1
|
Luo L, Liu Q, Zhang Y, Yu X, Wang L, Sun W, Li T, Xu B, Zhang K, Yu Y, Cui C, Li C, Mei L. Precisely edited gut microbiota by tungsten-doped Prussian blue nanoparticles for the treatment of inflammatory bowel disease. J Control Release 2025; 382:113755. [PMID: 40258476 DOI: 10.1016/j.jconrel.2025.113755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/23/2025]
Abstract
Inflammatory bowel disease (IBD) is characterized by recurring gastrointestinal inflammation, accompanied by a significant rise in global prevalence and disease severity. The overaccumulation of reactive oxygen and nitrogen species (RONS) in the intestinal environment disrupts redox homeostasis and drives pathological overgrowth of Escherichia coli, which are central to IBD pathogenesis. Herein, we designed a multifunctional nanozyme (W-PB) to enable sustained and targeted regulation of intestinal homeostasis through dual mechanisms: specific inhibition of E. coli overgrowth during colitis and efficient RONS clearance. To ensure colon-specific delivery, W-PB was encapsulated in an electrostatically crosslinked hydrogel composed of alginate and chitosan. This formulation protects W-PB from degradation in harsh gastrointestinal conditions and releases the nanoparticles selectively under weakly alkaline intestinal pH. The released tungsten ions suppress E. coli growth via competitive displacement of molybdenum in the molybdopterin cofactor, while W-PB simultaneously neutralizes excess RONS to shield intestinal cells from oxidative damage. In DSS-induced colitis models, the W-PB gel demonstrated significant therapeutic efficacy, achieved through intestinal microbiota remodeling and oxidative stress mitigation.
Collapse
Affiliation(s)
- Lingpeng Luo
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institute of Health Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 301600, PR China
| | - Qingyun Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institute of Health Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 301600, PR China
| | - Yushi Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institute of Health Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 301600, PR China
| | - Xuya Yu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institute of Health Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 301600, PR China
| | - Ling Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China
| | - Weiting Sun
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institute of Health Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 301600, PR China
| | - Tingxuan Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institute of Health Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 301600, PR China
| | - Bin Xu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institute of Health Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 301600, PR China
| | - Kai Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yongkang Yu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Chunhui Cui
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China.
| | - Chen Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institute of Health Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 301600, PR China.
| | - Lin Mei
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institute of Health Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 301600, PR China; Furong Laboratory, Central South University, Changsha 410008, PR China.
| |
Collapse
|
2
|
Li L, He Y, Chen Y, Zhou X. cGAS-STING Pathway's Impact on Intestinal Barrier. J Gastroenterol Hepatol 2025. [PMID: 40377214 DOI: 10.1111/jgh.16974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/09/2025] [Accepted: 04/03/2025] [Indexed: 05/18/2025]
Abstract
Intestinal inflammation and increased permeability have been linked to metabolic dysregulation in patients with compromised intestinal barrier function. Among the pathways, garnering attention is the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. Upon binding to double-stranded DNA (dsDNA), cGAS catalyzes the conversion of ATP and GTP into cyclic GMP-AMP (cGAMP). Subsequently, cGAMP binds to STING, triggering the activation of tank-binding kinase 1 (TBK1), which activates interferon regulatory factor 3 (IRF3), thus inducing the production of type I interferon. Activated TBK1 can also induce the activation of nuclear factor κB (NF-κB), thus mediating the production of proinflammatory cytokines. The effects of this process vary among innate and adaptive immune cells, as well as intestinal epithelial cells (IECs). This review aims to elucidate the impact and role of the cGAS-STING pathway on intestinal barrier function.
Collapse
Affiliation(s)
- Liqi Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yingge He
- Department of Thyroid and Breast Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Chen
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Xiaoshu Zhou
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Chen L, Chen H, Li Q, Ma J, Feng Y, Zhang S, Han Y, Pan J, Zhang M, Sun K, Wu S. The aspartate superpathway in gut microbiota-related metabolic pathways mediates immune cell protection against COPD and IPF: a Mendelian randomization analysis. Aging (Albany NY) 2025; 17:206250. [PMID: 40378019 DOI: 10.18632/aging.206250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/20/2025] [Indexed: 05/18/2025]
Abstract
BACKGROUND Both genetic and environmental factors can influence idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) development. The gut microbiota plays crucial roles in maintaining tissue homeostasis. Dysregulation of the gut microbiota can result in disease. However, whether the alteration of the gut microbiota influences IPF and COPD remains unknown. RESEARCH QUESTION What is the causal relationship between IPF, COPD and the gut microbiota-related metabolic pathways? What are the potential intermediate mediators in this relationship? STUDY DESIGN AND METHODS Intersect the gut microbiota and its metabolic pathways associated with IPF and COPD. Utilizing summary data from GWAS in public databases, a two-sample Mendelian randomization (MR) analysis was conducted on the gut microbiota-related metabolic pathway, the aspartate superpathway, in relation to IPF and COPD. Furthermore, we employed a two-step MR to quantify the proportion of influence mediated by monocytes and cDCs on the aspartate superpathway in relation to IPF and COPD. RESULTS The MR analysis found that the aspartate superpathway decreased the risk of developing IPF and COPD. Monocytes and cDCs acted as intermediary substances, participating in this with influence proportions of 7.88% and 6.27%, respectively. INTERPRETATION There is a causal link between the gut microbiota-related metabolic pathway, the aspartate superpathway, and IPF and COPD, where the influence is partially mediated by monocytes and cDCs. In clinical practice, we increase the focus on gut microbiota-mediated immune cells in relation to IPF and COPD.
Collapse
Affiliation(s)
- Lei Chen
- Department of Geriatrics, Jiangsu Key Laboratory of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Haoyan Chen
- Department of Geriatrics, Jiangsu Key Laboratory of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Qin Li
- Center of Molecular and Cellular Oncology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jun Ma
- Department of Respiratory Medicine, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, China
| | - Yanzhi Feng
- Center of Molecular and Cellular Oncology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shenghua Zhang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Han
- Department of Geriatrics, Jiangsu Key Laboratory of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jie Pan
- Department of Rheumatology and Immunology, Liyang Branch of Jiangsu Province Hospital, Liyang, China
| | - Mingjiong Zhang
- Department of Geriatrics, Jiangsu Key Laboratory of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Kai Sun
- Department of Geriatrics, Jiangsu Key Laboratory of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Shuangshuang Wu
- Department of Geriatrics, Jiangsu Key Laboratory of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Gao YQ, Tan YJ, Fang JY. Roles of the gut microbiota in immune-related adverse events: mechanisms and therapeutic intervention. Nat Rev Clin Oncol 2025:10.1038/s41571-025-01026-w. [PMID: 40369317 DOI: 10.1038/s41571-025-01026-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2025] [Indexed: 05/16/2025]
Abstract
Immune checkpoint inhibitors (ICIs) constitute a major breakthrough in the field of cancer therapy; their use has resulted in improved outcomes across various tumour types. However, ICIs can cause a diverse range of immune-related adverse events (irAEs) that present a considerable challenge to the efficacy and safety of these treatments. The gut microbiota has been demonstrated to have a crucial role in modulating the tumour immune microenvironment and thus influences the effectiveness of ICIs. Accumulating evidence indicates that alterations in the composition and function of the gut microbiota are also associated with an increased risk of irAEs, particularly ICI-induced colitis. Indeed, these changes in the gut microbiota can contribute to the pathogenesis of irAEs. In this Review, we first summarize the current clinical challenges posed by irAEs. We then focus on reported correlations between alterations in the gut microbiota and irAEs, especially ICI-induced colitis, and postulate mechanisms by which these microbial changes influence the occurrence of irAEs. Finally, we highlight the potential value of gut microbial changes as biomarkers for predicting irAEs and discuss gut microbial interventions that might serve as new strategies for the management of irAEs, including faecal microbiota transplantation, probiotic, prebiotic and/or postbiotic supplements, and dietary modulations.
Collapse
Affiliation(s)
- Ya-Qi Gao
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Jie Tan
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Yang S, Humphries F. Emerging roles of ECSIT in immunity and tumorigenesis. Trends Cell Biol 2025; 35:426-438. [PMID: 39384444 DOI: 10.1016/j.tcb.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Mitochondria are signaling hubs that produce immunomodulatory metabolites during the immune response. In addition, mitochondria also facilitate the recruitment and anchoring of immune signaling complexes during infection. Evolutionary conserved signaling intermediate in toll (ECSIT) was initially described as a positive regulator of the transcription factor Nuclear factor kappa-light chain enhancer of activated B cells (NF-κB). More recently, ECSIT has emerged as a regulator of bacterial clearance, mitochondrial reactive oxygen species (mROS), and mitophagy. In addition, ECSIT has been identified as a control point in responding to viral infection and tumorigenesis. Notably, ECSIT loss in different models and cell types has been found to lead to enhanced tumorigenesis. Thus, ECSIT functions as a metabolic tumor suppressor and limits cancer pathogenesis. In this review, we highlight the key functions and crosstalk mechanisms that ECSIT bridges between cell metabolism and immunity and focus then on the antitumor role of ECSIT independent of immunity.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China.
| | - Fiachra Humphries
- Division of Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
6
|
Zhao Z, He D, Wang J, Xiao Y, Gong L, Tang C, Peng H, Qiu X, Liu R, Zhang T, Li J. Swertiamarin relieves radiation-induced intestinal injury by limiting DNA damage. Mol Cell Biochem 2025; 480:2277-2290. [PMID: 38795212 DOI: 10.1007/s11010-024-05030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 05/04/2024] [Indexed: 05/27/2024]
Abstract
Radiotherapy is the conventional treatment for pelvic abdominal tumors. However, it can cause some damage to the small intestine and colorectal, which are very sensitive to radiation. Radiation-induced intestinal injury (RIII) affects the prognosis of radiotherapy, causing sequelae of loss of function and long-term damage to patients' quality of life. Swertiamarin is a glycoside that has been reported to prevent a variety of diseases including but not limited to diabetes, hypertension, atherosclerosis, arthritis, malaria, and abdominal ulcers. However, its therapeutic effect and mechanism of action on RIII have not been established. We investigated whether swertiamarin has a protective effect against RIII. In this article, we use irradiator to create cellular and mouse models of radiation damage. Preventive administration of swertiamarin could reduce ROS and superoxide anion levels to mitigate the cellular damage caused by radiation. Swertiamarin also attenuated RIII in mice, as evidenced by longer survival, less weight loss and more complete intestinal barrier. We also found an increase in the relative abundance of primary bile acids in irradiated mice, which was reduced by both FXR agonists and swertiamarin, and a reduction in downstream interferon and inflammatory factors via the cGAS-STING pathway to reduce radiation-induced damage.
Collapse
Affiliation(s)
- Zhe Zhao
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Dan He
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
| | - Jinyu Wang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Yu Xiao
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
| | - Lixin Gong
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
| | - Can Tang
- School of Biological Science and Technology, Chengdu Medical College, Chengdu, China
| | - Haibo Peng
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xuemei Qiu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Tao Zhang
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China.
- School of Biological Science and Technology, Chengdu Medical College, Chengdu, China.
| | - Jingyi Li
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China.
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China.
| |
Collapse
|
7
|
Hao K, Marshak-Rothstein A. Nucleic acid triggers of autoimmunity and autoinflammation. Curr Opin Immunol 2025; 93:102535. [PMID: 39889356 DOI: 10.1016/j.coi.2025.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
The key role of nucleic acid sensing receptors in the development of autoimmune and autoinflammatory diseases is becoming increasingly apparent. Activation of these sensors has been attributed to the failure of professional scavenger cells to adequately clear cell debris, in many cases due to defective scavenger receptors. However, as now summarized in this review, numerous gain-of-function mutations in the nucleic acid sensing receptors, or in molecules that regulate sensor activity, have now been evaluated in gene-targeted murine strains, and critical components of their downstream pathways have been identified as therapeutic targets. In addition, we are beginning to understand how DNases and RNases play crucial roles in both generating and eliminating the distinct ligands that engage the various nucleic acid sensors. Murine models of disease have further provided important insights regarding the function of and synergy between individual endosomal and cytosolic receptors, as well as cell type restricted functions.
