set of neutral liposomes of viral size that are engineered to display affinity mutants of the model antigen (Ag) hen egg lysozyme at precisely varied density. We show that particulate Ag display by liposomes induces highly potent B cell responses that are dose-and density-dependent but affinity-independent. Titrating dose of particulate, but not soluble, Ag reveals bimodal Erk phosphorylation and cytosolic calcium increases. Particulate Ag induces signal amplification downstream of the B cell receptor (BCR) by selectively evading LYN-dependent inhibitory pathways, but in vitro potency is independent of CD19. Importantly, Ag display on viral-sized particles signals independently of MYD88 and IRAK1/4, but activates NF- κ B robustly in a manner that mimics T cell help. Together, such biased signaling by particulate Ag promotes MYC expression and reduces the threshold required for B cell proliferation relative to soluble Ag. These findings uncover a molecular basis for highly sensitive B cell response to viral Ag display and remarkable potency of virus-like particle vaccines that is not merely accounted for by avidity and BCR cross-linking, and is independent of the contribution of B cell nucleic acid-sensing machinery.
Collapse
|
47
|
Prenzler S, Rudrawar S, Waespy M, Kelm S, Anoopkumar-Dukie S, Haselhorst T. The role of sialic acid-binding immunoglobulin-like-lectin-1 (siglec-1) in immunology and infectious disease. Int Rev Immunol 2023; 42:113-138. [PMID: 34494938 DOI: 10.1080/08830185.2021.1931171] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Siglec-1, also known as Sialoadhesin (Sn) and CD169 is highly conserved among vertebrates and with 17 immunoglobulin-like domains is Siglec-1 the largest member of the Siglec family. Expression of Siglec-1 is found primarily on dendritic cells (DCs), macrophages and interferon induced monocyte. The structure of Siglec-1 is unique among siglecs and its function as a receptor is also different compared to other receptors in this class as it contains the most extracellular domains out of all the siglecs. However, the ability of Siglec-1 to internalize antigens and to pass them on to lymphocytes by allowing dendritic cells and macrophages to act as antigen presenting cells, is the main reason that has granted Siglec-1's key role in multiple human disease states including atherosclerosis, coronary artery disease, autoimmune diseases, cell-cell signaling, immunology, and more importantly bacterial and viral infections. Enveloped viruses for example have been shown to manipulate Siglec-1 to increase their virulence by binding to sialic acids present on the virus glycoproteins allowing them to spread or evade immune response. Siglec-1 mediates dissemination of HIV-1 in activated tissues enhancing viral spread via infection of DC/T-cell synapses. Overall, the ability of Siglec-1 to bind a variety of target cells within the immune system such as erythrocytes, B-cells, CD8+ granulocytes and NK cells, highlights that Siglec-1 is a unique player in these essential processes.
Collapse
Affiliation(s)
- Shane Prenzler
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Santosh Rudrawar
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Mario Waespy
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Sørge Kelm
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Shailendra Anoopkumar-Dukie
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
48
|
Saltukoglu D, Özdemir B, Holtmannspötter M, Reski R, Piehler J, Kurre R, Reth M. Plasma membrane topography governs the 3D dynamic localization of IgM B cell antigen receptor clusters. EMBO J 2023; 42:e112030. [PMID: 36594262 PMCID: PMC9929642 DOI: 10.15252/embj.2022112030] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 01/04/2023] Open
Abstract
B lymphocytes recognize bacterial or viral antigens via different classes of the B cell antigen receptor (BCR). Protrusive structures termed microvilli cover lymphocyte surfaces, and are thought to perform sensory functions in screening antigen-bearing surfaces. Here, we have used lattice light-sheet microscopy in combination with tailored custom-built 4D image analysis to study the cell-surface topography of B cells of the Ramos Burkitt's Lymphoma line and the spatiotemporal organization of the IgM-BCR. Ramos B-cell surfaces were found to form dynamic networks of elevated ridges bridging individual microvilli. A fraction of membrane-localized IgM-BCR was found in clusters, which were mainly associated with the ridges and the microvilli. The dynamic ridge-network organization and the IgM-BCR cluster mobility were linked, and both were controlled by Arp2/3 complex activity. Our results suggest that dynamic topographical features of the cell surface govern the localization and transport of IgM-BCR clusters to facilitate antigen screening by B cells.
