1
|
Lamorte S, Quevedo R, Jin R, Neufeld L, Liu ZQ, Ciudad MT, Lukhele S, Bruce J, Mishra S, Zhang X, Saeed ZK, Berman H, Philpott DJ, Girardin SE, Harding S, Munn DH, Mak TW, Karlsson MCI, Brooks DG, McGaha TL. Lymph node macrophages drive immune tolerance and resistance to cancer therapy by induction of the immune-regulatory cytokine IL-33. Cancer Cell 2025; 43:955-969.e10. [PMID: 40054466 PMCID: PMC12074877 DOI: 10.1016/j.ccell.2025.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/14/2024] [Accepted: 02/12/2025] [Indexed: 05/15/2025]
Abstract
Apoptotic cells are immunosuppressive, creating a barrier in cancer treatment. Thus, we investigated immune responses to dying tumor cells after therapy in the tumor draining lymph node (TDLN). A key population responsible for clearing tumor material in the TDLN was medullary sinus macrophages (MSMs). Tumor debris phagocytosis by MSMs induces the cytokine IL-33, and blocking the IL-33 receptor (ST2) or deletion of Il33 in MSMs enhances therapy responses. Mechanistically, IL-33 activates T regulatory cells in TDLNs that migrate to the tumor to suppress CD8+ T cells. Therapeutically combining ST2 blockade, targeted kinase inhibitors, and anti-PD-1 immunotherapy increases CD8+ T cell activity promoting tumor regression. Importantly, we observe similar activity in human macrophages, and IL-33 expression in sentinel lymph nodes correlates with disease stage and survival in melanoma. Thus, our data identifies an IL-33-dependent immune response to therapy that attenuates therapy-induced anti-tumor immunity.
Collapse
Affiliation(s)
- Sara Lamorte
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Immunology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rene Quevedo
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Immunology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robbie Jin
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Immunology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Luke Neufeld
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Immunology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zhe Qi Liu
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Immunology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - M Teresa Ciudad
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Immunology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sabelo Lukhele
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Immunology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jessica Bruce
- Department of Immunology, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Laboratory Medicine and Pathobiology, The University of Toronto, Toronto, ON, Canada
| | - Shreya Mishra
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Xin Zhang
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Immunology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zaid Kamil Saeed
- Department of Laboratory Medicine and Pathobiology, The University of Toronto, Toronto, ON, Canada
| | - Hal Berman
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Laboratory Medicine and Pathobiology, The University of Toronto, Toronto, ON, Canada
| | - Dana J Philpott
- Department of Immunology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Stephen E Girardin
- Department of Immunology, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Laboratory Medicine and Pathobiology, The University of Toronto, Toronto, ON, Canada
| | - Shane Harding
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Immunology, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medical Biophysics, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David H Munn
- Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Tak W Mak
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor, and Cell Biology, The Karolinska Institute, 171 77 Stockholm, Sweden
| | - David G Brooks
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Immunology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tracy L McGaha
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Immunology, The University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
2
|
Engelen Y, Demuynck R, Ramon J, Breckpot K, De Smedt S, Lajoinie GPR, Braeckmans K, Krysko DV, Lentacker I. Immunogenic cell death as interplay between physical anticancer modalities and immunotherapy. J Control Release 2025:113721. [PMID: 40368187 DOI: 10.1016/j.jconrel.2025.113721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Current cancer treatment strategies in practice nowadays often face limitations in effectiveness due to factors such as resistance, recurrence, or suboptimal outcomes. Traditional approaches like chemotherapy often come with severe systemic side effects due to their non-specific action, prompting the development of more targeted therapies. Among these, physical ablation techniques such as radiotherapy (RT) and focused ultrasound (FUS) have gained attention for their ability to precisely target malignant tissues, reduce physical and mental stress for the patients, and minimize recovery time. These therapies also aim to stimulate the immune system through a process referred to as immunogenic cell death (ICD), enhancing the body's ability to fight cancer, explaining abscopal effects. RT has been the most established of the abovementioned techniques for decades, and will not be included in the review. While initially focused on complete tumor ablation, these techniques are now shifting towards milder, more controlled applications that induce ICD without extensive tissue damage. This review explores how physical ablation therapies can harness ICD to boost anticancer immunity, emphasizing their potential to complement immunotherapies and improve outcomes for cancer patients.
Collapse
Affiliation(s)
- Y Engelen
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - R Demuynck
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - J Ramon
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Biophotonics Research Group, Ghent University, 9000 Ghent, Belgium
| | - K Breckpot
- Laboratory for Molecular and Cellular Therapy, Translational Oncology Research Center, Department of Biomedical Sciences, Faculty of Pharmacy and Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - S De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - G P R Lajoinie
- Physics of Fluids Group, Technical Medical (TechMed) Center, and Max Planck Center for Complex Fluid Dynamics, University of Twente, Enschede, the Netherlands
| | - K Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Biophotonics Research Group, Ghent University, 9000 Ghent, Belgium
| | - D V Krysko
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - I Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Pestal K, Slayden LC, Barton GM. KLF family members control expression of genes required for tissue macrophage identities. J Exp Med 2025; 222:e20240379. [PMID: 40072341 PMCID: PMC11899981 DOI: 10.1084/jem.20240379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 12/13/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Tissue-resident macrophages adopt distinct gene expression profiles and exhibit functional specialization based on their tissue of residence. Recent studies have begun to define the signals and transcription factors that induce these identities. Here we describe an unexpected and specific role for the broadly expressed transcription factor Krüppel-like factor 2 (KLF2) in the development of embryonically derived large cavity macrophages (LCMs) in the serous cavities. KLF2 not only directly regulates the transcription of genes previously shown to specify LCM identity, such as retinoic acid receptors and GATA6, but also is required for induction of many other transcripts that define the identity of these cells. Our results suggest that KLF4 may similarly regulate the identity of alveolar macrophages in the lung. These data demonstrate that broadly expressed transcription factors, such as group 2 KLFs, can play important roles in the specification of distinct identities of tissue-resident macrophages.
Collapse
Affiliation(s)
- Kathleen Pestal
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Leianna C. Slayden
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Gregory M. Barton
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
4
|
Bai X, Guo YR, Zhao ZM, Li XY, Dai DQ, Zhang JK, Li YS, Zhang CD. Macrophage polarization in cancer and beyond: from inflammatory signaling pathways to potential therapeutic strategies. Cancer Lett 2025; 625:217772. [PMID: 40324582 DOI: 10.1016/j.canlet.2025.217772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Macrophages are innate immune cells distributed throughout the body that play vital roles in organ development, tissue homeostasis, and immune surveillance. Macrophages acquire a binary M1/M2 polarized phenotype through signaling cascades upon sensing different signaling molecules in the environment, thereby playing a core role in a series of immune tasks, rendering precise regulation essential. M1/M2 macrophage phenotypes regulate inflammatory responses, while controlled activation of inflammatory signaling pathways is involved in regulating macrophage polarization. Among the relevant signaling pathways, we focus on the six well-characterized NF-κB, MAPK, JAK-STAT, PI3K/AKT, inflammasome, and cGAS-STING inflammatory pathways, and elucidate their roles and crosstalk in macrophage polarization. Furthermore, the effects of many environmental signals that influence macrophage polarization are investigated by modulating these pathways in vivo and in vitro. We thus detail the physiological and pathophysiological status of these six inflammatory signaling pathways and involvement in regulating macrophage polarization in cancer and beyond, as well as describe potential therapeutic approaches targeting these signaling pathways. In this review, the latest research advances in inflammatory signaling pathways regulating macrophage polarization are reviewed, as targeting these inflammatory signaling pathways provides suitable strategies to intervene in macrophage polarization and various tumor and non-tumor diseases.
Collapse
Affiliation(s)
- Xiao Bai
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yun-Ran Guo
- Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhe-Ming Zhao
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xin-Yun Li
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Dong-Qiu Dai
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Cancer Center, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Jia-Kui Zhang
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Yong-Shuang Li
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Chun-Dong Zhang
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
5
|
Kim S, Choi C, Son Y, Lee J, Joo S, Lee YH. BNIP3-mediated mitophagy in macrophages regulates obesity-induced adipose tissue metaflammation. Autophagy 2025:1-19. [PMID: 40195021 DOI: 10.1080/15548627.2025.2487035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Adipose tissue macrophages (ATMs) are key cellular components that respond to nutritional excess, contributing to obesity-induced inflammation and insulin resistance. However, the mechanisms underlying macrophage polarization and recruitment in adipose tissue during obesity remain unclear. In this study, we investigated mitophagy-dependent metabolic reprogramming in ATMs and identified a crucial role of the mitophagy receptor BNIP3 in regulating macrophage polarization in response to obesity. Mitophagic flux in ATMs increased following 12 weeks of high-fat diet (HFD) feeding, with Bnip3 levels upregulated in a HIF1A dependent manner, without affecting other mitophagy receptors. Macrophage-specific bnip3 knockout reduced HFD-induced adipose tissue inflammation and improved glucose tolerance and insulin sensitivity. Mechanistically, hypoxic conditions in vitro induced HIF1A-BNIP3-mediated mitophagy and glycolytic shift in macrophages. Furthermore, HIF1A-BNIP3 signaling-enhanced lipopolysaccharide-induced pro-inflammatory activation in macrophages. These findings demonstrate that BNIP3-mediated mitophagy regulates the glycolytic shift and pro-inflammatory polarization in macrophages and suggest that BNIP3 could be a therapeutical target for obesity-related metabolic diseases.Abbreviation: 2-DG: 2-deoxyglucose; ACADM/MCAD: acyl-CoA dehydrogenase medium chain; ADGRE1/F4/80: adhesion G protein-coupled receptor E1; ATMs: adipose tissue macrophages; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; CLS: crown-like structure; CoCl2: cobalt(II) chloride; COX4/COXIV: cytochrome c oxidase subunit 4; ECAR: extracellular acidification rate; ECM: extraceullular matrix; gWAT: gonadal white adipose tissue; HFD: high-fat diet; HIF1A/HIF-1 α: hypoxia inducible factor 1 subunit alpha; IL1B/IL-1β: interleukin 1 beta; ITGAM/CD11B: integrin subunit alpha M; KO: knockout; LAMs: lipid-associated macrophages; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MRC1/CD206: mannose receptor C-type 1; mtDNA: mitochondrial DNA; NCD: normal chow diet; OCR: oxygen consumption rate; OXPHOS: oxidative phosphorylation; PINK1: PTEN induced kinase 1; PRKN/Parkin: parkin RBR E3 ubiquitin protein ligase; PTPRC/CD45: protein tyrosine phosphatase receptor type C; SVFs: stromal vascular fractions; TEM: transmission electron microscopy; TMRM: tetramethylrhodamine methyl ester; TOMM20: Translocase of outer mitochondrial membrane 20; TREM2: triggering receptor expressed on myeloid cells 2; WT: wild-type.
Collapse
Affiliation(s)
- Sangseob Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Cheoljun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yeonho Son
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Junhyuck Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sungug Joo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Ito E, Hayashizaki R, Hosaka T, Yamane T, Miyata J, Isobe Y, Arita M. Eosinophils and pleural macrophages counter regulate IL-33-elicited airway inflammation via the 12/15-lipoxygenase pathway. Front Immunol 2025; 16:1565670. [PMID: 40313934 PMCID: PMC12043891 DOI: 10.3389/fimmu.2025.1565670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/01/2025] [Indexed: 05/03/2025] Open
Abstract
Introduction Fatty acid metabolism plays a crucial role in regulating airway inflammation through the synthesis of lipid mediators. We have previously demonstrated that a 12/15-lipoxygenase (12/15-LOX or Alox15)-derived mediator attenuates IL-33-induced eosinophilic airway inflammation in mice. However, the cellular sources of these mediators remain unclear. Methods To identify the cellular sources, we used several cell type-specific conditional 12/15-LOX-deficient mice. Results We found that eosinophils and pleural macrophages were the major 12/15-LOX-expressing cell types responsible for attenuating airway inflammation. Eosinophils were the major population of 12/15-LOX-expressing cells found in inflamed lung tissue. In addition, pleural macrophages were the major population of 12/15-LOX-expressing cells in the thoracic cavity and were found to translocate into inflamed lung tissue in response to airway inflammation. Discussion This study suggests that eosinophils and pleural macrophages cooperatively regulate eosinophilic airway inflammation via 12/15-LOX expression. Targeting 12/15-LOX metabolism in these cells may offer new therapeutic strategies for severe asthma.