Collapse
Affiliation(s)
- Kaiyuan Hao
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01604, USA
| | | |
Collapse
|
8
|
Luksch H, Schulze F, Geißler-Lösch D, Sprott D, Höfs L, Szegö EM, Tonnus W, Winkler S, Günther C, Linkermann A, Behrendt R, Teichmann LL, Falkenburger BH, Rösen-Wolff A. Tissue inflammation induced by constitutively active STING is mediated by enhanced TNF signaling. eLife 2025; 14:e101350. [PMID: 40111902 PMCID: PMC11996172 DOI: 10.7554/elife.101350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 03/17/2025] [Indexed: 03/22/2025] Open
Abstract
Constitutive activation of STING by gain-of-function mutations triggers manifestation of the systemic autoinflammatory disease STING-associated vasculopathy with onset in infancy (SAVI). In order to investigate the role of signaling by tumor necrosis factor (TNF) in SAVI, we used genetic inactivation of TNF receptors 1 and 2 in murine SAVI, which is characterized by T cell lymphopenia, inflammatory lung disease, and neurodegeneration. Genetic inactivation of TNFR1 and TNFR2, however, rescued the loss of thymocytes, reduced interstitial lung disease, and neurodegeneration. Furthermore, genetic inactivation of TNFR1 and TNFR2 blunted transcription of cytokines, chemokines, and adhesions proteins, which result from chronic STING activation in SAVI mice. In addition, increased transendothelial migration of neutrophils was ameliorated. Taken together, our results demonstrate a pivotal role of TNFR signaling in the pathogenesis of SAVI in mice and suggest that available TNFR antagonists could ameliorate SAVI in patients.
Collapse
Affiliation(s)
- Hella Luksch
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Felix Schulze
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - David Geißler-Lösch
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - David Sprott
- Department of Physiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Lennart Höfs
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Eva M Szegö
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine III, Faculty of Medicine and University Hospital Carl GustavDresdenGermany
| | - Stefan Winkler
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Claudia Günther
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, Faculty of Medicine and University Hospital Carl GustavDresdenGermany
| | - Rayk Behrendt
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital BonnBonnGermany
| | | | - Björn H Falkenburger
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
- Deutsches Zentrum für Neurodegenerative ErkrankungenDresdenGermany
| | - Angela Rösen-Wolff
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| |
Collapse
|
9
|
Chen Y, Yue S, Yu L, Cao J, Liu Y, Deng A, Lu Y, Yang J, Li H, Du J, Xia J, Li Y, Xia Y. Regulation and Function of the cGAS-STING Pathway: Mechanisms, Post-Translational Modifications, and Therapeutic Potential in Immunotherapy. Drug Des Devel Ther 2025; 19:1721-1739. [PMID: 40098909 PMCID: PMC11911240 DOI: 10.2147/dddt.s501773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Autoimmune diseases arise when the immune system attacks healthy tissues, losing tolerance for self-tissues. Normally, the immune system recognizes and defends against pathogens like bacteria and viruses. The cGAS-STING pathway, activated by pattern-recognition receptors (PRRs), plays a key role in autoimmune responses. The cGAS protein senses pathogenic DNA and synthesizes cGAMP, which induces conformational changes in STING, activating kinases IKK and TBK1 and leading to the expression of interferon genes or inflammatory mediators. This pathway is crucial in immunotherapy, activating innate immunity, enhancing antigen presentation, modulating the tumor microenvironment, and integrating into therapeutic strategies. Modulation strategies include small molecule inhibitors, oligonucleotide therapies, protein and antibody therapies, genetic and epigenetic regulation, cytokine and metabolite modulation, and nanoscale delivery systems. Post-translational modifications (PTMs) of the cGAS-STING pathway, such as phosphorylation, acetylation, ubiquitination, methylation, palmitoylation, and glycosylation, fine-tune immune responses by regulating protein activity, stability, localization, and interactions. These modifications are interconnected and collectively influence pathway functionality. We summarize the functions of cGAS-STING and its PTMs in immune and non-immune cells across various diseases, and explore potential clinical applications.
Collapse
Affiliation(s)
- Yuhan Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Si Yue
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jinghao Cao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yingchao Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Aoli Deng
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yajuan Lu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jing Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Huanjuan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yanchun Li
- Department of Clinical Laboratory, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yongming Xia
- Department of Hematology, Yuyao People’s Hospital, Yuyao, Zhejiang, People’s Republic of China
| |
Collapse
|
10
|
Knox K, Jeltema D, Dobbs N, Yang K, Xing C, Song K, Tang Z, Torres-Ramirez G, Wang J, Gao S, Wu T, Yao C, Wang J, Yan N. Dynamic STING repression orchestrates immune cell development and function. Sci Immunol 2025; 10:eado9933. [PMID: 40053603 DOI: 10.1126/sciimmunol.ado9933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 11/15/2024] [Accepted: 01/17/2025] [Indexed: 03/09/2025]
Abstract
STING is an essential component of the innate immune system, yet homeostatic STING expression patterns and regulation are unknown. Using Sting1IRES-EGFP reporter and conditional Sting1 transgenic mice, we found that regulation of STING expression is critical for immune cell development and functionality. STING expression was repressed in neutrophils, and forced STING expression or signaling drove systemic inflammatory disease. During T lymphocyte development, STING expression was restricted at the double-positive stage via epigenetic silencing by DNA methyltransferase 1. Forced STING expression or signaling impaired T lymphocyte development independent of type I interferon and promoted lineage commitment to innate-like γδ T cells over adaptive αβ T cells. In the tumor microenvironment, CD8+ T lymphocytes repressed STING expression, correlating with features of T cell exhaustion in syngeneic mouse tumors and human colorectal cancer. Our data demonstrate the necessity of controlled, rather than ubiquitous, STING expression, uncovering a previously unappreciated dimension of STING pathobiology.
Collapse
Affiliation(s)
- Kennady Knox
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Devon Jeltema
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicole Dobbs
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cong Xing
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kun Song
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhen Tang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gustavo Torres-Ramirez
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jiefu Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Shan Gao
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Tuoqi Wu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chen Yao
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
11
|
Deng C, Chen D, Yang L, Zhang Y, Jin C, Li Y, Lin Q, Luo M, Zheng R, Huang B, Liu S. The role of cGAS-STING pathway ubiquitination in innate immunity and multiple diseases. Front Immunol 2025; 16:1522200. [PMID: 40028324 PMCID: PMC11868049 DOI: 10.3389/fimmu.2025.1522200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
The cGAS-STING pathway is essential in innate immunity, especially in antiviral responses and cellular stress management. cGAS acts as a cytoplasmic DNA sensor by initiating the synthesis of the second messenger cyclic GMP-AMP synthase (cGAMP), which subsequently activates the STING pathway, leading to the production of type I interferons and other cytokines, as well as the activation of inflammatory mediators. Recent studies have demonstrated that ubiquitination changes closely regulate the function of the cGAS-STING pathway. Ubiquitination modifications influence the stability and activity of cGAS and STING, while also influencing the accuracy of the immune response by adjusting their degradation and signal intensity. E3 ubiquitin ligase specifically facilitates the degradation or modulates the signaling of cGAS-STING-associated proteins via ubiquitination alterations. Furthermore, the ubiquitination of the cGAS-STING pathway serves distinct functions in various cell types and engages with NF-κB, IRF3/7, autophagy, and endoplasmic reticulum stress. This ubiquitin-mediated regulation is crucial for sustaining the balance of innate immunity, while excessive or inadequate ubiquitination can result in autoimmune disorders, cancers, and viral infections. An extensive examination of the ubiquitination process within the cGAS-STING pathway elucidates its specific regulatory mechanisms in innate immunity and identifies novel targets for the intervention of associated diseases.
Collapse
Affiliation(s)
- Chunyan Deng
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| | - Dongyan Chen
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| | - Liang Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yubiao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cheng Jin
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| | - Yue Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Qihong Lin
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| | - Mingjing Luo
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| | - Ruihao Zheng
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| | - Baozhen Huang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| |
Collapse
|
12
|
Xu K, Tan J, Lin D, Jiang H, Chu Y, Zhou L, Zhang J, Lu Y. Gut microbes of the cecum versus the colon drive more severe lethality and multi-organ damage. Int Immunopharmacol 2025; 147:114029. [PMID: 39793233 DOI: 10.1016/j.intimp.2025.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Intestinal perforations lead to a high risk of sepsis-associated morbidity and multi-organ dysfunctions. A perforation allows intestinal contents (IC) to enter the peritoneal cavity, causing abdominal infections. Right- and left-sided perforations have different prognoses in humans, but the mechanisms associated with different cecum and colon perforations remain unclear. This study investigates how gut flora influences outcomes from perforations at different sites in mice. Using fecal-induced peritonitis mouse model, isolated IC from the cecum or colon was injected peritoneally at 2 mg/kg. Bacterial burden was quantified with quantitative PCR, and microbial communities were analyzed using 16S rRNA gene sequencing. Survival rates were monitored, and blood biochemical indices, histological changes, cytokines expression, immunological signaling and multiple-organ damage were assessed at 16 h post-injections. The results showed cecum IC developed more severe sepsis than colon IC, with shorter median survival time and greater multi-organ damage. Mice treated with cecum IC displayed elevated tissue damage markers in the liver, heart, and kidneys, contributing to worsened pathology. This was likely driven by systematic inflammatory cytokines production and lung inflammation. Mechanistically, cecum IC triggered stronger cGAS-STING and TBK1-NF-κB signaling, promoting systemic inflammation compared to the colon IC. Moreover, bacterial analysis demonstrated that cecum IC carry a higher bacterial burden than colon IC and exhibit a different microbial community. A detailed microbiome comparison revealed an increased abundance of potentially pathogenic bacteria in the cecum IC. These findings suggest that the site of intestinal perforation influences sepsis severity, with the cecum being associated with a higher bacterial burden and a relatively increased abundance of potentially pathogenic bacteria compared to the colon. Our findings first compared the lethality associated with the microbial composition of the cecum and colon, indicating the perforation site could help providers predict the severity of sepsis, thereby introducing a novel perspective to microbiology and sepsis research.
Collapse
Affiliation(s)
- Kejia Xu
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Juan Tan
- Department of Pathology, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha Hunan 410013, China
| | - Dongyang Lin
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Haoran Jiang
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yimin Chu
- Digestive Endoscopy Center, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Luting Zhou
- Department of Pathology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Junjie Zhang
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| | - Yinzhong Lu
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| |
Collapse
|
13
|
Si W, Zhao X, Li R, Li Y, Ma C, Zhao X, Bugno J, Qin Y, Zhang J, Liu H, Wang L. Lactobacillus rhamnosus GG induces STING-dependent IL-10 in intestinal monocytes and alleviates inflammatory colitis in mice. J Clin Invest 2025; 135:e174910. [PMID: 39895628 PMCID: PMC11785918 DOI: 10.1172/jci174910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/27/2024] [Indexed: 02/04/2025] Open
Abstract
Preclinical and clinical observations indicate that the probiotic Lactobacillus rhamnosus GG (LGG) can modulate colonic inflammation. However, the underlying mechanisms have not been explored in depth. Here, we demonstrate that oral administration of live LGG alleviated inflammatory colitis by increasing IL-10 expression in intestinal Ly6C+ monocytes. Mechanistically, LGG induced IL-10 production via the stimulator of IFN genes (STING)/TBK1/NF-κB (RELA) signaling pathway in intestinal Ly6C+ monocytes, enhancing their immune-suppressive function. Elevated IL-10 subsequently activated IL-10 signaling in Ly6C+ monocytes, resulting in an IL-10-based autocrine regulatory loop and inhibition of proinflammatory cytokine production. Furthermore, LGG shifted the gut microbial community and its metabolic functions, leading to intestinal immune responses against colitis. Fecal microbiota transplantation from LGG-colonized mice alleviated immune checkpoint blockade-associated colitis. Our findings highlight the importance of STING signaling in IL-10-dependent antiinflammatory immunity and establish an empirical basis for developing oral administration of live LGG as an efficient and safe therapeutic strategy against inflammatory colitis.
