1
|
Huang H, Vaidehi Narayanan H, Xiang MY, Kesarwani V, Hoffmann A. Synergy and antagonism in the integration of BCR and CD40 signals that control B-cell population expansion. Mol Syst Biol 2025:10.1038/s44320-025-00124-2. [PMID: 40473841 DOI: 10.1038/s44320-025-00124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 05/16/2025] [Accepted: 05/19/2025] [Indexed: 06/11/2025] Open
Abstract
In response to infection or vaccination, lymph nodes must select antigen-reactive B-cells while eliminating auto-reactive B-cells. B-cells are instructed via B-cell receptor (BCR), which binds antigen, and CD40 receptor by antigen-recognizing T-cells. How BCR and CD40 signaling are integrated quantitatively to jointly determine B-cell fate decisions remains unclear. Here, we developed a differential-equations-based model of BCR and CD40 signaling networks activating NFκB. The model recapitulates NFκB dynamics upon BCR and CD40 stimulation, and when linked to established cell decision models of cell cycle and survival control, the resulting cell population dynamics. However, upon costimulation, NFκB dynamics were correctly predicted but the predicted potentiated population expansion was not observed experimentally. We found that this discrepancy was due to BCR-induced caspase activity that may trigger apoptosis in founder cells, unless timely NFκB-induced survival gene expression protects them. Iterative model predictions and sequential co-stimulation experiments revealed how complex non-monotonic integration of BCR and CD40 signals controls positive and negative selection of B-cells. Our work suggests a temporal proof-reading mechanism for regulating the stringency of B-cell selection during antibody responses.
Collapse
Affiliation(s)
- Helen Huang
- Signaling Systems Laboratory, Department of Microbiology, Immunologyand Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, USA
- Institute for Quantitative and Computational Biosciences (QCBio), University of California Los Angeles, Los Angeles, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, USA
| | - Haripriya Vaidehi Narayanan
- Signaling Systems Laboratory, Department of Microbiology, Immunologyand Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, USA
- Institute for Quantitative and Computational Biosciences (QCBio), University of California Los Angeles, Los Angeles, USA
| | - Mark Yankai Xiang
- Signaling Systems Laboratory, Department of Microbiology, Immunologyand Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, USA
- Institute for Quantitative and Computational Biosciences (QCBio), University of California Los Angeles, Los Angeles, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, USA
| | - Vaibhava Kesarwani
- Signaling Systems Laboratory, Department of Microbiology, Immunologyand Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, USA
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology, Immunologyand Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, USA.
- Institute for Quantitative and Computational Biosciences (QCBio), University of California Los Angeles, Los Angeles, USA.
| |
Collapse
|
2
|
Zhang H, Zhang N, Yang X, Wang C, Yang Q, Luo J, Ye T. BRAF mutation cancer, colorectal cancer, tumor associated lymph node structure and immune microenvironment study: MAPK protein kinase molecular action and SIRPG-CD47 protein signaling pathway. Int J Biol Macromol 2025; 307:142191. [PMID: 40101830 DOI: 10.1016/j.ijbiomac.2025.142191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 03/20/2025]
Abstract
BRAF mutation affects the biological characteristics and microenvironment of the tumor during the development of colorectal cancer. Tumor-associated lymph nodes are the key sites of immune response. This study aimed to systematically evaluate the impact of BRAF gene mutations on the remodeling of the CRC immune microenvironment, with a particular focus on their effects on the maturation and function of TLS·In this study, clinical samples of CRC patients were collected, and immune cell subsets were analyzed by single-cell RNA sequencing, and pseudo-temporal locus analysis and spatial transcriptome analysis were performed to explore intercellular communication and functional enrichment analysis. The distribution and maturity of TLS were evaluated by immunohistochemistry and multiple fluorescence staining techniques, and statistical analysis was performed.The results showed that BRAF mutation significantly affected the number and maturity of lymphatic structures infiltrated by tumors, and was negatively correlated with patient prognosis. BRAF mutations lead to alterations in T cell subsets, particularly the dual role of CD4+ CXCL13 cells in TLS maturation. B-cell subpopulation analysis revealed functional deficits in CRC patients with BRAF mutations, which further drove the remodeling of the tumor immune microenvironment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Oncology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Nenglin Zhang
- Department of Gastroenterology, First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China
| | - Xiaodi Yang
- Department of Oncology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Chen Wang
- Department of Oncology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Qinghui Yang
- Department of Oncology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Jing Luo
- Department of Oncology, Minhang Hospital, Fudan University, Shanghai 201199, China; Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai 201199, China.