Collapse
Affiliation(s)
- Emi Ito
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy, Tokyo, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Reika Hayashizaki
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy, Tokyo, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Takuro Hosaka
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy, Tokyo, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Tsuyoshi Yamane
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Jun Miyata
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yosuke Isobe
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy, Tokyo, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Makoto Arita
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy, Tokyo, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| |
Collapse
|
7
|
Iliakis CS, Crotta S, Wack A. The Interplay Between Innate Immunity and Nonimmune Cells in Lung Damage, Inflammation, and Repair. Annu Rev Immunol 2025; 43:395-422. [PMID: 40036704 DOI: 10.1146/annurev-immunol-082323-031852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
As the site of gas exchange, the lung is critical for organismal survival. It is also subject to continual environmental insults inflicted by pathogens, particles, and toxins. Sometimes, these insults result in structural damage and the initiation of an innate immune response. Operating in parallel, the immune response aims to eliminate the threat, while the repair process ensures continual physiological function of the lung. The inflammatory response and repair processes are thus inextricably linked in time and space but are often studied in isolation. Here, we review the interplay of innate immune cells and nonimmune cells during lung insult and repair. We highlight how cellular cross talk can fine-tune the circuitry of the immune response, how innate immune cells can facilitate or antagonize proper organ repair, and the prolonged changes to lung immunity and physiology that can result from acute immune responses and repair processes.
Collapse
Affiliation(s)
- Chrysante S Iliakis
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom;
| | - Stefania Crotta
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom;
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom;
| |
Collapse
|
8
|
Suzuki M, Baillo A, Albarracin L, Elean M, Serda R, Suda Y, Namai F, Nishiyama K, Kitazawa H, Villena J. Modulation of Macrophages TLR4-Mediated Transcriptional Response by Lacticaseibacillus rhamnosus CRL1505 and Lactiplantibacillus plantarum CRL1506. Int J Mol Sci 2025; 26:2688. [PMID: 40141330 PMCID: PMC11942546 DOI: 10.3390/ijms26062688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Lacticaseibacillus rhamnosus CRL1505 and Lactiplantibacillus plantarum CRL1506 increase the resistance of mice to Gram-negative pathogens infections. In this work, we advanced the characterization of the CRL1505 and CRL1506 immunomodulatory properties by evaluating their effect on the Toll-like receptor 4 (TLR4)-triggered immune response in macrophages. We performed experiments in murine RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS) to evaluate the transcriptomic changes induced by lactobacilli. These in vitro experiments were complemented with in vivo studies in mice to determine the effect of CRL1505 and CRL1506 strains on Peyer's patches and peritoneal macrophages. Microarray transcriptomic studies and qPCR confirmation showed that the CRL1505 and CRL1506 strains modulated the expression of inflammatory cytokines and chemokines as well as adhesion molecules in LPS-challenged RAW macrophages, making the effect of L. rhamnosus CRL1505 more remarkable. Lactobacilli also modulate regulatory factors in macrophages. L. plantarum CRL1506 increased il10 and socs2 while L. rhamnosus CRL1505 upregulated il27, socs1, and socs3 in RAW cells, indicating a strain-specific effect. However, in vivo, both strains induced similar effects. Peyer's patches and peritoneal macrophages from mice treated with lactobacilli produced higher levels of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-6, and colony stimulating factor (CSF)-3 after LPS stimulation. This effect would allow improved protection against pathogens. In addition, both lactobacilli equally modulated socs1 and socs2 expressions and IL-10 and IL-27 production in Peyer's patches macrophages and socs3 and IL-10 in peritoneal cells. Furthermore, lactobacilli reduced the production of IL-1β, IL-12, CSF2, C-C motif chemokine ligand (CCL)-2, and CCL8 in LPS-challenged macrophages. This differential modulation of regulatory and inflammatory factors would allow minimal inflammatory-mediated tissue damage during the generation of the innate immune response. This work provides evidence that L. rhamnosus CRL1505 and L. plantarum CRL1506 modulate macrophages' TLR4-mediated immunotranscriptomic response, helping to improve protection against Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Masahiko Suzuki
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.); (F.N.); (K.N.)
| | - Ayelen Baillo
- Laboratory of Technology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina;
| | - Leonardo Albarracin
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (L.A.); (M.E.); (R.S.)
| | - Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (L.A.); (M.E.); (R.S.)
| | - Rodrigo Serda
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (L.A.); (M.E.); (R.S.)
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai 980-8572, Japan;
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Keita Nishiyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Julio Villena
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.); (F.N.); (K.N.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (L.A.); (M.E.); (R.S.)
| |
Collapse
|
9
|
Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H, Cheng Q. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther 2025; 10:93. [PMID: 40055311 PMCID: PMC11889221 DOI: 10.1038/s41392-025-02124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 05/04/2025] Open
Abstract
Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.
Collapse
Affiliation(s)
- Fan Guan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixuan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyao Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yao Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
10
|
Deng K, Isobe Y, Tsumagari K, Kato T, Arai H, Imami K, Arita M. 12/15-Lipoxygenase-Derived Electrophilic Lipid Modifications in Phagocytic Macrophages. ACS Chem Biol 2025; 20:357-368. [PMID: 39818720 PMCID: PMC11854370 DOI: 10.1021/acschembio.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/13/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025]
Abstract
Macrophages remove apoptotic cells via phagocytosis, also known as efferocytosis, during inflammation to maintain tissue homeostasis. This process is accompanied by various metabolic changes in macrophages including the production of lipid metabolites by fatty acid oxygenases. Among these, highly reactive metabolites, called lipid-derived electrophiles (LDEs), modify cysteines and other nucleophilic amino acids in intracellular proteins. However, the landscape and functions of the modifications by these electrophilic metabolites have been poorly characterized. In this study, we used activity-based protein profiling to quantitatively profile the cysteine reactivity landscape and identify the potential targets of endogenous LDE modification during efferocytosis in mouse peritoneal macrophages. Using this methodology, we identified multiple cysteine sites that are highly likely to be modified by LDEs generated by 12/15-lipoxygenase (12/15-LOX), an efferocytosis-related fatty acid oxygenase that is highly expressed in peritoneal macrophages. Among these, actin-depolymerizing protein Cofilin-1 was found to be a target of 12/15-LOX-derived LDEs. In vitro Cofilin-1 activity was attenuated by 12/15-LOX-derived LDEs, and intracellular actin stabilization and efferocytosis were substantially enhanced by the LDE treatment of mouse peritoneal macrophages. These results highlighted the role of intracellular LDE modification during efferocytosis in macrophages.
Collapse
Affiliation(s)
- Kaiyuan Deng
- Division
of Physiological Chemistry and Metabolism, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-0011, Japan
- Laboratory
of Metabolomics, RIKEN Center for Integrative
Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yosuke Isobe
- Division
of Physiological Chemistry and Metabolism, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-0011, Japan
- Laboratory
of Metabolomics, RIKEN Center for Integrative
Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Cellular
and Molecular Epigenetics Laboratory, Graduate School of Medical Life
Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuya Tsumagari
- Proteome
Homeostasis Research Unit, RIKEN Center
for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Taiga Kato
- Laboratory
of Metabolomics, RIKEN Center for Integrative
Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Department
of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Arai
- Department
of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koshi Imami
- Proteome
Homeostasis Research Unit, RIKEN Center
for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Makoto Arita
- Division
of Physiological Chemistry and Metabolism, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-0011, Japan
- Laboratory
of Metabolomics, RIKEN Center for Integrative
Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Cellular
and Molecular Epigenetics Laboratory, Graduate School of Medical Life
Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
11
|
Cai Y, Shang L, Zhou F, Zhang M, Li J, Wang S, Lin Q, Huang J, Yang S. Macrophage pyroptosis and its crucial role in ALI/ARDS. Front Immunol 2025; 16:1530849. [PMID: 40028334 PMCID: PMC11867949 DOI: 10.3389/fimmu.2025.1530849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Acute lung injury(ALI)/acute respiratory distress syndrome(ARDS) is a severe clinical syndrome characterized by high morbidity and mortality, primarily due to lung injury. However, the pathogenesis of ALI/ARDS remains a complex issue. In recent years, the role of macrophage pyroptosis in lung injury has garnered extensive attention worldwide. This paper reviews the mechanism of macrophage pyroptosis, discusses its role in ALI/ARDS, and introduces several drugs and intervening measures that can regulate macrophage pyroptosis to influence the progression of ALI/ARDS. By doing so, we aim to enhance the understanding of the mechanism of macrophage pyroptosis in ALI/ARDS and provide novel insights for its treatment.
Collapse
Affiliation(s)
- Yuju Cai
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luorui Shang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fangyuan Zhou
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengqi Zhang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinxiao Li
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhan Wang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qifeng Lin
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianghua Huang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shenglan Yang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
12
|
Zhao M, Jankovic D, Link VM, Souza COS, Hornick KM, Oyesola O, Belkaid Y, Lack J, Loke P. Genetic variation in IL-4 activated tissue resident macrophages determines strain-specific synergistic responses to LPS epigenetically. Nat Commun 2025; 16:1030. [PMID: 39863579 PMCID: PMC11762786 DOI: 10.1038/s41467-025-56379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries. IL-4-directed epigenomic remodeling reveals C57BL/6 specific enrichment of NF-κB, IRF, and STAT motifs. Additionally, IL-4-activated C57BL/6 TRMs demonstrate an augmented synergistic response upon in vitro lipopolysaccharide (LPS) exposure, despite naïve BALB/c TRMs displaying a more robust transcriptional response to LPS. Single-cell RNA sequencing (scRNA-seq) analysis of mixed bone marrow chimeras indicates that transcriptional differences and synergy are cell intrinsic within the same tissue environment. Hence, genetic variation alters IL-4-induced cell intrinsic epigenetic reprogramming resulting in strain specific synergistic responses to LPS exposure.
Collapse
Affiliation(s)
- Mingming Zhao
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Dragana Jankovic
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Camila Oliveira Silva Souza
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Katherine M Hornick
- NIAID Collaborative Bioinformatics Resource, Integrated Data Sciences Section, Research Technology Branch, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Oyebola Oyesola
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource, Integrated Data Sciences Section, Research Technology Branch, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Png Loke
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
13
|
Pöpperl P, Stoff M, Beineke A. Alveolar Macrophages in Viral Respiratory Infections: Sentinels and Saboteurs of Lung Defense. Int J Mol Sci 2025; 26:407. [PMID: 39796262 PMCID: PMC11721917 DOI: 10.3390/ijms26010407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Respiratory viral infections continue to cause pandemic and epidemic outbreaks in humans and animals. Under steady-state conditions, alveolar macrophages (AlvMϕ) fulfill a multitude of tasks in order to maintain tissue homeostasis. Due to their anatomic localization within the deep lung, AlvMϕ are prone to detect and react to inhaled viruses and thus play a role in the early pathogenesis of several respiratory viral infections. Here, detection of viral pathogens causes diverse antiviral and proinflammatory reactions. This fact not only makes them promising research targets, but also suggests them as potential targets for therapeutic and prophylactic approaches. This review aims to give a comprehensive overview of the current knowledge about the role of AlvMϕ in respiratory viral infections of humans and animals.