Collapse
Affiliation(s)
- Wei Si
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Zhao
- Department of Animal Science, McGill University, Montreal, Quebec, Canada
| | - Ruitong Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaopeng Li
- Pritzker School of Molecular Engineering and
| | - Cui Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohan Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jason Bugno
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongwei Liu
- The Laboratory of Microbiome and Microecological Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liangliang Wang
- The Laboratory of Microbiome and Microecological Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Dimitrov G, Ryffel B, Togbe D, Quesniaux V. cGAS-STING DNA-sensing in inflammatory bowel diseases. Trends Mol Med 2025; 31:165-180. [PMID: 39448330 DOI: 10.1016/j.molmed.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
Inflammatory bowel diseases (IBD) are chronic, incurable pathologies with unknown causes, affecting millions of people. Pediatric-onset IBD, starting before the age of 18 years, are increasing, with more aggressive and extensive features than adult-onset IBD. These differences remain largely unexplained. Intestinal mucosal damage, cell death, DNA release from nuclear, mitochondrial, or microbiota sources, and DNA-sensing activating the cGAS-STING pathway may contribute to disease evolution. Increased colonic cGAS and STING are increasingly reported in experimental and human IBD. However, limited knowledge of the mechanisms involved hinders the development of new therapeutic options. Here, we discuss recent advances and unresolved questions regarding DNA release, DNA sensor activation, and the role and therapeutic potential of the cGAS-STING pathway in inflammatory colitis.
Collapse
Affiliation(s)
- Georges Dimitrov
- Pediatrics and pediatric surgery, University Hospital Center of Orleans, Orleans 45100, France; Laboratory of Immuno-Neuro Modulation (INEM), UMR7355, CNRS and University of Orleans, 45071, Orleans, France
| | - Bernhard Ryffel
- Laboratory of Immuno-Neuro Modulation (INEM), UMR7355, CNRS and University of Orleans, 45071, Orleans, France
| | - Dieudonnée Togbe
- Laboratory of Immuno-Neuro Modulation (INEM), UMR7355, CNRS and University of Orleans, 45071, Orleans, France; University of Orleans, Orleans, France.
| | - Valérie Quesniaux
- Laboratory of Immuno-Neuro Modulation (INEM), UMR7355, CNRS and University of Orleans, 45071, Orleans, France.
| |
Collapse
|
15
|
Wang Y, Xu T, Wang W. C9orf72 Alleviates DSS‑Induced Ulcerative Colitis via the cGAS-STING Pathway. Immun Inflamm Dis 2025; 13:e70139. [PMID: 39873292 PMCID: PMC11774236 DOI: 10.1002/iid3.70139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/14/2024] [Accepted: 01/19/2025] [Indexed: 01/30/2025] Open
Abstract
PURPOSE C9orf72 deficiency contributes to severe inflammation in mice. Ulcerative colitis (UC) is a chronic inflammatory disorder with the shortage of clinical success. However, whether C9orf72 is involved in the progression of UC is not fully understood. This study investigated whether C9orf72 could alleviate dextran sulfate sodium (DSS)-induced colitis in mice and lipopolysaccharide (LPS)-induced colitis in Caco-2 cells. METHODS Mice were injected AAV9-C9orf72 lentivirus through tail vein and fed 3% DSS for a week. Caco-2 cells were cultured to establish C9orf723 overexpressed model. Histopathological examination, level of inflammation, cGAS-STING pathway, and gut barrier function were detected in mice and cells. RESULTS C9orf72 overexpression in mice attenuated DSS-induced colitis and intestinal epithelial barrier damage by stimulating ZO-1 and Occludin expression. In LPS-induced Caco-2 cells, C9orf72 overexpression increased cell viability and the expression of ZO-1 and Occludin. C9orf72 overexpression alleviated inflammation by inhibiting the cGAS-STING pathway in colonic tissue and Caco-2 cells. CONCLUSION C9orf72 overexpression attenuated DSS-induced colitis and intestinal epithelial barrier damage by inhibiting the cGAS-STING pathway. C9orf72 may present a target for mitigating UC.
Collapse
Affiliation(s)
- Yue Wang
- Department of GastroenterologyQingdao Municipal HospitalQingdaoShandongChina
| | - Ting Xu
- Department of GastroenterologyQingdao Municipal HospitalQingdaoShandongChina
| | - Wenjun Wang
- Department of Health CareQingdao Municipal HospitalQingdaoShandongChina
| |
Collapse
|
16
|
Qu J, Cai Y, Li F, Li X, Liu R. Potential therapeutic strategies for colitis and colon cancer: bidirectional targeting STING pathway. EBioMedicine 2025; 111:105491. [PMID: 39644772 PMCID: PMC11665664 DOI: 10.1016/j.ebiom.2024.105491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024] Open
Abstract
The cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway has emerged as a promising therapeutic target for colitis and colon cancers. Notably, inhibiting STING may mitigate the progression of colitis, whereas activating STING can enhance anti-tumor immune responses against colon cancer. This duality suggests that the development of STING agonists and inhibitors possesses significant clinical translational potential. In this review, we provide a comprehensive overview of STING inhibitors/agonists that have been systematically evaluated in the contexts of colitis and colon cancer and their specific molecular mechanisms. Other well-characterized STING inhibitors/agonists may also hold considerable promise for the treatment of these conditions, although efficacy validation remain necessary. Additionally, we delve into the latest advances concerning STING oligomerization, degradation and phase separation-dependent self-regulation, proposing potential druggable targets that could inspire the development of novel STING agonists or inhibitors. In Summary, targeting STING appears to be a promising strategy for the treatment of colitis and colon cancer.
Collapse
Affiliation(s)
- Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Yajie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| |
Collapse
|
17
|
Xu X, Huang Z, Huang Z, Lv X, Jiang D, Huang Z, Han B, Lin G, Liu G, Li S, Fan J, Lv X. Butyrate attenuates intestinal inflammation in Crohn's disease by suppressing pyroptosis of intestinal epithelial cells via the cGSA-STING-NLRP3 axis. Int Immunopharmacol 2024; 143:113305. [PMID: 39426229 DOI: 10.1016/j.intimp.2024.113305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/21/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
Butyrate can strengthen the intestinal epithelial barrier. However, the mechanisms by which butyrate affects intestinal epithelial cells (IECs) pyroptosis in Crohn's disease (CD) remain unclear. In this study, we collected colonic biopsy samples from CD patients and healthy controls to assess pyroptosis levels. Our findings indicated elevated expression of pyroptosis markers in CD patients, alongside distinct morphological evidence of pyroptosis in IECs. We further investigated the effects of tributyrin on pyroptosis and the cGAS-STING pathway in a trinitrobenzene sulfonic acid-induced colitis rat model. Tributyrin significantly mitigated intestinal inflammation, reduced pathological progression, and inhibited pyroptosis and cGAS-STING pathway activation in the colitis rat model. Similarly, in an in vitro model of IECs pyroptosis, sodium butyrate inhibited pyroptosis and cGAS-STING pathway activation in HT-29 cells. Co-treatment with a cGAS-STING pathway activator and butyrate demonstrated that the activator reversed the inhibitory effects of butyrate on pyroptosis and cGAS-STING pathway activation in both the colitis rat model and HT-29 cells. Mechanistically, the cGAS-STING pathway was found to interact with NLRP3. Taken together, butyrate may mitigate intestinal inflammation in CD by suppressing cGAS-STING-NLRP3 axis-mediated IECs pyroptosis. These findings offer new insights into potential therapeutic strategies for managing CD.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhou Huang
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhixi Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaodan Lv
- Department of Clinical Experimental Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ziqian Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bing Han
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangfu Lin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gengfeng Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shiquan Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junhua Fan
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoping Lv
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
18
|
Ding L, Zhang R, Du W, Wang Q, Pei D. The role of cGAS-STING signaling pathway in ferroptosis. J Adv Res 2024:S2090-1232(24)00606-4. [PMID: 39710299 DOI: 10.1016/j.jare.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has been identified as a crucial mechanism in antiviral defense and innate immunity pathway. Ferroptosis, characterized by iron dependence and lipid peroxidation, represents a specialized form of cell death. A burgeoning collection of studies has demonstrated that the cGAS-STING signaling pathway participates in the homeostatic regulation of the organism by modulating ferroptosis-associated enzyme activity or gene expression. Consequently, elucidating the specific roles of the STING signaling pathway and ferroptosis in vivo is vital for targeted disease intervention. This review systematically examines the interactions between the cGAS-STING signaling pathway and ferroptosis, highlighting their influence on disease progression in the contexts of inflammation, injury, and cancerous cell dynamics. Understanding these interactions may provide novel therapeutic strategies. The STING pathway has been implicated in the regulation of various cell death mechanisms, including apoptosis, pyroptosis, necroptosis, autophagy, and ferroptosis. Our focus primarily addresses the role and mechanism of the cGAS-STING signaling pathway and ferroptosis in diseases, limiting discussion of other cell death modalities and precluding a comprehensive overview of the pathway's additional functions.
Collapse
Affiliation(s)
- Lina Ding
- Department of Pathology, Xuzhou Medical University, Xuzhou, China.
| | - Ruicheng Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Wenqi Du
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou, China.
| | - Qingling Wang
- Department of Pathology, Xuzhou Medical University, Xuzhou, China.
| | - Dongsheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
19
|
Zhang Y, Liu Y, Jiang B, Chen L, Hu J, Niu B, Chang J, Fan Z, Zhou J, Wang Y, Teng D, Ma N, Wang X, Yang R, Zheng M, Zhang S. Targeting STING oligomerization with licochalcone D ameliorates STING-driven inflammatory diseases. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2664-2677. [PMID: 39190126 DOI: 10.1007/s11427-024-2703-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
The development of STING inhibitors for the treatment of STING-related inflammatory diseases continues to encounter significant challenges. The activation of STING is a multi-step process that includes binding with cGAMP, self-oligomerization, and translocation from the endoplasmic reticulum to the Golgi apparatus, ultimately inducing the expression of IRF3 and NF-κB-mediated interferons and inflammatory cytokines. It has been demonstrated that disruption of any of these steps can effectively inhibit STING activation. Traditional structure-based drug screening methodologies generally focus on specific binding sites. In this study, a TransformerCPI model based on protein primary sequences and independent of binding sites is employed to identify compounds capable of binding to the STING protein. The natural product Licochalcone D (LicoD) is identified as a potent and selective STING inhibitor. LicoD does not bind to the classical ligand-binding pocket; instead, it covalently modifies the Cys148 residue of STING. This modification inhibits STING oligomerization, consequently suppressing the recruitment of TBK1 and the nuclear translocation of IRF3 and NF-κB. LicoD treatment ameliorates the inflammatory phenotype in Trex1-1- mice and inhibits the progression of DSS-induced colitis and AOM/DSS-induced colitis-associated colon cancer (CAC). In summary, this study reveals the potential of LicoD in treating STING-driven inflammatory diseases. It also demonstrates the utility of the TransformerCPI model in discovering allosteric compounds beyond the conventional binding pockets.
Collapse
Affiliation(s)
- Yinghui Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yadan Liu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bing Jiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lifan Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Hu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Buying Niu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Chang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zisheng Fan
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, Shanghai Tech University, Shanghai, 200031, China
| | - Jingyi Zhou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Yajie Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Dan Teng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Xiaofeng Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Ruirui Yang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, Shanghai Tech University, Shanghai, 200031, China.
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, China.
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Bharadwaj R, Jaiswal S, Silverman N. Cytosolic delivery of innate immune agonists. Trends Immunol 2024; 45:1001-1014. [PMID: 39567309 PMCID: PMC11624987 DOI: 10.1016/j.it.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024]
Abstract
Solute carrier proteins (SLCs) are pivotal for maintaining cellular homeostasis by transporting small molecules across cellular membranes. Recent discoveries have uncovered their involvement in modulating innate immunity, particularly within the cytosol. We review emerging evidence that links SLC transporters to cytosolic innate immune recognition and highlight their role in regulating inflammation. We explore how SLC transporters influence the activation of endosomal Toll-like receptors, cytosolic NODs, and STING sensors. Understanding the contribution of SLCs to innate immune recognition provides insight into their fundamental biological functions and opens new avenues to develop possible therapeutic interventions for autoimmune and inflammatory diseases. This review aims to discuss current knowledge and identify key gaps in this rapidly evolving field.