| | - Tao Ye
- Department of Oncology, Minhang Hospital, Fudan University, Shanghai 201199, China; Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai 201199, China.
| |
Collapse
|
3
|
Foster WS, Marcial-Juárez E, Linterman MA. The cellular factors that impair the germinal center in advanced age. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:862-871. [PMID: 40073096 DOI: 10.1093/jimmun/vkae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/25/2024] [Indexed: 03/14/2025]
Abstract
Long-lasting immunological memory is a core feature of the adaptive immune system that allows an organism to have a potent recall response to foreign agents that have been previously encountered. Persistent humoral immunity is afforded by long-lived memory B cells and plasma cells, which can mature in germinal centers (GCs) in secondary lymphoid organs. The development of new GC-derived immunity diminishes with age, thereby impairing our immune system's response to both natural infections and vaccinations. This review will describe the current knowledge of how aging affects the cells and microenvironment of the GC. A greater understanding of how the GC changes with age, and how to circumvent these changes, will be critical for tailoring vaccines for older people. This area of research is critical given the twenty-first century will witness a doubling of the aging population and an increased frequency of pandemics.
Collapse
Affiliation(s)
- William S Foster
- Immunology Program, Babraham Institute, Cambridge, United Kingdom
| | | | | |
Collapse
|
4
|
Gong Y, Xu R, Gao G, Li S, Liu Y. The role of fatty acid metabolism on B cells and B cell-related autoimmune diseases. Inflamm Res 2025; 74:75. [PMID: 40299047 DOI: 10.1007/s00011-025-02042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
Fatty acid metabolism plays a critical role in regulating immune cell function, including B cells, which are central to humoral immunity and the pathogenesis of autoimmune diseases. Emerging evidence suggests that fatty acid metabolism influences B cell development, activation, differentiation, and antibody production, thereby impacting B cell-related autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). In this review, we discuss the mechanisms by which fatty acid metabolism modulates B cell biology, including energy provision, membrane composition, and signaling pathways. We highlight how alterations in fatty acid synthesis, oxidation, and uptake affect B cell function and contribute to autoimmune pathogenesis. Additionally, we explore the therapeutic potential of targeting fatty acid metabolism in B cells to treat autoimmune diseases. Understanding the interplay between fatty acid metabolism and B cell immunity may provide novel insights into the development of precision therapies for B cell-mediated autoimmune disorders.
Collapse
Affiliation(s)
- Yanmei Gong
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Ruiqi Xu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Guohui Gao
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Simiao Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Ying Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China.
- Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China, China.
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan, Shandong, China.
| |
Collapse
|
5
|
Sun B, Fernandes D, Soltys J, Kienzler AK, Paneva S, Harrison R, Ramanathan S, Harrison AL, Makuch M, Fichtner ML, Donat RF, Akdeniz D, Bayuangga H, Im MG, Williams R, Vasconcelos A, Thomsen S, Fower A, Sun R, Fox H, Mgbachi V, Davies A, Tseng M, Handel A, Kelly M, Zhao M, Bancroft J, Bashford-Rogers R, Pluvinage JV, Dandekar R, Alvarenga BD, Dustin LB, Rinaldi S, Owens R, Anthony D, Bennett DL, Waters P, Davis SJ, Wilson MR, O’Connor KC, Carvalho AL, Irani SR. Permissive central tolerance plus defective peripheral checkpoints license pathogenic memory B cells in CASPR2-antibody encephalitis. SCIENCE ADVANCES 2025; 11:eadr9986. [PMID: 40238887 PMCID: PMC12002137 DOI: 10.1126/sciadv.adr9986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 03/07/2025] [Indexed: 04/18/2025]
Abstract
Autoantibody-mediated diseases targeting one autoantigen provide a unique opportunity to comprehensively understand the development of disease-causing B cells and autoantibodies. Convention suggests that such autoreactivities are generated during germinal center reactions. Here, we explore earlier immune checkpoints, focusing on patients with contactin-associated protein-like 2 (CASPR2)-autoantibody encephalitis. In both disease and health, high (~0.5%) frequencies of unmutated CASPR2-reactive naïve B cells were identified. By contrast, CASPR2-reactive memory B cells were exclusive to patients, and their B cell receptors demonstrated affinity-enhancing somatic mutations with pathogenic effects in neuronal cultures and mice. The unmutated, precursor memory B cell receptors showed a distinctive balance between strong CASPR2 reactivity and very limited binding across the remaining human proteome. Our results identify permissive central tolerance, defective peripheral tolerance, and autoantigen-specific tolerance thresholds in humans as sequential steps that license CASPR2-directed pathology. By leveraging the basic immunobiology, we rationally direct tolerance-restoring approaches, with an experimental paradigm applicable across autoimmunity.
