1
|
Low ZXB, Yong SJ, Alrasheed HA, Al-Subaie MF, Al Kaabi NA, Alfaresi M, Albayat H, Alotaibi J, Al Bshabshe A, Alwashmi ASS, Sabour AA, Alshiekheid MA, Almansour ZH, Alharthi H, Al Ali HA, Almoumen AA, Alqasimi NA, AlSaihati H, Rodriguez-Morales AJ, Rabaan AA. Serotonergic psychedelics as potential therapeutics for post-COVID-19 syndrome (or Long COVID): A comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111279. [PMID: 39909170 DOI: 10.1016/j.pnpbp.2025.111279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
RATIONALE In our ongoing battle against the coronavirus 2019 (COVID-19) pandemic, a major challenge is the enduring symptoms that continue after acute infection. Also known as Long COVID, post-COVID-19 syndrome (PCS) often comes with debilitating symptoms like fatigue, disordered sleep, olfactory dysfunction, and cognitive issues ("brain fog"). Currently, there are no approved treatments for PCS. Recent research has uncovered that the severity of PCS is inversely linked to circulating serotonin levels, highlighting the potential of serotonin-modulating therapeutics for PCS. Therefore, we propose that serotonergic psychedelics, acting mainly via the 5-HT2A serotonin receptor, hold promise for treating PCS. OBJECTIVES Our review aims to elucidate potential mechanisms by which serotonergic psychedelics may alleviate the symptoms of PCS. RESULTS Potential mechanisms through which serotonergic psychedelics may alleviate PCS symptoms are discussed, with emphasis on their effects on inflammation, neuroplasticity, and gastrointestinal function. Additionally, this review explores the potential of serotonergic psychedelics in mitigating endothelial dysfunction, a pivotal aspect of PCS pathophysiology implicated in organ dysfunction. This review also examines the potential role of serotonergic psychedelics in alleviating specific PCS symptoms, which include olfactory dysfunction, cognitive impairment, sleep disturbances, and mental health challenges. CONCLUSIONS Emerging evidence suggests that serotonergic psychedelics may alleviate PCS symptoms. However, further high-quality research is needed to thoroughly assess their safety and efficacy in treating patients with PCS.
Collapse
Affiliation(s)
- Zhen Xuen Brandon Low
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Shin Jie Yong
- School of Medical and Life Sciences, Sunway University, Selangor, Malaysia.
| | - Hayam A Alrasheed
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Maha F Al-Subaie
- Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Nawal A Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi, United Arab Emirates; Sheikh Khalifa Medical City, Abu Dhabi Health Services Company, Abu Dhabi, United Arab Emirates
| | - Mubarak Alfaresi
- Department of Microbiology, National Reference Laboratory, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates; Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh, Saudi Arabia
| | - Jawaher Alotaibi
- Infectious Diseases Unit, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ali Al Bshabshe
- Adult Critical Care Department of Medicine, Division of Adult Critical Care, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amal A Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maha A Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zainab H Almansour
- Biological Science Department, College of Science, King Faisal University, Hofuf, Saudi Arabia
| | - Huda Alharthi
- Clinical Pharmacist, Pharmaceutical Care Department, King Faisal Medical Complex, Taif Health Cluster, Ministry of Health, Taif, Saudi Arabia
| | - Hani A Al Ali
- Pediatrics Department, Maternity & Children Hospital, Dammam, Saudi Arabia
| | - Adel A Almoumen
- Pediatrics Department, Maternity & Children Hospital, Dammam, Saudi Arabia
| | - Nabil A Alqasimi
- Pediatrics Department, Maternity & Children Hospital, Dammam, Saudi Arabia
| | - Hajir AlSaihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Alfonso J Rodriguez-Morales
- Faculty of Health Sciences, Universidad Cientifica del Sur, Lima, Peru; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Ali A Rabaan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan.
| |
Collapse
|
2
|
Rubio-Casillas A, Redwan EM, Uversky VN. More antibodies are not always better: Fc effector functions play a critical role in SARS-CoV-2 infection and protection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:413-447. [PMID: 40246351 DOI: 10.1016/bs.pmbts.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Traditional vaccinology has primarily focused on neutralizing antibody titers as the main correlate of vaccine efficacy, often overlooking the multifaceted roles of antibody Fc effector functions in orchestrating protective immune responses. Fc-mediated immune responses play a pivotal role in immune modulation and pathogen clearance. Emerging evidence from natural infections and vaccine studies highlights the critical contribution of Fc effector functions in determining the quality and durability of immunity. This work explores the limitations of current vaccine evaluation paradigms that prioritize neutralization over Fc effector mechanisms. It also describes findings from a study showing an unexpected role for SARS-CoV-2 anti-spike antibodies: both convalescent plasma and patient-derived monoclonal antibodies (mAbs) lead to maximum phagocytic capacity by monocytes at low concentrations, whereas at higher concentrations the phagocytic capacity was reduced. Given that the severity of COVID-19 disease and antibody titers are strongly positively correlated, this work challenges the paradigm that high antibodies offer better protection against severe disease. It is proposed that humoral and cellular responses elicited by vaccination should never be higher than those produced by natural infection. By integrating antibody Fc effector functions into vaccine development, a paradigm shift is proposed that emphasizes synergic antibody responses. Such an approach could transform vaccine efficacy assessment, enhance protection against dangerous pathogens, and drive innovation in vaccine design.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Autlan Regional Hospital, Jalisco Health Services, Autlan, Jalisco, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab, Alexandria, Egypt
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
3
|
Kastner AL, Marx AF, Dimitrova M, Abreu-Mota T, Ertuna YI, Bonilla WV, Stauffer K, Künzli M, Wagner I, Kreutzfeldt M, Merkler D, Pinschewer DD. Durable lymphocyte subset elimination upon a single dose of AAV-delivered depletion antibody dissects immune control of chronic viral infection. Immunity 2025; 58:481-498.e10. [PMID: 39719711 DOI: 10.1016/j.immuni.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/02/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024]
Abstract
To interrogate the role of specific immune cells in infection, cancer, and autoimmunity, immunologists commonly use monoclonal depletion antibodies (depletion-mAbs) or genetically engineered mouse models (GEMMs). To generate a tool that combines specific advantages and avoids select drawbacks of the two methods, we engineered adeno-associated viral vectors expressing depletion mAbs (depletion-AAVs). Single-dose depletion-AAV administration durably eliminated lymphocyte subsets in mice and avoided accessory deficiencies of GEMMs, such as marginal zone defects in B cell-deficient animals. Depletion-AAVs can be used in animals of different genetic backgrounds, and multiple depletion-AAVs can readily be combined. Exploiting depletion-AAV technology, we showed that B cells were required for unimpaired CD4+ and CD8+ T cell responses to chronic lymphocytic choriomeningitis virus (LCMV) infection. Upon B cell depletion, CD8+ T cells failed to suppress viremia, and they only helped resolve chronic infection when antibodies dampened viral loads. Our study positions depletion-AAVs as a versatile tool for immunological research.
Collapse
Affiliation(s)
- Anna Lena Kastner
- Department of Biomedicine, University of Basel, 4009 Basel, Switzerland
| | | | - Mirela Dimitrova
- Department of Biomedicine, University of Basel, 4009 Basel, Switzerland
| | - Tiago Abreu-Mota
- Department of Biomedicine, University of Basel, 4009 Basel, Switzerland
| | - Yusuf I Ertuna
- Department of Biomedicine, University of Basel, 4009 Basel, Switzerland
| | - Weldy V Bonilla
- Department of Biomedicine, University of Basel, 4009 Basel, Switzerland
| | - Karsten Stauffer
- Department of Biomedicine, University of Basel, 4009 Basel, Switzerland
| | - Marco Künzli
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1206 Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1206 Geneva, Switzerland
| | | |
Collapse
|
4
|
Shah JV, Siebert JN, Zhao X, He S, Riman RE, Tan MC, Pierce MC, Lattime EC, Ganapathy V, Moghe PV. Shortwave-Infrared-Emitting Nanoprobes for CD8 Targeting and In Vivo Imaging of Cytotoxic T Cells in Breast Cancer. ADVANCED NANOBIOMED RESEARCH 2024; 4:2300092. [PMID: 39554690 PMCID: PMC11566364 DOI: 10.1002/anbr.202300092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/15/2023] [Indexed: 11/19/2024] Open
Abstract
Checkpoint immunotherapy has made great strides in the treatment of solid tumors, but many patients do not respond to immune checkpoint inhibitors. Identification of tumor-infiltrating cytotoxic T cells (CTLs) has the potential to stratify patients and monitor immunotherapy responses. In this study, the design of cluster of differentiation (CD8+) T cell-targeted nanoprobes that emit shortwave infrared (SWIR) light in the second tissue-transparent window for noninvasive, real-time imaging of CTLs in murine models of breast cancer is presented. SWIR-emitting rare-earth nanoparticles encapsulated in human serum albumin are conjugated with anti-CD8α to target CTLs with high specificity. CTL targeting is validated in vitro through binding of nanoprobes to primary mouse CTLs. The potential for the use of SWIR fluorescence intensity to determine CTL presence is validated in two syngeneic mammary fat pad tumor models, EMT6 and 4T1, which differ in immune infiltration. SWIR imaging using CD8-targeted nanoprobes successfully identifies the presence of CTLs in the more immunogenic EMT6 model, while imaging confirms the lack of substantial immune infiltration in the nonimmunogenic 4T1 model. In this work, the opportunity for SWIR imaging using CD8-targeted nanoprobes to assess CTL infiltration in tumors for the stratification and monitoring of responders to checkpoint immunotherapy is highlighted.
Collapse
Affiliation(s)
- Jay V. Shah
- Department of Biomedical EngineeringRutgers University599 Taylor RdPiscatawayNJ08854USA
| | - Jake N. Siebert
- Department of Biomedical EngineeringRutgers University599 Taylor RdPiscatawayNJ08854USA
| | - Xinyu Zhao
- Engineering Product DevelopmentSingapore University of Technology and Design8 Somapah RdTampinesSingapore487372Singapore
| | - Shuqing He
- Engineering Product DevelopmentSingapore University of Technology and Design8 Somapah RdTampinesSingapore487372Singapore
| | - Richard E. Riman
- Department of Materials Science and EngineeringRutgers University607 Taylor RdPiscatawayNJ08854USA
| | - Mei Chee Tan
- Engineering Product DevelopmentSingapore University of Technology and Design8 Somapah RdTampinesSingapore487372Singapore
| | - Mark C. Pierce
- Department of Biomedical EngineeringRutgers University599 Taylor RdPiscatawayNJ08854USA
| | - Edmund C. Lattime
- Rutgers Cancer Institute of New Jersey195 Little Albany StNew BrunswickNJ08901USA
| | - Vidya Ganapathy
- Department of Biomedical EngineeringRutgers University599 Taylor RdPiscatawayNJ08854USA
| | - Prabhas V. Moghe
- Department of Biomedical EngineeringRutgers University599 Taylor RdPiscatawayNJ08854USA
- Department of Chemical and Biochemical EngineeringRutgers University98 Brett RdPiscatawayNJ08854USA
| |
Collapse
|
5
|
Mulik S, Berber E, Sehrawat S, Rouse BT. Controlling viral inflammatory lesions by rebalancing immune response patterns. Front Immunol 2023; 14:1257192. [PMID: 37671156 PMCID: PMC10475736 DOI: 10.3389/fimmu.2023.1257192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
In this review, we discuss a variety of immune modulating approaches that could be used to counteract tissue-damaging viral immunoinflammatory lesions which typify many chronic viral infections. We make the point that in several viral infections the lesions can be largely the result of one or more aspects of the host response mediating the cell and tissue damage rather than the virus itself being directly responsible. However, within the reactive inflammatory lesions along with the pro-inflammatory participants there are also other aspects of the host response that may be acting to constrain the activity of the damaging components and are contributing to resolution. This scenario should provide the prospect of rebalancing the contributions of different host responses and hence diminish or even fully control the virus-induced lesions. We identify several aspects of the host reactions that influence the pattern of immune responsiveness and describe approaches that have been used successfully, mainly in model systems, to modulate the activity of damaging participants and which has led to lesion control. We emphasize examples where such therapies are, or could be, translated for practical use in the clinic to control inflammatory lesions caused by viral infections.