Collapse
Affiliation(s)
- Ravi Bharadwaj
- Division of Infectious Diseases and Immunology, Program in Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Swati Jaiswal
- Division of Infectious Diseases and Immunology, Program in Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Program in Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
21
|
Zhou J, Li D, Xu M, Zhu T, Li Z, Fu Z, Wang M, Li S, Gu D. Interactions between polycyclic aromatic hydrocarbons and genetic variants in the cGAS-STING pathway affect the risk of colorectal cancer. Arch Toxicol 2024; 98:4117-4129. [PMID: 39287666 DOI: 10.1007/s00204-024-03862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
The cGAS-STING pathway plays an essential role in the activation of tumor immune cells. Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants with potential carcinogenicity, and their exposure is associated with the development of colorectal cancer. However, the impacts of genetic factors in the cGAS‒STING pathway and gene‒environment interactions on colorectal cancer remain understudied. We used logistic regression models and interaction analysis to evaluate the impact of genetic variants on colorectal cancer risk and gene‒environment interactions. We analysed the expression patterns of candidate genes based on the RNA-seq data. Molecular biology experiments were performed to investigate the impact of PAHs exposure on candidate gene expression and the progression of colorectal cancer. We identified the susceptibility locus rs3750511 in the cGAS‒STING pathway, which is associated with colorectal cancer risk. A negative interaction between TRAF2 rs3750511 and PAHs exposure was also identified. Single-cell RNA-seq analysis revealed significantly elevated expression of TRAF2 in colorectal cancer tissues compared with normal tissues, especially in T cells. BPDE exposure increased TRAF2 expression and the malignant phenotype of colorectal cancer cells. The treatment also further increased the expression of the TRAF2 downstream gene NF-κB and decreased the expression of Caspase8. Our results suggest that the genetic variant of rs3750511 affects the expression of TRAF2, thereby increasing the risk of colorectal cancer through interaction with PAHs. Our study provides new insights into the influence of gene‒environment interactions on the risk of developing colorectal cancer.
Collapse
Affiliation(s)
- Jieyu Zhou
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Dongzheng Li
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Menghuan Xu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tianru Zhu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhengyi Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China.
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Shuwei Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| |
Collapse
|
22
|
Gao T, Ren M, Feng Y, Li Y, Zhang X, He S. Association of the atherogenic index of plasma and modified triglyceride-glucose indices with digestive diseases among middle-aged and older population in China. Lipids Health Dis 2024; 23:398. [PMID: 39616367 PMCID: PMC11607860 DOI: 10.1186/s12944-024-02321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/01/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Previous studies have shown that metabolic imbalances contribute to digestive diseases. This study aimed to investigate the relationship of the atherogenic index of plasma (AIP) and modified triglyceride-glucose (TyG) indices with digestive diseases. METHODS We recruited participants aged 45 years or older from the China Health and Retirement Longitudinal Study (CHARLS, 2011 - 2020). The indices assessed included AIP, TyG, triacylglycerol glucose-waist circumference (TyG-WC), the triacylglycerol glucose-waist-to-height ratio (TyG-WHtR), and the triacylglycerol glucose-body mass index (TyG-BMI). We used logistic regression and restricted cubic spline (RCS) analyses to examine the associations between these indices and the incidence of digestive diseases. RESULTS A total of 4,453 participants were included in our analysis, 53.3% of whom were female, with an average age of 60 years. The incidence of digestive diseases in middle-aged and older adults was 6.18%. Compared with those in the lowest tertile group, the odds ratios (ORs) with 95% confidence intervals (CIs) for digestive diseases in the highest tertile for AIP, TyG, TyG-WC, TyG-WHtR, and TyG-BMI were 1.452 (1.07-1.972), 1.193 (0.873-1.631), 1.349 (1.044-1.743), 1.5 (1.089-2.068), and 1.312 (0.956-1.799), respectively. Sensitivity analyses confirmed the robustness of the correlations between these indices and digestive diseases. CONCLUSION Our study revealed that the AIP, TyG-WC, and TyG-WHtR were independently associated with the incidence of digestive diseases. These findings highlight the importance of considering and optimizing metabolic factors in management strategies for digestive diseases.
Collapse
Affiliation(s)
- Tiantian Gao
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Mudan Ren
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Yun Feng
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Yarui Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Xv Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| |
Collapse
|
23
|
Liu J, Zhang Z, Zhong S, Zhang X, Yang J, Zhou Q, Wang D, Chang X, Wang H. Fecal microbiome transplantation alleviates manganese-induced neurotoxicity by altering the composition and function of the gut microbiota via the cGAS-STING/NLRP3 pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175681. [PMID: 39173756 DOI: 10.1016/j.scitotenv.2024.175681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Manganese (Mn) is an environmental pollutant, and overexposure can cause neurodegenerative disorders similar to Alzheimer's disease and Parkinson's disease that are characterized by β-amyloid (Aβ) overexpression, Tau hyperphosphorylation and neuroinflammation. However, the mechanisms of Mn neurotoxicity are not clearly defined. In our study, a knockout mouse model of Mn exposure combined with gut flora-induced neurotoxicity was constructed to investigate the effect of gut flora on Mn neurotoxicity. The results showed that the levels of Tau, p-Tau and Aβ in the hippocampus of C57BL/6 mice were greater than those in the hippocampus of control mice after 5 weeks of continuous exposure to manganese chloride (Mn content of 200 mg/L). Transplanted normal and healthy fecal microbiota from mice significantly downregulated Tau, p-Tau and Aβ expression and ameliorated brain pathology. Moreover, Mn exposure activated the cGAS-STING pathway and altered the cecal microbiota profile, characterized by an increase in Clostridiales, Pseudoflavonifractor, Ligilactobacillus and Desulfovibrio, and a decrease in Anaerotruncus, Eubacterium_ruminantium_group, Fusimonas and Firmicutes, While fecal microbiome transplantation (FMT) treatment inhibited this pathway and restored the microbiota profile. FMT alleviated Mn exposure-induced neurotoxicity by inhibiting activation of the NLRP3 inflammasome triggered by overactivation of the cGAS-STING pathway. Deletion of the cGAS and STING genes and FMT altered the gut microbiota composition and its predictive function. Phenotypic prediction revealed that FMT markedly decreased the abundances of anaerobic and stress-tolerant bacteria and significantly increased the abundances of facultative anaerobic bacteria and biofilm-forming bacteria after blocking the cGAS-STING pathway compared to the Mn-exposed group. FMT from normal and healthy mice ameliorated the neurotoxicity of Mn exposure, possibly through alterations in the composition and function of the microbiome associated with the cGAS-STING/NLRP3 pathway. This study provides a prospective direction for future research on the mechanism of Mn neurotoxicity.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Zhimin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Shiyin Zhong
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Xin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Jirui Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Qiongli Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Diya Wang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China.
| |
Collapse
|
24
|
Xu S, Peng Y, Yang K, Liu S, He Z, Huang J, Xiao R, Liu J, Yan Z, Lian Z, Pan H, Chen J, Shi J, Yao X, Deng H. PROTAC based STING degrader attenuates acute colitis by inhibiting macrophage M1 polarization and intestinal epithelial cells pyroptosis mediated by STING-NLRP3 axis. Int Immunopharmacol 2024; 141:112990. [PMID: 39223062 DOI: 10.1016/j.intimp.2024.112990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Inflammatory bowel diseases (IBDs) are chronic, relapsing, and inflammatory disorders of the gastrointestinal tract characterized by abnormal immune responses. Recently, STING has emerged as a promising therapeutic target for various autoinflammatory diseases. However, few STING-selective small molecules have been investigated as novel strategies for IBD. In this study, we sought to examine the effects of PROTAC-based STING degrader SP23 on acute colitis and explore its underlying mechanism. SP23 treatment notably alleviates dextran sulfate sodium (DSS)-induced colitis. Pharmacological degradation of STING significantly reduced the production of inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, and inhibited macrophage polarization towards the M1 type. Furthermore, SP23 administration decreased the loss of tight junction proteins, including ZO-1, occludin, and claudin-1, and downregulated STING and NLRP3 signaling pathways in intestinal inflammation. In vitro, STING activated NLRP3 inflammasome-mediated pyroptosis in intestinal epithelial cells, which could be abrogated by SP23 and STING siRNA intervention. In conclusion, these findings provide new evidence for STING as a novel therapeutic target for IBD, and reveal that hyperactivation of STING could exaggerate colitis by inducing NLRP3/Caspase-1/GSDMD axis mediated intestinal epithelial cells pyroptosis.
Collapse
Affiliation(s)
- Shuai Xu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong, China
| | - Yifeng Peng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong, China
| | - Kai Yang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong, China
| | - Sheng Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong, China
| | - Zhanke He
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong, China
| | - Junli Huang
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, China
| | - Ruipei Xiao
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong, China
| | - Jin Liu
- Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Ziyan Yan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong, China
| | - Zhiying Lian
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong, China
| | - Huayang Pan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Jiaolong Shi
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong, China.
| | - Xingxing Yao
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong, China.
| | - Haijun Deng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong, China.
| |
Collapse
|
25
|
Saad M, Ibrahim W, Hasanin AH, Elyamany AM, Matboli M. Evaluating the therapeutic potential of genetically engineered probiotic Zbiotics (ZB183) for non-alcoholic steatohepatitis (NASH) management via modulation of the cGAS-STING pathway. RSC Med Chem 2024:d4md00477a. [PMID: 39290381 PMCID: PMC11403872 DOI: 10.1039/d4md00477a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
NAFLD/NASH has emerged as a global health concern with no FDA-approved treatment, necessitating the exploration of novel therapeutic elements for NASH. Probiotics are known as an important adjunct therapy in NASH. Zbiotics (ZB183) is the first commercially available genetically engineered probiotic. Herein, we aimed to evaluate the potential therapeutic effects of Zbiotics administration on NASH management by modulating the cGAS-STING-signaling pathway-related RNA network. In silico data analysis was performed and three DEGs (MAPK3/EDN1/TNF) were selected with their epigenetic modulators (miR-6888-5p miRNA, and lncRNA RABGAP1L-DT-206). The experimental design included NASH induction with an HSHF diet in Wistar rats and Zbiotics administration in NASH rats in comparison to statin treatment. Liver functions and lipid profile were assessed. Additionally, the expression levels of the constructed molecular network were assessed using RT-PCR. Moreover, the Zbiotics effects in NASH were further validated with histopathological examination of liver and colon samples. Also, immunohistochemistry staining of hepatic TNF-α and colonic occludin was assessed. Oral administration of Zbiotics for four weeks downregulated the expression of the cGAS-STING-related network (MAPK3/EDN1/TNF/miR-6888-5p miRNA/lncRNA RABGAP1L-DT-206) in NASH models. Zbiotics also ameliorated hepatic inflammation and steatosis, as evidenced by a notable improvement in NAS score and decreased hepatic TNF-α levels. Furthermore, Zbiotics exhibited favorable effects on colon health, including increased crypt length, reduced inflammatory cell infiltration, and restoration of colonic mucosa occludin expression. In conclusion, our findings suggest that Zbiotics has potential therapeutic effects on NASH via modulating the gut-liver axis and the cGAS-STING signaling pathway.
Collapse
Affiliation(s)
- Maha Saad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Modern University for Technology and Information Cairo Egypt
- Biomedical Research Department, Faculty of Medicine, Modern University for technology and information Cairo Egypt
- Medical Biochemistry and Molecular Biology, Faculty of Medicine Cairo University Cairo Egypt
| | - Walaa Ibrahim
- Medical Biochemistry and Molecular Biology, Faculty of Medicine Cairo University Cairo Egypt
| | - Amany Helmy Hasanin
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| | - Aya Magdy Elyamany
- Anatomic Pathology Department, Faculty of Medicine, Cairo University Cairo Egypt
| | - Marwa Matboli
- Departement of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| |
Collapse
|
26
|
Yin Y, Wang R, Li Y, Qin W, Pan L, Yan C, Hu Y, Wang G, Ai L, Mei Q, Li L. Protection against DSS-induced colitis in mice through FcεRIα deficiency: the role of altered Lactobacillus. NPJ Biofilms Microbiomes 2024; 10:84. [PMID: 39266529 PMCID: PMC11393424 DOI: 10.1038/s41522-024-00563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
The role of mast cells (MCs) in ulcerative colitis (UC) development is controversial. FcεRI, the IgE high-affinity receptor, is known to activate MCs. However, its role in UC remains unclear. In our study, Anti-FcεRI showed highly diagnostic value for UC. FcεRIα knockout in mice ameliorated DSS-induced colitis in a gut microbiota-dependent manner. Increased Lactobacillus abundance in FcεRIα deficient mice showed strongly correlation with the remission of colitis. RNA sequencing indicated activation of the NLRP6 inflammasome pathway in FcεRIα knockout mice. Additionally, Lactobacillus plantarum supplementation protected against inflammatory injury and goblet cell loss, with activation of the NLRP6 inflammasome during colitis. Notably, this effect was absent when the strain is unable to produce lactic acid. In summary, colitis was mitigated in FcεRIα deficient mice, which may be attributed to the increased abundance of Lactobacillus. These findings contribute to a better understanding of the relationship between allergic reactions, microbiota, and colitis.
