1
|
Kettunen P, Koistinaho J, Rolova T. Contribution of CNS and extra-CNS infections to neurodegeneration: a narrative review. J Neuroinflammation 2024; 21:152. [PMID: 38845026 PMCID: PMC11157808 DOI: 10.1186/s12974-024-03139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Central nervous system infections have been suggested as a possible cause for neurodegenerative diseases, particularly sporadic cases. They trigger neuroinflammation which is considered integrally involved in neurodegenerative processes. In this review, we will look at data linking a variety of viral, bacterial, fungal, and protozoan infections to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis and unspecified dementia. This narrative review aims to bring together a broad range of data currently supporting the involvement of central nervous system infections in the development of neurodegenerative diseases. The idea that no single pathogen or pathogen group is responsible for neurodegenerative diseases will be discussed. Instead, we suggest that a wide range of susceptibility factors may make individuals differentially vulnerable to different infectious pathogens and subsequent pathologies.
Collapse
Affiliation(s)
- Pinja Kettunen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Taisia Rolova
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Yao J, Luo Z, Lin J, Meng N, Guo J, Xu H, Shi R, Zhao L, Zhou J, Yan F, Wang B, Mao H. Antimicrobial and Antiviral Nanofibers Halt Co-Infection Spread via Nuclease-Mimicry and Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309590. [PMID: 38647392 PMCID: PMC11200001 DOI: 10.1002/advs.202309590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/17/2024] [Indexed: 04/25/2024]
Abstract
The escalating spread of drug-resistant bacteria and viruses is a grave concern for global health. Nucleic acids dominate the drug-resistance and transmission of pathogenic microbes. Here, imidazolium-type poly(ionic liquid)/porphyrin (PIL-P) based electrospun nanofibrous membrane and its cerium (IV) ion complex (PIL-P-Ce) are developed. The obtained PIL-P-Ce membrane exhibits high and stable efficiency in eradicating various microorganisms (bacteria, fungi, and viruses) and decomposing microbial antibiotic resistance genes and viral nucleic acids under light. The nuclease-mimetic and photocatalytic mechanisms of the PIL-P-Ce are elucidated. Co-infection wound models in mice with methicillin-resistant S. aureus and hepatitis B virus demonstrate that PIL-P-Ce integrate the triple effects of cationic polymer, photocatalysis, and nuclease-mimetic activities. As revealed by proteomic analysis, PIL-P-Ce shows minimal phototoxicity to normal tissues. Hence, PIL-P-Ce has potential as a "green" wound dressing to curb the spread of drug-resistant bacteria and viruses in clinical settings.
Collapse
Affiliation(s)
- Jieran Yao
- Department of Critical Care MedicineZhongshan HospitalFudan UniversityShanghai200032China
| | - Zhenhong Luo
- College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
| | - Jiaying Lin
- Department of Critical Care MedicineZhongshan HospitalFudan UniversityShanghai200032China
| | - Na Meng
- Department of Critical Care MedicineZhongshan HospitalFudan UniversityShanghai200032China
| | - Jiangna Guo
- College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
| | - Hui Xu
- College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
| | - Rongwei Shi
- School of Material and Chemical EngineeringTongren UniversityTongren554300China
| | - Linhui Zhao
- Department of Critical Care MedicineZhongshan HospitalFudan UniversityShanghai200032China
| | - Jiateng Zhou
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Feng Yan
- College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
| | - Bin Wang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Hailei Mao
- Department of Critical Care MedicineZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
3
|
Trinchese G, Cimmino F, Catapano A, Cavaliere G, Mollica MP. Mitochondria: the gatekeepers between metabolism and immunity. Front Immunol 2024; 15:1334006. [PMID: 38464536 PMCID: PMC10920337 DOI: 10.3389/fimmu.2024.1334006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Metabolism and immunity are crucial monitors of the whole-body homeodynamics. All cells require energy to perform their basic functions. One of the most important metabolic skills of the cell is the ability to optimally adapt metabolism according to demand or availability, known as metabolic flexibility. The immune cells, first line of host defense that circulate in the body and migrate between tissues, need to function also in environments in which nutrients are not always available. The resilience of immune cells consists precisely in their high adaptive capacity, a challenge that arises especially in the framework of sustained immune responses. Pubmed and Scopus databases were consulted to construct the extensive background explored in this review, from the Kennedy and Lehninger studies on mitochondrial biochemistry of the 1950s to the most recent findings on immunometabolism. In detail, we first focus on how metabolic reconfiguration influences the action steps of the immune system and modulates immune cell fate and function. Then, we highlighted the evidence for considering mitochondria, besides conventional cellular energy suppliers, as the powerhouses of immunometabolism. Finally, we explored the main immunometabolic hubs in the organism emphasizing in them the reciprocal impact between metabolic and immune components in both physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
赵 祥, 刘 佳, 黄 会, 陆 智, 白 自, 李 霞, 祁 荆. [Interferon-α mediating the functional damage of CD56 dimCD57 +natural killer cells in peripheral blood of systemic lupus erythematosuss]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2023; 55:975-981. [PMID: 38101777 PMCID: PMC10723978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Indexed: 12/17/2023]
Abstract
OBJECTIVE To investigate the regulatory effect of interferon-α (IFN-α) on the apoptosis and killing function of CD56dimCD57+ natural killer (NK) cells in systemic lupus erythematosus (SLE) patients, and to explore the specific mechanism. METHODS A total of sixty-four newly treated SLE patients and sixteen healthy controls (HC) enrolled in the Second Hospital of Dalian Medical University were selected as the research subjects. And the gene expression levels of molecules related to NK cell-killing function were detected by real-time quantitative polymerase chain reaction. CD56dimCD57+ NK cells were co-cultured with the K562 cells, and the apoptotic K562 cells were labeled with Annexin-Ⅴ and 7-amino-actinomycin D. Peripheral blood mononuclear cells were treated with 20, 40, and 80 μmol/L hydrogen peroxide (H2O2), and treated without H2O2 as control, the expression level of perforin (PRF) was detected by flow cytometry. The concentration of IFN-α in serum was determined by enzyme linked immunosorbent assay. The expression levels of IFN-α receptors (IFNAR) on the surface of CD56dimCD57+ NK cells were detected by flow cytometry, and were represented by mean fluorescence intensity (MFI). CD56dimCD57+ NK cells were treated with 1 000 U/mL IFN-α for 24, 48 and 72 h, and no IFN-α treatment was used as the control, the apoptosis and the expression levels of mitochondrial reactive oxygen species (mtROS) were measured by flow cytometry and represented by MFI. RESULTS Compared with HC(n=3), the expression levels of PRF1 gene in peripheral blood NK cells of the SLE patients (n=3) were decreased (1.24±0.41 vs. 0.57±0.12, P=0.05). Compared with HC(n=5), the ability of peripheral blood CD56dimCD57+ NK cells in the SLE patients (n=5) to kill K562 cells was significantly decreased (58.61%±10.60% vs. 36.74%±6.27%, P < 0.01). Compared with the control (n=5, 97.51%±1.67%), different concentrations of H2O2 treatment significantly down-regulated the PRF expression levels of CD56dimCD57+ NK cells in a dose-dependent manner, the 20 μmol/L H2O2 PRF was 83.23%±8.48% (n=5, P < 0.05), the 40 μmol/L H2O2 PRF was 79.53%±8.56% (n=5, P < 0.01), the 80 μmol/L H2O2 PRF was 76.67%±7.16% (n=5, P < 0.01). Compared to HC (n=16), the serum IFN-α levels were significantly increased in the SLE patients (n=45) with moderate to high systemic lupus erythematosus disease activity index (SLEDAI≥10) [(55.07±50.36) ng/L vs. (328.2±276.3) ng/L, P < 0.001]. Meanwhile, compared with HC (n=6), IFNAR1 expression in peripheral blood CD56dimCD57+ NK cells of the SLE patients (n=6) were increased (MFI: 292.7±91.9 vs. 483.2±160.3, P < 0.05), and compared with HC (n=6), IFNAR2 expression in peripheral blood CD56dimCD57+ NK cells of the SLE patients (n=7) were increased (MFI: 643.5±113.7 vs. 919.0±246.9, P < 0.05). Compared with control (n=6), the stimulation of IFN-α (n=6) significantly promoted the apoptosis of CD56dimCD57+ NK cells (20.48%±7.01% vs. 37.82%±5.84%, P < 0.05). In addition, compared with the control (n=4, MFI: 1 049±174.5), stimulation of CD56dimCD57+ NK cells with IFN-α at different times significantly promoted the production of mtROS in a time-dependent manner, 48 h MFI was 3 437±1 472 (n=4, P < 0.05), 72 h MFI was 6 495±1 089 (n=4, P < 0.000 1), but there was no significant difference at 24 h of stimulation. CONCLUSION High serum IFN-α level in SLE patients may induce apoptosis by promoting mtROS production and inhibit perforin expression, which can down-regulate CD56dimCD57+ NK killing function.
Collapse
Affiliation(s)
- 祥格 赵
- />大连医科大学基础医学院免疫学教研室, 辽宁大连 116044Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, China
| | - 佳庆 刘
- />大连医科大学基础医学院免疫学教研室, 辽宁大连 116044Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, China
| | - 会娜 黄
- />大连医科大学基础医学院免疫学教研室, 辽宁大连 116044Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, China
| | - 智敏 陆
- />大连医科大学基础医学院免疫学教研室, 辽宁大连 116044Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, China
| | - 自然 白
- />大连医科大学基础医学院免疫学教研室, 辽宁大连 116044Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, China
| | - 霞 李
- />大连医科大学基础医学院免疫学教研室, 辽宁大连 116044Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, China
| | - 荆荆 祁
- />大连医科大学基础医学院免疫学教研室, 辽宁大连 116044Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, China
| |
Collapse
|
5
|
Im GB, Kim YG, Yoo TY, Kim YH, Kim K, Hyun J, Soh M, Hyeon T, Bhang SH. Ceria Nanoparticles as Copper Chaperones that Activate SOD1 for Synergistic Antioxidant Therapy to Treat Ischemic Vascular Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208989. [PMID: 36706357 DOI: 10.1002/adma.202208989] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/20/2023] [Indexed: 06/18/2023]
Abstract
All exogenous nanomaterials undergo rapid biotransformation once injected into the body and fall short of executing the intended purpose. Here, it is reported that copper-deposited ceria nanoparticles (CuCe NPs) exhibit enhanced antioxidant effects over pristine ceria nanoparticles, as the released copper buffers the depletion of glutathione while providing the bioavailable copper as a cofactor for the antioxidant enzyme, superoxide dismutase 1. The upregulated intracellular antioxidants along with the ceria nanoparticles synergistically scavenge reactive oxygen species and promote anti-inflammation and M2 polarization of macrophages by modulating signal transducer and activator of transcription 1 and 6 (STAT1 and STAT6). The therapeutic effect of CuCe NPs is demonstrated in ischemic vascular diseases (i.e., murine models of hindlimb ischemia and myocardial infarction) in which the copper-deposition affords increased perfusion and alleviation in tissue damage. The results provide rationale that metal oxide nanomaterials can be designed in a way to induce the upregulation of specific biological factors for optimal therapeutic performance.
Collapse
Affiliation(s)
- Gwang-Bum Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Young Geon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae Yong Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeong Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kang Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Min Soh
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
6
|
Kumova OK, Galani IE, Rao A, Johnson H, Triantafyllia V, Matt SM, Pascasio J, Gaskill PJ, Andreakos E, Katsikis PD, Carey AJ. Severity of neonatal influenza infection is driven by type I interferon and oxidative stress. Mucosal Immunol 2022; 15:1309-1320. [PMID: 36352099 PMCID: PMC9724789 DOI: 10.1038/s41385-022-00576-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 09/26/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022]
Abstract
Neonates exhibit increased susceptibility to respiratory viral infections, attributed to inflammation at the developing pulmonary air-blood interface. IFN I are antiviral cytokines critical to control viral replication, but also promote inflammation. Previously, we established a neonatal murine influenza virus (IV) model, which demonstrates increased mortality. Here, we sought to determine the role of IFN I in this increased mortality. We found that three-day-old IFNAR-deficient mice are highly protected from IV-induced mortality. In addition, exposure to IFNβ 24 h post IV infection accelerated death in WT neonatal animals but did not impact adult mortality. In contrast, IFN IIIs are protective to neonatal mice. IFNβ induced an oxidative stress imbalance specifically in primary neonatal IV-infected pulmonary type II epithelial cells (TIIEC), not in adult TIIECs. Moreover, neonates did not have an infection-induced increase in antioxidants, including a key antioxidant, superoxide dismutase 3, as compared to adults. Importantly, antioxidant treatment rescued IV-infected neonatal mice, but had no impact on adult morbidity. We propose that IFN I exacerbate an oxidative stress imbalance in the neonate because of IFN I-induced pulmonary TIIEC ROS production coupled with developmentally regulated, defective antioxidant production in response to IV infection. This age-specific imbalance contributes to mortality after respiratory infections in this vulnerable population.
