1
|
Chen KY, Kibayashi T, Giguelay A, Hata M, Nakajima S, Mikami N, Takeshima Y, Ichiyama K, Omiya R, Ludwig LS, Hattori K, Sakaguchi S. Genome-wide CRISPR screen in human T cells reveals regulators of FOXP3. Nature 2025:10.1038/s41586-025-08795-5. [PMID: 40140585 DOI: 10.1038/s41586-025-08795-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/14/2025] [Indexed: 03/28/2025]
Abstract
Regulatory T (Treg) cells, which specifically express the master transcription factor FOXP3, have a pivotal role in maintaining immunological tolerance and homeostasis and have the potential to revolutionize cell therapies for autoimmune diseases1-3. Although stimulation of naive CD4+ T cells in the presence of TGFβ and IL-2 can induce FOXP3+ Treg cells in vitro (iTreg cells), the resulting cells are often unstable and have thus far hampered translational efforts4-6. A systematic approach towards understanding the regulatory networks that dictate Treg differentiation could lead to more effective iTreg cell-based therapies. Here we performed a genome-wide CRISPR loss-of-function screen to catalogue gene regulatory determinants of FOXP3 induction in primary human T cells and characterized their effects at single-cell resolution using Perturb-icCITE-seq. We identify the RBPJ-NCOR repressor complex as a novel, context-specific negative regulator of FOXP3 expression. RBPJ-targeted knockout enhanced iTreg differentiation and function, independent of canonical Notch signalling. Repeated cytokine and T cell receptor signalling stimulation in vitro revealed that RBPJ-deficient iTreg cells exhibit increased phenotypic stability compared with control cells through DNA demethylation of the FOXP3 enhancer CNS2, reinforcing FOXP3 expression. Conversely, overexpression of RBPJ potently suppressed FOXP3 induction through direct modulation of FOXP3 histone acetylation by HDAC3. Finally, RBPJ-ablated human iTreg cells more effectively suppressed xenogeneic graft-versus-host disease than control iTreg cells in a humanized mouse model. Together, our findings reveal novel regulators of FOXP3 and point towards new avenues to improve the efficacy of adoptive cell therapy for autoimmune disease.
Collapse
Affiliation(s)
- Kelvin Y Chen
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| | - Tatsuya Kibayashi
- Joint Research Chair of Innovative Drug Discovery in Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Japan
| | - Ambre Giguelay
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Mayu Hata
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shunsuke Nakajima
- Joint Research Chair of Innovative Drug Discovery in Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Japan
| | - Norihisa Mikami
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yusuke Takeshima
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Kenji Ichiyama
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ryusuke Omiya
- Joint Research Chair of Innovative Drug Discovery in Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Japan
| | - Leif S Ludwig
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Kunihiro Hattori
- Joint Research Chair of Innovative Drug Discovery in Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Department of Experimental Pathology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
2
|
Matsuda T, Kono T, Taki Y, Sakuma I, Fujimoto M, Hashimoto N, Kawakami E, Fukuhara N, Nishioka H, Inoshita N, Yamada S, Nakamura Y, Horiguchi K, Miki T, Higuchi Y, Tanaka T. Deciphering craniopharyngioma subtypes: Single-cell analysis of tumor microenvironment and immune networks. iScience 2024; 27:111068. [PMID: 39483146 PMCID: PMC11525618 DOI: 10.1016/j.isci.2024.111068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/24/2024] [Accepted: 09/26/2024] [Indexed: 11/03/2024] Open
Abstract
Craniopharyngiomas, including adamantinomatous (ACP) and squamous papillary (PCP) types, are challenging to treat because of their proximity to crucial pituitary structures. This study aimed to characterize the cellular composition, tumor tissue diversity, and cell-cell interactions in ACPs and PCPs using single-cell RNA sequencing. Single-cell clustering revealed diverse cell types, further classified into developing epithelial, calcification, and immune response for ACP and developing epithelial, cell cycle, and immune response for PCP, based on gene expression patterns. Subclustering revealed the enrichment of classical M1 and M2 macrophages in ACP and PCP, respectively, with high expression of pro-inflammatory markers in classical M1 macrophages. The classical M1 and M2 macrophage ratio significantly correlated with the occurrence of diabetes insipidus and panhypopituitarism. Cell-cell interactions, particularly involving CD44-SPP, were identified between tumor cells. Thus, we developed a comprehensive cell atlas that elucidated the molecular characteristics and immune cell inter-networking in ACP and PCP tumor microenvironments.
Collapse
Affiliation(s)
- Tatsuma Matsuda
- Department of Neurological Surgery Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Kono
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Yuki Taki
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ikki Sakuma
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masanori Fujimoto
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoko Hashimoto
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Eiryo Kawakami
- Department of Aritificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Noriaki Fukuhara
- Department of Hypothalamic and Pituitary Surgery, Toranomon Hospital, Tokyo, Japan
| | - Hiroshi Nishioka
- Department of Hypothalamic and Pituitary Surgery, Toranomon Hospital, Tokyo, Japan
| | - Naoko Inoshita
- Hypothalamic and Pituitary Center, Moriyama Memorial Hospital, Tokyo, Japan
| | - Shozo Yamada
- Hypothalamic and Pituitary Center, Moriyama Memorial Hospital, Tokyo, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Kentaro Horiguchi
- Department of Neurological Surgery Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takashi Miki
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Department of Medical Physiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshinori Higuchi
- Department of Neurological Surgery Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
3
|
Weinstock JS, Arce MM, Freimer JW, Ota M, Marson A, Battle A, Pritchard JK. Gene regulatory network inference from CRISPR perturbations in primary CD4 + T cells elucidates the genomic basis of immune disease. CELL GENOMICS 2024; 4:100671. [PMID: 39395408 PMCID: PMC11605694 DOI: 10.1016/j.xgen.2024.100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/04/2024] [Accepted: 09/16/2024] [Indexed: 10/14/2024]
Abstract
The effects of genetic variation on complex traits act mainly through changes in gene regulation. Although many genetic variants have been linked to target genes in cis, the trans-regulatory cascade mediating their effects remains largely uncharacterized. Mapping trans-regulators based on natural genetic variation has been challenging due to small effects, but experimental perturbations offer a complementary approach. Using CRISPR, we knocked out 84 genes in primary CD4+ T cells, targeting inborn error of immunity (IEI) disease transcription factors (TFs) and TFs without immune disease association. We developed a novel gene network inference method called linear latent causal Bayes (LLCB) to estimate the network from perturbation data and observed 211 regulatory connections between genes. We characterized programs affected by the TFs, which we associated with immune genome-wide association study (GWAS) genes, finding that JAK-STAT family members are regulated by KMT2A, an epigenetic regulator. These analyses reveal the trans-regulatory cascades linking GWAS genes to signaling pathways.
Collapse
Affiliation(s)
- Joshua S Weinstock
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Maya M Arce
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jacob W Freimer
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Mineto Ota
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Institute for Human Genetics (IHG), University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94129, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA; Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Jonathan K Pritchard
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Holmes CM, Wagner B. Characterization of Nasal Mucosal T Cells in Horses and Their Response to Equine Herpesvirus Type 1. Viruses 2024; 16:1514. [PMID: 39459849 PMCID: PMC11512333 DOI: 10.3390/v16101514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Equine herpesvirus type 1 (EHV-1) enters through the upper respiratory tract (URT). Mucosal immunity at the URT is crucial in limiting viral infection and morbidity. Here, intranasal immune cells were collected from horses (n = 15) during an experimental EHV-1 infection. CD4+ and CD8+ T cells were the major intranasal cell populations before infection and increased significantly by day six and fourteen post-infection, respectively. Nasal mucosal T cells were further characterized in healthy horses. Compared to peripheral blood mononuclear cells (PBMC), mucosal CD8+ T-cell percentages were elevated, while CD4+ T-cell percentages were similar. A small population of CD4+CD8+ T cells was also recovered from mucosal samples. Within the URT tissue, CD4+ cells predominantly accumulated in the epithelial layer, while most CD8+ cells resided deeper in the mucosa or the submucosa below the basement membrane. In vitro stimulation of mucosal cells from healthy horses with (n = 5) or without (n = 5) peripheral T-cell immunity against EHV-1 induced IFN-γ production in nasal T cells upon polyclonal stimulation. However, after EHV-1 re-stimulation, mucosal T cells failed to respond with IFN-γ. This work provided the first characterization of mucosal T-cell phenotypes and functions in the URT of healthy horses and during EHV-1 infection.
Collapse
Affiliation(s)
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Science, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
5
|
Wang HY, Chen JY, Li Y, Zhang X, Liu X, Lu Y, He H, Li Y, Chen H, Liu Q, Huang Y, Jia Z, Li S, Zhang Y, Han S, Jiang S, Yang M, Zhang Y, Zhou L, Tan F, Ji Q, Meng L, Wang R, Liu Y, Liu K, Wang Q, Seim I, Zou J, Fan G, Liu S, Shao C. Single-cell RNA sequencing illuminates the ontogeny, conservation and diversification of cartilaginous and bony fish lymphocytes. Nat Commun 2024; 15:7627. [PMID: 39227568 PMCID: PMC11372145 DOI: 10.1038/s41467-024-51761-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
Elucidating cellular architecture and cell-type evolution across species is central to understanding immune system function and susceptibility to disease. Adaptive immunity is a shared trait of the common ancestor of cartilaginous and bony fishes. However, evolutionary features of lymphocytes in these two jawed vertebrates remain unclear. Here, we present a single-cell RNA sequencing atlas of immune cells from cartilaginous (white-spotted bamboo shark) and bony (zebrafish and Chinese tongue sole) fishes. Cross-species comparisons show that the same cell types across different species exhibit similar transcriptional profiles. In the bamboo shark, we identify a phagocytic B cell population expressing several pattern recognition receptors, as well as a T cell sub-cluster co-expressing both T and B cell markers. In contrast to a division by function in the bony fishes, we show close linkage and poor functional specialization among lymphocytes in the cartilaginous fish. Our cross-species single-cell comparison presents a resource for uncovering the origin and evolution of the gnathostome immune system.
Collapse
Affiliation(s)
- Hong-Yan Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Jian-Yang Chen
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Yanan Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xianghui Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Xiang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, 266555, China
| | - Yifang Lu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Hang He
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Yubang Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Hongxi Chen
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Qun Liu
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Yingyi Huang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Shuo Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Yangqing Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Shenglei Han
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Shuhong Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Mingming Yang
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Yingying Zhang
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Li Zhou
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Fujian Tan
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | | | - Liang Meng
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Rui Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Yuyan Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Kaiqiang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Qian Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, 4000, Australia
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Guangyi Fan
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
- BGI Research, Shenzhen, 518083, China
| | | | - Changwei Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| |
Collapse
|
6
|
Loupe JM, Anderson AG, Rizzardi LF, Rodriguez-Nunez I, Moyers B, Trausch-Lowther K, Jain R, Bunney WE, Bunney BG, Cartagena P, Sequeira A, Watson SJ, Akil H, Cooper GM, Myers RM. Multiomic profiling of transcription factor binding and function in human brain. Nat Neurosci 2024; 27:1387-1399. [PMID: 38831039 DOI: 10.1038/s41593-024-01658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/19/2024] [Indexed: 06/05/2024]
Abstract
Transcription factors (TFs) orchestrate gene expression programs crucial for brain function, but we lack detailed information about TF binding in human brain tissue. We generated a multiomic resource (ChIP-seq, ATAC-seq, RNA-seq, DNA methylation) on bulk tissues and sorted nuclei from several postmortem brain regions, including binding maps for more than 100 TFs. We demonstrate improved measurements of TF activity, including motif recognition and gene expression modeling, upon identification and removal of high TF occupancy regions. Further, predictive TF binding models demonstrate a bias for these high-occupancy sites. Neuronal TFs SATB2 and TBR1 bind unique regions depleted for such sites and promote neuronal gene expression. Binding sites for TFs, including TBR1 and PKNOX1, are enriched for risk variants associated with neuropsychiatric disorders, predominantly in neurons. This work, titled BrainTF, is a powerful resource for future studies seeking to understand the roles of specific TFs in regulating gene expression in the human brain.