Collapse
Affiliation(s)
- Yue Yin
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruilong Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanning Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenfei Qin
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Letian Pan
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chenyuan Yan
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yusen Hu
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Guangqiang Wang
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China.
| | - Qixiang Mei
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China.
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Li Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Mertens RT, Misra A, Xiao P, Baek S, Rone JM, Mangani D, Sivanathan KN, Arojojoye AS, Awuah SG, Lee I, Shi GP, Petrova B, Brook JR, Anderson AC, Flavell RA, Kanarek N, Hemberg M, Nowarski R. A metabolic switch orchestrated by IL-18 and the cyclic dinucleotide cGAMP programs intestinal tolerance. Immunity 2024; 57:2077-2094.e12. [PMID: 38906145 DOI: 10.1016/j.immuni.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/10/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024]
Abstract
Tissues are exposed to diverse inflammatory challenges that shape future inflammatory responses. While cellular metabolism regulates immune function, how metabolism programs and stabilizes immune states within tissues and tunes susceptibility to inflammation is poorly understood. Here, we describe an innate immune metabolic switch that programs long-term intestinal tolerance. Intestinal interleukin-18 (IL-18) stimulation elicited tolerogenic macrophages by preventing their proinflammatory glycolytic polarization via metabolic reprogramming to fatty acid oxidation (FAO). FAO reprogramming was triggered by IL-18 activation of SLC12A3 (NCC), leading to sodium influx, release of mitochondrial DNA, and activation of stimulator of interferon genes (STING). FAO was maintained in macrophages by a bistable switch that encoded memory of IL-18 stimulation and by intercellular positive feedback that sustained the production of macrophage-derived 2'3'-cyclic GMP-AMP (cGAMP) and epithelial-derived IL-18. Thus, a tissue-reinforced metabolic switch encodes durable immune tolerance in the gut and may enable reconstructing compromised immune tolerance in chronic inflammation.
Collapse
Affiliation(s)
- Randall T Mertens
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Aditya Misra
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peng Xiao
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Seungbyn Baek
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Joseph M Rone
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Davide Mangani
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kisha N Sivanathan
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; Center for Pharmaceutical Research and Innovation, College of Pharmacy and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Boryana Petrova
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jeannette R Brook
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ana C Anderson
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martin Hemberg
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Roni Nowarski
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
28
|
Hong G, Zhao Y, Li Q, Liu S. Fut2 deficiency aggravates chronic colitis through 2-oxindole-AHR mediated cGAS-STING pathway. Int Immunopharmacol 2024; 137:112512. [PMID: 38897123 DOI: 10.1016/j.intimp.2024.112512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/23/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE This study aims to disclose how loss of fucosyltransferase 2 (Fut2) impacts intestinal inflammation through cGAS-STING pathway that is closely associated with gut microbiota, and which microbial metabolite improves colitis in Fut2 deficiency. METHODS Chronic colitis was induced in intestinal epithelial Fut2 knock out mice (Fut2△IEC), whose intestinal inflammation and activity of cGAS-STING pathway were evaluated. 16S rRNA sequencing and metabolomics were performed using intestinal samples. 2-oxindole was used to treat RAW264.7 cells and Fut2△IEC mice with colitis (Fut2△IEC-DSS) to investigate the effect of 2-oxindole on cGAS-STING response and intestinal inflammation. RESULTS Fut2 loss exacerbated chronic colitis in mice, manifested by declined body weight, reduced colon length, increased disease activity index (DAI) and more colon injury in Fut2△IEC-DSS mice compared with WT-DSS (wild type mice with colitis). Lack of Fut2 promoted activation of cGAS-STING pathway. Fut2 deficiency had a primary impact on colonic microbiota, as shown by alteration of microbial diversity and structure, as well as decreased Lactobacillus. Metabolic structure and tryptophan metabolism in colonic luminal microbiota were also influenced by Fut2 loss. Fut2 deficiency also led to decreased levels of aryl hydrocarbon receptor (AHR) and its ligand 2-oxindole derived from tryptophan metabolism. 2-oxindole compromised cGAS-STING response through activating AHR in macrophages, and protected against intestinal inflammation and overactive cGAS-STING pathway in Fut2△IEC-DSS mice. CONCLUSION Fut2 deficiency promotes cGAS-STING pathway through suppressing 2-oxindole-AHR axis, ultimately facilitating the susceptibility to chronic colitis.
Collapse
Affiliation(s)
- Gaichao Hong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yajuan Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Gastroenterology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China.
| |
Collapse
|
29
|
Pastora L, Namburu NS, Arora K, Christov PP, Wilson JT. STING-Pathway Inhibiting Nanoparticles (SPINs) as a Platform for Treatment of Inflammatory Diseases. ACS APPLIED BIO MATERIALS 2024; 7:4867-4878. [PMID: 38563162 PMCID: PMC11337154 DOI: 10.1021/acsabm.3c01305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Aberrant activation of the cyclic GMP-AMP synthase (cGAS)/Stimulator of Interferon Genes (STING) pathway has been implicated in the development and progression of a myriad of inflammatory diseases including colitis, nonalcoholic steatohepatitis, amyotrophic lateral sclerosis (ALS), and age-related macular degeneration. Thus, STING pathway inhibitors could have therapeutic application in many of these inflammatory conditions. The cGAS inhibitor RU.521 and the STING inhibitor H-151 have shown promise as therapeutics in mouse models of colitis, ALS, and more. However, these agents require frequent high-dose intraperitoneal injections, which may limit translatability. Furthermore, long-term use of systemically administered cGAS/STING inhibitors may leave patients vulnerable to viral infections and cancer. Thus, localized or targeted inhibition of the cGAS/STING pathway may be an attractive, broadly applicable treatment for a variety of STING pathway-driven ailments. Here we describe STING-Pathway Inhibiting Nanoparticles (SPINS)-poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with RU.521 and H-151-as a platform for enhanced and sustained inhibition of cGAS/STING signaling. We demonstrate that SPINs are equally or more effective at inhibiting type-I interferon responses induced by cytosolic DNA than free H-151 or RU.521. Additionally, we describe a SPIN formulation in which PLGA is coemulsified with poly(benzoyloxypropyl methacrylamide) (P(HPMA-Bz)), which significantly improves drug loading and allows for tunable release of H-151 over a period of days to over a week by varying P(HPMA-Bz) content. Finally, we find that all SPIN formulations were as potent or more potent in inhibiting cGAS/STING signaling in primary murine macrophages, resulting in decreased expression of inflammatory M1-like macrophage markers. Therefore, our study provides an in vitro proof-of-concept for nanoparticle delivery of STING pathway inhibitors and positions SPINs as a potential platform for slowing or reversing the onset or progression of cGAS/STING-driven inflammatory conditions.
Collapse
Affiliation(s)
- Lucinda
E. Pastora
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Neeraj S. Namburu
- School
for Science and Math at Vanderbilt, Vanderbilt
University, Nashville, Tennessee 37212, United States
| | - Karan Arora
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Plamen P. Christov
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37212, United States
| | - John T. Wilson
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37212, United States
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Vanderbilt
Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, Tennessee 37212, United States
- Vanderbilt
Center for Immunobiology, Vanderbilt University
Medical Center, Nashville Tennessee 37232, United States
- Vanderbilt
Ingram Cancer Center, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Digestive Diseases Research Center, Vanderbilt
University Medical Center, Nashville Tennessee 37232, United States
| |
Collapse
|
30
|
Zhou Y, Bao L, Gong S, Dou G, Li Z, Wang Z, Yu L, Ding F, Liu H, Li X, Liu S, Yang X, Liu S. T Cell-Derived Apoptotic Extracellular Vesicles Hydrolyze cGAMP to Alleviate Radiation Enteritis via Surface Enzyme ENPP1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401634. [PMID: 38888507 PMCID: PMC11336903 DOI: 10.1002/advs.202401634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/04/2024] [Indexed: 06/20/2024]
Abstract
Radiation enteritis is the most common complication of pelvic radiotherapy, but there is no effective prevention or treatment drug. Apoptotic T cells and their products play an important role in regulating inflammation and maintaining physiological immune homeostasis. Here it is shown that systemically infused T cell-derived apoptotic extracellular vesicles (ApoEVs) can target mice irradiated intestines and alleviate radiation enteritis. Mechanistically, radiation elevates the synthesis of intestinal 2'3' cyclic GMP-AMP (cGAMP) and activates cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) proinflammatory pathway. After systemic infusion of ApoEVs, the ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) enriches on the surface of ApoEVs hydrolyze extracellular cGAMP, resulting in inhibition of the cGAS-STING pathway activated by irradiation. Furthermore, after ApoEVs are phagocytosed by phagocytes, ENPP1 on ApoEVs hydrolyzed intracellular cGAMP, which serves as an intracellular cGAMP hydrolyzation mode, thereby alleviating radiation enteritis. The findings shed light on the intracellular and extracellular hydrolysis capacity of ApoEVs and their role in inflammation regulation.
Collapse
Affiliation(s)
- Yang Zhou
- College of Life SciencesNorthwest UniversityXi'anShaanxi710069China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Lili Bao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Shengkai Gong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Geng Dou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Zihan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Zhengyan Wang
- Department of OrthodonticsSchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanShandong250012China
| | - Lu Yu
- Department of PeriodontologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanShandong250012China
| | - Feng Ding
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesDepartment of RadiologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Huan Liu
- Department of Otolaryngology Head and Neck SurgeryPeking University Third HospitalBeijing100871China
| | - Xiayun Li
- College of Life SciencesNorthwest UniversityXi'anShaanxi710069China
| | - Siying Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi Clinical Research Center for Oral DiseasesDepartment of OrthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Xiaoshan Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
- Stomatology HospitalSchool of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Shiyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
31
|
Gao KM, Chiang K, Subramanian S, Yin X, Utz PJ, Nündel K, Fitzgerald KA, Marshak-Rothstein A. Activation of autoreactive lymphocytes in the lung by radioresistant cells expressing a STING gain-of-function mutation. JCI Insight 2024; 9:e174331. [PMID: 39024563 PMCID: PMC11343592 DOI: 10.1172/jci.insight.174331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Gain-of-function mutations in the dsDNA sensing adaptor STING lead to a severe autoinflammatory syndrome known as STING-associated vasculopathy with onset in infancy (SAVI). Patients with SAVI develop interstitial lung disease (ILD) and produce autoantibodies that are commonly associated with systemic autoimmune diseases. Mice expressing the most common SAVI mutation, STING V154M (VM), similarly develop ILD but exhibit severe T and B cell lymphopenia and low serum Ig titers, and they lack autoantibodies. Importantly, lethally irradiated VM hosts reconstituted with WT stem cells (WT→VM) still develop ILD. In this study, we find that WT→VM chimeras had restored B cell function, produced autoantibodies, and thereby recapitulated the loss of tolerance seen in patients with SAVI. Lymphocytes derived from both WT and BCR or TCR transgenic (Tg) donors accumulated in the extravascular lung tissue of WT+Tg→VM mixed chimeras, but lymphocyte activation and germinal center formation required WT cells with a diverse repertoire. Furthermore, when T cells isolated from the WT→VM chimeras were adoptively transferred to naive Rag1-deficient secondary hosts, they trafficked to the lung and recruited neutrophils. Overall, these findings indicated that VM expression by radioresistant cells promoted the activation of autoreactive B cells and T cells that then differentiated into potentially pathogenic effector subsets.