Collapse
Affiliation(s)
- Pauline Pöpperl
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Melanie Stoff
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| |
Collapse
|
14
|
Zhu JY, Jiang RY, Zhang HP, Fang ZR, Zhou HH, Wei Q, Wang X. Advancements in research and clinical management of interstitial lung injury associated with ADC drugs administration in breast cancer. Discov Oncol 2024; 15:843. [PMID: 39729236 DOI: 10.1007/s12672-024-01705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Antibody-drug conjugates (ADCs) represent a novel class of targeted anti-tumor medications that utilize the covalent linkage between monoclonal antibodies and cytotoxic agents. This unique mechanism combines the cytotoxic potency of drugs with the targeting specificity conferred by antigen recognition. However, it is essential to recognize that many ADCs still face challenges related to off-target toxicity akin to cytotoxic payloads, as well as targeted toxicity and other potential life-threatening adverse effects, such as treatment-induced interstitial lung injury. Currently, of the four approved ADC drugs for breast cancer, several reports have documented post-treatment lung injury-related fatalities. As a result, treatment-induced interstitial lung injury due to ADC drugs has become a clinical concern. In this review article, we delve into the factors associated with ADC-induced interstitial lung injury in patients with advanced-stage breast cancer and highlight strategies expected to decrease the incidence of ADC-related interstitial lung injury in the years ahead. These efforts are directed at enhancing treatment outcomes in both advanced and early-stage cancer patients while also providing insights into the development and innovation of ADC drugs and bolstering clinicians' understanding of the diagnosis and management of ADC-associated interstitial lung injury.
Collapse
Affiliation(s)
- Jia-Yu Zhu
- Department of Graduate Student, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Rui-Yuan Jiang
- Department of Graduate Student, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Huan-Ping Zhang
- Department of Graduate Student, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Department of Graduate Student, Wenzhou Medical University, No. 270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Zi-Ru Fang
- Department of Graduate Student, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Huan-Huan Zhou
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Qing Wei
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Xiaojia Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
15
|
Xia S, Gu X, Wang G, Zhong Y, Ma F, Liu Q, Xie J. Regulated Cell Death of Alveolar Macrophages in Acute Lung Inflammation: Current Knowledge and Perspectives. J Inflamm Res 2024; 17:11419-11436. [PMID: 39722732 PMCID: PMC11669335 DOI: 10.2147/jir.s497775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a common and serious clinical lung disease characterized by extensive alveolar damage and inflammation leading to impaired gas exchange. Alveolar macrophages (AMs) maintain homeostatic properties and immune defenses in lung tissues. Several studies have reported that AMs are involved in and regulate ALI/ARDS onset and progression via different regulated cell death (RCD) programs, such as pyroptosis, apoptosis, autophagic cell death, and necroptosis. Notably, the effects of RCD in AMs in disease are complex and variable depending on the environment and stimuli. In this review, we provide a comprehensive perspective on how regulated AMs death impacts on ALI/ARDS and assess its potential in new therapeutic development. Additionally, we describe the crosstalk between different RCD types in ALI, and provide new perspectives for the treatment of ALI/ARDS and other severe lung diseases.
Collapse
Affiliation(s)
- Siwei Xia
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiaoyan Gu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Gaojian Wang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yizhi Zhong
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Fengjie Ma
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Qinxue Liu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Junran Xie
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
16
|
Fatima M, Huang F, Fu X. Emerging influence of RNA post-transcriptional modifications in the synovial homeostasis of rheumatoid arthritis. Front Immunol 2024; 15:1494873. [PMID: 39717780 PMCID: PMC11663879 DOI: 10.3389/fimmu.2024.1494873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is an important autoimmune disease that affects synovial tissues, accompanied by redness, pain, and swelling as main symptoms, which will limit the quality of daily life and even cause disability. Multiple coupling effects among the various cells in the synovial micro-environment modulate the poor progression and development of diseases. Respectively, synovium is the primary target tissue of inflammatory articular pathologies; synovial hyperplasia, and excessive accumulation of immune cells lead to joint remodelling and destroyed function. In general, epigenetic modification is an effective strategy to regulate dynamic balance of synovial homeostasis. Several typical post-transcriptional changes in cellular RNA can control the post-transcriptional modification of RNA structure. It can inhibit important processes, including degradation of RNA and nuclear translocation. Recent studies have found that RNA modification regulates the homeostasis of the synovial micro-environment and forms an intricate network in the "bone-cartilage-synovium" feedback loop. Aberrant regulation of RNA methylation triggers the pathological development of RA. Collectively, this review summarises recent advanced research about RNA modification in modulating synovial homeostasis by making close interaction among resident synovial macrophages, fibroblasts, T cells, and B cells, which could display the dramatic role of RNA modifications in RA pathophysiological process and perform the promising therapeutic target for treating RA.
Collapse
Affiliation(s)
- Madiha Fatima
- Department of Neurology, The Affiliated Yong-chuan Hospital of Chongqing Medical University, Chongqing, China
- State Key Laboratory of Neurobiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengmei Huang
- Medical Examination Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohong Fu
- Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Qian S, Long Y, Tan G, Li X, Xiang B, Tao Y, Xie Z, Zhang X. Programmed cell death: molecular mechanisms, biological functions, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e70024. [PMID: 39619229 PMCID: PMC11604731 DOI: 10.1002/mco2.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 01/12/2025] Open
Abstract
Programmed cell death represents a precisely regulated and active cellular demise, governed by a complex network of specific genes and proteins. The identification of multiple forms of programmed cell death has significantly advanced the understanding of its intricate mechanisms, as demonstrated in recent studies. A thorough grasp of these processes is essential across various biological disciplines and in the study of diseases. Nonetheless, despite notable progress, the exploration of the relationship between programmed cell death and disease, as well as its clinical application, are still in a nascent stage. Therefore, further exploration of programmed cell death and the development of corresponding therapeutic methods and strategies holds substantial potential. Our review provides a detailed examination of the primary mechanisms behind apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. Following this, the discussion delves into biological functions and diseases associated dysregulated programmed cell death. Finally, we highlight existing and potential therapeutic targets and strategies focused on cancers and neurodegenerative diseases. This review aims to summarize the latest insights on programmed cell death from mechanisms to diseases and provides a more reliable approach for clinical transformation.
Collapse
Affiliation(s)
- Shen'er Qian
- Department of Otolaryngology Head and Neck SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Yao Long
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunanChina
- Department of PathologyXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Guolin Tan
- Department of Otolaryngology Head and Neck SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Xiaoguang Li
- Department of Otolaryngology Head and Neck SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of Medicine, Shanghai Key LabShanghaiChina
| | - Bo Xiang
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunanChina
- Furong LaboratoryCentral South UniversityChangshaHunanChina
| | - Yongguang Tao
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunanChina
| | - Zuozhong Xie
- Department of Otolaryngology Head and Neck SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiaowei Zhang
- Department of Otolaryngology Head and Neck SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
18
|
Gottschalk RA, Germain RN. Linking signal input, cell state, and spatial context to inflammatory responses. Curr Opin Immunol 2024; 91:102462. [PMID: 39265520 DOI: 10.1016/j.coi.2024.102462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/14/2024]
Abstract
Signal integration is central to a causal understanding of appropriately scaled inflammatory responses. Here, we discuss recent progress in our understanding of the stimulus-response linkages downstream of pro-inflammatory inputs, with special attention to (1) the impact of cell state on the specificity of evoked gene expression and (2) the critical role of the spatial context of stimulus exposure. Advances in these directions are emerging from new tools for inferring cell-cell interactions and the activities of cytokines and transcription factors in complex microenvironments, enabling analysis of signal integration in tissue settings. Building on data-driven elucidation of factors driving inflammatory outcomes, mechanistic modeling can then contribute to a quantitative understanding of regulatory events that balance protective versus pathological inflammation.
Collapse
Affiliation(s)
- Rachel A Gottschalk
- Department of Immunology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| | | |
Collapse
|
19
|
Guillet S, Lazarov T, Jordan N, Boisson B, Tello M, Craddock B, Zhou T, Nishi C, Bareja R, Yang H, Rieux-Laucat F, Fregel Lorenzo RI, Dyall SD, Isenberg D, D'Cruz D, Lachmann N, Elemento O, Viale A, Socci ND, Abel L, Nagata S, Huse M, Miller WT, Casanova JL, Geissmann F. ACK1 and BRK non-receptor tyrosine kinase deficiencies are associated with familial systemic lupus and involved in efferocytosis. eLife 2024; 13:RP96085. [PMID: 39570652 PMCID: PMC11581429 DOI: 10.7554/elife.96085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients' ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.
Collapse
Affiliation(s)
- Stephanie Guillet
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Ecole doctorale Bio Sorbonne Paris Cité, Université Paris Descartes-Sorbonne Paris CitéParisFrance
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - Natasha Jordan
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ HospitalsLondonUnited Kingdom
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller UniversityNew YorkUnited States
- University of Paris Cité, Imagine InstituteParisFrance
| | - Maria Tello
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Barbara Craddock
- SKI Stem Cell Research Core, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Ting Zhou
- SKI Stem Cell Research Core, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Chihiro Nishi
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka UniversityOsakaJapan
| | - Rohan Bareja
- Cary and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Meyer Cancer Center Weill Cornell Medical CollegeNew YorkUnited States
| | - Hairu Yang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | | | | | - Sabrina D Dyall
- Department of Biosciences and Ocean Studies, Faculty of Science, University of MauritiusReduitMauritius
| | - David Isenberg
- Bioinformatics Core, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - David D'Cruz
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ HospitalsLondonUnited Kingdom
| | - Nico Lachmann
- Centre for Rheumatology, Division of Medicine, University College London, The Rayne BuildingLondonUnited Kingdom
| | - Olivier Elemento
- Cary and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Meyer Cancer Center Weill Cornell Medical CollegeNew YorkUnited States
| | - Agnes Viale
- Institute of Experimental Hematology, REBIRTH Cluster of Excellence, Hannover Medical SchoolHannoverGermany
| | - Nicholas D Socci
- Institute of Experimental Hematology, REBIRTH Cluster of Excellence, Hannover Medical SchoolHannoverGermany
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller UniversityNew YorkUnited States
- University of Paris Cité, Imagine InstituteParisFrance
| | - Shigekazu Nagata
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka UniversityOsakaJapan
| | - Morgan Huse
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - W Todd Miller
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Department of Physiology and Biophysics, Stony Brook University School of MedicineStony BrookUnited States
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller UniversityNew YorkUnited States
- University of Paris Cité, Imagine InstituteParisFrance
- Howard Hughes Medical InstituteNew YorkUnited States
- Lab of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick ChildrenParisFrance
- Department of Pediatrics, Necker Hospital for Sick ChildrenParisFrance
| | - Frédéric Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ HospitalsLondonUnited Kingdom
| |
Collapse
|
20
|
Dalla E, Papanicolaou M, Park MD, Barth N, Hou R, Segura-Villalobos D, Valencia Salazar L, Sun D, Forrest ARR, Casanova-Acebes M, Entenberg D, Merad M, Aguirre-Ghiso JA. Lung-resident alveolar macrophages regulate the timing of breast cancer metastasis. Cell 2024; 187:6631-6648.e20. [PMID: 39378878 PMCID: PMC11568918 DOI: 10.1016/j.cell.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
Breast disseminated cancer cells (DCCs) can remain dormant in the lungs for extended periods, but the mechanisms limiting their expansion are not well understood. Research indicates that tissue-resident alveolar macrophages suppress breast cancer metastasis in lung alveoli by inducing dormancy. Through ligand-receptor mapping and intravital imaging, it was found that alveolar macrophages express transforming growth factor (TGF)-β2. This expression, along with persistent macrophage-cancer cell interactions via the TGF-βRIII receptor, maintains cancer cells in a dormant state. Depleting alveolar macrophages or losing the TGF-β2 receptor in cancer cells triggers metastatic awakening. Aggressive breast cancer cells are either suppressed by alveolar macrophages or evade this suppression by avoiding interaction and downregulating the TGF-β2 receptor. Restoring TGF-βRIII in aggressive cells reinstates TGF-β2-mediated macrophage growth suppression. Thus, alveolar macrophages act as a metastasis immune barrier, and downregulation of TGF-β2 signaling allows cancer cells to overcome macrophage-mediated growth suppression.