Collapse
Affiliation(s)
- Sachin Mulik
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Engin Berber
- Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Sharvan Sehrawat
- Indian Institute of Science Education and Research, Department of Biological Sciences, Mohali, Punjab, India
| | - Barry Tyrrell Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
6
|
Wang J, Brown K, Danehy C, Mérigeon E, Goralski S, Rice S, Torgbe K, Thomas F, Block D, Olsen H, Strome SE, Fitzpatrick EA. Fc multimers effectively treat murine models of multiple sclerosis. Front Immunol 2023; 14:1199747. [PMID: 37638040 PMCID: PMC10451071 DOI: 10.3389/fimmu.2023.1199747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Multiple Sclerosis (MS) is a chronic neurodegenerative disease with limited therapeutic options. Recombinant Fc multimers (rFc), designed to mirror many of the anti-inflammatory activities of Intravenous Immunoglobulin (IVIG), have been shown to effectively treat numerous immune-mediated diseases in rodents. In this study we used the experimental autoimmune encephalomyelitis (EAE) murine model of MS to test the efficacy of a rFc, M019, that consists of multimers of the Fc portion of IgG2, in inhibiting disease severity. We show that M019 effectively reduced clinical symptoms when given either pre- or post-symptom onset compared to vehicle treated EAE induced mice. M019 was effective in reducing symptoms in both SJL model of relapsing remitting MS as well as the B6 model of chronic disease. M019 binds to FcγR bearing-monocytes both in vivo and in vitro and prevented immune cell infiltration into the CNS of treated mice. The lack of T cell infiltration into the spinal cord was not due to a decrease in T cell priming; there was an equivalent frequency of Th17 cells in the spleens of M019 and vehicle treated EAE induced mice. Surprisingly, there was an increase in chemokines in the sera but not in the CNS of M019 treated mice compared to vehicle treated animals. We postulate that M019 interacts with a FcγR rich monocyte intermediary to prevent T cell migration into the CNS and demyelination.
Collapse
Affiliation(s)
- Jin Wang
- Dept. of Microbiology Immunology and Biochemistry, UTHSC, Memphis, TN, United States
| | - Kellie Brown
- Dept. of Microbiology Immunology and Biochemistry, UTHSC, Memphis, TN, United States
| | - Caroline Danehy
- College of Graduate Health Sciences, UTHSC, Memphis, TN, United States
| | | | | | - Samuel Rice
- College of Medicine, UTHSC, Memphis, TN, United States
| | - Kwame Torgbe
- Dept. of Pathology, UTHSC, Memphis, TN, United States
| | - Fridtjof Thomas
- Div. of Biostatistics, Dept. of Preventive Medicine, UTHSC, Memphis, TN, United States
| | | | | | - Scott E. Strome
- Dept. of Microbiology Immunology and Biochemistry, UTHSC, Memphis, TN, United States
| | | |
Collapse
|
7
|
Microglia drive transient insult-induced brain injury by chemotactic recruitment of CD8 + T lymphocytes. Neuron 2023; 111:696-710.e9. [PMID: 36603584 DOI: 10.1016/j.neuron.2022.12.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/03/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023]
Abstract
The crosstalk between the nervous and immune systems has gained increasing attention for its emerging role in neurological diseases. Radiation-induced brain injury (RIBI) remains the most common medical complication of cranial radiotherapy, and its pathological mechanisms have yet to be elucidated. Here, using single-cell RNA and T cell receptor sequencing, we found infiltration and clonal expansion of CD8+ T lymphocytes in the lesioned brain tissues of RIBI patients. Furthermore, by strategies of genetic or pharmacologic interruption, we identified a chemotactic action of microglia-derived CCL2/CCL8 chemokines in mediating the infiltration of CCR2+/CCR5+ CD8+ T cells and tissue damage in RIBI mice. Such a chemotactic axis also participated in the progression of cerebral infarction in the mouse model of ischemic injury. Our findings therefore highlight the critical role of microglia in mediating the dysregulation of adaptive immune responses and reveal a potential therapeutic strategy for non-infectious brain diseases.
Collapse
|
8
|
Iyer RF, Edwards DM, Kolb P, Raué HP, Nelson CA, Epperson ML, Slifka MK, Nolz JC, Hengel H, Fremont DH, Früh K. The secreted protein Cowpox Virus 14 contributes to viral virulence and immune evasion by engaging Fc-gamma-receptors. PLoS Pathog 2022; 18:e1010783. [PMID: 36121874 PMCID: PMC9521928 DOI: 10.1371/journal.ppat.1010783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 09/29/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022] Open
Abstract
The genome of cowpoxvirus (CPXV) could be considered prototypical for orthopoxviridae (OXPV) since it contains many open reading frames (ORFs) absent or lost in other OPXV, including vaccinia virus (VACV). These additional ORFs are non-essential for growth in vitro but are expected to contribute to the broad host range, virulence and immune evasion characteristics of CPXV. For instance, unlike VACV, CPXV encodes proteins that interfere with T cell stimulation, either directly or by preventing antigen presentation or co-stimulation. When studying the priming of naïve T cells, we discovered that CPXV, but not VACV, encodes a secreted factor that interferes with activation and proliferation of naïve CD8+ and CD4+ T cells, respectively, in response to anti-CD3 antibodies, but not to other stimuli. Deletion mapping revealed that the inhibitory protein is encoded by CPXV14, a small secreted glycoprotein belonging to the poxvirus immune evasion (PIE) family and containing a smallpoxvirus encoded chemokine receptor (SECRET) domain that mediates binding to chemokines. We demonstrate that CPXV14 inhibition of antibody-mediated T cell activation depends on the presence of Fc-gamma receptors (FcγRs) on bystander cells. In vitro, CPXV14 inhibits FcγR-activation by antigen/antibody complexes by binding to FcγRs with high affinity and immobilized CPXV14 can trigger signaling through FcγRs, particularly the inhibitory FcγRIIB. In vivo, CPXV14-deleted virus showed reduced viremia and virulence resulting in reduced weight loss and death compared to wildtype virus whereas both antibody and CD8+ T cell responses were increased in the absence of CPXV14. Furthermore, no impact of CPXV14-deletion on virulence was observed in mice lacking the inhibitory FcγRIIB. Taken together our results suggest that CPXV14 contributes to virulence and immune evasion by binding to host FcγRs.
Collapse
Affiliation(s)
- Ravi F. Iyer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - David M. Edwards
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Philipp Kolb
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Peter Raué
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Chris A. Nelson
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Megan L. Epperson
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Mark K. Slifka
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jeffrey C. Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Hartmut Hengel
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
9
|
Chung YR, Dangi T, Palacio N, Sanchez S, Penaloza-MacMaster P. Adoptive B cell therapy for chronic viral infection. Front Immunol 2022; 13:908707. [PMID: 35958615 PMCID: PMC9361846 DOI: 10.3389/fimmu.2022.908707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
T cell-based therapies have been widely explored for the treatment of cancer and chronic infection, but B cell-based therapies have remained largely unexplored. To study the effect of B cell therapy, we adoptively transferred virus-specific B cells into mice that were chronically infected with lymphocytic choriomeningitis virus (LCMV). Adoptive transfer of virus-specific B cells resulted in increase in antibody titers and reduction of viral loads. Importantly, the efficacy of B cell therapy was partly dependent on antibody effector functions, and was improved by co-transferring virus-specific CD4 T cells. These findings provide a proof-of-concept that adoptive B cell therapy can be effective for the treatment of chronic infections, but provision of virus-specific CD4 T cells may be critical for optimal virus neutralization.
Collapse
|
10
|
Sahin M, Remy MM, Fallet B, Sommerstein R, Florova M, Langner A, Klausz K, Straub T, Kreutzfeldt M, Wagner I, Schmidt CT, Malinge P, Magistrelli G, Izui S, Pircher H, Verbeek JS, Merkler D, Peipp M, Pinschewer DD. Antibody bivalency improves antiviral efficacy by inhibiting virion release independently of Fc gamma receptors. Cell Rep 2022; 38:110303. [PMID: 35108544 PMCID: PMC8822495 DOI: 10.1016/j.celrep.2022.110303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
Across the animal kingdom, multivalency discriminates antibodies from all other immunoglobulin superfamily members. The evolutionary forces conserving multivalency above other structural hallmarks of antibodies remain, however, incompletely defined. Here, we engineer monovalent either Fc-competent or -deficient antibody formats to investigate mechanisms of protection of neutralizing antibodies (nAbs) and non-neutralizing antibodies (nnAbs) in virus-infected mice. Antibody bivalency enables the tethering of virions to the infected cell surface, inhibits the release of virions in cell culture, and suppresses viral loads in vivo independently of Fc gamma receptor (FcγR) interactions. In return, monovalent antibody formats either do not inhibit virion release and fail to protect in vivo or their protective efficacy is largely FcγR dependent. Protection in mice correlates with virus-release-inhibiting activity of nAb and nnAb rather than with their neutralizing capacity. These observations provide mechanistic insights into the evolutionary conservation of antibody bivalency and help refining correlates of nnAb protection for vaccine development.
Collapse
Affiliation(s)
- Mehmet Sahin
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland
| | - Melissa M Remy
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland; Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Benedict Fallet
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland; Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Rami Sommerstein
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Marianna Florova
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland
| | - Anna Langner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Tobias Straub
- Institute for Immunology, Department for Medical Microbiology and Hygiene, University Medical Center Freiburg, 79104 Freiburg, Germany
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Cinzia T Schmidt
- BioEM Lab, Center for Cellular Imaging & Nano Analytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Pauline Malinge
- Light Chain Bioscience, Novimmune SA, Plan-les-Ouates, Switzerland
| | | | - Shozo Izui
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Hanspeter Pircher
- Institute for Immunology, Department for Medical Microbiology and Hygiene, University Medical Center Freiburg, 79104 Freiburg, Germany
| | - J Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands; Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Daniel D Pinschewer
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland; Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
11
|
Chen H, Maul‐Pavicic A, Holzer M, Huber M, Salzer U, Chevalier N, Voll RE, Hengel H, Kolb P. Detection and functional resolution of soluble immune complexes by an FcγR reporter cell panel. EMBO Mol Med 2022; 14:e14182. [PMID: 34842342 PMCID: PMC8749491 DOI: 10.15252/emmm.202114182] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Fc-gamma receptor (FcγR) activation by soluble IgG immune complexes (sICs) represents a major mechanism of inflammation in certain autoimmune diseases such as systemic lupus erythematosus (SLE). A robust and scalable test system allowing for the detection and quantification of sIC bioactivity is missing. We developed a comprehensive reporter cell panel detecting activation of FcγRs. The reporter cell lines were integrated into an assay that enables the quantification of sIC reactivity via ELISA or a faster detection using flow cytometry. This identified FcγRIIA(H) and FcγRIIIA as the most sIC-sensitive FcγRs in our test system. Reaching a detection limit in the very low nanomolar range, the assay proved also to be sensitive to sIC stoichiometry and size reproducing for the first time a complete Heidelberger-Kendall curve in terms of immune receptor activation. Analyzing sera from SLE patients and mouse models of lupus and arthritis proved that sIC-dependent FcγR activation has predictive capabilities regarding severity of SLE disease. The assay provides a sensitive and scalable tool to evaluate the size, amount, and bioactivity of sICs in all settings.