Collapse
Affiliation(s)
- Kevin MingJie Gao
- Division of Innate Immunity and
- Division of Rheumatology, Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Kristy Chiang
- Division of Innate Immunity and
- Division of Rheumatology, Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts, USA
| | | | - Xihui Yin
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | - Paul J. Utz
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | | | - Kate A. Fitzgerald
- Division of Rheumatology, Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
32
|
Cai Y, Li S, Yang Y, Duan S, Fan G, Bai J, Zheng Q, Gu Y, Li X, Liu R. Intestinal epithelial damage-derived mtDNA activates STING-IL12 axis in dendritic cells to promote colitis. Theranostics 2024; 14:4393-4410. [PMID: 39113810 PMCID: PMC11303083 DOI: 10.7150/thno.96184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/18/2024] [Indexed: 08/10/2024] Open
Abstract
Rationale: The treatment of ulcerative colitis (UC) presents an ongoing clinical challenge. Emerging research has implicated that the cGAS-STING pathway promotes the progression of UC, but conflicting results have hindered the development of STING as a therapeutic target. In the current study, we aim to comprehensively elucidate the origins, downstream signaling and pathogenic roles of myeloid STING in colitis and colitis-associated carcinoma (CAC). Methods: Tmem173 fl/fl Lyz2-Cre ert2 mice were constructed for inducible myeloid-specific deletion of STING. RNA-sequencing, flow cytometry, and multiplex immunohistochemistry were employed to investigate immune responses in DSS-induced colitis or AOM/DSS-induced carcinogenesis. Colonic organoids, primary bone marrow derived macrophages and dendritic cells, and splenic T cells were used for in vitro studies. Results: We observed that myeloid STING knockout in adult mice inhibited macrophage maturation, reduced DC cell activation, and suppressed pro-inflammatory Th1 and Th17 cells, thereby protecting against both acute and chronic colitis and CAC. However, myeloid STING deletion in neonatal or tumor-present mice exhibited impaired immune tolerance and anti-tumor immunity. Furthermore, we found that TFAM-associated mtDNA released from damaged colonic organoids, rather than bacterial products, activates STING in dendritic cells in an extracellular vesicle-independent yet endocytosis-dependent manner. Both IRF3 and NF-κB are required for STING-mediated expression of IL-12 family cytokines, promoting Th1 and Th17 differentiation and contributing to excessive inflammation in colitis. Conclusions: Detection of the TFAM-mtDNA complex from damaged intestinal epithelium by myeloid STING exacerbates colitis through IL-12 cytokines, providing new evidence to support the development of STING as a therapeutic target for UC and CAC.
Collapse
Affiliation(s)
- Yajie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Shuni Duan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Jinzhao Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Yiqing Gu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| |
Collapse
|
33
|
Ramos A, Bizri N, Novak E, Mollen K, Khan S. The role of cGAS in epithelial dysregulation in inflammatory bowel disease and gastrointestinal malignancies. Front Pharmacol 2024; 15:1409683. [PMID: 39050748 PMCID: PMC11266671 DOI: 10.3389/fphar.2024.1409683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024] Open
Abstract
The gastrointestinal tract is lined by an epithelial monolayer responsible for selective permeability and absorption, as well as protection against harmful luminal contents. Recognition of foreign or aberrant DNA within these epithelial cells is, in part, regulated by pattern recognition receptors such as cyclic GMP-AMP synthase (cGAS). cGAS binds double-stranded DNA from exogenous and endogenous sources, resulting in the activation of stimulator of interferon genes (STING) and a type 1 interferon response. cGAS is also implicated in non-canonical pathways involving the suppression of DNA repair and the upregulation of autophagy via interactions with PARP1 and Beclin-1, respectively. The importance of cGAS activation in the development and progression of inflammatory bowel disease and gastrointestinal cancers has been and continues to be explored. This review delves into the intricacies of the complex role of cGAS in intestinal epithelial inflammation and gastrointestinal malignancies, as well as recent therapeutic advances targeting cGAS pathways.
Collapse
Affiliation(s)
- Anna Ramos
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Nazih Bizri
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Elizabeth Novak
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Kevin Mollen
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Sidrah Khan
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
34
|
Wang J, Yao N, Chen Y, Li X, Jiang Z. Research progress of cGAS-STING signaling pathway in intestinal diseases. Int Immunopharmacol 2024; 135:112271. [PMID: 38762923 DOI: 10.1016/j.intimp.2024.112271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signal has drawn much consideration due to its sensitivity to DNA in innate immune mechanisms. Activation of the cGAS-STIN signaling pathway induces the production of interferon and inflammatory cytokines, resulting in immune responses, or inflammatory diseases. The intestinal tract is a vital organ for the body's nutrition absorption, recent studies have had various points of view on the job of cGAS-STING pathway in various intestinal sicknesses. Therefore, understanding its role and mechanism in the intestinal environment can help to develop new strategies for the treatment of intestinal diseases. This article examines the mechanism of the cGAS-STING pathway and its function in inflammatory bowel disease, intestinal cancer, and long-injury ischemia-reperfusion, lists the current medications that target it for the treatment of intestinal diseases, and discusses the impact of intestinal flora on this signaling pathway, to offer a theoretical and scientific foundation for upcoming targeted therapies for intestinal disorders via the cGAS-STING pathway.
Collapse
Affiliation(s)
- Jiamin Wang
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanji, Jilin 133002, China
| | - Naiqi Yao
- Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133000, China
| | - Yonghu Chen
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanji, Jilin 133002, China
| | - Xuezheng Li
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanji, Jilin 133002, China; Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133000, China
| | - Zhe Jiang
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanji, Jilin 133002, China; Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133000, China.
| |
Collapse
|
35
|
Wang C, Gao X, Li Y, Li C, Ma Z, Sun D, Liang X, Zhang X. A molecular subtyping associated with the cGAS-STING pathway provides novel perspectives on the treatment of ulcerative colitis. Sci Rep 2024; 14:12683. [PMID: 38831059 PMCID: PMC11148070 DOI: 10.1038/s41598-024-63695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024] Open
Abstract
Ulcerative colitis (UC) is characterized by an abnormal immune response, and the pathogenesis lacks clear understanding. The cGAS-STING pathway is an innate immune signaling pathway that plays a significant role in various pathophysiological processes. However, the role of the cGAS-STING pathway in UC remains largely unclear. In this study, we obtained transcriptome sequencing data from multiple publicly available databases. cGAS-STING related genes were obtained through literature search, and differentially expressed genes (DEGs) were analyzed using R package limma. Hub genes were identified through protein-protein interaction (PPI) network analysis and module construction. The ConsensuClusterPlus package was utilized to identify molecular subtypes based on hub genes. The therapeutic response, immune microenvironment, and biological pathways of subtypes were further investigated. A total of 18 DEGs were found in UC patients. We further identified IFI16, MB21D1 (CGAS), TMEM173 (STING) and TBK1 as the hub genes. These genes are highly expressed in UC. IFI16 exhibited the highest diagnostic value and predictive value for response to anti-TNF therapy. The expression level of IFI16 was higher in non-responders to anti-TNF therapy. Furthermore, a cluster analysis based on genes related to the cGAS-STING pathway revealed that patients with higher gene expression exhibited elevated immune burden and inflammation levels. This study is a pioneering analysis of cGAS-STING pathway-related genes in UC. These findings provide new insights for the diagnosis of UC and the prediction of therapeutic response.
Collapse
Affiliation(s)
- Chen Wang
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xin Gao
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yanchen Li
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Chenyang Li
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Zhimin Ma
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Department of Respirology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Donglei Sun
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xiaonan Liang
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xiaolan Zhang
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
36
|
Nofi CP, Prince JM, Wang P, Aziz M. Chromatin as alarmins in necrotizing enterocolitis. Front Immunol 2024; 15:1403018. [PMID: 38881893 PMCID: PMC11176418 DOI: 10.3389/fimmu.2024.1403018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease primarily affecting premature neonates, marked by poorly understood pro-inflammatory signaling cascades. Recent advancements have shed light on a subset of endogenous molecular patterns, termed chromatin-associated molecular patterns (CAMPs), which belong to the broader category of damage-associated molecular patterns (DAMPs). CAMPs play a crucial role in recognizing pattern recognition receptors and orchestrating inflammatory responses. This review focuses into the realm of CAMPs, highlighting key players such as extracellular cold-inducible RNA-binding protein (eCIRP), high mobility group box 1 (HMGB1), cell-free DNA, neutrophil extracellular traps (NETs), histones, and extracellular RNA. These intrinsic molecules, often perceived as foreign, have the potential to trigger immune signaling pathways, thus contributing to NEC pathogenesis. In this review, we unravel the current understanding of the involvement of CAMPs in both preclinical and clinical NEC scenarios. We also focus on elucidating the downstream signaling pathways activated by these molecular patterns, providing insights into the mechanisms that drive inflammation in NEC. Moreover, we scrutinize the landscape of targeted therapeutic approaches, aiming to mitigate the impact of tissue damage in NEC. This in-depth exploration offers a comprehensive overview of the role of CAMPs in NEC, bridging the gap between preclinical and clinical insights.
Collapse
Affiliation(s)
- Colleen P. Nofi
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Jose M. Prince
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
37
|
Uthaman S, Parvinroo S, Mathew AP, Jia X, Hernandez B, Proctor A, Sajeevan KA, Nenninger A, Long MJ, Park IK, Chowdhury R, Phillips GJ, Wannemuehler MJ, Bardhan R. Inhibiting the cGAS-STING Pathway in Ulcerative Colitis with Programmable Micelles. ACS NANO 2024; 18:12117-12133. [PMID: 38648373 DOI: 10.1021/acsnano.3c11257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Ulcerative colitis is a chronic condition in which a dysregulated immune response contributes to the acute intestinal inflammation of the colon. Current clinical therapies often exhibit limited efficacy and undesirable side effects. Here, programmable nanomicelles were designed for colitis treatment and loaded with RU.521, an inhibitor of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. STING-inhibiting micelles (SIMs) comprise hyaluronic acid-stearic acid conjugates and include a reactive oxygen species (ROS)-responsive thioketal linker. SIMs were designed to selectively accumulate at the site of inflammation and trigger drug release in the presence of ROS. Our in vitro studies in macrophages and in vivo studies in a murine model of colitis demonstrated that SIMs leverage HA-CD44 binding to target sites of inflammation. Oral delivery of SIMs to mice in both preventive and delayed therapeutic models ameliorated colitis's severity by reducing STING expression, suppressing the secretion of proinflammatory cytokines, enabling bodyweight recovery, protecting mice from colon shortening, and restoring colonic epithelium. In vivo end points combined with metabolomics identified key metabolites with a therapeutic role in reducing intestinal and mucosal inflammation. Our findings highlight the significance of programmable delivery platforms that downregulate inflammatory pathways at the intestinal mucosa for managing inflammatory bowel diseases.
Collapse
Affiliation(s)
- Saji Uthaman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - Shadi Parvinroo
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Ansuja Pulickal Mathew
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - Xinglin Jia
- Department of Mathematics, Iowa State University, Ames, Iowa 50011, United States
| | - Belen Hernandez
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Alexandra Proctor
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Karuna Anna Sajeevan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - Ariel Nenninger
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Mary-Jane Long
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - Gregory J Phillips
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Michael J Wannemuehler
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| |
Collapse
|
38
|
Wang Y, He X, Wang H, Hu W, Sun L. Qingfei xieding prescription ameliorates mitochondrial DNA-initiated inflammation in bleomycin-induced pulmonary fibrosis through activating autophagy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117820. [PMID: 38286157 DOI: 10.1016/j.jep.2024.117820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qingfei Xieding prescription was gradually refined and produced by Hangzhou Red Cross Hospital. The raw material includes Ephedra sinica Stapf, Morus alba L., Bombyx Batryticatus, Gypsum Fibrosum, Prunus armeniaca L. var. ansu Maxim., Houttuynia cordata Thunb. , Pueraria edulis Pamp. Paeonia L., Scutellaria baicalensis Georgi and Anemarrhena asphodeloides Bge. It is effective in clinical adjuvant treatment of patients with pulmonary diseases. AIM OF THE STUDY To explore the efficacy and underlying mechanism of Qingfei Xieding (QF) in the treatment of bleomycin-induced mouse model. MATERIALS AND METHODS TGF-β induced fibrotic phenotype in vitro. Bleomycin injection induced lung tissue fibrosis mouse model in vivo. Flow cytometry was used to detect apoptosis, cellular ROS and lipid oxidation. Mitochondria substructure was observed by transmission electron microscopy. Autophagolysosome and nuclear entry of P65 were monitored by immunofluorescence. Quantitative real-time PCR was performed to detect the transcription of genes associated with mtDNA-cGAS-STING pathway and subsequent inflammatory signaling activation. RESULTS TGF-β induced the expression of α-SMA and Collagen I, inhibited cell viability in lung epithelial MLE-12 cells that was reversed by QF-containing serum. TGF-β-mediated downregulation in autophagy, upregulation in lipid oxidation and ROS contents, and mitochondrial damage were rescued by QF-containing serum treatment, but CQ exposure, an autophagy inhibitor, prevented the protective role of QF. In addition to that, the decreased autophagolysosome in TGF-β-exposed MLE-12 cells was reversed by QF and restored to low level in the combination treatment of QF and CQ. Mechanistically, QF-containing serum treatment significantly inhibited mtDNA-cGAS-STING pathway and subsequent inflammatory signaling in TGF-β-challenged cells, which were abolished by CQ-mediated autophagy inhibition. In bleomycin-induced mouse model, QF ameliorated pulmonary fibrosis, reduced mortality, re-activated autophagy in lung tissues and restrained mtDNA-cGAS-STING inflammation pathway. However, the protective effects of QF in bleomycin-induced model mice were also abrogated by CQ. CONCLUSION QF alleviated bleomycin-induced pulmonary fibrosis by activating autophagy, inhibiting mtDNA-cGAS-STING pathway-mediated inflammation. This research recognizes the protection role of QF on bleomycin-induced mouse model, and offers evidence for the potentiality of QF in clinical application for pulmonary fibrosis treatment.