Collapse
Affiliation(s)
- Jacob M Loupe
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Lindsay F Rizzardi
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Biochemistry and Molecular Biology, The University of Alabama in Birmingham, Birmingham, AL, USA
| | | | - Belle Moyers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Rashmi Jain
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - William E Bunney
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Blynn G Bunney
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Preston Cartagena
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Adolfo Sequeira
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Stanley J Watson
- The Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Huda Akil
- The Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | | | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
| |
Collapse
|
7
|
Li C, Lanasa D, Park JH. Pathways and mechanisms of CD4 +CD8αα + intraepithelial T cell development. Trends Immunol 2024; 45:288-302. [PMID: 38514370 PMCID: PMC11015970 DOI: 10.1016/j.it.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
The mammalian small intestine epithelium harbors a peculiar population of CD4+CD8αα+ T cells that are derived from mature CD4+ T cells through reprogramming of lineage-specific transcription factors. CD4+CD8αα+ T cells occupy a unique niche in T cell biology because they exhibit mixed phenotypes and functional characteristics of both CD4+ helper and CD8+ cytotoxic T cells. The molecular pathways driving their generation are not fully mapped. However, recent studies demonstrate the unique role of the commensal gut microbiota as well as distinct cytokine and chemokine requirements in the differentiation and survival of these cells. We review the established and newly identified factors involved in the generation of CD4+CD8αα+ intraepithelial lymphocytes (IELs) and place them in the context of the molecular machinery that drives their phenotypic and functional differentiation.
Collapse
Affiliation(s)
- Can Li
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dominic Lanasa
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Chopp LB, Zhu X, Gao Y, Nie J, Singh J, Kumar P, Young KZ, Patel S, Li C, Balmaceno-Criss M, Vacchio MS, Wang MM, Livak F, Merchant JL, Wang L, Kelly MC, Zhu J, Bosselut R. Zfp281 and Zfp148 control CD4 + T cell thymic development and T H2 functions. Sci Immunol 2023; 8:eadi9066. [PMID: 37948511 DOI: 10.1126/sciimmunol.adi9066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023]
Abstract
How CD4+ lineage gene expression is initiated in differentiating thymocytes remains poorly understood. Here, we show that the paralog transcription factors Zfp281 and Zfp148 control both this process and cytokine expression by T helper cell type 2 (TH2) effector cells. Genetic, single-cell, and spatial transcriptomic analyses showed that these factors promote the intrathymic CD4+ T cell differentiation of class II major histocompatibility complex (MHC II)-restricted thymocytes, including expression of the CD4+ lineage-committing factor Thpok. In peripheral T cells, Zfp281 and Zfp148 promoted chromatin opening at and expression of TH2 cytokine genes but not of the TH2 lineage-determining transcription factor Gata3. We found that Zfp281 interacts with Gata3 and is recruited to Gata3 genomic binding sites at loci encoding Thpok and TH2 cytokines. Thus, Zfp148 and Zfp281 collaborate with Gata3 to promote CD4+ T cell development and TH2 cell responses.
Collapse
Affiliation(s)
- Laura B Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Immunology Graduate Group, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA
| | - Xiaoliang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yayi Gao
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jia Nie
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jatinder Singh
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Parimal Kumar
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kelly Z Young
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shil Patel
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- University of Maryland Medical School, Baltimore, MD 21201, USA
| | - Caiyi Li
- Flow Cytometry Core, Laboratory of Genomic Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mariah Balmaceno-Criss
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melanie S Vacchio
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael M Wang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Ferenc Livak
- Flow Cytometry Core, Laboratory of Genomic Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juanita L Merchant
- Department of Gastroenterology and Hepatology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Lie Wang
- Institute of Immunology, and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Michael C Kelly
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Weinstock JS, Arce MM, Freimer JW, Ota M, Marson A, Battle A, Pritchard JK. Gene regulatory network inference from CRISPR perturbations in primary CD4+ T cells elucidates the genomic basis of immune disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.17.557749. [PMID: 37745614 PMCID: PMC10516010 DOI: 10.1101/2023.09.17.557749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The effects of genetic variation on complex traits act mainly through changes in gene regulation. Although many genetic variants have been linked to target genes in cis, the trans-regulatory cascade mediating their effects remains largely uncharacterized. Mapping trans-regulators based on natural genetic variation, including eQTL mapping, has been challenging due to small effects. Experimental perturbation approaches offer a complementary and powerful approach to mapping trans-regulators. We used CRISPR knockouts of 84 genes in primary CD4+ T cells to perturb an immune cell gene network, targeting both inborn error of immunity (IEI) disease transcription factors (TFs) and background TFs matched in constraint and expression level, but without a known immune disease association. We developed a novel Bayesian structure learning method called Linear Latent Causal Bayes (LLCB) to estimate the gene regulatory network from perturbation data and observed 211 directed edges among the genes which could not be detected in existing CD4+ trans-eQTL data. We used LLCB to characterize the differences between the IEI and background TFs, finding that the gene groups were highly interconnected, but that IEI TFs were much more likely to regulate immune cell specific pathways and immune GWAS genes. We further characterized nine coherent gene programs based on downstream effects of the TFs and linked these modules to regulation of GWAS genes, finding that canonical JAK-STAT family members are regulated by KMT2A, a global epigenetic regulator. These analyses reveal the trans-regulatory cascade from upstream epigenetic regulator to intermediate TFs to downstream effector cytokines and elucidate the logic linking immune GWAS genes to key signaling pathways.
Collapse
Affiliation(s)
- Joshua S. Weinstock
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
- Department of Genetics, Stanford University, Stanford, CA
| | - Maya M. Arce
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Jacob W. Freimer
- Department of Genetics, Stanford University, Stanford, CA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA
| | - Mineto Ota
- Department of Genetics, Stanford University, Stanford, CA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA
- Department of Medicine, University of California, San Francisco, San Francisco, CA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, 94720
- Institute for Human Genetics (IHG), University of California, San Francisco, San Francisco, CA, 94143
- Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, 94129
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, 94143
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD
- Department of Computer Science, Johns Hopkins University, Baltimore, MD
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD
| | - Jonathan K. Pritchard
- Department of Genetics, Stanford University, Stanford, CA
- Department of Biology, Stanford University, Stanford, CA
| |
Collapse
|
10
|
Zhu MZ, Xu HM, Liang YJ, Xu J, Yue NN, Zhang Y, Tian CM, Yao J, Wang LS, Nie YQ, Li DF. Edible exosome-like nanoparticles from portulaca oleracea L mitigate DSS-induced colitis via facilitating double-positive CD4 +CD8 +T cells expansion. J Nanobiotechnology 2023; 21:309. [PMID: 37653406 PMCID: PMC10469825 DOI: 10.1186/s12951-023-02065-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Plant-derived exosome-like nanoparticles (PDENs) have been paid great attention in the treatment of ulcerative colitis (UC). As a proof of concept, we isolated and identified Portulaca oleracea L-derived exosome-like nanoparticles (PELNs) from edible Portulaca oleracea L, which exhibited desirable nano-size (~ 160 nm) and a negative zeta potential value (-31.4 mV). Oral administration of PELNs effectively suppressed the expressions of pro-inflammatory cytokines (TNF-α, IL-6, IL-12, and IL-1β) and myeloperoxidase (MPO), increased levels of the anti-inflammatory cytokine (IL-10), and alleviated acute colitis in dextran sulfate sodium (DSS)-induced C57 mice and IL-10-/- mice. Notably, PELNs exhibited excellent stability and safety within the gastrointestinal tract and displayed specific targeting to inflamed sites in the colons of mice. Mechanistically, oral administration of PELNs played a crucial role in maintaining the diversity and balance of gut microbiota. Furthermore, PELNs treatment enhanced Lactobacillus reuteri growth and elevated indole derivative levels, which might activate the aryl-hydrocarbon receptor (AhR) in conventional CD4+ T cells. This activation downregulated Zbtb7b expression, leading to the reprogramming of conventional CD4+ T cells into double-positive CD4+CD8+T cells (DP CD4+CD8+ T cells). In conclusion, our findings highlighted the potential of orally administered PELNs as a novel, natural, and colon-targeted agent, offering a promising therapeutic approach for managing UC. Schematic illustration of therapeutic effects of oral Portulaca oleracea L -derived natural exosome-like nanoparticles (PELNs) on UC. PELNs treatment enhanced Lactobacillus reuteri growth and elevated indole derivative levels, which activate the aryl-hydrocarbon receptor (AhR) in conventional CD4+ T cells leading to downregulate the expression of Zbtb7b, reprogram of conventional CD4+ T cells into double-positive CD4+CD8+T cells (DP CD4+CD8+ T cells), and decrease the levels of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yu-Jie Liang
- School of Rehabilitation Medicine, Jining Medical University, Jining, 272029, Shandong, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ning-Ning Yue
- Department of Gastroenterology, Shenzhen People's Hospital, the Second Clinical Medical College, Jinan University, Shenzhen, 518020, Guangdong, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, 516000, Guangdong, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People's Hospital, the Second Clinical Medical College, the First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital, the Second Clinical Medical College, the First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital, the Second Clinical Medical College, the First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China.
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital, the Second Clinical Medical College, the First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
11
|
Venkatesh H, Tracy SI, Farrar MA. Cytotoxic CD4 T cells in the mucosa and in cancer. Front Immunol 2023; 14:1233261. [PMID: 37654482 PMCID: PMC10466411 DOI: 10.3389/fimmu.2023.1233261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023] Open
Abstract
CD4 T cells were initially described as helper cells that promote either the cellular immune response (Th1 cells) or the humoral immune response (Th2 cells). Since then, a plethora of functionally distinct helper and regulatory CD4 T cell subsets have been described. CD4 T cells with cytotoxic function were first described in the setting of viral infections and autoimmunity, and more recently in cancer and gut dysbiosis. Regulatory CD4 T cell subsets such as Tregs and T-regulatory type 1 (Tr1) cells have also been shown to have cytotoxic potential. Indeed, Tr1 cells have been shown to be important for maintenance of stem cell niches in the bone marrow and the gut. This review will provide an overview of cytotoxic CD4 T cell development, and discuss the role of inflammatory and Tr1-like cytotoxic CD4 T cells in maintenance of intestinal stem cells and in anti-cancer immune responses.
Collapse
Affiliation(s)
- Hrishi Venkatesh
- Center for Immunology, Masonic Cancer Center, Minneapolis, MN, United States
- University of Minnesota, Department of Laboratory Medicine and Pathology, Minneapolis, MN, United States
| | - Sean I. Tracy
- Center for Immunology, Masonic Cancer Center, Minneapolis, MN, United States
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Michael A. Farrar
- Center for Immunology, Masonic Cancer Center, Minneapolis, MN, United States
- University of Minnesota, Department of Laboratory Medicine and Pathology, Minneapolis, MN, United States
| |
Collapse
|
12
|
Cao W, Sturmlechner I, Zhang H, Jin J, Hu B, Jadhav RR, Fang F, Weyand CM, Goronzy JJ. TRIB2 safeguards naive T cell homeostasis during aging. Cell Rep 2023; 42:112195. [PMID: 36884349 PMCID: PMC10118747 DOI: 10.1016/j.celrep.2023.112195] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/24/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
Naive CD4+ T cells are more resistant to age-related loss than naive CD8+ T cells, suggesting mechanisms that preferentially protect naive CD4+ T cells during aging. Here, we show that TRIB2 is more abundant in naive CD4+ than CD8+ T cells and counteracts quiescence exit by suppressing AKT activation. TRIB2 deficiency increases AKT activity and accelerates proliferation and differentiation in response to interleukin-7 (IL-7) in humans and during lymphopenia in mice. TRIB2 transcription is controlled by the lineage-determining transcription factors ThPOK and RUNX3. Ablation of Zbtb7b (encoding ThPOK) and Cbfb (obligatory RUNT cofactor) attenuates the difference in lymphopenia-induced proliferation between naive CD4+ and CD8+ cells. In older adults, ThPOK and TRIB2 expression wanes in naive CD4+ T cells, causing loss of naivety. These findings assign TRIB2 a key role in regulating T cell homeostasis and provide a model to explain the lesser resilience of CD8+ T cells to undergo changes with age.
