1
|
Dikiy S, Ghelani AP, Levine AG, Martis S, Giovanelli P, Wang ZM, Beroshvili G, Pritykin Y, Krishna C, Huang X, Glasner A, Greenbaum BD, Leslie CS, Rudensky AY. Terminal differentiation and persistence of effector regulatory T cells essential for preventing intestinal inflammation. Nat Immunol 2025; 26:444-458. [PMID: 39905200 PMCID: PMC11876075 DOI: 10.1038/s41590-024-02075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/30/2024] [Indexed: 02/06/2025]
Abstract
Regulatory T (Treg) cells are a specialized CD4+ T cell lineage with essential anti-inflammatory functions. Analysis of Treg cell adaptations to non-lymphoid tissues that enable their specialized immunosuppressive and tissue-supportive functions raises questions about the underlying mechanisms of these adaptations and whether they represent stable differentiation or reversible activation states. Here, we characterize distinct colonic effector Treg cell transcriptional programs. Attenuated T cell receptor (TCR) signaling and acquisition of substantial TCR-independent functionality seems to facilitate the terminal differentiation of a population of colonic effector Treg cells that are distinguished by stable expression of the immunomodulatory cytokine IL-10. Functional studies show that this subset of effector Treg cells, but not their expression of IL-10, is indispensable for colonic health. These findings identify core features of the terminal differentiation of effector Treg cells in non-lymphoid tissues and their function.
Collapse
Affiliation(s)
- Stanislav Dikiy
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
| | - Aazam P Ghelani
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Andrew G Levine
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen Martis
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paolo Giovanelli
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Zhong-Min Wang
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giorgi Beroshvili
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Yuri Pritykin
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Lewis-Sigler Institute for Integrative Genomics and Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Chirag Krishna
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiao Huang
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ariella Glasner
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin D Greenbaum
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
2
|
Fachi JL, de Oliveira S, Trsan T, Penati S, Gilfillan S, Cao S, Ribeiro Castro P, Fernandes MF, Hyrc KL, Liu X, Rodrigues PF, Bhattarai B, Layden BT, Vinolo MAR, Colonna M. Fiber- and acetate-mediated modulation of MHC-II expression on intestinal epithelium protects from Clostridioides difficile infection. Cell Host Microbe 2025; 33:235-251.e7. [PMID: 39826540 PMCID: PMC11974464 DOI: 10.1016/j.chom.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/18/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
Here, we explore the relationship between dietary fibers, colonic epithelium major histocompatibility complex class II (MHC-II) expression, and immune cell interactions in regulating susceptibility to Clostridioides difficile infection (CDI). We find that a low-fiber diet increases MHC-II expression in the colonic epithelium, which, in turn, worsens CDI by promoting the development of pathogenic CD4+ intraepithelial lymphocytes (IELs). The influence of dietary fibers on MHC-II expression is mediated by its metabolic product, acetate, and its receptor, free fatty acid receptor 2 (FFAR2). While acetate activation of FFAR2 on epithelial cells helps resist CDI, it does not directly regulate MHC-II expression. Instead, MHC-II is regulated by FFAR2 in type 3 innate lymphoid cells (ILC3s). Acetate enhances interleukin-22 (IL-22) production by ILC3s, which then suppresses MHC-II expression on the colonic epithelium. In conclusion, a low-fiber diet reduces acetate-induced IL-22 production by ILC3s, leading to increased MHC-II on the colonic epithelium. This change affects recovery from CDI by expanding the population of pathogenic CD4+ IELs.
Collapse
Affiliation(s)
- José L Fachi
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA.
| | - Sarah de Oliveira
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Tihana Trsan
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA
| | - Silvia Penati
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA
| | - Siyan Cao
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA; Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA
| | - Pollyana Ribeiro Castro
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Mariane Font Fernandes
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Krzysztof L Hyrc
- Alafi Neuroimaging Laboratory, The Hope Center of Neurological Disorders, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA
| | - Xiuli Liu
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA
| | - Patrick Fernandes Rodrigues
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA
| | - Bishan Bhattarai
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA
| | - Brian T Layden
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Marco Aurélio R Vinolo
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA.
| |
Collapse
|
3
|
Wang J, Wang L, Lu W, Farhataziz N, Gonzalez A, Xing J, Zhang Z. TRIM29 controls enteric RNA virus-induced intestinal inflammation by targeting NLRP6 and NLRP9b signaling pathways. Mucosal Immunol 2025; 18:135-150. [PMID: 39396665 DOI: 10.1016/j.mucimm.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/31/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Infections by enteric virus and intestinal inflammation are recognized as a leading cause of deadly gastroenteritis, and NLRP6 and NLRP9b signaling control these infection and inflammation. However, the regulatory mechanisms of the NLRP6 and NLRP9b signaling in enteric viral infection remain unexplored. In this study, we found that the E3 ligase TRIM29 suppressed type III interferon (IFN-λ) and interleukin-18 (IL-18) production by intestinal epithelial cells (IECs) when exposed to polyinosinic:polycytidylic acid (poly I:C) and enteric RNA viruses. Knockout of TRIM29 in IECs was efficient to restrict intestinal inflammation triggered by the enteric RNA viruses, rotavirus in suckling mice, and the encephalomyocarditis virus (EMCV) in adults. This attenuation in inflammation was attributed to the increased production of IFN-λ and IL-18 in the IECs and more recruitment of intraepithelial protective Ly6A+CCR9+CD4+ T cells in small intestines from TRIM29-deficient mice. Mechanistically, TRIM29 promoted K48-linked ubiquitination, leading to the degradation of NLRP6 and NLRP9b, resulting in decreased IFN-λ and IL-18 secretion by IECs. Our findings reveal that enteric viruses utilize TRIM29 to inhibit IFN-λ and inflammasome activation in IECs, thereby facilitating viral-induced intestinal inflammation. This indicates that targeting TRIM29 could offer a promising therapeutic strategy for alleviating gut diseases.
Collapse
Affiliation(s)
- Junying Wang
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Academic Institute, Houston Methodist, Houston, TX 77030, USA
| | - Ling Wang
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Academic Institute, Houston Methodist, Houston, TX 77030, USA; Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130021, China
| | - Wenting Lu
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Academic Institute, Houston Methodist, Houston, TX 77030, USA
| | - Naser Farhataziz
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Academic Institute, Houston Methodist, Houston, TX 77030, USA
| | - Anastasia Gonzalez
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Academic Institute, Houston Methodist, Houston, TX 77030, USA
| | - Junji Xing
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Academic Institute, Houston Methodist, Houston, TX 77030, USA; Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston Methodist, Houston, TX 77030, USA; Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Academic Institute, Houston Methodist, Houston, TX 77030, USA; Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
4
|
Dobeš J, Brabec T. Dietary influence and immune balance: Regulating CD4+ IEL responses and MHCII in the gut. Mucosal Immunol 2025; 18:36-38. [PMID: 39708956 DOI: 10.1016/j.mucimm.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/10/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Affiliation(s)
- Jan Dobeš
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Tomáš Brabec
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic; Current address: CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
5
|
Hada A, Xiao Z. Ligands for Intestinal Intraepithelial T Lymphocytes in Health and Disease. Pathogens 2025; 14:109. [PMID: 40005486 PMCID: PMC11858322 DOI: 10.3390/pathogens14020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
The intestinal tract is constantly exposed to a diverse mixture of luminal antigens, such as those derived from commensals, dietary substances, and potential pathogens. It also serves as a primary route of entry for pathogens. At the forefront of this intestinal defense is a single layer of epithelial cells that forms a critical barrier between the gastrointestinal (GI) lumen and the underlying host tissue. The intestinal intraepithelial T lymphocytes (T-IELs), one of the most abundant lymphocyte populations in the body, play a crucial role in actively surveilling and maintaining the integrity of this barrier by tolerating non-harmful factors such as commensal microbiota and dietary components, promoting epithelial turnover and renewal while also defending against pathogens. This immune balance is maintained through interactions between ligands in the GI microenvironment and receptors on T-IELs. This review provides a detailed examination of the ligands present in the intestinal epithelia and the corresponding receptors expressed on T-IELs, including T cell receptors (TCRs) and non-TCRs, as well as how these ligand-receptor interactions influence T-IEL functions under both steady-state and pathological conditions. By understanding these engagements, we aim to shed light on the mechanisms that govern T-IEL activities within the GI microenvironment. This knowledge may help in developing strategies to target GI ligands and modulate T-IEL receptor expression, offering precise approaches for treating intestinal disorders.
Collapse
Affiliation(s)
| | - Zhengguo Xiao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
6
|
Chen F, Zhao Y, Dai Y, Sun N, Gao X, Yin J, Zhou Z, Wu KJ. Chick Early Amniotic Fluid Alleviates Dextran-Sulfate-Sodium-Induced Colitis in Mice via T-Cell Receptor Pathway. Antioxidants (Basel) 2025; 14:51. [PMID: 39857385 PMCID: PMC11762673 DOI: 10.3390/antiox14010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/25/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic immune disease that is difficult to cure. We recently found that chick early amniotic fluid (ceAF) has notable anti-inflammatory and antioxidative properties, through its active components. This study demonstrates the potential of ceAF as a protective agent against UC. UPLC-MS mass spectrometry identified key components of ceAF, including various fatty acids and nucleosides. In vitro, ceAF improved viability in DSS-induced Caco-2 cells, reduced pro-inflammatory cytokines IL-1β and TNF-α, and increased the anti-inflammatory cytokine IL-10. It also upregulated the tight junction proteins ZO-1 and occludin. In DSS-induced UC mice, ceAF treatment alleviated weight loss, colon shortening, and disease activity, while improving histopathology, crypt depth, and colonic fibrosis. Mechanistically, ceAF's anti-inflammatory effects are mediated by inhibiting the overactivation of TCR signaling through the LCK/ZAP70/LAT pathway. Our findings suggest that ceAF could be a valuable nutritional intervention for UC, potentially enhancing existing functional foods aimed at managing this condition.
Collapse
Affiliation(s)
- Fan Chen
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi 214151, China; (F.C.); (X.G.); (J.Y.)
- Wuxi School of Medicine, Jiangnan University, Wuxi 214082, China; (Y.Z.); (Y.D.); (N.S.)
| | - Yining Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214082, China; (Y.Z.); (Y.D.); (N.S.)
| | - Yanfa Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi 214082, China; (Y.Z.); (Y.D.); (N.S.)
| | - Ning Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi 214082, China; (Y.Z.); (Y.D.); (N.S.)
| | - Xuezheng Gao
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi 214151, China; (F.C.); (X.G.); (J.Y.)
| | - Jiajun Yin
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi 214151, China; (F.C.); (X.G.); (J.Y.)
| | - Zhenhe Zhou
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi 214151, China; (F.C.); (X.G.); (J.Y.)
| | - Ke-jia Wu
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi 214151, China; (F.C.); (X.G.); (J.Y.)