Collapse
Affiliation(s)
- Deniz Saltukoglu
- Department of Molecular Immunology, Biology III, Faculty of BiologyUniversity of FreiburgFreiburgGermany
- Signaling Research Centers CIBSS and BIOSSUniversity of FreiburgFreiburgGermany
| | - Bugra Özdemir
- Signaling Research Centers CIBSS and BIOSSUniversity of FreiburgFreiburgGermany
- Plant Biotechnology, Faculty of BiologyUniversity of FreiburgFreiburgGermany
- Present address:
Euro‐BioImaging, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Michael Holtmannspötter
- Department of Biology/Chemistry and Center for Cellular NanoanalyticsOsnabrück UniversityOsnabrückGermany
| | - Ralf Reski
- Signaling Research Centers CIBSS and BIOSSUniversity of FreiburgFreiburgGermany
- Plant Biotechnology, Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular NanoanalyticsOsnabrück UniversityOsnabrückGermany
| | - Rainer Kurre
- Department of Biology/Chemistry and Center for Cellular NanoanalyticsOsnabrück UniversityOsnabrückGermany
| | - Michael Reth
- Department of Molecular Immunology, Biology III, Faculty of BiologyUniversity of FreiburgFreiburgGermany
- Signaling Research Centers CIBSS and BIOSSUniversity of FreiburgFreiburgGermany
| |
Collapse
|
49
|
Dizaji Asl K, Rafat A, Mazloumi Z, Valipour B, Movassaghpour A, Talebi M, Mahdavi M, Tayefi Nasrabadi H, Nozad Charoudeh H. Cord blood stem cell-generated KIR +NK cells effectively target leukemia cell lines. Hum Immunol 2023; 84:98-105. [PMID: 36396515 DOI: 10.1016/j.humimm.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
Abstract
Acute lymphoid (ALL) and myeloid leukemia (AML) are known to be invasive and highly lethal hematological malignancies. Because current treatments are insufficient and have a variety of side effects, researchers are looking for new and more effective therapeutic methods. Interestingly, ongoing efforts to find the best approach to optimize NK cell anti-leukemia potential shed light on the successful treatment of cancer. Mature KIR+NK cells ability to remove HLA Class-I deficient cells has been exploited in cancer immunotherapy. Here, we generated KIR+NK cells from cord blood stem cells using IL-2 and IL-15 cytokines. Our finding underlined the importance of KIR expression in the cytotoxic function of NK cells. Taken together, this study presented an effective in vitro method for the expansion and differentiation of KIR+NK cells using cytokines without any feeder cells. Furthermore, the presented culture condition could be useful for the generation of mature and pure NK cells from limited numbers of CD34+ cord blood cells and might be used as a novel method to improve the current state of cancer therapy.
Collapse
Affiliation(s)
- Khadijeh Dizaji Asl
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Histopathology and Anatomy, Faculty of Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ali Rafat
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zeinab Mazloumi
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
50
|
Hägglöf T, Cipolla M, Loewe M, Chen ST, Mesin L, Hartweger H, ElTanbouly MA, Cho A, Gazumyan A, Ramos V, Stamatatos L, Oliveira TY, Nussenzweig MC, Viant C. Continuous germinal center invasion contributes to the diversity of the immune response. Cell 2023; 186:147-161.e15. [PMID: 36565698 PMCID: PMC9825658 DOI: 10.1016/j.cell.2022.11.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/12/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
Antibody responses are characterized by increasing affinity and diversity over time. Affinity maturation occurs in germinal centers by a mechanism that involves repeated cycles of somatic mutation and selection. How antibody responses diversify while also undergoing affinity maturation is not as well understood. Here, we examined germinal center (GC) dynamics by tracking B cell entry, division, somatic mutation, and specificity. Our experiments show that naive B cells continuously enter GCs where they compete for T cell help and undergo clonal expansion. Consistent with late entry, invaders carry fewer mutations but can contribute up to 30% or more of the cells in late-stage germinal centers. Notably, cells entering the germinal center at later stages of the reaction diversify the immune response by expressing receptors that show low affinity to the immunogen. Paradoxically, the affinity threshold for late GC entry is lowered in the presence of high-affinity antibodies.
Collapse
Affiliation(s)
- Thomas Hägglöf
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Maximilian Loewe
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Spencer T Chen
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Harald Hartweger
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Mohamed A ElTanbouly
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Alice Cho
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute (HHMI), The Rockefeller University, New York, NY 10065, USA.
| | - Charlotte Viant
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|