Collapse
Affiliation(s)
- Wenqiang Cao
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China; Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94305, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| | - Ines Sturmlechner
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Huimin Zhang
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94305, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Jun Jin
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94305, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Bin Hu
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94305, USA
| | - Rohit R Jadhav
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94305, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Fengqin Fang
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94305, USA; Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Cornelia M Weyand
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94305, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Medicine, Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Jörg J Goronzy
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94305, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Medicine, Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| |
Collapse
|
13
|
An autoimmune pleiotropic SNP modulates IRF5 alternative promoter usage through ZBTB3-mediated chromatin looping. Nat Commun 2023; 14:1208. [PMID: 36869052 PMCID: PMC9984425 DOI: 10.1038/s41467-023-36897-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Genetic sharing is extensively observed for autoimmune diseases, but the causal variants and their underlying molecular mechanisms remain largely unknown. Through systematic investigation of autoimmune disease pleiotropic loci, we found most of these shared genetic effects are transmitted from regulatory code. We used an evidence-based strategy to functionally prioritize causal pleiotropic variants and identify their target genes. A top-ranked pleiotropic variant, rs4728142, yielded many lines of evidence as being causal. Mechanistically, the rs4728142-containing region interacts with the IRF5 alternative promoter in an allele-specific manner and orchestrates its upstream enhancer to regulate IRF5 alternative promoter usage through chromatin looping. A putative structural regulator, ZBTB3, mediates the allele-specific loop to promote IRF5-short transcript expression at the rs4728142 risk allele, resulting in IRF5 overactivation and M1 macrophage polarization. Together, our findings establish a causal mechanism between the regulatory variant and fine-scale molecular phenotype underlying the dysfunction of pleiotropic genes in human autoimmunity.
Collapse
|
14
|
Zhang H, Wang Y, Ma Y, Tang K, Zhang C, Wang M, Zhang X, Xue M, Jia X, Hu H, Li N, Zhuang R, Jin B, Chen L, Zhang Y, Zhang Y. Increased CD4 +CD8 + Double Positive T Cells during Hantaan Virus Infection. Viruses 2022; 14:2243. [PMID: 36298798 PMCID: PMC9611689 DOI: 10.3390/v14102243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 09/02/2023] Open
Abstract
Hantaan virus (HTNV) infection causes an epidemic of hemorrhagic fever with renal syndrome (HFRS) mainly in Asia. It is well known that T cells mediated anti-viral immune response. Although previous studies showed that double positive T (DP T) cells, a little portion of T lymphocytes, were involved in adaptive immune response during virus infection, their kinetic changes and roles in HTNV infection have not yet been explored. In this study, we characterized DP T cells from HFRS patients based on flow cytometry data combined with scRNA-seq data. We showed that HTNV infection caused the upregulation of DP T cells in the peripheral blood, which were correlated with disease stage. The scRNA-seq data clustered DP T cells, unraveled their gene expression profile, and estimated the ordering of these cells. The production of granzyme B and CD107a from DP T cells and the abundant TCR distribution indicated the anti-viral property of DP T cells. In conclusion, this study identified, for the first time, an accumulation of DP T cells in the peripheral blood of HFRS patients and suggested these DP T cells belonging to CD8+T cells lineage. The DP T cells shared the similar characteristics with cytotoxic T cells (CTL) and exerted an anti-viral role in HFRS.
Collapse
Affiliation(s)
- Huiyuan Zhang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Department of Immunology, School of Basic Medical Sciences, Yan’an University, Yan’an 716000, China
| | - Yazhen Wang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Ying Ma
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Kang Tang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Chunmei Zhang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Meng Wang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Department of Immunology, School of Basic Medical Sciences, Yan’an University, Yan’an 716000, China
| | - Xiyue Zhang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Yan’an University, Yan’an 716000, China
| | - Manling Xue
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Department of Immunology, School of Basic Medical Sciences, Yan’an University, Yan’an 716000, China
| | | | - Haifeng Hu
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
| | - Na Li
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Ran Zhuang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Boquan Jin
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Lihua Chen
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Yun Zhang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Yusi Zhang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
15
|
Wang B, Hu S, Fu X, Li L. CD4
+
Cytotoxic T Lymphocytes in Cancer Immunity and Immunotherapy. Adv Biol (Weinh) 2022; 7:e2200169. [PMID: 36193961 DOI: 10.1002/adbi.202200169] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/24/2022] [Indexed: 11/05/2022]
Abstract
CD4+ T cells have the ability to differentiate into relatively specialized effector subsets after exposure to innate immune signals. The remarkable plasticity of CD4+ T cells is required to achieve immune responses in different tissues and against various pathogens. Numerous studies have shown that CD4+ T cells can play direct and indispensable roles in protective immunity by killing infected or transformed cells. Although the lineage decision of commitment to the CD4+ or CD8+ cell lineage is once thought to be inflexible, the identification of antigen-experienced CD4+ T cells with cytotoxic activity suggests the existence of unexpected plasticity for these cells. The recognition of CD4+ cytotoxic T lymphocytes (CTLs) and the mechanisms driving the differentiation of this particular cell subset create opportunities to explore the roles of these effector cells in protective immunity and immune-related pathology. CD4+ CTLs are proven to play a protective role in antiviral immunity. Here, the latest investigations on the phenotypic and functional features of CD4+ CTLs and their roles in antitumor immunity and immunotherapy are briefly reviewed.
Collapse
Affiliation(s)
- Boyu Wang
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| | - Shaojie Hu
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| | - Xiangning Fu
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| | - Lequn Li
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| |
Collapse
|
16
|
Xu HM, Xu J, Yang MF, Liang YJ, Peng QZ, Zhang Y, Tian CM, Nie YQ, Wang LS, Yao J, Li DF. Epigenetic DNA methylation of Zbtb7b regulates the population of double-positive CD4 +CD8 + T cells in ulcerative colitis. J Transl Med 2022; 20:289. [PMID: 35761286 PMCID: PMC9235105 DOI: 10.1186/s12967-022-03477-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/11/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND AND AIMS Ulcerative colitis (UC) is a heterogeneous disorder with complex pathogenesis. Therefore, in the present study, we aimed to assess genome-wide DNA methylation changes associated explicitly with the pathogenesis of UC. METHODS DNA methylation changes were identified by comparing UC tissues with healthy controls (HCs) from the GEO databases. The candidate genes were obtained and verified in clinical samples. Moreover, the underlying molecular mechanism related to Zbtb7b in the pathogenesis of UC was explored using the dextran sodium sulfate (DSS)-induced colitis model. RESULTS Bioinformatic analysis from GEO databases confirmed that Zbtb7b, known as Th-inducing POZ-Kruppel factor (ThPOK), was demethylated in UC tissues. Then, we demonstrated that Zbtb7b was in a hypo-methylation pattern through the DSS-induced colitis model (P = 0.0357), whereas the expression of Zbtb7b at the mRNA and protein levels was significantly up-regulated in the inflamed colonic tissues of UC patients (qRT-PCR, WB, IHC: P < 0.0001, P = 0.0079, P < 0.0001) and DSS-induced colitis model (qRT-PCR, WB, IHC: P < 0.0001, P = 0.0045, P = 0.0004). Moreover, the expression of Zbtb7b was positively associated with the degree of UC activity. Mechanically, over-expression of Zbtb7b might activate the maturation of CD4+T cells (FCM, IF: P = 0.0240, P = 0.0003) and repress the differentiation of double-positive CD4+CD8+T (DP CD4+CD8+T) cells (FCM, IF: P = 0.0247, P = 0.0118), contributing to the production of inflammatory cytokines, such as TNF-α (P = 0.0005, P = 0.0005), IL-17 (P = 0.0014, P = 0.0381), and IFN-γ (P = 0.0016, P = 0.0042), in the serum and colonic tissue of DSS-induced colitis model. CONCLUSIONS Epigenetic DNA hypo-methylation of Zbtb7b activated the maturation of CD4+T cells and repressed the differentiation of DP CD4+CD8+ T cells, resulting in the production of inflammatory cytokines and colonic inflammation in UC. Therefore, Zbtb7b might be a diagnostic and therapeutic biomarker for UC, and hypo-methylation might affect the biological function of Zbtb7b.
Collapse
Affiliation(s)
- Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Yuexiu District, No. 1, Panfu Road, Guangzhou, 510180, Guangdong, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Yuexiu District, No. 1, Panfu Road, Guangzhou, 510180, Guangdong, China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Yu-Jie Liang
- Shenzhen Kangning Hospital, Shenzhen, 518020, Guangdong, China
| | - Quan-Zhou Peng
- Department of Pathology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, 516000, Guangdong, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Yuexiu District, No. 1, Panfu Road, Guangzhou, 510180, Guangdong, China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Luohu District, No. 1017, Dongmen North Road, Shenzhen, 518020, Guangdong, China.
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Luohu District, No. 1017, Dongmen North Road, Shenzhen, 518020, Guangdong, China.
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Luohu District, No. 1017, Dongmen North Road, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
17
|
Gao Y, Zamisch M, Vacchio M, Chopp L, Ciucci T, Paine EL, Lyons GC, Nie J, Xiao Q, Zvezdova E, Love PE, Vinson CR, Jenkins LM, Bosselut R. NuRD complex recruitment to Thpok mediates CD4 + T cell lineage differentiation. Sci Immunol 2022; 7:eabn5917. [PMID: 35687698 DOI: 10.1126/sciimmunol.abn5917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although BTB-zinc finger (BTB-ZF) transcription factors control the differentiation of multiple hematopoietic and immune lineages, how they function is poorly understood. The BTB-ZF factor Thpok controls intrathymic CD4+ T cell development and the expression of most CD4+ and CD8+ lineage genes. Here, we identify the nucleosome remodeling and deacetylase (NuRD) complex as a critical Thpok cofactor. Using mass spectrometry and coimmunoprecipitation in primary T cells, we show that Thpok binds NuRD components independently of DNA association. We locate three amino acid residues within the Thpok BTB domain that are required for both NuRD binding and Thpok functions. Conversely, a chimeric protein merging the NuRD component Mta2 to a BTB-less version of Thpok supports CD4+ T cell development, indicating that NuRD recruitment recapitulates the functions of the Thpok BTB domain. We found that NuRD mediates Thpok repression of CD8+ lineage genes, including the transcription factor Runx3, but is dispensable for Cd4 expression. We show that these functions cannot be performed by the BTB domain of the Thpok-related factor Bcl6, which fails to bind NuRD. Thus, cofactor binding critically contributes to the functional specificity of BTB-ZF factors, which control the differentiation of most hematopoietic subsets.
Collapse
Affiliation(s)
- Yayi Gao
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Monica Zamisch
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Melanie Vacchio
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Laura Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.,Immunology Graduate Group, University of Pennsylvania Medical School, Philadelphia, PA, USA
| | - Thomas Ciucci
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Elliott L Paine
- Collaborative Protein Technology Resource, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Gaelyn C Lyons
- Collaborative Protein Technology Resource, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jia Nie
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Qi Xiao
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ekaterina Zvezdova
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Paul E Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Charles R Vinson
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa M Jenkins
- Immunology Graduate Group, University of Pennsylvania Medical School, Philadelphia, PA, USA
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
18
|
Schad SE, Chow A, Mangarin L, Pan H, Zhang J, Ceglia N, Caushi JX, Malandro N, Zappasodi R, Gigoux M, Hirschhorn D, Budhu S, Amisaki M, Arniella M, Redmond D, Chaft J, Forde PM, Gainor JF, Hellmann MD, Balachandran V, Shah S, Smith KN, Pardoll D, Elemento O, Wolchok JD, Merghoub T. Tumor-induced double positive T cells display distinct lineage commitment mechanisms and functions. J Exp Med 2022; 219:e20212169. [PMID: 35604411 PMCID: PMC9130031 DOI: 10.1084/jem.20212169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/04/2022] [Accepted: 03/08/2022] [Indexed: 11/04/2022] Open
Abstract
Transcription factors ThPOK and Runx3 regulate the differentiation of "helper" CD4+ and "cytotoxic" CD8+ T cell lineages respectively, inducing single positive (SP) T cells that enter the periphery with the expression of either the CD4 or CD8 co-receptor. Despite the expectation that these cell fates are mutually exclusive and that mature CD4+CD8+ double positive (DP) T cells are present in healthy individuals and augmented in the context of disease, yet their molecular features and pathophysiologic role are disputed. Here, we show DP T cells in murine and human tumors as a heterogenous population originating from SP T cells which re-express the opposite co-receptor and acquire features of the opposite cell type's phenotype and function following TCR stimulation. We identified distinct clonally expanded DP T cells in human melanoma and lung cancer by scRNA sequencing and demonstrated their tumor reactivity in cytotoxicity assays. Our findings indicate that antigen stimulation induces SP T cells to differentiate into DP T cell subsets gaining in polyfunctional characteristics.