- Wuxi School of Medicine, Jiangnan University, Wuxi 214082, China; (Y.Z.); (Y.D.); (N.S.)
| |
Collapse
|
7
|
Rodriguez-Marino N, Royer CJ, Rivera-Rodriguez DE, Seto E, Gracien I, Jones RM, Scharer CD, Gracz AD, Cervantes-Barragan L. Dietary fiber promotes antigen presentation on intestinal epithelial cells and development of small intestinal CD4 +CD8αα + intraepithelial T cells. Mucosal Immunol 2024; 17:1301-1313. [PMID: 39244090 PMCID: PMC11742265 DOI: 10.1016/j.mucimm.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The impact of dietary fiber on intestinal T cell development is poorly understood. Here we show that a low fiber diet reduces MHC-II antigen presentation by small intestinal epithelial cells (IECs) and consequently impairs development of CD4+CD8αα+ intraepithelial lymphocytes (DP IELs) through changes to the microbiota. Dietary fiber supports colonization by Segmented Filamentous Bacteria (SFB), which induces the secretion of IFNγ by type 1 innate lymphoid cells (ILC1s) that lead to MHC-II upregulation on IECs. IEC MHC-II expression caused either by SFB colonization or exogenous IFNγ administration induced differentiation of DP IELs. Finally, we show that a low fiber diet promotes overgrowth of Bifidobacterium pseudolongum, and that oral administration of B. pseudolongum reduces SFB abundance in the small intestine. Collectively we highlight the importance of dietary fiber in maintaining the balance among microbiota members that allow IEC MHC-II antigen presentation and define a mechanism of microbiota-ILC-IEC interactions participating in the development of intestinal intraepithelial T cells.
Collapse
Affiliation(s)
- Naomi Rodriguez-Marino
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Charlotte J Royer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States; Current affiliation. Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Dormarie E Rivera-Rodriguez
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States; Emory Vaccine Center, , Emory University School of Medicine, Atlanta, GA, United States; Division of Infectious Diseases, Department of Medicine, , Emory University School of Medicine, Atlanta, GA, United States
| | - Emma Seto
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Isabelle Gracien
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Rheinallt M Jones
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, , Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States; Emory Vaccine Center, , Emory University School of Medicine, Atlanta, GA, United States
| | - Adam D Gracz
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Luisa Cervantes-Barragan
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
8
|
Cohn IS, Wallbank BA, Haskins BE, O’Dea KM, Pardy RD, Shaw S, Merolle MI, Gullicksrud JA, Christian DA, Striepen B, Hunter CA. Intestinal cDC1s provide cues required for CD4+ T cell-mediated resistance to Cryptosporidium. J Exp Med 2024; 221:e20232067. [PMID: 38829369 PMCID: PMC11148471 DOI: 10.1084/jem.20232067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/01/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Cryptosporidium is an enteric pathogen and a prominent cause of diarrheal disease worldwide. Control of Cryptosporidium requires CD4+ T cells, but how protective CD4+ T cell responses are generated is poorly understood. Here, Cryptosporidium parasites that express MHCII-restricted model antigens were generated to understand the basis for CD4+ T cell priming and effector function. These studies revealed that parasite-specific CD4+ T cells are primed in the draining mesenteric lymph node but differentiate into Th1 cells in the gut to provide local parasite control. Although type 1 conventional dendritic cells (cDC1s) were dispensable for CD4+ T cell priming, they were required for CD4+ T cell gut homing and were a source of IL-12 at the site of infection that promoted local production of IFN-γ. Thus, cDC1s have distinct roles in shaping CD4+ T cell responses to an enteric infection: first, to promote gut homing from the mesLN, and second, to drive effector responses in the intestine.
Collapse
Affiliation(s)
- Ian S. Cohn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bethan A. Wallbank
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Breanne E. Haskins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Keenan M. O’Dea
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan D. Pardy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sebastian Shaw
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria I. Merolle
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jodi A. Gullicksrud
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David A. Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Danielson SM, Lefferts AR, Norman E, Regner EH, Schulz HM, Sansone-Poe D, Orlicky DJ, Kuhn KA. Myeloid Cells and Sphingosine-1-Phosphate Are Required for TCRαβ Intraepithelial Lymphocyte Recruitment to the Colon Epithelium. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1843-1854. [PMID: 38568091 PMCID: PMC11105980 DOI: 10.4049/jimmunol.2200556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/16/2024] [Indexed: 04/07/2024]
Abstract
Intraepithelial lymphocytes (IELs) are T cells important for the maintenance of barrier integrity in the intestine. Colon IELs are significantly reduced in both MyD88-deficient mice and those lacking an intact microbiota, suggesting that MyD88-mediated detection of bacterial products is important for the recruitment and/or retention of these cells. Here, using conditionally deficient MyD88 mice, we show that myeloid cells are the key mediators of TCRαβ+ IEL recruitment to the colon. Upon exposure to luminal bacteria, myeloid cells produce sphingosine-1-phosphate (S1P) in a MyD88-dependent fashion. TCRαβ+ IEL recruitment may be blocked using the S1P receptor antagonist FTY720, confirming the importance of S1P in the recruitment of TCRαβ+ IELs to the colon epithelium. Finally, using the TNFΔARE/+ model of Crohn's-like bowel inflammation, we show that disruption of colon IEL recruitment through myeloid-specific MyD88 deficiency results in reduced pathology. Our results illustrate one mechanism for recruitment of a subset of IELs to the colon.
Collapse
Affiliation(s)
- Sarah Mann Danielson
- Division of Rheumatology, Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Adam R. Lefferts
- Division of Rheumatology, Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Eric Norman
- Division of Rheumatology, Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Emilie H. Regner
- Division of Rheumatology, Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO
- Division of Gastroenterology and Hepatology, Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO
- Current affiliation: Division of Gastroenterology, Department of Medicine, Oregon Health Sciences University, Portland, OR
| | - Hanna M. Schulz
- Division of Rheumatology, Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Danielle Sansone-Poe
- Division of Rheumatology, Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO
| | - David J. Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO
| | - Kristine A. Kuhn
- Division of Rheumatology, Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
10
|
Abstract
The intestinal epithelium, which segregates the highly stimulatory lumen from the underlying tissue, harbors one of the largest lymphocyte populations in the body, intestinal intraepithelial lymphocytes (IELs). IELs must balance tolerance, resistance, and tissue protection to maintain epithelial homeostasis and barrier integrity. This review discusses the ontogeny, environmental imprinting, T cell receptor (TCR) repertoire, and function of intestinal IELs. Despite distinct developmental pathways, IEL subsets share core traits including an epithelium-adapted profile, innate-like properties, cytotoxic potential, and limited TCR diversity. IELs also receive important developmental and functional cues through interactions with epithelial cells, microbiota, and dietary components. The restricted TCR diversity of IELs suggests that a limited set of intestinal antigens drives IEL responses, with potential functional consequences. Finally, IELs play a key role in promoting homeostatic immunity and epithelial barrier integrity but can become pathogenic upon dysregulation. Therefore, IELs represent intriguing but underexamined therapeutic targets for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Ainsley Lockhart
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; ,
- Current affiliation: Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; ,
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Angelina M Bilate
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; ,
| |
Collapse
|
11
|
Heuberger CE, Janney A, Ilott N, Bertocchi A, Pott S, Gu Y, Pohin M, Friedrich M, Mann EH, Pearson C, Powrie FM, Pott J, Thornton E, Maloy KJ. MHC class II antigen presentation by intestinal epithelial cells fine-tunes bacteria-reactive CD4 T-cell responses. Mucosal Immunol 2024; 17:416-430. [PMID: 37209960 DOI: 10.1016/j.mucimm.2023.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 05/22/2023]
Abstract
Although intestinal epithelial cells (IECs) can express major histocompatibility complex class II (MHC II), especially during intestinal inflammation, it remains unclear if antigen presentation by IECs favors pro- or anti-inflammatory CD4+ T-cell responses. Using selective gene ablation of MHC II in IECs and IEC organoid cultures, we assessed the impact of MHC II expression by IECs on CD4+ T-cell responses and disease outcomes in response to enteric bacterial pathogens. We found that intestinal bacterial infections elicit inflammatory cues that greatly increase expression of MHC II processing and presentation molecules in colonic IECs. Whilst IEC MHC II expression had little impact on disease severity following Citrobacter rodentium or Helicobacter hepaticus infection, using a colonic IEC organoid-CD4+ T cell co-culture system, we demonstrate that IECs can activate antigen-specific CD4+ T cells in an MHC II-dependent manner, modulating both regulatory and effector Th cell subsets. Furthermore, we assessed adoptively transferred H. hepaticus-specific CD4+ T cells during intestinal inflammation in vivo and report that IEC MHC II expression dampens pro-inflammatory effector Th cells. Our findings indicate that IECs can function as non-conventional antigen-presenting cells and that IEC MHC II expression fine-tunes local effector CD4+ T-cell responses during intestinal inflammation.