Collapse
Affiliation(s)
- Ogan K. Kumova
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ioanna-Evdokia Galani
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Abhishek Rao
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Hannah Johnson
- Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Vasiliki Triantafyllia
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Stephanie M. Matt
- Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Judy Pascasio
- Pathology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Peter J. Gaskill
- Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Peter D. Katsikis
- Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Alison J. Carey
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Pediatrics, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
7
|
Maróti Z, Tombácz D, Moldován N, Torma G, Jefferson VA, Csabai Z, Gulyás G, Dörmő Á, Boldogkői M, Kalmár T, Meyer F, Boldogkői Z. Time course profiling of host cell response to herpesvirus infection using nanopore and synthetic long-read transcriptome sequencing. Sci Rep 2021; 11:14219. [PMID: 34244540 PMCID: PMC8270970 DOI: 10.1038/s41598-021-93142-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/14/2021] [Indexed: 11/09/2022] Open
Abstract
Third-generation sequencing is able to read full-length transcripts and thus to efficiently identify RNA molecules and transcript isoforms, including transcript length and splice isoforms. In this study, we report the time-course profiling of the effect of bovine alphaherpesvirus type 1 on the gene expression of bovine epithelial cells using direct cDNA sequencing carried out on MinION device of Oxford Nanopore Technologies. These investigations revealed a substantial up- and down-regulatory effect of the virus on several gene networks of the host cells, including those that are associated with antiviral response, as well as with viral transcription and translation. Additionally, we report a large number of novel bovine transcript isoforms identified by nanopore and synthetic long-read sequencing. This study demonstrates that viral infection causes differential expression of host transcript isoforms. We could not detect an increased rate of transcriptional readthroughs as described in another alphaherpesvirus. According to our knowledge, this is the first report on the use of LoopSeq for the analysis of eukaryotic transcriptomes. This is also the first report on the application of nanopore sequencing for the kinetic characterization of cellular transcriptomes. This study also demonstrates the utility of nanopore sequencing for the characterization of dynamic transcriptomes in any organisms.
Collapse
Affiliation(s)
- Zoltán Maróti
- Department of Pediatrics, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary.,MTA-SZTE Momentum GeMiNI Research Group, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Norbert Moldován
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Gábor Torma
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Victoria A Jefferson
- Department of Biochemistry and Molecular Biology, Entomology and Plant Pathology, Mississippi State University, 408 Dorman Hall, 32 Creelman St., Box 9655, Starkville, MS, 39762, USA
| | - Zsolt Csabai
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Gábor Gulyás
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Ákos Dörmő
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Miklós Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Tibor Kalmár
- Department of Pediatrics, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Florencia Meyer
- Department of Biochemistry and Molecular Biology, Entomology and Plant Pathology, Mississippi State University, 408 Dorman Hall, 32 Creelman St., Box 9655, Starkville, MS, 39762, USA
| | - Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary.
| |
Collapse
|
8
|
Klein K, Witalisz-Siepracka A, Gotthardt D, Agerer B, Locker F, Grausenburger R, Knab VM, Bergthaler A, Sexl V. T Cell-Intrinsic CDK6 Is Dispensable for Anti-Viral and Anti-Tumor Responses In Vivo. Front Immunol 2021; 12:650977. [PMID: 34248938 PMCID: PMC8264666 DOI: 10.3389/fimmu.2021.650977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/03/2021] [Indexed: 12/28/2022] Open
Abstract
The cyclin-dependent kinase 6 (CDK6) regulates the transition through the G1-phase of the cell cycle, but also acts as a transcriptional regulator. As such CDK6 regulates cell survival or cytokine secretion together with STATs, AP-1 or NF-κB. In the hematopoietic system, CDK6 regulates T cell development and promotes leukemia and lymphoma. CDK4/6 kinase inhibitors are FDA approved for treatment of breast cancer patients and have been reported to enhance T cell-mediated anti-tumor immunity. The involvement of CDK6 in T cell functions remains enigmatic. We here investigated the role of CDK6 in CD8+ T cells, using previously generated CDK6 knockout (Cdk6-/-) and kinase-dead mutant CDK6 (Cdk6K43M) knock-in mice. RNA-seq analysis indicated a role of CDK6 in T cell metabolism and interferon (IFN) signaling. To investigate whether these CDK6 functions are T cell-intrinsic, we generated a T cell-specific CDK6 knockout mouse model (Cdk6fl/fl CD4-Cre). T cell-intrinsic loss of CDK6 enhanced mitochondrial respiration in CD8+ T cells, but did not impact on cytotoxicity and production of the effector cytokines IFN-γ and TNF-α by CD8+ T cells in vitro. Loss of CDK6 in peripheral T cells did not affect tumor surveillance of MC38 tumors in vivo. Similarly, while we observed an impaired induction of early responses to type I IFN in CDK6-deficient CD8+ T cells, we failed to observe any differences in the response to LCMV infection upon T cell-intrinsic loss of CDK6 in vivo. This apparent contradiction might at least partially be explained by the reduced expression of Socs1, a negative regulator of IFN signaling, in CDK6-deficient CD8+ T cells. Therefore, our data are in line with a dual role of CDK6 in IFN signaling; while CDK6 promotes early IFN responses, it is also involved in the induction of a negative feedback loop. These data assign CDK6 a role in the fine-tuning of cytokine responses.
Collapse
Affiliation(s)
- Klara Klein
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Agnieszka Witalisz-Siepracka
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Dagmar Gotthardt
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Benedikt Agerer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Felix Locker
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Reinhard Grausenburger
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Vanessa Maria Knab
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
9
|
Smyth M, Khamina K, Popa A, Gudipati V, Agerer B, Lercher A, Kosack L, Endler L, Baazim H, Viczenczova C, Huppa JB, Bergthaler A. Characterization of CD8 T Cell-Mediated Mutations in the Immunodominant Epitope GP33-41 of Lymphocytic Choriomeningitis Virus. Front Immunol 2021; 12:638485. [PMID: 34194424 PMCID: PMC8236698 DOI: 10.3389/fimmu.2021.638485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) represent key immune effectors of the host response against chronic viruses, due to their cytotoxic response to virus-infected cells. In response to this selection pressure, viruses may accumulate escape mutations that evade CTL-mediated control. To study the emergence of CTL escape mutations, we employed the murine chronic infection model of lymphocytic choriomeningitis virus (LCMV). We developed an amplicon-based next-generation sequencing pipeline to detect low frequency mutations in the viral genome and identified non-synonymous mutations in the immunodominant LCMV CTL epitope, GP33-41, in infected wildtype mice. Infected Rag2-deficient mice lacking CTLs did not contain such viral mutations. By using transgenic mice with T cell receptors specific to GP33-41, we characterized the emergence of viral mutations in this epitope under varying selection pressure. We investigated the two most abundant viral mutations by employing reverse genetically engineered viral mutants encoding the respective mutations. These experiments provided evidence that these mutations prevent activation and expansion of epitope-specific CD8 T cells. Our findings on the mutational dynamics of CTL escape mutations in a widely-studied viral infection model contributes to our understanding of how chronic viruses interact with their host and evade the immune response. This may guide the development of future treatments and vaccines against chronic infections.
Collapse
Affiliation(s)
- Mark Smyth
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kseniya Khamina
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alexandra Popa
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Venugopal Gudipati
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | - Benedikt Agerer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alexander Lercher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lindsay Kosack
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lukas Endler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Hatoon Baazim
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Csilla Viczenczova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes B Huppa
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
10
|
Tan H, Wang N, Zhang C, Chan Y, Yuen M, Feng Y. Lysyl Oxidase-Like 4 Fosters an Immunosuppressive Microenvironment During Hepatocarcinogenesis. Hepatology 2021; 73:2326-2341. [PMID: 33068461 PMCID: PMC8251926 DOI: 10.1002/hep.31600] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/03/2020] [Accepted: 09/20/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Lysyl oxidase-like 4 (LOXL4) is an amine oxidase that is primarily involved in extracellular matrix remodeling and is highly expressed in HCC tissues, but its functional role in mediating liver carcinogenesis is poorly understood. Therefore, we aimed to investigate the role of LOXL4 in hepatocarcinogenesis. APPROACH AND RESULTS Here, we demonstrate that hepatic LOXL4 expression was increased during the liver carcinogenesis in mice concomitantly fed a choline-deficient, l-amino acid-defined diet. LOXL4 was secreted by the neoplastic cells and primarily localized within hepatic macrophages through exosome internalization. Supplementation of LOXL4 had minimal effect on neoplastic cells. In vitro exposure of macrophages to LOXL4 invoked an immunosuppressive phenotype and activated programmed death ligand 1 (PD-L1) expression, which further suppressed the function of CD8+ T cells. Injection of LOXL4 promoted macrophages infiltration into the liver and accelerated tumor growth, which was further abolished by adoptive T-cell transfer or PD-L1 neutralization. Label-free proteomics analysis revealed that the immunosuppressive function of LOXL4 on macrophages primarily relied on interferon (IFN)-mediated signal transducer and activator of transcription-dependent PD-L1 activation. Hydrogen peroxide scavenger or copper chelation on macrophages abolished the IFN-mediated PD-L1 presentation by LOXL4. In human HCC tissue, expression of LOXL4 in CD68+ cells was positively correlated with PD-L1 level. High expression of LOXL4 in CD68+ cells and low expression of CD8A in tumor tissue cooperatively predict poor survival of patients with HCC. CONCLUSIONS LOXL4 facilitates immune evasion by tumor cells and leads to hepatocarcinogenesis. Our study unveils the role of LOXL4 in fostering an immunosuppressive microenvironment during hepatocarcinogenesis.
Collapse
Affiliation(s)
- Hor‐Yue Tan
- School of Chinese MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Ning Wang
- School of Chinese MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Cheng Zhang
- School of Chinese MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Yau‐Tuen Chan
- School of Chinese MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Man‐Fung Yuen
- Division of Gastroenterology and HepatologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Yibin Feng
- School of Chinese MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| |
Collapse
|
11
|
Slow viral propagation during initial phase of infection leads to viral persistence in mice. Commun Biol 2021; 4:508. [PMID: 33927339 PMCID: PMC8084999 DOI: 10.1038/s42003-021-02028-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
Immune evasion of pathogens can modify the course of infection and impact viral persistence and pathology. Here, using different strains of the lymphocytic choriomeningitis virus (LCMV) model system, we show that slower propagation results in limited type I interferon (IFN-I) production and viral persistence. Specifically, cells infected with LCMV-Docile exhibited reduced viral replication when compared to LCMV-WE and as a consequence, infection with LCMV-Docile resulted in reduced activation of bone marrow derived dendritic cells (BMDCs) and IFN-I production in vitro in comparison with LCMV-WE. In vivo, we observed a reduction of IFN-I, T cell exhaustion and viral persistence following infection of LCMV-Docile but not LCMV-WE. Mechanistically, block of intracellular protein transport uncovered reduced propagation of LCMV-Docile when compared to LCMV-WE. This reduced propagation was critical in blunting the activation of the innate and adaptive immune system. When mice were simultaneously infected with LCMV-Docile and LCMV-WE, immune function was restored and IFN-I production, T cell effector functions as well as viral loads were similar to that of mice infected with LCMV-WE alone. Taken together, this study suggests that reduced viral propagation can result in immune evasion and viral persistence. Using different strains of the lymphocytic choriomeningitis virus (LCMV), Xu, Wang et al. show that a slow viral propagation limits type I interferon (IFN-I) production and viral persistence in mice. This study suggests a reduced viral propagation as a mechanism for immune evasion and viral persistence.
