1
|
Teuscher JL, Lupatsii M, Graspeuntner S, Jonassen S, Bringewatt A, Herting E, Stichtenoth G, Bossung V, Rupp J, Härtel C, Demmert M. Persistent reduction of Bifidobacterium longum in the infant gut microbiome in the first year of age following intrapartum penicillin prophylaxis for maternal GBS colonization. Front Immunol 2025; 16:1540979. [PMID: 40443663 PMCID: PMC12119681 DOI: 10.3389/fimmu.2025.1540979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/23/2025] [Indexed: 06/02/2025] Open
Abstract
Introduction Group B Streptococcus is a significant cause of early-onset disease in term newborns, with a global incidence of 0.41/1000 live births. Intrapartum antibiotic prophylaxis (IAP) has reduced EOD incidence by over 80%, but concerns exist about its impact on the neonatal gut microbiome and potential long-term health effects. Methods This single center study examines the effects of IAP on the fecal infant microbiome in the first year of age and on the T cell phenotype in the first days after birth among 22 infants receiving IAP with penicillin due to maternal GBS colonization and 26 infants not exposed to IAP. The fecal microbiome was analyzed at birth, one month and one year of age through 16S rRNA gene sequencing. Additionally, a T cell phenotyping of peripheral blood was performed between the second and fifth day of age. Results At one month, IAP exposed infants had a significantly lower relative abundance of Bifidobacterium longum in fecal samples, an effect which was sustained at one year. In IAP exposed infants we found a proinflammatory T-helper cell profile, characterized by higher IL-17A, RORgt, and TGF-b expression. Discussion This study proposes a sustained impact of IAP on the neonatal microbiome and T cell repertoire.
Collapse
Affiliation(s)
- Jana Lucia Teuscher
- Clinic for Pediatric and Adolescent Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Mariia Lupatsii
- Department for Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Simon Graspeuntner
- Department for Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
- Medical Clinic III, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Sinje Jonassen
- Clinic for Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Arne Bringewatt
- Clinic for Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Egbert Herting
- Clinic for Pediatric and Adolescent Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Guido Stichtenoth
- Clinic for Pediatric and Adolescent Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Verena Bossung
- Clinic for Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Jan Rupp
- Department for Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Christoph Härtel
- Pediatric Clinic and Policlinic, University Hospital Würzburg, Würzburg, Germany
| | - Martin Demmert
- Clinic for Pediatric and Adolescent Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
2
|
Tian X, Peng F, Xiong X, Xu X, Zan Y, Wang X, Yu B, Liu Z, He X, Huang Z. Artemisinin analogues are effective in the treatment of psoriasis by targeting RORγt. Mol Immunol 2025; 180:11-22. [PMID: 39987640 DOI: 10.1016/j.molimm.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/02/2025] [Accepted: 02/09/2025] [Indexed: 02/25/2025]
Abstract
Psoriasis is a chronic inflammatory skin autoimmune disease. Th17 cells, when pathologically activated, significantly contribute to the progression of psoriasis. The symptoms of this skin condition could be notably alleviated by targeting and suppressing the activity of these cells. Retinoic acid receptor-associated orphan nuclear hormone receptor γ-t (RORγt), a critical transcription factor in Th17 cells, emerges as a promising therapeutic target for autoimmune conditions which are mediated by the dysregulation of these cells. In this study, we designed and synthesised a series of artemisinin analogues based on the chemical structure of artemisinin, and screened 3 compounds, QHS-1, QHS-2, and QHS-3, with better inhibition efficiency of RORγt activity. We found that each of the three artemisinin analogues were demonstrated efficacy in curbing IMQ-induced skin inflammation and the abnormal proliferation of keratinocytes within the BALB/c mouse model of psoriasis. Our findings indicate that the three artemisinin analogues not only effectively mitigated skin inflammation and the abnormal proliferation of keratinocytes in the IMQ-induced psoriasis model of BALB/c mice but also curtailed the infiltration of immune cells and the production of pro-inflammatory cytokines in the dermis. Furthermore, these compounds modulated the cytokine expression profiles within Th17 cells. They exerted a suppressive effect on the activity of Th17 cells by targeting RORγt, thereby dampening the inflammatory response in the dorsal skin of the mice. This inhibition led to a reduction in the pathological proliferation of keratinocytes. In conclusion, our research underscores the promising therapeutic potential of artemisinin analogues in the treatment of psoriasis, offering a slate of candidate compounds which could pave the way for novel drug development in this field.
Collapse
Affiliation(s)
- Xuyan Tian
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Fanrong Peng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Xiaoxiao Xiong
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Xiaoting Xu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Yu Zan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Xinran Wang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Zhonghua Liu
- Animal Experiment Center, South China Agricultural University, Guangzhou, China.
| | - Xixin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhaofeng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
3
|
Molina PA, Edell CJ, Dunaway LS, Kellum CE, Muir RQ, Jennings MS, Colson JC, De Miguel C, Rhoads MK, Buzzelli AA, Harrington LE, Meza-Perez S, Randall TD, Botta D, Müller DN, Pollock DM, Maynard CL, Pollock JS. Aryl Hydrocarbon Receptor Activation Promotes Effector CD4+ T Cell Homeostasis and Restrains Salt-Sensitive Hypertension. FUNCTION 2025; 6:zqaf001. [PMID: 39779302 PMCID: PMC11931625 DOI: 10.1093/function/zqaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025] Open
Abstract
Excess dietary salt and salt-sensitivity contribute to cardiovascular disease. Distinct T cell phenotypic responses to high salt and hypertension, as well as influences from environmental cues, are not well understood. The aryl hydrocarbon receptor (AhR) is activated by dietary ligands, promoting T cell and systemic homeostasis. We hypothesized that activating AhR supports CD4+ homeostatic functions, such as cytokine production and mobilization, in response to high salt intake while mitigating salt-sensitive hypertension. In the intestinal mucosa, we demonstrate that a high-salt diet (HSD) is a key driving factor, independent of hypertension, in diminishing interleukin 17A (IL-17A) production by CD4+ T (Th17) cells without disrupting circulating cytokines associated with Th17 function. Previous studies suggest that hypertensive patients and individuals on a HSD are deficient in AhR ligands or agonistic metabolites. We found that activating AhR augments Th17 cells during experimental salt-sensitive hypertension. Further, we demonstrate that activating AhR in vitro contributes to sustaining Th17 cells in the setting of excess salt. Using photoconvertible Kikume Green-Red mice, we also revealed that HSD drives CD4+ T cell mobilization. Next, we found that excess salt augments T cell mobilization markers, validating HSD-driven T cell migration. Also, we found that activating AhR mitigates HSD-induced T cell migration markers. Using telemetry in a model of experimental salt-sensitivity, we found that activating AhR prevents the development of salt-sensitive hypertension. Collectively, stimulating AhR through dietary ligands facilitates immunologic and systemic functions amid excess salt intake and restrains the development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Patrick A Molina
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Claudia J Edell
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Luke S Dunaway
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Cailin E Kellum
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Rachel Q Muir
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Melissa S Jennings
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Jackson C Colson
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Carmen De Miguel
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Megan K Rhoads
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Ashlyn A Buzzelli
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Laurie E Harrington
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Selene Meza-Perez
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Davide Botta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
- Immunology Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Dominik N Müller
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Lindenberger Weg 80, Berlin 13092, Germany
| | - David M Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Craig L Maynard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| |
Collapse
|
4
|
Bouzeineddine NZ, Philippi A, Gee K, Basta S. Granulocyte macrophage colony stimulating factor in virus-host interactions and its implication for immunotherapy. Cytokine Growth Factor Rev 2025; 81:54-63. [PMID: 39755463 DOI: 10.1016/j.cytogfr.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025]
Abstract
Viruses have evolved to strategically exploit cellular signaling pathways to evade host immune defenses. GM-CSF signaling plays a pivotal role in regulating inflammation, activating myeloid cells, and enhancing the immune response to infections. Due to its central role in the immune system, viruses may target this pathway to further establish infection. This review focuses on key studies elucidating virus interactions with GM-CSF signaling proteins and summarizes findings on the impact of viral infections on GM-CSF production. Additionally, therapeutic strategies centered around GM-CSF are investigated, such as the potential benefits of administering GM-CSF versus inhibiting GM-CSF signaling to mitigate viral-induced aberrant inflammation. Understanding these virus-host interactions provides valuable insights that help further our understanding to develop future therapeutic approaches in modulating the immune response during viral infections.
Collapse
Affiliation(s)
- Nasry Zane Bouzeineddine
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Alecco Philippi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Sam Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
5
|
Lu Y, Wang Y, Ruan T, Wang Y, Ju L, Zhou M, Liu L, Yao D, Yao M. Immunometabolism of Tregs: mechanisms, adaptability, and therapeutic implications in diseases. Front Immunol 2025; 16:1536020. [PMID: 39917294 PMCID: PMC11798928 DOI: 10.3389/fimmu.2025.1536020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Immunometabolism is an emerging field that explores the intricate interplay between immune cells and metabolism. Regulatory T cells (Tregs), which maintain immune homeostasis in immunometabolism, play crucial regulatory roles. The activation, differentiation, and function of Tregs are influenced by various metabolic pathways, such as the Mammalian targets of rapamycin (mTOR) pathway and glycolysis. Correspondingly, activated Tregs can reciprocally impact these metabolic pathways. Tregs also possess robust adaptive capabilities, thus enabling them to adapt to various microenvironments, including the tumor microenvironment (TME). The complex mechanisms of Tregs in metabolic diseases are intriguing, particularly in conditions like MASLD, where Tregs are significantly upregulated and contribute to fibrosis, while in diabetes, systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA), they show downregulation and reduced anti-inflammatory capacity. These phenomena suggest that the differentiation and function of Tregs are influenced by the metabolic environment, and imbalances in either can lead to the development of metabolic diseases. Thus, moderate differentiation and inhibitory capacity of Tregs are critical for maintaining immune system balance. Given the unique immunoregulatory abilities of Tregs, the development of targeted therapeutic drugs may position them as novel targets in immunotherapy. This could contribute to restoring immune system balance, resolving metabolic dysregulation, and fostering innovation and progress in immunotherapy.
Collapse
|
6
|
Audia S, Brescia C, Dattilo V, Torchia N, Trapasso F, Amato R. The IL-23R and Its Genetic Variants: A Hitherto Unforeseen Bridge Between the Immune System and Cancer Development. Cancers (Basel) 2024; 17:55. [PMID: 39796684 PMCID: PMC11718844 DOI: 10.3390/cancers17010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
IL-23R (interleukin-23 receptor), found on the surface of several immune cells, plays a key role in the immune system. Indeed, this process is not limited to the inflammatory response but also plays a role in the adaptive immune response. The binding between IL-23R and its specific ligand, the interleukin 23, initiates a number of specific signals by modulating both properties and behavior of immune cells. In particular, it is critical for the regulation of T helper 17 cells (Th17). Th17s are a subset of T cells involved in autoimmune and inflammatory diseases, as well as in cancer. The clinical relevance of IL-23R is underscored by its association with an elevated susceptibility or diminished vulnerability to a spectrum of diseases, including psoriasis, ankylosing spondylitis, and inflammatory bowel disease (IBD). Evidence has emerged that suggests it may also serve to predict both tumor progression and therapeutic responsiveness. It is noteworthy that the IL-23/IL-23R pathway is emerging as a promising therapeutic target. A number of biologic drugs, such as monoclonal antibodies, are currently developing with the aim of blocking this interaction, thus reducing inflammation. This represents a significant advancement in the field of medicine, offering new hope for pursuing more effective and personalized treatments. Recent studies have also investigated the role of such a pathway in autoimmune diseases, and its potential impact on infections as well as in carcinogenesis. The aim of this review is to focus on the role of IL-23R in immune genetics and its potential for modulating the natural history of neoplastic disease.