Collapse
Affiliation(s)
- Erica Dalla
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Papanicolaou
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Matthew D Park
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicole Barth
- Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Rui Hou
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Deisy Segura-Villalobos
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Luis Valencia Salazar
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Dan Sun
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Alistair R R Forrest
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Maria Casanova-Acebes
- Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| | - David Entenberg
- Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Miriam Merad
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julio A Aguirre-Ghiso
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.
| |
Collapse
|
21
|
Zhang J, Sjøberg KA, Gong S, Wang T, Li F, Kuo A, Durot S, Majcher A, Ardicoglu R, Desgeorges T, Mann CG, Soro Arnáiz I, Fitzgerald G, Gilardoni P, Abel ED, Kon S, Olivares-Villagómez D, Zamboni N, Wolfrum C, Hornemann T, Morscher R, Tisch N, Ghesquière B, Kopf M, Richter EA, De Bock K. Endothelial metabolic control of insulin sensitivity through resident macrophages. Cell Metab 2024; 36:2383-2401.e9. [PMID: 39270655 DOI: 10.1016/j.cmet.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
Endothelial cells (ECs) not only form passive blood conduits but actively contribute to nutrient transport and organ homeostasis. The role of ECs in glucose homeostasis is, however, poorly understood. Here, we show that, in skeletal muscle, endothelial glucose transporter 1 (Glut1/Slc2a1) controls glucose uptake via vascular metabolic control of muscle-resident macrophages without affecting transendothelial glucose transport. Lowering endothelial Glut1 via genetic depletion (Glut1ΔEC) or upon a short-term high-fat diet increased angiocrine osteopontin (OPN/Spp1) secretion. This promoted resident muscle macrophage activation and proliferation, which impaired muscle insulin sensitivity. Consequently, co-deleting Spp1 from ECs prevented macrophage accumulation and improved insulin sensitivity in Glut1ΔEC mice. Mechanistically, Glut1-dependent endothelial glucose metabolic rewiring increased OPN in a serine metabolism-dependent fashion. Our data illustrate how the glycolytic endothelium creates a microenvironment that controls resident muscle macrophage phenotype and function and directly links resident muscle macrophages to the maintenance of muscle glucose homeostasis.
Collapse
Affiliation(s)
- Jing Zhang
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Kim Anker Sjøberg
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Songlin Gong
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Tongtong Wang
- Laboratory of Translational Nutritional Biology, Department Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, 8603 Zürich, Switzerland
| | - Fengqi Li
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China; Key Laboratory of Immune Response and Immunotherapy, Hefei, China
| | - Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Stephan Durot
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Adam Majcher
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland; Institute for Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Raphaela Ardicoglu
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland; Laboratory of Molecular and Behavioral Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Thibaut Desgeorges
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Charlotte Greta Mann
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Ines Soro Arnáiz
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Gillian Fitzgerald
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Paola Gilardoni
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Shigeyuki Kon
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University, Fukuyama, Japan
| | - Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutritional Biology, Department Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, 8603 Zürich, Switzerland
| | - Thorsten Hornemann
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland; Institute for Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Raphael Morscher
- Pediatric Cancer Metabolism Laboratory, Children`s Research Center, University of Zürich, 8032 Zürich, Switzerland
| | - Nathalie Tisch
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Bart Ghesquière
- Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Erik A Richter
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland.
| |
Collapse
|
22
|
Knudsen-Clark AM, Mwangi D, Cazarin J, Morris K, Baker C, Hablitz LM, McCall MN, Kim M, Altman BJ. Circadian rhythms of macrophages are altered by the acidic tumor microenvironment. EMBO Rep 2024; 25:5080-5112. [PMID: 39415049 PMCID: PMC11549407 DOI: 10.1038/s44319-024-00288-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are prime therapeutic targets due to their pro-tumorigenic functions, but varying efficacy of macrophage-targeting therapies highlights our incomplete understanding of how macrophages are regulated within the tumor microenvironment (TME). The circadian clock is a key regulator of macrophage function, but how circadian rhythms of macrophages are influenced by the TME remains unknown. Here, we show that conditions associated with the TME such as polarizing stimuli, acidic pH, and lactate can alter circadian rhythms in macrophages. While cyclic AMP (cAMP) has been reported to play a role in macrophage response to acidic pH, our results indicate pH-driven changes in circadian rhythms are not mediated solely by cAMP signaling. Remarkably, circadian disorder of TAMs was revealed by clock correlation distance analysis. Our data suggest that heterogeneity in circadian rhythms within the TAM population level may underlie this circadian disorder. Finally, we report that circadian regulation of macrophages suppresses tumor growth in a murine model of pancreatic cancer. Our work demonstrates a novel mechanism by which the TME influences macrophage biology through modulation of circadian rhythms.
Collapse
Affiliation(s)
- Amelia M Knudsen-Clark
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Daniel Mwangi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Juliana Cazarin
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Kristina Morris
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Cameron Baker
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew N McCall
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Brian J Altman
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
23
|
Dong M, Fitzgerald KA. DNA-sensing pathways in health, autoinflammatory and autoimmune diseases. Nat Immunol 2024; 25:2001-2014. [PMID: 39367124 DOI: 10.1038/s41590-024-01966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 10/06/2024]
Abstract
Detection of microbial DNA is a primary means of host defense. In mammalian cells, DNA-sensing pathways induce robust anti-microbial responses and initiation of adaptive immunity, leading to the eventual clearance of the infectious agent. However, while conferring the advantage of broad detection capability, the sequence-independent recognition mechanisms of most DNA sensors pose a significant challenge for mammalian cells to maintain ignorance to self-DNA under homeostatic conditions. In this Review, we summarize the fundamentals of DNA-sensing pathways and the intricate regulatory networks that keep these pathways in check. In addition, we describe how regulatory restraints can be defective and underlie human autoinflammatory and autoimmune diseases. Further, we discuss therapies in development that limit inflammation fueled by self-DNA or inappropriate activation of DNA-sensing pathways.
Collapse
Affiliation(s)
- Mingqi Dong
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
24
|
Firouzjaei AA, Mohammadi-Yeganeh S. The intricate interplay between ferroptosis and efferocytosis in cancer: unraveling novel insights and therapeutic opportunities. Front Oncol 2024; 14:1424218. [PMID: 39544291 PMCID: PMC11560889 DOI: 10.3389/fonc.2024.1424218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/04/2024] [Indexed: 11/17/2024] Open
Abstract
The complex interplay between ferroptosis and efferocytosis in cancer has attracted significant interest recently. Efferocytosis, the process of eliminating apoptotic cells, is essential for preserving tissue homeostasis and reducing inflammation. However, dysregulation of efferocytosis can have profound effects on cancer. Apoptotic cells accumulate because of impaired efferocytosis, which triggers chronic inflammation and the release of pro-inflammatory chemicals. Surprisingly, accumulating evidence suggests that dysregulation of ferroptosis- a form of controlled cell death characterized by lipid peroxidation and the buildup iron-dependent reactive oxygen species (ROS)-can influence efferocytic activities within the tumor microenvironment. Dysfunctional iron metabolism and increased lipid peroxidation, are associated with ferroptosis, resulting in inadequate apoptotic cell clearance. Conversely, apoptotic cells can activate ferroptotic pathways, increasing oxidative stress and inducing cell death in cancer cells. This reciprocal interaction emphasizes the complex relationship between efferocytosis and ferroptosis in cancer biology. Understanding and managing the delicate balance between cell clearance and cell death pathways holds significant therapeutic potential in cancer treatment. Targeting the efferocytosis and ferroptosis pathways may offer new opportunities for improving tumor clearance, reducing inflammation, and sensitizing cancer cells to therapeutic interventions. Further research into the interaction between efferocytosis and ferroptosis in cancer will provide valuable insights for the development of novel therapies aimed at restoring tissue homeostasis and improving patient outcomes.
Collapse
|
25
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
26
|
Lee SH, Sacks DL. Resilience of dermis resident macrophages to inflammatory challenges. Exp Mol Med 2024; 56:2105-2112. [PMID: 39349826 PMCID: PMC11542019 DOI: 10.1038/s12276-024-01313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 10/03/2024] Open
Abstract
The skin serves as a complex barrier organ populated by tissue-resident macrophages (TRMs), which play critical roles in defense, homeostasis, and tissue repair. This review examines the functions of dermis resident TRMs in different inflammatory settings, their embryonic origins, and their long-term self-renewal capabilities. We highlight the M2-like phenotype of dermal TRMs and their specialized functions in perivascular and perineuronal niches. Their interactions with type 2 immune cells, autocrine cytokines such as IL-10, and their phagocytic clearance of apoptotic cells have been explored as mechanisms for M2-like dermal TRM self-maintenance and function. In conclusion, we address the need to bridge murine models with human studies, with the possibility of targeting TRMs to promote skin immunity or restrain cutaneous pathology.
Collapse
Affiliation(s)
- Sang Hun Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David L Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Saavedra PHV, Trzeciak AJ, Lipshutz A, Daman AW, O'Neal AJ, Liu ZL, Wang Z, Romero-Pichardo JE, Rojas WS, Zago G, van den Brink MRM, Josefowicz SZ, Lucas CD, Anderson CJ, Rudensky AY, Perry JSA. Broad-spectrum antibiotics disrupt homeostatic efferocytosis. Nat Metab 2024; 6:1682-1694. [PMID: 39122784 PMCID: PMC7616532 DOI: 10.1038/s42255-024-01107-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024]
Abstract
The clearance of apoptotic cells, termed efferocytosis, is essential for tissue homeostasis and prevention of autoimmunity1. Although past studies have elucidated local molecular signals that regulate homeostatic efferocytosis in a tissue2,3, whether signals arising distally also regulate homeostatic efferocytosis remains elusive. Here, we show that large peritoneal macrophage (LPM) display impairs efferocytosis in broad-spectrum antibiotics (ABX)-treated, vancomycin-treated and germ-free mice in vivo, all of which have a depleted gut microbiota. Mechanistically, the microbiota-derived short-chain fatty acid butyrate directly boosts efferocytosis efficiency and capacity in mouse and human macrophages, and rescues ABX-induced LPM efferocytosis defects in vivo. Bulk messenger RNA sequencing of butyrate-treated macrophages in vitro and single-cell messenger RNA sequencing of LPMs isolated from ABX-treated and butyrate-rescued mice reveals regulation of efferocytosis-supportive transcriptional programmes. Specifically, we find that the efferocytosis receptor T cell immunoglobulin and mucin domain containing 4 (TIM-4, Timd4) is downregulated in LPMs of ABX-treated mice but rescued by oral butyrate. We show that TIM-4 is required for the butyrate-induced enhancement of LPM efferocytosis capacity and that LPM efferocytosis is impaired beyond withdrawal of ABX. ABX-treated mice exhibit significantly worse disease in a mouse model of lupus. Our results demonstrate that homeostatic efferocytosis relies on distal metabolic signals and suggest that defective homeostatic efferocytosis may explain the link between ABX use and inflammatory disease4-7.