Collapse
|
12
|
Negi CK, Khan S, Dirven H, Bajard L, Bláha L. Flame Retardants-Mediated Interferon Signaling in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:ijms22084282. [PMID: 33924165 PMCID: PMC8074384 DOI: 10.3390/ijms22084282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing concern worldwide, affecting 25% of the global population. NAFLD is a multifactorial disease with a broad spectrum of pathology includes steatosis, which gradually progresses to a more severe condition such as nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and eventually leads to hepatic cancer. Several risk factors, including exposure to environmental toxicants, are involved in the development and progression of NAFLD. Environmental factors may promote the development and progression of NAFLD by various biological alterations, including mitochondrial dysfunction, reactive oxygen species production, nuclear receptors dysregulation, and interference in inflammatory and immune-mediated signaling. Moreover, environmental contaminants can influence immune responses by impairing the immune system’s components and, ultimately, disease susceptibility. Flame retardants (FRs) are anthropogenic chemicals or mixtures that are being used to inhibit or delay the spread of fire. FRs have been employed in several household and outdoor products; therefore, human exposure is unavoidable. In this review, we summarized the potential mechanisms of FRs-associated immune and inflammatory signaling and their possible contribution to the development and progression of NAFLD, with an emphasis on FRs-mediated interferon signaling. Knowledge gaps are identified, and emerging pharmacotherapeutic molecules targeting the immune and inflammatory signaling for NAFLD are also discussed.
Collapse
Affiliation(s)
- Chander K. Negi
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
- Correspondence: or
| | - Sabbir Khan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA;
| | - Hubert Dirven
- Department of Environmental Health, Section for Toxicology and Risk Assessment, Norwegian Institute of Public Health, 0456 Oslo, Norway;
| | - Lola Bajard
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
| | - Luděk Bláha
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
| |
Collapse
|
13
|
Karimi-Boroujeni M, Zahedi-Amiri A, Coombs KM. Embryonic Origins of Virus-Induced Hearing Loss: Overview of Molecular Etiology. Viruses 2021; 13:71. [PMID: 33419104 PMCID: PMC7825458 DOI: 10.3390/v13010071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022] Open
Abstract
Hearing loss, one of the most prevalent chronic health conditions, affects around half a billion people worldwide, including 34 million children. The World Health Organization estimates that the prevalence of disabling hearing loss will increase to over 900 million people by 2050. Many cases of congenital hearing loss are triggered by viral infections during different stages of pregnancy. However, the molecular mechanisms by which viruses induce hearing loss are not sufficiently explored, especially cases that are of embryonic origins. The present review first describes the cellular and molecular characteristics of the auditory system development at early stages of embryogenesis. These developmental hallmarks, which initiate upon axial specification of the otic placode as the primary root of the inner ear morphogenesis, involve the stage-specific regulation of several molecules and pathways, such as retinoic acid signaling, Sonic hedgehog, and Wnt. Different RNA and DNA viruses contributing to congenital and acquired hearing loss are then discussed in terms of their potential effects on the expression of molecules that control the formation of the auditory and vestibular compartments following otic vesicle differentiation. Among these viruses, cytomegalovirus and herpes simplex virus appear to have the most effect upon initial molecular determinants of inner ear development. Moreover, of the molecules governing the inner ear development at initial stages, SOX2, FGFR3, and CDKN1B are more affected by viruses causing either congenital or acquired hearing loss. Abnormalities in the function or expression of these molecules influence processes like cochlear development and production of inner ear hair and supporting cells. Nevertheless, because most of such virus-host interactions were studied in unrelated tissues, further validations are needed to confirm whether these viruses can mediate the same effects in physiologically relevant models simulating otic vesicle specification and growth.
Collapse
Affiliation(s)
- Maryam Karimi-Boroujeni
- School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Ali Zahedi-Amiri
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, MB R3E 3P4, Canada
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
14
|
Ma L, Ni Y, Hu L, Zhao Y, Zheng L, Yang S, Ni L, Fu Z. Spermidine ameliorates high-fat diet-induced hepatic steatosis and adipose tissue inflammation in preexisting obese mice. Life Sci 2020; 265:118739. [PMID: 33186567 DOI: 10.1016/j.lfs.2020.118739] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022]
Abstract
AIMS The therapeutic effects of spermidine on preexisting obese mice have been not fully elucidated. In this study, we assessed the anti-obesity impact of spermidine on high-fat diet (HFD)-induced obese mice. MAIN METHODS C57BL/6J mice were fed a HFD for 16 weeks to induce obesity, and then treated with or without spermidine via drinking water for additional 8 weeks. The contributions of spermidine in regulating obesity phenotypes and metabolic syndrome were further evaluated. KEY FINDINGS Spermidine administration lowered fat mass and plasma lipid profile in HFD-induced obese mice without affecting body weight. In addition, spermidine attenuated hepatic steatosis by regulating lipid metabolism and enhancing antioxidant capacity. Moreover, spermidine reduced adipose tissue inflammation by decreasing inflammatory cytokine and chemokines expression, and these results might contributed to the enhanced thermogenic gene expression in brown adipose tissue. Furthermore, spermidine treatment enhanced gut barrier function by up-regulating tight junction- and mucin-related gene expression. SIGNIFICANCE Spermidine-mediated protective impacts involve the regulation of lipid metabolism, inflammation response, gut barrier function and thermogenesis. These findings demonstrate that spermidine has potentials in treating obesity.
Collapse
Affiliation(s)
- Lingyan Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Luting Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yufeng Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liujie Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Song Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liyang Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
15
|
Tang Y, Li Y, Sun J, Pan H, Yao F, Jiao X. Selection of an Optimal Combination Panel to Better Triage COVID-19 Hospitalized Patients. J Inflamm Res 2020; 13:773-787. [PMID: 33149652 PMCID: PMC7602889 DOI: 10.2147/jir.s273193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/09/2020] [Indexed: 02/05/2023] Open
Abstract
PURPOSE It is difficult to predict the prognosis of COVID-19 patients at the disease onset. This study was designed to add new biomarkers into conventional inflammatory panels to build an optimal combination panel, to better triage patients and predict their outcomes. PATIENTS AND METHODS Biochemical parameters representing multi-organ functions, cytokines, acute-phase proteins, and other inflammatory markers were measured in COVID-19 patients on hospital admission. Receiver operating characteristic (ROC) curves, logistic regression, event-free survival (EFS), and Cox analyses were performed to screen and compare the predictive capabilities of the new panel in patients with different illness severity and outcome. RESULTS This study included 120 patients with COVID-19, consisting of 32 critical, 28 severe, and 60 mild/moderate patients. Initial levels of the selected biomarkers showed a significant difference in the three groups, all of which influenced patient outcome and EFS to varying degrees. Cox proportional hazard model revealed that procalcitonin (PCT) and interleukin 10 (IL-10) were independent risk factors, while superoxide dismutase (SOD) was an independent protective factor influencing EFS. In discriminating the critical and mild patients, a panel combining PCT, IL-6, and neutrophil (NEUT) yielded the best diagnostic performance with an AUC of 0.99, the sensitivity of 90.60% and specificity of 100%. In distinguishing between severe and mild patients, SOD's AUC of 0.89 was higher than any other single biomarker. In differentiating the critical and severe patients, the combination of white blood cell count (WBC), PCT, IL-6, IL-10, and SOD achieved the highest AUC of 0.95 with a sensitivity of 75.00% and specificity of 100%. CONCLUSION The optimal combination panel has a substantial potential to better triage COVID-19 patients on admission. Better triage of patients will benefit the rational use of medical resources.
Collapse
Affiliation(s)
- Yueting Tang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yirong Li
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Jiayu Sun
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Huaqin Pan
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Fen Yao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| |
Collapse
|
16
|
Lercher A, Popa AM, Viczenczova C, Kosack L, Klavins K, Agerer B, Opitz CA, Lanz TV, Platten M, Bergthaler A. Hepatocyte-intrinsic type I interferon signaling reprograms metabolism and reveals a novel compensatory mechanism of the tryptophan-kynurenine pathway in viral hepatitis. PLoS Pathog 2020; 16:e1008973. [PMID: 33045014 PMCID: PMC7580883 DOI: 10.1371/journal.ppat.1008973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/22/2020] [Accepted: 09/10/2020] [Indexed: 12/27/2022] Open
Abstract
The liver is a central regulator of metabolic homeostasis and serum metabolite levels. Hepatocytes are the functional units of the liver parenchyma and not only responsible for turnover of biomolecules but also act as central immune signaling platforms. Hepatotropic viruses infect liver tissue, resulting in inflammatory responses, tissue damage and hepatitis. Combining well-established in vitro and in vivo model systems with transcriptomic analyses, we show that type I interferon signaling initiates a robust antiviral immune response in hepatocytes. Strikingly, we also identify IFN-I as both, sufficient and necessary, to induce wide-spread metabolic reprogramming in hepatocytes. IFN-I specifically rewired tryptophan metabolism and induced hepatic tryptophan oxidation to kynurenine via Tdo2, correlating with altered concentrations of serum metabolites upon viral infection. Infected Tdo2-deficient animals displayed elevated serum levels of tryptophan and, unexpectedly, also vast increases in the downstream immune-suppressive metabolite kynurenine. Thus, Tdo2-deficiency did not result in altered serum homeostasis of the tryptophan to kynurenine ratio during infection, which seemed to be independent of hepatocyte-intrinsic compensation via the IDO-axis. These data highlight that inflammation-induced reprogramming of systemic tryptophan metabolism is tightly regulated in viral hepatitis. Viral hepatitis is responsible for more than one million annual deaths worldwide and may progress to liver cirrhosis and hepatocellular carcinoma. The main metabolic cell type of the liver is the hepatocyte. In viral hepatitis, type I interferon (IFN-I) signaling rewires hepatocyte metabolism and serum metabolites to shape disease pathophysiology – an immune-regulatory circuit that might be therapeutically exploited. Here, we show that hepatocyte-intrinsic antiviral IFN-I signaling is both necessary and sufficient to induce wide-spread metabolic changes in hepatocytes. We identify a IFN-I-mediated induction of the hepatic kynurenine pathway via the rate-limiting and liver-specific enzyme TDO2, which controls serum homeostasis of tryptophan by converting it into kynurenine. Loss of TDO2 triggers a so far unknown compensatory mechanism, resulting in a vast increase of circulating kynurenine independent of hepatocyte intrinsic activity of the related IDO-enzymes. This study provides new insights into how inflammation reprograms metabolism of the liver and the kynurenine pathway during viral hepatitis.
Collapse
MESH Headings
- Animals
- Antiviral Agents/metabolism
- Female
- Hepatitis Viruses/isolation & purification
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/metabolism
- Hepatitis, Viral, Animal/virology
- Hepatocytes/immunology
- Hepatocytes/metabolism
- Hepatocytes/virology
- Humans
- Immunity, Innate/immunology
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation/virology
- Interferon Regulatory Factor-7/physiology
- Kynurenine/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor, Interferon alpha-beta/physiology
- STAT1 Transcription Factor/physiology
- Tryptophan/metabolism
- Tryptophan Oxygenase/physiology
Collapse
Affiliation(s)
- Alexander Lercher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
- * E-mail: (AL); (AB)
| | - Alexandra M. Popa
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Csilla Viczenczova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Lindsay Kosack
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Kristaps Klavins
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Benedikt Agerer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Christiane A. Opitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital of Heidelberg, Heidelberg, Germany
| | - Tobias V. Lanz
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
- Department of Neurology, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Michael Platten
- Department of Neurology, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
- * E-mail: (AL); (AB)
| |
Collapse
|
17
|
Lercher A, Baazim H, Bergthaler A. Systemic Immunometabolism: Challenges and Opportunities. Immunity 2020; 53:496-509. [PMID: 32937151 PMCID: PMC7491485 DOI: 10.1016/j.immuni.2020.08.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Abstract
Over the past 10 years, the field of immunometabolism made great strides to unveil the crucial role of intracellular metabolism in regulating immune cell function. Emerging insights into how systemic inflammation and metabolism influence each other provide a critical additional dimension on the organismal level. Here, we discuss the concept of systemic immunometabolism and review the current understanding of the communication circuits that underlie the reciprocal impact of systemic inflammation and metabolism across organs in inflammatory and infectious diseases, as well as how these mechanisms apply to homeostasis. We present current challenges of systemic immunometabolic research, and in this context, highlight opportunities and put forward ideas to effectively explore organismal physiological complexity in both health and disease.