Collapse
Affiliation(s)
- Sara E. Schad
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Andrew Chow
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Levi Mangarin
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering Cancer Center, New York, NY
| | - Heng Pan
- Weill Cornell Medical College, New York, NY
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Jiajia Zhang
- John Hopkins University School of Medicine, Baltimore, MD
- Bloomberg-Kimmel Institute for Cancer Immunotherapy at John Hopkins, Baltimore, MD
| | - Nicholas Ceglia
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Justina X. Caushi
- John Hopkins University School of Medicine, Baltimore, MD
- Bloomberg-Kimmel Institute for Cancer Immunotherapy at John Hopkins, Baltimore, MD
| | - Nicole Malandro
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Roberta Zappasodi
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Mathieu Gigoux
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daniel Hirschhorn
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sadna Budhu
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering Cancer Center, New York, NY
| | - Masataka Amisaki
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Jamie Chaft
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Patrick M. Forde
- John Hopkins University School of Medicine, Baltimore, MD
- Bloomberg-Kimmel Institute for Cancer Immunotherapy at John Hopkins, Baltimore, MD
| | - Justin F. Gainor
- Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Matthew D. Hellmann
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vinod Balachandran
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sohrab Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kellie N. Smith
- John Hopkins University School of Medicine, Baltimore, MD
- Bloomberg-Kimmel Institute for Cancer Immunotherapy at John Hopkins, Baltimore, MD
| | - Drew Pardoll
- John Hopkins University School of Medicine, Baltimore, MD
- Bloomberg-Kimmel Institute for Cancer Immunotherapy at John Hopkins, Baltimore, MD
| | - Olivier Elemento
- Weill Cornell Medical College, New York, NY
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Jedd D. Wolchok
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
19
|
Preglej T, Ellmeier W. CD4 + Cytotoxic T cells - Phenotype, Function and Transcriptional Networks Controlling Their Differentiation Pathways. Immunol Lett 2022; 247:27-42. [PMID: 35568324 DOI: 10.1016/j.imlet.2022.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
The two major subsets of peripheral T cells are classically divided into the CD4+ T helper cells and the cytotoxic CD8+ T cell lineage. However, the appearance of some effector CD4+ T cell populations displaying cytotoxic activity, in particular during viral infections, has been observed, thus breaking the functional dichotomy of CD4+ and CD8+ T lymphocytes. The strong association of the appearance of CD4+ cytotoxic T lymphocytes (CD4 CTLs) with viral infections suggests an important role of this subset in antiviral immunity by controlling viral replication and infection. Moreover, CD4 CTLs have been linked with anti-tumor activity and might also cause immunopathology in autoimmune diseases. This raises interest into the molecular mechanisms regulating CD4 CTL differentiation, which are poorly understood in comparison to differentiation pathways of other Th subsets. In this review, we provide a brief overview about key features of CD4 CTLs, including their role in viral infections and cancer immunity, and about the link between CD4 CTLs and immune-mediated diseases. Subsequently, we will discuss the current knowledge about transcriptional and epigenetic networks controlling CD4 CTL differentiation and highlight recent data suggesting a role for histone deacetylases in the generation of CD4 CTLs.
Collapse
Affiliation(s)
- Teresa Preglej
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna.
| |
Collapse
|
20
|
Li C, Kim HK, Prakhar P, Luo S, Crossman A, Ligons DL, Luckey MA, Awasthi P, Gress RE, Park JH. Chemokine receptor CCR9 suppresses the differentiation of CD4 +CD8αα + intraepithelial T cells in the gut. Mucosal Immunol 2022; 15:882-895. [PMID: 35778600 PMCID: PMC9391308 DOI: 10.1038/s41385-022-00540-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
The chemokine receptor CCR9 equips T cells with the ability to respond to CCL25, a chemokine that is highly expressed in the thymus and the small intestine (SI). Notably, CCR9 is mostly expressed on CD8 but not on CD4 lineage T cells, thus imposing distinct tissue tropism on CD4 and CD8 T cells. The molecular basis and the consequences for such a dichotomy, however, have not been fully examined and explained. Here, we demonstrate that the forced expression of CCR9 interferes with the tissue trafficking and differentiation of CD4 T cells in SI intraepithelial tissues. While CCR9 overexpression did not alter CD4 T cell generation in the thymus, the forced expression of CCR9 was detrimental for the proper tissue distribution of CD4 T cells in the periphery, and strikingly also for their terminal differentiation in the gut epithelium. Specifically, the differentiation of SI epithelial CD4 T cells into immunoregulatory CD4+CD8αα+ T cells was impaired by overexpression of CCR9 and conversely increased by the genetic deletion of CCR9. Collectively, our results reveal a previously unappreciated role for CCR9 in the tissue homeostasis and effector function of CD4 T cells in the gut.
Collapse
Affiliation(s)
- Can Li
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Hye Kyung Kim
- Experimental Transplantation and Immunotherapy Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Praveen Prakhar
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Shunqun Luo
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Assiatu Crossman
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Davinna L Ligons
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Megan A Luckey
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Parirokh Awasthi
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, National Institute of Health, Frederick, MD, 21701, USA
| | - Ronald E Gress
- Experimental Transplantation and Immunotherapy Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
21
|
Nie J, Carpenter AC, Chopp LB, Chen T, Balmaceno-Criss M, Ciucci T, Xiao Q, Kelly MC, McGavern DB, Belkaid Y, Bosselut R. The transcription factor LRF promotes integrin β7 expression by and gut homing of CD8αα + intraepithelial lymphocyte precursors. Nat Immunol 2022; 23:594-604. [PMID: 35354951 PMCID: PMC9290758 DOI: 10.1038/s41590-022-01161-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/10/2022] [Indexed: 11/08/2022]
Abstract
While T cell receptor (TCR) αβ+CD8α+CD8β- intraepithelial lymphocytes (CD8αα+ IELs) differentiate from thymic IEL precursors (IELps) and contribute to gut homeostasis, the transcriptional control of their development remains poorly understood. In the present study we showed that mouse thymocytes deficient for the transcription factor leukemia/lymphoma-related factor (LRF) failed to generate TCRαβ+CD8αα+ IELs and their CD8β-expressing counterparts, despite giving rise to thymus and spleen CD8αβ+ T cells. LRF-deficient IELps failed to migrate to the intestine and to protect against T cell-induced colitis, and had impaired expression of the gut-homing integrin α4β7. Single-cell RNA-sequencing found that LRF was necessary for the expression of genes characteristic of the most mature IELps, including Itgb7, encoding the β7 subunit of α4β7. Chromatin immunoprecipitation and gene-regulatory network analyses both defined Itgb7 as an LRF target. Our study identifies LRF as an essential transcriptional regulator of IELp maturation in the thymus and subsequent migration to the intestinal epithelium.
Collapse
Affiliation(s)
- Jia Nie
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Andrea C Carpenter
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD, USA
| | - Laura B Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
- Immunology Graduate Group, University of Pennsylvania Medical School, Philadelphia, PA, USA
| | - Ting Chen
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mariah Balmaceno-Criss
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Thomas Ciucci
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Qi Xiao
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michael C Kelly
- CCR Single Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunology Section, Laboratory of Immune System Biology, Bethesda, MD, USA
- Microbiome core, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD, USA
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
22
|
Hiraiwa S, Hashimoto N, Ueda T, Sugiyama T, Yokoyama K, Matsuyama T, Tajiri T, Nakamura N. Transformed Mycosis Fungoides with a Cytotoxic T-Cell Phenotype. Int J Surg Pathol 2022; 30:816-822. [DOI: 10.1177/10668969221084267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mycosis fungoides (MF) is a cutaneous T-cell lymphoma and occasionally undergo large cell transformation (transformed MF, TMF), resulting in a poorer clinical outcome. We describe a case of TMF with an immunophenotypic shift. MF showed the CD4 + CD8- T-cell phenotype, while TMF exhibited the CD4-CD8 + T-cell phenotype. Moreover, TMF expressed cytotoxic markers of TIA1 and Granzyme B. A PCR analysis of T-cell receptor genes revealed peak sizes that were the same in both biopsies, indicating that these two lymphomas were derived from the same clone.
Collapse
Affiliation(s)
- Shinichiro Hiraiwa
- Department of Pathology, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Norisato Hashimoto
- Department of Hematology and Oncology, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Tomoki Ueda
- Department of Hematology and Oncology, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Tomoko Sugiyama
- Department of Pathology, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Kenji Yokoyama
- Department of Hematology and Oncology, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Takashi Matsuyama
- Department of Dermatology, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Takuma Tajiri
- Department of Pathology, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
23
|
Nunes-Cabaço H, Ramalho-dos-Santos A, Pires AR, Martins LR, Barata JT, Sousa AE. Human CD4 T Cells From Thymus and Cord Blood Are Convertible Into CD8 T Cells by IL-4. Front Immunol 2022; 13:834033. [PMID: 35222424 PMCID: PMC8880616 DOI: 10.3389/fimmu.2022.834033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Commitment to the CD4+ or CD8+ T cell lineages is linked to the acquisition of a functional program broadly defined by helper and cytotoxic properties, respectively. The mechanisms underlying these processes in the human thymus remain largely unclear. Moreover, recent thymic emigrants are thought to have some degree of plasticity, which may be important for the shaping of the immune system and adjustment to specific peripheral needs. We show here that IL-4 induces proliferation-independent de novo synthesis of CD8αβ in human CD4 single-positive (SP) thymocytes, generating a stable CD8SP population that features a diverse TCRαβ repertoire, CD4 expression shut-down and ThPOK downregulation. IL-4 also promotes an innate-like program in both CD4SP and CD8SP thymocytes, characterized by Eomes upregulation in the absence of T-bet, in line with its recognized role in the generation of thymic innate-like CD8+ T cells. The clinical relevance of these findings is further supported by the profile of IL-4 production and IL-4 receptor expression that we identified in the human thymus. Importantly, human cord blood CD4+ T cells preserve the ability to generate Eomes+ CD8+ T cells in the presence of IL-4, with implications in neonatal immunity. Our results support a role for IL-4 in the dynamic regulation of human thymocyte plasticity and identify novel strategies to modulate immune responses.
Collapse
Affiliation(s)
- Helena Nunes-Cabaço
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | | | | | | | - Ana E. Sousa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
24
|
Planeta Kepp K. Bioinorganic Chemistry of Zinc in Relation to the Immune System. Chembiochem 2021; 23:e202100554. [PMID: 34889510 DOI: 10.1002/cbic.202100554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/09/2021] [Indexed: 01/18/2023]
Abstract
Zinc is well-known to have a central role in human inflammation and immunity and is itself an anti-inflammatory and antiviral agent. Despite its massively documented role in such processes, the underlying chemistry of zinc in relation to specific proteins and pathways of the immune system has not received much focus. This short review provides an overview of this topic, with emphasis on the structures of key proteins, zinc coordination chemistry, and probable mechanisms involved in zinc-based immunity, with some focus points for future chemical and biological research.
Collapse
Affiliation(s)
- Kasper Planeta Kepp
- DTU Chemistry, Technical University of Denmark, Building 206, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
25
|
Andrews LP, Vignali KM, Szymczak-Workman AL, Burton AR, Brunazzi EA, Ngiow SF, Harusato A, Sharpe AH, Wherry EJ, Taniuchi I, Workman CJ, Vignali DAA. A Cre-driven allele-conditioning line to interrogate CD4 + conventional T cells. Immunity 2021; 54:2209-2217.e6. [PMID: 34551314 DOI: 10.1016/j.immuni.2021.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/04/2021] [Accepted: 08/30/2021] [Indexed: 01/22/2023]
Abstract
CD4+ T cells share common developmental pathways with CD8+ T cells, and upon maturation, CD4+ T conventional T (Tconv) cells lack phenotypic markers that distinguish these cells from FoxP3+ T regulatory cells. We developed a tamoxifen-inducible ThPOKCreERT2.hCD2 line with Frt sites inserted on either side of the CreERT2-hCD2 cassette, and a Foxp3Ametrine-FlpO strain, expressing Ametrine and FlpO in Foxp3+ cells. Breeding these mice resulted in a CD4conviCreERT2-hCD2 line that allows for the specific manipulation of a gene in CD4+ Tconv cells. As FlpO removes the CreERT2-hCD2 cassette, CD4+ Treg cells are spared from Cre activity, which we refer to as allele conditioning. Comparison with an E8IiCreERT2.GFP mouse that enables inducible targeting of CD8+ T cells, and deletion of two inhibitory receptors, PD-1 and LAG-3, in a melanoma model, support the fidelity of these lines. These engineered mouse strains present a resource for the temporal manipulation of genes in CD4+ T cells and CD4+ Tconv cells.