Collapse
Affiliation(s)
- Haizhang Chen
- Institute of VirologyUniversity Medical CenterAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Andrea Maul‐Pavicic
- Department of Rheumatology and Clinical ImmunologyMedical Center – University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
- Center for Chronic Immunodeficiency (CCI)Medical Center‐University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Martin Holzer
- Institute for Pharmaceutical SciencesAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Magdalena Huber
- Institute of VirologyUniversity Medical CenterAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Ulrich Salzer
- Department of Rheumatology and Clinical ImmunologyMedical Center – University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Nina Chevalier
- Department of Rheumatology and Clinical ImmunologyMedical Center – University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical ImmunologyMedical Center – University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
- Center for Chronic Immunodeficiency (CCI)Medical Center‐University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Hartmut Hengel
- Institute of VirologyUniversity Medical CenterAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Philipp Kolb
- Institute of VirologyUniversity Medical CenterAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| |
Collapse
|
12
|
Di Pietro A, Polmear J, Cooper L, Damelang T, Hussain T, Hailes L, O'Donnell K, Udupa V, Mi T, Preston S, Shtewe A, Hershberg U, Turner SJ, La Gruta NL, Chung AW, Tarlinton DM, Scharer CD, Good-Jacobson KL. Targeting BMI-1 in B cells restores effective humoral immune responses and controls chronic viral infection. Nat Immunol 2022; 23:86-98. [PMID: 34845392 DOI: 10.1038/s41590-021-01077-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 10/20/2021] [Indexed: 01/12/2023]
Abstract
Ineffective antibody-mediated responses are a key characteristic of chronic viral infection. However, our understanding of the intrinsic mechanisms that drive this dysregulation are unclear. Here, we identify that targeting the epigenetic modifier BMI-1 in mice improves humoral responses to chronic lymphocytic choriomeningitis virus. BMI-1 was upregulated by germinal center B cells in chronic viral infection, correlating with changes to the accessible chromatin landscape, compared to acute infection. B cell-intrinsic deletion of Bmi1 accelerated viral clearance, reduced splenomegaly and restored splenic architecture. Deletion of Bmi1 restored c-Myc expression in B cells, concomitant with improved quality of antibody and coupled with reduced antibody-secreting cell numbers. Specifically, BMI-1-deficiency induced antibody with increased neutralizing capacity and enhanced antibody-dependent effector function. Using a small molecule inhibitor to murine BMI-1, we could deplete antibody-secreting cells and prohibit detrimental immune complex formation in vivo. This study defines BMI-1 as a crucial immune modifier that controls antibody-mediated responses in chronic infection.
Collapse
Affiliation(s)
- Andrea Di Pietro
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jack Polmear
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Lucy Cooper
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Timon Damelang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Tabinda Hussain
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Lauren Hailes
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kristy O'Donnell
- Department of Immunology & Pathology, Alfred Research Alliance, Monash University, Melbourne, Victoria, Australia
| | - Vibha Udupa
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Tian Mi
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Simon Preston
- Divisions of Immunology and Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Areen Shtewe
- Department of Human Biology, Faculty of Science, University of Haifa, Haifa, Israel
| | - Uri Hershberg
- Department of Human Biology, Faculty of Science, University of Haifa, Haifa, Israel
| | - Stephen J Turner
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Nicole L La Gruta
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - David M Tarlinton
- Department of Immunology & Pathology, Alfred Research Alliance, Monash University, Melbourne, Victoria, Australia
| | - Christopher D Scharer
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia. .,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
13
|
Ertuna YI, Fallet B, Marx AF, Dimitrova M, Kastner AL, Wagner I, Merkler D, Pinschewer DD. Vectored antibody gene delivery restores host B and T cell control of persistent viral infection. Cell Rep 2021; 37:110061. [PMID: 34852228 DOI: 10.1016/j.celrep.2021.110061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/02/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022] Open
Abstract
Passive antibody therapy and vectored antibody gene delivery (VAGD) in particular offer an innovative approach to combat persistent viral diseases. Here, we exploit a small animal model to investigate synergies of VAGD with the host's endogenous immune defense for treating chronic viral infection. An adeno-associated virus (AAV) vector delivering the lymphocytic choriomeningitis virus (LCMV)-neutralizing antibody KL25 (AAV-KL25) establishes protective antibody titers for >200 days. When therapeutically administered to chronically infected immunocompetent wild-type mice, AAV-KL25 affords sustained viral load control. In contrast, viral mutational escape thwarts therapeutic AAV-KL25 effects when mice are unable to mount LCMV-specific antibody responses or lack CD8+ T cells. VAGD augments antiviral germinal center B cell and antibody-secreting cell responses and reduces inhibitory receptor expression on antiviral CD8+ T cells. These results indicate that VAGD fortifies host immune defense and synergizes with B cell and CD8 T cell responses to restore immune control of chronic viral infection.
Collapse
Affiliation(s)
- Yusuf I Ertuna
- University of Basel, Department of Biomedicine-Haus Petersplatz, Division of Experimental Virology, 4009 Basel, Switzerland
| | - Benedict Fallet
- University of Basel, Department of Biomedicine-Haus Petersplatz, Division of Experimental Virology, 4009 Basel, Switzerland
| | - Anna-Friederike Marx
- University of Basel, Department of Biomedicine-Haus Petersplatz, Division of Experimental Virology, 4009 Basel, Switzerland
| | - Mirela Dimitrova
- University of Basel, Department of Biomedicine-Haus Petersplatz, Division of Experimental Virology, 4009 Basel, Switzerland
| | - Anna Lena Kastner
- University of Basel, Department of Biomedicine-Haus Petersplatz, Division of Experimental Virology, 4009 Basel, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, Geneva Faculty of Medicine, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Geneva Faculty of Medicine, Geneva University Hospital, 1211 Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Daniel D Pinschewer
- University of Basel, Department of Biomedicine-Haus Petersplatz, Division of Experimental Virology, 4009 Basel, Switzerland.
| |
Collapse
|
14
|
Grisaru-Tal S, Dulberg S, Beck L, Zhang C, Itan M, Hediyeh-Zadeh S, Caldwell J, Rozenberg P, Dolitzky A, Avlas S, Hazut I, Gordon Y, Shani O, Tsuriel S, Gerlic M, Erez N, Jacquelot N, Belz GT, Rothenberg ME, Davis MJ, Yu H, Geiger T, Madi A, Munitz A. Metastasis-Entrained Eosinophils Enhance Lymphocyte-Mediated Antitumor Immunity. Cancer Res 2021; 81:5555-5571. [PMID: 34429328 DOI: 10.1158/0008-5472.can-21-0839] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/09/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022]
Abstract
The recognition of the immune system as a key component of the tumor microenvironment (TME) led to promising therapeutics. Because such therapies benefit only subsets of patients, understanding the activities of immune cells in the TME is required. Eosinophils are an integral part of the TME especially in mucosal tumors. Nonetheless, their role in the TME and the environmental cues that direct their activities are largely unknown. We report that breast cancer lung metastases are characterized by resident and recruited eosinophils. Eosinophil recruitment to the metastatic sites in the lung was regulated by G protein-coupled receptor signaling but independent of CCR3. Functionally, eosinophils promoted lymphocyte-mediated antitumor immunity. Transcriptome and proteomic analyses identified the TME rather than intrinsic differences between eosinophil subsets as a key instructing factor directing antitumorigenic eosinophil activities. Specifically, TNFα/IFNγ-activated eosinophils facilitated CD4+ and CD8+ T-cell infiltration and promoted antitumor immunity. Collectively, we identify a mechanism by which the TME trains eosinophils to adopt antitumorigenic properties, which may lead to the development of eosinophil-targeted therapeutics. SIGNIFICANCE: These findings demonstrate antitumor activities of eosinophils in the metastatic tumor microenvironment, suggesting that harnessing eosinophil activity may be a viable clinical strategy in patients with cancer.
Collapse
Affiliation(s)
- Sharon Grisaru-Tal
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shai Dulberg
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lir Beck
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chunyan Zhang
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Michal Itan
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Soroor Hediyeh-Zadeh
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
| | - Julie Caldwell
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Perri Rozenberg
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avishay Dolitzky
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shmuel Avlas
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Hazut
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yaara Gordon
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ophir Shani
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shlomo Tsuriel
- Institute of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nicolas Jacquelot
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne VIC, Australia.,Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Gabrielle T Belz
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia.,The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Melissa J Davis
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
| | - Hua Yu
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Asaf Madi
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
15
|
Cardozo-Ojeda EF, Perelson AS. Modeling HIV-1 Within-Host Dynamics After Passive Infusion of the Broadly Neutralizing Antibody VRC01. Front Immunol 2021; 12:710012. [PMID: 34531859 PMCID: PMC8438300 DOI: 10.3389/fimmu.2021.710012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022] Open
Abstract
VRC01 is a broadly neutralizing antibody that targets the CD4 binding site of HIV-1 gp120. Passive administration of VRC01 in humans has assessed the safety and the effect on plasma viremia of this monoclonal antibody (mAb) in a phase 1 clinical trial. After VRC01 infusion, the plasma viral load in most of the participants was reduced but had particular dynamics not observed during antiretroviral therapy. In this paper, we introduce different mathematical models to explain the observed dynamics and fit them to the plasma viral load data. Based on the fitting results we argue that a model containing reversible Ab binding to virions and clearance of virus-VRC01 complexes by a two-step process that includes (1) saturable capture followed by (2) internalization/degradation by phagocytes, best explains the data. This model predicts that VRC01 may enhance the clearance of Ab-virus complexes, explaining the initial viral decay observed immediately after antibody infusion in some participants. Because Ab-virus complexes are assumed to be unable to infect cells, i.e., contain neutralized virus, the model predicts a longer-term viral decay consistent with that observed in the VRC01 treated participants. By assuming a homogeneous viral population sensitive to VRC01, the model provides good fits to all of the participant data. However, the fits are improved by assuming that there were two populations of virus, one more susceptible to antibody-mediated neutralization than the other.
Collapse
Affiliation(s)
- E Fabian Cardozo-Ojeda
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
16
|
Bulté D, Van Bockstal L, Dirkx L, Van den Kerkhof M, De Trez C, Timmermans JP, Hendrickx S, Maes L, Caljon G. Miltefosine enhances infectivity of a miltefosine-resistant Leishmania infantum strain by attenuating its innate immune recognition. PLoS Negl Trop Dis 2021; 15:e0009622. [PMID: 34292975 PMCID: PMC8330912 DOI: 10.1371/journal.pntd.0009622] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/03/2021] [Accepted: 07/01/2021] [Indexed: 01/08/2023] Open
Abstract
Background Miltefosine (MIL) is currently the only oral drug available to treat visceral leishmaniasis but its use as first-line monotherapy has been compromised by an increasing treatment failure. Despite the scarce number of resistant clinical isolates, MIL-resistance by mutations in a single aminophospholipid transporter gene can easily be selected in a laboratory environment. These mutations result in a reduced survival in the mammalian host, which can partially be restored by exposure to MIL, suggesting a kind of drug-dependency. Methodology/Principal findings To enable a combined study of the infection dynamics and underlying immunological events for differential in vivo survival, firefly luciferase (PpyRE9) / red fluorescent protein (DsRed) double-reporter strains were generated of MIL-resistant (MIL-R) and syngeneic MIL-sensitive (MIL-S) Leishmania infantum. Results in C57Bl/6 and BALB/c mice show that MIL-R parasites induce an increased innate immune response that is characterized by enhanced influx and infection of neutrophils, monocytes and dendritic cells in the liver and elevated serum IFN-γ levels, finally resulting in a less efficient establishment in liver macrophages. The elevated IFN-γ levels were shown to originate from an increased response of hepatic NK and NKT cells to the MIL-R parasites. In addition, we demonstrated that MIL could increase the in vivo fitness of MIL-R parasites by lowering NK and NKT cell activation, leading to a reduced IFN-γ production. Conclusions/Significance Differential induction of innate immune responses in the liver was found to underlie the attenuated phenotype of a MIL-R parasite and its peculiar feature of drug-dependency. The impact of MIL on hepatic NK and NKT activation and IFN-γ production following recognition of a MIL-R strain indicates that this mechanism may sustain infections with resistant parasites and contribute to treatment failure. Visceral leishmaniasis is a neglected tropical disease that is fatal if left untreated. Miltefosine is currently the only oral drug available but is increasingly failing to cure patients, resulting in its discontinuation as first-line drug in some endemic areas. To understand these treatment failures, we investigated the complex interplay of the parasite with the host immune system in the presence and absence of miltefosine. Our data indicate that miltefosine-resistant Leishmania parasites become severely hampered in their in vivo infectivity, which could be attributed to the induction of a pronounced innate immune response. Interestingly, the infection deficit was partially restored in the presence of miltefosine. Our results further indicate that miltefosine can exacerbate infections with resistant parasites by reducing innate immune recognition. This study provides new insights into the complex interplay between parasite, drug and host and discloses an immune-related mechanism of treatment failure.