Collapse
Affiliation(s)
- Alexander Lercher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Hatoon Baazim
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria.
| |
Collapse
|
18
|
Chan CC, Damen MSMA, Moreno-Fernandez ME, Stankiewicz TE, Cappelletti M, Alarcon PC, Oates JR, Doll JR, Mukherjee R, Chen X, Karns R, Weirauch MT, Helmrath MA, Inge TH, Divanovic S. Type I interferon sensing unlocks dormant adipocyte inflammatory potential. Nat Commun 2020; 11:2745. [PMID: 32488081 PMCID: PMC7265526 DOI: 10.1038/s41467-020-16571-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/12/2020] [Indexed: 02/08/2023] Open
Abstract
White adipose tissue inflammation, in part via myeloid cell contribution, is central to obesity pathogenesis. Mechanisms regulating adipocyte inflammatory potential and consequent impact of such inflammation in disease pathogenesis remain poorly defined. We show that activation of the type I interferon (IFN)/IFNα receptor (IFNAR) axis amplifies adipocyte inflammatory vigor and uncovers dormant gene expression patterns resembling inflammatory myeloid cells. IFNβ-sensing promotes adipocyte glycolysis, while glycolysis inhibition impeded IFNβ-driven intra-adipocyte inflammation. Obesity-driven induction of the type I IFN axis and activation of adipocyte IFNAR signaling contributes to obesity-associated pathogenesis in mice. Notably, IFNβ effects are conserved in human adipocytes and detection of the type I IFN/IFNAR axis-associated signatures positively correlates with obesity-driven metabolic derangements in humans. Collectively, our findings reveal a capacity for the type I IFN/IFNAR axis to regulate unifying inflammatory features in both myeloid cells and adipocytes and hint at an underappreciated contribution of adipocyte inflammation in disease pathogenesis. White adipose inflammation can occur in obesity and is at least in part mediated by inflammatory immune cells. Here the authors show that the Type I Interferon/Interferon alpha-beta receptor axis promotes an inflammatory, glycolysis associated adipocyte phenotype.
Collapse
Affiliation(s)
- Calvin C Chan
- Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Michelle S M A Damen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Traci E Stankiewicz
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Monica Cappelletti
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at UCLA, Mattel Children's Hospital UCLA, Los Angeles, CA, USA
| | - Pablo C Alarcon
- Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Jarren R Oates
- Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Jessica R Doll
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Rajib Mukherjee
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Xiaoting Chen
- The Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Rebekah Karns
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA.,Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew T Weirauch
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA.,The Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Divsion of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Michael A Helmrath
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Thomas H Inge
- Department of Surgery, Children's Hospital Colorado, Aurora, CO, 80045, USA
| | - Senad Divanovic
- Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA. .,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA. .,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA. .,Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
19
|
Du S, Chen G, Yuan B, Hu Y, Yang P, Chen Y, Zhao Q, Zhou J, Fan J, Zeng Z. DNA sensing and associated type 1 interferon signaling contributes to progression of radiation-induced liver injury. Cell Mol Immunol 2020; 18:1718-1728. [PMID: 32203191 DOI: 10.1038/s41423-020-0395-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/22/2020] [Indexed: 12/19/2022] Open
Abstract
Liver damage upon exposure to ionizing radiation (IR), whether accidental or therapeutic, can contribute to liver dysfunction. Currently, radiotherapy (RT) is used for various cancers including hepatocellular carcinoma (HCC); however, the treatment dose is limited by radiation-induced liver disease (RILD) with a high mortality rate. Furthermore, the precise molecular mechanisms of RILD remain poorly understood. Here, we investigated RILD pathogenesis using various knockout mouse strains subjected to whole-liver irradiation. We found that hepatocytes released a large quantity of double-stranded DNA (dsDNA) after irradiation. The cGAS-STING pathway in non-parenchymal cells (NPCs) was promptly activated by this dsDNA, causing interferon (IFN)-I production and release and concomitant hepatocyte damage. Genetic and pharmacological ablation of the IFN-I signaling pathway protected against RILD. Moreover, clinically irradiated human peri-HCC liver tissues exhibited substantially higher STING and IFNβ expression than non-irradiated tissues. Increased serum IFNβ concentrations post-radiation were associated with RILD development in patients. These results delineate cGAS-STING induced type 1 interferon release in NPCs as a key mediator of IR-induced liver damage and described a mechanism of innate-immunity-driven pathology, linking cGAS-STING activation with amplification of initial radiation-induced liver injury.
Collapse
Affiliation(s)
- Shisuo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Genwen Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Baoying Yuan
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yong Hu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ping Yang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yixing Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qianqian Zhao
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Liver Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jia Fan
- Liver Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
20
|
Lercher A, Bhattacharya A, Popa AM, Caldera M, Schlapansky MF, Baazim H, Agerer B, Gürtl B, Kosack L, Májek P, Brunner JS, Vitko D, Pinter T, Genger JW, Orlova A, Pikor N, Reil D, Ozsvár-Kozma M, Kalinke U, Ludewig B, Moriggl R, Bennett KL, Menche J, Cheng PN, Schabbauer G, Trauner M, Klavins K, Bergthaler A. Type I Interferon Signaling Disrupts the Hepatic Urea Cycle and Alters Systemic Metabolism to Suppress T Cell Function. Immunity 2019; 51:1074-1087.e9. [PMID: 31784108 PMCID: PMC6926485 DOI: 10.1016/j.immuni.2019.10.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/10/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Infections induce complex host responses linked to antiviral defense, inflammation, and tissue damage and repair. We hypothesized that the liver, as a central metabolic hub, may orchestrate systemic metabolic changes during infection. We infected mice with chronic lymphocytic choriomeningitis virus (LCMV), performed RNA sequencing and proteomics of liver tissue, and integrated these data with serum metabolomics at different infection phases. Widespread reprogramming of liver metabolism occurred early after infection, correlating with type I interferon (IFN-I) responses. Viral infection induced metabolic alterations of the liver that depended on the interferon alpha/beta receptor (IFNAR1). Hepatocyte-intrinsic IFNAR1 repressed the transcription of metabolic genes, including Otc and Ass1, which encode urea cycle enzymes. This led to decreased arginine and increased ornithine concentrations in the circulation, resulting in suppressed virus-specific CD8+ T cell responses and ameliorated liver pathology. These findings establish IFN-I-induced modulation of hepatic metabolism and the urea cycle as an endogenous mechanism of immunoregulation. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Alexander Lercher
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Anannya Bhattacharya
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Alexandra M Popa
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Michael Caldera
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Moritz F Schlapansky
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Hatoon Baazim
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Benedikt Agerer
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Bettina Gürtl
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Lindsay Kosack
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Peter Májek
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Julia S Brunner
- Department of Thrombosis Research and Vascular Biology, Medical University of Vienna, 1090 Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, 1090 Vienna, Austria
| | - Dijana Vitko
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria; Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Theresa Pinter
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Jakob-Wendelin Genger
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Natalia Pikor
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Daniela Reil
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Maria Ozsvár-Kozma
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria; Department for Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School, 30625 Hannover, Germany
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; Medical University of Vienna, 1090 Vienna, Austria
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Paul N Cheng
- Bio-Cancer Treatment International Limited, Hong Kong, China
| | - Gernot Schabbauer
- Department of Thrombosis Research and Vascular Biology, Medical University of Vienna, 1090 Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, 1090 Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Kristaps Klavins
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria.
| |
Collapse
|
21
|
Kirchner VA, Tak E, Kim K, LeCluyse EL, Niedernhofer LJ, Soldatow V, Lee J, Kim J, Tolar J, Song GW, Pruett TL. The evolving microenvironment of the human hepatocyte: Healthy vs. cirrhotic liver vs. isolated cells. Tissue Cell 2019; 62:101310. [PMID: 32433018 DOI: 10.1016/j.tice.2019.101310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 02/08/2023]
Abstract
The study of the liver microenvironment and hepatocyte's response to this environment in the setting of healthy liver, cirrhotic liver or cultured primary human hepatocytes (PHHs) addresses key questions for the development of novel liver therapies and predicts relevance of ex vivo PHHs models in liver biology. This study compared quantitative gene and protein expression of the inflammatory profile, oxidative stress response, angiogenesis and homing mechanisms in the biopsies of healthy and cirrhotic human livers and isolated PHHs. These profiles were correlated with the metabolic health of liver and PHHs defined by albumin production. The analysis demonstrated that cirrhotic liver and PHHs exhibited a distinct upregulation of the pro-inflammatory, oxidative stress and homing mechanism markers when compared to normal liver. The upregulation of the oxidative stress markers in PHHs inversely correlated with the albumin production. PHHs had diverse secretion of matrix metalloproteinases and their inhibitors, reflective of the cellular response to non-physiological culture conditions. The current study suggests that ex vivo PHHs manifest adaptive behavior by upregulating stress mechanisms (similar to the cirrhotic liver), downregulating normal metabolic function and upregulating matrix turnover. The ex vivo profile of PHHs may limit their therapeutic functionality and metabolic capacity to serve as in vitro metabolism and toxicology models.
Collapse
Affiliation(s)
- V A Kirchner
- Department of Surgery, Division of Transplantation, University of Minnesota, Minneapolis, MN 55455, USA; Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| | - E Tak
- Department of Liver Transplantation and Hepatobiliary Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea; Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - K Kim
- Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - E L LeCluyse
- LifeSciences Institute of Regenerative Medicine, Research Triangle Park, NC 27709, USA
| | - L J Niedernhofer
- The Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - V Soldatow
- LifeSciences Institute of Regenerative Medicine, Research Triangle Park, NC 27709, USA
| | - J Lee
- Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - J Kim
- Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - J Tolar
- Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - G W Song
- Department of Liver Transplantation and Hepatobiliary Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea; Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - T L Pruett
- Department of Surgery, Division of Transplantation, University of Minnesota, Minneapolis, MN 55455, USA; Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
22
|
Choi Y, Zhang X, Skinner B. Reply to Sayed. J Infect Dis 2019; 220:1083-1084. [PMID: 31063187 DOI: 10.1093/infdis/jiz234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 11/12/2022] Open
Affiliation(s)
- Youkyung Choi
- Laboratory Branch, Division of Viral Hepatitis, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention
| | - Xiugen Zhang
- Laboratory Branch, Division of Viral Hepatitis, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention
| | - Brianna Skinner
- Comparative Medicine Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
23
|
CD8 + T cells induce cachexia during chronic viral infection. Nat Immunol 2019; 20:701-710. [PMID: 31110314 PMCID: PMC6531346 DOI: 10.1038/s41590-019-0397-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/08/2019] [Indexed: 12/19/2022]
Abstract
Cachexia represents a leading cause of morbidity and mortality in various cancers, chronic inflammation and infections. Understanding of the mechanisms that drive cachexia has remained limited, especially for infection-associated cachexia (IAC). Here we describe a model of reversible cachexia in mice with chronic viral infection and identify an essential role for CD8+ T cells in IAC. Cytokines linked to cancer-associated cachexia did not contribute to IAC. Instead, virus-specific CD8+ T cells caused morphological and molecular changes in the adipose tissue, which led to depletion of lipid stores. These changes occurred at a time point that preceded the peak of the CD8+ T cell response and required T cell–intrinsic type 1 interferon signaling and antigen-specific priming. Our results link systemic antiviral immune responses to adipose-tissue remodeling and reveal an underappreciated role of CD8+ T cells in IAC.
Collapse
|
24
|
Borst K, Graalmann T, Kalinke U. Reply to: "Lack of Kupffer cell depletion in diethylnitrosamine-induced hepatic inflammation". J Hepatol 2019; 70:815-816. [PMID: 30712975 DOI: 10.1016/j.jhep.2018.12.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/31/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Katharina Borst
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Germany
| | - Theresa Graalmann
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hanover Medical School and the Helmholtz Centre for Infection Research, RESIST, Cluster of Excellence 2155, Hanover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hanover Medical School and the Helmholtz Centre for Infection Research, RESIST, Cluster of Excellence 2155, Hanover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany.
| |
Collapse
|
25
|
Chan CC, Damen MSMA, Alarcon PC, Sanchez-Gurmaches J, Divanovic S. Inflammation and Immunity: From an Adipocyte's Perspective. J Interferon Cytokine Res 2019; 39:459-471. [PMID: 30920343 DOI: 10.1089/jir.2019.0014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Comprehension of adipocyte function has evolved beyond a long-held belief of their inert nature, as simple energy storing and releasing cells. Adipocytes, including white, brown, and beige, are capable mediators of global metabolic health, but their intersection with inflammation is a budding field of exploration. Evidence hints at a reciprocal relationship adipocytes share with immune cells. Adipocyte's capacity to behave in an "immune-like" manner and ability to sense inflammatory cues that subsequently alter core adipocyte function might play an important role in shaping immune responses. Clarifying this intricate relationship could uncover previously underappreciated contribution of adipocytes to inflammation-driven human health and disease. In this review, we highlight the potential of largely underappreciated adipocyte "immune-like" function and how it may contribute to inflammation, immunity, and pathology of various diseases.