Collapse
Affiliation(s)
- Salvatore Audia
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (C.B.); (N.T.)
| | - Carolina Brescia
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (C.B.); (N.T.)
| | - Vincenzo Dattilo
- Department of Experimental and Clinical Medicine, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Naomi Torchia
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (C.B.); (N.T.)
| | - Francesco Trapasso
- Department of Experimental and Clinical Medicine, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Rosario Amato
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (C.B.); (N.T.)
| |
Collapse
|
7
|
Mangani D, Subramanian A, Huang L, Cheng H, Krovi SH, Wu Y, Yang D, Moreira TG, Escobar G, Schnell A, Dixon KO, Krishnan RK, Singh V, Sobel RA, Weiner HL, Kuchroo VK, Anderson AC. Transcription factor TCF1 binds to RORγt and orchestrates a regulatory network that determines homeostatic Th17 cell state. Immunity 2024; 57:2565-2582.e6. [PMID: 39447575 PMCID: PMC11614491 DOI: 10.1016/j.immuni.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/19/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
T helper (Th) 17 cells encompass a spectrum of cell states, including cells that maintain homeostatic tissue functions and pro-inflammatory cells that can drive autoimmune tissue damage. Identifying regulators that determine Th17 cell states can identify ways to control tissue inflammation and restore homeostasis. Here, we found that interleukin (IL)-23, a cytokine critical for inducing pro-inflammatory Th17 cells, decreased transcription factor T cell factor 1 (TCF1) expression. Conditional deletion of TCF1 in mature T cells increased the pro-inflammatory potential of Th17 cells, even in the absence of IL-23 receptor signaling, and conferred pro-inflammatory potential to homeostatic Th17 cells. Conversely, sustained TCF1 expression decreased pro-inflammatory Th17 potential. Mechanistically, TCF1 bound to RORγt, thereby interfering with its pro-inflammatory functions, and orchestrated a regulatory network that determined Th17 cell state. Our findings identify TCF1 as a major determinant of Th17 cell state and provide important insight for the development of therapies for Th17-driven inflammatory diseases.
Collapse
Affiliation(s)
- Davide Mangani
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona 6500, Switzerland
| | - Ayshwarya Subramanian
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Linglin Huang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Hanning Cheng
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - S Harsha Krovi
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - Yufan Wu
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dandan Yang
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - Thais G Moreira
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - Giulia Escobar
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - Alexandra Schnell
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karen O Dixon
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - Rajesh K Krishnan
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | | | - Raymond A Sobel
- Department of Pathology, Stanford University, Stanford, CA 94304, USA
| | - Howard L Weiner
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ana C Anderson
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
8
|
Sumida TS, Lincoln MR, He L, Park Y, Ota M, Oguchi A, Son R, Yi A, Stillwell HA, Leissa GA, Fujio K, Murakawa Y, Kulminski AM, Epstein CB, Bernstein BE, Kellis M, Hafler DA. An autoimmune transcriptional circuit drives FOXP3 + regulatory T cell dysfunction. Sci Transl Med 2024; 16:eadp1720. [PMID: 39196959 PMCID: PMC12051482 DOI: 10.1126/scitranslmed.adp1720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/02/2024] [Indexed: 08/30/2024]
Abstract
Autoimmune diseases, among the most common disorders of young adults, are mediated by genetic and environmental factors. Although CD4+FOXP3+ regulatory T cells (Tregs) play a central role in preventing autoimmunity, the molecular mechanism underlying their dysfunction is unknown. Here, we performed comprehensive transcriptomic and epigenomic profiling of Tregs in the autoimmune disease multiple sclerosis (MS) to identify critical transcriptional programs regulating human autoimmunity. We found that up-regulation of a primate-specific short isoform of PR domain zinc finger protein 1 (PRDM1-S) induces expression of serum and glucocorticoid-regulated kinase 1 (SGK1) independent from the evolutionarily conserved long PRDM1, which led to destabilization of forkhead box P3 (FOXP3) and Treg dysfunction. This aberrant PRDM1-S/SGK1 axis is shared among other autoimmune diseases. Furthermore, the chromatin landscape profiling in Tregs from individuals with MS revealed enriched activating protein-1 (AP-1)/interferon regulatory factor (IRF) transcription factor binding as candidate upstream regulators of PRDM1-S expression and Treg dysfunction. Our study uncovers a mechanistic model where the evolutionary emergence of PRDM1-S and epigenetic priming of AP-1/IRF may be key drivers of dysfunctional Tregs in autoimmune diseases.
Collapse
Affiliation(s)
- Tomokazu S. Sumida
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew R. Lincoln
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M6R 1B5, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON M6R 1B5, Canada
| | - Liang He
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Yongjin Park
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Akiko Oguchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8303, Japan
| | - Raku Son
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8303, Japan
| | - Alice Yi
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Helen A. Stillwell
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Greta A. Leissa
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8303, Japan
| | - Alexander M. Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | | | - Bradley E. Bernstein
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | - David A. Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
9
|
Poch T, Bahn J, Casar C, Krause J, Evangelakos I, Gilladi H, Kunzmann LK, Laschtowitz A, Iuso N, Schäfer AM, Liebig LA, Steinmann S, Sebode M, Folseraas T, Engesæter LK, Karlsen TH, Franke A, Hubner N, Schlein C, Galun E, Huber S, Lohse AW, Gagliani N, Schwinge D, Schramm C. Intergenic risk variant rs56258221 skews the fate of naive CD4 + T cells via miR4464-BACH2 interplay in primary sclerosing cholangitis. Cell Rep Med 2024; 5:101620. [PMID: 38901430 PMCID: PMC11293351 DOI: 10.1016/j.xcrm.2024.101620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 04/16/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024]
Abstract
Primary sclerosing cholangitis (PSC) is an immune-mediated liver disease of unknown pathogenesis, with a high risk to develop cirrhosis and malignancies. Functional dysregulation of T cells and association with genetic polymorphisms in T cell-related genes were previously reported for PSC. Here, we genotyped a representative PSC cohort for several disease-associated risk loci and identified rs56258221 (BACH2/MIR4464) to correlate with not only the peripheral blood T cell immunophenotype but also the functional capacities of naive CD4+ T (CD4+ TN) cells in people with PSC. Mechanistically, rs56258221 leads to an increased expression of miR4464, in turn causing attenuated translation of BACH2, a major gatekeeper of T cell quiescence. Thereby, the fate of CD4+ TN is skewed toward polarization into pro-inflammatory subsets. Clinically, people with PSC carrying rs56258221 show signs of accelerated disease progression. The data presented here highlight the importance of assigning functional outcomes to disease-associated genetic polymorphisms as potential drivers of diseases.
Collapse
Affiliation(s)
- Tobias Poch
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jonas Bahn
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Casar
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Bioinformatics Core, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jenny Krause
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Ioannis Evangelakos
- Institute of Human Genetics, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hilla Gilladi
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Lilly K Kunzmann
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Alena Laschtowitz
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Nicola Iuso
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anne-Marie Schäfer
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Laura A Liebig
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Cardiovascular and Metabolic Sciences, Max Delbrück Centre for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Silja Steinmann
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Marcial Sebode
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Trine Folseraas
- European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany; Norwegian PSC Research Centre, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
| | - Lise K Engesæter
- European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany; Norwegian PSC Research Centre, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
| | - Tom H Karlsen
- European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany; Norwegian PSC Research Centre, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Centre for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany; Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christian Schlein
- Institute of Human Genetics, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Eithan Galun
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Samuel Huber
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany; Hamburg Centre for Translational Immunology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ansgar W Lohse
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany; Hamburg Centre for Translational Immunology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nicola Gagliani
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Hamburg Centre for Translational Immunology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Department for General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, 17177 Solna, Sweden
| | - Dorothee Schwinge
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christoph Schramm
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany; Hamburg Centre for Translational Immunology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Martin Zeitz Centre for Rare Diseases, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
10
|
Jung HS, Park YJ, Gu BH, Han G, Ji W, Hwang SM, Kim M. Coumarin derivatives ameliorate the intestinal inflammation and pathogenic gut microbiome changes in the model of infectious colitis through antibacterial activity. Front Cell Infect Microbiol 2024; 14:1362773. [PMID: 39081865 PMCID: PMC11287663 DOI: 10.3389/fcimb.2024.1362773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Coumarin, a phenolic compound, is a secondary metabolite produced by plants such as Tanga and Lime. Coumarin derivatives were prepared via Pechmann condensation. In this study, we performed in vitro and in vivo experiments to determine the antimicrobial and gut immune-regulatory functions of coumarin derivatives. For the in vitro antimicrobial activity assay, coumarin derivatives C1 and C2 were selected based on their pathogen-killing activity against various pathogenic microbes. We further demonstrated that the selected coumarin derivatives disrupted bacterial cell membranes. Next, we examined the regulatory function of the coumarin derivatives in gut inflammation using an infectious colitis model. In an in vivo infectious colitis model, administration of selected C1 coumarin derivatives reduced pathogen loads, the number of inflammatory immune cells (Th1 cells and Th17 cells), and inflammatory cytokine levels (IL-6 and IL-1b) in the intestinal tissue after pathogen infection. In addition, we found that the administration of C1 coumarin derivatives minimized abnormal gut microbiome shift-driven pathogen infection. Potential pathogenic gut microbes, such as Enterobacteriaceae and Staphylococcaceae, were increased by pathogen infection. However, this pathogenic microbial expansion was minimized and beneficial bacteria, such as Ligilactobacillus and Limosilactobacillus, increased with C1 coumarin derivative treatment. Functional gene enrichment assessment revealed that the relative abundance of genes associated with lipid and nucleotide metabolism was reduced by pathogen infection; however, this phenomenon was not observed in C1 coumarin derivative-treated animals. Collectively, our data suggest that C1 coumarin derivative is effective antibacterial agents that minimize pathogen-induced gut inflammation and abnormal gut microbiome modulation through their antibacterial activity.
Collapse
Affiliation(s)
- Hui-su Jung
- Laboratory of Animal Immunology, Department of Animal Science, College of Natural Resource & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Yei Ju Park
- R & D Center, EyeGene, Goyang, Republic of Korea
| | - Bon-Hee Gu
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Goeun Han
- Laboratory of Animal Immunology, Department of Animal Science, College of Natural Resource & Life Science, Pusan National University, Miryang, Republic of Korea
- Future Earth Research Institute, PNU JYS Science Academy, Pusan National University, Busan, Republic of Korea
| | - Woonhak Ji
- Laboratory of Animal Immunology, Department of Animal Science, College of Natural Resource & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Su mi Hwang
- Department of Biomedical Laboratory Science, College of Health and Medical Science, Sangji University, Wonju, Republic of Korea
| | - Myunghoo Kim
- Laboratory of Animal Immunology, Department of Animal Science, College of Natural Resource & Life Science, Pusan National University, Miryang, Republic of Korea
- Future Earth Research Institute, PNU JYS Science Academy, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
11
|
Mondal S, Saha S, Sur D. Immuno-metabolic reprogramming of T cell: a new frontier for pharmacotherapy of Rheumatoid arthritis. Immunopharmacol Immunotoxicol 2024; 46:330-340. [PMID: 38478467 DOI: 10.1080/08923973.2024.2330636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Rheumatoid arthritis (RA) is a persistent autoimmune condition characterized by ongoing inflammation primarily affecting the synovial joint. This inflammation typically arises from an increase in immune cells such as neutrophils, macrophages, and T cells (TC). TC is recognized as a major player in RA pathogenesis. The involvement of HLA-DRB1 and PTPN-2 among RA patients confirms the TC involvement in RA. Metabolism of TC is maintained by various other factors like cytokines, mitochondrial proteins & other metabolites. Different TC subtypes utilize different metabolic pathways like glycolysis, oxidative phosphorylation and fatty acid oxidation for their activation from naive TC (T0). Although all subsets of TC are not deleterious for synovium, some subsets of TC are involved in joint repair using their anti-inflammatory properties. Hence artificially reprogramming of TC subset by interfering with their metabolic status poised a hope in future to design new molecules against RA.