Collapse
Affiliation(s)
- Dimitri Bulté
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Lieselotte Van Bockstal
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Laura Dirkx
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Magali Van den Kerkhof
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Carl De Trez
- Vrije Universiteit Brussel, Laboratory for Cellular and Molecular Immunology (CMIM), Brussels, Belgium
| | - Jean-Pierre Timmermans
- University of Antwerp, Department of Veterinary Sciences, Laboratory of Cell biology & Histology, Wilrijk, Belgium
| | - Sarah Hendrickx
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Louis Maes
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Guy Caljon
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
- * E-mail:
| |
Collapse
|
17
|
Huang Z, Kang SG, Li Y, Zak J, Shaabani N, Deng K, Shepherd J, Bhargava R, Teijaro JR, Xiao C. IFNAR1 signaling in NK cells promotes persistent virus infection. SCIENCE ADVANCES 2021; 7:7/13/eabb8087. [PMID: 33771858 PMCID: PMC7997497 DOI: 10.1126/sciadv.abb8087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Inhibition of type 1 interferon (IFN-I) signaling promotes the control of persistent virus infection, but the underlying mechanisms remain poorly understood. Here, we report that genetic ablation of Ifnar1 specifically in natural killer (NK) cells led to elevated numbers of T follicular helper cells, germinal center B cells, and plasma cells and improved antiviral T cell function, resulting in hastened virus clearance that was comparable to IFNAR1 neutralizing antibody treatment. Antigen-specific B cells and antiviral antibodies were essential for the accelerated control of LCMV Cl13 infection following IFNAR1 blockade. IFNAR1 signaling in NK cells promoted NK cell function and general killing of antigen-specific CD4 and CD8 T cells. Therefore, inhibition of IFN-I signaling in NK cells enhances CD4 and CD8 T cell responses, promotes humoral immune responses, and thereby facilitates the control of persistent virus infection.
Collapse
Affiliation(s)
- Zhe Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Seung Goo Kang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Bioscience/Institute of Bioscience and Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Yunqiao Li
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jaroslav Zak
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Namir Shaabani
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kaiyuan Deng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- School of Medicine, Nankai University, Tianjin 30071, China
| | - Jovan Shepherd
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Raag Bhargava
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Changchun Xiao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
18
|
Immune Complex Vaccine Strategies to Combat HIV-1 and Other Infectious Diseases. Vaccines (Basel) 2021; 9:vaccines9020112. [PMID: 33540685 PMCID: PMC7913084 DOI: 10.3390/vaccines9020112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 01/16/2023] Open
Abstract
Immune complexes (ICs) made of antibody-bound antigens exhibit immunomodulatory activities exploitable in a vaccination strategy to optimize vaccine efficacy. The modulatory effects of ICs are typically attributed to the Fc fragments of the antibody components, which engage Fc receptors, complement and complement receptors on various immune cells. These Fc-mediated functions facilitate the critical interplay between innate and adaptive immune systems to impact the quality and quantity of the elicited adaptive responses. In addition to the Fc contribution, the Fab fragment also plays an immunoregulation role. The antigen-binding domains of the Fab fragment can bind their specific epitopes at high affinity to sterically occlude these antigenic sites from recognition by other antibodies. Moreover, the Fab-mediated binding has been demonstrated to induce allosteric alterations at nearby or distant antigenic sites. In this review article, we survey published studies to illuminate how the immunomodulatory functions of ICs have been investigated or utilized in a vaccination strategy to fight against an array of infectious pathogens, culminating with IC vaccine designs aimed at preventing HIV-1 infection. In particular, we highlight IC vaccine candidates that exploit Fab-mediated steric and allosteric effects to direct antibody responses away or toward the V1V2 domain, the V3 loop, and other antigenic sites on the HIV-1 envelope gp120 glycoprotein. Like other HIV-1 vaccine approaches, the path for IC-based vaccines to reach the clinic faces major hurdles yet to be overcome; however, investigations into this vaccine strategy have provided insights into the multifaceted activities of antibodies beyond their conventional roles in the host defense against HIV-1 and other microbial pathogens.
Collapse
|
19
|
Early innate and adaptive immune perturbations determine long-term severity of chronic virus and Mycobacterium tuberculosis coinfection. Immunity 2021; 54:526-541.e7. [PMID: 33515487 DOI: 10.1016/j.immuni.2021.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/13/2020] [Accepted: 01/11/2021] [Indexed: 01/01/2023]
Abstract
Chronic viral infections increase severity of Mycobacterium tuberculosis (Mtb) coinfection. Here, we examined how chronic viral infections alter the pulmonary microenvironment to foster coinfection and worsen disease severity. We developed a coordinated system of chronic virus and Mtb infection that induced central clinical manifestations of coinfection, including increased Mtb burden, extra-pulmonary dissemination, and heightened mortality. These disease states were not due to chronic virus-induced immunosuppression or exhaustion; rather, increased amounts of the cytokine TNFα initially arrested pulmonary Mtb growth, impeding dendritic cell mediated antigen transportation to the lymph node and subverting immune-surveillance, allowing bacterial sanctuary. The cryptic Mtb replication delayed CD4 T cell priming, redirecting T helper (Th) 1 toward Th17 differentiation and increasing pulmonary neutrophilia, which diminished long-term survival. Temporally restoring CD4 T cell induction overcame these diverse disease sequelae to enhance Mtb control. Thus, Mtb co-opts TNFα from the chronic inflammatory environment to subvert immune-surveillance, avert early immune function, and foster long-term coinfection.
Collapse
|
20
|
Cooper L, Good-Jacobson KL. Dysregulation of humoral immunity in chronic infection. Immunol Cell Biol 2020; 98:456-466. [PMID: 32275789 DOI: 10.1111/imcb.12338] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
Chronic viral infections disrupt the ability of the humoral immune response to produce neutralizing antibody or form effective immune memory, preventing viral clearance and making vaccine design difficult. Multiple components of the B-cell response are affected by pathogens that are not cleared from the host. Changes in the microenvironment shift production of B cells to short-lived plasma cells early in the response. Polyclonal B cells are recruited into both the plasma cell and germinal center compartments, inhibiting the formation of a targeted, high-affinity response. Finally, memory B cells shift toward an "atypical" phenotype, which may in turn result in changes to the functional properties of this population. While similar properties of B-cell dysregulation have been described across different types of persistent infections, key questions about the underlying mechanisms remain. This review will discuss the recent advances in this field, as well as highlight the critical questions about the interplay between viral load, microenvironment, the polyclonal response and atypical memory B cells that are yet to be answered. Design of new preventative treatments will rely on identifying the extrinsic and intrinsic modulators that push B cells toward an ineffective response, and thus identify new ways to guide them back onto the best path for clearance of virus and formation of effective immune memory.
Collapse
Affiliation(s)
- Lucy Cooper
- Infection and Immunity Program, The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Kim L Good-Jacobson
- Infection and Immunity Program, The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
21
|
Hamdan TA, Lang PA, Lang KS. The Diverse Functions of the Ubiquitous Fcγ Receptors and Their Unique Constituent, FcRγ Subunit. Pathogens 2020; 9:pathogens9020140. [PMID: 32093173 PMCID: PMC7168688 DOI: 10.3390/pathogens9020140] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 01/03/2023] Open
Abstract
Fc gamma receptors (FcγRs) are widely expressed on a variety of immune cells and play a myriad of regulatory roles in the immune system because of their structural diversity. Apart from their indispensable role in specific binding to the Fc portion of antibody subsets, FcγRs manifest diverse biological functions upon binding to their putative ligands. Examples of such manifestation include phagocytosis, presentation of antigens, mediation of antibody-dependent cellular cytotoxicity, anaphylactic reactions, and the promotion of apoptosis of T cells and natural killer cells. Functionally, the equilibrium between activating and inhibiting FcγR maintains the balance between afferent and efferent immunity. The γ subunit of the immunoglobulin Fc receptor (FcRγ) is a key component of discrete immune receptors and Fc receptors including the FcγR family. Furthermore, FcγRs exert a key role in terms of crosslinking the innate and adaptive workhorses of immunity. Ablation of one of these receptors might positively or negatively influence the immune response. Very recently, we discovered that FcRγ derived from natural cytotoxicity triggering receptor 1 (NCR1) curtails CD8+ T cell expansion and thereby turns an acute viral infection into a chronic one. Such a finding opens a new avenue for targeting the FcγRs as one of the therapeutic regimens to boost the immune response. This review highlights the structural heterogeneity and functional diversity of the ubiquitous FcγRs along with their featured subunit, FcRγ.
Collapse
Affiliation(s)
- Thamer A. Hamdan
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
- Correspondence:
| | - Philipp A. Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Karl S. Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| |
Collapse
|
22
|
Kim JH, Ghosh A, Ayithan N, Romani S, Khanam A, Park JJ, Rijnbrand R, Tang L, Sofia MJ, Kottilil S, Moore CB, Poonia B. Circulating serum HBsAg level is a biomarker for HBV-specific T and B cell responses in chronic hepatitis B patients. Sci Rep 2020; 10:1835. [PMID: 32020034 PMCID: PMC7000714 DOI: 10.1038/s41598-020-58870-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/16/2020] [Indexed: 11/08/2022] Open
Abstract
Chronic hepatitis B (CHB) infection functional cure is defined as sustained loss of HBsAg and several therapeutic strategies are in clinical development designed to pharmacologically reduce serum HBsAg, break immune tolerance, and increase functional cure rates. However, little is known about pre-treatment HBsAg levels as an indicator of HBV immune potential. Here, we compared the phenotypes and HBV-specific response of lymphocytes in CHB patients stratified by serum HBsAg levels <500 (HBslo) or >50,000 IU/ml (HBshi) using immunological assays (flow cytometry, ICS, ELISPOT). HBshi patients had significantly higher expression of inhibitory PD-1 on CD4+ T cells, particularly among TEMRA subset, and higher FcRL5 expression on B cells. Upon HBcAg(core) or HBsAg(env)-stimulation, 85% and 60% of HBslo patients had IFNγ+TNFα+ and IFNγ+ IL2+ CD4+ T cell responses respectively, in comparison to 33% and 13% of HBshi patients. Checkpoint blockade with αPD-1 improved HBV-specific CD4+ T cell function only in HBslo patients. HBsAg-specific antibody-secreting cells (ASCs) response was not different between these groups, yet αPD-1 treatment resulted in significantly higher fold change in ASCs among patients with HBsAg <100 IU/ml compared to patients with HBsAg >5,000 IU/ml. Thus, serum HBsAg correlates with inhibitory receptor expression, HBV-specific CD4+ T cell responses, and augmentation by checkpoint blockade.
Collapse
Affiliation(s)
- Jin Hyang Kim
- Arbutus Biopharma Corporation, 701 Veterans Circle, Warminster, Pennsylvania, 18974, United States
| | - Alip Ghosh
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Natarajan Ayithan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Sara Romani
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Arshi Khanam
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Jang-June Park
- Arbutus Biopharma Corporation, 701 Veterans Circle, Warminster, Pennsylvania, 18974, United States
| | - Rene Rijnbrand
- Arbutus Biopharma Corporation, 701 Veterans Circle, Warminster, Pennsylvania, 18974, United States
| | - Lydia Tang
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Michael J Sofia
- Arbutus Biopharma Corporation, 701 Veterans Circle, Warminster, Pennsylvania, 18974, United States
| | - Shyam Kottilil
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Chris B Moore
- Arbutus Biopharma Corporation, 701 Veterans Circle, Warminster, Pennsylvania, 18974, United States
| | - Bhawna Poonia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States.
| |
Collapse
|
23
|
Flow cytometry-based assessment of direct-targeting anti-cancer antibody immune effector functions. Methods Enzymol 2020; 632:431-456. [PMID: 32000909 PMCID: PMC7000137 DOI: 10.1016/bs.mie.2019.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Monoclonal antibody-based therapies are increasingly being used to treat cancer. Some mediate their therapeutic effects through modifying the function of immune cells globally, while others bind directly to tumor cells and can recruit immune effector cells through their Fc regions. As new direct-binding agents are developed, having the ability to test their Fc-mediated functions in a high-throughput manner is important for selecting antibodies with immune effector properties. Here, using monoclonal anti-CD20 antibody (rituximab) as an example and the CD20+ Raji cell line as tumor target, we describe flow cytometry-based assays for determining an antibody's capacity for mediating antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and complement-dependent cytotoxicity (CDC). These assays are sensitive, reliable, affordable and avoid the use of radioactivity.