Collapse
Affiliation(s)
- Bo Sun
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OX3 9DU, Oxford, UK
| | - Dominique Fernandes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - John Soltys
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA
| | - Anne-Kathrin Kienzler
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Sofija Paneva
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Ruby Harrison
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Sudarshini Ramanathan
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
- Translational Neuroimmunology Group, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Neurology, Concord Hospital, Sydney, Australia
| | - Anna L. Harrison
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA
| | - Mateusz Makuch
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Miriam L. Fichtner
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Robert F. Donat
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Deniz Akdeniz
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Halwan Bayuangga
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Min Gyu Im
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Robyn Williams
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA
| | - Ana Vasconcelos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Selina Thomsen
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA
| | - Andrew Fower
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Ruyue Sun
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Hannah Fox
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Victor Mgbachi
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Alexander Davies
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Mandy Tseng
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Adam Handel
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OX3 9DU, Oxford, UK
| | - Mark Kelly
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Meng Zhao
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - James Bancroft
- Cellular Imaging Core Facility, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OX3 7BN, Oxford, UK
| | - Rachael Bashford-Rogers
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, 0X1 3QU, UK
- UK Centre for Human Genetics, University of Oxford, Oxford, UK
| | - John V. Pluvinage
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Ravi Dandekar
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Bonny D. Alvarenga
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Lynn B. Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Simon Rinaldi
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Ray Owens
- Rosalind Franklin Institute, Harwell Science Campus, Didcot, OX11 0QX, UK
| | - Daniel Anthony
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Simon J. Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Michael R. Wilson
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Kevin C. O’Connor
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Ana Luisa Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sarosh R. Irani
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OX3 9DU, Oxford, UK
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
6
|
Bailey R, Kahoekapu K, To A, Mayerlen LI, Kae H, Manninen G, Haun B, Berestecky J, Shikuma C, Lehrer AT, MacPherson I. Divalent HIV-1 gp120 Immunogen Exhibits Selective Avidity for Broadly Neutralizing Antibody VRC01 Precursors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.07.642120. [PMID: 40161655 PMCID: PMC11952332 DOI: 10.1101/2025.03.07.642120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
A major goal for the vaccine field is elicitation of broadly neutralizing antibodies (bnAbs) against pathogens that exhibit extensive antigenic diversity. In this study, we designed a rigid divalent immunogen for high avidity binding to the bnAb, VRC01, which targets the CD4 binding site (CD4bs) of HIV spike protein. This was accomplished by covalently linking two HIV-1 gp120 antigens to a complementary antibody and crosslinking the light chains. The divalent immunogen exhibits a higher affinity for VRC01-class antibodies compared to a non-Fab-Fab-crosslinked control, likely due to antigen pre-organization limiting the entropic penalty for divalent binding. Importantly, this immunogen exhibited divalent binding to VRC01 and monovalent binding to a non-CD4bs Ab, A32 - a characteristic we refer to as "selective avidity." This report supports future in vivo vaccination experiments to test the immune focusing properties of this immunogen, the results of which may suggest broad application of the selective avidity concept. Highlights We designed a rigid divalent immunogen containing two copies of gp120 antigenThe gp120s are positioned to bind divalently to both Fabs of a target B cell receptorThe immunogen binds monovalently to non-target B cell receptorsThis "selective avidity" effect may be used for immune focusing.