Collapse
Affiliation(s)
- Yunguang Wang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, PR China.
| | - Xinxin He
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China.
| | - Huijie Wang
- Department of Tuberculosis, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, PR China.
| | - Wei Hu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| | - Lifang Sun
- Department of Tuberculosis, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, PR China; Department of Tuberculosis, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
39
|
Gao F, Zhu F, Shuai B, Wu M, Wei C, Yuan Y, Gui Y, Tian Y, Fan H, Wu H. Quercetin ameliorates ulcerative colitis by restoring the balance of M2/M1 and repairing the intestinal barrier via downregulating cGAS‒STING pathway. Front Pharmacol 2024; 15:1351538. [PMID: 38774206 PMCID: PMC11106451 DOI: 10.3389/fphar.2024.1351538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
Macrophage polarization is closely associated with the pathogenesis of ulcerative colitis (UC). Quercetin, a flavonoid, has shown promise as a treatment for inflammatory diseases, but its specific mechanism of action remains unclear. This study investigates whether quercetin can regulate intestinal macrophage polarization and promote intestinal tissue repair via the cGAS-STING pathway for the treatment of UC. In vivo, mice with 3% DSS-induced UC were intraperitoneally injected with quercetin and RU.521 for 7 days, following which their general conditions and corresponding therapeutic effects were assessed. The impact of interferon-stimulated DNA (ISD) and quercetin on macrophage polarization and the cGAS-STING pathway was investigated using RAW264.7 cells and bone marrow-derived macrophages (BMDMs) in vitro. The results demonstrated that ISD induced M1 macrophage polarization and activated the cGAS-STING pathway in vitro, while quercetin reversed ISD's inflammatory effects. In vivo, quercetin suppressed the cGAS-STING pathway in the intestinal macrophages of DSS-induced UC mice, which reduced M1 macrophage polarization, increased M2 polarization, and facilitated intestinal barrier repair in UC. Taken together, these findings provide new insights into the mechanisms via which quercetin could be used to treat UC.
Collapse
Affiliation(s)
- Fei Gao
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Shuai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunzhu Wei
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuyi Yuan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gui
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yushi Tian
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Gao KM, Chiang K, Jiang Z, Korkmaz FT, Janardhan HP, Trivedi CM, Quinton LJ, Gingras S, Fitzgerald KA, Marshak-Rothstein A. Endothelial cell expression of a STING gain-of-function mutation initiates pulmonary lymphocytic infiltration. Cell Rep 2024; 43:114114. [PMID: 38625791 PMCID: PMC11108094 DOI: 10.1016/j.celrep.2024.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/13/2024] [Accepted: 03/29/2024] [Indexed: 04/18/2024] Open
Abstract
Patients afflicted with Stimulator of interferon gene (STING) gain-of-function mutations frequently present with debilitating interstitial lung disease (ILD) that is recapitulated in mice expressing the STINGV154M mutation (VM). Prior radiation chimera studies revealed an unexpected and critical role for non-hematopoietic cells in initiating ILD. To identify STING-expressing non-hematopoietic cell types required for the development of ILD, we use a conditional knockin (CKI) model and direct expression of the VM allele to hematopoietic cells, fibroblasts, epithelial cells, or endothelial cells. Only endothelial cell-targeted VM expression results in enhanced recruitment of immune cells to the lung associated with elevated chemokine expression and the formation of bronchus-associated lymphoid tissue, as seen in the parental VM strain. These findings reveal the importance of endothelial cells as instigators of STING-driven lung disease and suggest that therapeutic targeting of STING inhibitors to endothelial cells could potentially mitigate inflammation in the lungs of STING-associated vasculopathy with onset in infancy (SAVI) patients or patients afflicted with other ILD-related disorders.
Collapse
Affiliation(s)
- Kevin MingJie Gao
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Kristy Chiang
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Zhaozhao Jiang
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Filiz T Korkmaz
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Harish P Janardhan
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Chinmay M Trivedi
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Lee J Quinton
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| | - Ann Marshak-Rothstein
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
41
|
Lan J, Deng Z, Wang Q, Li D, Fan K, Chang J, Ma Y. Neuropeptide substance P attenuates colitis by suppressing inflammation and ferroptosis via the cGAS-STING signaling pathway. Int J Biol Sci 2024; 20:2507-2531. [PMID: 38725846 PMCID: PMC11077368 DOI: 10.7150/ijbs.94548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/13/2024] [Indexed: 05/12/2024] Open
Abstract
Neuropeptide substance P (SP) belongs to a family of bioactive peptides and regulates many human diseases. This study aims to investigate the role and underlying mechanisms of SP in colitis. Here, activated SP-positive neurons and increased SP expression were observed in dextran sodium sulfate (DSS)-induced colitis lesions in mice. Administration of exogenous SP efficiently ameliorated the clinical symptoms, impaired intestinal barrier function, and inflammatory response. Mechanistically, SP protected mitochondria from damage caused by DSS or TNF-α exposure, preventing mitochondrial DNA (mtDNA) leakage into the cytoplasm, thereby inhibiting the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. SP can also directly prevent STING phosphorylation through the neurokinin-1 receptor (NK1R), thereby inhibiting the activation of the TBK1-IRF3 signaling pathway. Further studies revealed that SP alleviated the DSS or TNF-α-induced ferroptosis process, which was associated with repressing the cGAS-STING signaling pathway. Notably, we identified that the NK1R inhibition reversed the effects of SP on inflammation and ferroptosis via the cGAS-STING pathway. Collectively, we unveil that SP attenuates inflammation and ferroptosis via suppressing the mtDNA-cGAS-STING or directly acting on the STING pathway, contributing to improving colitis in an NK1R-dependent manner. These findings provide a novel mechanism of SP regulating ulcerative colitis (UC) disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yunfei Ma
- State Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
42
|
Dai J, Jiang M, Wang X, Lang T, Wan L, Wang J. Human-derived bacterial strains mitigate colitis via modulating gut microbiota and repairing intestinal barrier function in mice. BMC Microbiol 2024; 24:96. [PMID: 38521930 PMCID: PMC10960398 DOI: 10.1186/s12866-024-03216-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/07/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Unbalanced gut microbiota is considered as a pivotal etiological factor in colitis. Nevertheless, the precise influence of the endogenous gut microbiota composition on the therapeutic efficacy of probiotics in colitis remains largely unexplored. RESULTS In this study, we isolated bacteria from fecal samples of a healthy donor and a patient with ulcerative colitis in remission. Subsequently, we identified three bacterial strains that exhibited a notable ability to ameliorate dextran sulfate sodium (DSS)-induced colitis, as evidenced by increased colon length, reduced disease activity index, and improved histological score. Further analysis revealed that each of Pediococcus acidilactici CGMCC NO.17,943, Enterococcus faecium CGMCC NO.17,944 and Escherichia coli CGMCC NO.17,945 significantly attenuated inflammatory responses and restored gut barrier dysfunction in mice. Mechanistically, bacterial 16S rRNA gene sequencing indicated that these three strains partially restored the overall structure of the gut microbiota disrupted by DSS. Specially, they promoted the growth of Faecalibaculum and Lactobacillus murinus, which were positively correlated with gut barrier function, while suppressing Odoribacter, Rikenella, Oscillibacter and Parasutterella, which were related to inflammation. Additionally, these strains modulated the composition of short chain fatty acids (SCFAs) in the cecal content, leading to an increase in acetate and a decrease in butyrate. Furthermore, the expression of metabolites related receptors, such as receptor G Protein-coupled receptor (GPR) 43, were also affected. Notably, the depletion of endogenous gut microbiota using broad-spectrum antibiotics completely abrogated these protective effects. CONCLUSIONS Our findings suggest that selected human-derived bacterial strains alleviate experimental colitis and intestinal barrier dysfunction through mediating resident gut microbiota and their metabolites in mice. This study provides valuable insights into the potential therapeutic application of probiotics in the treatment of colitis.
Collapse
Affiliation(s)
- Juanjuan Dai
- Department of Intensive Care Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Mingjie Jiang
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Xiaoxin Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Lang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leilei Wan
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jingjing Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
43
|
Lv H, Chen P, Wang Y, Xu L, Zhang K, Zhao J, Liu H. Chlorogenic acid protects against intestinal inflammation and injury by inactivating the mtDNA-cGAS-STING signaling pathway in broilers under necrotic enteritis challenge. Poult Sci 2024; 103:103274. [PMID: 38043405 PMCID: PMC10711517 DOI: 10.1016/j.psj.2023.103274] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
This study aimed to determine the effects of chlorogenic acid (CGA) on the growth performance, intestinal health, immune response, and mitochondrial DNA (mtDNA)-cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway in broilers under necrotic enteritis (NE) challenge. The 180 one-day-old male Cobb 500 broilers with similar body weight of 44.59 ± 1.39 g were randomly allocated into 3 groups. The groups were control diet (Control group), control diet + NE challenge (NE group), and control diet + 500 mg/kg CGA + NE challenge (NE + CGA group), with 6 replicates per treatment. All broilers except the Control group were given sporulated coccidian oocysts (d 14) and Clostridium perfringens (d 19-21) by oral gavage. Our findings showed that CGA improved the growth performance and intestinal morphology in broilers under NE challenge. CGA supplementation elevated the barrier function in broilers under NE challenge, which reflected in the decreased serum concentrations of D-lactate and diamine oxidase, and upregulated jejunal protein expression of occludin. CGA supplementation also improved the immune function, which reflected in the increased concentrations and gene expressions of anti-inflammatory factors, and decreased concentrations and gene expressions of proinflammatory factors. CGA supplementation further enhanced intestinal cell proliferation and differentiation, which manifested in the increased number of goblet cells and positive cells of proliferating cell nuclear antigen on d 28 and 42. Furthermore, CGA supplementation decreased the mtDNA (d 42) and mitochondrial reactive oxygen species levels (d 28 and 42), and increased the mitochondrial membrane potential (d 42) and mitochondrial complex I (d 28 and 42) or III (d 28) activity. Broilers challenged with NE had upregulated jejunal protein expressions of cGAS, phospho-TANK-binding kinase 1, and phospho-interferon regulatory factor 7 compared with the Control group, which were downregulated after CGA supplementation. In conclusion, dietary supplementation CGA could protect against intestinal inflammation and injury by reducing the leakage of mtDNA and inactivating the cGAS-STING signaling pathway in broilers under NE challenge.
Collapse
Affiliation(s)
- Huimin Lv
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Peng Chen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Lianbin Xu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
44
|
Gallucci S. DNA at the center of mammalian innate immune recognition of bacterial biofilms. Trends Immunol 2024; 45:103-112. [PMID: 38281884 PMCID: PMC11032746 DOI: 10.1016/j.it.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024]
Abstract
Historically, the study of innate immune detection of bacterial infections has focused on the recognition of pathogen-associated molecular patterns (PAMPs) from bacteria growing as single cells in planktonic phase. However, over the past two decades, studies have highlighted an adaptive advantage of bacteria: the formation of biofilms. These structures are complex fortresses that stand against a hostile environment, including antibiotics and immune responses. Extracellular DNA (eDNA) is a crucial component of the matrix of most known biofilms. In this opinion article, I propose that eDNA is a universal PAMP that the immune system uses to recognize biofilms. Outstanding questions concern the discrimination between biofilm-associated eDNA and DNA from planktonic bacteria, the innate receptors involved, and the immune response to biofilms.