Collapse
|
24
|
Jin J, Xu H, Wu R, Gao N, Wu N, Li S, Niu J. Identification of key genes and pathways associated with different immune statuses of hepatitis B virus infection. J Cell Mol Med 2019; 23:7474-7489. [PMID: 31565863 PMCID: PMC6815815 DOI: 10.1111/jcmm.14616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
We aimed to identify key genes and pathways associated with different immune statuses of hepatitis B virus (HBV) infection. The gene expression and DNA methylation profiles were analysed in different immune statuses of HBV infection. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) were identified, followed by their functional and integrative analyses. The differential expression of IgG Fc receptors (FcγRs) in chronic HBV-infected patients and immune cells during different stages of HBV infection was investigated. Toll-like receptor (TLR) signalling pathway (including TLR6) and leucocyte transendothelial migration pathway (including integrin subunit beta 1) were enriched during acute infection. Key DEGs, such as FcγR Ib and FcγR Ia, and interferon-alpha inducible protein 27 showed correlation with alanine aminotransferase levels, and they were differentially expressed between acute and immune-tolerant phases and between immune-tolerant and immune-clearance phases. The integrative analysis of DNA methylation profile showed that lowly methylated and highly expressed genes, including cytotoxic T lymphocyte-associated protein 4 and mitogen-activated protein kinase 3 were enriched in T cell receptor signalling pathway during acute infection. Highly methylated and lowly expressed genes, such as Ras association domain family member 1 and cyclin-dependent kinase inhibitor 2A were identified in chronic infection. Furthermore, differentially expressed FcγR Ia, FcγR IIa and FcγR IIb, CD3- CD56+ CD16+ natural killer cells and CD14high CD16+ monocytes were identified between immune-tolerant and immune-clearance phases by experimental validation. The above genes and pathways may be used to distinguish different immune statuses of HBV infection.
Collapse
MESH Headings
- DNA Methylation/genetics
- DNA Methylation/immunology
- Female
- Gene Expression/genetics
- Hepatitis B/genetics
- Hepatitis B/immunology
- Hepatitis B virus/immunology
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/virology
- Humans
- Killer Cells, Natural/immunology
- Male
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Signal Transduction/genetics
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Jinglan Jin
- Department of Hepatology, The First Hospital of Jilin UniversityJilin UniversityChangchunChina
| | - Hongqin Xu
- Department of Hepatology, The First Hospital of Jilin UniversityJilin UniversityChangchunChina
- Jilin Province Key Laboratory of Infectious DiseasesLaboratory of Molecular VirologyChangchunChina
| | - Ruihong Wu
- Department of Hepatology, The First Hospital of Jilin UniversityJilin UniversityChangchunChina
- Jilin Province Key Laboratory of Infectious DiseasesLaboratory of Molecular VirologyChangchunChina
| | - Na Gao
- Department of Infectious DiseaseThe Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina
| | - Na Wu
- Lanshan People’s HospitalLinyiChina
| | - Shibo Li
- Department of Pediatrics, Genetics LaboratoryUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin UniversityJilin UniversityChangchunChina
- Jilin Province Key Laboratory of Infectious DiseasesLaboratory of Molecular VirologyChangchunChina
| |
Collapse
|
25
|
Wieland A, Kamphorst AO, Valanparambil RM, Han JH, Xu X, Choudhury BP, Ahmed R. Enhancing FcγR-mediated antibody effector function during persistent viral infection. Sci Immunol 2019; 3:3/27/eaao3125. [PMID: 30242080 DOI: 10.1126/sciimmunol.aao3125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 05/28/2018] [Accepted: 08/01/2018] [Indexed: 01/05/2023]
Abstract
Persistent viral infections can interfere with FcγR-mediated antibody effector functions by excessive immune complex (IC) formation, resulting in resistance to therapeutic FcγR-dependent antibodies. We and others have previously demonstrated that mice persistently infected with lymphocytic choriomeningitis virus (LCMV) are resistant to a wide range of depleting antibodies due to excessive IC formation. Here, we dissect the mechanisms by which two depleting antibodies overcome the obstacle of endogenous ICs and achieve efficient target cell depletion in persistently infected mice. Efficient antibody-mediated depletion during persistent LCMV infection required increased levels of antibody bound to target cells or use of afucosylated antibodies with increased affinity for FcγRs. Antibodies targeting the highly expressed CD90 antigen or overexpressed human CD20 efficiently depleted their target cells in naïve and persistently infected mice, whereas antibodies directed against less abundant antigens failed to deplete their target cells during persistent LCMV infection. In addition, we demonstrate the superior activity of afucosylated antibodies in the presence of endogenous ICs. We generated afucosylated antibodies directed against CD4 and CD8α, which, in contrast to their parental fucosylated versions, efficiently depleted their respective target cells in persistently infected mice. Efficient antibody-mediated depletion can thus be achieved if therapeutic antibodies can outcompete endogenous ICs for access to FcγRs either by targeting highly expressed antigens or by increased affinity for FcγRs. Our findings have implications for the optimization of therapeutic antibodies and provide strategies to allow efficient FcγR engagement in the presence of competing endogenous ICs in persistent viral infections, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Andreas Wieland
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Alice O Kamphorst
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rajesh M Valanparambil
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jin-Hwan Han
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaojin Xu
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Biswa P Choudhury
- Glycotechnology Core Resources, University of California at San Diego, La Jolla, CA 92093, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
26
|
Grötsch B, Lux A, Rombouts Y, Hoffmann AC, Andreev D, Nimmerjahn F, Xiang W, Scherer HU, Schett G, Bozec A. Fra1 Controls Rheumatoid Factor Autoantibody Production by Bone Marrow Plasma Cells and the Development of Autoimmune Bone Loss. J Bone Miner Res 2019; 34:1352-1365. [PMID: 30779858 DOI: 10.1002/jbmr.3705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/21/2019] [Accepted: 02/05/2019] [Indexed: 11/11/2022]
Abstract
Next to proinflammatory cytokines, autoimmunity has been identified as a key trigger for osteoclast activation and bone loss. IgG-rheumatoid factor (IgG-RF) immune complexes, which are present in patients with rheumatoid arthritis, were shown to boost osteoclast differentiation. To date, the regulation of IgG-RF production in the absence of inflammatory triggers is unknown. Herein, we describe Fra1 as a key checkpoint that controls IgG-RF production by plasma cells and regulates autoimmune-mediated bone loss. Fra1 deficiency in B cells (Fra1ΔBcell ) led to increased IgG1-producing bone marrow plasma cells, enhanced IgG-RF production, and increased bone loss associated with elevated osteoclast numbers after immunization. The effect of IgG-RF on osteoclasts in vitro and on osteoclasts associated with bone loss in vivo was dependent on FcγR, especially FcγR3. Furthermore, immunization of WT mice with T-cell-dependent antigens induced a significant and robust decrease in Fra1 expression in bone marrow B cells, which was followed by increased IgG1 production and the induction of osteoclast-mediated bone loss. Overall, these data identify Fra1 as a key mediator of IgG-RF production and autoimmune-mediated bone loss. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Bettina Grötsch
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anja Lux
- Division of Genetics, University of Erlangen-Nuremberg, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yoann Rombouts
- Leiden University Medical Center, Leiden, The Netherlands.,Institut de Pharmacologie et de Biologie Structurale, CNRS/University of Toulouse, France
| | - Anna-Carin Hoffmann
- Institute of Biochemistry, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Darja Andreev
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, University of Erlangen-Nuremberg, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wei Xiang
- Institute of Biochemistry, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Georg Schett
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
27
|
Keshwara R, Hagen KR, Abreu-Mota T, Papaneri AB, Liu D, Wirblich C, Johnson RF, Schnell MJ. A Recombinant Rabies Virus Expressing the Marburg Virus Glycoprotein Is Dependent upon Antibody-Mediated Cellular Cytotoxicity for Protection against Marburg Virus Disease in a Murine Model. J Virol 2019; 93:e01865-18. [PMID: 30567978 PMCID: PMC6401435 DOI: 10.1128/jvi.01865-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022] Open
Abstract
Marburg virus (MARV) is a filovirus related to Ebola virus (EBOV) associated with human hemorrhagic disease. Outbreaks are sporadic and severe, with a reported case mortality rate of upward of 88%. There is currently no antiviral or vaccine available. Given the sporadic nature of outbreaks, vaccines provide the best approach for long-term control of MARV in regions of endemicity. We have developed an inactivated rabies virus-vectored MARV vaccine (FILORAB3) to protect against Marburg virus disease. Immunogenicity studies in our labs have shown that a Th1-biased seroconversion to both rabies virus and MARV glycoproteins (GPs) is beneficial for protection in a preclinical murine model. As such, we adjuvanted FILORAB3 with glucopyranosyl lipid adjuvant (GLA), a Toll-like receptor 4 agonist, in a squalene-in-water emulsion. Across two different BALB/c mouse challenge models, we achieved 92% protection against murine-adapted Marburg virus (ma-MARV). Although our vaccine elicited strong MARV GP antibodies, it did not strongly induce neutralizing antibodies. Through both in vitro and in vivo approaches, we elucidated a critical role for NK cell-dependent antibody-mediated cellular cytotoxicity (ADCC) in vaccine-induced protection. Overall, these findings demonstrate that FILORAB3 is a promising vaccine candidate for Marburg virus disease.IMPORTANCE Marburg virus (MARV) is a virus similar to Ebola virus and also causes a hemorrhagic disease which is highly lethal. In contrast to EBOV, only a few vaccines have been developed against MARV, and researchers do not understand what kind of immune responses are required to protect from MARV. Here we show that antibodies directed against MARV after application of our vaccine protect in an animal system but fail to neutralize the virus in a widely used virus neutralization assay against MARV. This newly discovered activity needs to be considered more when analyzing MARV vaccines or infections.
Collapse
Affiliation(s)
- Rohan Keshwara
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Katie R Hagen
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland, USA
| | - Tiago Abreu-Mota
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Life and Health Sciences Research Institute (ICVS) School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Amy B Papaneri
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - David Liu
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland, USA
| | - Christoph Wirblich
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Reed F Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Jefferson Vaccine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Patel KR, Roberts JT, Barb AW. Multiple Variables at the Leukocyte Cell Surface Impact Fc γ Receptor-Dependent Mechanisms. Front Immunol 2019; 10:223. [PMID: 30837990 PMCID: PMC6382684 DOI: 10.3389/fimmu.2019.00223] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/25/2019] [Indexed: 12/18/2022] Open
Abstract
Fc γ receptors (FcγR) expressed on the surface of human leukocytes bind clusters of immunoglobulin G (IgG) to induce a variety of responses. Many therapeutic antibodies and vaccine-elicited antibodies prevent or treat infectious diseases, cancers and autoimmune disorders by binding FcγRs, thus there is a need to fully define the variables that impact antibody-induced mechanisms to properly evaluate candidate therapies and design new intervention strategies. A multitude of factors influence the IgG-FcγR interaction; one well-described factor is the differential affinity of the six distinct FcγRs for the four human IgG subclasses. However, there are several other recently described factors that may prove more relevant for disease treatment. This review covers recent reports of several aspects found at the leukocyte membrane or outside the cell that contribute to the cell-based response to antibody-coated targets. One major focus is recent reports covering post-translational modification of the FcγRs, including asparagine-linked glycosylation. This review also covers the organization of FcγRs at the cell surface, and properties of the immune complex. Recent technical advances provide high-resolution measurements of these often-overlooked variables in leukocyte function and immune system activation.
Collapse
Affiliation(s)
- Kashyap R Patel
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Jacob T Roberts
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
29
|
Cross EW, Blain TJ, Mathew D, Kedl RM. Anti-CD8 monoclonal antibody-mediated depletion alters the phenotype and behavior of surviving CD8+ T cells. PLoS One 2019; 14:e0211446. [PMID: 30735510 PMCID: PMC6368275 DOI: 10.1371/journal.pone.0211446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/15/2019] [Indexed: 02/06/2023] Open
Abstract
It is common practice for researchers to use antibodies to remove a specific cell type to infer its function. However, it is difficult to completely eliminate a cell type and there is often limited or no information as to how the cells which survive depletion are affected. This is particularly important for CD8+ T cells for two reasons. First, they are more resistant to mAb-mediated depletion than other lymphocytes. Second, targeting either the CD8α or CD8β chain could induce differential effects. We show here that two commonly used mAbs, against either the CD8α or CD8β subunit, can differentially affect cellular metabolism. Further, in vivo treatment leaves behind a population of CD8+ T cells with different phenotypic and functional attributes relative to each other or control CD8+ T cells. The impact of anti-CD8 antibodies on CD8+ T cell phenotype and function indicates the need to carefully consider the use of these, and possibly other "depleting" antibodies, as they could significantly complicate the interpretation of results or change the outcome of an experiment. These observations could impact how immunotherapy and modulation of CD8+ T cell activation is pursued.