Collapse
Affiliation(s)
- Sourav Mondal
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, India
| | - Sarthak Saha
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, India
| | - Debjeet Sur
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, India
| |
Collapse
|
12
|
Elahi M, Ebrahim Soltani Z, Afrooghe A, Ahmadi E, Dehpour AR. Sex Dimorphism in Pain Threshold and Neuroinflammatory Response: The Protective Effect of Female Sexual Hormones on Behavior and Seizures in an Allergic Rhinitis Model. J Neuroimmune Pharmacol 2024; 19:16. [PMID: 38652402 DOI: 10.1007/s11481-024-10114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Our previous research demonstrated that allergic rhinitis could impact behavior and seizure threshold in male mice. However, due to the complex hormonal cycles and hormonal influences on behavior in female mice, male mice are more commonly used for behavioral tests. In this study, we aimed to determine whether these findings were replicable in female mice and to explore the potential involvement of sexual hormones in regulating neuroinflammation in an allergic model. Our results indicate that pain threshold was decreased in female mice with allergic rhinitis and the levels of IL-23/IL-17A/IL-17R were increased in their Dorsal root ganglia. However, unlike males, female mice with AR did not display neuropsychological symptoms such as learning and memory deficits, depression, and anxiety-like behavior. This was along with decreased levels of DNA methyl transferase 1 (DNMT1) and inflammatory cytokines in their hippocampus. Ovariectomized mice were used to mitigate hormonal effects, and the results showed that they had behavioral changes and neuroinflammation in their hippocampus similar to male mice, as well as increased levels of DNMT1. These findings demonstrate sex differences in how allergic rhinitis affects behavior, pain sensitivity, and seizure thresholds. Furthermore, our data suggest that DNMT1 may be influenced by sexual hormones, which could play a role in modulating inflammation in allergic conditions.
Collapse
Affiliation(s)
- Mohammad Elahi
- Center for Orthopedic Trans-disciplinary Applied Research, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Ebrahim Soltani
- Experimental Medicine Research Center, Tehran University of Medical Science, Tehran, Iran
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Arya Afrooghe
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Elham Ahmadi
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Science, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
13
|
Krueger JG, Eyerich K, Kuchroo VK, Ritchlin CT, Abreu MT, Elloso MM, Fourie A, Fakharzadeh S, Sherlock JP, Yang YW, Cua DJ, McInnes IB. IL-23 past, present, and future: a roadmap to advancing IL-23 science and therapy. Front Immunol 2024; 15:1331217. [PMID: 38686385 PMCID: PMC11056518 DOI: 10.3389/fimmu.2024.1331217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Interleukin (IL)-23, an IL-12 cytokine family member, is a hierarchically dominant regulatory cytokine in a cluster of immune-mediated inflammatory diseases (IMIDs), including psoriasis, psoriatic arthritis, and inflammatory bowel disease. We review IL-23 biology, IL-23 signaling in IMIDs, and the effect of IL-23 inhibition in treating these diseases. We propose studies to advance IL-23 biology and unravel differences in response to anti-IL-23 therapy. Experimental evidence generated from these investigations could establish a novel molecular ontology centered around IL-23-driven diseases, improve upon current approaches to treating IMIDs with IL-23 inhibition, and ultimately facilitate optimal identification of patients and, thereby, outcomes.
Collapse
Affiliation(s)
- James G. Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Kilian Eyerich
- Department of Medicine, Division of Dermatology and Venereology, Karolinska Institute, Stockholm, Sweden
- Department of Dermatology and Venereology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Christopher T. Ritchlin
- Allergy, Immunology & Rheumatology Division, Center for Musculoskeletal Research, University of Rochester Medical School, Rochester, NY, United States
| | - Maria T. Abreu
- Division of Gastroenterology, Department of Medicine, University of Miami Leonard Miller School of Medicine, Miami, FL, United States
| | | | - Anne Fourie
- Janssen Research & Development, LLC, San Diego, CA, United States
| | - Steven Fakharzadeh
- Immunology Global Medical Affairs, Janssen Pharmaceutical Companies of Johnson & Johnson, Horsham, PA, United States
| | - Jonathan P. Sherlock
- Janssen Research & Development, LLC, Spring House, PA, United States
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Ya-Wen Yang
- Immunology Global Medical Affairs, Janssen Pharmaceutical Companies of Johnson & Johnson, Horsham, PA, United States
| | - Daniel J. Cua
- Janssen Research & Development, LLC, Spring House, PA, United States
| | - Iain B. McInnes
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
14
|
Wertheimer T, Zwicky P, Rindlisbacher L, Sparano C, Vermeer M, de Melo BMS, Haftmann C, Rückert T, Sethi A, Schärli S, Huber A, Ingelfinger F, Xu C, Kim D, Häne P, Fonseca da Silva A, Muschaweckh A, Nunez N, Krishnarajah S, Köhler N, Zeiser R, Oukka M, Korn T, Tugues S, Becher B. IL-23 stabilizes an effector T reg cell program in the tumor microenvironment. Nat Immunol 2024; 25:512-524. [PMID: 38356059 PMCID: PMC10907296 DOI: 10.1038/s41590-024-01755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Interleukin-23 (IL-23) is a proinflammatory cytokine mainly produced by myeloid cells that promotes tumor growth in various preclinical cancer models and correlates with adverse outcomes. However, as to how IL-23 fuels tumor growth is unclear. Here, we found tumor-associated macrophages to be the main source of IL-23 in mouse and human tumor microenvironments. Among IL-23-sensing cells, we identified a subset of tumor-infiltrating regulatory T (Treg) cells that display a highly suppressive phenotype across mouse and human tumors. The use of three preclinical models of solid cancer in combination with genetic ablation of Il23r in Treg cells revealed that they are responsible for the tumor-promoting effect of IL-23. Mechanistically, we found that IL-23 sensing represents a crucial signal driving the maintenance and stabilization of effector Treg cells involving the transcription factor Foxp3. Our data support that targeting the IL-23/IL-23R axis in cancer may represent a means of eliciting antitumor immunity.
Collapse
Affiliation(s)
- Tobias Wertheimer
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Pascale Zwicky
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Lukas Rindlisbacher
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Colin Sparano
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Marijne Vermeer
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Bruno Marcel Silva de Melo
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Department of Pharmacology, Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Claudia Haftmann
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Tamina Rückert
- Department of Internal Medicine I, Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, Germany
| | - Aakriti Sethi
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Stefanie Schärli
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Anna Huber
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Florian Ingelfinger
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Caroline Xu
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Daehong Kim
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Philipp Häne
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - André Fonseca da Silva
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Andreas Muschaweckh
- Institute for Experimental Neuroimmunology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nicolas Nunez
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sinduya Krishnarajah
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Natalie Köhler
- Department of Internal Medicine I, Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Internal Medicine I, Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Mohamed Oukka
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Thomas Korn
- Institute for Experimental Neuroimmunology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sonia Tugues
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| | - Burkhard Becher
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Wen Y, Wang H, Tian D, Wang G. TH17 cell: a double-edged sword in the development of inflammatory bowel disease. Therap Adv Gastroenterol 2024; 17:17562848241230896. [PMID: 38390028 PMCID: PMC10883129 DOI: 10.1177/17562848241230896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic nonspecific inflammatory disease of the gastrointestinal tract, and its pathogenesis has not been fully understood. Extensive dysregulation of the intestinal mucosal immune system is critical in the development and progression of IBD. T helper (Th) 17 cells have the characteristics of plasticity. They can transdifferentiate into subpopulations with different functions in response to different factors in the surrounding environment, thus taking on different roles in regulating the intestinal immune responses. In this review, we will focus on the plasticity of Th17 cells as well as the function of Th17 cells and their related cytokines in IBD. We will summarize their pathogenic and protective roles in IBD under different conditions, respectively, hoping to further deepen the understanding of the pathological mechanisms underlying IBD and provide insights for future treatment.
Collapse
Affiliation(s)
- Yue Wen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ge Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
16
|
Mezghiche I, Yahia-Cherbal H, Rogge L, Bianchi E. Interleukin 23 receptor: Expression and regulation in immune cells. Eur J Immunol 2024; 54:e2250348. [PMID: 37837262 DOI: 10.1002/eji.202250348] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023]
Abstract
The importance of IL-23 and its specific receptor, IL-23R, in the pathogenesis of several chronic inflammatory diseases has been established, but the underlying pathological mechanisms are not fully understood. This review focuses on IL-23R expression and regulation in immune cells.
Collapse
Affiliation(s)
| | | | - Lars Rogge
- Institut Pasteur, Université Paris Cité, Paris, France
| | | |
Collapse
|
17
|
Cook ME, Shchukina I, Lin CC, Bradstreet TR, Schwarzkopf EA, Jarjour NN, Webber AM, Zaitsev K, Artyomov MN, Edelson BT. BHLHE40 Mediates Cross-Talk between Pathogenic TH17 Cells and Myeloid Cells during Experimental Autoimmune Encephalomyelitis. Immunohorizons 2023; 7:737-746. [PMID: 37934060 PMCID: PMC10695412 DOI: 10.4049/immunohorizons.2300042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023] Open
Abstract
TH17 cells are implicated in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). We previously reported that the transcription factor basic helix-loop-helix family member e40 (BHLHE40) marks cytokine-producing pathogenic TH cells during EAE, and that its expression in T cells is required for clinical disease. In this study, using dual reporter mice, we show BHLHE40 expression within TH1/17 and ex-TH17 cells following EAE induction. Il17a-Cre-mediated deletion of BHLHE40 in TH cells led to less severe EAE with reduced TH cell cytokine production. Characterization of the leukocytes in the CNS during EAE by single-cell RNA sequencing identified differences in the infiltrating myeloid cells when BHLHE40 was present or absent in TH17 cells. Our studies highlight the importance of BHLHE40 in promoting TH17 cell encephalitogenicity and instructing myeloid cell responses during active EAE.
Collapse
Affiliation(s)
- Melissa E. Cook
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Irina Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Chih-Chung Lin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Tara R. Bradstreet
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | | | - Nicholas N. Jarjour
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Ashlee M. Webber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Konstantin Zaitsev
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Maxim N. Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Brian T. Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
18
|
Xiang Y, Zhang M, Jiang D, Su Q, Shi J. The role of inflammation in autoimmune disease: a therapeutic target. Front Immunol 2023; 14:1267091. [PMID: 37859999 PMCID: PMC10584158 DOI: 10.3389/fimmu.2023.1267091] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Autoimmune diseases (AIDs) are immune disorders whose incidence and prevalence are increasing year by year. AIDs are produced by the immune system's misidentification of self-antigens, seemingly caused by excessive immune function, but in fact they are the result of reduced accuracy due to the decline in immune system function, which cannot clearly identify foreign invaders and self-antigens, thus issuing false attacks, and eventually leading to disease. The occurrence of AIDs is often accompanied by the emergence of inflammation, and inflammatory mediators (inflammatory factors, inflammasomes) play an important role in the pathogenesis of AIDs, which mediate the immune process by affecting innate cells (such as macrophages) and adaptive cells (such as T and B cells), and ultimately promote the occurrence of autoimmune responses, so targeting inflammatory mediators/pathways is one of emerging the treatment strategies of AIDs. This review will briefly describe the role of inflammation in the pathogenesis of different AIDs, and give a rough introduction to inhibitors targeting inflammatory factors, hoping to have reference significance for subsequent treatment options for AIDs.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxue Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Die Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qian Su
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
19
|
Chen H, Han Z, Fan Y, Chen L, Peng F, Cheng X, Wang Y, Su J, Li D. CD4+ T-cell subsets in autoimmune hepatitis: A review. Hepatol Commun 2023; 7:e0269. [PMID: 37695088 PMCID: PMC10497257 DOI: 10.1097/hc9.0000000000000269] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic autoimmune liver disease that can lead to hepatocyte destruction, inflammation, liver fibrosis, cirrhosis, and liver failure. The diagnosis of AIH requires the identification of lymphoblast cell interface hepatitis and serum biochemical abnormalities, as well as the exclusion of related diseases. According to different specific autoantibodies, AIH can be divided into AIH-1 and AIH-2. The first-line treatment for AIH is a corticosteroid and azathioprine regimen, and patients with liver failure require liver transplantation. However, the long-term use of corticosteroids has obvious side effects, and patients are prone to relapse after drug withdrawal. Autoimmune diseases are characterized by an imbalance in immune tolerance of self-antigens, activation of autoreactive T cells, overactivity of B cells, and increased production of autoantibodies. CD4+ T cells are key players in adaptive immunity and can secrete cytokines, activate B cells to produce antibodies, and influence the cytotoxicity of CD8+ T cells. According to their characteristics, CD4+ T cells can be divided into different subsets. In this review, we discuss the changes in T helper (Th)1, Th2, Th17, Th9, Th22, regulatory T cell, T follicular helper, and T peripheral helper cells and their related factors in AIH and discuss the therapeutic potential of targeting CD4+ T-cell subsets in AIH.