Collapse
|
7
|
Staniek J, Rizzi M. Signaling Activation and Modulation in Extrafollicular B Cell Responses. Immunol Rev 2025; 330:e70004. [PMID: 39917832 PMCID: PMC11803499 DOI: 10.1111/imr.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
The differentiation of naive follicular B cells into either the germinal center (GC) or extrafollicular (EF) pathway plays a critical role in shaping the type, affinity, and longevity of effector B cells. This choice also governs the selection and survival of autoreactive B cells, influencing their potential to enter the memory compartment. During the first 2-3 days following antigen encounter, initially activated B cells integrate activating signals from T cells, Toll-like receptors (TLRs), and cytokines, alongside inhibitory signals mediated by inhibitory receptors. This integration modulates the intensity of signaling, particularly of the PI3K/AKT/mTOR pathway, which plays a central role in guiding developmental decisions. These early signaling events determine whether B cells undergo GC maturation or differentiate rapidly into antibody-secreting cells (ASCs) via the EF pathway. Dysregulation of these signaling pathways-whether through excessive activation or defective regulatory mechanisms-can disrupt the balance between GC and EF fates, predisposing individuals to autoimmunity. Accordingly, aberrant PI3K/AKT/mTOR signaling has been implicated in the defective selection of autoreactive B cells, increasing the risk of autoimmune disease. This review focuses on the signaling events in newly activated B cells, with an emphasis on the induction and regulation of the PI3K/AKT/mTOR pathway. It also highlights gaps in our understanding of how alternative B cell fates are regulated. Both the physiological context and the implications of inborn errors of immunity (IEIs) and complex autoimmune conditions will be discussed in this regard.
Collapse
Affiliation(s)
- Julian Staniek
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Faculty of Medicine, Center for Chronic Immunodeficiency, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Faculty of Medicine, Center for Chronic Immunodeficiency, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- CIBSS—Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| |
Collapse
|
8
|
Lin SY, Schmidt EN, Takahashi-Yamashiro K, Macauley MS. Roles for Siglec-glycan interactions in regulating immune cells. Semin Immunol 2025; 77:101925. [PMID: 39706106 DOI: 10.1016/j.smim.2024.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Cell surface complex carbohydrates, known as glycans, are positioned to be the first point of contact between two cells. Indeed, interactions between glycans with glycan-binding can modulate cell-cell interactions. This concept is particularly relevant for immune cells, which use an array of glycan-binding proteins to help in the process of differentiating 'self' from 'non-self'. This is exemplified by the sialic acid-binding immunoglobulin-type lectins (Siglecs), which recognize sialic acid. Given that sialic acid is relatively unique to vertebrates, immune cells leverage Siglecs to recognize sialic acid as a marker of 'self'. Siglecs serve many biological roles, with most of these functions regulated through interactions with their sialoglycan ligands. In this review, we provide a comprehensive update on the ligands of Siglecs and how Siglec-sialoglycan interactions help regulate immune cells in the adaptive and innate immune system.
Collapse
Affiliation(s)
- Sung-Yao Lin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Edward N Schmidt
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Matthew S Macauley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada; Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
9
|
Chandrakar P, Nelson CS, Podestà MA, Cavazzoni CB, Gempler M, Lee JM, Richardson S, Zhang H, Samarpita S, Ciofani M, Chatila T, Kuchroo VK, Sage PT. Progressively differentiated T FH13 cells are stabilized by JunB to mediate allergen germinal center responses. Nat Immunol 2025; 26:473-483. [PMID: 39891019 PMCID: PMC12169414 DOI: 10.1038/s41590-025-02077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Allergic diseases are common and affect a large proportion of the population. Interleukin-13 (IL-13)-expressing follicular helper T (TFH13) cells are a newly identified population of TFH cells that have been associated with high-affinity IgE responses. However, the origins, developmental signals, transcriptional programming and precise functions of TFH13 cells are unknown. Here, we examined the developmental signals for TFH13 cells and found a direct and progressive differentiation pathway marked by the production of IL-21. These two pathways differed in kinetics and extrinsic requirements. However, both pathways converged, forming transcriptionally similar TFH13 cells that express the transcription factor JunB as a critical stabilizing factor. Using an intersectional genetics-based TFH13-diphtheria toxin receptor model to perturb these cells, we found that TFH13 cells were essential to drive broad germinal center responses and allergen-specific IgG and IgE. Moreover, we found that IL-21 is a broad positive regulator of allergen germinal center B cells and synergizes with IL-13 produced by TFH13 cells to amplify allergic responses. Thus, TFH13 cells orchestrate multiple features of allergic inflammation.