Collapse
Affiliation(s)
- Eric W. Cross
- Department of Immunology and Microbiology, University of Colorado, Denver, Colorado, United States of America
- * E-mail:
| | - Trevor J. Blain
- Department of Immunology and Microbiology, University of Colorado, Denver, Colorado, United States of America
| | - Divij Mathew
- Department of Immunology and Microbiology, University of Colorado, Denver, Colorado, United States of America
| | - Ross M. Kedl
- Department of Immunology and Microbiology, University of Colorado, Denver, Colorado, United States of America
| |
Collapse
|
30
|
Abstract
In recent years, therapeutic monoclonal antibodies have made impressive progress, providing great benefit by successfully treating malignant and chronic inflammatory diseases. Monoclonal antibodies with broadly neutralizing effects against specific antigens, or that target specific immune regulators, manifest therapeutic effects via their Fab fragment specificities. Subsequently therapeutic efficacy is mediated mostly by interactions of the Fc fragments of the antibodies with their receptors (FcR) displayed on cells of the immune system. These interactions can trigger a series of immunoregulatory responses, involving both innate and adaptive immune systems and including cross-presentation of antigens, activation of CD8+ T cells and CD4+ T cells, phagocytosis, complement-mediated antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). The nature of the triggered effector functions of the antibodies is markedly affected by the glycosylation patterns of the Fc fragments. These can cause differences in the conformation of the heavy chains of antibodies, with resultant changes in antibody binding affinity and activation of the complement system. Studies of the Fc glycosylation profiles together with the associated Fc effector functions and FcR/CR interactions promoted interest and progress in engineering therapeutic antibodies. Furthermore, because antigen–antibody immune complexes (ICs) have shown similar actions, in addition to certain novel immunoregulatory mechanisms that also reshape immune responses, the properties of ICs are being explored in new approaches for prevention and therapy of diseases. In this review, both basic studies and experimental/clinical applications of ICs leading to the development of preventive and therapeutic vaccines are presented.
Collapse
|
31
|
Abstract
Antibody/antigen binding results in immune complexes (IC) that have a variety of regulatory functions. One important feature is the enhanced host immune activation against antigen contained in the complex. ICs play important roles at several critical steps that lead to B and T cell activation, including antigen targeting/retention, facilitated antigen uptake, antigen presenting cell activation and proper balancing of positive and negative stimulatory signals. In both poultry industry and clinical health care, ICs have been used as preventive and therapeutic vaccines. With our deepening understanding of antibody biology, particularly in light of new revelations of regulatory functions of Fc receptors, mechanistically more precise engineering has spearheaded tailored use of this tool for infection control and cancer therapy. IC-based treatment and prophylaxis have been tested to different extents in HBV, HIV and influenza viral infection control and are actively examined as an alternative treatment for several forms of tumor. As a part of this book series, this chapter aims to discuss the mechanistic aspects of IC signaling and their impact on immune cells. We give samples how this old technology has been used by practitioners over the last several decades and suggest potential paths for future development of IC-based immune therapy.
Collapse
Affiliation(s)
- Yu-Mei Wen
- Key Laboratory of Molecular Virology, Shanghai Medical College, School of Basic Medical Sciences, Fudan University, Shanghai, China. .,Shanghai Medical College, Fudan University, Rm 401, Fuxing Bldg, 131 Yi Xue Yuan Rd, Shanghai, 200032, China.
| | - Yan Shi
- Department of Basic Medical Sciences, Center for Life Sciences, Institute of Immunology, Tsinghua University, Beijing, China.,Department of Microbiology, Immunology & Infectious Diseases and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,D301 Medical Sciences Bldg, Tsinghua University, Beijing, 00084, China
| |
Collapse
|
32
|
Wieland A, Ahmed R. Fc Receptors in Antimicrobial Protection. Curr Top Microbiol Immunol 2019; 423:119-150. [DOI: 10.1007/82_2019_154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Abreu-Mota T, Hagen KR, Cooper K, Jahrling PB, Tan G, Wirblich C, Johnson RF, Schnell MJ. Non-neutralizing antibodies elicited by recombinant Lassa-Rabies vaccine are critical for protection against Lassa fever. Nat Commun 2018; 9:4223. [PMID: 30310067 PMCID: PMC6181965 DOI: 10.1038/s41467-018-06741-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/10/2018] [Indexed: 11/20/2022] Open
Abstract
Lassa fever (LF), caused by Lassa virus (LASV), is a viral hemorrhagic fever for which no approved vaccine or potent antiviral treatment is available. LF is a WHO priority disease and, together with rabies, a major health burden in West Africa. Here we present the development and characterization of an inactivated recombinant LASV and rabies vaccine candidate (LASSARAB) that expresses a codon-optimized LASV glycoprotein (coGPC) and is adjuvanted by a TLR-4 agonist (GLA-SE). LASSARAB elicits lasting humoral response against LASV and RABV in both mouse and guinea pig models, and it protects both guinea pigs and mice against LF. We also demonstrate a previously unexplored role for non-neutralizing LASV GPC-specific antibodies as a major mechanism of protection by LASSARAB against LF through antibody-dependent cellular functions. Overall, these findings demonstrate an effective inactivated LF vaccine and elucidate a novel humoral correlate of protection for LF.
Collapse
Affiliation(s)
- Tiago Abreu-Mota
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, 4710-057, Portugal
| | - Katie R Hagen
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702, USA
| | - Kurt Cooper
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702, USA
| | - Peter B Jahrling
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702, USA
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD, 20892, USA
| | - Gene Tan
- Infectious Disease, The J. Craig Venter Institute, La Jolla, CA, 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla CA, 92037, USA
| | - Christoph Wirblich
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Reed F Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD, 20892, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA.
- Jefferson Vaccine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
34
|
Jung SR, Suprunenko T, Ashhurst TM, King NJC, Hofer MJ. Collateral Damage: What Effect Does Anti-CD4 and Anti-CD8α Antibody-Mediated Depletion Have on Leukocyte Populations? THE JOURNAL OF IMMUNOLOGY 2018; 201:2176-2186. [PMID: 30143586 DOI: 10.4049/jimmunol.1800339] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023]
Abstract
Anti-CD4 or anti-CD8α Ab-mediated depletion strategies are widely used to determine the role of T cell subsets. However, surface expression of CD4 and CD8α is not limited to T cells and occurs on other leukocyte populations as well. Using both unbiased t-distributed stochastic neighbor embedding of flow cytometry data and conventional gating strategies, we assessed the impact of anti-CD4 and anti-CD8α Ab-mediated depletion on non-T cell populations in mice. Our results show that anti-CD4 and anti-CD8α Ab injections not only resulted in depletion of T cells but also led to depletion of specific dendritic cell subsets in a dose-dependent manner. Importantly, the extent of this effect varied between mock- and virus-infected mice. We also demonstrate the importance of using a second, noncompeting Ab (clone CT-CD8α) to detect CD8α+ cells following depletion with anti-CD8α Ab clone 2.43. Our study provides a necessary caution to carefully consider the effects on nontarget cells when using Ab injections for leukocyte depletion in all experimental conditions.
Collapse
Affiliation(s)
- So Ri Jung
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales 2006, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia.,Bosch Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Tamara Suprunenko
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales 2006, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia.,Bosch Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Thomas M Ashhurst
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales 2006, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia.,Bosch Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,Sydney Cytometry, Core Facility of The University of Sydney and Centenary Institute, Sydney, New South Wales 2006, Australia; and.,Department of Pathology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nicholas J C King
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales 2006, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia.,Bosch Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,Sydney Cytometry, Core Facility of The University of Sydney and Centenary Institute, Sydney, New South Wales 2006, Australia; and.,Department of Pathology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Markus J Hofer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; .,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales 2006, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia.,Bosch Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
35
|
Stopforth RJ, Oldham RJ, Tutt AL, Duriez P, Chan HTC, Binkowski BF, Zimprich C, Li D, Hargreaves PG, Cong M, Reddy V, Leandro MJ, Cambridge G, Lux A, Nimmerjahn F, Cragg MS. Detection of Experimental and Clinical Immune Complexes by Measuring SHIP-1 Recruitment to the Inhibitory FcγRIIB. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:1937-1950. [PMID: 29351998 PMCID: PMC5837011 DOI: 10.4049/jimmunol.1700832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/20/2017] [Indexed: 12/16/2022]
Abstract
Fc γ receptors (FcγR) are involved in multiple aspects of immune cell regulation, are central to the success of mAb therapeutics, and underpin the pathology of several autoimmune diseases. However, reliable assays capable of accurately measuring FcγR interactions with their physiological ligands, IgG immune complexes (IC), are limited. A method to study and detect IC interactions with FcγRs was therefore developed. This method, designed to model the signaling pathway of the inhibitory FcγRIIB (CD32B), used NanoLuc Binary Interaction Technology to measure recruitment of the Src homology 2 domain-containing inositol phosphatase 1 to the ITIM of this receptor. Such recruitment required prior cross-linking of an ITAM-containing activatory receptor, and evoked luciferase activity in discrete clusters at the cell surface, recapitulating the known biology of CD32B signaling. The assay detected varying forms of experimental IC, including heat-aggregated IgG, rituximab-anti-idiotype complexes, and anti-trinitrophenol-trinitrophenol complexes in a sensitive manner (≤1 μg/ml), and discriminated between complexes of varying size and isotype. Proof-of-concept for the detection of circulating ICs in autoimmune disease was provided, as responses to sera from patients with systemic lupus erythematosus and rheumatoid arthritis were detected in small pilot studies. Finally, the method was translated to a stable cell line system. In conclusion, a rapid and robust method for the detection of IC was developed, which has numerous potential applications including the monitoring of IC in autoimmune diseases and the study of underlying FcγR biology.
Collapse
Affiliation(s)
- Richard J Stopforth
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | - Robert J Oldham
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | - Alison L Tutt
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | - Patrick Duriez
- Southampton Experimental Cancer Medicine/Cancer Research U.K. Centre, Protein Core Facility, Cancer Sciences Unit, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | - H T Claude Chan
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | | | | | - Dun Li
- Promega Corp., Fitchburg, WI 53711
| | - Philip G Hargreaves
- Promega UK Ltd., Southampton Science Park, Southampton SO16 7NS, United Kingdom
| | - Mei Cong
- Promega Corp., Fitchburg, WI 53711
| | - Venkat Reddy
- Division of Medicine, Centre for Rheumatology, University College London, London WC1E 6JF, United Kingdom; and
| | - Maria J Leandro
- Division of Medicine, Centre for Rheumatology, University College London, London WC1E 6JF, United Kingdom; and
| | - Geraldine Cambridge
- Division of Medicine, Centre for Rheumatology, University College London, London WC1E 6JF, United Kingdom; and
| | - Anja Lux
- Department of Biology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Falk Nimmerjahn
- Department of Biology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Mark S Cragg
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, United Kingdom;
| |
Collapse
|
36
|
Luft O, Khattar R, Farrokhi K, Ferri D, Yavorska N, Zhang J, Sadozai H, Adeyi O, Chruscinski A, Levy GA, Selzner N. Inhibition of the Fibrinogen-Like Protein 2:FcγRIIB/RIII immunosuppressive pathway enhances antiviral T-cell and B-cell responses leading to clearance of lymphocytic choriomeningitis virus clone 13. Immunology 2018; 154:476-489. [PMID: 29341118 DOI: 10.1111/imm.12897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/31/2017] [Accepted: 01/10/2018] [Indexed: 12/26/2022] Open
Abstract
Persistent viruses evade immune detection by interfering with virus-specific innate and adaptive antiviral immune responses. Fibrinogen-like protein-2 (FGL2) is a potent effector molecule of CD4+ CD25+ FoxP3+ regulatory T cells and exerts its immunosuppressive activity following ligation to its cognate receptor, FcγRIIB/RIII. The role of FGL2 in the pathogenesis of chronic viral infection caused by lymphocytic choriomeningitis virus clone-13 (LCMV cl-13) was assessed in this study. Chronically infected fgl2+/+ mice had increased plasma levels of FGL2, with reduced expression of the maturation markers, CD80, CD86 and MHC-II on macrophages and dendritic cells and impaired production of neutralizing antibody. In contrast, fgl2-/- mice or fgl2+/+ mice that had been pre-treated with antibodies to FGL2 and FcγRIIB/RIII and then infected with LCMV cl-13 developed a robust CD4+ and CD8+ antiviral T-cell response, produced high titred neutralizing antibody to LCMV and cleared LCMV. Treatment of mice with established chronic infection with antibodies to FGL2 and FcγRIIB/RIII was shown to rescue the number and functionality of virus-specific CD4+ and CD8+ T cells with reduced total and virus-specific T-cell expression of programmed cell death protein 1 leading to viral clearance. These results demonstrate an important role for FGL2 in viral immune evasion and provide a rationale to target FGL2 to treat patients with chronic viral infection.