Collapse
Affiliation(s)
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiyue Fan
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Liuyan Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- Chengdu Xinhua Hospital, Chengdu, China
| | | | - Yi Wang
- Chengdu Xinhua Hospital, Chengdu, China
| | - Junyan Su
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | | |
Collapse
|
20
|
Strobl J, Haniffa M. Functional heterogeneity of human skin-resident memory T cells in health and disease. Immunol Rev 2023; 316:104-119. [PMID: 37144705 PMCID: PMC10952320 DOI: 10.1111/imr.13213] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The human skin is populated by a diverse pool of memory T cells, which can act rapidly in response to pathogens and cancer antigens. Tissue-resident memory T cells (TRM ) have been implicated in range of allergic, autoimmune and inflammatory skin diseases. Clonal expansion of cells with TRM properties is also known to contribute to cutaneous T-cell lymphoma. Here, we review the heterogeneous phenotypes, transcriptional programs, and effector functions of skin TRM . We summarize recent studies on TRM formation, longevity, plasticity, and retrograde migration and contextualize the findings to skin TRM and their role in maintaining skin homeostasis and altered functions in skin disease.
Collapse
Affiliation(s)
- Johanna Strobl
- Department of DermatologyMedical University of ViennaViennaAustria
- CeMM Research Center for Molecular MedicineViennaAustria
| | - Muzlifah Haniffa
- Wellcome Sanger InstituteCambridgeUK
- Department of Dermatology and NIHR Newcastle Biomedical Research CentreNewcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
21
|
Bélanger S, Haupt S, Faliti CE, Getzler A, Choi J, Diao H, Karunadharma PP, Bild NA, Pipkin ME, Crotty S. The Chromatin Regulator Mll1 Supports T Follicular Helper Cell Differentiation by Controlling Expression of Bcl6, LEF-1, and TCF-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1752-1760. [PMID: 37074193 PMCID: PMC10334568 DOI: 10.4049/jimmunol.2200927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/17/2023] [Indexed: 04/20/2023]
Abstract
T follicular helper (TFH) cells are essential for developing protective Ab responses following vaccination. Greater understanding of the genetic program leading to TFH differentiation is needed. Chromatin modifications are central in the control of gene expression. However, detailed knowledge of how chromatin regulators (CRs) regulate differentiation of TFH cells is limited. We screened a large short hairpin RNA library targeting all known CRs in mice and identified the histone methyltransferase mixed lineage leukemia 1 (Mll1) as a positive regulator of TFH differentiation. Loss of Mll1 expression reduced formation of TFH cells following acute viral infection or protein immunization. In addition, expression of the TFH lineage-defining transcription factor Bcl6 was reduced in the absence of Mll1. Transcriptomics analysis identified Lef1 and Tcf7 as genes dependent on Mll1 for their expression, which provides one mechanism for the regulation of TFH differentiation by Mll1. Taken together, CRs such as Mll1 substantially influence TFH differentiation.
Collapse
Affiliation(s)
- Simon Bélanger
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Sonya Haupt
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Biomedical Sciences (BMS) Graduate Program. School of Medicine, University of California, San Diego (UCSD), La Jolla, CA, 92037, USA
| | - Caterina E. Faliti
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Adam Getzler
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Jinyong Choi
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 03083, Republic of Korea
| | - Huitian Diao
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | | | - Nicholas A. Bild
- Genomics Core, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Matthew E. Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, 9203,7USA
| |
Collapse
|
22
|
Agalioti T, Cortesi F, Gagliani N. T H17 cell immune adaptation. Curr Opin Immunol 2023; 83:102333. [PMID: 37172412 DOI: 10.1016/j.coi.2023.102333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
At mucosal barriers, the T helper 17 (TH17) cell population plays a fundamental role in controlling tissue homeostasis. The adaptability of this population to a more pro-inflammatory or anti-inflammatory function - that is, their functional plasticity and consequently heterogeneity - primarily depends on the environment. We would like to term this process environmental immune adaptation. Interfering with TH17 cell adaptation leads to pathological consequences, including development of immune-mediated inflammatory diseases or even cancer. Several molecular mechanisms have been shown to participate in this process and recently, a better understanding of the transcriptional and metabolic profiling of TH17 cells has shed light on a new level of complexity. Here, we offer a summary on the role of TH17 cell plasticity in inflammatory diseases and cancer as well as the latest discoveries and controversies regarding the mechanisms that control the adaptability of the TH17 cell population.
Collapse
Affiliation(s)
- Theodora Agalioti
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Filippo Cortesi
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
23
|
Kanno T, Nakajima T, Miyako K, Endo Y. Lipid metabolism in Th17 cell function. Pharmacol Ther 2023; 245:108411. [PMID: 37037407 DOI: 10.1016/j.pharmthera.2023.108411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
Among the subset of T helper cells, Th17 cells are known to play a crucial role in the pathogenesis of various autoimmune disorders, such as psoriasis, rheumatoid arthritis, inflammatory bowel disease, steroid-resistant asthma, and multiple sclerosis. The master transcription factor retinoid-related orphan receptor gamma t (RORγt), a nuclear hormone receptor, plays a vital role in inducing Th17-cell differentiation. Recent findings suggest that metabolic control is critical for Th17-cell differentiation, particularly through the engagement of de novo lipid biosynthesis. Inhibition of lipid biosynthesis, either through the use of pharmacological inhibitors or by the deficiency of related enzymes in CD4+ T cells, results in significant suppression of Th17-cell differentiation. Mechanistic studies indicate that metabolic fluxes through both the fatty acid and cholesterol biosynthetic pathways are essential for controlling RORγt activity through the generation of a lipid ligand of RORγt. This review highlights recent findings that underscore the significant role of lipid metabolism in the differentiation and function of Th17 cells, as well as elucidating the distinctive molecular pathways that drive the activation of RORγt by cellular lipid metabolism. We further elaborate on a pioneering therapeutic approach for ameliorating autoimmune disorders via the inhibition of RORγt.
Collapse
Affiliation(s)
- Toshio Kanno
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Takahiro Nakajima
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Keisuke Miyako
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Yusuke Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan.
| |
Collapse
|
24
|
da Costa LCO, Gardinassi LG, Veras FP, Milanezi C, Ramalho LNZ, Benevides L, Alves-Filho JC, da Silva JS, da Silva Souza C. Expression of B lymphocyte-induced maturation protein 1 (Blimp-1) in keratinocyte and cytokine signalling drives human Th17 response in psoriasis. Arch Dermatol Res 2023; 315:481-490. [PMID: 36042041 DOI: 10.1007/s00403-022-02379-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 06/30/2022] [Accepted: 08/01/2022] [Indexed: 11/02/2022]
Abstract
Transcriptional factor B lymphocyte-induced maturation protein 1 (Blimp-1) is pivotally implicated in T helper 17 (Th17) cell differentiation. This study investigated expression of the Blimp-1 protein, positive regulatory domain 1 (PRDM1), and cytokine genes in psoriasis (PsO). Affected (AS-PsO) and non-affected skin (nAS-PsO) samples were used to assess gene and protein expressions by reverse transcription-quantitative PCR (RT-qPCR), and immunostaining and confocal microscopy, respectively; the normalised public transcriptomic data permitted differential gene expression analyses. On RT-qPCR, PRDM1 and IL17A transcripts showed higher expression in AS-PsO than in nAS-PsO (n = 34) (p < 0.001; p < 0.0001, respectively). Confocal microscopy showed Blimp-1 protein expression in epidermal layer keratinocytes in AS-PsO, but not in nAS-PsO. Bioinformatic analysis of the transcriptomic dataset GSE13355 corroborated the increased PRDM1, signal transducer and activator of transcription 3 (STAT3), IL12B, TNF, IL17A, IL6, IL1B, IL22, and IL10 gene expression in AS-PsO, when compared to normal skin and nAS-PsO (p < 0.001). PRDM1 expression correlated positively (p < 0.0001) with that of IL17A (r = 0.7), IL1B (r = 0.67), IL12B (r = 0.6), IL6 (r = 0.59), IL22 (r = 0.53), IL23A (r = 0.47), IL21 (r = 0.47), IL27 (r = 0.34), IL23R (r = 0.32), S100 calcium binding protein A9 (r = 0.63), and lipocalin 2 (r = 0.50), and negatively with that of TGFB1 (r = - 0.28) and RORC (r = - 0.60). Blimp-1 may be critical in the pathogenesis of PsO dysregulation involving the Th17 inflammatory pathway. This knowledge may accelerate the development of new treatments.
Collapse
Affiliation(s)
- Lorena Carla Oliveira da Costa
- Dermatology Division, Department of Internal Medicine, Ribeirão Preto Medical School, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14048-900, Brazil
| | - Luiz Gustavo Gardinassi
- Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Flávio Protásio Veras
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cristiane Milanezi
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Luciana Benevides
- Fiocruz-Bi-Institutional Translational Medicine Plataform, Ribeirão Preto, São Paulo, Brazil
| | - José Carlos Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João Santana da Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Fiocruz-Bi-Institutional Translational Medicine Plataform, Ribeirão Preto, São Paulo, Brazil
| | - Cacilda da Silva Souza
- Dermatology Division, Department of Internal Medicine, Ribeirão Preto Medical School, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14048-900, Brazil.
| |
Collapse
|
25
|
Lu Y, Ma Q, Yu L, Huang H, Liu X, Chen P, Ran H, Liu W. JAK2 inhibitor ameliorates the progression of experimental autoimmune myasthenia gravis and balances Th17/Treg cells via regulating the JAK2/STAT3-AKT/mTOR signaling pathway. Int Immunopharmacol 2023; 115:109693. [PMID: 36638660 DOI: 10.1016/j.intimp.2023.109693] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/12/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023]
Abstract
BACKGROUND An imbalance in Th17/regulatory T (Treg) cells is the major pathogenic mechanism underlying myasthenia gravis (MG). JAK2 inhibitors selectively inhibit JAK2 and reduce inflammatory responses. However, there have been no studies examining the therapeutic effects of JAK2 inhibitors in the context of MG. METHODS Here, an experimental autoimmune MG (EAMG) rat model was established to explore the therapeutic effect of JAK2 inhibitors on EAMG rats immunized with the AChR α-subunit (97-116 peptide). A JAK2 inhibitor was administered to EAMG rats both in vivo and in vitro. The following experimental methods were used to evaluate the effects of JAK2 inhibitors. The behavioral scores and body weights of the rats were assessed on alternate days. Serum anti-AChR (97-116) IgG and cytokine levels were detected using ELISA. CD4+ T cell subsets and related transcription factors in mononuclear cells were detected using flow cytometry and qPCR, respectively. The expression levels of protein molecules in the signaling pathway were detected by western blotting, and the neuromuscular junctions were observed using immunofluorescence. RESULTS The results revealed that JAK2 inhibitors could regulate Th17/Treg balance in vivo and in vitro. JAK2 inhibitors reduced the immune response in EAMG rats (including reducing pro-inflammatory cytokines and postsynaptic membrane complement deposition), improved clinical symptoms, and increased AChR aggregation in the postsynaptic membrane. Meanwhile, this study demonstrated that JAK2 inhibitor treatment suppressed the phosphorylation of JAK2/STAT3 and AKT/mTOR pathways and decreased the expression level of the IL-23 receptor. CONCLUSIONS This study reveals that there is crosstalk between the JAK2/STAT3 and AKT/mTOR pathways in EAMG rats. JAK2 inhibitors can ameliorate EAMG by regulating Th17/Treg balance by inhibiting both signaling pathways. Our study provides new potential therapeutic targets for MG immunotherapy.