Collapse
Affiliation(s)
- Cornelia E Heuberger
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom; Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Alina Janney
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Nicholas Ilott
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Alice Bertocchi
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Sebastian Pott
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Yisu Gu
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Mathilde Pohin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Matthias Friedrich
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Elizabeth H Mann
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Claire Pearson
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Fiona M Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Johanna Pott
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom; Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Emily Thornton
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Kevin Joseph Maloy
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
12
|
Yu X, Wang L, Niu Z, Zhu L. Controversial role of γδ T cells in colorectal cancer. Am J Cancer Res 2024; 14:1482-1500. [PMID: 38726287 PMCID: PMC11076236 DOI: 10.62347/hwmb1163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
Colorectal cancer (CRC) is the third most frequent type of cancer, and the second leading cause of cancer-related deaths worldwide. Current treatments for patients with CRC do not substantially improve the survival and quality of life of patients with advanced CRC, thus necessitating the development of new treatment strategies. The emergence of immunotherapy has revitalized the field, showing great potential in advanced CRC treatment. Owing to the ability of tumor cells to evade the immune system through major histocompatibility complex shedding and heterogeneous and low antigen spreading, only a few patients respond to immunotherapy. γδ T cells have heterogeneous structures and functions, and their key roles in immune regulation, tumor immunosurveillance, and specific primary immune responses have increasingly been recognized. γδ T cells recognize and kill CRC cells efficiently, thus inhibiting tumor progress through various mechanisms. However, γδ T cells can potentially promote tumor development and metastasis. Thus, given this dual role in prognosis, these cells can act as either a "friend" or "foe" of CRC. In this review, we explore the characteristics of γδ T cells and their functions in CRC, highlighting their application in immunotherapy.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, Cancer Center and Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan UniversityChengdu, Sichuan, The People’s Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People’s HospitalNo. 10 Qinyun Nan Street, Chengdu, Sichuan, The People’s Republic of China
| | - Leibo Wang
- Department of Surgery, Beijing Jishuitan Hospital Guizhou HospitalGuiyang, Guizhou, The People’s Republic of China
| | - Zhongxi Niu
- Department of Thoracic Surgery, The Third Medical Center of PLA General HospitalBeijing, The People’s Republic of China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center and Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan UniversityChengdu, Sichuan, The People’s Republic of China
| |
Collapse
|
13
|
Li C, Lanasa D, Park JH. Pathways and mechanisms of CD4 +CD8αα + intraepithelial T cell development. Trends Immunol 2024; 45:288-302. [PMID: 38514370 PMCID: PMC11015970 DOI: 10.1016/j.it.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
The mammalian small intestine epithelium harbors a peculiar population of CD4+CD8αα+ T cells that are derived from mature CD4+ T cells through reprogramming of lineage-specific transcription factors. CD4+CD8αα+ T cells occupy a unique niche in T cell biology because they exhibit mixed phenotypes and functional characteristics of both CD4+ helper and CD8+ cytotoxic T cells. The molecular pathways driving their generation are not fully mapped. However, recent studies demonstrate the unique role of the commensal gut microbiota as well as distinct cytokine and chemokine requirements in the differentiation and survival of these cells. We review the established and newly identified factors involved in the generation of CD4+CD8αα+ intraepithelial lymphocytes (IELs) and place them in the context of the molecular machinery that drives their phenotypic and functional differentiation.
Collapse
Affiliation(s)
- Can Li
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dominic Lanasa
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Nakandakari-Higa S, Walker S, Canesso MCC, van der Heide V, Chudnovskiy A, Kim DY, Jacobsen JT, Parsa R, Bilanovic J, Parigi SM, Fiedorczuk K, Fuchs E, Bilate AM, Pasqual G, Mucida D, Kamphorst AO, Pritykin Y, Victora GD. Universal recording of immune cell interactions in vivo. Nature 2024; 627:399-406. [PMID: 38448581 PMCID: PMC11078586 DOI: 10.1038/s41586-024-07134-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Immune cells rely on transient physical interactions with other immune and non-immune populations to regulate their function1. To study these 'kiss-and-run' interactions directly in vivo, we previously developed LIPSTIC (labelling immune partnerships by SorTagging intercellular contacts)2, an approach that uses enzymatic transfer of a labelled substrate between the molecular partners CD40L and CD40 to label interacting cells. Reliance on this pathway limited the use of LIPSTIC to measuring interactions between CD4+ T helper cells and antigen-presenting cells, however. Here we report the development of a universal version of LIPSTIC (uLIPSTIC), which can record physical interactions both among immune cells and between immune and non-immune populations irrespective of the receptors and ligands involved. We show that uLIPSTIC can be used, among other things, to monitor the priming of CD8+ T cells by dendritic cells, reveal the steady-state cellular partners of regulatory T cells and identify germinal centre-resident T follicular helper cells on the basis of their ability to interact cognately with germinal centre B cells. By coupling uLIPSTIC with single-cell transcriptomics, we build a catalogue of the immune populations that physically interact with intestinal epithelial cells at the steady state and profile the evolution of the interactome of lymphocytic choriomeningitis virus-specific CD8+ T cells in multiple organs following systemic infection. Thus, uLIPSTIC provides a broadly useful technology for measuring and understanding cell-cell interactions across multiple biological systems.
Collapse
Affiliation(s)
| | - Sarah Walker
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Quantitative and Computational Biology, Princeton University, Princeton, NJ, USA
| | - Maria C C Canesso
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Verena van der Heide
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aleksey Chudnovskiy
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Dong-Yoon Kim
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Johanne T Jacobsen
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
- Institute for Immunology and Transfusion Medicine, Rikshospitalet, University of Oslo, Oslo, Norway
| | - Roham Parsa
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Jana Bilanovic
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - S Martina Parigi
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Karol Fiedorczuk
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Angelina M Bilate
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Alice O Kamphorst
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuri Pritykin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Computer Science, Princeton University, Princeton, NJ, USA.
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
15
|
Brabec T, Schwarzer M, Kováčová K, Dobešová M, Schierová D, Březina J, Pacáková I, Šrůtková D, Ben-Nun O, Goldfarb Y, Šplíchalová I, Kolář M, Abramson J, Filipp D, Dobeš J. Segmented filamentous bacteria-induced epithelial MHCII regulates cognate CD4+ IELs and epithelial turnover. J Exp Med 2024; 221:e20230194. [PMID: 37902602 PMCID: PMC10615894 DOI: 10.1084/jem.20230194] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023] Open
Abstract
Intestinal epithelial cells have the capacity to upregulate MHCII molecules in response to certain epithelial-adhesive microbes, such as segmented filamentous bacteria (SFB). However, the mechanism regulating MHCII expression as well as the impact of epithelial MHCII-mediated antigen presentation on T cell responses targeting those microbes remains elusive. Here, we identify the cellular network that regulates MHCII expression on the intestinal epithelium in response to SFB. Since MHCII on the intestinal epithelium is dispensable for SFB-induced Th17 response, we explored other CD4+ T cell-based responses induced by SFB. We found that SFB drive the conversion of cognate CD4+ T cells to granzyme+ CD8α+ intraepithelial lymphocytes. These cells accumulate in small intestinal intraepithelial space in response to SFB. Yet, their accumulation is abrogated by the ablation of MHCII on the intestinal epithelium. Finally, we show that this mechanism is indispensable for the SFB-driven increase in the turnover of epithelial cells in the ileum. This study identifies a previously uncharacterized immune response to SFB, which is dependent on the epithelial MHCII function.
Collapse
Affiliation(s)
- Tomáš Brabec
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - Katarína Kováčová
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martina Dobešová
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dagmar Schierová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Březina
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Iva Pacáková
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Dagmar Šrůtková
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - Osher Ben-Nun
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Goldfarb
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Iva Šplíchalová
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Dobeš
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
16
|
Zhang H, Xie Y, Cao F, Song X. Gut microbiota-derived fatty acid and sterol metabolites: biotransformation and immunomodulatory functions. Gut Microbes 2024; 16:2382336. [PMID: 39046079 PMCID: PMC11271093 DOI: 10.1080/19490976.2024.2382336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/26/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Commensal microorganisms in the human gut produce numerous metabolites by using small molecules derived from the host or diet as precursors. Host or dietary lipid molecules are involved in energy metabolism and maintaining the structural integrity of cell membranes. Notably, gut microbes can convert these lipids into bioactive signaling molecules through their biotransformation and synthesis pathways. These microbiota-derived lipid metabolites can affect host physiology by influencing the body's immune and metabolic processes. This review aims to summarize recent advances in the microbial transformation and host immunomodulatory functions of these lipid metabolites, with a special focus on fatty acids and steroids produced by our gut microbiota.
Collapse
Affiliation(s)
- Haohao Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yadong Xie
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fei Cao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xinyang Song
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
Song W, Wang Y, Li G, Xue S, Zhang G, Dang Y, Wang H. Modulating the gut microbiota is involved in the effect of low-molecular-weight Glycyrrhiza polysaccharide on immune function. Gut Microbes 2023; 15:2276814. [PMID: 37948152 PMCID: PMC10653635 DOI: 10.1080/19490976.2023.2276814] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Low molecular weight (6.5 kDa) Glycyrrhiza polysaccharide (GP) exhibits good immunomodulatory activity, however, the mechanism underlying GP-mediated regulation of immunity and gut microbiota remains unclear. In this study, we aimed to reveal the mechanisms underlying GP-mediated regulation of immunity and gut microbiota using cyclophosphamide (CTX)-induced immunosuppressed and intestinal mucosal injury models. GP reversed CTX-induced intestinal structural damage and increased the number of goblet cells, CD4+, CD8+ T lymphocytes, and mucin content, particularly by maintaining the balance of helper T lymphocyte 1/helper T lymphocyte 2 (Th1/Th2). Moreover, GP alleviated immunosuppression by down-regulating extracellular regulated protein kinases/p38/nuclear factor kappa-Bp50 pathways and increasing short-chain fatty acids level and secretion of cytokines, including interferon-γ, interleukin (IL)-4, IL-2, IL-10, IL-22, and transforming growth factor-β3 and immunoglobulin (Ig) M, IgG and secretory immunoglobulin A. GP treatment increased the total species and diversity of the gut microbiota. Microbiota analysis showed that GP promoted the proliferation of beneficial bacteria, including Muribaculaceae_unclassified, Alistipes, Lachnospiraceae_NK4A136_group, Ligilactobacillus, and Clostridia_vadinBB60_group, and reduced the abundance of Proteobacteria and CTX-derived bacteria (Clostridiales_unclassified, Candidatus_Arthromitus, Firmicutes_unclassified, and Clostridium). The studies of fecal microbiota transplantation and the pseudo-aseptic model conformed that the gut microbiota is crucial in GP-mediated immunity regulation. GP shows great potential as an immune enhancer and a natural medicine for treating intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Wangdi Song
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Yunyun Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Gongcheng Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Shengnan Xue
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Genlin Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Yanyan Dang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Hebin Wang
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, China
| |
Collapse
|
18
|
Cohn IS, Wallbank BA, Haskins BE, O’Dea KM, Pardy RD, Shaw S, Merolle MI, Gullicksrud JA, Christian DA, Striepen B, Hunter CA. Intestinal cDC1s provide IL-12 dependent and independent functions required for CD4 + T cell-mediated resistance to Cryptosporidium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566669. [PMID: 38014026 PMCID: PMC10680586 DOI: 10.1101/2023.11.11.566669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cryptosporidium is an enteric pathogen that is a prominent cause of diarrheal disease. Control of this infection requires CD4+ T cells, though the processes that lead to T cell-mediated resistance have been difficult to assess. Here, Cryptosporidium parasites that express MHCII-restricted model antigens were generated to dissect the early events that influence CD4+ T cell priming and effector function. These studies highlight that parasite-specific CD4+ T cells are primed in the draining mesenteric lymph node (mesLN) and differentiate into Th1 cells in the gut, where they mediate IFN-γ-dependent control of the infection. Although type 1 conventional dendritic cells (cDC1s) were not required for initial priming of CD4+ T cells, cDC1s were required for CD4+ T cell expansion and gut homing. cDC1s were also a major source of IL-12 that was not required for priming but promoted full differentiation of CD4+ T cells and local production of IFN-γ. Together, these studies reveal distinct roles for cDC1s in shaping CD4+ T cell responses to enteric infection: first to drive early expansion in the mesLN and second to drive effector responses in the gut.