Collapse
Affiliation(s)
- Olga Luft
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Ramzi Khattar
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Kaveh Farrokhi
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Dario Ferri
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Nataliya Yavorska
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Jianhua Zhang
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Hassan Sadozai
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Oyedele Adeyi
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Andrzej Chruscinski
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Gary A Levy
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Nazia Selzner
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| |
Collapse
|
37
|
Multivalent Fcγ-receptor engagement by a hexameric Fc-fusion protein triggers Fcγ-receptor internalisation and modulation of Fcγ-receptor functions. Sci Rep 2017; 7:17049. [PMID: 29213127 PMCID: PMC5719016 DOI: 10.1038/s41598-017-17255-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
Abstract
Engagement of Fcγ-receptors triggers a range of downstream signalling events resulting in a diverse array of immune functions. As a result, blockade of Fc-mediated function is an important strategy for the control of several autoimmune and inflammatory conditions. We have generated a hexameric-Fc fusion protein (hexameric-Fc) and tested the consequences of multi-valent Fcγ-receptor engagement in in vitro and in vivo systems. In vitro engagement of hexameric-Fc with FcγRs showed complex binding interactions that altered with receptor density and triggered the internalisation and degradation of Fcγ-receptors. This caused a disruption of Fc-binding and phagocytosis. In vivo, in a mouse ITP model we observed a short half-life of hexameric-Fc but were nevertheless able to observe inhibition of platelet phagocytosis several days after hexameric-Fc dosing. In cynomolgus monkeys, we again observed a short half-life, but were able to demonstrate effective FcγR blockade. These findings demonstrate the ability of multi-valent Fc-based therapeutics to interfere with FcγR function and a potential mechanism through which they could have a sustained effect; the internalisation and degradation of FcγRs.
Collapse
|
38
|
Marshall MJE, Stopforth RJ, Cragg MS. Therapeutic Antibodies: What Have We Learnt from Targeting CD20 and Where Are We Going? Front Immunol 2017; 8:1245. [PMID: 29046676 PMCID: PMC5632755 DOI: 10.3389/fimmu.2017.01245] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) have become one of the fastest growing classes of drugs in recent years and are approved for the treatment of a wide range of indications, from cancer to autoimmune disease. Perhaps the best studied target is the pan B-cell marker CD20. Indeed, the first mAb to receive approval by the Food and Drug Administration for use in cancer treatment was the CD20-targeting mAb rituximab (Rituxan®). Since its approval for relapsed/refractory non-Hodgkin's lymphoma in 1997, rituximab has been licensed for use in the treatment of numerous other B-cell malignancies, as well as autoimmune conditions, including rheumatoid arthritis. Despite having a significant impact on the treatment of these patients, the exact mechanisms of action of rituximab remain incompletely understood. Nevertheless, numerous second- and third-generation anti-CD20 mAbs have since been developed using various strategies to enhance specific effector functions thought to be key for efficacy. A plethora of knowledge has been gained during the development and testing of these mAbs, and this knowledge can now be applied to the design of novel mAbs directed to targets beyond CD20. As we enter the "post-rituximab" era, this review will focus on the lessons learned thus far through investigation of anti-CD20 mAb. Also discussed are current and future developments relating to enhanced effector function, such as the ability to form multimers on the target cell surface. These strategies have potential applications not only in oncology but also in the improved treatment of autoimmune disorders and infectious diseases. Finally, potential approaches to overcoming mechanisms of resistance to anti-CD20 therapy are discussed, chiefly involving the combination of anti-CD20 mAbs with various other agents to resensitize patients to treatment.
Collapse
Affiliation(s)
- Michael J. E. Marshall
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Richard J. Stopforth
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Mark S. Cragg
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
39
|
Attanasio J, Wherry EJ. Costimulatory and Coinhibitory Receptor Pathways in Infectious Disease. Immunity 2017; 44:1052-68. [PMID: 27192569 DOI: 10.1016/j.immuni.2016.04.022] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Indexed: 12/16/2022]
Abstract
Costimulatory and inhibitory receptors play a key role in regulating immune responses to infections. Recent translation of knowledge about inhibitory receptors such as CTLA-4 and PD-1 into the cancer clinic highlights the opportunities to manipulate these pathways to treat human disease. Studies in infectious disease have provided key insights into the specific roles of these pathways and the effects of their manipulation. Here, recent studies are discussed that have addressed how major inhibitory and costimulatory pathways play a role in regulating immune responses during acute and chronic infections. Mechanistic insights from studies of infectious disease provide opportunities to further expand our toolkit to treat cancer and chronic infections in the clinic.
Collapse
Affiliation(s)
- John Attanasio
- Institute for Immunology and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E John Wherry
- Institute for Immunology and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
Snell LM, McGaha TL, Brooks DG. Type I Interferon in Chronic Virus Infection and Cancer. Trends Immunol 2017; 38:542-557. [PMID: 28579323 DOI: 10.1016/j.it.2017.05.005] [Citation(s) in RCA: 338] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/16/2022]
Abstract
Type I interferons (IFN-Is) are emerging as key drivers of inflammation and immunosuppression in chronic infection. Control of these infections requires IFN-I signaling; however, prolonged IFN-I signaling can lead to immune dysfunction. IFN-Is are also emerging as double-edged swords in cancer, providing necessary inflammatory signals, while initiating feedback suppression in both immune and cancer cells. Here, we review the proinflammatory and suppressive mechanisms potentiated by IFN-Is during chronic virus infections and discuss the similar, newly emerging dichotomy in cancer. We then discuss how this understanding is leading to new therapeutic concepts and immunotherapy combinations. We propose that, by modulating the immune response at its foundation, it may be possible to widely reshape immunity to control these chronic diseases.
Collapse
Affiliation(s)
- Laura M Snell
- Princess Margaret Cancer Center, Tumor Immunotherapy Program, University Health Network, Toronto, ONT, M5G 2M9, Canada
| | - Tracy L McGaha
- Princess Margaret Cancer Center, Tumor Immunotherapy Program, University Health Network, Toronto, ONT, M5G 2M9, Canada; Department of Immunology, University of Toronto, Toronto, ONT, M5S 1A8, Canada.
| | - David G Brooks
- Princess Margaret Cancer Center, Tumor Immunotherapy Program, University Health Network, Toronto, ONT, M5G 2M9, Canada; Department of Immunology, University of Toronto, Toronto, ONT, M5S 1A8, Canada.
| |
Collapse
|
41
|
Levin D, Lagassé HAD, Burch E, Strome S, Tan S, Jiang H, Sauna ZE, Golding B. Modulating immunogenicity of factor IX by fusion to an immunoglobulin Fc domain: a study using a hemophilia B mouse model. J Thromb Haemost 2017; 15:721-734. [PMID: 28166609 DOI: 10.1111/jth.13649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 12/15/2022]
Abstract
Essentials Fc-fusion increases a therapeutic's half-life, but FcγR interactions may impact immunogenicity. Species-specific Fc-FcγR interactions allow for mechanistic in vivo studies using mouse models. Fc fusion modulates the immune response to factor IX in hemophilia B mice by eliciting Th1 bias. This model could inform future studies of IgE-associated anaphylaxis in hemophilia B patients. SUMMARY Background Fc fusion is a platform technology used to increase the circulating half-life of protein and peptide therapeutics. However, there are potential immunological consequences with this approach, such as changes in the molecule's immunogenicity as well as possible interactions with a repertoire of Fc receptors (FcR) that can modulate immune responses. Objectives/Methods Using a mouse hemophilia B (HB) model, we compared the immune responses to infusions of recombinant human factor IX (hFIX) and hFIX fused to mouse IgG2a-Fc (hFIX-mFc). The mFc was employed to allow species-specific Fc-FcγR interactions. Results Although treatment with hFIX-mFc altered the early development of anti-FIX IgG, no significant differences in anti-FIX antibody titers were observed at the end of the treatment regimen (5 weeks) or upon anamnestic response (5 months). However, treatment with hFIX-mFc elicited higher FIX-neutralizing antibody levels and resulted in reduced IgE titers compared with the hFIX-treated group. Additionally, differences in plasma cytokine levels and in vitro CD4+ T-cell responses suggest that whereas hFIX treatment triggered a Th2-biased immune response, hFIX-mFc treatment induced Th1-biased CD4+ T cells. We also show that hFIX-mFc bound to soluble FcγRs and engaged with FcγRs on different cell types, which may impact antigen presentation. Conclusions These studies provide a model system to study how Fc-fusion proteins may affect immune mechanisms. We used this model to demonstrate a plausible mechanism by which Fc fusion may modulate the IgE response to hFIX. This model may be appropriate for investigating the rare but severe IgE-mediated anaphylaxis reaction to hFIX infusions in HB patients.
Collapse
Affiliation(s)
- D Levin
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - H A D Lagassé
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - E Burch
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - S Strome
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - S Tan
- CRISPR Therapeutics, Cambridge, MA, USA
| | - H Jiang
- Editas Medicine, Cambridge, MA, USA
| | - Z E Sauna
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - B Golding
- Plasma Derivatives Branch, Division of Plasma Protein Therapeutics, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
42
|
Mbanwi AN, Wang C, Geddes K, Philpott DJ, Watts TH. Irreversible splenic atrophy following chronic LCMV infection is associated with compromised immunity in mice. Eur J Immunol 2016; 47:94-106. [PMID: 27730627 DOI: 10.1002/eji.201646666] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/25/2016] [Accepted: 10/07/2016] [Indexed: 01/16/2023]
Abstract
Lymphocytic choriomeningitis virus clone 13 (LCMV13) infection of mice is a widely used model for investigating the mechanisms driving persistent viral infection in humans. LCMV13 disrupts splenic architecture early during infection, but this returns to normal within a few weeks. However, the long-term effects of LCMV13 infection on splenic structure have not been reported. Here, we report that persistent infection with LCMV13 results in sustained splenic atrophy that persists for at least 500 days following infection, whereas infection with the acutely infecting LCMV Armstrong is associated with a return to preinfection spleen weights. Splenic atrophy is associated with loss of T, B, and non-B non-T cells, with B cells most significantly affected. These effects were partly ameliorated by anti-NK1.1 or anti-CD8 antibody treatment. Antigen presentation was detectable at the time of contraction of the spleen, but no longer detected at late time points, suggesting that continued antigen presentation is not required to maintain splenic atrophy. Immunity to Salmonella infection and influenza vaccination were decreased after the virus was no longer detected. Thus splenic atrophy following LCMV13 infection is irreversible and may contribute to impaired immunity following clearance of LCMV13.
Collapse
Affiliation(s)
- Achire N Mbanwi
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Chao Wang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Kaoru Geddes
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
43
|
Modulating Antibody Functionality in Infectious Disease and Vaccination. Trends Mol Med 2016; 22:969-982. [PMID: 27756530 DOI: 10.1016/j.molmed.2016.09.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/06/2016] [Accepted: 09/11/2016] [Indexed: 12/23/2022]
Abstract
Induction of pathogen-specific binding antibodies has long been considered a signature of protective immunity following vaccination and infection. The humoral immune response is a complex network of antibodies that target different specificities and drive different functions, collectively acting to limit and clear infection either directly, via pathogen neutralization, or indirectly, via pathogen clearance by the innate immune system. Emerging data suggest that not all antibody responses are equal, and qualitative features of antibodies may be key to defining protective immune profiles. Here, we review the most recent advances in our understanding of protective functional antibody responses in natural infection, vaccination, and monoclonal antibody therapeutics. Moreover, we highlight opportunities to augment or modulate antibody-mediated protection through enhancement of antibody functionality.