Collapse
Affiliation(s)
- Pedro H V Saavedra
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Biology, Northeastern University, Boston, MA, USA.
| | - Alissa J Trzeciak
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Allie Lipshutz
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew W Daman
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, Cornell University, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Anya J O'Neal
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zong-Lin Liu
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhaoquan Wang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Jesús E Romero-Pichardo
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Waleska Saitz Rojas
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giulia Zago
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marcel R M van den Brink
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Steven Z Josefowicz
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, Cornell University, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Christopher D Lucas
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, UK
- Institute for Regeneration and Repair, Edinburgh BioQuarter, UK
| | | | - Alexander Y Rudensky
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, Cornell University, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute and Ludwig Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin S A Perry
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, Cornell University, New York, NY, USA.
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
28
|
Lai JH, Wu DW, Huang CY, Hung LF, Wu CH, Ho LJ. USP18 induction regulates immunometabolism to attenuate M1 signal-polarized macrophages and enhance IL-4-polarized macrophages in systemic lupus erythematosus. Clin Immunol 2024; 265:110285. [PMID: 38880201 DOI: 10.1016/j.clim.2024.110285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Effective treatment of systemic lupus erythematosus (SLE) remains an unmet need. Different subsets of macrophages play differential roles in SLE and the modulation of macrophage polarization away from M1 status is beneficial for SLE therapeutics. Given the pathogenic roles of type I interferons (IFN-I) in SLE, this study investigated the effects and mechanisms of a mitochondria localization molecule ubiquitin specific peptidase 18 (USP18) preserving anti-IFN effects and isopeptidase activity on macrophage polarization. After observing USP18 induction in monocytes from SLE patients, we studied mouse bone marrow-derived macrophages and showed that USP18 deficiency increased M1signal (LPS + IFN-γ treatment)-induced macrophage polarization, and the effects involved the induction of glycolysis and mitochondrial respiration and the expression of several glycolysis-associated enzymes and molecules, such as hypoxia-inducible factor-1α. Moreover, the effects on mitochondrial activities, such as mitochondrial DNA release and mitochondrial reactive oxygen species production were observed. In contrast, the overexpression of USP18 inhibited M1signal-mediated and enhanced interleukin-4 (IL-4)-mediated polarization of macrophages and the related cellular events. Moreover, the levels of USP18 mRNA expression showed tendency of correlation with the expression of metabolic enzymes in monocytes from patients with SLE. We thus concluded that by preserving anti-IFN effect and downregulating M1 signaling, promoting USP18 activity may serve as a useful approach for SLE therapeutics.
Collapse
Affiliation(s)
- Jenn-Haung Lai
- Department of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, ROC; Graduate Institute of Clinical Research, National Defense Medical Center, Taipei, Taiwan, ROC.
| | - De-Wei Wu
- Department of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, ROC
| | - Chuan-Yueh Huang
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, ROC
| | - Li-Feng Hung
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, ROC
| | - Chien-Hsiang Wu
- Department of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, ROC
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, ROC.
| |
Collapse
|
29
|
Knudsen-Clark AM, Mwangi D, Cazarin J, Morris K, Baker C, Hablitz LM, McCall MN, Kim M, Altman BJ. Circadian rhythms of macrophages are altered by the acidic pH of the tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580339. [PMID: 38405770 PMCID: PMC10888792 DOI: 10.1101/2024.02.14.580339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Macrophages are prime therapeutic targets due to their pro-tumorigenic and immunosuppressive functions in tumors, but the varying efficacy of therapeutic approaches targeting macrophages highlights our incomplete understanding of how the tumor microenvironment (TME) can influence regulation of macrophages. The circadian clock is a key internal regulator of macrophage function, but how circadian rhythms of macrophages may be influenced by the tumor microenvironment remains unknown. We found that conditions associated with the TME such as polarizing stimuli, acidic pH, and elevated lactate concentrations can each alter circadian rhythms in macrophages. Circadian rhythms were enhanced in pro-resolution macrophages but suppressed in pro-inflammatory macrophages, and acidic pH had divergent effects on circadian rhythms depending on macrophage phenotype. While cyclic AMP (cAMP) has been reported to play a role in macrophage response to acidic pH, our results indicate that pH-driven changes in circadian rhythms are not mediated solely by the cAMP signaling pathway. Remarkably, clock correlation distance analysis of tumor-associated macrophages (TAMs) revealed evidence of circadian disorder in TAMs. This is the first report providing evidence that circadian rhythms of macrophages are altered within the TME. Our data further suggest that heterogeneity in circadian rhythms at the population level may underlie this circadian disorder. Finally, we sought to determine how circadian regulation of macrophages impacts tumorigenesis, and found that tumor growth was suppressed when macrophages had a functional circadian clock. Our work demonstrates a novel mechanism by which the tumor microenvironment can influence macrophage biology through altering circadian rhythms, and the contribution of circadian rhythms in macrophages to suppressing tumor growth.
Collapse
|
30
|
Hao K, Gao KM, Strauss M, Subramanian S, Marshak-Rothstein A. IFNγ initiates TLR9-dependent autoimmune hepatitis in DNase II deficient mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602775. [PMID: 39071327 PMCID: PMC11275780 DOI: 10.1101/2024.07.10.602775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Patients with biallelic hypomorphic mutation in DNASE2 develop systemic autoinflammation and early-onset liver fibrosis. Prior studies showed that Dnase2 -/- Ifnar -/- double knockout (DKO) mice develop Type I IFN-independent liver inflammation, but immune mechanisms were unclear. We now show that DKO mice recapitulate many features of human autoimmune hepatitis (AIH), including periportal and interstitial inflammation and fibrosis and elevated ALT. Infiltrating cells include CD8+ tissue resident memory T cells, type I innate lymphoid cells, and inflammatory monocyte/macrophage cells that replace the Kupffer cell pool. Importantly, TLR9 expression by bone marrow-derived cells is required for the the development of AIH. TLR9 is highly expressed by inflammatory myeloid cells but not long-lived Kupffer cells. Furthermore, the initial recruitment of TLR9 expressing monocytes and subsequent activation of lymphocytes requires IFNγ signaling. These findings highlight a critical role of feed forward loop between TLR9 expressing monocyte-lineage cells and IFNg producing lymphocytes in autoimmune hepatitis.
Collapse
|
31
|
Okabe Y. Development and organization of omental milky spots. Immunol Rev 2024; 324:68-77. [PMID: 38662554 DOI: 10.1111/imr.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/09/2024] [Indexed: 07/23/2024]
Abstract
The milky spots in omentum are atypical lymphoid tissues that play a pivotal role in regulating immune responses in the peritoneal cavity. The milky spots act as central hubs for collecting antigens and particles from the peritoneal cavity, regulating lymphocyte trafficking, promoting the differentiation and self-renewal of immune cells, and supporting the local germinal centre response. In addition, the milky spots exhibit unique developmental characteristics that combine the features of secondary and tertiary lymphoid tissues. These structures are innately programmed to form during foetal development; however, they can also be formed postnatally in response to peritoneal irritation such as inflammation, infection, obesity, or tumour metastasis. In this review, I discuss emerging perspectives on homeostatic development and organization of the milky spots.
Collapse
Affiliation(s)
- Yasutaka Okabe
- Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| |
Collapse
|
32
|
Guillet S, Lazarov T, Jordan N, Boisson B, Tello M, Craddock B, Zhou T, Nishi C, Bareja R, Yang H, Rieux-Laucat F, Lorenzo RIF, Dyall SD, Isenberg D, D’Cruz D, Lachmann N, Elemento O, Viale A, Socci ND, Abel L, Nagata S, Huse M, Miller WT, Casanova JL, Geissmann F. ACK1 and BRK non-receptor tyrosine kinase deficiencies are associated with familial systemic lupus and involved in efferocytosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.15.24302255. [PMID: 38883731 PMCID: PMC11177913 DOI: 10.1101/2024.02.15.24302255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Systemic Lupus Erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with systemic lupus erythematosus (SLE) we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, non-receptor tyrosine kinases (NRTKs) regulate activation, migration, and proliferation of immune cells. We found that the patients' ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced Pluripotent Stem Cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.
Collapse
Affiliation(s)
- Stephanie Guillet
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Ecole doctorale Bio Sorbonne Paris Cité, Université Paris Descartes-Sorbonne Paris Cité.Paris, France
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of MedicalSciences, New York, New York 10065, USA
| | - Natasha Jordan
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ Hospitals, London SE1 1UL, UK
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- University of Paris Cité, Imagine Institute, Paris, France
| | - Maria Tello
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Barbara Craddock
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, 11794-8661
| | - Ting Zhou
- SKI Stem Cell Research Core, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Chihiro Nishi
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871
| | - Rohan Bareja
- Cary and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Meyer Cancer Center Weill Cornell Medical College, New York, New York 10065, USA
| | - Hairu Yang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | | | | | - Sabrina D. Dyall
- Department of Biosciences and Ocean Studies, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - David Isenberg
- Centre for Rheumatology, Division of Medicine, University College London, The Rayne Building, University College London
| | - David D’Cruz
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ Hospitals, London SE1 1UL, UK
| | - Nico Lachmann
- Institute of Experimental Hematology, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover 30625, Germany
| | - Olivier Elemento
- Cary and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Meyer Cancer Center Weill Cornell Medical College, New York, New York 10065, USA
| | - Agnes Viale
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Nicholas D. Socci
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- University of Paris Cité, Imagine Institute, Paris, France
| | - Shigekazu Nagata
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871
| | - Morgan Huse
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, 11794-8661
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- University of Paris Cité, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, 10065 NY, USA
- Lab of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France, EU
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France, EU
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of MedicalSciences, New York, New York 10065, USA
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ Hospitals, London SE1 1UL, UK
| |
Collapse
|
33
|
Weinand K, Sakaue S, Nathan A, Jonsson AH, Zhang F, Watts GFM, Al Suqri M, Zhu Z, Rao DA, Anolik JH, Brenner MB, Donlin LT, Wei K, Raychaudhuri S. The chromatin landscape of pathogenic transcriptional cell states in rheumatoid arthritis. Nat Commun 2024; 15:4650. [PMID: 38821936 PMCID: PMC11143375 DOI: 10.1038/s41467-024-48620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/02/2024] [Indexed: 06/02/2024] Open
Abstract
Synovial tissue inflammation is a hallmark of rheumatoid arthritis (RA). Recent work has identified prominent pathogenic cell states in inflamed RA synovial tissue, such as T peripheral helper cells; however, the epigenetic regulation of these states has yet to be defined. Here, we examine genome-wide open chromatin at single-cell resolution in 30 synovial tissue samples, including 12 samples with transcriptional data in multimodal experiments. We identify 24 chromatin classes and predict their associated transcription factors, including a CD8 + GZMK+ class associated with EOMES and a lining fibroblast class associated with AP-1. By integrating with an RA tissue transcriptional atlas, we propose that these chromatin classes represent 'superstates' corresponding to multiple transcriptional cell states. Finally, we demonstrate the utility of this RA tissue chromatin atlas through the associations between disease phenotypes and chromatin class abundance, as well as the nomination of classes mediating the effects of putatively causal RA genetic variants.