Collapse
Affiliation(s)
- Calvin C Chan
- 1Medical Scientist Training Program, Immunology Graduate Program, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.,2Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,3Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Michelle S M A Damen
- 2Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,3Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Pablo C Alarcon
- 1Medical Scientist Training Program, Immunology Graduate Program, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.,2Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,3Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Joan Sanchez-Gurmaches
- 2Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,4Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,5Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Senad Divanovic
- 1Medical Scientist Training Program, Immunology Graduate Program, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.,2Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,3Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,6Division of Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
26
|
Roh YS, Kim JW, Park S, Shon C, Kim S, Eo SK, Kwon JK, Lim CW, Kim B. Toll-Like Receptor-7 Signaling Promotes Nonalcoholic Steatohepatitis by Inhibiting Regulatory T Cells in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2574-2588. [PMID: 30125542 DOI: 10.1016/j.ajpath.2018.07.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 06/09/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022]
Abstract
Toll-like receptor 7 (TLR7) signaling regulates the production of type 1 interferons (IFNs) and proinflammatory cytokines, such as tumor necrosis factor (TNF)-α, implicated in the control of regulatory T (Treg) cell activity. However, the mechanistic interplay between TLR7 signaling and Treg cells in nonalcoholic steatohepatitis (NASH) has not been elucidated. Our aim was to clarify the role of TLR7 signaling in the pathogenesis of NASH. Steatohepatitis was induced in wild-type (WT), TLR7-deficient, IFN-α/β receptor 1-deficient, and Treg cell-depleted mice. TLR7-deficient and IFN-α/β receptor 1-deficient mice were more protective to steatohepatitis than WT mice. Of interest, both TNF-α and type 1 IFN promoted apoptosis of Treg cells involved in the prevention of NASH. Indeed, Treg cell-depleted mice had aggravated steatohepatitis compared with WT mice. Finally, treatment with immunoregulatory sequence 661, an antagonist of TLR7, efficiently ameliorated NASH in vivo. These results demonstrate that TLR7 signaling can induce TNF-α production in Kupffer cells and type I IFN production in dendritic cells. These cytokines subsequently induce hepatocyte death and inhibit Treg cells activities, leading to the progression of NASH. Thus, manipulating the TLR7-Treg cell axis might be used as a novel therapeutic strategy to treat NASH.
Collapse
|
27
|
Rani R, Kumar S, Sharma A, Mohanty SK, Donnelly B, Tiao GM, Gandhi CR. Mechanisms of concanavalin A-induced cytokine synthesis by hepatic stellate cells: Distinct roles of interferon regulatory factor-1 in liver injury. J Biol Chem 2018; 293:18466-18476. [PMID: 30348900 DOI: 10.1074/jbc.ra118.005583] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/15/2018] [Indexed: 12/26/2022] Open
Abstract
Mice depleted of hepatic stellate cells (HSCs) are protected from concanavalin A (ConA)-induced liver injury that is mediated by the activation of interferon regulatory factor 1 (IRF1). The aim of this study was to determine the mechanisms of ConA-mediated signaling and synthesis/release of mediators by HSCs that damage hepatocytes. Primary cultures of wildtype (WT) and IRF1-knockout (KO) HSCs and hepatocytes were used, and ConA-induced liver damage in interferon (IFN)αβ receptor-deficient (IFNαβR-KO) mice was determined. Specific binding of ConA to HSCs induced rapid activation of JAK2 and STAT1. ConA-induced expression of IRF1, IFNβ, tumor necrosis factor α, and CXCL1 was abrogated by selective inhibition of JAK2 and STAT1. Despite activating JAK2/STAT1, ConA failed to stimulate expression of inflammatory cytokines in HSCs from IRF1-KO mice. ConA-conditioned WT-HSC medium caused activation of JNK and caspase 3, and apoptosis of hepatocytes from WT but not from IRF1-KO or IFNαβR-KO mice. Conversely, ConA-conditioned medium of IRF1-KO HSCs failed to cause apoptosis of WT or IRF1-KO hepatocytes. IFNαβR-KO mice were protected from ConA-induced liver damage, and ConA-induced hepatic expression of IRF1 and pro-inflammatory cytokines and chemokines, and infiltration of neutrophils were significantly lower in IFNαβR-KO than in WT mice. These results demonstrate distinct roles of IRF1 in hepatic inflammation (HSCs) and injury (hepatocytes) and can be an important target for intervention in acute liver injury.
Collapse
Affiliation(s)
- Richa Rani
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229.,the Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio 45220 and
| | - Sudhir Kumar
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229.,the Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio 45220 and
| | - Akanksha Sharma
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Sujit K Mohanty
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Bryan Donnelly
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Gregory M Tiao
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Chandrashekhar R Gandhi
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, .,the Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio 45220 and.,the Department of Surgery, University of Cincinnati, Cincinnati, Ohio 45220
| |
Collapse
|
28
|
Koestner W, Spanier J, Klause T, Tegtmeyer PK, Becker J, Herder V, Borst K, Todt D, Lienenklaus S, Gerhauser I, Detje CN, Geffers R, Langereis MA, Vondran FWR, Yuan Q, van Kuppeveld FJM, Ott M, Staeheli P, Steinmann E, Baumgärtner W, Wacker F, Kalinke U. Interferon-beta expression and type I interferon receptor signaling of hepatocytes prevent hepatic necrosis and virus dissemination in Coxsackievirus B3-infected mice. PLoS Pathog 2018; 14:e1007235. [PMID: 30075026 PMCID: PMC6107283 DOI: 10.1371/journal.ppat.1007235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 08/23/2018] [Accepted: 07/22/2018] [Indexed: 01/13/2023] Open
Abstract
During Coxsackievirus B3 (CVB3) infection hepatitis is a potentially life threatening complication, particularly in newborns. Studies with type I interferon (IFN-I) receptor (IFNAR)-deficient mice revealed a key role of the IFN-I axis in the protection against CVB3 infection, whereas the source of IFN-I and cell types that have to be IFNAR triggered in order to promote survival are still unknown. We found that CVB3 infected IFN-β reporter mice showed effective reporter induction, especially in hepatocytes and only to a minor extent in liver-resident macrophages. Accordingly, upon in vitro CVB3 infection of primary hepatocytes from murine or human origin abundant IFN-β responses were induced. To identify sites of IFNAR-triggering we performed experiments with Mx reporter mice, which upon CVB3 infection showed massive luciferase induction in the liver. Immunohistological studies revealed that during CVB3 infection MX1 expression of hepatocytes was induced primarily by IFNAR-, and not by IFN-III receptor (IFNLR)-triggering. CVB3 infection studies with primary human hepatocytes, in which either the IFN-I or the IFN-III axis was inhibited, also indicated that primarily IFNAR-, and to a lesser extent IFNLR-triggering was needed for ISG induction. Interestingly, CVB3 infected mice with a hepatocyte-specific IFNAR ablation showed severe liver cell necrosis and ubiquitous viral dissemination that resulted in lethal disease, as similarly detected in classical IFNAR-/- mice. In conclusion, we found that during CVB3 infection hepatocytes are major IFN-I producers and that the liver is also the organ that shows strong IFNAR-triggering. Importantly, hepatocytes need to be IFNAR-triggered in order to prevent virus dissemination and to assure survival. These data are compatible with the hypothesis that during CVB3 infection hepatocytes serve as important IFN-I producers and sensors not only in the murine, but also in the human system. CVB3 belongs to human enteroviruses and is transmitted through the fecal-oral route. Infections with CVB3 are mostly unnoticed or cause flu-like symptoms, however, they can also cause severe disease, such as myocarditis, pancreatitis, and hepatitis. Although CVB3 does not efficiently trigger plasmacytoid dendritic cells, which are the main IFN-I producers in many other virus infections, IFNAR signaling plays a crucial role in CVB3 control. Therefore, we investigated which cells are stimulated to produce IFN-I following CVB3 infection and which cell types have to be IFNAR-triggered in order to confer anti-viral protection. We found that upon CVB3 infection IFN-β was mainly expressed within the liver, especially by hepatocytes and not by liver resident macrophages. This was corroborated by in vitro CVB3 infection experiments with primary murine and human hepatocytes. Interestingly, IFNAR signaling of hepatocytes was required to control the virus. Collectively, our data indicate that hepatocytes, and not immune cells, are the key innate effector cells that are relevant for the control of CVB3 infection.
Collapse
Affiliation(s)
- Wolfgang Koestner
- Institute for Radiology, Hannover Medical School, Hannover, Germany
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School, Hannover, Germany
| | - Julia Spanier
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School, Hannover, Germany
| | - Tanja Klause
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School, Hannover, Germany
| | - Pia-K. Tegtmeyer
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School, Hannover, Germany
| | - Jennifer Becker
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School, Hannover, Germany
| | - Vanessa Herder
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Katharina Borst
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School, Hannover, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Stefan Lienenklaus
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School, Hannover, Germany
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Claudia N. Detje
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School, Hannover, Germany
| | - Robert Geffers
- Helmholtz Centre for Infection Research, Genome Analytics Research Group, Braunschweig, Germany
| | - Martijn A. Langereis
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Florian W. R. Vondran
- ReMediES, Department of General, Visceral and Transplantation Surgery, Hannover Medical School, and German Centre for Infection Research, Hannover-Braunschweig, Germany
| | - Qinggong Yuan
- Institute for Cell and Gene Therapy, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School, Hannover, Germany
| | - Frank J. M. van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Michael Ott
- Institute for Cell and Gene Therapy, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School, Hannover, Germany
| | - Peter Staeheli
- Institute for Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Frank Wacker
- Institute for Radiology, Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
29
|
Araujo AMD, Antunes MM, Mattos MS, Diniz AB, Alvarenga DM, Nakagaki BN, Carvalho ÉD, Lacerda VAS, Carvalho-Gontijo R, Goulart J, Mafra K, Freitas-Lopes MA, Oliveira HMDC, Dutra CM, David BA, Mendes Silva A, Quesniaux V, Ryffel B, Oliveira SC, Barber GN, Mansur DS, Cunha TM, Rezende RM, Oliveira AG, Menezes GB. Liver Immune Cells Release Type 1 Interferon Due to DNA Sensing and Amplify Liver Injury from Acetaminophen Overdose. Cells 2018; 7:cells7080088. [PMID: 30060463 PMCID: PMC6115735 DOI: 10.3390/cells7080088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 01/07/2023] Open
Abstract
Hepatocytes may rupture after a drug overdose, and their intracellular contents act as damage-associated molecular patterns (DAMPs) that lead to additional leukocyte infiltration, amplifying the original injury. Necrosis-derived DNA can be recognized as a DAMP, activating liver non-parenchymal cells (NPCs). We hypothesized that NPCs react to DNA by releasing interferon (IFN)-1, which amplifies acetaminophen (APAP)-triggered liver necrosis. We orally overdosed different knockout mouse strains to investigate the pathways involved in DNA-mediated amplification of APAP-induced necrosis. Mice were imaged under intravital confocal microscopy to estimate injury progression, and hepatocytes and liver NPCs were differentially isolated for gene expression assays. Flow cytometry (FACS) using a fluorescent reporter mouse estimated the interferon-beta production by liver leukocytes under different injury conditions. We also treated mice with DNase to investigate the role of necrosis DNA signaling in IFN-1 production. Hepatocytes released a large amount of DNA after APAP overdose, which was not primarily sensed by these cells. However, liver NPCs promptly sensed such environmental disturbances and activated several DNA sensing pathways. Liver NPCs synthesized and released IFN-1, which was associated with concomitant hepatocyte necrosis. Ablation of IFN-1 recognition in interferon α/β receptor (IFNAR−/−) mice delayed APAP-mediated liver necrosis and dampened IFN-1 sensing pathways. We demonstrated a novel loop involving DNA recognition by hepatic NPCs and additional IFN-1 mediated hepatocyte death.