Collapse
|
44
|
Wen YM, Mu L, Shi Y. Immunoregulatory functions of immune complexes in vaccine and therapy. EMBO Mol Med 2016; 8:1120-1133. [PMID: 27572622 PMCID: PMC5048363 DOI: 10.15252/emmm.201606593] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/01/2016] [Accepted: 08/03/2016] [Indexed: 12/15/2022] Open
Abstract
Clinical and experimental preparations of IgG/soluble antigen complexes, as well as those formed following antibody therapy in vivo, are multifaceted immune regulators. These immune complexes (ICs) have been tested in humans and animal models, mostly in forms of experimental or clinical vaccination, for at least a century. With intensified research on Fcγ receptor-mediated immune modulation, as well as with immune complex-directed antigen processing, presentation, and inflammatory responses, there are renewed interests of using ICs in vaccines and immunotherapies. Currently, IC-based immune therapy has been broadly experimented in HBV and HIV viral infection control and antitumor treatments. However, mechanistic insights of IC-based treatments are relatively recent subjects of study; strong efforts are needed to establish links to connect laboratory findings with clinical practices. This review covers the history, mechanisms, and in vivo outcomes of this safe and effective therapeutic tool, with a clear aim to bridge laboratory findings with evolving clinical applications.
Collapse
Affiliation(s)
- Yu-Mei Wen
- Key Laboratory of Molecular Medical Virology, MOE/MOH, School of Basic Medical Sciences Shanghai Medical College Fudan University, Shanghai, China
| | - Libing Mu
- Center for Life Sciences, Department of Basic Medical Sciences, Institute of Immunology Tsinghua University, Beijing, China
| | - Yan Shi
- Center for Life Sciences, Department of Basic Medical Sciences, Institute of Immunology Tsinghua University, Beijing, China Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
45
|
Moseman EA, Wu T, de la Torre JC, Schwartzberg PL, McGavern DB. Type I interferon suppresses virus-specific B cell responses by modulating CD8 + T cell differentiation. Sci Immunol 2016; 1:eaah3565. [PMID: 27812556 PMCID: PMC5089817 DOI: 10.1126/sciimmunol.aah3565] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2024]
Abstract
Studies have established a role for T cells in resolving persistent viral infections, yet emerging evidence indicates that both T and B cells are required to control some viruses. During persistent infection, a marked lag or failure to generate neutralizing antibodies is commonly observed and likely contributes to an inability to control certain pathogens. Using lymphocytic choriomeningitis virus (LCMV) as a model, we have examined how a persistent viral infection can suppress neutralizing humoral immunity. By tracking the fate of virus-specific B cells in vivo, we report that LCMV-specific B cells were rapidly deleted within a few days of persistent infection, and this deletion was completely reversed by blockade of type I interferon (IFN-I) signaling. Early interference with IFN-I signaling promoted survival and differentiation of LCMV-specific B cells, which accelerated the generation of neutralizing antibodies. This marked improvement in antiviral humoral immunity did not rely on the cessation of IFN-I signaling in B cells but on alterations in the virus-specific CD8+ T cell response. Using two-photon microscopy and in vivo calcium imaging, we observed that cytotoxic T lymphocytes (CTLs) productively engaged and killed LCMV-specific B cells in a perforin-dependent manner within the first few days of infection. Blockade of IFN-I signaling protected LCMV-specific B cells by promoting CTL dysfunction. Therapeutic manipulation of this pathway may facilitate efforts to promote humoral immunity during persistent viral infection in humans. Our findings illustrate how events that occur early after infection can disturb the resultant adaptive response and contribute to viral persistence.
Collapse
Affiliation(s)
- E. Ashley Moseman
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tuoqi Wu
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Pamela L. Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dorian B. McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
46
|
Swisher JFA, Feldman GM. The many faces of FcγRI: implications for therapeutic antibody function. Immunol Rev 2016; 268:160-74. [PMID: 26497519 DOI: 10.1111/imr.12334] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fcγ receptor I (FcγRI or CD64) is the sole human Fc receptor with high affinity for monovalent IgG. While it contains an immunoreceptor tyrosine-based activation motif in its cytoplasmic domain, binding of FcγRI can result in a complex array of activating and inhibitory outcomes. For instance, binding of monomeric IgG provides a low-intensity tonic signal through FcγRI that is necessary for full interferon γ receptor signaling in the same cell. Interaction of FcγRI with larger high-avidity complexes can result in phagocytosis, the generation of reactive oxygen species, as well as the synthesis and release of inflammatory cytokines. However, numerous reports also document potent anti-inflammatory effects brought about by FcγRI engagement with immune complexes such as the inhibition of IFNγ and TLR4 signaling, and secretion of interleukin-10. This has led to conflicting hypotheses regarding the function of FcγRI, especially with regard to its role in the efficacy of several therapeutic monoclonal antibodies. While many of these issues are still unclear, continued characterization of the regulation and context dependence of FcγRI function, as well as the molecular mechanisms responsible for these various outcomes, will improve our understanding of FcγRI biology as well as the therapeutic strategies designed to harness or constrain its actions.
Collapse
Affiliation(s)
- Jennifer F A Swisher
- Laboratory of Immunobiology, Division of Biotechnology Research and Review IV, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Gerald M Feldman
- Laboratory of Immunobiology, Division of Biotechnology Research and Review IV, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
47
|
Converting monoclonal antibody-based immunotherapies from passive to active: bringing immune complexes into play. Emerg Microbes Infect 2016; 5:e92. [PMID: 27530750 PMCID: PMC5034104 DOI: 10.1038/emi.2016.97] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/13/2022]
Abstract
Monoclonal antibodies (mAbs), which currently constitute the main class of biotherapeutics, are now recognized as major medical tools that are increasingly being considered to fight severe viral infections. Indeed, the number of antiviral mAbs developed in recent years has grown exponentially. Although their direct effects on viral blunting have been studied in detail, their potential immunomodulatory actions have been overlooked until recently. The ability of antiviral mAbs to modulate antiviral immune responses in infected organisms has recently been revealed. More specifically, upon recognition of their cognate antigens, mAbs form immune complexes (ICs) that can be recognized by the Fc receptors expressed on different immune cells of infected individuals. This binding may be followed by the modulation of the host immune responses. Harnessing this immunomodulatory property may facilitate improvements in the therapeutic potential of antiviral mAbs. This review focuses on the role of ICs formed with different viral determinants and mAbs in the induction of antiviral immune responses in the context of both passive immunotherapies and vaccination strategies. Potential deleterious effects of ICs on the host immune response are also discussed.
Collapse
|
48
|
Gallagher S, Yusuf I, McCaughtry TM, Turman S, Sun H, Kolbeck R, Herbst R, Wang Y. MEDI-551 Treatment Effectively Depletes B Cells and Reduces Serum Titers of Autoantibodies in Mice Transgenic for Sle1 and Human CD19. Arthritis Rheumatol 2016; 68:965-76. [PMID: 26606525 DOI: 10.1002/art.39503] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/03/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To evaluate treatment with MEDI-551, a humanized anti-human CD19 monoclonal antibody, in a model of autoimmunity involving mice transgenic (Tg) for Sle1 and human CD19 (hCD19). METHODS Sle1.hCD19-Tg mice were given either a single intravenous dose of MEDI-551 or repeated doses of MEDI-551 biweekly for up to 12 weeks. The numbers of B cells in the blood, spleen, and bone marrow were determined by flow cytometry assay. In the spleen and bone marrow, the number of IgM- and IgG-specific antibody-secreting cells (ASCs) and the number of ASCs specific for anti-double-stranded DNA (anti-dsDNA) were determined by enzyme-linked immunospot assay. Serum autoantibody and total immunoglobulin levels were determined by enzyme-linked immunosorbent assay, and levels of inflammatory proteins were tested using a multianalyte profiling platform. RESULTS MEDI-551 treatment of Sle1.hCD19-Tg mice resulted in effective and sustained B cell depletion throughout the duration of the experiment. The frequency of IgM and IgG ASCs in the spleen was reduced by ≥90%, whereas in the bone marrow, the total ASC frequency was not changed. Levels of autoantibodies specific for dsDNA as well as antihistone and antinuclear antibodies were each reduced by 40-80%, but total serum immunoglobulin levels were largely unchanged at the end of 12 weeks of treatment. CONCLUSION These findings highlight the ability of MEDI-551 to deplete B cells and ASCs in autoimmune Sle1.hCD19-Tg mice. MEDI-551 treatment resulted in a robust reduction of autoantibodies but had minimal effect on total serum immunoglobulins. Thus, the novel ability of MEDI-551 to remove a broad range of B cells as well as to lower most disease-driving autoantibodies in an autoimmune disease mouse model warrants continued research. Several clinical studies to explore the safety and activity of MEDI-551 in autoantibody-associated autoimmune diseases are ongoing.
Collapse
Affiliation(s)
| | | | | | | | - Hong Sun
- MedImmune, Gaithersburg, Maryland
| | | | | | - Yue Wang
- MedImmune, Gaithersburg, Maryland
| |
Collapse
|
49
|
Barnett BE, Staupe RP, Odorizzi PM, Palko O, Tomov VT, Mahan AE, Gunn B, Chen D, Paley MA, Alter G, Reiner SL, Lauer GM, Teijaro JR, Wherry EJ. Cutting Edge: B Cell-Intrinsic T-bet Expression Is Required To Control Chronic Viral Infection. THE JOURNAL OF IMMUNOLOGY 2016; 197:1017-22. [PMID: 27430722 DOI: 10.4049/jimmunol.1500368] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 05/18/2016] [Indexed: 12/31/2022]
Abstract
The role of Ab and B cells in preventing infection is established. In contrast, the role of B cell responses in containing chronic infections remains poorly understood. IgG2a (IgG1 in humans) can prevent acute infections, and T-bet promotes IgG2a isotype switching. However, whether IgG2a and B cell-expressed T-bet influence the host-pathogen balance during persisting infections is unclear. We demonstrate that B cell-specific loss of T-bet prevents control of persisting viral infection. T-bet in B cells controlled IgG2a production, as well as mucosal localization, proliferation, glycosylation, and a broad transcriptional program. T-bet controlled a broad antiviral program in addition to IgG2a because T-bet in B cells was important, even in the presence of virus-specific IgG2a. Our data support a model in which T-bet is a universal controller of antiviral immunity across multiple immune lineages.
Collapse
Affiliation(s)
- Burton E Barnett
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104; Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Ryan P Staupe
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104; Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Pamela M Odorizzi
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104; Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Olesya Palko
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104; Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Vesselin T Tomov
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104; Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Alison E Mahan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | - Bronwyn Gunn
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | - Diana Chen
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115
| | - Michael A Paley
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104; Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | - Steven L Reiner
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032; and
| | - Georg M Lauer
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115
| | - John R Teijaro
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - E John Wherry
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104; Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104;
| |
Collapse
|
50
|
Abstract
As the 2014-15 Ebola virus epidemic in West Africa evolved from emergency to lesson, developers of both vaccines and therapeutic antibodies were left with the puzzlement of what kinds of anti-Ebola antibodies are predictably desirable in treating the afflicted, and what antibodies might account for the specific and lasting protection elicited by the more effective vaccines. The facile answer in virology is that neutralizing antibody (NAb) is desired and required. However, with Ebola and other filoviruses (as with many prior viral examples), there are multiple discordances in which neutralizing antibodies fail to protect animals, and others in which antibody-mediated protection is observed in the absence of measured virus neutralization. Explanation presumably resides in the protective role of antibodies that bind and functionally 'target' virus-infected cells, here called 'cell-targeting antibody', or CTAb. To be clear, many NAbs are also CTAbs, and in the case of Ebola the great majority of NAbs are likely CTAbs. Isotype, glycosylation, and other features of CTAbs are likely crucial in their capacity to mediate protection. Overall, results and analysis invite an increasingly complex view of antibody-mediated immunity to enveloped viruses.
Collapse
Affiliation(s)
- Alan Schmaljohn
- Microbiology & Immunology, University of Maryland School of Medicine,
USA,Corresponding author: Department of Microbiology & Immunology, University
of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA. Tel:
410-706-3059
| | - George K. Lewis
- Institute of Human Virology, University of Maryland School of Medicine, 725
W. Lombard St., Baltimore, Maryland, 21201, USA
| |
Collapse
|