Collapse
Affiliation(s)
- Kathryn Weinand
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Saori Sakaue
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aparna Nathan
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anna Helena Jonsson
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine Division of Rheumatology and Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Gerald F M Watts
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Majd Al Suqri
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhu Zhu
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer H Anolik
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael B Brenner
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura T Donlin
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Versus Arthritis Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| |
Collapse
|
34
|
Shimizu J, Murao A, Lee Y, Aziz M, Wang P. Extracellular CIRP promotes Kupffer cell inflammatory polarization in sepsis. Front Immunol 2024; 15:1411930. [PMID: 38881891 PMCID: PMC11177612 DOI: 10.3389/fimmu.2024.1411930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Sepsis is a life-threatening inflammatory condition caused by dysregulated host responses to infection. Extracellular cold-inducible RNA-binding protein (eCIRP) is a recently discovered damage-associated molecular pattern that causes inflammation and organ injury in sepsis. Kupffer cells can be activated and polarized to the inflammatory M1 phenotype, contributing to tissue damage by producing proinflammatory mediators. We hypothesized that eCIRP promotes Kupffer cell M1 polarization in sepsis. Methods We stimulated Kupffer cells isolated from wild-type (WT) and TLR4-/- mice with recombinant mouse (rm) CIRP (i.e., eCIRP) and assessed supernatant IL-6 and TNFα levels by ELISA. The mRNA expression of iNOS and CD206 for M1 and M2 markers, respectively, was assessed by qPCR. We induced sepsis in WT and CIRP-/- mice by cecal ligation and puncture (CLP) and assessed iNOS and CD206 expression in Kupffer cells by flow cytometry. Results eCIRP dose- and time-dependently increased IL-6 and TNFα release from WT Kupffer cells. In TLR4-/- Kupffer cells, their increase after eCIRP stimulation was prevented. eCIRP significantly increased iNOS gene expression, while it did not alter CD206 expression in WT Kupffer cells. In TLR4-/- Kupffer cells, however, iNOS expression was significantly decreased compared with WT Kupffer cells after eCIRP stimulation. iNOS expression in Kupffer cells was significantly increased at 20 h after CLP in WT mice. In contrast, Kupffer cell iNOS expression in CIRP-/- mice was significantly decreased compared with WT mice after CLP. CD206 expression in Kupffer cells was not different across all groups. Kupffer cell M1/M2 ratio was significantly increased in WT septic mice, while it was significantly decreased in CIRP-/- mice compared to WT mice after CLP. Conclusion Our data have clearly shown that eCIRP induces Kupffer cell M1 polarization via TLR4 pathway in sepsis, resulting in overproduction of inflammatory cytokines. eCIRP could be a promising therapeutic target to attenuate inflammation by preventing Kupffer cell M1 polarization in sepsis.
Collapse
Affiliation(s)
- Junji Shimizu
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Yongchan Lee
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
35
|
Wang J, Li J, Yin L, Wang X, Dong Y, Zhao G, Shen S, Hou Y. MSCs promote the efferocytosis of large peritoneal macrophages to eliminate ferroptotic monocytes/macrophages in the injured endometria. Stem Cell Res Ther 2024; 15:127. [PMID: 38693589 PMCID: PMC11064342 DOI: 10.1186/s13287-024-03742-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Endometria are one of the important components of the uterus, which is located in the peritoneal cavity. Endometrial injury usually leads to intrauterine adhesions (IUA), accompanied by inflammation and cell death. We previously reported that both the endometrial ferroptosis was increased and monocytes/macrophages were involved in endometrial injury of IUA. Large peritoneal macrophages (LPMs) are recently reported to migrate into the injured tissues and phagocytose dead cells to repair the tissues. We previously demonstrated that mesenchymal stromal cells (MSCs) had made excellent progress in the repair of endometrial injury. However, it is unclear whether MSCs regulate the LPM efferocytosis against ferroptotic monocytes/macrophages in the injured endometria. METHODS Here, endometrial injury in IUA mouse model was conducted by uterine curettage and LPS injection surgery and the samples were collected at different times to detect the changes of LPMs and ferroptotic monocytes/macrophages. We conducted LPMs depletion assay in vivo and LPMs and Erastin-induced ferroptotic THP-1 cells coculture systems in vitro to detect the LPM efferocytosis against ferroptotic monocytes/macrophages. The IUA model was treated with MSCs, and their effects on LPMs and endometrial repair were analyzed. Flow cytometry, western blotting, quantitative real-time PCR, immunohistochemical analysis, ELISA, and RNA-sequencing were performed. RESULTS We found that LPMs migrated to the injured uteri in response to the damage in early phase (3 h), and sustained to a later stage (7 days). Astonishingly, we found that ferroptotic monocytes/macrophages were significantly increased in the injured uteri since 12 h after injury. Moreover, LPMs cocultured with Erastin-induced ferroptotic THP-1 cells in vitro, efferocytosis of LPMs against ferroptotic monocytes/macrophages was emerged. The mRNA expression profiles revealed that LPM efferocytosis against ferroptotic monocytes/macrophages was an induction of glycolysis program and depended on the PPARγ-HK2 pathway. Importantly, we validated that MSCs promoted the efferocytic capability and migration of LPMs to the injured uteri via secreting stanniocalcin-1 (STC-1). CONCLUSION The data collectively demonstrated first the roles of LPMs via removal of ferroptotic monocytes/macrophages and provided a novel mechanism of MSCs in repairing the endometrial injury.
Collapse
Affiliation(s)
- Jiali Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, No. 22 Hankou Rd., Gulou District, Nanjing, Jiangsu, 210093, People's Republic of China
| | - Jingman Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, No. 22 Hankou Rd., Gulou District, Nanjing, Jiangsu, 210093, People's Republic of China
| | - Lijie Yin
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, No. 22 Hankou Rd., Gulou District, Nanjing, Jiangsu, 210093, People's Republic of China
| | - Xiuzhu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, No. 22 Hankou Rd., Gulou District, Nanjing, Jiangsu, 210093, People's Republic of China
| | - Yue Dong
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, No. 22 Hankou Rd., Gulou District, Nanjing, Jiangsu, 210093, People's Republic of China
| | - Guangfeng Zhao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, No. 22 Hankou Rd., Gulou District, Nanjing, Jiangsu, 210093, People's Republic of China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, No. 22 Hankou Rd., Gulou District, Nanjing, Jiangsu, 210093, People's Republic of China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
36
|
Cieniewicz B, Oliveira E, Saxton M, Torabi D, Bhatta A, Kukutla P, Arballo A, Yang Z, Yu B, Fate M, Ning H, Corey L, Maiti A, Corey D. Therapeutic Targeting of TIM-4-L with Engineered T Cells for Acute Myeloid Leukemia. Clin Cancer Res 2024; 30:1878-1888. [PMID: 38451195 DOI: 10.1158/1078-0432.ccr-23-3044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/16/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE Disruption of lipid bilayer asymmetry is a common feature observed in cancer cells and offers novel routes for therapeutic targeting. We used the natural immune receptor TIM-4 to interrogate for loss of plasma membrane phospholipid polarity in primary acute myelogenous leukemia (AML) samples and evaluated the anti-leukemic activity of TIM-4-L-directed T-cell therapy in preclinical AML models. EXPERIMENTAL DESIGN We performed FACS analysis on 33 primary AML bone marrow specimens and correlated TIM-4-L expression frequency and intensity with molecular disease characteristics. Using Kasumi-1 and MV-4-11 AML cell lines, we further tested the anti-leukemic effects of TIM-4-L-directed engineered T cells in vitro and in vivo. RESULTS We found that 86% of untreated AML blasts displayed upregulation of cell surface TIM-4-L. These observations were agnostic to AML genetic classification, as samples with mutations in TP53, ASXL1, and RUNX1 displayed TIM-4-L upregulation similar to that seen in favorable and intermediate subtypes. TIM-4-L dysregulation was also stably present in AML cell lines. To evaluate the potential of targeting upregulated TIM-4-L with adoptive T-cell therapy, we constructed TIM-4-L-directed engineered T cells, which demonstrated potent anti-leukemic effects, effectively eliminating AML cell lines with a range of endogenous TIM-4-L expression levels both in vitro and in vivo. CONCLUSIONS These results highlight TIM-4-L as a highly prevalent target on AML across a range of genetic classifications and novel target for T-cell-based therapy in AML. Further investigations into the role of TIM-4-L in AML pathogenesis and its potential as an anti-leukemic target for clinical development are warranted.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Mice
- Animals
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Female
- Male
- Middle Aged
- Adult
- Aged
- Immunotherapy, Adoptive/methods
Collapse
Affiliation(s)
| | | | - Mike Saxton
- CERo Therapeutics Inc., South San Francisco, California
| | - Damoun Torabi
- CERo Therapeutics Inc., South San Francisco, California
| | - Ankit Bhatta
- CERo Therapeutics Inc., South San Francisco, California
| | | | | | - Zhuo Yang
- CERo Therapeutics Inc., South San Francisco, California
| | - Bi Yu
- CERo Therapeutics Inc., South San Francisco, California
| | - Maria Fate
- CERo Therapeutics Inc., South San Francisco, California
| | - Hongxiu Ning
- CERo Therapeutics Inc., South San Francisco, California
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Abhishek Maiti
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel Corey
- CERo Therapeutics Inc., South San Francisco, California
| |
Collapse
|
37
|
Astuti Y, Raymant M, Quaranta V, Clarke K, Abudula M, Smith O, Bellomo G, Chandran-Gorner V, Nourse C, Halloran C, Ghaneh P, Palmer D, Jones RP, Campbell F, Pollard JW, Morton JP, Mielgo A, Schmid MC. Efferocytosis reprograms the tumor microenvironment to promote pancreatic cancer liver metastasis. NATURE CANCER 2024; 5:774-790. [PMID: 38355776 PMCID: PMC11136665 DOI: 10.1038/s43018-024-00731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
Pancreatic ductal adenocarcinoma is a highly metastatic disease and macrophages support liver metastases. Efferocytosis, or engulfment of apoptotic cells by macrophages, is an essential process in tissue homeostasis and wound healing, but its role in metastasis is less well understood. Here, we found that the colonization of the hepatic metastatic site is accompanied by low-grade tissue injury and that efferocytosis-mediated clearance of parenchymal dead cells promotes macrophage reprogramming and liver metastasis. Mechanistically, progranulin expression in macrophages is necessary for efficient efferocytosis by controlling lysosomal acidification via cystic fibrosis transmembrane conductance regulator and the degradation of lysosomal cargo, resulting in LXRα/RXRα-mediated macrophage conversion and upregulation of arginase 1. Pharmacological blockade of efferocytosis or macrophage-specific genetic depletion of progranulin impairs macrophage conversion, improves CD8+ T cell functions, and reduces liver metastasis. Our findings reveal how hard-wired functions of macrophages in tissue repair contribute to liver metastasis and identify potential targets for prevention of pancreatic ductal adenocarcinoma liver metastasis.
Collapse
Affiliation(s)
- Yuliana Astuti
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Meirion Raymant
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Valeria Quaranta
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Kim Clarke
- Computational Biology Facility, University of Liverpool, Liverpool, UK
| | - Maidinaimu Abudula
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Olivia Smith
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Gaia Bellomo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | | | - Craig Nourse
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Christopher Halloran
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Paula Ghaneh
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Daniel Palmer
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Robert P Jones
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Fiona Campbell
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | | | - Jennifer P Morton
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ainhoa Mielgo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Michael C Schmid
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|
38
|
Joshi S, López L, Morosi LG, Amadio R, Pachauri M, Bestagno M, Ogar IP, Giacca M, Piperno GM, Vorselen D, Benvenuti F. Tim4 enables large peritoneal macrophages to cross-present tumor antigens at early stages of tumorigenesis. Cell Rep 2024; 43:114096. [PMID: 38607919 DOI: 10.1016/j.celrep.2024.114096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/20/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Receptors controlling the cross-presentation of tumor antigens by macrophage subsets in cancer tissues are poorly explored. Here, we show that TIM4+ large peritoneal macrophages efficiently capture and cross-present tumor-associated antigens at early stages of peritoneal infiltration by ovarian cancer cells. The phosphatidylserine (PS) receptor TIM4 promotes maximal uptake of dead cells or PS-coated artificial targets and triggers inflammatory and metabolic gene programs in combination with cytoskeletal remodeling and upregulation of transcriptional signatures related to antigen processing. At the cellular level, TIM4-mediated engulfment induces nucleation of F-actin around nascent phagosomes, delaying the recruitment of vacuolar ATPase, acidification, and cargo degradation. In vivo, TIM4 deletion blunts induction of early anti-tumoral effector CD8 T cells and accelerates the progression of ovarian tumors. We conclude that TIM4-mediated uptake drives the formation of specialized phagosomes that prolong the integrity of ingested antigens and facilitate cross-presentation, contributing to immune surveillance of the peritoneum.