Collapse
Affiliation(s)
- Lawrence P Andrews
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Kate M Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | | | - Amanda R Burton
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Erin A Brunazzi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Shin Foong Ngiow
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akihito Harusato
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - E John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ichiro Taniuchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA.
| |
Collapse
|
26
|
Egawa T. A Fateful Decision in the Thymus Controlled by the Transcription Factor ThPOK. THE JOURNAL OF IMMUNOLOGY 2021; 206:1981-1982. [PMID: 33879577 DOI: 10.4049/jimmunol.2100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
27
|
Basu J, Reis BS, Peri S, Zha J, Hua X, Ge L, Ferchen K, Nicolas E, Czyzewicz P, Cai KQ, Tan Y, Fuxman Bass JI, Walhout AJM, Grimes HL, Grivennikov SI, Mucida D, Kappes DJ. Essential role of a ThPOK autoregulatory loop in the maintenance of mature CD4 + T cell identity and function. Nat Immunol 2021; 22:969-982. [PMID: 34312548 DOI: 10.1038/s41590-021-00980-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
The transcription factor ThPOK (encoded by the Zbtb7b gene) controls homeostasis and differentiation of mature helper T cells, while opposing their differentiation to CD4+ intraepithelial lymphocytes (IELs) in the intestinal mucosa. Thus CD4 IEL differentiation requires ThPOK transcriptional repression via reactivation of the ThPOK transcriptional silencer element (SilThPOK). In the present study, we describe a new autoregulatory loop whereby ThPOK binds to the SilThPOK to maintain its own long-term expression in CD4 T cells. Disruption of this loop in vivo prevents persistent ThPOK expression, leads to genome-wide changes in chromatin accessibility and derepresses the colonic regulatory T (Treg) cell gene expression signature. This promotes selective differentiation of naive CD4 T cells into GITRloPD-1loCD25lo (Triplelo) Treg cells and conversion to CD4+ IELs in the gut, thereby providing dominant protection from colitis. Hence, the ThPOK autoregulatory loop represents a key mechanism to physiologically control ThPOK expression and T cell differentiation in the gut, with potential therapeutic relevance.
Collapse
Affiliation(s)
- Jayati Basu
- Blood Cell Development and Cancer, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Suraj Peri
- Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jikun Zha
- Blood Cell Development and Cancer, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Xiang Hua
- Blood Cell Development and Cancer, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lu Ge
- Blood Cell Development and Cancer, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kyle Ferchen
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital 10 Medical Center, Cincinnati, OH, USA
| | - Emmanuelle Nicolas
- Blood Cell Development and Cancer, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Philip Czyzewicz
- Blood Cell Development and Cancer, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kathy Q Cai
- Cancer Signaling and Epigenetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yinfei Tan
- Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Juan I Fuxman Bass
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Albertha J M Walhout
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - H Leighton Grimes
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital 10 Medical Center, Cincinnati, OH, USA
| | - Sergei I Grivennikov
- Cancer Prevention and Control, Fox Chase Cancer Center, Philadelphia, PA, USA.,Cedars-Sinai Medical Center, Departments of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Dietmar J Kappes
- Blood Cell Development and Cancer, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Cheng ZY, He TT, Gao XM, Zhao Y, Wang J. ZBTB Transcription Factors: Key Regulators of the Development, Differentiation and Effector Function of T Cells. Front Immunol 2021; 12:713294. [PMID: 34349770 PMCID: PMC8326903 DOI: 10.3389/fimmu.2021.713294] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
The development and differentiation of T cells represents a long and highly coordinated, yet flexible at some points, pathway, along which the sequential and dynamic expressions of different transcriptional factors play prominent roles at multiple steps. The large ZBTB family comprises a diverse group of transcriptional factors, and many of them have emerged as critical factors that regulate the lineage commitment, differentiation and effector function of hematopoietic-derived cells as well as a variety of other developmental events. Within the T-cell lineage, several ZBTB proteins, including ZBTB1, ZBTB17, ZBTB7B (THPOK) and BCL6 (ZBTB27), mainly regulate the development and/or differentiation of conventional CD4/CD8 αβ+ T cells, whereas ZBTB16 (PLZF) is essential for the development and function of innate-like unconventional γδ+ T & invariant NKT cells. Given the critical role of T cells in host defenses against infections/tumors and in the pathogenesis of many inflammatory disorders, we herein summarize the roles of fourteen ZBTB family members in the development, differentiation and effector function of both conventional and unconventional T cells as well as the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Zhong-Yan Cheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ting-Ting He
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiao-Ming Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ying Zhao
- Department of Pathophysiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jun Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
29
|
Pruner KB, Pepper M. Local memory CD4 T cell niches in respiratory viral infection. J Exp Med 2021; 218:212432. [PMID: 34160551 PMCID: PMC8225681 DOI: 10.1084/jem.20201733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 12/26/2022] Open
Abstract
Respiratory viral infections present a major threat to global health and prosperity. Over the past century, several have developed into crippling pandemics, including the SARS-CoV-2 virus. Although the generation of neutralizing serum antibodies in response to natural immunity and vaccination are considered to be hallmarks of viral immune protection, antibodies from long-lived plasma cells are subject to immune escape from heterologous clades of zoonotic, recombined, or mutated viruses. Local immunity in the lung can be generated through resident memory immune subsets that rapidly respond to secondary infection and protect from heterologous infection. Although many immune cells are required to achieve the phenomenon of resident memory, herein we highlight the pleiotropic functions of CD4 tissue resident memory T cells in the lung and discuss the implications of resident memory for vaccine design.
Collapse
Affiliation(s)
- Kurt B Pruner
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
30
|
Castro-Piedras I, Sharma M, Brelsfoard J, Vartak D, Martinez EG, Rivera C, Molehin D, Bright RK, Fokar M, Guindon J, Pruitt K. Nuclear Dishevelled targets gene regulatory regions and promotes tumor growth. EMBO Rep 2021; 22:e50600. [PMID: 33860601 DOI: 10.15252/embr.202050600] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
Dishevelled (DVL) critically regulates Wnt signaling and contributes to a wide spectrum of diseases and is important in normal and pathophysiological settings. However, how it mediates diverse cellular functions remains poorly understood. Recent discoveries have revealed that constitutive Wnt pathway activation contributes to breast cancer malignancy, but the mechanisms by which this occurs are unknown and very few studies have examined the nuclear role of DVL. Here, we have performed DVL3 ChIP-seq analyses and identify novel target genes bound by DVL3. We show that DVL3 depletion alters KMT2D binding to novel targets and changes their epigenetic marks and mRNA levels. We further demonstrate that DVL3 inhibition leads to decreased tumor growth in two different breast cancer models in vivo. Our data uncover new DVL3 functions through its regulation of multiple genes involved in developmental biology, antigen presentation, metabolism, chromatin remodeling, and tumorigenesis. Overall, our study provides unique insight into the function of nuclear DVL, which helps to define its role in mediating aberrant Wnt signaling.
Collapse
Affiliation(s)
- Isabel Castro-Piedras
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Monica Sharma
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jennifer Brelsfoard
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - David Vartak
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edgar G Martinez
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Cristian Rivera
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Deborah Molehin
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert K Bright
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mohamed Fokar
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, USA
| | - Josee Guindon
- Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
31
|
Gülich AF, Rica R, Tizian C, Viczenczova C, Khamina K, Faux T, Hainberger D, Penz T, Bosselut R, Bock C, Laiho A, Elo LL, Bergthaler A, Ellmeier W, Sakaguchi S. Complex Interplay Between MAZR and Runx3 Regulates the Generation of Cytotoxic T Lymphocyte and Memory T Cells. Front Immunol 2021; 12:535039. [PMID: 33815354 PMCID: PMC8010151 DOI: 10.3389/fimmu.2021.535039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The BTB zinc finger transcription factor MAZR (also known as PATZ1) controls, partially in synergy with the transcription factor Runx3, the development of CD8 lineage T cells. Here we explored the role of MAZR as well as combined activities of MAZR/Runx3 during cytotoxic T lymphocyte (CTL) and memory CD8+ T cell differentiation. In contrast to the essential role of Runx3 for CTL effector function, the deletion of MAZR had a mild effect on the generation of CTLs in vitro. However, a transcriptome analysis demonstrated that the combined deletion of MAZR and Runx3 resulted in much more widespread downregulation of CTL signature genes compared to single Runx3 deletion, indicating that MAZR partially compensates for loss of Runx3 in CTLs. Moreover, in line with the findings made in vitro, the analysis of CTL responses to LCMV infection revealed that MAZR and Runx3 cooperatively regulate the expression of CD8α, Granzyme B and perforin in vivo. Interestingly, while memory T cell differentiation is severely impaired in Runx3-deficient mice, the deletion of MAZR leads to an enlargement of the long-lived memory subset and also partially restored the differentiation defect caused by loss of Runx3. This indicates distinct functions of MAZR and Runx3 in the generation of memory T cell subsets, which is in contrast to their cooperative roles in CTLs. Together, our study demonstrates complex interplay between MAZR and Runx3 during CTL and memory T cell differentiation, and provides further insight into the molecular mechanisms underlying the establishment of CTL and memory T cell pools.
Collapse
Affiliation(s)
- Alexandra Franziska Gülich
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ramona Rica
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Caroline Tizian
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Csilla Viczenczova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kseniya Khamina
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Faux
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Daniela Hainberger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Remy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L. Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Lee WS, Lavery L, Rousseaux MWC, Rutledge EB, Jang Y, Wan YW, Wu SR, Kim W, Al-Ramahi I, Rath S, Adamski CJ, Bondar VV, Tewari A, Soleimani S, Mota S, Yalamanchili HK, Orr HT, Liu Z, Botas J, Zoghbi HY. Dual targeting of brain region-specific kinases potentiates neurological rescue in Spinocerebellar ataxia type 1. EMBO J 2021; 40:e106106. [PMID: 33709453 DOI: 10.15252/embj.2020106106] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 12/26/2022] Open
Abstract
A critical question in neurodegeneration is why the accumulation of disease-driving proteins causes selective neuronal loss despite their brain-wide expression. In Spinocerebellar ataxia type 1 (SCA1), accumulation of polyglutamine-expanded Ataxin-1 (ATXN1) causes selective degeneration of cerebellar and brainstem neurons. Previous studies revealed that inhibiting Msk1 reduces phosphorylation of ATXN1 at S776 as well as its levels leading to improved cerebellar function. However, there are no regulators that modulate ATXN1 in the brainstem-the brain region whose pathology is most closely linked to premature death. To identify new regulators of ATXN1, we performed genetic screens and identified a transcription factor-kinase axis (ZBTB7B-RSK3) that regulates ATXN1 levels. Unlike MSK1, RSK3 is highly expressed in the human and mouse brainstems where it regulates Atxn1 by phosphorylating S776. Reducing Rsk3 rescues brainstem-associated pathologies and deficits, and lowering Rsk3 and Msk1 together improves cerebellar and brainstem function in an SCA1 mouse model. Our results demonstrate that selective vulnerability of brain regions in SCA1 is governed by region-specific regulators of ATXN1, and targeting multiple regulators could rescue multiple degenerating brain areas.
Collapse
Affiliation(s)
- Won-Seok Lee
- Integrative Molecular and Biomedical Science Program, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Laura Lavery
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Maxime W C Rousseaux
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Eric B Rutledge
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Youjin Jang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Ying-Wooi Wan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Sih-Rong Wu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Wonho Kim
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Howard Hughes Medical Institute, Houston, TX, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Smruti Rath
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Carolyn J Adamski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Howard Hughes Medical Institute, Houston, TX, USA
| | - Vitaliy V Bondar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Ambika Tewari
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Shirin Soleimani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Samantha Mota
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Hari K Yalamanchili
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Harry T Orr
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA.,Howard Hughes Medical Institute, Houston, TX, USA
| |
Collapse
|
33
|
Single-cell transcriptomes of peripheral blood cells indicate and elucidate severity of COVID-19. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1634-1644. [PMID: 33564978 PMCID: PMC7872720 DOI: 10.1007/s11427-020-1880-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/07/2021] [Indexed: 12/27/2022]
Abstract
The blood and immune system of coronavirus disease 2019 (COVID-19) infected patients are dysfunctional, and numerous studies have been conducted to resolve their characteristics and pathogenic mechanisms. Nevertheless, the variations of immune responses along with disease severity have not been comprehensively documented. Here, we profiled the single-cell transcriptomes of 96,313 peripheral blood mononuclear cells (PBMCs) derived from 12 COVID-19 patients (including four moderate, four severe and four critical cases) and three healthy donors. We showed that proliferative CD8 effector T cells with declined immune functions and cytotoxicity accumulated in the critical stage. By contrast, the quantity of natural killer (NK) cells was significantly reduced, while they exhibited enhanced immune activities. Notably, a gradually attenuated responseto COVID-19 along with disease severity was observed in monocytes, in terms of cellular composition, transcriptional discrepancy and transcription factor regulatory network. Furthermore, we identified immune cell-type dependent cytokine signatures distinguishing the severity of COVID-19 patients. In addition, cell interactions between CD8 effector T/NK cells and monocytes mediated by inflammatory cytokines were enhanced in moderate and severe stages, but weakened in critical cases. Collectively, our work uncovers the cellular and molecular players underlying the disordered and heterogeneous immune responses associated with COVID-19 severity, which could provide valuable insights for the treatment of critical COVID-19 patients.