Collapse
Affiliation(s)
- Alan Moreira de Araujo
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627-Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Maísa Mota Antunes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627-Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Matheus Silvério Mattos
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627-Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Ariane Barros Diniz
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627-Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Débora Moreira Alvarenga
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627-Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Brenda Naemi Nakagaki
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627-Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Érika de Carvalho
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627-Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Viviane Aparecida Souza Lacerda
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627-Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Raquel Carvalho-Gontijo
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627-Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Jorge Goulart
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627-Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Kassiana Mafra
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627-Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Maria Alice Freitas-Lopes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627-Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Hortência Maciel de Castro Oliveira
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627-Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Camila Miranda Dutra
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627-Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Bruna Araújo David
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627-Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Aristóbolo Mendes Silva
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Valerie Quesniaux
- Experimental and Molecular Immunology and Neurogenetics CNRS, University of Orleans, 45000 Orleans, France.
| | - Bernhard Ryffel
- Experimental and Molecular Immunology and Neurogenetics CNRS, University of Orleans, 45000 Orleans, France.
| | - Sergio Costa Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Glen N Barber
- Department of Cell Biology and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Daniel Santos Mansur
- Laboratory of Immunobiology, Universidade Federal de Santa Catarina, Santa Catarina 88040-900, Brazil.
| | - Thiago Mattar Cunha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo 14049-900, Brazil.
| | - Rafael Machado Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - André Gustavo Oliveira
- Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Gustavo Batista Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627-Belo Horizonte, Minas Gerais 31270-901, Brazil.
| |
Collapse
|
30
|
Modulation of immune responses in lentiviral vector-mediated gene transfer. Cell Immunol 2018; 342:103802. [PMID: 29735164 PMCID: PMC6695505 DOI: 10.1016/j.cellimm.2018.04.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023]
Abstract
Lentiviral vectors (LV) are widely used vehicles for gene transfer and therapy in pre-clinical animal models and clinical trials with promising safety and efficacy results. However, host immune responses against vector- and/or transgene-derived antigens remain a major obstacle to the success and broad applicability of gene therapy. Here we review the innate and adaptive immunological barriers to successful gene therapy, both in the context of ex vivo and in vivo LV gene therapy, mostly concerning systemic LV delivery and discuss possible means to overcome them, including vector design and production and immune modulatory strategies.
Collapse
|
31
|
Wang R, Moniruzzaman M, Shuffle E, Lourie R, Hasnain SZ. Immune regulation of the unfolded protein response at the mucosal barrier in viral infection. Clin Transl Immunology 2018; 7:e1014. [PMID: 29632667 PMCID: PMC5881172 DOI: 10.1002/cti2.1014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 01/12/2023] Open
Abstract
Protein folding in the endoplasmic reticulum (ER) is subject to stringent quality control. When protein secretion demand exceeds the protein folding capacity of the ER, the unfolded protein response (UPR) is triggered as a consequence of ER stress. Due to the secretory function of epithelial cells, UPR plays an important role in maintaining epithelial barrier function at mucosal sites. ER stress and activation of the UPR are natural mechanisms by which mucosal epithelial cells combat viral infections. In this review, we discuss the important role of UPR in regulating mucosal epithelium homeostasis. In addition, we review current insights into how the UPR is involved in viral infection at mucosal barriers and potential therapeutic strategies that restore epithelial cell integrity following acute viral infections via cytokine and cellular stress manipulation.
Collapse
Affiliation(s)
- Ran Wang
- Translational Research Institute Immunopathology Group at Mater Research Institute - The University of Queensland Brisbane QLD Australia.,Faculty of Medicine The University of Queensland Brisbane QLD Australia
| | - Md Moniruzzaman
- Translational Research Institute Immunopathology Group at Mater Research Institute - The University of Queensland Brisbane QLD Australia.,Faculty of Medicine The University of Queensland Brisbane QLD Australia
| | - Eric Shuffle
- Translational Research Institute Immunopathology Group at Mater Research Institute - The University of Queensland Brisbane QLD Australia
| | - Rohan Lourie
- Translational Research Institute Immunopathology Group at Mater Research Institute - The University of Queensland Brisbane QLD Australia.,Translational Research Institute Inflammatory Bowel Disease Group at Mater Research Institute - The University of Queensland Brisbane QLD Australia
| | - Sumaira Z Hasnain
- Translational Research Institute Immunopathology Group at Mater Research Institute - The University of Queensland Brisbane QLD Australia.,Faculty of Medicine The University of Queensland Brisbane QLD Australia
| |
Collapse
|
32
|
Borst K, Frenz T, Spanier J, Tegtmeyer PK, Chhatbar C, Skerra J, Ghita L, Namineni S, Lienenklaus S, Köster M, Heikenwaelder M, Sutter G, Kalinke U. Type I interferon receptor signaling delays Kupffer cell replenishment during acute fulminant viral hepatitis. J Hepatol 2018; 68:682-690. [PMID: 29274730 DOI: 10.1016/j.jhep.2017.11.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/15/2017] [Accepted: 11/15/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIM Virus-induced fulminant hepatitis is a major cause of acute liver failure. During acute viral hepatitis the impact of type I interferon (IFN-I) on myeloid cells, including liver-resident Kupffer cells (KC), is only partially understood. Herein, we dissected the impact of locally induced IFN-I responses on myeloid cell function and hepatocytes during acute liver inflammation. METHODS Two different DNA-encoded viruses, vaccinia virus (VACV) and murine cytomegalovirus (MCMV), were studied. In vivo imaging was applied to visualize local IFN-β induction and IFN-I receptor (IFNAR) triggering in VACV-infected reporter mice. Furthermore, mice with a cell type-selective IFNAR ablation were analyzed to dissect the role of IFNAR signaling in myeloid cells and hepatocytes. Experiments with Cx3cr1+/gfp mice revealed the origin of reconstituted KC. Finally, mixed bone marrow chimeric mice were studied to specifically analyze the effect of IFNAR triggering on liver infiltrating monocytes. RESULTS VACV infection induced local IFN-β responses, which lead to IFNAR signaling primarily within the liver. IFNAR triggering was needed to control the infection and prevent fulminant hepatitis. The severity of liver inflammation was independent of IFNAR triggering of hepatocytes, whereas IFNAR triggering of myeloid cells protected from excessive inflammation. Upon VACV or MCMV infection KC disappeared, whereas infiltrating monocytes differentiated to KC afterwards. During IFNAR triggering such replenished monocyte-derived KC comprised more IFNAR-deficient than -competent cells in mixed bone marrow chimeric mice, whereas after the decline of IFNAR triggering both subsets showed an even distribution. CONCLUSION Upon VACV infection IFNAR triggering of myeloid cells, but not of hepatocytes, critically modulates acute viral hepatitis. During infection with DNA-encoded viruses IFNAR triggering of liver-infiltrating blood monocytes delays the development of monocyte-derived KC, pointing towards new therapeutic strategies for acute viral hepatitis. LAY SUMMARY Viral infection can cause fulminant hepatitis, which in turn is a major cause of acute liver failure. Herein, we aimed to study the role of type 1 interferon responses in acute viral hepatitis. We identified that during infection with DNA-encoded viruses, type 1 interferon receptor triggering of blood monocytes delays the development of monocyte-derived Kupffer cells. This points to new therapeutic strategies for acute viral hepatitis.
Collapse
Affiliation(s)
- Katharina Borst
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Theresa Frenz
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Julia Spanier
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Pia-Katharina Tegtmeyer
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Chintan Chhatbar
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Jennifer Skerra
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Luca Ghita
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Sukumar Namineni
- Department Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Virology, Technical University Munich, Munich, Germany
| | - Stefan Lienenklaus
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Brunswick, Germany; Institute for Laboratory Animal Science, Hanover Medical School, Hanover, Germany
| | - Mario Köster
- Research Group Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Mathias Heikenwaelder
- Department Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Virology, Technical University Munich, Munich, Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians University, Munich, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Brunswick, Germany.
| |
Collapse
|
33
|
Chen X, Hao K, Yu X, Huang A, Zhu B, Wang GX, Ling F. Magnolol protects Ctenopharyngodon idella kidney cells from apoptosis induced by grass carp reovirus. FISH & SHELLFISH IMMUNOLOGY 2018; 74:426-435. [PMID: 29277695 DOI: 10.1016/j.fsi.2017.12.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/08/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
Many natural products from medicinal plants are small molecular weight compounds with enormous structural diversity and show various biological activities. Magnolol is a biphenol compound rich in the stem bark of Magnolia officinalis Rehd et Wils., and is able to suppress viral replication in GCRV-infected grass carp (Ctenopharyngodon idella) kidney (CIK) cells in the previous study. In this study, in vivo studies demonstrated that magnolol was efficient to restrain the replication of GCRV and repair the low level of superoxide dismutase and total antioxidant capacity in serum at the non-toxic concentration in vivo. Furthermore, magnolol inhibited CIK cell apoptosis induced by GCRV and kept the normal cellular morphological structure, reflecting in the protection of CIK cells from cell swelling, the formation of apoptotic bodies, the disappearance of cellular morphology and nuclear fragmentation. Reverse transcript quantitative polymerase chain reaction (RT-qPCR) showed that magnolol facilitated the expression of apoptosis-inhibiting gene bcl-2, while suppressed the expression of apoptosis-promoting gene bax in GCRV-infected cells. Besides, RT-qPCR and enzyme activity assays proved that magnolol suppressed the expression of caspase 3, caspase 8 and caspase 9. Moreover, interactions between magnolol and proteins were predicted by using the STITCH program, which revealed that ten proteins including caspase 3, were involved in the apoptosis pathway, p53 signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway and toll-like receptor signaling pathway. Further assays were performed to test the effect of magnolol on apoptosis pathway, which showed that magnolol dramatically inhibited the activity of caspase 3 rather than those of caspase 8 and caspase 9. Collectively, the present study revealed that magnolol heightened the resistance of grass carp against GCRV infection and refrained GCRV-induced apoptosis, which may be attributed to the direct interaction of magnolol with caspase 3. The present results make a contribution to understanding the mechanisms by which small-molecule drugs possess antiviral activities, and lay a foundation for the development of broad-spectrum antiviral compounds in aquaculture industry.
Collapse
Affiliation(s)
- Xiaohui Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Kai Hao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaobo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Aiguo Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
34
|
Khamina K, Lercher A, Caldera M, Schliehe C, Vilagos B, Sahin M, Kosack L, Bhattacharya A, Májek P, Stukalov A, Sacco R, James LC, Pinschewer DD, Bennett KL, Menche J, Bergthaler A. Characterization of host proteins interacting with the lymphocytic choriomeningitis virus L protein. PLoS Pathog 2017; 13:e1006758. [PMID: 29261807 PMCID: PMC5738113 DOI: 10.1371/journal.ppat.1006758] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/17/2017] [Indexed: 01/10/2023] Open
Abstract
RNA-dependent RNA polymerases (RdRps) play a key role in the life cycle of RNA viruses and impact their immunobiology. The arenavirus lymphocytic choriomeningitis virus (LCMV) strain Clone 13 provides a benchmark model for studying chronic infection. A major genetic determinant for its ability to persist maps to a single amino acid exchange in the viral L protein, which exhibits RdRp activity, yet its functional consequences remain elusive. To unravel the L protein interactions with the host proteome, we engineered infectious L protein-tagged LCMV virions by reverse genetics. A subsequent mass-spectrometric analysis of L protein pulldowns from infected human cells revealed a comprehensive network of interacting host proteins. The obtained LCMV L protein interactome was bioinformatically integrated with known host protein interactors of RdRps from other RNA viruses, emphasizing interconnected modules of human proteins. Functional characterization of selected interactors highlighted proviral (DDX3X) as well as antiviral (NKRF, TRIM21) host factors. To corroborate these findings, we infected Trim21-/- mice with LCMV and found impaired virus control in chronic infection. These results provide insights into the complex interactions of the arenavirus LCMV and other viral RdRps with the host proteome and contribute to a better molecular understanding of how chronic viruses interact with their host. RNA-dependent RNA-polymerases (RdRps) play a key role in the life cycle of RNA viruses. They interact with cellular proteins during replication and transcription processes and impact the immunobiology of viral infections. This study characterized the host protein interactome of the RdRp-containing L protein of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). Several L protein interactors with proviral and antiviral effects were identified in vitro, and mice lacking the identified L protein interactor TRIM21 exhibited impaired control of chronic LCMV infection. Integration of the L protein interactomes with known RdRp interactomes from other RNA viruses highlighted common and virus-specific strategies to interact with the host proteome, which may indicate novel avenues for antiviral interventions.