Collapse
Affiliation(s)
- Ian S. Cohn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bethan A. Wallbank
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Breanne E. Haskins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Keenan M. O’Dea
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan D. Pardy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sebastian Shaw
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria I. Merolle
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jodi A. Gullicksrud
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David A. Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Royer CJ, Rodriguez-Marino N, Yaceczko MD, Rivera-Rodriguez DE, Ziegler TR, Cervantes-Barragan L. Low dietary fiber intake impairs small intestinal Th17 and intraepithelial T cell development over generations. Cell Rep 2023; 42:113140. [PMID: 37768824 PMCID: PMC10765424 DOI: 10.1016/j.celrep.2023.113140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023] Open
Abstract
Dietary fiber strongly impacts the microbiota. Here, we show that a low-fiber diet changes the small intestinal (SI) microbiota and impairs SI Th17, TCRαβ+CD8αβ+ and TCRαβ+CD8αα+ intraepithelial T cell development. We restore T cell development with dietary fiber supplementation, but this defect becomes persistent over generations with constant low-fiber diets. Offspring of low-fiber diet-fed mice have reduced SI T cells even after receiving a fiber-rich diet due to loss of bacteria important for T cell development. In these mice, only a microbiota transplant from a fiber-rich diet-fed mouse and a fiber-rich diet can restore T cell development. Low-fiber diets reduce segmented filamentous bacteria (SFB) abundance, impairing its vertical transmission. SFB colonization and a fiber-rich diet partially restore T cell development. Finally, we observe that low-fiber diet-induced T cell defects render mice more susceptible to Citrobacter rodentium infection. Together, these results demonstrate the importance of fiber to microbiota vertical transmission and host immune system development.
Collapse
Affiliation(s)
- Charlotte J Royer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Naomi Rodriguez-Marino
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Madelyn D Yaceczko
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dormarie E Rivera-Rodriguez
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA; Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Thomas R Ziegler
- Division of Endocrinology, Metabolism, and Lipids and Center for Clinical and Molecular Nutrition, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Luisa Cervantes-Barragan
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
20
|
Heimli M, Tennebø Flåm S, Sagsveen Hjorthaug H, Bjørnstad PM, Chernigovskaya M, Le QK, Tekpli X, Greiff V, Lie BA. Human thymic putative CD8αα precursors exhibit a biased TCR repertoire in single cell AIRR-seq. Sci Rep 2023; 13:17714. [PMID: 37853083 PMCID: PMC10584817 DOI: 10.1038/s41598-023-44693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Thymic T cell development comprises T cell receptor (TCR) recombination and assessment of TCR avidity towards self-peptide-MHC complexes presented by antigen-presenting cells. Self-reactivity may lead to negative selection, or to agonist selection and differentiation into unconventional lineages such as regulatory T cells and CD8[Formula: see text] T cells. To explore the effect of the adaptive immune receptor repertoire on thymocyte developmental decisions, we performed single cell adaptive immune receptor repertoire sequencing (scAIRR-seq) of thymocytes from human young paediatric thymi and blood. Thymic PDCD1+ cells, a putative CD8[Formula: see text] T cell precursor population, exhibited several TCR features previously associated with thymic and peripheral ZNF683+ CD8[Formula: see text] T cells, including enrichment of large and positively charged complementarity-determining region 3 (CDR3) amino acids. Thus, the TCR repertoire may partially explain the decision between conventional vs. agonist selected thymocyte differentiation, an aspect of importance for the development of therapies for patients with immune-mediated diseases.
Collapse
Affiliation(s)
- Marte Heimli
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Siri Tennebø Flåm
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Hanne Sagsveen Hjorthaug
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Pål Marius Bjørnstad
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Quy Khang Le
- Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Benedicte Alexandra Lie
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway.
| |
Collapse
|
21
|
Yakou MH, Ghilas S, Tran K, Liao Y, Afshar-Sterle S, Kumari A, Schmid K, Dijkstra C, Inguanti C, Ostrouska S, Wilcox J, Smith M, Parathan P, Allam A, Xue HH, Belz GT, Mariadason JM, Behren A, Drummond GR, Ruscher R, Williams DS, Pal B, Shi W, Ernst M, Raghu D, Mielke LA. TCF-1 limits intraepithelial lymphocyte antitumor immunity in colorectal carcinoma. Sci Immunol 2023; 8:eadf2163. [PMID: 37801516 DOI: 10.1126/sciimmunol.adf2163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 08/07/2023] [Indexed: 10/08/2023]
Abstract
Intraepithelial lymphocytes (IELs), including αβ and γδ T cells (T-IELs), constantly survey and play a critical role in maintaining the gastrointestinal epithelium. We show that cytotoxic molecules important for defense against cancer were highly expressed by T-IELs in the small intestine. In contrast, abundance of colonic T-IELs was dependent on the microbiome and displayed higher expression of TCF-1/TCF7 and a reduced effector and cytotoxic profile, including low expression of granzymes. Targeted deletion of TCF-1 in γδ T-IELs induced a distinct effector profile and reduced colon tumor formation in mice. In addition, TCF-1 expression was significantly reduced in γδ T-IELs present in human colorectal cancers (CRCs) compared with normal healthy colon, which strongly correlated with an enhanced γδ T-IEL effector phenotype and improved patient survival. Our work identifies TCF-1 as a colon-specific T-IEL transcriptional regulator that could inform new immunotherapy strategies to treat CRC.
Collapse
Affiliation(s)
- Marina H Yakou
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Sonia Ghilas
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Kelly Tran
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Yang Liao
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Shoukat Afshar-Sterle
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Anita Kumari
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Kevin Schmid
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Christine Dijkstra
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Chantelle Inguanti
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Simone Ostrouska
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Jordan Wilcox
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Maxine Smith
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Pavitha Parathan
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Amr Allam
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
- New Jersey Veterans Affairs Health Care System, East Orange, NJ, USA
| | - Gabrielle T Belz
- University of Queensland Frazer Institute, Faculty of Medicine, University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research; Department of Microbiology, Anatomy, Physiology and Pharmacology; and School of Agriculture, Biomedicine, and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Roland Ruscher
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - David S Williams
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
- Department of Anatomical Pathology, Austin Health, Heidelberg, Victoria, Australia
| | - Bhupinder Pal
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Wei Shi
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Dinesh Raghu
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Lisa A Mielke
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| |
Collapse
|
22
|
Omrani O, Krepelova A, Rasa SMM, Sirvinskas D, Lu J, Annunziata F, Garside G, Bajwa S, Reinhardt S, Adam L, Käppel S, Ducano N, Donna D, Ori A, Oliviero S, Rudolph KL, Neri F. IFNγ-Stat1 axis drives aging-associated loss of intestinal tissue homeostasis and regeneration. Nat Commun 2023; 14:6109. [PMID: 37777550 PMCID: PMC10542816 DOI: 10.1038/s41467-023-41683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 09/14/2023] [Indexed: 10/02/2023] Open
Abstract
The influence of aging on intestinal stem cells and their niche can explain underlying causes for perturbation in their function observed during aging. Molecular mechanisms for such a decrease in the functionality of intestinal stem cells during aging remain largely undetermined. Using transcriptome-wide approaches, our study demonstrates that aging intestinal stem cells strongly upregulate antigen presenting pathway genes and over-express secretory lineage marker genes resulting in lineage skewed differentiation into the secretory lineage and strong upregulation of MHC class II antigens in the aged intestinal epithelium. Mechanistically, we identified an increase in proinflammatory cells in the lamina propria as the main source of elevated interferon gamma (IFNγ) in the aged intestine, that leads to the induction of Stat1 activity in intestinal stem cells thus priming the aberrant differentiation and elevated antigen presentation in epithelial cells. Of note, systemic inhibition of IFNγ-signaling completely reverses these aging phenotypes and reinstalls regenerative capacity of the aged intestinal epithelium.
Collapse
Affiliation(s)
- Omid Omrani
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Anna Krepelova
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | | | - Dovydas Sirvinskas
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Jing Lu
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - George Garside
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Seerat Bajwa
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Susanne Reinhardt
- Dresden-concept Genome Center, c/o Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Lisa Adam
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Sandra Käppel
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Nadia Ducano
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Daniela Donna
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | | | - Francesco Neri
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy.
- Molecular Biotechnology Center, University of Turin, Torino, Italy.
| |
Collapse
|
23
|
Hada A, Li L, Kandel A, Jin Y, Xiao Z. Characterization of Bovine Intraepithelial T Lymphocytes in the Gut. Pathogens 2023; 12:1173. [PMID: 37764981 PMCID: PMC10535955 DOI: 10.3390/pathogens12091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Intraepithelial T lymphocytes (T-IELs), which constitute over 50% of the total T lymphocytes in the animal, patrol the mucosal epithelial lining to defend against pathogen invasion while maintaining gut homeostasis. In addition to expressing T cell markers such as CD4 and CD8, T-IELs display T cell receptors (TCR), including either TCRαβ or TCRγδ. Both humans and mice share similar T-IEL subsets: TCRγδ+, TCRαβ+CD8αα+, TCRαβ+CD4+, and TCRαβ+CD8αβ+. Among these subsets, human T-IELs are predominantly TCRαβ+ (over 80%), whereas those in mice are mostly TCRγδ+ (~60%). Of note, the majority of the TCRγδ+ subset expresses CD8αα in both species. Although T-IELs have been extensively studied in humans and mice, their profiles in cattle have not been well examined. Our study is the first to characterize bovine T-IELs using flow cytometry, where we identified several distinct features. The percentage of TCRγδ+ was comparable to that of TCRαβ+ T-IELs (both ~50% of CD3+), and the majority of bovine TCRγδ+ T-IELs did not express CD8 (CD8-) (above 60%). Furthermore, about 20% of TCRαβ+ T-IELs were CD4+CD8αβ+, and the remaining TCRαβ+ T-IELs were evenly distributed between CD4+ and CD8αβ+ (~40% of TCRαβ+ T-IELs each) with no TCRαβ+CD8αα+ identified. Despite these unique properties, bovine T-IELs, similar to those in humans and mice, expressed a high level of CD69, an activation and tissue-retention marker, and a low level of CD62L, a lymphoid adhesion marker. Moreover, bovine T-IELs produced low levels of inflammatory cytokines such as IFNγ and IL17A, and secreted small amounts of the immune regulatory cytokine TGFβ1. Hence, bovine T-IELs' composition largely differs from that of human and mouse, with the dominance of the CD8- population among TCRγδ+ T-IELs, the substantial presence of TCRαβ+CD4+CD8αβ+ cells, and the absence of TCRαβ+CD8αα+ T-IELs. These results provide the groundwork for conducting future studies to examine how bovine T-IELs respond to intestinal pathogens and maintain the integrity of the gut epithelial barrier in animals.