Collapse
|
34
|
Chopp LB, Gopalan V, Ciucci T, Ruchinskas A, Rae Z, Lagarde M, Gao Y, Li C, Bosticardo M, Pala F, Livak F, Kelly MC, Hannenhalli S, Bosselut R. An Integrated Epigenomic and Transcriptomic Map of Mouse and Human αβ T Cell Development. Immunity 2020; 53:1182-1201.e8. [PMID: 33242395 PMCID: PMC8641659 DOI: 10.1016/j.immuni.2020.10.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/25/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
αβ lineage T cells, most of which are CD4+ or CD8+ and recognize MHC I- or MHC II-presented antigens, are essential for immune responses and develop from CD4+CD8+ thymocytes. The absence of in vitro models and the heterogeneity of αβ thymocytes have hampered analyses of their intrathymic differentiation. Here, combining single-cell RNA and ATAC (chromatin accessibility) sequencing, we identified mouse and human αβ thymocyte developmental trajectories. We demonstrated asymmetric emergence of CD4+ and CD8+ lineages, matched differentiation programs of agonist-signaled cells to their MHC specificity, and identified correspondences between mouse and human transcriptomic and epigenomic patterns. Through computational analysis of single-cell data and binding sites for the CD4+-lineage transcription factor Thpok, we inferred transcriptional networks associated with CD4+- or CD8+-lineage differentiation, and with expression of Thpok or of the CD8+-lineage factor Runx3. Our findings provide insight into the mechanisms of CD4+ and CD8+ T cell differentiation and a foundation for mechanistic investigations of αβ T cell development.
Collapse
Affiliation(s)
- Laura B Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Immunology Graduate Group, University of Pennsylvania Medical School, Philadelphia, PA, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Ciucci
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Allison Ruchinskas
- Cancer Research Technology Program, Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Zachary Rae
- Cancer Research Technology Program, Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Manon Lagarde
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yayi Gao
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Caiyi Li
- Laboratory of Genomic Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ferenc Livak
- Laboratory of Genomic Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael C Kelly
- Cancer Research Technology Program, Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
35
|
Magen A, Nie J, Ciucci T, Tamoutounour S, Zhao Y, Mehta M, Tran B, McGavern DB, Hannenhalli S, Bosselut R. Single-Cell Profiling Defines Transcriptomic Signatures Specific to Tumor-Reactive versus Virus-Responsive CD4 + T Cells. Cell Rep 2020; 29:3019-3032.e6. [PMID: 31801070 PMCID: PMC6934378 DOI: 10.1016/j.celrep.2019.10.131] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/21/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
Most current tumor immunotherapy strategies leverage cytotoxic CD8+ T cells. Despite evidence for clinical potential of CD4+ tumor-infiltrating lymphocytes (TILs), their functional diversity limits our ability to harness their activity. Here, we use single-cell mRNA sequencing to analyze the response of tumor-specific CD4+ TILs and draining lymph node (dLN) T cells. Computational approaches to characterize subpopulations identify TIL transcriptomic patterns strikingly distinct from acute and chronic anti-viral responses and dominated by diversity among T-bet-expressing T helper type 1 (Th1)-like cells. In contrast, the dLN response includes T follicular helper (Tfh) cells but lacks Th1 cells. We identify a type I interferon-driven signature in Th1-like TILs and show that it is found in human cancers, in which it is negatively associated with response to checkpoint therapy. Our study provides a proof-of-concept methodology to characterize tumor-specific CD4+ T cell effector programs. Targeting these programs should help improve immunotherapy strategies. CD4+ T cells contribute to immune responses to tumors, but their functional diversity has hampered their utilization in clinical settings. Magen et al. use single-cell RNA sequencing to dissect the heterogeneity of CD4+ T cell responses to tumor antigens and reveal molecular divergences between anti-tumor and anti-viral responses.
Collapse
Affiliation(s)
- Assaf Magen
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA; Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
| | - Jia Nie
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Thomas Ciucci
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Samira Tamoutounour
- Metaorganism Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Yongmei Zhao
- Advanced Biomedical and Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Monika Mehta
- NCI CCR Sequencing Facility, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bao Tran
- NCI CCR Sequencing Facility, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Metaorganism Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
36
|
Zhao J, Han DX, Wang CB, Wang XL. Zbtb7b suppresses aseptic inflammation by regulating m6A modification of IL6 mRNA. Biochem Biophys Res Commun 2020; 530:336-341. [DOI: 10.1016/j.bbrc.2020.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/05/2020] [Indexed: 12/22/2022]
|
37
|
Wu W, Wu H, He M, Zhang L, Huang Y, Geng Y, Liu J, Wang Q, Fan Z, Hou R, Yue B, Zhang X. Transcriptome analyses provide insights into maternal immune changes at several critical phases of giant panda reproduction. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103699. [PMID: 32344048 DOI: 10.1016/j.dci.2020.103699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Giant pandas (Ailuropoda melanoleuca) possess highly specialized reproductive characteristics, but the maternal immune changes during reproduction are largely unclear. Here, 20 blood transcriptomes were used to determine immune changes at four key phases of giant panda reproduction, and a total of 4640 differential expression genes were identified. During estrus, six immune-related genes (TLR4, IL1B, SYK, SPI1, CD80, and ITK) were identified as hub genes. The up-regulation of the TLR family genes (TLR4, TLR5, TLR6, and TLR8) and inflammatory response related genes (IL1B) may reflect innate immune enhancement and local tissue remodeling events, while the up-regulation of SYK and SPI1, and the down-regulation of CD80 and ITK suggested that the enhanced humoral immunity and inhibited cellular immunity of female giant pandas during estrus. During early pregnancy, antigen presentation related genes and proinflammatory cytokine (IL1B) were down-regulated. This may indicate that partial immune functions were suppressed in early pregnancy to achieve immune tolerance, including reducing inflammatory to protect embryos. By the late pregnancy, the antiviral related genes were up-regulated to strengthen defenses against external pathogen infection. KLRK1, which acts as a primary activation receptor for NK cells, was down regulated in estrus and pregnancy, suggesting that the activities of NK cells were inhibited, and KLRK1 may play a key role in the regulation the activities of pbNK cells during reproduction of giant pandas. Our results showed that there was no significant immune change in lactating females (post-natal 2 months) compared to anestrus females. This is the first time to observe the immune changes of giant panda during the breeding period and our data is expected to provide valuable resources for further studies on reproductive immunology of giant pandas.
Collapse
Affiliation(s)
- Wei Wu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China.
| | - Honglin Wu
- China Conservation and Research Center for the Giant Panda, Wolong, 623006, Sichuan, PR China
| | - Ming He
- China Conservation and Research Center for the Giant Panda, Wolong, 623006, Sichuan, PR China
| | - Liang Zhang
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, PR China
| | - Yan Huang
- China Conservation and Research Center for the Giant Panda, Wolong, 623006, Sichuan, PR China
| | - Yang Geng
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China
| | - Jinhua Liu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China
| | - Qian Wang
- China Conservation and Research Center for the Giant Panda, Wolong, 623006, Sichuan, PR China
| | - Zhenxin Fan
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China
| | - Rong Hou
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, PR China
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, PR China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
38
|
Kuwahara N, Kodaka T, Zushi Y, Sasaki M, Goka T, Maruoka H, Aoyama Y, Tsunemine H, Yamane T, Kobayashi J, Kawakami T, Ishida F, Itoh T, Takahashi T. T-cell large granular lymphocytic (LGL) leukemia consists of CD4 +/CD8 dim and CD4 -/CD8 + LGL populations in association with immune thrombocytopenia, autoimmune neutropenia, and monoclonal B-cell lymphocytosis. J Clin Exp Hematop 2020; 59:202-206. [PMID: 31866622 PMCID: PMC6954171 DOI: 10.3960/jslrt.19030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
CD3+/CD57+ T-cell large granular lymphocyte leukemia (T-LGLL) is an indolent neoplasm, exhibiting mostly CD8+, less frequently CD4+ phenotypes, and T-LGLL consisting of 2 populations with CD8+ and CD4+ phenotypes is markedly rare. An 87-year-old female was admitted under a diagnosis of immune thrombocytopenia (ITP) with a platelet count of 5.0×109/L and increased number of LGL with unknown etiology. Her neutrophil count also decreased to 0.27×109/L and she was positive for antineutrophil antibody. The WBC count was 2.7×109/L with 34.7% LGL and flow cytometry (FCM) analysis revealed 16% CD3+/CD4+/CD8dim/CD57+ and 20.9% CD3+/CD8+/CD57+ populations. These populations also expressed granzyme B and perforin. Circulating mononuclear cells were found to be clonal by PCR analysis of T-cell receptor β-chain gene. Serum immunofixation and bone marrow FCM analyses demonstrated 2 clonal B-cells producing IgG-λ and IgA-λ. Deep amplicon sequencing of STAT3 and STAT5B genes revealed a STAT3 R302G mutation with an allele burden of 2.6%. The thrombocytopenia and neutropenia were successfully treated by prednisolone and romiplostim with negative conversion of antineutrophil antibody. This is the first reported case of T-LGLL with dual components of CD4+/CD8dim and CD4-/CD8+ populations in terms of multiple comorbidities related to the respective CD8+ and CD4+ T-LGLLs.
Collapse
MESH Headings
- Aged, 80 and over
- Amino Acid Substitution
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Female
- Humans
- Immunoglobulin lambda-Chains/genetics
- Immunoglobulin lambda-Chains/metabolism
- Leukemia, Large Granular Lymphocytic/genetics
- Leukemia, Large Granular Lymphocytic/metabolism
- Leukemia, Large Granular Lymphocytic/pathology
- Lymphocytosis/genetics
- Lymphocytosis/metabolism
- Lymphocytosis/pathology
- Mutation, Missense
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neutropenia/genetics
- Neutropenia/metabolism
- Neutropenia/pathology
- Purpura, Thrombocytopenic, Idiopathic/genetics
- Purpura, Thrombocytopenic, Idiopathic/metabolism
- Purpura, Thrombocytopenic, Idiopathic/pathology
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
Collapse
|
39
|
Zhao XY, Zhou L, Chen Z, Ji Y, Peng X, Qi L, Li S, Lin JD. The obesity-induced adipokine sST2 exacerbates adipose T reg and ILC2 depletion and promotes insulin resistance. SCIENCE ADVANCES 2020; 6:eaay6191. [PMID: 32426492 PMCID: PMC7220368 DOI: 10.1126/sciadv.aay6191] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/02/2020] [Indexed: 05/02/2023]
Abstract
Depletion of fat-resident regulatory T cells (Tregs) and group 2 innate lymphoid cells (ILC2s) has been causally linked to obesity-associated insulin resistance. However, the molecular nature of the pathogenic signals suppress adipose Tregs and ILC2s in obesity remains unknown. Here, we identified the soluble isoform of interleukin (IL)-33 receptor ST2 (sST2) as an obesity-induced adipokine that attenuates IL-33 signaling and disrupts Treg/ILC2 homeostasis in adipose tissue, thereby exacerbates obesity-associated insulin resistance in mice. We demonstrated sST2 is a target of TNFα signaling in adipocytes that is countered by Zbtb7b. Fat-specific ablation of Zbtb7b augments adipose sST2 gene expression, leading to diminished fat-resident Tregs/ILC2s, more pronounced adipose tissue inflammation and fibrosis, and impaired glucose homeostasis in mice. Mechanistically, Zbtb7b suppresses NF-κB activation in response to TNFα through destabilizing IκBα. These findings uncover an adipokine-immune signaling pathway that is engaged in obesity to drive the pathological changes of the immunometabolic landscape.