Collapse
Affiliation(s)
- Kseniya Khamina
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Alexander Lercher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Michael Caldera
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Christopher Schliehe
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Bojan Vilagos
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Mehmet Sahin
- University of Basel, Department of Biomedicine–Haus Petersplatz, Division of Experimental Virology, Basel, Switzerland
| | - Lindsay Kosack
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Anannya Bhattacharya
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Peter Májek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Alexey Stukalov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Roberto Sacco
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Leo C. James
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Daniel D. Pinschewer
- University of Basel, Department of Biomedicine–Haus Petersplatz, Division of Experimental Virology, Basel, Switzerland
| | - Keiryn L. Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
- * E-mail:
| |
Collapse
|
35
|
Holze C, Michaudel C, Mackowiak C, Haas DA, Benda C, Hubel P, Pennemann FL, Schnepf D, Wettmarshausen J, Braun M, Leung DW, Amarasinghe GK, Perocchi F, Staeheli P, Ryffel B, Pichlmair A. Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat Immunol 2017; 19:130-140. [PMID: 29255269 PMCID: PMC5786482 DOI: 10.1038/s41590-017-0013-y] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are generated by virally-infected cells however the physiological significance of ROS generated under these conditions is unclear. Here we show that inflammation and cell death induced by exposure of mice or cells to sources of ROS is not altered in the absence of canonical ROS-sensing pathways or known cell death pathways. ROS-induced cell death signaling involves interaction between the cellular ROS sensor and antioxidant factor KEAP1, the phosphatase PGAM5 and the proapoptotic factor AIFM1. Pgam5−/− mice show exacerbated lung inflammation and proinflammatory cytokines in an ozone exposure model. Similarly, challenge with influenza A virus leads to increased virus infiltration, lymphocytic bronchiolitis and reduced survival of Pgam5−/− mice. This pathway, which we term ‘oxeiptosis’, is a ROS-sensitive, caspase independent, non-inflammatory cell death pathway and is important to protect against inflammation induced by ROS or ROS-generating agents such as viral pathogens.
Collapse
Affiliation(s)
- Cathleen Holze
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Chloé Michaudel
- INEM, Experimental Molecular Immunology, UMR7355 CNRS and University, Orleans, France
| | - Claire Mackowiak
- INEM, Experimental Molecular Immunology, UMR7355 CNRS and University, Orleans, France
| | - Darya A Haas
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Christian Benda
- Department of Structural Cell Biology, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Philipp Hubel
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Friederike L Pennemann
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Daniel Schnepf
- Institute of Virology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Jennifer Wettmarshausen
- Department of Biochemistry, Gene Center Munich, Munich, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum Munchen, Neuherberg, Germany
| | - Marianne Braun
- EM-Histo Lab, Max-Planck Institute of Neurobiology, Martinsried, Munich, Germany
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Fabiana Perocchi
- Department of Biochemistry, Gene Center Munich, Munich, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum Munchen, Neuherberg, Germany
| | - Peter Staeheli
- Institute of Virology, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernhard Ryffel
- INEM, Experimental Molecular Immunology, UMR7355 CNRS and University, Orleans, France.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Andreas Pichlmair
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany. .,School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany. .,German Center for Infection Research (DZIF), Munich partner site, Munich, Germany.
| |
Collapse
|
36
|
The lipid-sensor TREM2 aggravates disease in a model of LCMV-induced hepatitis. Sci Rep 2017; 7:11289. [PMID: 28900132 PMCID: PMC5595927 DOI: 10.1038/s41598-017-10637-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 08/14/2017] [Indexed: 12/20/2022] Open
Abstract
Lipid metabolism is increasingly being appreciated to affect immunoregulation, inflammation and pathology. In this study we found that mice infected with lymphocytic choriomeningitis virus (LCMV) exhibit global perturbations of circulating serum lipids. Mice lacking the lipid-sensing surface receptor triggering receptor expressed on myeloid cells 2 (Trem2 -/-) were protected from LCMV-induced hepatitis and showed improved virus control despite comparable virus-specific T cell responses. Non-hematopoietic expression of TREM2 was found to be responsible for aggravated hepatitis, indicating a novel role for TREM2 in the non-myeloid compartment. These results suggest a link between virus-perturbed lipids and TREM2 that modulates liver pathogenesis upon viral infection. Targeted interventions of this immunoregulatory axis may ameliorate tissue pathology in hepatitis.
Collapse
|
37
|
Jin X, Xu Z, Cao J, Shao P, Zhou M, Qin Z, Liu Y, Yu F, Zhou X, Ji W, Cai W, Ma Y, Wang C, Shan N, Yang N, Chen X, Li Y. Proteomics analysis of human placenta reveals glutathione metabolism dysfunction as the underlying pathogenesis for preeclampsia. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1207-1214. [PMID: 28705740 DOI: 10.1016/j.bbapap.2017.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/19/2022]
Abstract
Hypertensive disorder in pregnancy (HDP) refers to a series of diseases that cause the hypertension during pregnancy, including HDP, preeclampsia (PE) and eclampsia. This study screens differentially expressed proteins of placenta tissues in PE cases using 2D LC-MS/MS quantitative proteomics strategy. A total of 2281 proteins are quantified, of these, 145 altering expression proteins are successfully screened between PE and control cases (p<0.05). Bioinformatics analysis suggests that these proteins are mainly involved in many biological processes, such as oxidation reduction, mitochondrion organization, and acute inflammatory response. Especially, the glutamine metabolic process related molecules, GPX1, GPX3, SMS, GGCT, GSTK1, NFκB, GSTT2, SOD1 and GCLM, are involved in the switching process from oxidized glutathione (GSSG) conversion to the reduced glutathione (GSH) by glutathione, mercapturic acid and arginine metabolism process. Results of this study revealed that glutathione metabolism disorder of placenta tissues may contribute to the occurrence of PE disease.
Collapse
Affiliation(s)
- Xiaohan Jin
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China; Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, China
| | - Zhongwei Xu
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China; Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, China
| | - Jin Cao
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, China
| | - Ping Shao
- Women and Children Health Care Center, Tianjin 300070, China
| | - Maobin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China
| | - Zhe Qin
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, China
| | - Yan Liu
- Tianjin First Center Hospital, Tianjin 300192, China
| | - Fang Yu
- Obstetrics and Gynecology Department, Pingjin Hospital, Tianjin 300162, China
| | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China
| | - Wenjie Ji
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China
| | - Wei Cai
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China
| | - Yongqiang Ma
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China
| | - Chengyan Wang
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, China
| | - Nana Shan
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, China
| | - Ning Yang
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China
| | - Xu Chen
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300100, China.
| | - Yuming Li
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China.
| |
Collapse
|
38
|
Abstract
The history of Zika virus disease serves as a paradigm of a typical emerging viral infection. Zika virus disease, a mosquito-borne flavivirus, was first isolated in 1947 in the Zika forest of Uganda. The same virus was also isolated from jungle-dwelling mosquitoes (Aedes [Stegomyia] africanus). In many areas of Africa and South Asia human infections with Zika virus were detected by both serology and virus isolation. About 80% of infections are asymptomatic, and in 20% a mostly mild disease with fever, rash, arthralgia, and conjunctivitis may occur. Fetal infections with malformations were not recorded in Africa or Asia. Zika virus was imported to northern Brazil possibly during the world soccer championship that was hosted by Brazil in June through July 2014. A cluster of severe fetal malformations with microcephaly and ocular defects was noted in 2015 in the northeast of Brazil, and intrauterine infections with Zika virus were confirmed. The dramatic change in Zika virus pathogenicity upon its introduction to Brazil has remained an enigma.
Collapse
|
39
|
Abstract
The specific immunological components linking metabolic stresses to liver inflammation and systemic metabolic pathologies in obesity are not entirely known. A recent study (Ghazarian et al., 2017) reveals that obesity-induced type I interferon signaling drives the accumulation and activation of intrahepatic CD8+ T cells, leading to systemic metabolic deterioration.
Collapse
|
40
|
Ghazarian M, Revelo XS, Nøhr MK, Luck H, Zeng K, Lei H, Tsai S, Schroer SA, Park YJ, Chng MHY, Shen L, D’Angelo JA, Horton P, Chapman WC, Brockmeier D, Woo M, Engleman EG, Adeyi O, Hirano N, Jin T, Gehring AJ, Winer S, Winer DA. Type I Interferon Responses Drive Intrahepatic T cells to Promote Metabolic Syndrome. Sci Immunol 2017; 2:eaai7616. [PMID: 28567448 PMCID: PMC5447456 DOI: 10.1126/sciimmunol.aai7616] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Obesity-related insulin resistance is driven by low-grade chronic inflammation of metabolic tissues. In the liver, non-alcoholic fatty liver disease (NAFLD) is associated with hepatic insulin resistance and systemic glucose dysregulation. However, the immunological factors supporting these processes are poorly understood. We found that the liver accumulates pathogenic CD8+ T cell subsets which control hepatic insulin sensitivity and gluconeogenesis during diet-induced obesity in mice. In a cohort of human patients, CD8+ T cells represent a dominant intrahepatic immune cell population which links to glucose dysregulation. Accumulation and activation of these cells are largely supported by type I interferon (IFN-I) responses in the liver. Livers from obese mice upregulate critical interferon regulatory factors (IRFs), interferon stimulatory genes (ISGs), and IFNα protein, while IFNαR1-/- mice, or CD8-specific IFNαR1-/- chimeric mice are protected from disease. IFNαR1 inhibitors improve metabolic parameters in mice, while CD8+ T cells and IFN-I responses correlate with NAFLD activity in human patients. Thus, IFN-I responses represent a central immunological axis that governs intrahepatic T cell pathogenicity during metabolic disease.
Collapse
Affiliation(s)
- Magar Ghazarian
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 3B3, Canada
| | - Xavier S. Revelo
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Mark K. Nøhr
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Helen Luck
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 3B3, Canada
| | - Kejing Zeng
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Helena Lei
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Sue Tsai
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Stephanie A. Schroer
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Yoo Jin Park
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Melissa Hui Yen Chng
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94205, USA
| | - Lei Shen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - June Ann D’Angelo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Peter Horton
- Methodist University Hospital Transplant Institute, Memphis, TN 38104, USA
- Division of Abdominal Transplant, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - William C. Chapman
- Division of Abdominal Transplant, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Minna Woo
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Edgar G. Engleman
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94205, USA
| | - Oyedele Adeyi
- Department of Pathology, University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Naoto Hirano
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 3B3, Canada
- Campbell Family Cancer Research Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Tianru Jin
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Adam J. Gehring
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
- Toronto Centre for Liver Disease, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Shawn Winer
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Laboratory Medicine, St. Michael’s Hospital, Toronto, Ontario M5B 1W8, Canada
| | - Daniel A. Winer
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 3B3, Canada
- Department of Pathology, University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
41
|
Huang WC, Easom NJ, Tang XZ, Gill US, Singh H, Robertson F, Chang C, Trowsdale J, Davidson BR, Rosenberg WM, Fusai G, Toubert A, Kennedy PT, Peppa D, Maini MK. T Cells Infiltrating Diseased Liver Express Ligands for the NKG2D Stress Surveillance System. THE JOURNAL OF IMMUNOLOGY 2016; 198:1172-1182. [PMID: 28031333 PMCID: PMC5253436 DOI: 10.4049/jimmunol.1601313] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/22/2016] [Indexed: 12/23/2022]
Abstract
NK cells, which are highly enriched in the liver, are potent regulators of antiviral T cells and immunopathology in persistent viral infection. We investigated the role of the NKG2D axis in T cell/NK cell interactions in hepatitis B. Activated and hepatitis B virus (HBV)-specific T cells, particularly the CD4 fraction, expressed NKG2D ligands (NKG2DL), which were not found on T cells from healthy controls (p < 0.001). NKG2DL-expressing T cells were strikingly enriched within HBV-infected livers compared with the periphery or to healthy livers (p < 0.001). NKG2D+NK cells were also increased and preferentially activated in the HBV-infected liver (p < 0.001), in direct proportion to the percentage of MICA/B-expressing CD4 T cells colocated within freshly isolated liver tissue (p < 0.001). This suggests that NKG2DL induced on T cells within a diseased organ can calibrate NKG2D-dependent activation of local NK cells; furthermore, NKG2D blockade could rescue HBV-specific and MICA/B-expressing T cells from HBV-infected livers. To our knowledge, this is the first ex vivo demonstration that non-virally infected human T cells can express NKG2DL, with implications for stress surveillance by the large number of NKG2D-expressing NK cells sequestered in the liver.