Collapse
Affiliation(s)
- Sonal Joshi
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Lucía López
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Luciano Gastón Morosi
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Roberto Amadio
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Manendra Pachauri
- Department of Medical, Surgical, and Health Sciences, University of Trieste and International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Marco Bestagno
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Ironya Paul Ogar
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy; Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, P.M.B. 1115 Calabar, Cross River State, Nigeria
| | - Mauro Giacca
- Department of Medical, Surgical, and Health Sciences, University of Trieste and International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy; King's College London, British Heart Foundation Center of Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Giulia Maria Piperno
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Daan Vorselen
- Department of Cell Biology & Immunology, Wageningen University & Research, 6708 PD Wageningen, the Netherlands
| | - Federica Benvenuti
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
39
|
Sain N, Hooda V, Singh A, Gupta S, Arava S, Sharma A. Macrophage inhibitory factor alters the functionality of macrophages and their involvement in disease pathogenesis of active generalized vitiligo patients. Cytokine 2024; 176:156516. [PMID: 38340551 DOI: 10.1016/j.cyto.2024.156516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
INTRODUCTION In autoimmune dermatitis patients, a macrophage migration inhibitory factor (MIF) is widely used to determine the severity of the diseases with other clinical parameters. Moreover, in vitiligo, MIF has shown significant positive correlation with the VASI (Vitiligo Area Scoring Index) score of both generalized and localized vitiligo patients. MIF function as pro-inflammatory cytokine and inhibited random migration of macrophages from inflammation loci. Hence, activated macrophage infiltrates promote the diseases pathogenesis. Till date, macrophages and involvement of their secreted MIF in disease severity of vitiligo patients remains undetermined. MATERIAL AND METHOD The frequency of both M1 and M2 macrophages was evaluated in active GV patients (n = 20) using flow cytometry in blood and in tissues by confocal microscopy (n = 10). Relative m-RNA expression and cytokine profiling of pro and anti-inflammatory mediators were estimated in PBMCs and in serum of patients. Lastly, concentration of nitric oxide and phagocytic activity from macrophages of active patients were calculated to understand the diseases pathology in detail. RESULT Both in circulation as well as in tissues, the infiltration of M1 macrophages was increased in active GV patients, while the percentage of M2 macrophages was comparable to healthy tissues. Aberrant expression of pro and anti-inflammatory molecules including IL-1β, IL-6, TNF-α, IL-12 and MIF impair the cellular hemostasis and induce systematic inflammation. Elevated nitric oxide and higher phagocytic activity of macrophages enhanced the destruction and/or depigmentation of melanocytes causing vitiligo. CONCLUSION Elevated macrophages in both tissue and blood enhanced the secretion of MIF and other inflammatory mediators that further enforce the production of nitric oxide, activation and phagocytic activity of macrophages against melanocytes and melanocytes antigens. As a result, destruction of melanocytes and melanin production occurred and caused the depigmentation and/or white macules on the skin.
Collapse
Affiliation(s)
- Nikita Sain
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Vishakha Hooda
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ashu Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Somesh Gupta
- Department of Dermatology & Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - Sudheer Arava
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
40
|
Mizote Y, Inoue T, Akazawa T, Kunimasa K, Tamiya M, Kumamoto Y, Tsuda A, Yoshida S, Tatsumi K, Ekawa T, Honma K, Nishino K, Tahara H. Potent CTLs can be induced against tumor cells in an environment of lower levels of systemic MFG-E8. Cancer Sci 2024; 115:1114-1128. [PMID: 38332689 PMCID: PMC11007000 DOI: 10.1111/cas.16099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
The direction and magnitude of immune responses are critically affected when dead cells are disposed of. Milk fat globule-epidermal growth factor-factor 8 (MFG-E8) promotes the engulfment of apoptotic normal and cancerous cells without inducing inflammation. We have previously reported that a certain proportion of the cancer cells express abundant MFG-E8, and that such expression is associated with the shorter survival of patients with esophageal cancer who had received chemotherapy before surgery. However, the influence of tumor-derived and systemically existing MFG-E8 on antitumor immune responses has not yet been fully investigated. Herein, we showed that CTL-dependent antitumor immune responses were observed in mice with no or decreased levels of systemic MFG-E8, and that such responses were enhanced further with the administration of anti-PD-1 antibody. In mice with decreased levels of systemic MFG-E8, the dominance of regulatory T cells in tumor-infiltrating lymphocytes was inverted to CD8+ T cell dominance. MFG-E8 expression by tumor cells appears to affect antitumor immune responses only when the level of systemic MFG-E8 is lower than the physiological status. We have also demonstrated in the clinical setting that lower levels of plasma MFG-E8, but not MFG-E8 expression in tumor cells, before the treatment was associated with objective responses to anti-PD-1 therapy in patients with non-small cell lung cancer. These results suggest that systemic MFG-E8 plays a critical role during the immunological initiation process of antigen-presenting cells to increase tumor-specific CTLs. Regulation of the systemic level of MFG-E8 might induce efficient antitumor immune responses and enhance the potency of anti-PD-1 therapy.
Collapse
Affiliation(s)
- Yu Mizote
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Takako Inoue
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Takashi Akazawa
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Kei Kunimasa
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Motohiro Tamiya
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Yachiyo Kumamoto
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Arisa Tsuda
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Satomi Yoshida
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Kumiko Tatsumi
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Tomoya Ekawa
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Keiichiro Honma
- Department of Diagnostic Pathology and CytologyOsaka International Cancer InstituteOsakaJapan
| | - Kazumi Nishino
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Hideaki Tahara
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
41
|
Pestal K, Slayden LC, Barton GM. Krüppel-like Factor (KLF) family members control expression of genes required for serous cavity and alveolar macrophage identities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582578. [PMID: 38464159 PMCID: PMC10925242 DOI: 10.1101/2024.02.28.582578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Tissue-resident macrophages adopt distinct gene expression profiles and exhibit functional specialization based on their tissue of residence. Recent studies have begun to define the signals and transcription factors that induce these identities. Here we describe an unexpected and specific role for the broadly expressed transcription factor Kruppel-like Factor 2 (KLF2) in the development of embryonically derived Large Cavity Macrophages (LCM) in the serous cavities. KLF2 not only directly regulates the transcription of genes previously shown to specify LCM identity, such as retinoic acid receptors and GATA6, but also is required for induction of many other transcripts that define the identity of these cells. We identify a similar role for KLF4 in regulating the identity of alveolar macrophages in the lung. These data demonstrate that broadly expressed transcription factors, such as Group 2 KLFs, can play important roles in the specification of distinct identities of tissue-resident macrophages.
Collapse
Affiliation(s)
- Kathleen Pestal
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Leianna C Slayden
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley CA 94720, USA
| | - Gregory M Barton
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley CA 94720, USA
| |
Collapse
|
42
|
Mytych JS, Pan Z, Lopez-Davis C, Redinger N, Lawrence C, Ziegler J, Popescu NI, James JA, Farris AD. Peptidoglycan from Bacillus anthracis Inhibits Human Macrophage Efferocytosis in Part by Reducing Cell Surface Expression of MERTK and TIM-3. Immunohorizons 2024; 8:269-280. [PMID: 38517345 PMCID: PMC10985058 DOI: 10.4049/immunohorizons.2300109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024] Open
Abstract
Bacillus anthracis peptidoglycan (PGN) is a major component of the bacterial cell wall and a key pathogen-associated molecular pattern contributing to anthrax pathology, including organ dysfunction and coagulopathy. Increases in apoptotic leukocytes are a late-stage feature of anthrax and sepsis, suggesting there is a defect in apoptotic clearance. In this study, we tested the hypothesis that B. anthracis PGN inhibits the capacity of human monocyte-derived macrophages (MΦ) to efferocytose apoptotic cells. Exposure of CD163+CD206+ MΦ to PGN for 24 h impaired efferocytosis in a manner dependent on human serum opsonins but independent of complement component C3. PGN treatment reduced cell surface expression of the proefferocytic signaling receptors MERTK, TYRO3, AXL, integrin αVβ5, CD36, and TIM-3, whereas TIM-1, αVβ3, CD300b, CD300f, STABILIN-1, and STABILIN-2 were unaffected. ADAM17 is a major membrane-bound protease implicated in mediating efferocytotic receptor cleavage. We found multiple ADAM17-mediated substrates increased in PGN-treated supernatant, suggesting involvement of membrane-bound proteases. ADAM17 inhibitors TAPI-0 and Marimastat prevented TNF release, indicating effective protease inhibition, and modestly increased cell-surface levels of MerTK and TIM-3 but only partially restored efferocytic capacity by PGN-treated MΦ. We conclude that human serum factors are required for optimal recognition of PGN by human MΦ and that B. anthracis PGN inhibits efferocytosis in part by reducing cell surface expression of MERTK and TIM-3.
Collapse
Affiliation(s)
- Joshua S. Mytych
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Zijian Pan
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Charmaine Lopez-Davis
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Nancy Redinger
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Christina Lawrence
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Jadith Ziegler
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Narcis I. Popescu
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Judith A. James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - A. Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
43
|
Uderhardt S, Neag G, Germain RN. Dynamic Multiplex Tissue Imaging in Inflammation Research. ANNUAL REVIEW OF PATHOLOGY 2024; 19:43-67. [PMID: 37722698 DOI: 10.1146/annurev-pathmechdis-070323-124158] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Inflammation is a highly dynamic process with immune cells that continuously interact with each other and parenchymal components as they migrate through tissue. The dynamic cellular responses and interaction patterns are a function of the complex tissue environment that cannot be fully reconstructed ex vivo, making it necessary to assess cell dynamics and changing spatial patterning in vivo. These dynamics often play out deep within tissues, requiring the optical focus to be placed far below the surface of an opaque organ. With the emergence of commercially available two-photon excitation lasers that can be combined with existing imaging systems, new avenues for imaging deep tissues over long periods of time have become available. We discuss a selected subset of studies illustrating how two-photon microscopy (2PM) has helped to relate the dynamics of immune cells to their in situ function and to understand the molecular patterns that govern their behavior in vivo. We also review some key practical aspects of 2PM methods and point out issues that can confound the results, so that readers can better evaluate the reliability of conclusions drawn using this technology.
Collapse
Affiliation(s)
- Stefan Uderhardt
- Department of Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Exploratory Research Unit, Optical Imaging Competence Centre, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Georgiana Neag
- Department of Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Exploratory Research Unit, Optical Imaging Competence Centre, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Center for Advanced Tissue Imaging (CAT-I), National Institute of Allergy and Infectious Diseases and National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
44
|
Rodríguez-Morales P, Franklin RA. Macrophage phenotypes and functions: resolving inflammation and restoring homeostasis. Trends Immunol 2023; 44:986-998. [PMID: 37940394 PMCID: PMC10841626 DOI: 10.1016/j.it.2023.10.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
Inflammation must be tightly regulated to both defend against pathogens and restore tissue homeostasis. The resolution of inflammatory responses is a dynamic process orchestrated by cells of the immune system. Macrophages, tissue-resident innate immune cells, are key players in modulating inflammation. Here, we review recent work highlighting the importance of macrophages in tissue resolution and the return to homeostasis. We propose that enhancing macrophage pro-resolution functions represents a novel and widely applicable therapeutic strategy to dampen inflammation, promote repair, and restore tissue integrity and function.