Collapse
Affiliation(s)
- Xu-Yun Zhao
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Corresponding author. (J.D.L.); (X.-Y.Z.)
| | - Linkang Zhou
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Zhimin Chen
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yewei Ji
- Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Xiaoling Peng
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Siming Li
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jiandie D. Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Corresponding author. (J.D.L.); (X.-Y.Z.)
| |
Collapse
|
40
|
Transcriptomic features of tumour-infiltrating CD4 lowCD8 high double positive αβ T cells in melanoma. Sci Rep 2020; 10:5900. [PMID: 32246006 PMCID: PMC7125144 DOI: 10.1038/s41598-020-62664-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
Peripheral CD4+CD8+ double positive (DP) T cells are a phenotypically and functionally heterogeneous population depending on their origin and pathologic context. We previously identified among tumour infiltrating lymphocytes in melanoma, a tumour-reactive MHC class-I restricted CD4lowCD8high DP αβ T-cell subpopulation with CD4-like function. In this study, we used an in-depth comparative transriptomic analysis of intra-melanoma DP T cells and CD4 and CD8 single positive (SP) T cells, to better comprehend the origin of this DP phenotype, and define the transcriptomic signature of activated DP T cells. We observed that intra-melanoma DP T cells were transcriptome-wise closer to their CD8 SP T-cell counterparts in terms of number of genes differentially expressed (97 in common with CD8 SP T cells and 15 with CD4 SP T cells) but presented hallmarks of a transition to a CD4-like functional profile (CD40LG) with a decreased cytotoxic signature (KLRC1) in favour of an increased cytokine-receptor interaction signature (IL4, IL24, IL17A…). This unleashed CD4-like program could be the results of the observed unbalanced expression of the THPOK/Runx3 transcription factors in DP T cells. Overall, this study allow us to speculate that intra-melanoma DP T cells arise from CD8 SP T cells being reprogrammed to a helper function.
Collapse
|
41
|
Edwards KA, Motamedi V, Osier ND, Kim HS, Yun S, Cho YE, Lai C, Dell KC, Carr W, Walker P, Ahlers S, LoPresti M, Yarnell A, Tschiffley A, Gill JM. A Moderate Blast Exposure Results in Dysregulated Gene Network Activity Related to Cell Death, Survival, Structure, and Metabolism. Front Neurol 2020; 11:91. [PMID: 32174881 PMCID: PMC7054450 DOI: 10.3389/fneur.2020.00091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Blast exposure is common in military personnel during training and combat operations, yet biological mechanisms related to cell survival and function that coordinate recovery remain poorly understood. This study explored how moderate blast exposure influences gene expression; specifically, gene-network changes following moderate blast exposure. On day 1 (baseline) of a 10-day military training program, blood samples were drawn, and health and demographic information collected. Helmets equipped with bilateral sensors worn throughout training measured overpressure in pounds per square inch (psi). On day 7, some participants experienced moderate blast exposure (peak pressure ≥5 psi). On day 10, 3 days post-exposure, blood was collected and compared to baseline with RNA-sequencing to establish gene expression changes. Based on dysregulation data from RNA-sequencing, followed by top gene networks identified with Ingenuity Pathway Analysis, a subset of genes was validated (NanoString). Five gene networks were dysregulated; specifically, two highly significant networks: (1) Cell Death and Survival (score: 42), including 70 genes, with 50 downregulated and (2) Cell Structure, Function, and Metabolism (score: 41), including 69 genes, with 41 downregulated. Genes related to ubiquitination, including neuronal development and repair: UPF1, RNA Helicase and ATPase (UPF1) was upregulated while UPF3 Regulator of Nonsense Transcripts Homolog B (UPF3B) was downregulated. Genes related to inflammation were upregulated, including AKT serine/threonine kinase 1 (AKT1), a gene coordinating cellular recovery following TBIs. Moderate blast exposure induced significant gene expression changes including gene networks involved in (1) cell death and survival and (2) cellular development and function. The present findings may have implications for understanding blast exposure pathology and subsequent recovery efforts.
Collapse
Affiliation(s)
- Katie A Edwards
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Vida Motamedi
- Wake Forest School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Nicole D Osier
- School of Nursing, University of Texas at Austin, Austin, TX, United States.,Department of Neurology, University of Texas, Austin, TX, United States
| | - Hyung-Suk Kim
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Sijung Yun
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Young-Eun Cho
- College of Nursing, University of Iowa, Iowa City, IA, United States
| | - Chen Lai
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Kristine C Dell
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Walter Carr
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Peter Walker
- Naval Medical Research Center, Silver Spring, MD, United States
| | - Stephen Ahlers
- Naval Medical Research Center, Silver Spring, MD, United States
| | - Matthew LoPresti
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Angela Yarnell
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Anna Tschiffley
- Naval Medical Research Center, Silver Spring, MD, United States
| | - Jessica M Gill
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States.,CNRM Co-Director Biomarkers Core, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
42
|
Zhang X, Zhang X, Shen L, Song L, Wu J, Cao G, Chen X, Zhu B. Comprehensive analysis of differentially expressed lncRNAs as diagnostic and prognostic markers for colorectal cancer. Exp Ther Med 2019; 18:4481-4489. [PMID: 31772638 DOI: 10.3892/etm.2019.8067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 08/02/2019] [Indexed: 11/05/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common type of cancer worldwide. Recent studies had revealed the important roles of long non-coding RNAs (lncRNAs) in a variety of human cancers, including CRC. However, the molecular mechanisms associated with CRC remain largely undetermined. In the current study, the GSE21510 dataset was analyzed to identify differentially expressed mRNAs and lncRNAs in CRC samples. The Database for Annotation, Visualization and Integrated Discovery was used to perform Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway bioinformatics analysis. Furthermore, protein-protein interaction networks were constructed to reveal interactions among differentially expressed proteins. Kaplan-Meier analysis was subsequently performed to determine the association between key lncRNA expression and the overall survival of patients with CRC. A total of 107 upregulated lncRNAs and 43 downregulated lncRNAs were identified in CRC. A lncRNA mediated co-expression network was also constructed in CRC. Bioinformatics analysis indicated that lncRNAs were associated with a series of biological processes, including 'xenobiotic glucuronidation', 'rRNA processing', 'sister chromatid cohesion', 'cell proliferation', 'mitotic nuclear division' and 'cell cycle regulation'. Furthermore, a higher expression of small nucleolar RNA host gene 17, tetratricopeptide repeat domain 2B-antisense RNA (AS) 1, erythrocyte membrane protein band 4.1 like 4A-AS2, deleted in lymphocytic leukemia 2, and a lower expression of muscle blind like splicing regulator 1-AS1 and LOC389332 were associated with shorter overall survival time in CRC samples. The present study provides useful information that can be used in the identification of novel biomarkers for CRC.
Collapse
Affiliation(s)
- Xunlei Zhang
- Department of Oncology, Nantong Tumor Hospital, Nantong, Jiangsu 226300, P.R. China
| | - Xingsong Zhang
- Department of Pathology, Nantong Tumor Hospital, Nantong, Jiangsu 226300, P.R. China
| | - Lili Shen
- Department of Oncology, Haimen People's Hospital, Nantong, Jiangsu 226100, P.R. China
| | - Li Song
- Department of Oncology, Nantong Tumor Hospital, Nantong, Jiangsu 226300, P.R. China
| | - Jindong Wu
- Department of General Surgery, Nantong Tumor Hospital, Nantong, Jiangsu 226300, P.R. China
| | - Guangxin Cao
- Department of General Surgery, Nantong Tumor Hospital, Nantong, Jiangsu 226300, P.R. China
| | - Xin Chen
- Department of General Surgery, Nantong Tumor Hospital, Nantong, Jiangsu 226300, P.R. China
| | - Bin Zhu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
43
|
Orola MJ, Tizian C, Zhu C, Andersen L, Gülich AF, Alteneder M, Stojakovic T, Wiedermann U, Trauner M, Ellmeier W, Sakaguchi S. The zinc-finger transcription factor MAZR regulates iNKT cell subset differentiation. Cell Mol Life Sci 2019; 76:4391-4404. [PMID: 31065747 PMCID: PMC6803753 DOI: 10.1007/s00018-019-03119-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 04/19/2019] [Accepted: 04/29/2019] [Indexed: 01/06/2023]
Abstract
Invariant natural killer T (iNKT) cells represent a subgroup of innate-like T cells and play an important role in immune responses against certain pathogens. In addition, they have been linked to autoimmunity and antitumor immunity. iNKT cells consist of several subsets with distinct functions; however, the transcriptional networks controlling iNKT subset differentiation are still not fully characterized. Myc-associated zinc-finger-related factor (MAZR, also known as PATZ1) is an essential transcription factor for CD8+ lineage differentiation of conventional T cells. Here, we show that MAZR plays an important role in iNKT cells. T-cell lineage-specific deletion of MAZR resulted in an iNKT cell-intrinsic defect that led to an increase in iNKT2 cell numbers, concurrent with a reduction in iNKT1 and iNKT17 cells. Consistent with the alteration in the subset distribution, deletion of MAZR also resulted in an increase in the percentage of IL-4-producing cells. Moreover, MAZR-deficient iNKT cells displayed an enhanced expression of Erg2 and ThPOK, key factors for iNKT cell generation and subset differentiation, indicating that MAZR controls iNKT cell development through fine-tuning of their expression levels. Taken together, our study identified MAZR as an essential transcription factor regulating iNKT cell subset differentiation and effector function.
Collapse
Affiliation(s)
- Maria Jonah Orola
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Caroline Tizian
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
- Institute of Microbiology and Infectious Diseases and Immunology, Charité-University Medical Centre Berlin (CBF), 12203, Berlin, Germany
| | - Ci Zhu
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Liisa Andersen
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Alexandra Franziska Gülich
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Marlis Alteneder
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Graz, 8036, Graz, Austria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
44
|
Vacchio MS, Ciucci T, Gao Y, Watanabe M, Balmaceno-Criss M, McGinty MT, Huang A, Xiao Q, McConkey C, Zhao Y, Shetty J, Tran B, Pepper M, Vahedi G, Jenkins MK, McGavern DB, Bosselut R. A Thpok-Directed Transcriptional Circuitry Promotes Bcl6 and Maf Expression to Orchestrate T Follicular Helper Differentiation. Immunity 2019; 51:465-478.e6. [PMID: 31422869 DOI: 10.1016/j.immuni.2019.06.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/08/2019] [Accepted: 06/21/2019] [Indexed: 01/19/2023]
Abstract
The generation of high-affinity neutralizing antibodies, the objective of most vaccine strategies, occurs in B cells within germinal centers (GCs) and requires rate-limiting "help" from follicular helper CD4+ T (Tfh) cells. Although Tfh differentiation is an attribute of MHC II-restricted CD4+ T cells, the transcription factors driving Tfh differentiation, notably Bcl6, are not restricted to CD4+ T cells. Here, we identified a requirement for the CD4+-specific transcription factor Thpok during Tfh cell differentiation, GC formation, and antibody maturation. Thpok promoted Bcl6 expression and bound to a Thpok-responsive region in the first intron of Bcl6. Thpok also promoted the expression of Bcl6-independent genes, including the transcription factor Maf, which cooperated with Bcl6 to mediate the effect of Thpok on Tfh cell differentiation. Our findings identify a transcriptional program that links the CD4+ lineage with Tfh differentiation, a limiting factor for efficient B cell responses, and suggest avenues to optimize vaccine generation.
Collapse
Affiliation(s)
- Melanie S Vacchio
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Thomas Ciucci
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yayi Gao
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Masashi Watanabe
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Mariah Balmaceno-Criss
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Mitchell T McGinty
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Allan Huang
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Qi Xiao
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Cameron McConkey
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yongmei Zhao
- Center for Cancer Research Sequencing Facility, Advanced Technology Research Facility, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jyoti Shetty
- Center for Cancer Research Sequencing Facility, Advanced Technology Research Facility, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Bao Tran
- Center for Cancer Research Sequencing Facility, Advanced Technology Research Facility, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Golnaz Vahedi
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Marc K Jenkins
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
45
|
Abstract
A fundamental question in developmental immunology is how bipotential thymocyte precursors generate both CD4+ helper and CD8+ cytotoxic T cell lineages. The MHC specificity of αβ T cell receptors (TCRs) on precursors is closely correlated with cell fate-determining processes, prompting studies to characterize how variations in TCR signaling are linked with genetic programs establishing lineage-specific gene expression signatures, such as exclusive CD4 or CD8 expression. The key transcription factors ThPOK and Runx3 have been identified as mediating development of helper and cytotoxic T cell lineages, respectively. Together with increasing knowledge of epigenetic regulators, these findings have advanced our understanding of the transcription factor network regulating the CD4/CD8 dichotomy. It has also become apparent that CD4+ T cells retain developmental plasticity, allowing them to acquire cytotoxic activity in the periphery. Despite such advances, further studies are necessary to identify the molecular links between TCR signaling and the nuclear machinery regulating expression of ThPOK and Runx3.