Collapse
Affiliation(s)
| | | | | | | | - Zhengguo Xiao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.H.); (L.L.); (A.K.); (Y.J.)
| |
Collapse
|
24
|
Ono K, Sujino T, Miyamoto K, Harada Y, Kojo S, Yoshimatsu Y, Tanemoto S, Koda Y, Zheng J, Sayama K, Koide T, Teratani T, Mikami Y, Takabayashi K, Nakamoto N, Hosoe N, London M, Ogata H, Mucida D, Taniuchi I, Kanai T. Downregulation of chemokine receptor 9 facilitates CD4 +CD8αα + intraepithelial lymphocyte development. Nat Commun 2023; 14:5152. [PMID: 37620389 PMCID: PMC10449822 DOI: 10.1038/s41467-023-40950-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Intestinal intraepithelial lymphocytes (IELs) reside in the gut epithelial layer, where they help in maintaining intestinal homeostasis. Peripheral CD4+ T cells can develop into CD4+CD8αα+ IELs upon arrival at the gut epithelium via the lamina propria (LP). Although this specific differentiation of T cells is well established, the mechanisms preventing it from occurring in the LP remain unclear. Here, we show that chemokine receptor 9 (CCR9) expression is low in epithelial CD4+CD8αα+ IELs, but CCR9 deficiency results in CD4+CD8αα+ over-differentiation in both the epithelium and the LP. Single-cell RNA sequencing shows an enriched precursor cell cluster for CD4+CD8αα+ IELs in Ccr9-/- mice. CD4+ T cells isolated from the epithelium of Ccr9-/- mice also display increased expression of Cbfβ2, and the genomic occupancy modification of Cbfβ2 expression reveals its important function in CD4+CD8αα+ differentiation. These results implicate a link between CCR9 downregulation and Cbfb2 splicing upregulation to enhance CD4+CD8αα+ IEL differentiation.
Collapse
Affiliation(s)
- Keiko Ono
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan.
| | - Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Research Laboratory, Miyarisan Pharmaceutical Co., Tokyo, Japan
| | - Yosuke Harada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Kojo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Division of Immunology and Stem Cell Biology, Institute of Medical, Pharmaceutical and Health Science, Kanazawa University, Kanazawa, Japan
| | - Yusuke Yoshimatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shun Tanemoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuzo Koda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Jiawen Zheng
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kazutoshi Sayama
- Applied Life Science Course, College of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kaoru Takabayashi
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Hosoe
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
| | - Mariya London
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Haruhiko Ogata
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
25
|
Venkatesh H, Tracy SI, Farrar MA. Cytotoxic CD4 T cells in the mucosa and in cancer. Front Immunol 2023; 14:1233261. [PMID: 37654482 PMCID: PMC10466411 DOI: 10.3389/fimmu.2023.1233261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023] Open
Abstract
CD4 T cells were initially described as helper cells that promote either the cellular immune response (Th1 cells) or the humoral immune response (Th2 cells). Since then, a plethora of functionally distinct helper and regulatory CD4 T cell subsets have been described. CD4 T cells with cytotoxic function were first described in the setting of viral infections and autoimmunity, and more recently in cancer and gut dysbiosis. Regulatory CD4 T cell subsets such as Tregs and T-regulatory type 1 (Tr1) cells have also been shown to have cytotoxic potential. Indeed, Tr1 cells have been shown to be important for maintenance of stem cell niches in the bone marrow and the gut. This review will provide an overview of cytotoxic CD4 T cell development, and discuss the role of inflammatory and Tr1-like cytotoxic CD4 T cells in maintenance of intestinal stem cells and in anti-cancer immune responses.
Collapse
Affiliation(s)
- Hrishi Venkatesh
- Center for Immunology, Masonic Cancer Center, Minneapolis, MN, United States
- University of Minnesota, Department of Laboratory Medicine and Pathology, Minneapolis, MN, United States
| | - Sean I. Tracy
- Center for Immunology, Masonic Cancer Center, Minneapolis, MN, United States
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Michael A. Farrar
- Center for Immunology, Masonic Cancer Center, Minneapolis, MN, United States
- University of Minnesota, Department of Laboratory Medicine and Pathology, Minneapolis, MN, United States
| |
Collapse
|
26
|
Lockhart A, Reed A, Rezende de Castro T, Herman C, Campos Canesso MC, Mucida D. Dietary protein shapes the profile and repertoire of intestinal CD4+ T cells. J Exp Med 2023; 220:e20221816. [PMID: 37191720 PMCID: PMC10192604 DOI: 10.1084/jem.20221816] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/11/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023] Open
Abstract
The intestinal immune system must tolerate food antigens to avoid allergy, a process requiring CD4+ T cells. Combining antigenically defined diets with gnotobiotic models, we show that food and microbiota distinctly influence the profile and T cell receptor repertoire of intestinal CD4+ T cells. Independent of the microbiota, dietary proteins contributed to accumulation and clonal selection of antigen-experienced CD4+ T cells at the intestinal epithelium, imprinting a tissue-specialized transcriptional program including cytotoxic genes on both conventional and regulatory CD4+ T cells (Tregs). This steady state CD4+ T cell response to food was disrupted by inflammatory challenge, and protection against food allergy in this context was associated with Treg clonal expansion and decreased proinflammatory gene expression. Finally, we identified both steady-state epithelium-adapted CD4+ T cells and tolerance-induced Tregs that recognize dietary antigens, suggesting that both cell types may be critical for preventing inappropriate immune responses to food.
Collapse
Affiliation(s)
- Ainsley Lockhart
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Aubrey Reed
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | | | - Calvin Herman
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | | | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
27
|
Joannou K, Baldwin TA. Destined for the intestine: thymic selection of TCRαβ CD8αα intestinal intraepithelial lymphocytes. Clin Exp Immunol 2023; 213:67-75. [PMID: 37137518 PMCID: PMC10324546 DOI: 10.1093/cei/uxad049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/22/2023] [Accepted: 04/30/2023] [Indexed: 05/05/2023] Open
Abstract
The immune system is composed of a variety of different T-cell lineages distributed through both secondary lymphoid tissue and non-lymphoid tissue. The intestinal epithelium is a critical barrier surface that contains numerous intraepithelial lymphocytes that aid in maintaining homeostasis at that barrier. This review focuses on T-cell receptor αβ (TCRαβ) CD8αα intraepithelial lymphocytes, and how recent advances in the field clarify how this unique T-cell subset is selected, matures, and functions in the intestines. We consider how the available evidence reveals a story of ontogeny starting from agonist selection of T cells in the thymus and finishing through the specific signaling environment of the intestinal epithelium. We conclude with how this story raises further key questions about the development of different ontogenic waves of TCRαβ CD8αα IEL and their importance for intestinal epithelial homeostasis.
Collapse
Affiliation(s)
- Kevin Joannou
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Troy A Baldwin
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
28
|
Song X, Zhang H, Zhang Y, Goh B, Bao B, Mello SS, Sun X, Zheng W, Gazzaniga FS, Wu M, Qu F, Yin Q, Gilmore MS, Oh SF, Kasper DL. Gut microbial fatty acid isomerization modulates intraepithelial T cells. Nature 2023; 619:837-843. [PMID: 37380774 DOI: 10.1038/s41586-023-06265-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/26/2023] [Indexed: 06/30/2023]
Abstract
The human gut microbiome constantly converts natural products derived from the host and diet into numerous bioactive metabolites1-3. Dietary fats are essential micronutrients that undergo lipolysis to release free fatty acids (FAs) for absorption in the small intestine4. Gut commensal bacteria modify some unsaturated FAs-for example, linoleic acid (LA)-into various intestinal FA isomers that regulate host metabolism and have anticarcinogenic properties5. However, little is known about how this diet-microorganism FA isomerization network affects the mucosal immune system of the host. Here we report that both dietary factors and microbial factors influence the level of gut LA isomers (conjugated LAs (CLAs)) and that CLAs in turn modulate a distinct population of CD4+ intraepithelial lymphocytes (IELs) that express CD8αα in the small intestine. Genetic abolition of FA isomerization pathways in individual gut symbionts significantly decreases the number of CD4+CD8αα+ IELs in gnotobiotic mice. Restoration of CLAs increases CD4+CD8αα+ IEL levels in the presence of the transcription factor hepatocyte nuclear factor 4γ (HNF4γ). Mechanistically, HNF4γ facilitates CD4+CD8αα+ IEL development by modulating interleukin-18 signalling. In mice, specific deletion of HNF4γ in T cells leads to early mortality from infection by intestinal pathogens. Our data reveal a new role for bacterial FA metabolic pathways in the control of host intraepithelial immunological homeostasis by modulating the relative number of CD4+ T cells that were CD4+CD8αα+.
Collapse
Affiliation(s)
- Xinyang Song
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Haohao Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yanbo Zhang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Byoungsook Goh
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bin Bao
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Suelen S Mello
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Ximei Sun
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Wen Zheng
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Francesca S Gazzaniga
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Mass General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
| | - Meng Wu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Fangfang Qu
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Qiangzong Yin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael S Gilmore
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Sungwhan F Oh
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dennis L Kasper
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Nakandakari-Higa S, Canesso MCC, Walker S, Chudnovskiy A, Jacobsen JT, Bilanovic J, Parigi SM, Fiedorczuk K, Fuchs E, Bilate AM, Pasqual G, Mucida D, Pritykin Y, Victora GD. Universal recording of cell-cell contacts in vivo for interaction-based transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533003. [PMID: 36993443 PMCID: PMC10055214 DOI: 10.1101/2023.03.16.533003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cellular interactions are essential for tissue organization and functionality. In particular, immune cells rely on direct and usually transient interactions with other immune and non-immune populations to specify and regulate their function. To study these "kiss-and-run" interactions directly in vivo, we previously developed LIPSTIC (Labeling Immune Partnerships by SorTagging Intercellular Contacts), an approach that uses enzymatic transfer of a labeled substrate between the molecular partners CD40L and CD40 to label interacting cells. Reliance on this pathway limited the use of LIPSTIC to measuring interactions between CD4+ helper T cells and antigen presenting cells, however. Here, we report the development of a universal version of LIPSTIC (uLIPSTIC), which can record physical interactions both among immune cells and between immune and non-immune populations irrespective of the receptors and ligands involved. We show that uLIPSTIC can be used, among other things, to monitor the priming of CD8+ T cells by dendritic cells, reveal the cellular partners of regulatory T cells in steady state, and identify germinal center (GC)-resident T follicular helper (Tfh) cells based on their ability to interact cognately with GC B cells. By coupling uLIPSTIC with single-cell transcriptomics, we build a catalog of the immune populations that physically interact with intestinal epithelial cells (IECs) and find evidence of stepwise acquisition of the ability to interact with IECs as CD4+ T cells adapt to residence in the intestinal tissue. Thus, uLIPSTIC provides a broadly useful technology for measuring and understanding cell-cell interactions across multiple biological systems.