Collapse
Affiliation(s)
- Yaru Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Qian Ma
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Lu Yu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Huan Huang
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xiaoxi Liu
- Department of Neurology, Nanfang Hospital, Southern Medical University, No. 1383 North Guangzhou Avenue, Guangzhou 510510, China
| | - Pei Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Hao Ran
- School of Pharmaceutical Sciences, Sun Yat-Sen University, No.135 West Newport Road, Guangzhou 510006, China
| | - Weibin Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China.
| |
Collapse
|
26
|
Schnell A, Littman DR, Kuchroo VK. T H17 cell heterogeneity and its role in tissue inflammation. Nat Immunol 2023; 24:19-29. [PMID: 36596896 PMCID: PMC10795475 DOI: 10.1038/s41590-022-01387-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/04/2022] [Indexed: 01/05/2023]
Abstract
Since their discovery almost two decades ago, interleukin-17-producing CD4+ T cells (TH17 cells) have been implicated in the pathogenesis of multiple autoimmune and inflammatory disorders. In addition, TH17 cells have been found to play an important role in tissue homeostasis, especially in the intestinal mucosa. Recently, the use of single-cell technologies, along with fate mapping and various mutant mouse models, has led to substantial progress in the understanding of TH17 cell heterogeneity in tissues and of TH17 cell plasticity leading to alternative T cell states and differing functions. In this Review, we discuss the heterogeneity of TH17 cells and the role of this heterogeneity in diverse functions of TH17 cells from homeostasis to tissue inflammation. In addition, we discuss TH17 cell plasticity and its incorporation into the current understanding of T cell subsets and alternative views on the role of TH17 cells in autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Alexandra Schnell
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dan R Littman
- Department of Cell Biology and Regenerative Medicine, New York University School of Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
27
|
Ngoi S, Yang Y, Iwanowycz S, Gutierrez J, Li Y, Williams C, Hill M, Chung D, Allen C, Liu B. Migrating Type 2 Dendritic Cells Prime Mucosal Th17 Cells Specific to Small Intestinal Commensal Bacteria. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1200-1211. [PMID: 35995508 PMCID: PMC9492644 DOI: 10.4049/jimmunol.2200204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/12/2022] [Indexed: 01/04/2023]
Abstract
Dendritic cells (DCs) are professional APCs equipped with MHC-restricted Ags, costimulations, and cytokines that effectively prime and differentiate naive T cells into distinct functional subsets. The immune signals that DCs carry reflect the route of Ag uptake and the innate stimuli they received. In the mucosal tissues, owing to the great variety of foreign Ags and inflammatory cues, DCs are predominantly activated and migratory. In the small intestine, CD4 Th17 cells are abundant and have been shown to be regulated by DCs and macrophages. Using a mouse commensal bacteria experimental model, we identified that the early priming step of commensal-driven Th17 cells is controlled by bona fide Zbtb46-expressing DCs. CCR7-dependent migration of type 2 DCs (DC2s) from the small intestine to the mesenteric lymph nodes (MLNs) is essential for the activation of naive CD4 T cells. The migratory DC2 population in the MLNs is almost exclusively Esam+ cells. Single-cell RNA sequencing highlighted the abundance of costimulatory markers (CD40 and OX40) and chemokines (Ccl22 and Cxcl16) on MLN migratory DCs. Further resolution of MLN migratory DC2s revealed that the Th17-polarizing cytokine IL-6 colocalizes with DC2s expressing CD40, Ccl17, and Ccl22. Thus, early Th17 cell differentiation is initiated by a small subset of migratory DC2s in the gut-draining lymph nodes.
Collapse
Affiliation(s)
- Soo Ngoi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH; and
| | - Yi Yang
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Stephen Iwanowycz
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Jennifer Gutierrez
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Yingqi Li
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Christina Williams
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Megan Hill
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH; and
| | - Dongjun Chung
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH; and
| | - Carter Allen
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH; and
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH; and
| |
Collapse
|
28
|
Serum Interleukins as Potential Prognostic Biomarkers in HBV-Related Acute-on-Chronic Liver Failure. Mediators Inflamm 2022; 2022:7794890. [PMID: 36117587 PMCID: PMC9477565 DOI: 10.1155/2022/7794890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is relatively common in China and has complex pathogenesis, difficult clinical treatment, and poor prognosis. Immune status is an important factor affecting ACLF prognosis. Interleukins are a family of secreted lymphocyte factors that interact with a host of cell types including immune cells. These signaling molecules play important roles in transmitting information; regulating immune cells; mediating the activation, proliferation, and differentiation of T and B cells; and modulating inflammatory responses. Many studies have investigated the correlation between interleukin expression and the prognosis of HBV-ACLF. This review focuses on the potential use of interleukins as prognostic biomarkers in HBV-ACLF. References were mainly identified through PubMed and CNKI search, including relevant studies published until December 2021. We have summarized reports of several promising diagnostic interleukin biomarkers that predict susceptibility to HBV-ACLF. The use of biomarkers to understand early prognosis can help devise different therapeutic measures and improve patient survival. Ongoing research on prognostic biomarkers of HBV-ACLF is promising, and future preclinical and clinical studies are warranted.
Collapse
|
29
|
Metabolic regulation and function of T helper cells in neuroinflammation. Semin Immunopathol 2022; 44:581-598. [PMID: 36068310 DOI: 10.1007/s00281-022-00959-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022]
Abstract
Neuroinflammatory conditions such as multiple sclerosis (MS) are initiated by pathogenic immune cells invading the central nervous system (CNS). Autoreactive CD4+ T helper cells are critical players that orchestrate the immune response both in MS and in other neuroinflammatory autoimmune diseases including animal models that have been developed for MS. T helper cells are classically categorized into different subsets, but heterogeneity exists within these subsets. Untangling the more complex regulation of these subsets will clarify their functional roles in neuroinflammation. Here, we will discuss how differentiation, immune checkpoint pathways, transcriptional regulation and metabolic factors determine the function of CD4+ T cell subsets in CNS autoimmunity. T cells rely on metabolic reprogramming for their activation and proliferation to meet bioenergetic demands. This includes changes in glycolysis, glutamine metabolism and polyamine metabolism. Importantly, these pathways were recently also implicated in the fine tuning of T cell fate decisions during neuroinflammation. A particular focus of this review will be on the Th17/Treg balance and intra-subset functional states that can either promote or dampen autoimmune responses in the CNS and thus affect disease outcome. An increased understanding of factors that could tip CD4+ T cell subsets and populations towards an anti-inflammatory phenotype will be critical to better understand neuroinflammatory diseases and pave the way for novel treatment paradigms.
Collapse
|
30
|
Franken A, Van Mol P, Vanmassenhove S, Donders E, Schepers R, Van Brussel T, Dooms C, Yserbyt J, De Crem N, Testelmans D, De Wever W, Nackaerts K, Vansteenkiste J, Vos R, Humblet-Baron S, Lambrechts D, Wauters E. Single-cell transcriptomics identifies pathogenic T-helper 17.1 cells and pro-inflammatory monocytes in immune checkpoint inhibitor-related pneumonitis. J Immunother Cancer 2022; 10:jitc-2022-005323. [PMID: 36171010 PMCID: PMC9528720 DOI: 10.1136/jitc-2022-005323] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/11/2022] Open
Abstract
Background Immune checkpoint inhibitor (ICI)-related pneumonitis is the most frequent fatal immune-related adverse event associated with programmed cell death protein-1/programmed death ligand-1 blockade. The pathophysiology however remains largely unknown, owing to limited and contradictory findings in existing literature pointing at either T-helper 1 or T-helper 17-mediated autoimmunity. In this study, we aimed to gain novel insights into the mechanisms of ICI-related pneumonitis, thereby identifying potential therapeutic targets. Methods In this prospective observational study, single-cell RNA and T-cell receptor sequencing was performed on bronchoalveolar lavage fluid of 11 patients with ICI-related pneumonitis and 6 demographically-matched patients with cancer without ICI-related pneumonitis. Single-cell transcriptomic immunophenotyping and cell fate mapping coupled to T-cell receptor repertoire analyses were performed. Results We observed enrichment of both CD4+ and CD8+ T cells in ICI-pneumonitis bronchoalveolar lavage fluid. The CD4+ T-cell compartment showed an increase of pathogenic T-helper 17.1 cells, characterized by high co-expression of TBX21 (encoding T-bet) and RORC (ROR-γ), IFN-G (IFN-γ), IL-17A, CSF2 (GM-CSF), and cytotoxicity genes. Type 1 regulatory T cells and naïve-like CD4+ T cells were also enriched. Within the CD8+ T-cell compartment, mainly effector memory T cells were increased. Correspondingly, myeloid cells in ICI-pneumonitis bronchoalveolar lavage fluid were relatively depleted of anti-inflammatory resident alveolar macrophages while pro-inflammatory ‘M1-like’ monocytes (expressing TNF, IL-1B, IL-6, IL-23A, and GM-CSF receptor CSF2RA, CSF2RB) were enriched compared with control samples. Importantly, a feedforward loop, in which GM-CSF production by pathogenic T-helper 17.1 cells promotes tissue inflammation and IL-23 production by pro-inflammatory monocytes and vice versa, has been well characterized in multiple autoimmune disorders but has never been identified in ICI-related pneumonitis. Conclusions Using single-cell transcriptomics, we identified accumulation of pathogenic T-helper 17.1 cells in ICI-pneumonitis bronchoalveolar lavage fluid—a phenotype explaining previous divergent findings on T-helper 1 versus T-helper 17 involvement in ICI-pneumonitis—, putatively engaging in detrimental crosstalk with pro-inflammatory ‘M1-like’ monocytes. This finding yields several novel potential therapeutic targets for the treatment of ICI-pneumonitis. Most notably repurposing anti-IL-23 merits further research as a potential efficacious and safe treatment for ICI-pneumonitis.
Collapse
Affiliation(s)
- Amelie Franken
- VIB - CCB Department of Human Genetics, KU Leuven, Leuven, Flemish Brabant, Belgium
| | - Pierre Van Mol
- VIB - CCB Department of Human Genetics, KU Leuven, Leuven, Flemish Brabant, Belgium.,Pneumology - Respiratory Oncology, Katholieke Universiteit Leuven Universitaire Ziekenhuizen Leuven, Leuven, Flemish Brabant, Belgium
| | - Sam Vanmassenhove
- VIB - CCB Department of Human Genetics, KU Leuven, Leuven, Flemish Brabant, Belgium
| | - Elena Donders
- VIB - CCB Department of Human Genetics, KU Leuven, Leuven, Flemish Brabant, Belgium.,Pneumology - Respiratory Oncology, Katholieke Universiteit Leuven Universitaire Ziekenhuizen Leuven, Leuven, Flemish Brabant, Belgium
| | - Rogier Schepers
- VIB - CCB Department of Human Genetics, KU Leuven, Leuven, Flemish Brabant, Belgium
| | - Thomas Van Brussel
- VIB - CCB Department of Human Genetics, KU Leuven, Leuven, Flemish Brabant, Belgium
| | - Christophe Dooms
- Pneumology - Respiratory Oncology, Katholieke Universiteit Leuven Universitaire Ziekenhuizen Leuven, Leuven, Flemish Brabant, Belgium.,Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Flemish Brabant, Belgium
| | - Jonas Yserbyt
- Pneumology, Katholieke Universiteit Leuven Universitaire Ziekenhuizen Leuven, Leuven, Flemish Brabant, Belgium
| | - Nico De Crem
- Pneumology, Katholieke Universiteit Leuven Universitaire Ziekenhuizen Leuven, Leuven, Flemish Brabant, Belgium
| | - Dries Testelmans
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Flemish Brabant, Belgium.,Pneumology, Katholieke Universiteit Leuven Universitaire Ziekenhuizen Leuven, Leuven, Flemish Brabant, Belgium
| | - Walter De Wever
- Department of Imaging & Pathology, KU Leuven, Leuven, Flemish Brabant, Belgium
| | - Kristiaan Nackaerts
- Pneumology - Respiratory Oncology, Katholieke Universiteit Leuven Universitaire Ziekenhuizen Leuven, Leuven, Flemish Brabant, Belgium.,Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Flemish Brabant, Belgium
| | - Johan Vansteenkiste
- Pneumology - Respiratory Oncology, Katholieke Universiteit Leuven Universitaire Ziekenhuizen Leuven, Leuven, Flemish Brabant, Belgium.,Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Flemish Brabant, Belgium
| | - Robin Vos
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Flemish Brabant, Belgium.,Pneumology, Katholieke Universiteit Leuven Universitaire Ziekenhuizen Leuven, Leuven, Flemish Brabant, Belgium
| | - Stéphanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Flemish Brabant, Belgium
| | - Diether Lambrechts
- VIB - CCB Department of Human Genetics, KU Leuven, Leuven, Flemish Brabant, Belgium
| | - Els Wauters
- Pneumology - Respiratory Oncology, Katholieke Universiteit Leuven Universitaire Ziekenhuizen Leuven, Leuven, Flemish Brabant, Belgium.,Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Flemish Brabant, Belgium
| |
Collapse
|
31
|
Liu Y, Chen XQ, Wang F, Cheng B, Zhou G. Melatonin relieves Th17/CD4−CD8− T cells inflammatory responses via nuclear-receptor dependent manner in peripheral blood of primary Sjögren’s syndrome. Int Immunopharmacol 2022; 109:108778. [DOI: 10.1016/j.intimp.2022.108778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022]
|
32
|
Pu D, Zhang Z, Feng B. Alterations and Potential Applications of Gut Microbiota in Biological Therapy for Inflammatory Bowel Diseases. Front Pharmacol 2022; 13:906419. [PMID: 35734396 PMCID: PMC9207480 DOI: 10.3389/fphar.2022.906419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis, is a chronic immune-mediated inflammatory disorder of the gastrointestinal tract that is closely associated with dysbiosis of the intestinal microbiota. Currently, biologic agents are the mainstream therapies for IBD. With the increasing incidence of IBD, limitations of biologic agents have gradually emerged during treatment. Recent studies have indicated that gut microbiota is highly correlated with the efficacy of biologic agents. This review focuses on alterations in both the components and metabolites of gut microbiota during biological therapy for IBD, systematically summarises the specific gut microbiota closely related to the clinical efficacy, and compares current predictive models for the efficacy of biologics, further highlighting the predictive value of intestinal microbiota. Based on the mechanistic analysis of faecal microbiota transplantation (FMT) and biologic agents, a new therapeutic strategy, comprising a combination of FMT and biologics, has been proposed as a promising treatment for IBD with improved efficacy.