Collapse
Affiliation(s)
- Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan;
| |
Collapse
|
46
|
Zeidan N, Damen H, Roy DC, Dave VP. Critical Role for TCR Signal Strength and MHC Specificity in ThPOK-Induced CD4 Helper Lineage Choice. THE JOURNAL OF IMMUNOLOGY 2019; 202:3211-3225. [PMID: 31036767 DOI: 10.4049/jimmunol.1801464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/26/2019] [Indexed: 01/08/2023]
Abstract
Sustained TCR signaling is critical for ThPOK induction in MHC class II (MHCII)-signaled thymocytes leading to the CD4 helper lineage commitment. ThPOK suppresses the cytotoxic program in the signaled thymocytes and is shown to be necessary and sufficient for the CD4 helper lineage choice. Accordingly, loss and gain of ThPOK function redirects MHCII- and MHC class I (MHCI)-signaled thymocytes into the CD8 cytotoxic and CD4 helper lineage, respectively. However, the impact of a defined ThPOK level on the CD4 helper lineage choice of MHCII- and MHCI-specific thymocytes and the role of TCR signaling in this process is not evaluated. Equally, it is not clear if suppression of the cytotoxic program by ThPOK is sufficient in redirecting MHCI-restricted thymocytes into the CD4 helper lineage. In this study, we have investigated CD8 to CD4 helper lineage redirection in three independent ThPOK overexpressing transgenic mouse lines. Our analysis shows that one of the transgenic lines, despite overexpressing ThPOK compared with wild-type CD4 mature T cells and compromising cytotoxic program, failed to redirect all MHCI-signaled thymocytes into the CD4 helper lineage, resulting in the continued presence of CD8+ mature T cells and the generation of a large number of double negative mature T cells. Critically, the same ThPOK transgene completely restored the CD4 helper lineage commitment of MHCII-specific Thpok -/- thymocytes. Importantly, augmenting TCR signaling significantly enhanced the ThPOK-mediated CD4 helper lineage choice of MHCI-specific thymocytes but was still substantially less efficient than that of MHCII-specific thymocytes expressing the same amount of ThPOK. Together, these data suggest that the ThPOK-induced CD4 helper lineage commitment is strongly influenced by TCR signal strength and MHC specificity of developing thymocytes.
Collapse
Affiliation(s)
- Nabil Zeidan
- Département d'Immunologie-Oncologie, Centre de Recherche Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Immunologie et Infectiologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada; and
| | - Hassan Damen
- Département d'Immunologie-Oncologie, Centre de Recherche Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada
| | - Denis-Claude Roy
- Département d'Immunologie-Oncologie, Centre de Recherche Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada.,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Vibhuti P Dave
- Département d'Immunologie-Oncologie, Centre de Recherche Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada; .,Département de Microbiologie, Immunologie et Infectiologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada; and
| |
Collapse
|
47
|
Wu Y, Lin X, Lim IY, Chen L, Teh AL, MacIsaac JL, Tan KH, Kobor MS, Chong YS, Gluckman PD, Karnani N. Analysis of two birth tissues provides new insights into the epigenetic landscape of neonates born preterm. Clin Epigenetics 2019; 11:26. [PMID: 30744680 PMCID: PMC6371604 DOI: 10.1186/s13148-018-0599-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/17/2018] [Indexed: 01/04/2023] Open
Abstract
Background Preterm birth (PTB), defined as child birth before completion of 37 weeks of gestation, is a major challenge in perinatal health care and can bear long-term medical and financial burden. Over a million children die each year due to PTB complications, and those who survive can face developmental delays. Unfortunately, our understanding of the molecular pathways associated with PTB remains limited. There is a growing body of evidence suggesting the role of DNA methylation (DNAm) in mediating the effects of PTB on future health outcomes. Thus, epigenome-wide association studies (EWAS), where DNAm sites are examined for associations with PTB, can help shed light on the biological mechanisms linking the two. Results In an Asian cohort of 1019 infants (68 preterm, 951 full term), we examined and compared the associations between PTB and genome-wide DNAm profiles using both cord tissue (n = 1019) and cord blood (n = 332) samples on Infinium HumanMethylation450 arrays. PTB was significantly associated (P < 5.8e−7) with DNAm at 296 CpGs (209 genes) in the cord blood. Over 95% of these CpGs were replicated in other PTB/gestational age EWAS conducted in (cord) blood. This replication was apparent even across populations of different ethnic origin (Asians, Caucasians, and African Americans). More than a third of these 296 CpGs were replicated in at least 4 independent studies, thereby identifying a robust set of PTB-linked epigenetic signatures in cord blood. Interrogation of cord tissue in addition to cord blood provided novel insights into the epigenetic status of the neonates born preterm. Overall, 994 CpGs (608 genes, P < 3.7e−7) associated with PTB in cord tissue, of which only 10 of these CpGs were identified in the analysis using cord blood. Genes from cord tissue showed enrichment of molecular pathways related to fetal growth and development, while those from cord blood showed enrichment of immune response pathways. A substantial number of PTB-associated CpGs from both the birth tissues were also associated with gestational age. Conclusions Our findings provide insights into the epigenetic landscape of neonates born preterm, and that its status is captured more comprehensively by interrogation of more than one neonatal tissue in tandem. Both these neonatal tissues are clinically relevant in their unique ways and require careful consideration in identification of biomarkers related to PTB and gestational age. Trial registration This birth cohort is a prospective observational study designed to study the developmental origins of health and disease, and was retrospectively registered on 1 July 2010 under the identifier NCT01174875. Electronic supplementary material The online version of this article (10.1186/s13148-018-0599-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yonghui Wu
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Xinyi Lin
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Ives Yubin Lim
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Li Chen
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Ai Ling Teh
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Julia L MacIsaac
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | - Kok Hian Tan
- KK Women's and Children's Hospital, Singapore, Singapore
| | - Michael S Kobor
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore.,Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore. .,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
48
|
Yoshida H, Lareau CA, Ramirez RN, Rose SA, Maier B, Wroblewska A, Desland F, Chudnovskiy A, Mortha A, Dominguez C, Tellier J, Kim E, Dwyer D, Shinton S, Nabekura T, Qi Y, Yu B, Robinette M, Kim KW, Wagers A, Rhoads A, Nutt SL, Brown BD, Mostafavi S, Buenrostro JD, Benoist C. The cis-Regulatory Atlas of the Mouse Immune System. Cell 2019; 176:897-912.e20. [PMID: 30686579 PMCID: PMC6785993 DOI: 10.1016/j.cell.2018.12.036] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/26/2018] [Accepted: 12/20/2018] [Indexed: 01/08/2023]
Abstract
A complete chart of cis-regulatory elements and their dynamic activity is necessary to understand the transcriptional basis of differentiation and function of an organ system. We generated matched epigenome and transcriptome measurements in 86 primary cell types that span the mouse immune system and its differentiation cascades. This breadth of data enable variance components analysis that suggests that genes fall into two distinct classes, controlled by either enhancer- or promoter-driven logic, and multiple regression that connects genes to the enhancers that regulate them. Relating transcription factor (TF) expression to the genome-wide accessibility of their binding motifs classifies them as predominantly openers or closers of local chromatin accessibility, pinpointing specific cis-regulatory elements where binding of given TFs is likely functionally relevant, validated by chromatin immunoprecipitation sequencing (ChIP-seq). Overall, this cis-regulatory atlas provides a trove of information on transcriptional regulation through immune differentiation and a foundational scaffold to define key regulatory events throughout the immunological genome.
Collapse
Affiliation(s)
- Hideyuki Yoshida
- Department of Immunology, Harvard Medical School, Boston, MA, USA; YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | | | | | - Samuel A Rose
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barbara Maier
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aleksandra Wroblewska
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fiona Desland
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aleksey Chudnovskiy
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arthur Mortha
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Julie Tellier
- The Walter and Eliza Hall Institute and Department of Medical Biology, Melbourne University, Parkville, VIC, Australia
| | - Edy Kim
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
| | - Dan Dwyer
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Tsukasa Nabekura
- Department of Microbiology and Immunology, UCSF, San Francisco, CA, USA
| | - YiLin Qi
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Bingfei Yu
- Department of Biological Sciences, UCSD, La Jolla, CA, USA
| | - Michelle Robinette
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ki-Wook Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy Wagers
- Joslin Diabetes Center, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA USA
| | - Andrew Rhoads
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute and Department of Medical Biology, Melbourne University, Parkville, VIC, Australia
| | - Brian D Brown
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara Mostafavi
- Department of Statistics and Department Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| | - Jason D Buenrostro
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA USA.
| | | |
Collapse
|
49
|
Ciucci T, Vacchio MS, Gao Y, Tomassoni Ardori F, Candia J, Mehta M, Zhao Y, Tran B, Pepper M, Tessarollo L, McGavern DB, Bosselut R. The Emergence and Functional Fitness of Memory CD4 + T Cells Require the Transcription Factor Thpok. Immunity 2019; 50:91-105.e4. [PMID: 30638736 PMCID: PMC6503975 DOI: 10.1016/j.immuni.2018.12.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/19/2018] [Accepted: 12/13/2018] [Indexed: 12/31/2022]
Abstract
Memory CD4+ T cells mediate long-term immunity, and their generation is a key objective of vaccination strategies. However, the transcriptional circuitry controlling the emergence of memory cells from early CD4+ antigen-responders remains poorly understood. Here, using single-cell RNA-seq to study the transcriptome of virus-specific CD4+ T cells, we identified a gene signature that distinguishes potential memory precursors from effector cells. We found that both that signature and the emergence of memory CD4+ T cells required the transcription factor Thpok. We further demonstrated that Thpok cell-intrinsically protected memory cells from a dysfunctional, effector-like transcriptional program, similar to but distinct from the exhaustion pattern of cells responding to chronic infection. Mechanistically, Thpok- bound genes encoding the transcription factors Blimp1 and Runx3 and acted by antagonizing their expression. Thus, a Thpok-dependent circuitry promotes both memory CD4+ T cells' differentiation and functional fitness, two previously unconnected critical attributes of adaptive immunity.
Collapse
Affiliation(s)
- Thomas Ciucci
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Melanie S Vacchio
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yayi Gao
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Tomassoni Ardori
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Julian Candia
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health, Bethesda, MD, USA
| | - Monika Mehta
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yongmei Zhao
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bao Tran
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
50
|
McDonough JE, Kaminski N, Thienpont B, Hogg JC, Vanaudenaerde BM, Wuyts WA. Gene correlation network analysis to identify regulatory factors in idiopathic pulmonary fibrosis. Thorax 2018; 74:132-140. [PMID: 30366970 PMCID: PMC6467239 DOI: 10.1136/thoraxjnl-2018-211929] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a severe lung disease characterised by extensive pathological changes. The objective for this study was to identify the gene network and regulators underlying disease pathology in IPF and its association with lung function. METHODS Lung Tissue Research Consortium dataset with 262 IPF and control subjects (GSE47460) was randomly divided into two non-overlapping groups for cross-validated differential gene expression analysis. Consensus weighted gene coexpression network analysis identified overlapping coexpressed gene modules between both IPF groups. Modules were correlated with lung function (diffusion capacity, DLCO; forced expiratory volume in 1 s, FEV1; forced vital capacity, FVC) and enrichment analyses used to identify biological function and transcription factors. Module correlation with miRNA data (GSE72967) identified associated regulators. Clinical relevance in IPF was assessed in a peripheral blood gene expression dataset (GSE93606) to identify modules related to survival. RESULTS Correlation network analysis identified 16 modules in IPF. Upregulated modules were associated with cilia, DNA replication and repair, contractile fibres, B-cell and unfolded protein response, and extracellular matrix. Downregulated modules were associated with blood vessels, T-cell and interferon responses, leucocyte activation and degranulation, surfactant metabolism, and cellular metabolic and catabolic processes. Lung function correlated with nine modules (eight with DLCO, five with FVC). Intermodular network of transcription factors and miRNA showed clustering of fibrosis, immune response and contractile modules. The cilia-associated module was able to predict survival (p=0.0097) in an independent peripheral blood IPF cohort. CONCLUSIONS We identified a correlation gene expression network with associated regulators in IPF that provides novel insight into the pathological process of this disease.
Collapse
Affiliation(s)
- John E McDonough
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven, Belgium
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut, USA
| | - Bernard Thienpont
- Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - James C Hogg
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bart M Vanaudenaerde
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven, Belgium
| | - Wim A Wuyts
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven, Belgium
| |
Collapse
|