Collapse
Affiliation(s)
| | - Maria C C Canesso
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Sarah Walker
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Quantitative and Computational Biology Graduate Program, Princeton University, Princeton, NJ, USA
| | - Aleksey Chudnovskiy
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Johanne T Jacobsen
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Jana Bilanovic
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - S Martina Parigi
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Karol Fiedorczuk
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Angelina M Bilate
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Giulia Pasqual
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Yuri Pritykin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
30
|
Lockhart A, Reed A, de Castro TR, Herman C, Canesso MCC, Mucida D. Dietary protein shapes the profile and repertoire of intestinal CD4 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536475. [PMID: 37090529 PMCID: PMC10120666 DOI: 10.1101/2023.04.11.536475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The intestinal immune system must tolerate food antigens to avoid allergy, a process requiring CD4 + T cells. Combining antigenically defined diets with gnotobiotic models, we show that food and microbiota distinctly influence the profile and T cell receptor repertoire of intestinal CD4 + T cells. Independent of the microbiota, dietary proteins contributed to accumulation and clonal selection of antigen-experienced CD4 + T cells at the intestinal epithelium, imprinting a tissue specialized transcriptional program including cytotoxic genes on both conventional and regulatory CD4 + T cells (Tregs). This steady state CD4 + T cell response to food was disrupted by inflammatory challenge, and protection against food allergy in this context was associated with Treg clonal expansion and decreased pro-inflammatory gene expression. Finally, we identified both steady state epithelium-adapted CD4 + T cells and tolerance-induced Tregs that recognize dietary antigens, suggesting that both cell types may be critical for preventing inappropriate immune responses to food.
Collapse
|
31
|
Meitei HT, Lal G. T cell receptor signaling in the differentiation and plasticity of CD4 + T cells. Cytokine Growth Factor Rev 2023; 69:14-27. [PMID: 36028461 DOI: 10.1016/j.cytogfr.2022.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
CD4+ T cells are critical components of the adaptive immune system. The T cell receptor (TCR) and co-receptor signaling cascades shape the phenotype and functions of CD4+ T cells. TCR signaling plays a crucial role in T cell development, antigen recognition, activation, and differentiation upon recognition of foreign- or auto-antigens. In specific autoimmune conditions, altered TCR repertoire is reported and can predispose autoimmunity with organ-specific inflammation and tissue damage. TCR signaling modulates various signaling cascades and regulates epigenetic and transcriptional regulation during homeostasis and disease conditions. Understanding the mechanism by which coreceptors and cytokine signals control the magnitude of TCR signal amplification will aid in developing therapeutic strategies to treat inflammation and autoimmune diseases. This review focuses on the role of the TCR signaling cascade and its components in the activation, differentiation, and plasticity of various CD4+ T cell subsets.
Collapse
Affiliation(s)
| | - Girdhari Lal
- National Centre for Cell Science, SPPU campus, Ganeshkhind, Pune, MH 411007, India.
| |
Collapse
|
32
|
Ménoret S, Tesson L, Remy S, Gourain V, Sérazin C, Usal C, Guiffes A, Chenouard V, Ouisse LH, Gantier M, Heslan JM, Fourgeux C, Poschmann J, Guillonneau C, Anegon I. CD4 + and CD8 + regulatory T cell characterization in the rat using a unique transgenic Foxp3-EGFP model. BMC Biol 2023; 21:8. [PMID: 36635667 PMCID: PMC9837914 DOI: 10.1186/s12915-022-01502-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Regulatory T cells (Treg) in diverse species include CD4+ and CD8+ T cells. In all species, CD8+ Treg have been only partially characterized and there is no rat model in which CD4+ and CD8+ FOXP3+ Treg are genetically tagged. RESULTS We generated a Foxp3-EGFP rat transgenic line in which FOXP3 gene was expressed and controlled EGFP. CD4+ and CD8+ T cells were the only cells that expressed EGFP, in similar proportion as observed with anti-FOXP3 antibodies and co-labeled in the same cells. CD4+EGFP+ Treg were 5-10 times more frequent than CD8+EGFP+ Treg. The suppressive activity of CD4+ and CD8+ Treg was largely confined to EGFP+ cells. RNAseq analyses showed similarities but also differences among CD4+ and CD8+ EGFP+ cells and provided the first description of the natural FOXP3+CD8+ Treg transcriptome. In vitro culture of CD4+ and CD8+ EGFP- cells with TGFbeta and IL-2 generated induced EGFP+ Treg. CD4+ and CD8+ EGFP+ Treg were expanded upon in vivo administration of a low dose of IL-2. CONCLUSIONS This new and unique rat line constitutes a useful model to identify and isolate viable CD4+ and CD8+ FOXP3+ Treg. Additionally, it allows to identify molecules expressed in CD8+ Treg that may allow to better define their phenotype and function not only in rats but also in other species.
Collapse
Affiliation(s)
- Séverine Ménoret
- grid.277151.70000 0004 0472 0371Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016 CNRS UMS 3556, F-44000 Nantes, France ,grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Laurent Tesson
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Séverine Remy
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Victor Gourain
- grid.277151.70000 0004 0472 0371Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016 CNRS UMS 3556, F-44000 Nantes, France
| | - Céline Sérazin
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Claire Usal
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Aude Guiffes
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Vanessa Chenouard
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Laure-Hélène Ouisse
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Malika Gantier
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Jean-Marie Heslan
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Cynthia Fourgeux
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Jeremie Poschmann
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Carole Guillonneau
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Ignacio Anegon
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| |
Collapse
|
33
|
Rivera CA, Lennon-Duménil AM. Gut immune cells and intestinal niche imprinting. Semin Cell Dev Biol 2023:S1084-9521(23)00006-X. [PMID: 36635104 DOI: 10.1016/j.semcdb.2023.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
The intestine comprises the largest proportion of immune cells in the body. It is continuously exposed to new antigens and immune stimuli from the diet, microbiota but also from intestinal pathogens. In this review, we describe the main populations of immune cells present along the intestine, both from the innate and adaptive immune system. We later discuss how intestinal niches significantly impact the phenotype and function of gut immune populations at steady state and upon infection.
Collapse
Affiliation(s)
- Claudia A Rivera
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France
| | | |
Collapse
|
34
|
Cohn IS, Henrickson SE, Striepen B, Hunter CA. Immunity to Cryptosporidium: Lessons from Acquired and Primary Immunodeficiencies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2261-2268. [PMID: 36469846 PMCID: PMC9731348 DOI: 10.4049/jimmunol.2200512] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/30/2022] [Indexed: 01/04/2023]
Abstract
Cryptosporidium is a ubiquitous protozoan parasite that infects gut epithelial cells and causes self-limited diarrhea in immunocompetent individuals. However, in immunocompromised hosts with global defects in T cell function, this infection can result in chronic, life-threatening disease. In addition, there is a subset of individuals with primary immunodeficiencies associated with increased risk for life-threatening cryptosporidiosis. These patients highlight MHC class II expression, CD40-CD40L interactions, NF-κB signaling, and IL-21 as key host factors required for resistance to this enteric pathogen. Understanding which immune deficiencies do (or do not) lead to increased risk for severe Cryptosporidium may reveal mechanisms of parasite restriction and aid in the identification of novel strategies to manage this common pathogen in immunocompetent and deficient hosts.
Collapse
Affiliation(s)
- Ian S. Cohn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E. Henrickson
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
- Division of Allergy Immunology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
35
|
Ma C, Zhang N. Lymphoid tissue residency: A key to understand Tcf-1 +PD-1 + T cells. Front Immunol 2022; 13:1074698. [PMID: 36569850 PMCID: PMC9767944 DOI: 10.3389/fimmu.2022.1074698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
During chronic antigen exposure, a subset of exhausted CD8+ T cells differentiate into stem cell-like or progenitor-like T cells expressing both transcription factor Tcf-1 (T cell factor-1) and co-inhibitory receptor PD-1. These Tcf-1+ stem-like or progenitor exhausted T cells represent the key target for immunotherapies. Deeper understanding of the biology of Tcf-1+PD-1+ CD8+ T cells will lead to rational design of future immunotherapies. Here, we summarize recent findings about the migratory and resident behavior of Tcf-1+ T cells. Specifically, we will focus on TGF-β-dependent lymphoid tissue residency program of Tcf-1+ T cells, which may represent a key to understanding the differentiation and maintenance of Tcf-1+ stem-like CD8+ T cells during persistent antigen stimulation.
Collapse
Affiliation(s)
- Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
36
|
Harada Y, Miyamoto K, Chida A, Okuzawa AT, Yoshimatsu Y, Kudo Y, Sujino T. Localization and movement of Tregs in gastrointestinal tract: a systematic review. Inflamm Regen 2022; 42:47. [PMID: 36329556 PMCID: PMC9632047 DOI: 10.1186/s41232-022-00232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The intestine is rich in food-derived and microbe-derived antigens. Regulatory T cells (Tregs) are an essential T-cell population that prevents systemic autoimmune diseases and inhibits inflammation by encountering antigens. Previously, it was reported that the functional loss of Tregs induces systemic inflammation, including inflammatory bowel disease and graft-versus-host disease in human and murine models. However, there is a dearth of information about how Tregs localize in different tissues and suppress effector cells. MAIN BODY The development of Tregs and their molecular mechanism in the digestive tract have been elucidated earlier using murine genetic models, infectious models, and human samples. Tregs suppress immune and other nonimmune cells through direct effect and cytokine production. The recent development of in vivo imaging technology allows us to visualize how Tregs localize and move in the settings of inflammation and homeostasis. This is important because, according to a recent report, Treg characterization and function are regulated by their location. Tregs located in the proximal intestine and its draining lymph nodes induce tolerance against food antigens, and those located in the distal intestine suppress the inflammation induced by microbial antigens. Taken together, various Tregs are induced in a location-specific manner in the gastrointestinal tract and influence the homeostasis of the gut. CONCLUSION In this review, we summarize how Tregs are induced in the digestive tract and the application of in vivo Treg imaging to elucidate immune homeostasis in the digestive tract.