Collapse
Affiliation(s)
| | - Zhe Zhang
- *Correspondence: Zhe Zhang, ; Baisui Feng,
| | | |
Collapse
|
33
|
Pompura SL, Hafler DA, Dominguez-Villar M. Fatty Acid Metabolism and T Cells in Multiple Sclerosis. Front Immunol 2022; 13:869197. [PMID: 35603182 PMCID: PMC9116144 DOI: 10.3389/fimmu.2022.869197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
Abstract
Cellular metabolic remodeling is intrinsically linked to the development, activation, differentiation, function, and survival of T cells. T cells transition from a catabolic, naïve state to an anabolic effector state upon T cell activation. Subsequently, specialization of T cells into T helper (Th) subsets, including regulatory T cells (Treg), requires fine-tuning of metabolic programs that better support and optimize T cell functions for that particular environment. Increasingly, studies have shown that changes in nutrient availability at both the cellular and organismal level during disease states can alter T cell function, highlighting the importance of better characterizing metabolic-immune axes in both physiological and disease settings. In support of these data, a growing body of evidence is emerging that shows specific lipid species are capable of altering the inflammatory functional phenotypes of T cells. In this review we summarize the metabolic programs shown to support naïve and effector T cells, and those driving Th subsets. We then discuss changes to lipid profiles in patients with multiple sclerosis, and focus on how the presence of specific lipid species can alter cellular metabolism and function of T cells.
Collapse
Affiliation(s)
- Saige L. Pompura
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - David A. Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | | |
Collapse
|
34
|
Shetty A, Tripathi SK, Junttila S, Buchacher T, Biradar R, Bhosale S, Envall T, Laiho A, Moulder R, Rasool O, Galande S, Elo L, Lahesmaa R. A systematic comparison of FOSL1, FOSL2 and BATF-mediated transcriptional regulation during early human Th17 differentiation. Nucleic Acids Res 2022; 50:4938-4958. [PMID: 35511484 PMCID: PMC9122603 DOI: 10.1093/nar/gkac256] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 12/21/2022] Open
Abstract
Th17 cells are essential for protection against extracellular pathogens, but their aberrant activity can cause autoimmunity. Molecular mechanisms that dictate Th17 cell-differentiation have been extensively studied using mouse models. However, species-specific differences underscore the need to validate these findings in human. Here, we characterized the human-specific roles of three AP-1 transcription factors, FOSL1, FOSL2 and BATF, during early stages of Th17 differentiation. Our results demonstrate that FOSL1 and FOSL2 co-repress Th17 fate-specification, whereas BATF promotes the Th17 lineage. Strikingly, FOSL1 was found to play different roles in human and mouse. Genome-wide binding analysis indicated that FOSL1, FOSL2 and BATF share occupancy over regulatory regions of genes involved in Th17 lineage commitment. These AP-1 factors also share their protein interacting partners, which suggests mechanisms for their functional interplay. Our study further reveals that the genomic binding sites of FOSL1, FOSL2 and BATF harbour hundreds of autoimmune disease-linked SNPs. We show that many of these SNPs alter the ability of these transcription factors to bind DNA. Our findings thus provide critical insights into AP-1-mediated regulation of human Th17-fate and associated pathologies.
Collapse
Affiliation(s)
| | | | | | | | - Rahul Biradar
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku 20520, Finland
| | - Santosh D Bhosale
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Department of Biochemistry and Molecular Biology, Protein Research Group, University of Southern Denmark, Campusvej 55, Odense M, DK 5230, Denmark
| | - Tapio Envall
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku 20520, Finland
| | - Robert Moulder
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku 20520, Finland
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku 20520, Finland
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008, India
- Department of Life Sciences, Shiv Nadar University, Delhi-NCR
| | - Laura L Elo
- Correspondence may also be addressed to Laura Elo. Tel: +358 29 450 2090;
| | - Riitta Lahesmaa
- To whom correspondence should be addressed. Tel: +358 29 450 2415;
| |
Collapse
|
35
|
Chen X, Sunkel B, Wang M, Kang S, Wang T, Gnanaprakasam JNR, Liu L, Cassel TA, Scott DA, Muñoz-Cabello AM, Lopez-Barneo J, Yang J, Lane AN, Xin G, Stanton B, Fan TWM, Wang R. Succinate dehydrogenase/complex II is critical for metabolic and epigenetic regulation of T cell proliferation and inflammation. Sci Immunol 2022; 7:eabm8161. [PMID: 35486677 PMCID: PMC9332111 DOI: 10.1126/sciimmunol.abm8161] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Effective T cell-mediated immune responses require the proper allocation of metabolic resources to sustain growth, proliferation, and cytokine production. Epigenetic control of the genome also governs T cell transcriptome and T cell lineage commitment and maintenance. Cellular metabolic programs interact with epigenetic regulation by providing substrates for covalent modifications of chromatin. By using complementary genetic, epigenetic, and metabolic approaches, we revealed that tricarboxylic acid (TCA) cycle flux fueled biosynthetic processes while controlling the ratio of succinate/α-ketoglutarate (α-KG) to modulate the activities of dioxygenases that are critical for driving T cell inflammation. In contrast to cancer cells, where succinate dehydrogenase (SDH)/complex II inactivation drives cell transformation and growth, SDH/complex II deficiency in T cells caused proliferation and survival defects when the TCA cycle was truncated, blocking carbon flux to support nucleoside biosynthesis. Replenishing the intracellular nucleoside pool partially relieved the dependence of T cells on SDH/complex II for proliferation and survival. SDH deficiency induced a proinflammatory gene signature in T cells and promoted T helper 1 and T helper 17 lineage differentiation. An increasing succinate/α-KG ratio in SDH-deficient T cells promoted inflammation by changing the pattern of the transcriptional and chromatin accessibility signatures and consequentially increasing the expression of the transcription factor, PR domain zinc finger protein 1. Collectively, our studies revealed a role of SDH/complex II in allocating carbon resources for anabolic processes and epigenetic regulation in T cell proliferation and inflammation.
Collapse
Affiliation(s)
- Xuyong Chen
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Benjamin Sunkel
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Meng Wang
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Siwen Kang
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Tingting Wang
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - JN Rashida Gnanaprakasam
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Lingling Liu
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Teresa A. Cassel
- Center for Environmental and Systems Biochemistry, Dept. of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - David A. Scott
- Cancer Metabolism Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ana M. Muñoz-Cabello
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario "Virgen del Rocío"/CSIC/Universidad de Sevilla, Spain
| | - Jose Lopez-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario "Virgen del Rocío"/CSIC/Universidad de Sevilla, Spain
| | - Jun Yang
- Department of Surgery, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Andrew N. Lane
- Center for Environmental and Systems Biochemistry, Dept. of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Gang Xin
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Benjamin Stanton
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Teresa W.-M. Fan
- Center for Environmental and Systems Biochemistry, Dept. of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Ruoning Wang
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
36
|
Irons EE, Cortes Gomez E, Andersen VL, Lau JTY. Bacterial colonization and TH17 immunity are shaped by intestinal sialylation in neonatal mice. Glycobiology 2022; 32:414-428. [PMID: 35157771 PMCID: PMC9022908 DOI: 10.1093/glycob/cwac005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/10/2022] [Accepted: 01/30/2022] [Indexed: 11/14/2022] Open
Abstract
Interactions between the neonate host and its gut microbiome are central to the development of a healthy immune system. However, the mechanisms by which animals alter early colonization of microbiota for their benefit remain unclear. Here, we investigated the role of early-life expression of the α2,6-sialyltransferase ST6GAL1 in microbiome phylogeny and mucosal immunity. Fecal, upper respiratory, and oral microbiomes of pups expressing or lacking St6gal1 were analyzed by 16S rRNA sequencing. At weaning, the fecal microbiome of St6gal1-KO mice had reduced Clostridiodes, Coprobacillus, and Adlercreutzia, but increased Helicobacter and Bilophila. Pooled fecal microbiomes from syngeneic donors were transferred to antibiotic-treated wild-type mice, before analysis of recipient mucosal immune responses by flow cytometry, RT-qPCR, microscopy, and ELISA. Transfer of St6gal1-KO microbiome induced a mucosal Th17 response, with expression of T-bet and IL-17, and IL-22-dependent gut lengthening. Early life intestinal sialylation was characterized by RT-qPCR, immunoblot, microscopy, and sialyltransferase enzyme assays in genetic mouse models at rest or with glucocorticoid receptor modulators. St6gal1 expression was greatest in the duodenum, where it was mediated by the P1 promoter and efficiently inhibited by dexamethasone. Our data show that the inability to produce α2,6-sialyl ligands contributes to microbiome-dependent Th17 inflammation, highlighting a pathway by which the intestinal glycosylation regulates mucosal immunity.
Collapse
Affiliation(s)
- Eric E Irons
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Valerie L Andersen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| |
Collapse
|
37
|
Millrine D, Jenkins RH, Hughes STO, Jones SA. Making sense of IL-6 signalling cues in pathophysiology. FEBS Lett 2022; 596:567-588. [PMID: 34618359 PMCID: PMC9673051 DOI: 10.1002/1873-3468.14201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
Unravelling the molecular mechanisms that account for functional pleiotropy is a major challenge for researchers in cytokine biology. Cytokine-receptor cross-reactivity and shared signalling pathways are considered primary drivers of cytokine pleiotropy. However, reports epitomized by studies of Jak-STAT cytokine signalling identify interesting biochemical and epigenetic determinants of transcription factor regulation that affect the delivery of signal-dependent cytokine responses. Here, a regulatory interplay between STAT transcription factors and their convergence to specific genomic enhancers support the fine-tuning of cytokine responses controlling host immunity, functional identity, and tissue homeostasis and repair. In this review, we provide an overview of the signalling networks that shape the way cells sense and interpret cytokine cues. With an emphasis on the biology of interleukin-6, we highlight the importance of these mechanisms to both physiological processes and pathophysiological outcomes.