Collapse
Affiliation(s)
- Wei-Chen Huang
- Division of Infection and Immunity, University College London, London WC1E 6JF, United Kingdom.,Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Nicholas J Easom
- Division of Infection and Immunity, University College London, London WC1E 6JF, United Kingdom
| | - Xin-Zi Tang
- Division of Infection and Immunity, University College London, London WC1E 6JF, United Kingdom
| | - Upkar S Gill
- Centre for Immunobiology, Blizard Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom
| | - Harsimran Singh
- Division of Infection and Immunity, University College London, London WC1E 6JF, United Kingdom.,Institute for Liver and Digestive Health, University College London, London NW3 2PF, United Kingdom
| | - Francis Robertson
- Department of Surgery and Interventional Science, University College London, London WC1E 6BT, United Kingdom
| | - Chiwen Chang
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; and
| | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; and
| | - Brian R Davidson
- Institute for Liver and Digestive Health, University College London, London NW3 2PF, United Kingdom.,Department of Surgery and Interventional Science, University College London, London WC1E 6BT, United Kingdom
| | - William M Rosenberg
- Institute for Liver and Digestive Health, University College London, London NW3 2PF, United Kingdom
| | - Giuseppe Fusai
- Institute for Liver and Digestive Health, University College London, London NW3 2PF, United Kingdom.,Department of Surgery and Interventional Science, University College London, London WC1E 6BT, United Kingdom
| | - Antoine Toubert
- Université Paris Diderot, Sorbonne Paris Cité, INSERM UMRS 1160, AP-HP, Hôpital Saint-Louis, Paris 75013, France
| | - Patrick T Kennedy
- Centre for Immunobiology, Blizard Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom
| | - Dimitra Peppa
- Division of Infection and Immunity, University College London, London WC1E 6JF, United Kingdom
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London WC1E 6JF, United Kingdom;
| |
Collapse
|
42
|
Fritsch SD, Weichhart T. Effects of Interferons and Viruses on Metabolism. Front Immunol 2016; 7:630. [PMID: 28066439 PMCID: PMC5174094 DOI: 10.3389/fimmu.2016.00630] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022] Open
Abstract
Interferons (IFNs) are potent pleiotropic cytokines that broadly alter cellular functions in response to viral and other infections. These alterations include changes in protein synthesis, proliferation, membrane composition, and the nutritional microenvironment. Recent evidence suggests that antiviral responses are supported by an IFN-induced rewiring of the cellular metabolism. In this review, we discuss the roles of type I and type II IFNs in regulating the cellular metabolism and biosynthetic reactions. Furthermore, we give an overview of how viruses themselves affect these metabolic activities to promote their replication. In addition, we focus on the lipid as well as amino acid metabolisms, through which IFNs exert potent antiviral and immunomodulatory activities. Conversely, the expression of IFNs is controlled by the nutrient sensor mammalian target of rapamycin or by direct reprograming of lipid metabolic pathways. These findings establish a mutual relationship between IFN production and metabolic core processes.
Collapse
Affiliation(s)
| | - Thomas Weichhart
- Institute of Medical Genetics, Medical University of Vienna , Vienna , Austria
| |
Collapse
|
43
|
van de Garde MDB, Movita D, van der Heide M, Herschke F, De Jonghe S, Gama L, Boonstra A, Vanwolleghem T. Liver Monocytes and Kupffer Cells Remain Transcriptionally Distinct during Chronic Viral Infection. PLoS One 2016; 11:e0166094. [PMID: 27812182 PMCID: PMC5094584 DOI: 10.1371/journal.pone.0166094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/21/2016] [Indexed: 01/12/2023] Open
Abstract
Due to the scarcity of immunocompetent animal models for chronic viral hepatitis, little is known about the role of the innate intrahepatic immune system during viral replication in the liver. These insights are however fundamental for the understanding of the inappropriate adaptive immune responses during the chronic phase of the infection. We apply the Lymphocytic Choriomenigitis Virus (LCMV) clone 13 mouse model to examine chronic virus-host interactions of Kupffer cells (KC) and infiltrating monocytes (IM) in an infected liver. LCMV infection induced overt clinical hepatitis, with rise in ALT and serum cytokines, and increased intrahepatic F4/80 expression. Despite ongoing viral replication, whole liver transcriptome showed baseline expression levels of inflammatory cytokines, interferons, and interferon induced genes during the chronic infection phase. Transcriptome analyses of sorted KC and IMs using NanoString technology revealed two unique phenotypes with only minimal overlap. At the chronic viral infection phase, KC showed no increased transcription of activation markers Cd80 and Cd86, but an increased expression of genes related to antigen presentation, whereas monocytes were more activated and expressed higher levels of Tnf transcripts. Although both KCs and intrahepatic IM share the surface markers F4/80 and CD11b, their transcriptomes point towards distinctive roles during virus-induced chronic hepatitis.
Collapse
Affiliation(s)
- Martijn D. B. van de Garde
- Department of Gastroenterology and Hepatology Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dowty Movita
- Department of Gastroenterology and Hepatology Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marieke van der Heide
- Department of Gastroenterology and Hepatology Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | - Lucio Gama
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Thomas Vanwolleghem
- Department of Gastroenterology and Hepatology Erasmus University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
44
|
Tasdogan A, Kumar S, Allies G, Bausinger J, Beckel F, Hofemeister H, Mulaw M, Madan V, Scharffetter-Kochanek K, Feuring-Buske M, Doehner K, Speit G, Stewart AF, Fehling HJ. DNA Damage-Induced HSPC Malfunction Depends on ROS Accumulation Downstream of IFN-1 Signaling and Bid Mobilization. Cell Stem Cell 2016; 19:752-767. [PMID: 27641306 DOI: 10.1016/j.stem.2016.08.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/12/2016] [Accepted: 08/09/2016] [Indexed: 01/02/2023]
Abstract
Mouse mutants with an impaired DNA damage response frequently exhibit a set of remarkably similar defects in the HSPC compartment that are of largely unknown molecular basis. Using Mixed-Lineage-Leukemia-5 (Mll5)-deficient mice as prototypical examples, we have identified a mechanistic pathway linking DNA damage and HSPC malfunction. We show that Mll5 deficiency results in accumulation of DNA damage and reactive oxygen species (ROS) in HSPCs. Reduction of ROS efficiently reverses hematopoietic defects, establishing ROS as a major cause of impaired HSPC function. The Ink4a/Arf locus also contributes to HSPC phenotypes, at least in part via promotion of ROS. Strikingly, toxic ROS levels in Mll5-/- mice are critically dependent on type 1 interferon (IFN-1) signaling, which triggers mitochondrial accumulation of full-length Bid. Genetic inactivation of Bid diminishes ROS levels and reverses HSPC defects in Mll5-/- mice. Overall, therefore, our findings highlight an unexpected IFN-1 > Bid > ROS pathway underlying DNA damage-associated HSPC malfunction.
Collapse
Affiliation(s)
- Alpaslan Tasdogan
- Institute of Immunology, University Hospital, 89081 Ulm, Germany; Department of Dermatology, University Hospital, 89081 Ulm, Germany
| | - Suresh Kumar
- Institute of Immunology, University Hospital, 89081 Ulm, Germany
| | - Gabriele Allies
- Institute of Immunology, University Hospital, 89081 Ulm, Germany
| | - Julia Bausinger
- Institute of Human Genetics, University Hospital, 89081 Ulm, Germany
| | - Franziska Beckel
- Institute of Immunology, University Hospital, 89081 Ulm, Germany
| | - Helmut Hofemeister
- Genomics, BioInnovations Zentrum, Technische Universität, 01307 Dresden, Germany
| | - Medhanie Mulaw
- Institute of Experimental Cancer Research, University Clinics, 89081 Ulm, Germany
| | - Vikas Madan
- Institute of Immunology, University Hospital, 89081 Ulm, Germany
| | | | | | - Konstanze Doehner
- Department of Internal Medicine III, University Hospital, 89081 Ulm, Germany
| | - Günter Speit
- Institute of Human Genetics, University Hospital, 89081 Ulm, Germany
| | - A Francis Stewart
- Genomics, BioInnovations Zentrum, Technische Universität, 01307 Dresden, Germany
| | | |
Collapse
|
45
|
Abraham JA, Golubnitschaja O. Time for paradigm change in management of hepatocellular carcinoma: is a personalized approach on the horizon? Per Med 2016; 13:455-467. [PMID: 29767598 DOI: 10.2217/pme-2016-0013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most frequent cancer form but the second leading cause of all cancer-related deaths. There are several reasons for high mortality in the HCC cohort: lack of effective screening programs and consequently late diagnosis, multifactorial origin with cumulative risk factors, complex carcinogenesis, tumor heterogeneity, unpredictable impacts of individual microenvironment on tumor development and progression, and, as the consequence, frequently untargeted therapy and cancer resistance toward currently applied treatment approaches. The currently applied 'treat and wait' approach is inappropriate in the overall HCC management. Urgent need in paradigm change toward predictive, preventive and personalized medicine is discussed in this review article. Innovative strategies for an advanced predictive, preventive and personalized medicine approach in the overall HCC management benefiting the patient are presented.
Collapse
Affiliation(s)
- Jella-Andrea Abraham
- Department of Radiology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Olga Golubnitschaja
- Department of Radiology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| |
Collapse
|
46
|
Oestereich L, Lüdtke A, Ruibal P, Pallasch E, Kerber R, Rieger T, Wurr S, Bockholt S, Pérez-Girón JV, Krasemann S, Günther S, Muñoz-Fontela C. Chimeric Mice with Competent Hematopoietic Immunity Reproduce Key Features of Severe Lassa Fever. PLoS Pathog 2016; 12:e1005656. [PMID: 27191716 PMCID: PMC4871546 DOI: 10.1371/journal.ppat.1005656] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/02/2016] [Indexed: 02/07/2023] Open
Abstract
Lassa fever (LASF) is a highly severe viral syndrome endemic to West African countries. Despite the annual high morbidity and mortality caused by LASF, very little is known about the pathophysiology of the disease. Basic research on LASF has been precluded due to the lack of relevant small animal models that reproduce the human disease. Immunocompetent laboratory mice are resistant to infection with Lassa virus (LASV) and, to date, only immunodeficient mice, or mice expressing human HLA, have shown some degree of susceptibility to experimental infection. Here, transplantation of wild-type bone marrow cells into irradiated type I interferon receptor knockout mice (IFNAR-/-) was used to generate chimeric mice that reproduced important features of severe LASF in humans. This included high lethality, liver damage, vascular leakage and systemic virus dissemination. In addition, this model indicated that T cell-mediated immunopathology was an important component of LASF pathogenesis that was directly correlated with vascular leakage. Our strategy allows easy generation of a suitable small animal model to test new vaccines and antivirals and to dissect the basic components of LASF pathophysiology.
Collapse
Affiliation(s)
- Lisa Oestereich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
| | - Anja Lüdtke
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
- Heinrich Pette Institute, Leibniz Institute For Experimental Virology, Hamburg, Germany
| | - Paula Ruibal
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
- Heinrich Pette Institute, Leibniz Institute For Experimental Virology, Hamburg, Germany
| | - Elisa Pallasch
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
| | - Romy Kerber
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
| | - Toni Rieger
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
| | - Stephanie Wurr
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
| | - Sabrina Bockholt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
| | - José V. Pérez-Girón
- Heinrich Pette Institute, Leibniz Institute For Experimental Virology, Hamburg, Germany
| | - Susanne Krasemann
- Institute for Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
| | - César Muñoz-Fontela
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
- Heinrich Pette Institute, Leibniz Institute For Experimental Virology, Hamburg, Germany
- * E-mail:
| |
Collapse
|