Collapse
Affiliation(s)
| | - Ruth A Franklin
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
45
|
Chakraborty S, Singh A, Wang L, Wang X, Sanborn MA, Ye Z, Maienschein-Cline M, Mukhopadhyay A, Ganesh BB, Malik AB, Rehman J. Trained immunity of alveolar macrophages enhances injury resolution via KLF4-MERTK-mediated efferocytosis. J Exp Med 2023; 220:e20221388. [PMID: 37615937 PMCID: PMC10450795 DOI: 10.1084/jem.20221388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/19/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023] Open
Abstract
Recent studies suggest that training of innate immune cells such as tissue-resident macrophages by repeated noxious stimuli can heighten host defense responses. However, it remains unclear whether trained immunity of tissue-resident macrophages also enhances injury resolution to counterbalance the heightened inflammatory responses. Here, we studied lung-resident alveolar macrophages (AMs) prechallenged with either the bacterial endotoxin or with Pseudomonas aeruginosa and observed that these trained AMs showed greater resilience to pathogen-induced cell death. Transcriptomic analysis and functional assays showed greater capacity of trained AMs for efferocytosis of cellular debris and injury resolution. Single-cell high-dimensional mass cytometry analysis and lineage tracing demonstrated that training induces an expansion of a MERTKhiMarcohiCD163+F4/80low lung-resident AM subset with a proresolving phenotype. Reprogrammed AMs upregulated expression of the efferocytosis receptor MERTK mediated by the transcription factor KLF4. Adoptive transfer of these trained AMs restricted inflammatory lung injury in recipient mice exposed to lethal P. aeruginosa. Thus, our study has identified a subset of tissue-resident trained macrophages that prevent hyperinflammation and restore tissue homeostasis following repeated pathogen challenges.
Collapse
Affiliation(s)
- Sreeparna Chakraborty
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
| | - Abhalaxmi Singh
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Li Wang
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Xinge Wang
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Biomedical Engineering, University of Illinois College of Medicine, Chicago, IL, USA
| | - Mark A. Sanborn
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Zijing Ye
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | | | - Amitabha Mukhopadhyay
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Balaji B. Ganesh
- Research Resources Center, University of Illinois Chicago, Chicago, Illinois, USA
| | - Asrar B. Malik
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Jalees Rehman
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Biomedical Engineering, University of Illinois College of Medicine, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| |
Collapse
|
46
|
Czarnecka-Chrebelska KH, Kordiak J, Brzeziańska-Lasota E, Pastuszak-Lewandoska D. Respiratory Tract Oncobiome in Lung Carcinogenesis: Where Are We Now? Cancers (Basel) 2023; 15:4935. [PMID: 37894302 PMCID: PMC10605430 DOI: 10.3390/cancers15204935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The importance of microbiota in developing and treating diseases, including lung cancer (LC), is becoming increasingly recognized. Studies have shown differences in microorganism populations in the upper and lower respiratory tracts of patients with lung cancer compared to healthy individuals, indicating a link between dysbiosis and lung cancer. However, it is not only important to identify "which bacteria are present" but also to understand "how" they affect lung carcinogenesis. The interactions between the host and lung microbiota are complex, and our knowledge of this relationship is limited. This review presents research findings on the bacterial lung microbiota and discusses the mechanisms by which lung-dwelling microorganisms may directly or indirectly contribute to the development of lung cancer. These mechanisms include influences on the host immune system regulation and the local immune microenvironment, the regulation of oncogenic signaling pathways in epithelial cells (causing cell cycle disorders, mutagenesis, and DNA damage), and lastly, the MAMPs-mediated path involving the effects of bacteriocins, TLRs signaling induction, and TNF release. A better understanding of lung microbiota's role in lung tumor pathology could lead to identifying new diagnostic and therapeutic biomarkers and developing personalized therapeutic management for lung cancer patients.
Collapse
Affiliation(s)
| | - Jacek Kordiak
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz, 90-151 Lodz, Poland
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Dorota Pastuszak-Lewandoska
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Pomorska 251, 90-151 Lodz, Poland;
| |
Collapse
|
47
|
Zarek CM, Dende C, Coronado J, Pendse M, Dryden P, Hooper LV, Reese TA. Preexisting helminth challenge exacerbates infection and reactivation of gammaherpesvirus in tissue resident macrophages. PLoS Pathog 2023; 19:e1011691. [PMID: 37847677 PMCID: PMC10581490 DOI: 10.1371/journal.ppat.1011691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/17/2023] [Indexed: 10/19/2023] Open
Abstract
Even though gammaherpesvirus and parasitic infections are endemic in parts of the world, there is a lack of understanding about the outcome of coinfection. In humans, coinfections usually occur sequentially, with fluctuating order and timing in different hosts. However, experimental studies in mice generally do not address the variables of order and timing of coinfections. We sought to examine the variable of coinfection order in a system of gammaherpesvirus-helminth coinfection. Our previous work demonstrated that infection with the intestinal parasite, Heligmosomoides polygyrus, induced transient reactivation from latency of murine gammaherpesvirus-68 (MHV68). In this report, we reverse the order of coinfection, infecting with H. polygyrus first, followed by MHV68, and examined the effects of preexisting parasite infection on MHV68 acute and latent infection. We found that preexisting parasite infection increased the propensity of MHV68 to reactivate from latency. However, when we examined the mechanism for reactivation, we found that preexisting parasite infection increased the ability of MHV68 to reactivate in a vitamin A dependent manner, a distinct mechanism to what we found previously with parasite-induced reactivation after latency establishment. We determined that H. polygyrus infection increased both acute and latent MHV68 infection in a population of tissue resident macrophages, called large peritoneal macrophages. We demonstrate that this population of macrophages and vitamin A are required for increased acute and latent infection during parasite coinfection.
Collapse
Affiliation(s)
- Christina M. Zarek
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chaitanya Dende
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jaime Coronado
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mihir Pendse
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Phillip Dryden
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Lora V. Hooper
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- The Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Tiffany A. Reese
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
48
|
Cai W, Yang Y. An enzyme-free method for isolating testicular macrophages from rodent models. J Immunol Methods 2023; 521:113551. [PMID: 37661048 DOI: 10.1016/j.jim.2023.113551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/18/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Macrophages are the major type of immune cell in the testis of both humans and rodents. Testicular macrophages (TMs) play critical roles in maintaining the testicular microenvironment, such as Leydig cell-dependent hormone production, spermatogenesis, and immune balance. A substantial number of studies have used rodent models to investigate the functions of TMs with various methods and harvest macrophages from the testis. Studies have demonstrated that enzyme digestion, an essential part of these methods, can improve the number and purity of TMs while unavoidably altering the immunoprofile of macrophages, which is detrimental for further study in terms of immune investigation. Here, we modified the existing method of microglia isolation and set up a novel method without the enzyme digestion step to isolate TMs. According to the characteristics of testicular tissue looseness and the physical and biological characteristics of macrophages, by combining mechanical separation, gradient centrifugation, and immuno-magnetic bead selection, we can effectively avoid the enzymatic digestion of testis tissue and maintain the immune characteristics of macrophages. Additionally, we verified the purity of TM with flow cytometry (FC) at approximately 91-95%, and the production of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) was lower than that isolated with enzyme digestion. In contrast to the traditional method, this novel protocol can assist those who have no convenient access to fluorescence-activated cell sorting (FACS) to isolate a sufficient number of TMs and, most importantly, avoid altering the immunoprofile of TMs without enzyme digestion.
Collapse
Affiliation(s)
- Wei Cai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalong Yang
- Department of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University Giessen, Giessen, Germany; Department of Thyroid and Breast Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China.
| |
Collapse
|
49
|
Mytych JS, Pan Z, Lopez-Davis C, Redinger N, Lawrence C, Ziegler J, Popescu NI, James JA, Farris AD. Peptidoglycan from Bacillus anthracis Inhibits Human Macrophage Efferocytosis in Part by Reducing Cell Surface Expression of MERTK and TIM-3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.535001. [PMID: 37066181 PMCID: PMC10103956 DOI: 10.1101/2023.03.30.535001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bacillus anthracis peptidoglycan (PGN) is a major component of the bacterial cell wall and a key pathogen-associated molecular pattern (PAMP) contributing to anthrax pathology, including organ dysfunction and coagulopathy. Increases in apoptotic lymphocytes are a late-stage feature of anthrax and sepsis, suggesting there is a defect in apoptotic clearance. Here, we tested the hypothesis that B. anthracis PGN inhibits the capacity of human monocyte-derived macrophages (MΦ) to efferocytose apoptotic cells. Exposure of CD163+CD206+ MΦ to PGN for 24h impaired efferocytosis in a manner dependent on human serum opsonins but independent of complement component C3. PGN treatment reduced cell surface expression of the pro-efferocytic signaling receptors MERTK, TYRO3, AXL, integrin αVβ5, CD36 and TIM-3, whereas TIM-1, αVβ3, CD300b, CD300f, STABILIN-1 and STABILIN-2 were unaffected. ADAM17 is a major membrane-bound protease implicated in mediating efferocytotic receptor cleavage. We found multiple ADAM17-mediated substrates increased in PGN-treated supernatant suggesting involvement of membrane-bound proteases. ADAM17 inhibitors TAPI-0 and Marimastat prevented TNF release, indicating effective protease inhibition, and modestly increased cell-surface levels of MerTK and TIM-3 but only partially restored efferocytic capacity by PGN-treated MΦ. We conclude that human serum factors are required for optimal recognition of PGN by human MΦ and that B. anthracis PGN inhibits efferocytosis in part by reducing cell surface expression of MERTK and TIM-3.
Collapse
Affiliation(s)
- Joshua S Mytych
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 1100 N Lindsay Avenue, Oklahoma City, OK 73104, USA
| | - Zijian Pan
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - Charmaine Lopez-Davis
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - Nancy Redinger
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - Christina Lawrence
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - Jadith Ziegler
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - Narcis I. Popescu
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - Judith A. James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - A. Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 1100 N Lindsay Avenue, Oklahoma City, OK 73104, USA
| |
Collapse
|
50
|
Musrati MA, De Baetselier P, Movahedi K, Van Ginderachter JA. Ontogeny, functions and reprogramming of Kupffer cells upon infectious disease. Front Immunol 2023; 14:1238452. [PMID: 37691953 PMCID: PMC10485603 DOI: 10.3389/fimmu.2023.1238452] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
The liver is a vital metabolic organ that also performs important immune-regulatory functions. In the context of infections, the liver represents a target site for various pathogens, while also having an outstanding capacity to filter the blood from pathogens and to contain infections. Pathogen scavenging by the liver is primarily performed by its large and heterogeneous macrophage population. The major liver-resident macrophage population is located within the hepatic microcirculation and is known as Kupffer cells (KCs). Although other minor macrophages reside in the liver as well, KCs remain the best characterized and are the best well-known hepatic macrophage population to be functionally involved in the clearance of infections. The response of KCs to pathogenic insults often governs the overall severity and outcome of infections on the host. Moreover, infections also impart long-lasting, and rarely studied changes to the KC pool. In this review, we discuss current knowledge on the biology and the various roles of liver macrophages during infections. In addition, we reflect on the potential of infection history to imprint long-lasting effects on macrophages, in particular liver macrophages.
Collapse
Affiliation(s)
- Mohamed Amer Musrati
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Patrick De Baetselier
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Kiavash Movahedi
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A. Van Ginderachter
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| |
Collapse
|