Collapse
Affiliation(s)
- Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Division of Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
45
|
Hu ML, Liao QZ, Liu BT, Sun K, Pan CS, Wang XY, Yan L, Huo XM, Zheng XQ, Wang Y, Zhong LJ, Liu J, He L, Han JY. Xihuang pill ameliorates colitis in mice by improving mucosal barrier injury and inhibiting inflammatory cell filtration through network regulation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117098. [PMID: 37640256 DOI: 10.1016/j.jep.2023.117098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/31/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The prevalence of colitis is on the rise, and effective treatment options are currently lacking. Xihuang pill (XHP) is a traditional Chinese medicine formula mentioned in the "Volume 4 of Surgical Evidence and Treatment of the Whole Life" authored by the renowned doctor Hong-Xu Wang during the Qing Dynasty. It is now part of the "Volume 9 of Chinese medicine formula preparation in Drug Standard." XHP and its primary ingredients have been demonstrated anti-inflammatory properties against colitis. However, the specific effects and underlying mechanisms of XHP in treating colitis remain unknown. AIM OF THE STUDY This study aimed to investigate the potential impact of XHP on colitis and uncover the underlying mechanisms involved. MATERIALS AND METHODS An acute colitis model was developed in C57BL/6N mice, and the effects on weight loss, colon length, the permeability of the colonic mucosa barrier, Claudin-5 and Occludin expression, number of both infiltrating MPO-positive cells and CD68-positive cells, and the content of pro-inflammatory cytokines (IL-6, IL-22, IL-1β, and TNF-α) in the colon tissue were investigated. Low-, medium-, and high-dose XHP (0.45, 0.9, and 1.8 g/kg/day) (batch number: z21021222) were administered to the mice by gavage over the course of two weeks. Additionally, the protein expression levels in colon tissue from the control group, colitis group, and XHP low-dose administration group mice were analyzed by quantitative proteomics techniques. The comprehensive profiling and characterization of absorbed components in mice blood following oral administration of XHP were identified by HPLC/Q-TOF-MS techniques, and the absorbed components in blood were combined with proteomics to reveal the mechanism of enteritis inhibition by XHP. RESULTS Our findings indicated that XHP enhanced weight loss and colonic shortening of colitis mice. Additionally, XHP reduced the increase in permeability of the colonic mucosa barrier and decreased expression of Claudin-5 and Occludin, while significantly reducing the number of infiltrating MPO-positive cells and CD68-positive cells in the colon tissue. We found that XHP reduced the production of pro-inflammatory cytokines, including IL-6, IL-22, IL-1β, and TNF-α in colon tissue. Pharmacokinetic analysis suggested that XHP contained 24 blood-entering prototype ingredients, which improved colitis through the regulation of various proteins (e.g., Ctsb, Sting1, and Abat) linked to mucosal barrier injury and inflammation. CONCLUSION XHP improved intestinal mucosal barrier injury and reduced MPO-positive cells and CD68-positive cell infiltration through multiple targets and pathways, providing support for XHP as a promising therapy for colitis.
Collapse
Affiliation(s)
- Meng-Lei Hu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing, China
| | - Qian-Zan Liao
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing, China
| | - Bo-Tong Liu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing, China
| | - Xiao-Yi Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing, China
| | - Xin-Mei Huo
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing, China
| | - Xian-Qun Zheng
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing, China
| | - Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Li-Jun Zhong
- Medical and Health Analytical Center, Peking University Health Science Center, Beijing, China
| | - Jian Liu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing, China
| | - Lin He
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing, China.
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
46
|
Pandey A, Shen C, Feng S, Enosi Tuipulotu D, Ngo C, Liu C, Kurera M, Mathur A, Venkataraman S, Zhang J, Talaulikar D, Song R, Wong JJL, Teoh N, Kaakoush NO, Man SM. Ku70 senses cytosolic DNA and assembles a tumor-suppressive signalosome. SCIENCE ADVANCES 2024; 10:eadh3409. [PMID: 38277448 PMCID: PMC10816715 DOI: 10.1126/sciadv.adh3409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 12/26/2023] [Indexed: 01/28/2024]
Abstract
The innate immune response contributes to the development or attenuation of acute and chronic diseases, including cancer. Microbial DNA and mislocalized DNA from damaged host cells can activate different host responses that shape disease outcomes. Here, we show that mice and humans lacking a single allele of the DNA repair protein Ku70 had increased susceptibility to the development of intestinal cancer. Mechanistically, Ku70 translocates from the nucleus into the cytoplasm where it binds to cytosolic DNA and interacts with the GTPase Ras and the kinase Raf, forming a tripartite protein complex and docking at Rab5+Rab7+ early-late endosomes. This Ku70-Ras-Raf signalosome activates the MEK-ERK pathways, leading to impaired activation of cell cycle proteins Cdc25A and CDK1, reducing cell proliferation and tumorigenesis. We also identified the domains of Ku70, Ras, and Raf involved in activating the Ku70 signaling pathway. Therapeutics targeting components of the Ku70 signalosome could improve the treatment outcomes in cancer.
Collapse
Affiliation(s)
- Abhimanu Pandey
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Cheng Shen
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Shouya Feng
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Daniel Enosi Tuipulotu
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Chinh Ngo
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Cheng Liu
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
- School of Medicine, University of Queensland, Herston, Australia
- Mater Pathology, Mater Hospital, South Brisbane, Australia
| | - Melan Kurera
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Anukriti Mathur
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Shweta Venkataraman
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Jing Zhang
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Dipti Talaulikar
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Haematology Translational Research Unit, ACT Pathology, Canberra Health Services, Canberra, Australian Capital Territory, Australia
- Department of Human Genomics, ACT Pathology, Canberra, Australian Capital Territory, Australia
- School of Medicine and Psychology, College of Health and Medicine, The Australian National University, Canberra, Australia
| | - Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Justin J.-L. Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Narci Teoh
- Gastroenterology and Hepatology Unit, The Australian National University Medical School at The Canberra Hospital, The Australian National University, Canberra, Australia
| | - Nadeem O. Kaakoush
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
47
|
Pu D, Yao Y, Zhou C, Liu R, Wang Z, Liu Y, Wang D, Wang B, Wang Y, Liu Z, Zhang Z, Feng B. FMT rescues mice from DSS-induced colitis in a STING-dependent manner. Gut Microbes 2024; 16:2397879. [PMID: 39324491 PMCID: PMC11441074 DOI: 10.1080/19490976.2024.2397879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
Fecal microbiota transplantation (FMT) is currently a promising therapy for inflammatory bowel disease (IBD). However, clinical studies have shown that there is an obvious individual difference in the efficacy of FMT. Therefore, it is a pressing issue to identify the factors that influence the efficacy of FMT and find ways to screen the most suitable patients for this therapy. In this work, we targeted the stimulator of interferon genes (STING), a DNA-sensing protein that regulates host-defense. By comparing the differential efficacy of FMT in mice with different expression level of STING, it is revealed that FMT therapy provides treatment for DSS-induced colitis in a STING-dependent manner. Mechanistically, FMT exerts a regulatory effect on the differentiation of intestinal Th17 cells and macrophages, splenic Th1 and Th2 cells, as well as Th1 cells of the mesenteric lymph nodes via STING, down-regulating the colonic M1/M2 and splenic Th1/Th2 cell ratios, thereby improving the imbalanced immune homeostasis in the inflamed intestine. Meanwhile, based on the 16SrDNA sequencing of mice fecal samples, STING was found to facilitate the donor strain colonization in recipients' gut, mainly Lactobacillales, thereby reshaping the gut microbiota disturbed by colitis. Consequently, we proposed that STING, as a key target of FMT therapy, is potentially a biomarker for screening the most suitable individuals for FMT to optimize treatment regimens and enhance clinical benefit.
Collapse
Affiliation(s)
- Dan Pu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yao Yao
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chuan Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruixian Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihong Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Binbin Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Zhanju Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, the Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Zhe Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baisui Feng
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
48
|
Sasaki I, Kato T, Kanazawa N, Kaisho T. Autoinflammatory Diseases Due to Defects in Degradation or Transport of Intracellular Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:83-95. [PMID: 38467974 DOI: 10.1007/978-981-99-9781-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The number of human inborn errors of immunity has now gone beyond 430. The responsible gene variants themselves are apparently the cause for the disorders, but the underlying molecular or cellular mechanisms for the pathogenesis are often unclear. In order to clarify the pathogenesis, the mutant mice carrying the gene variants are apparently useful and important. Extensive analysis of those mice should contribute to the clarification of novel immunoregulatory mechanisms or development of novel therapeutic maneuvers critical not only for the rare monogenic diseases themselves but also for related common polygenic diseases. We have recently generated novel model mice in which complicated manifestations of human inborn errors of immunity affecting degradation or transport of intracellular proteins were recapitulated. Here, we review outline of these disorders, mainly based on the phenotype of the mutant mice we have generated.
Collapse
Affiliation(s)
- Izumi Sasaki
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takashi Kato
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Nobuo Kanazawa
- Department of Dermatology, Hyogo Medical University, Nishinomiya, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
49
|
Nandi D, Forster J, Ramesh A, Nguyen A, Bharadwaj H, Kulkarni A. Caspase-1 Responsive Nanoreporter for In Vivo Monitoring of Inflammasome Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55545-55558. [PMID: 37990965 PMCID: PMC11056827 DOI: 10.1021/acsami.3c15733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Inflammasomes are multimeric protein signaling complexes that are assembled in innate immune cells in response to a multitude of pathogen and damage-associated signals. They are essential for generating robust inflammatory responses to prevent pathogenic insults. However, inflammasome dysregulation can induce cascading immune responses, resulting in systemic toxicities and inflammatory disease. In this sense, there is a strong need to develop potent inflammasome inhibiting therapies as well as technologies to monitor their efficacy, yet current systems lack the ability to effectively image inflammasome activation and track therapy response early. To overcome these limitations, we report a novel nanoparticle system delivering both a caspase-1 cleavable inflammasome detecting probe and the NLRP3 inhibitor drug MCC-950, providing dual capabilities of monitoring and regulation of inflammasome activation in a biocompatible, tissue penetrating, and sustained release liposomal formulation. We observed this liposomal nanoreporter's ability to reduce and detect inflammasome activation both in vitro in immortalized bone marrow-derived macrophages and in vivo in a DSS-induced ulcerative colitis mouse model. Our results exhibited the nanoreporter's ability to penetrate inflammatory tissues and detect inflammasome activation early and in real-time for multiple days while alleviating inflammation in the groups coencapsulating imaging reporter and inflammasome inhibitor. Overall, the developed liposomal nanoreporter platform enables spatiotemporal delivery of imaging probe and inhibitor, captures early and sustained inflammasome detection, and induces inflammasome amelioration, thus establishing a novel tool for the real-time monitoring and treatment of inflammasome-mediated disease with high potential for clinical application.
Collapse
Affiliation(s)
- Dipika Nandi
- Department of Chemical Engineering and Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - James Forster
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Anujan Ramesh
- Department of Chemical Engineering and Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Anh Nguyen
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Hariharan Bharadwaj
- Department of Pathology, UMass Chan, Medical School-Baystate, Springfield, Massachusetts 01107, United States
| | - Ashish Kulkarni
- Department of Chemical Engineering, Department of Veterinary and Animal Sciences, Department of Biomedical Engineering, and Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
50
|
Wan T, Wang Y, He K, Zhu S. Microbial sensing in the intestine. Protein Cell 2023; 14:824-860. [PMID: 37191444 PMCID: PMC10636641 DOI: 10.1093/procel/pwad028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
The gut microbiota plays a key role in host health and disease, particularly through their interactions with the immune system. Intestinal homeostasis is dependent on the symbiotic relationships between the host and the diverse gut microbiota, which is influenced by the highly co-evolved immune-microbiota interactions. The first step of the interaction between the host and the gut microbiota is the sensing of the gut microbes by the host immune system. In this review, we describe the cells of the host immune system and the proteins that sense the components and metabolites of the gut microbes. We further highlight the essential roles of pattern recognition receptors (PRRs), the G protein-coupled receptors (GPCRs), aryl hydrocarbon receptor (AHR) and the nuclear receptors expressed in the intestinal epithelial cells (IECs) and the intestine-resident immune cells. We also discuss the mechanisms by which the disruption of microbial sensing because of genetic or environmental factors causes human diseases such as the inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Tingting Wan
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yalong Wang
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Kaixin He
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Shu Zhu
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
- Department of Digestive Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| |
Collapse
|