Collapse
Affiliation(s)
- Yosuke Harada
- Department of Gastroenterology and Hepatology, School of Medicine, Keio University, Tokyo, Japan
| | - Kentaro Miyamoto
- Department of Gastroenterology and Hepatology, School of Medicine, Keio University, Tokyo, Japan.,Miyarisan Pharm. Co. Ltd, Tokyo, Japan
| | - Akihiko Chida
- Department of Gastroenterology and Hepatology, School of Medicine, Keio University, Tokyo, Japan
| | - Anna Tojo Okuzawa
- Department of Gastroenterology and Hepatology, School of Medicine, Keio University, Tokyo, Japan
| | - Yusuke Yoshimatsu
- Department of Gastroenterology and Hepatology, School of Medicine, Keio University, Tokyo, Japan
| | - Yumi Kudo
- Department of Pediatric Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Tomohisa Sujino
- Center for the Diagnostic and Therapeutic Endoscopy, School of Medicine, Keio University, Tokyo, Japan.
| |
Collapse
|
37
|
Cervantes-Barragan L, Colonna M. A microbiota-derived antigen drives CD4 + intraepithelial lymphocyte (CD4IEL) development. Trends Immunol 2022; 43:858-860. [PMID: 36243620 DOI: 10.1016/j.it.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 01/12/2023]
Abstract
CD4+ intraepithelial lymphocytes (CD4IEL) are tissue-resident T cells with cytotoxic and regulatory properties; together with peripheral regulatory T cells, they control intestinal inflammation. Recently, Bousbaine and colleagues identified a microbiota-derived conserved antigen that induces CD4IEL differentiation and promotes their regulatory function, attenuating the severity of murine colitis.
Collapse
Affiliation(s)
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
38
|
Tanemoto S, Sujino T, Miyamoto K, Moody J, Yoshimatsu Y, Ando Y, Koya I, Harada Y, Tojo AO, Ono K, Hayashi Y, Takabayashi K, Okabayashi K, Teratani T, Mikami Y, Nakamoto N, Hosoe N, Ogata H, Hon CC, Shin JW, Kanai T. Single-cell transcriptomics of human gut T cells identifies cytotoxic CD4 +CD8A + T cells related to mouse CD4 cytotoxic T cells. Front Immunol 2022; 13:977117. [PMID: 36353619 PMCID: PMC9639511 DOI: 10.3389/fimmu.2022.977117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/07/2022] [Indexed: 08/21/2023] Open
Abstract
Cytotoxic CD4+ T cells (CD4-CTLs) show the presence of cytolytic granules, which include the enzymes granzyme and perforin. The cells have a pathogenic and protective role in various diseases, including cancer, viral infection, and autoimmune disease. In mice, cytotoxic CD4+ T cells express CD8αα+ and reside in the intestine (mouse CD4+CTLs; mCD4-CTLs). The population of cytotoxic CD4+ T cells in the human intestine is currently unknown. Moreover, it is unclear how cytotoxic CD4 T cells change in patients with inflammatory bowel disease (IBD). Here, we aimed to identify cytotoxic CD4+ T cells in the human intestine and analyze the characteristics of the population in patients with IBD using single-cell RNA-seq (scRNA-seq). In CD4+ T cells, granzyme and perforin expression was high in humanMAIT (hMAIT) cells and hCD4+CD8A+ T cell cluster. Both CD4 and CD8A were expressed in hTreg, hMAIT, and hCD4+CD8A+ T cell clusters. Next we performed fast gene set enrichment analysis to identify cell populations that showed homology to mCD4CTLs. The analysis identified the hCD4+CD8A+ T cell cluster (hCTL-like population; hCD4-CTL) similar to mouse CTLs. The percentage of CD4+CD8A+ T cells among the total CD4+ T cells in the inflamed intestine of the patients with Crohn's disease was significantly reduced compared with that in the noninflamed intestine of the patients. In summary, we identified cytotoxic CD4+CD8+ T cells in the small intestine of humans. The integration of the mouse and human sc-RNA-seq data analysis highlight an approach to identify human cell populations related to mouse cell populations, which may help determine the functional properties of several human cell populations in mice.
Collapse
Affiliation(s)
- Shun Tanemoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy , Keio University School of Medicine, Tokyo, Japan
| | - Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Research Laboratory, Miyarisan Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Jonathan Moody
- RIKEN Center for Integrative Medical Sciences, Laboratory for Genomic Information Analysis, Yokohama, Japan
| | - Yusuke Yoshimatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshinari Ando
- RIKEN Center for Integrative Medical Sciences, Laboratory for Genomic Information Analysis, Yokohama, Japan
| | - Ikuko Koya
- RIKEN Center for Integrative Medical Sciences, Laboratory for Genomic Information Analysis, Yokohama, Japan
| | - Yosuke Harada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Anna Okuzawa Tojo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Ono
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yukie Hayashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kaoru Takabayashi
- Center for Diagnostic and Therapeutic Endoscopy , Keio University School of Medicine, Tokyo, Japan
| | - Koji Okabayashi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Hosoe
- Center for Diagnostic and Therapeutic Endoscopy , Keio University School of Medicine, Tokyo, Japan
| | - Haruhiko Ogata
- Center for Diagnostic and Therapeutic Endoscopy , Keio University School of Medicine, Tokyo, Japan
| | - Chung-Chau Hon
- RIKEN Center for Integrative Medical Sciences, Laboratory for Genomic Information Analysis, Yokohama, Japan
| | - Jay W. Shin
- RIKEN Center for Integrative Medical Sciences, Laboratory for Genomic Information Analysis, Yokohama, Japan
- Laboratory of Regulatory Genomics, Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
39
|
Help from commensals: β-hex to regulate gut immunity. Cell Host Microbe 2022; 30:1349-1351. [DOI: 10.1016/j.chom.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Harada Y, Miyamoto K, Sujino T. Protocol to isolate and enrich mouse splenic naive CD4 + T cells for in vitro CD4 +CD8αα + cell induction. STAR Protoc 2022; 3:101728. [PMID: 36170110 PMCID: PMC9526228 DOI: 10.1016/j.xpro.2022.101728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 09/01/2022] [Indexed: 01/26/2023] Open
Abstract
Recent studies have shown that CD4+CD8αα+ T cells are induced in the hypoxic environment of the small intestinal epithelium. Herein, we describe a protocol for CD4+CD8αα+ T cell induction from freshly isolated naive CD4+ T cells, including procedures for the isolation and enrichment of mouse splenic T cells. In addition, we present an approach that can induce more CD4+CD8αα+ T cells by artificially creating a hypoxic environment in vitro. For complete details on the use and execution of this protocol, please refer to Harada et al. (2022).
Collapse
Affiliation(s)
- Yosuke Harada
- Department of Gastroenterology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, Keio University Hospital, Tokyo, Japan,Corresponding author
| |
Collapse
|
41
|
Cao YG, Bae S, Villarreal J, Moy M, Chun E, Michaud M, Lang JK, Glickman JN, Lobel L, Garrett WS. Faecalibaculum rodentium remodels retinoic acid signaling to govern eosinophil-dependent intestinal epithelial homeostasis. Cell Host Microbe 2022; 30:1295-1310.e8. [PMID: 35985335 PMCID: PMC9481734 DOI: 10.1016/j.chom.2022.07.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/20/2022] [Accepted: 07/21/2022] [Indexed: 12/19/2022]
Abstract
The intestinal epithelium plays critical roles in sensing and integrating dietary and microbial signals. How microbiota and intestinal epithelial cell (IEC) interactions regulate host physiology in the proximal small intestine, particularly the duodenum, is unclear. Using single-cell RNA sequencing of duodenal IECs under germ-free (GF) and different conventional microbiota compositions, we show that specific microbiota members alter epithelial homeostasis by increasing epithelial turnover rate, crypt proliferation, and major histocompatibility complex class II (MHCII) expression. Microbiome profiling identified Faecalibaculum rodentium as a key species involved in this regulation. F. rodentium decreases enterocyte expression of retinoic-acid-producing enzymes Adh1, Aldh1a1, and Rdh7, reducing retinoic acid signaling required to maintain certain intestinal eosinophil populations. Eosinophils suppress intraepithelial-lymphocyte-mediated production of interferon-γ that regulates epithelial cell function. Thus, we identify a retinoic acid-eosinophil-interferon-γ-dependent circuit by which the microbiota modulates duodenal epithelial homeostasis.
Collapse
Affiliation(s)
- Y Grace Cao
- Departments of Immunology & Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA 02115, USA
| | - Sena Bae
- Departments of Immunology & Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA 02115, USA
| | - Jannely Villarreal
- Departments of Immunology & Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA 02115, USA
| | - Madelyn Moy
- Departments of Immunology & Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA 02115, USA
| | - Eunyoung Chun
- Departments of Immunology & Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA 02115, USA
| | - Monia Michaud
- Departments of Immunology & Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA 02115, USA
| | - Jessica K Lang
- Departments of Immunology & Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA 02115, USA
| | - Jonathan N Glickman
- Beth Israel Deaconess Medical Center, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Lior Lobel
- Departments of Immunology & Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA 02115, USA
| | - Wendy S Garrett
- Departments of Immunology & Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Bousbaine D, Fisch LI, London M, Bhagchandani P, Rezende de Castro TB, Mimee M, Olesen S, Reis BS, VanInsberghe D, Bortolatto J, Poyet M, Cheloha RW, Sidney J, Ling J, Gupta A, Lu TK, Sette A, Alm EJ, Moon JJ, Victora GD, Mucida D, Ploegh HL, Bilate AM. A conserved Bacteroidetes antigen induces anti-inflammatory intestinal T lymphocytes. Science 2022; 377:660-666. [PMID: 35926021 PMCID: PMC9766740 DOI: 10.1126/science.abg5645] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The microbiome contributes to the development and maturation of the immune system. In response to commensal bacteria, intestinal CD4+ T lymphocytes differentiate into functional subtypes with regulatory or effector functions. The development of small intestine intraepithelial lymphocytes that coexpress CD4 and CD8αα homodimers (CD4IELs) depends on the microbiota. However, the identity of the microbial antigens recognized by CD4+ T cells that can differentiate into CD4IELs remains unknown. We identified β-hexosaminidase, a conserved enzyme across commensals of the Bacteroidetes phylum, as a driver of CD4IEL differentiation. In a mouse model of colitis, β-hexosaminidase-specific lymphocytes protected against intestinal inflammation. Thus, T cells of a single specificity can recognize a variety of abundant commensals and elicit a regulatory immune response at the intestinal mucosa.