Collapse
Affiliation(s)
- Pragya Chandrakar
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cody S Nelson
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Manuel A Podestà
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Unit of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cecilia B Cavazzoni
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maya Gempler
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeong-Mi Lee
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sierra Richardson
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hengcheng Zhang
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Snigdha Samarpita
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Ciofani
- Department of Integrative Immunology, Duke University Medical Center, Durham, NC, USA
| | - Talal Chatila
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammatory Diseases, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Peter T Sage
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Kim Y, Manara F, Grassmann S, Belcheva KT, Reyes K, Kim H, Downs-Canner S, Yewdell WT, Sun JC, Chaudhuri J. IL-21 shapes the B cell response in a context-dependent manner. Cell Rep 2025; 44:115190. [PMID: 39792552 PMCID: PMC11973891 DOI: 10.1016/j.celrep.2024.115190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/28/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
The T-cell-derived cytokine IL-21 is crucial for germinal center (GC) responses, but its precise role in B cell function has remained elusive. Using IL-21 receptor (Il21r) conditional knockout mice and ex vivo culture systems, we demonstrate that IL-21 has dual effects on B cells. While IL-21 induced apoptosis in a STAT3-dependent manner in naive B cells, it promoted the robust proliferation of pre-activated B cells, particularly IgG1+ B cells. In vivo, B-cell-specific Il21r deletion impaired IgG1 responses post-immunization and disrupted progression from pre-GC to GC states. Although Il21r deficiency did not affect the proportion of IgG1+ cells among GC B cells, it greatly diminished the proportion of IgG1+ cells among the plasmablast/plasma cell population. Collectively, our findings suggest that IL-21 serves as a critical regulator of B cell fates, influencing B cell apoptosis and proliferation in a context-dependent manner.
Collapse
Affiliation(s)
- Youngjun Kim
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| | - Francesca Manara
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Simon Grassmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kalina T Belcheva
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Kanelly Reyes
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hyunu Kim
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | | | - William T Yewdell
- Department of Immunology Discovery, Genentech Inc, South San Francisco, CA 94080, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA.
| |
Collapse
|
11
|
Sun B, Fernandes D, Kienzler AK, Paneva S, Harrison R, Ramanathan S, Harrison AL, Makuch M, Fichtner ML, Donat RF, Akdeniz D, Bayuangga H, Im MG, Williams R, Vasconcelos A, Thomsen S, Fower A, Sun R, Fox H, Mgbachi V, Davies A, Tseng M, Handel A, Kelly M, Zhao M, Bancroft J, Bashford-Rogers R, Pluvinage JV, Dandekar R, Alvarenga BD, Dustin L, Rinaldi S, Owens R, Anthony D, Bennett DL, Waters P, Davis SJ, Wilson MR, O'Connor KC, Soltys J, Carvalho AL, Irani SR. Permissive central tolerance plus defective peripheral checkpoints licence pathogenic memory B cells in CASPR2-antibody encephalitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.631703. [PMID: 39868113 PMCID: PMC11760777 DOI: 10.1101/2025.01.14.631703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Autoimmunity affects 10% of the population. Within this umbrella, autoantibody-mediated diseases targeting one autoantigen provide a unique opportunity to comprehensively understand the developmental pathway of disease-causing B cells and autoantibodies. While such autoreactivities are believed to be generated during germinal centre reactions, the roles of earlier immune checkpoints in autoantigen-specific B cell tolerance are poorly understood. We address this concept in patients with CASPR2-autoantibody encephalitis and healthy controls. In both groups, comparable and high (~0.5%) frequencies of unmutated CASPR2-reactive naïve B cells were identified. By contrast, CASPR2-reactive memory B cells were exclusive to patients, and their B cell receptors demonstrated affinity-enhancing somatic mutations with heterogenous binding kinetics. These effector molecules possessed epitope-dependent pathogenic effects in vitro neuronal cultures and in vivo. The unmutated common ancestors of these memory B cells showed a distinctive balance between strong CASPR2 reactivity and very limited binding across the remaining human proteome. Our results are the first to propose mechanisms underlying autoantigen-specific tolerance in humans. We identify permissive central tolerance, defective peripheral tolerance and heterogenous autoantibody binding properties as sequential pathogenic steps which licence CASPR2-directed pathology. By leveraging the basic immunobiology, we rationally direct tolerance-restoring approaches in CASPR2-antibody diseases. This paradigm is applicable across autoimmune conditions.