Collapse
Affiliation(s)
- David Millrine
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityUK
- Systems Immunity University Research InstituteCardiff UniversityUK
- Present address:
Medical Research Council Protein Phosphorylation and Ubiquitylation UnitSir James Black CentreSchool of Life SciencesUniversity of Dundee3rd FloorDundeeUK
| | - Robert H. Jenkins
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityUK
- Systems Immunity University Research InstituteCardiff UniversityUK
| | - Stuart T. O. Hughes
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityUK
- Systems Immunity University Research InstituteCardiff UniversityUK
| | - Simon A. Jones
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityUK
- Systems Immunity University Research InstituteCardiff UniversityUK
| |
Collapse
|
38
|
Th17 cells in the liver: balancing autoimmunity and pathogen defense. Semin Immunopathol 2022; 44:509-526. [PMID: 35211777 DOI: 10.1007/s00281-022-00917-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022]
Abstract
In addition to carcinogenesis, T helper 17 (Th17) cells (a subtype of CD4 + T lymphocytes) are involved in the acute, chronic, and cirrhotic phases of liver diseases; however, their role in the development and progression of liver diseases remains unclear. It is difficult to elucidate the role of Th17 cells in liver diseases due to their dichotomous nature, i.e., plasticity in terms of pathogenic or host protective function depending on environmental and time phase factors. Moreover, insufficient depletion of Th17 cells by inhibiting the cytokines and transcription factors involved in their production causes difficulties in analyzing their specific role in vitro and in vivo murine models, partially due to complex interaction. This review summarizes the recent progress in understanding the plasticity and function of hepatic Th17 cells and type 3 cytokines.
Collapse
|
39
|
Lee H, Huang DY, Chang HC, Lin CY, Ren WY, Dai YS, Lin WW. Blimp-1 Upregulation by Multiple Ligands via EGFR Transactivation Inhibits Cell Migration in Keratinocytes and Squamous Cell Carcinoma. Front Pharmacol 2022; 13:763678. [PMID: 35185556 PMCID: PMC8847214 DOI: 10.3389/fphar.2022.763678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/07/2022] [Indexed: 12/02/2022] Open
Abstract
B lymphocyte-induced maturation protein-1 (Blimp-1) is a transcriptional repressor and plays a crucial role in the regulation of development and functions of various immune cells. Currently, there is limited understanding about the regulation of Blimp-1 expression and cellular functions in keratinocytes and cancer cells. Previously we demonstrated that EGF can upregulate Blimp-1 gene expression in keratinocytes, playing a negative role in regulation of cell migration and inflammation. Because it remains unclear if Blimp-1 can be regulated by other stimuli beyond EGF, here we further investigated multiple stimuli for their regulation of Blimp-1 expression in keratinocytes and squamous cell carcinoma (SCC). We found that PMA, TNF-α, LPS, polyIC, H2O2 and UVB can upregulate the protein and/or mRNA levels of Blimp-1 in HaCaT and SCC cells. Concomitant EGFR activation was observed by these stimuli, and EGFR inhibitor gefitinib and Syk inhibitor can block Blimp-1 gene expression caused by PMA. Reporter assay of Blimp-1 promoter activity further indicated the involvement of AP-1 in PMA-, TNF-α-, LPS- and EGF-elicited Blimp-1 mRNA expression. Confocal microscopic data indicated the nuclear loclization of Blimp-1, and such localization was not changed by stimuli. Moreover, Blimp-1 silencing enhanced SCC cell migration. Taken together, Blimp-1 can be transcriptionally upregulated by several stimuli in keratinocytes and SCC via EGFR transactivation and AP-1 pathway. These include growth factor PMA, cytokine TNF-α, TLR ligands (LPS and polyIC), and ROS insults (H2O2 and UVB). The function of Blimp-1 as a negative regulator of cell migration in SCC can provide a new therapeutic target in SCC.
Collapse
Affiliation(s)
- Hyemin Lee
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hua-Ching Chang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Dermatology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chia-Yee Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Yu Ren
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yang-Shia Dai
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
40
|
Wei L, Abraham D, Ong V. The Yin and Yang of IL-17 in Systemic Sclerosis. Front Immunol 2022; 13:885609. [PMID: 35603223 PMCID: PMC9116143 DOI: 10.3389/fimmu.2022.885609] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 11/21/2022] Open
Abstract
IL-17 (IL-17A) is a pro-inflammatory cytokine produced by a sub-set of T helper cells termed Th17 cells primarily in response to cytokines like TGF-β and IL-23 and play an important role in host defense. IL-17 signals via the IL-17RA/RC heterodimer and the adaptor protein Act1 to activate both canonical and non-canonical pathways inducing transcriptional activation and stabilization of mRNAs. IL-17 appears to act not directly on immune cells but stimulates stromal cells such as endothelial and epithelial cells and fibroblasts to secrete other immunomodulatory factors. Fibroblast activated by IL-17 can support the growth and differentiation of immune cells. Studies have begun to uncover a dual role for IL-17; on one hand enhancing immune reactions and promoting inflammatory diseases and on the other decreasing responses and immune activity in established disease settings. The balance of double-edged sword effect of IL-17 and autoimmunity is illustrated in a variety of human diseases and experimental models of diseases. Specifically, the emerging interest in autoimmunity in systemic sclerosis (Scleroderma, SSc) has led to potential role of IL-17A as a target therapy in this disease.
Collapse
|
41
|
Sandner L, Alteneder M, Zhu C, Hladik A, Högler S, Rica R, Van Greuningen LW, Sharif O, Sakaguchi S, Knapp S, Kenner L, Trauner M, Ellmeier W, Boucheron N. The Tyrosine Kinase Tec Regulates Effector Th17 Differentiation, Pathogenicity, and Plasticity in T-Cell-Driven Intestinal Inflammation. Front Immunol 2021; 12:750466. [PMID: 35003062 PMCID: PMC8728872 DOI: 10.3389/fimmu.2021.750466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022] Open
Abstract
T helper (Th) 17 cells are not only key in controlling infections mediated by extracellular bacteria and fungi but are also triggering autoimmune responses. Th17 cells comprise heterogeneous subsets, some with pathogenic functions. They can cease to secrete their hallmark cytokine IL-17A and even convert to other T helper lineages, a process known as transdifferentiation relying on plasticity. Both pathogenicity and plasticity are tightly linked to IL-23 signaling. Here, we show that the protein tyrosine kinase Tec is highly induced in Th17 cells. Th17 differentiation was enhanced at low interleukin-6 (IL-6) concentrations in absence of Tec, which correlates with increased STAT3 phosphorylation and higher Il23r expression. Therefore, we uncovered a function for Tec in the IL-6 sensing via STAT3 by CD4+ T cells, defining Tec as a fine-tuning negative regulator of Th17 differentiation. Subsequently, by using the IL-17A fate mapping mouse combined with in vivo adoptive transfer models, we demonstrated that Tec not only restrained effector Th17 differentiation but also pathogenicity and plasticity in a T-cell intrinsic manner. Our data further suggest that Tec regulates inflammatory Th17-driven immune responses directly impacting disease severity in a T-cell-driven colitis model. Notably, consistent with the in vitro findings, elevated levels of the IL-23 receptor (IL-23R) were observed on intestinal pre- and postconversion Th17 cells isolated from diseased Tec-/- mice subjected to adoptive transfer colitis, highlighting a fundamental role of Tec in restraining IL-23R expression, likely via the IL-6-STAT3 signaling axis. Taken together, these findings identify Tec as a negative regulator of Th17 differentiation, pathogenicity, and plasticity, contributing to the mechanisms which help T cells to orchestrate optimal immune protection and to restrain immunopathology.
Collapse
Affiliation(s)
- Lisa Sandner
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marlis Alteneder
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ci Zhu
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Anastasiya Hladik
- Department of Medicine 1, Research Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Sandra Högler
- Unit of Laboratory Animal Pathology, Department for Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ramona Rica
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Lars W Van Greuningen
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden, Netherlands
| | - Omar Sharif
- Center for Physiology and Pharmacology, Institute for Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sylvia Knapp
- Department of Medicine 1, Research Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Unit of Laboratory Animal Pathology, Department for Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University Vienna, Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nicole Boucheron
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Ciaffi J, Mitselman D, Mancarella L, Brusi V, Lisi L, Ruscitti P, Cipriani P, Meliconi R, Giacomelli R, Borghi C, Ursini F. The Effect of Ketogenic Diet on Inflammatory Arthritis and Cardiovascular Health in Rheumatic Conditions: A Mini Review. Front Med (Lausanne) 2021; 8:792846. [PMID: 34970568 PMCID: PMC8712653 DOI: 10.3389/fmed.2021.792846] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 01/07/2023] Open
Abstract
The principle of ketogenic diet (KD) is restriction of carbohydrates to a maximum of 5-10% of the total daily caloric intake, aiming at shifting body metabolism toward ketone bodies. Different studies suggested promising results of KD to help patients to lose weight, to reduce insulin requirements in diabetes, to supplement cancer protocols, to treat neurological conditions and to optimize control of metabolic and cardiovascular diseases. However, literature about the anti-inflammatory properties of KD in rheumatic diseases is still limited. The beneficial effects of weight loss in patients with inflammatory arthritis can be explained by biomechanical and biochemical factors. Obesity is associated with macrophage activation and production of pro-inflammatory cytokines including TNF-α, IL-1b, and IL-6. The clinical effect of KD may be primarily attributed to improvement of insulin sensitivity. Insulin resistance is associated with an increase of TNF-α, IL-1α, IL-1β, IL-6, and leptin. Moreover, reduction of body's adipose tissue and weight loss account for part of the anti-inflammatory effects and for the impact of KD on cardiovascular health. In rheumatoid arthritis, fasting was shown to be effective in reducing disease symptoms, possibly through the production of β-hydroxybutyrate (BHB), the main ketone body. BHB may exert inhibitory effects also on IL-17 and intermittent fasting improved the clinical manifestations of psoriatic arthritis. In ankylosing spondylitis, current literature doesn't allow to draw conclusion about the effects of KD. Future prospective studies will be needed to elucidate the potential beneficial effects of KD on specific domains and clinical outcomes in patients with inflammatory arthritis.
Collapse
Affiliation(s)
- Jacopo Ciaffi
- Medicine and Rheumatology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Dmitri Mitselman
- Department of Medical and Surgical Sciences, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) S.Orsola, University of Bologna, Bologna, Italy
| | - Luana Mancarella
- Medicine and Rheumatology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Veronica Brusi
- Medicine and Rheumatology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Lucia Lisi
- Medicine and Rheumatology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Paola Cipriani
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Riccardo Meliconi
- Medicine and Rheumatology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Roberto Giacomelli
- Unit of Allergology, Immunology, Rheumatology, Department of Medicine, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Claudio Borghi
- Department of Medical and Surgical Sciences, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) S.Orsola, University of Bologna, Bologna, Italy
| | - Francesco Ursini
- Medicine and Rheumatology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
43
|
Alam MS, Otsuka S, Wong N, Abbasi A, Gaida MM, Fan Y, Meerzaman D, Ashwell JD. TNF plays a crucial role in inflammation by signaling via T cell TNFR2. Proc Natl Acad Sci U S A 2021; 118:e2109972118. [PMID: 34873037 PMCID: PMC8685675 DOI: 10.1073/pnas.2109972118] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
TNF, produced largely by T and innate immune cells, is potently proinflammatory, as are cytokines such as IFN-γ and IL-17 produced by Th1 and Th17 cells, respectively. Here, we asked if TNF is upstream of Th skewing toward inflammatory phenotypes. Exposure of mouse CD4+ T cells to TNF and TGF-β generated Th17 cells that express low levels of IL-17 (ROR-γt+IL-17lo) and high levels of inflammatory markers independently of IL-6 and STAT3. This was mediated by the nondeath TNF receptor TNFR2, which also contributed to the generation of inflammatory Th1 cells. Single-cell RNA sequencing of central nervous system-infiltrating CD4+ T cells in mouse experimental autoimmune encephalomyelitis (EAE) found an inflammatory gene expression profile similar to cerebrospinal fluid-infiltrating CD4+ T cells from patients with multiple sclerosis. Notably, TNFR2-deficient CD4+ T cells produced fewer inflammatory mediators and were less pathogenic in EAE and colitis. IL-1β, a Th17-skewing cytokine, induced TNF and proinflammatory granulocyte-macrophage colony-stimulating factor (GM-CSF) in T cells, which was inhibited by disruption of TNFR2 signaling, demonstrating IL-1β can function indirectly via the production of TNF. Thus, TNF is not just an effector but also an initiator of inflammatory Th differentiation.