Collapse
Affiliation(s)
- Djenet Bousbaine
- Microbiology Graduate Program, Massachussetts Institute of Technology (MIT), Cambridge, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA
| | - Laura I Fisch
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Mariya London
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Preksha Bhagchandani
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA
| | - Tiago B Rezende de Castro
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.,Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Mark Mimee
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.,Synthetic Biology Center, MIT, Cambridge, MA, USA.,Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Scott Olesen
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.,Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - David VanInsberghe
- Microbiology Graduate Program, Massachussetts Institute of Technology (MIT), Cambridge, MA, USA.,Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA
| | - Juliana Bortolatto
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Mathilde Poyet
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.,Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Ross W Cheloha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jingjing Ling
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Aaron Gupta
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Timothy K Lu
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.,Synthetic Biology Center, MIT, Cambridge, MA, USA.,Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, CA, USA
| | - Eric J Alm
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.,Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - James J Moon
- Center for Immunology and Inflammatory Diseases and Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.,Howard Hughes Medical Institute, The Rockefeller University, New York NY, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA
| | - Angelina M Bilate
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.,Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
43
|
Innate riddle of CD4 + T cells and the control of enteric infections. Immunity 2022; 55:1145-1147. [PMID: 35830821 DOI: 10.1016/j.immuni.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intra-epithelial T cells make up a significant proportion of immune cells in the body, yet their development and function remain an enigma. In this issue of Immunity, Parsa et al. (2022) describe the differentiation and cross-protective function of CD4+ intra-epithelial T cells against enteric viruses.
Collapse
|
44
|
Zhao J, Niu N, He Z. Effect of Thymosin on Inflammatory Factor Levels, Immune Function, and Quality of Life in Lung Cancer Patients Undergoing Radical Thoracoscopic Surgery. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8749999. [PMID: 35832513 PMCID: PMC9273385 DOI: 10.1155/2022/8749999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 12/01/2022]
Abstract
Purpose To explore the effect of thymosin on inflammatory factor levels, immune function, and quality of life in patients undergoing radical thoracoscopic lung cancer surgery. Methods One hundred and twenty patients admitted to the Surgical Oncology Department of the First Hospital of Jiaxing from January 2018 to January 2019 were randomized into the study group and the control group using the random number table method, with 60 cases in each group. The control group was treated with radical thoracoscopic lung cancer surgery, and the study group was treated with radical thoracoscopic lung cancer surgery combined with thymosin. The clinical efficiency, inflammatory factors, immune function, and quality of life between the two groups of patients were compared. Results There was no significant difference between the two groups in terms of pathological stage, tissue type, maximum tumor diameter, and perioperative indicators such as operative time, intraoperative bleeding, pleural drainage, hospital stay, and the number of intraoperative lymph nodes removed. The levels of CD4 (+%), CD8 (+%), CD4+/CD8+, and natural killer cell (NK) (%) were significantly decreased in both groups after treatment, with significantly higher results in the study group than in the control group. The study group had significantly lower serum interleukin-6 (IL-6) levels and higher interleukin-10 (IL-10) levels than the control group. After treatment, patients in the study group had better postoperative physiological status and overall score than the control group. There was no significant difference in postoperative survival and adverse reactions between the two groups. Conclusion The use of thymosin treatment in lung cancer patients undergoing radical thoracoscopic surgery significantly improves immune function, mitigates inflammatory response, and enhances the quality of life, which is worthy of clinical application.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Thoracic Surgery, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Niu Niu
- Department of Thoracic Surgery, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Zhengfu He
- Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
45
|
Huseby ES, Teixeiro E. The perception and response of T cells to a changing environment are based on the law of initial value. Sci Signal 2022; 15:eabj9842. [PMID: 35639856 PMCID: PMC9290192 DOI: 10.1126/scisignal.abj9842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
αβ T cells are critical components of the adaptive immune system and are capable of inducing sterilizing immunity after pathogen infection and eliminating transformed tumor cells. The development and function of T cells are controlled through the T cell antigen receptor, which recognizes peptides displayed on major histocompatibility complex (MHC) molecules. Here, we review how T cells generate the ability to recognize self-peptide-bound MHC molecules and use signals derived from these interactions to instruct cellular development, activation thresholds, and functional specialization in the steady state and during immune responses. We argue that the basic tenants of T cell development and function follow Weber-Fetcher's law of just noticeable differences and Wilder's law of initial value. Together, these laws argue that the ability of a system to respond and the quality of that response are scalable to the basal state of that system. Manifestation of these laws in T cells generates clone-specific activation thresholds that are based on perceivable differences between homeostasis and pathogen encounter (self versus nonself discrimination), as well as poised states for subsequent differentiation into specific effector cell lineages.
Collapse
Affiliation(s)
- Eric S. Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
46
|
Lockhart A, Mucida D, Parsa R. Immunity to enteric viruses. Immunity 2022; 55:800-818. [PMID: 35545029 PMCID: PMC9257994 DOI: 10.1016/j.immuni.2022.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
Abstract
Pathogenic enteric viruses are a major cause of morbidity and mortality, particularly among children in developing countries. The host response to enteric viruses occurs primarily within the mucosa, where the intestinal immune system must balance protection against pathogens with tissue protection and tolerance to harmless commensal bacteria and food. Here, we summarize current knowledge in natural immunity to enteric viruses, highlighting specialized features of the intestinal immune system. We further discuss how knowledge of intestinal anti-viral mechanisms can be translated into vaccine development with particular focus on immunization in the oral route. Research reveals that the intestine is a complex interface between enteric viruses and the host where environmental factors influence susceptibility and immunity to infection, while viral infections can have lasting implications for host health. A deeper mechanistic understanding of enteric anti-viral immunity with this broader context can ultimately lead to better vaccines for existing and emerging viruses.
Collapse
Affiliation(s)
- Ainsley Lockhart
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Roham Parsa
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
47
|
Parsa R, London M, Rezende de Castro TB, Reis B, Buissant des Amorie J, Smith JG, Mucida D. Newly recruited intraepithelial Ly6A+CCR9+CD4+ T cells protect against enteric viral infection. Immunity 2022; 55:1234-1249.e6. [DOI: 10.1016/j.immuni.2022.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/07/2022] [Accepted: 05/03/2022] [Indexed: 12/31/2022]
|
48
|
Li C, Kim HK, Prakhar P, Luo S, Crossman A, Ligons DL, Luckey MA, Awasthi P, Gress RE, Park JH. Chemokine receptor CCR9 suppresses the differentiation of CD4 +CD8αα + intraepithelial T cells in the gut. Mucosal Immunol 2022; 15:882-895. [PMID: 35778600 PMCID: PMC9391308 DOI: 10.1038/s41385-022-00540-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
The chemokine receptor CCR9 equips T cells with the ability to respond to CCL25, a chemokine that is highly expressed in the thymus and the small intestine (SI). Notably, CCR9 is mostly expressed on CD8 but not on CD4 lineage T cells, thus imposing distinct tissue tropism on CD4 and CD8 T cells. The molecular basis and the consequences for such a dichotomy, however, have not been fully examined and explained. Here, we demonstrate that the forced expression of CCR9 interferes with the tissue trafficking and differentiation of CD4 T cells in SI intraepithelial tissues. While CCR9 overexpression did not alter CD4 T cell generation in the thymus, the forced expression of CCR9 was detrimental for the proper tissue distribution of CD4 T cells in the periphery, and strikingly also for their terminal differentiation in the gut epithelium. Specifically, the differentiation of SI epithelial CD4 T cells into immunoregulatory CD4+CD8αα+ T cells was impaired by overexpression of CCR9 and conversely increased by the genetic deletion of CCR9. Collectively, our results reveal a previously unappreciated role for CCR9 in the tissue homeostasis and effector function of CD4 T cells in the gut.
Collapse
Affiliation(s)
- Can Li
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Hye Kyung Kim
- Experimental Transplantation and Immunotherapy Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Praveen Prakhar
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Shunqun Luo
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Assiatu Crossman
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Davinna L Ligons
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Megan A Luckey
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Parirokh Awasthi
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, National Institute of Health, Frederick, MD, 21701, USA
| | - Ronald E Gress
- Experimental Transplantation and Immunotherapy Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
49
|
Abstract
The immune system employs recognition tools to communicate with its microbial evolutionary partner. Among all the methods of microbial perception, T cells enable the widest spectrum of microbial recognition resolution, ranging from the crudest detection of whole groups of microbes to the finest detection of specific antigens. The application of this recognition capability to the crucial task of combatting infections has been the focus of classical immunology. We now appreciate that the coevolution of the immune system and the microbiota has led to development of a lush immunological decision tree downstream of microbial recognition, of which an inflammatory response is but one branch. In this review we discuss known T cell-microbe interactions in the gut and place them in the context of an algorithmic framework of recognition, context-dependent interpretation, and response circuits across multiple levels of microbial recognition resolution. The malleability of T cells in response to the microbiota presents an opportunity to edit immune response cellularity, identity, and functionality by utilizing microbiota-controlled pathways to promote human health.
Collapse
Affiliation(s)
- Ivaylo I Ivanov
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA;
| | - Timur Tuganbaev
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Ashwin N Skelly
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kenya Honda
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan;
| |
Collapse
|
50
|
Abstract
The immune system employs recognition tools to communicate with its microbial evolutionary partner. Among all the methods of microbial perception, T cells enable the widest spectrum of microbial recognition resolution, ranging from the crudest detection of whole groups of microbes to the finest detection of specific antigens. The application of this recognition capability to the crucial task of combatting infections has been the focus of classical immunology. We now appreciate that the coevolution of the immune system and the microbiota has led to development of a lush immunological decision tree downstream of microbial recognition, of which an inflammatory response is but one branch. In this review we discuss known T cell-microbe interactions in the gut and place them in the context of an algorithmic framework of recognition, context-dependent interpretation, and response circuits across multiple levels of microbial recognition resolution. The malleability of T cells in response to the microbiota presents an opportunity to edit immune response cellularity, identity, and functionality by utilizing microbiota-controlled pathways to promote human health.
Collapse
Affiliation(s)
- Ivaylo I Ivanov
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA;
| | - Timur Tuganbaev
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Ashwin N Skelly
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kenya Honda
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan;
| |
Collapse
|