Collapse
Affiliation(s)
- Muhammad S Alam
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NlH, Bethesda, MD 20892;
| | - Shizuka Otsuka
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NlH, Bethesda, MD 20892
| | - Nathan Wong
- CCR Collaborative Bioinformatics Resources, Center for Cancer Research, Bethesda, MD 20892
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Aamna Abbasi
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NlH, Bethesda, MD 20892
| | - Matthias M Gaida
- Institute of Pathology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz 55131, Germany
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | - Yu Fan
- Center for Biomedical Informatics and information Technology, National Cancer Institute, Rockville, MD 20852
| | - Daoud Meerzaman
- Center for Biomedical Informatics and information Technology, National Cancer Institute, Rockville, MD 20852
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NlH, Bethesda, MD 20892;
| |
Collapse
|
44
|
Ingelfinger F, De Feo D, Becher B. GM-CSF: Master regulator of the T cell-phagocyte interface during inflammation. Semin Immunol 2021; 54:101518. [PMID: 34763973 DOI: 10.1016/j.smim.2021.101518] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/23/2021] [Indexed: 12/21/2022]
Abstract
The role of granulocyte-macrophage colony-stimulating factor (GM-CSF) was sequentially redefined during the past decades. Originally described as a hematopoietic growth factor for myelopoiesis, GM-CSF was recognized as a central mediator of inflammation bridging the innate and adaptive arms of the immune system. Phagocytes sensing GM-CSF adapt an inflammatory phenotype and facilitate pathogen clearance. However, in the context of chronic tissue inflammation, GM-CSF secreted by tissue-invading lymphocytes has detrimental effects by licensing tissue damage and hyperinflammation. Accordingly, therapeutic intervention at the T cell-phagocyte interface represents an attractive target to ameliorate disease progression and immunopathology. Although GM-CSF is largely dispensable for steady state myelopoiesis, dysregulation, as seen in chronic inflammatory diseases, may however lead to disrupted haematopoiesis and long-term effects on bone marrow output. Here, we will survey the role of GM-CSF during inflammation, discuss the extent to which GM-CSF-secreting T cells, debate their introduction as a separate T cell lineage and explore current and future clinical implications of GM-CSF in human disease settings.
Collapse
Affiliation(s)
- Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
45
|
Targeted Therapies in Autoimmune Skin Diseases. J Invest Dermatol 2021; 142:969-975.e7. [PMID: 34756580 DOI: 10.1016/j.jid.2021.08.439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 01/21/2023]
Abstract
Unlike the established anti-inflammatory drugs with a broad range, new-targeted therapeutic approaches have emerged in the management of autoimmune skin diseases to increase efficacy and decrease adverse reactions on the basis of an improved molecular understanding of pathogenesis. Most inflammatory dermatoses are driven by misled immune responses physiologically directed at exogenous pathogens, that is, type 1 immunity against viral pathogens, type 2 immunity against parasites, and type 3 immunity against fungi and bacteria. Pathogenic hallmarks of these major immune reaction patterns are characterized within this article, and a comprehensive overview of current clinical trials evaluating targeted therapeutics for respective dermatoses is outlined.
Collapse
|
46
|
DiToro D, Basu R. Emerging Complexity in CD4 +T Lineage Programming and Its Implications in Colorectal Cancer. Front Immunol 2021; 12:694833. [PMID: 34489941 PMCID: PMC8417887 DOI: 10.3389/fimmu.2021.694833] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
The intestinal immune system has the difficult task of protecting a large environmentally exposed single layer of epithelium from pathogens without allowing inappropriate inflammatory responses. Unmitigated inflammation drives multiple pathologies, including the development of colorectal cancer. CD4+T cells mediate both the suppression and promotion of intestinal inflammation. They comprise an array of phenotypically and functionally distinct subsets tailored to a specific inflammatory context. This diversity of form and function is relevant to a broad array of pathologic and physiologic processes. The heterogeneity underlying both effector and regulatory T helper cell responses to colorectal cancer, and its impact on disease progression, is reviewed herein. Importantly, T cell responses are dynamic; they exhibit both quantitative and qualitative changes as the inflammatory context shifts. Recent evidence outlines the role of CD4+T cells in colorectal cancer responses and suggests possible mechanisms driving qualitative alterations in anti-cancer immune responses. The heterogeneity of T cells in colorectal cancer, as well as the manner and mechanism by which they change, offer an abundance of opportunities for more specific, and likely effective, interventional strategies.
Collapse
Affiliation(s)
- Daniel DiToro
- Brigham and Women's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Ragon Institute of MGH MIT and Harvard, Cambridge, MA, United States
| | - Rajatava Basu
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| |
Collapse
|
47
|
High-salt diet suppresses autoimmune demyelination by regulating the blood-brain barrier permeability. Proc Natl Acad Sci U S A 2021; 118:2025944118. [PMID: 33723078 PMCID: PMC7999868 DOI: 10.1073/pnas.2025944118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dietary salt intake has been considered an important risk factor for autoimmune diseases like multiple sclerosis (MS). Here we studied the effects of a high-salt diet (HSD) using a spontaneous autoimmune disease mouse model resembling MS. We found that high-salt consumption protects mice from developing the neurological disease by promoting the tightening of the blood–brain barrier and preventing the migration of autoreactive T cells into the CNS. Our results emphasize the multifarious effects of high-salt consumption in autoimmune disease susceptibility. Sodium chloride, “salt,” is an essential component of daily food and vitally contributes to the body’s homeostasis. However, excessive salt intake has often been held responsible for numerous health risks associated with the cardiovascular system and kidney. Recent reports linked a high-salt diet (HSD) to the exacerbation of artificially induced central nervous system (CNS) autoimmune pathology through changes in microbiota and enhanced TH17 cell differentiation [M. Kleinewietfeld et al., Nature 496, 518–522 (2013); C. Wu et al., Nature 496, 513–517 (2013); N. Wilck et al., Nature 551, 585–589 (2017)]. However, there is no evidence that dietary salt promotes or worsens a spontaneous autoimmune disease. Here we show that HSD suppresses autoimmune disease development in a mouse model of spontaneous CNS autoimmunity. We found that HSD consumption increased the circulating serum levels of the glucocorticoid hormone corticosterone. Corticosterone enhanced the expression of tight junction molecules on the brain endothelial cells and promoted the tightening of the blood–brain barrier (BBB) thereby controlling the entry of inflammatory T cells into the CNS. Our results demonstrate the multifaceted and potentially beneficial effects of moderately increased salt consumption in CNS autoimmunity.
Collapse
|
48
|
Agasing A, Quinn JL, Kumar G, Axtell RC. Interferon-β Intensifies Interleukin-23-Driven Pathogenicity of T Helper Cells in Neuroinflammatory Disease. Cells 2021; 10:2139. [PMID: 34440908 PMCID: PMC8392231 DOI: 10.3390/cells10082139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/26/2022] Open
Abstract
Interferon (IFN)-β is a popular therapy for multiple sclerosis (MS). However, 25-40% of patients are nonresponsive to this therapy, and it worsens neuromyelitis optica (NMO), another neuroinflammatory disease. We previously identified, in both NMO patients and in mice, that IFN-β treatment had inflammatory effects in T Helper (TH) 17-induced disease through the production of the inflammatory cytokine IL-6. However, other studies have shown that IFN-β inhibits the differentiation and function of TH17 cells. In this manuscript, we identified that IFN-β had differential effects on discrete stages of TH17 development. During early TH17 development, IFN-β inhibits IL-17 production. Conversely, during late TH17 differentiation, IFN-β synergizes with IL-23 to promote a pathogenic T cell that has both TH1 and TH17 characteristics and expresses elevated levels of the potent inflammatory cytokines IL-6 and GM-CSF and the transcription factor BLIMP. Together, these findings help resolve a paradox surrounding IFN-β and TH17-induced disease and illuminate the pathways responsible for the pathophysiology of NMO and MS patients who are IFN-β nonresponders.
Collapse
Affiliation(s)
| | | | | | - Robert C. Axtell
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (A.A.); (J.L.Q.); (G.K.)
| |
Collapse
|
49
|
Harris KM, Clements MA, Kwilasz AJ, Watkins LR. T cell transgressions: Tales of T cell form and function in diverse disease states. Int Rev Immunol 2021; 41:475-516. [PMID: 34152881 PMCID: PMC8752099 DOI: 10.1080/08830185.2021.1921764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023]
Abstract
Insights into T cell form, function, and dysfunction are rapidly evolving. T cells have remarkably varied effector functions including protecting the host from infection, activating cells of the innate immune system, releasing cytokines and chemokines, and heavily contributing to immunological memory. Under healthy conditions, T cells orchestrate a finely tuned attack on invading pathogens while minimizing damage to the host. The dark side of T cells is that they also exhibit autoreactivity and inflict harm to host cells, creating autoimmunity. The mechanisms of T cell autoreactivity are complex and dynamic. Emerging research is elucidating the mechanisms leading T cells to become autoreactive and how such responses cause or contribute to diverse disease states, both peripherally and within the central nervous system. This review provides foundational information on T cell development, differentiation, and functions. Key T cell subtypes, cytokines that create their effector roles, and sex differences are highlighted. Pathological T cell contributions to diverse peripheral and central disease states, arising from errors in reactivity, are highlighted, with a focus on multiple sclerosis, rheumatoid arthritis, osteoarthritis, neuropathic pain, and type 1 diabetes.
Collapse
Affiliation(s)
- Kevin M. Harris
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Madison A. Clements
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Andrew J. Kwilasz
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| |
Collapse
|
50
|
Nikopensius T, Niibo P, Haller T, Jagomägi T, Voog-Oras Ü, Tõnisson N, Metspalu A, Saag M, Pruunsild C. Association analysis of juvenile idiopathic arthritis genetic susceptibility factors in Estonian patients. Clin Rheumatol 2021; 40:4157-4165. [PMID: 34101054 PMCID: PMC8463396 DOI: 10.1007/s10067-021-05756-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
Background Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic condition of childhood. Genetic association studies have revealed several JIA susceptibility loci with the strongest effect size observed in the human leukocyte antigen (HLA) region. Genome-wide association studies have augmented the number of JIA-associated loci, particularly for non-HLA genes. The aim of this study was to identify new associations at non-HLA loci predisposing to the risk of JIA development in Estonian patients. Methods We performed genome-wide association analyses in an entire JIA case–control sample (All-JIA) and in a case–control sample for oligoarticular JIA, the most prevalent JIA subtype. The entire cohort was genotyped using the Illumina HumanOmniExpress BeadChip arrays. After imputation, 16,583,468 variants were analyzed in 263 cases and 6956 controls. Results We demonstrated nominal evidence of association for 12 novel non-HLA loci not previously implicated in JIA predisposition. We replicated known JIA associations in CLEC16A and VCTN1 regions in the oligoarticular JIA sample. The strongest associations in the All-JIA analysis were identified at PRKG1 (P = 2,54 × 10−6), LTBP1 (P = 9,45 × 10−6), and ELMO1 (P = 1,05 × 10−5). In the oligoarticular JIA analysis, the strongest associations were identified at NFIA (P = 5,05 × 10−6), LTBP1 (P = 9,95 × 10−6), MX1 (P = 1,65 × 10−5), and CD200R1 (P = 2,59 × 10−5). Conclusion This study increases the number of known JIA risk loci and provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis. The reported loci are involved in molecular pathways of immunological relevance and likely represent genomic regions that confer susceptibility to JIA in Estonian patients.
Key Points • Juvenile idiopathic arthritis (JIA) is the most common childhood rheumatic disease with heterogeneous presentation and genetic predisposition. • Present genome-wide association study for Estonian JIA patients is first of its kind in Northern and Northeastern Europe. • The results of the present study increase the knowledge about JIA risk loci replicating some previously described associations, so adding weight to their relevance and describing novel loci. • The study provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis. |
Supplementary Information The online version contains supplementary material available at 10.1007/s10067-021-05756-x.
Collapse
Affiliation(s)
- Tiit Nikopensius
- Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia.
| | - Priit Niibo
- Institute of Dentistry, University of Tartu, Tartu, Estonia
| | - Toomas Haller
- Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Triin Jagomägi
- Institute of Dentistry, University of Tartu, Tartu, Estonia
| | - Ülle Voog-Oras
- Institute of Dentistry, University of Tartu, Tartu, Estonia.,Stomatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Neeme Tõnisson
- Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Mare Saag
- Institute of Dentistry, University of Tartu, Tartu, Estonia
| | - Chris Pruunsild
- Children's Clinic, Tartu University Hospital, Tartu, Estonia.,Children's Clinic, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|