Collapse
Affiliation(s)
- Bo Sun
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OX3 9DU, Oxford, United Kingdom
| | - Dominique Fernandes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IIIUC- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Anne-Kathrin Kienzler
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Sofija Paneva
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Ruby Harrison
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Sudarshini Ramanathan
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
- Translational Neuroimmunology Group, Sydney Medical School, Faculty of Medicine and Health, University of Sydney; Department of Neurology, Concord Hospital, Sydney, Australia
| | - Anna L Harrison
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Mateusz Makuch
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Miriam L Fichtner
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, 06511, USA
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Robert F Donat
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Deniz Akdeniz
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Halwan Bayuangga
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Min Gyu Im
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Robyn Williams
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Ana Vasconcelos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IIIUC- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Selina Thomsen
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Andrew Fower
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Ruyue Sun
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Hannah Fox
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Victor Mgbachi
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Alexander Davies
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Mandy Tseng
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Adam Handel
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OX3 9DU, Oxford, United Kingdom
| | - Mark Kelly
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Meng Zhao
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - James Bancroft
- Cellular Imaging Core Facility, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OX3 7BN, Oxford, United Kingdom
| | - Rachael Bashford-Rogers
- Department of Biochemistry, Wellcome Trust Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, UK
| | - John V Pluvinage
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Ravi Dandekar
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Bonny D Alvarenga
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Lynn Dustin
- Kennedy Institute of Rheumatology, Roosevelt Drive, Headington, Oxford, OX3 7FY, United Kingdom
| | - Simon Rinaldi
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Ray Owens
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Daniel Anthony
- Department of Pharmacology, University of Oxford, United Kingdom
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Simon J Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Michael R Wilson
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Kevin C O'Connor
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, 06511, USA
| | - John Soltys
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Ana Luisa Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sarosh R Irani
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OX3 9DU, Oxford, United Kingdom
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
12
|
Helble M, Chu J, Flowers K, Trachtman AR, Huynh A, Kim A, Shupin N, Hojecki CE, Gary EN, Solieva S, Parzych EM, Weiner DB, Kulp DW, Patel A. Structure and sequence engineering approaches to improve in vivo expression of nucleic acid-delivered antibodies. Mol Ther 2025; 33:152-167. [PMID: 39563034 PMCID: PMC11764276 DOI: 10.1016/j.ymthe.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/01/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Monoclonal antibodies are an important class of biologics with over 160 Food and Drug Administration/European Union-approved drugs. A significant bottleneck to global accessibility of recombinant monoclonal antibodies stems from complexities related to their production, storage, and distribution. Recently, gene-encoded approaches such as mRNA, DNA, or viral delivery have gained popularity, but ensuring biologically relevant levels of antibody expression in the host remains a critical issue. Using a synthetic DNA platform, we investigated the role of antibody structure and sequence toward in vivo expression. SARS-CoV-2 antibody 2196 was recently engineered as a DNA-encoded monoclonal antibody (DMAb-2196). Utilizing an immunoglobulin heavy and light chain "chain-swap" methodology, we interrogated features of DMAb-2196 that can modulate in vivo expression through rational design and structural modeling. Comparing these results to natural variation of antibody sequences resulted in development of an antibody frequency score that aids in the prediction of expression-improving mutations by leveraging antibody repertoire datasets. We demonstrate that a single amino acid mutation identified through this score increases in vivo expression up to 2-fold and that combinations of mutations can also enhance expression. This analysis has led to a generalized pipeline that can unlock the potential for in vivo delivery of therapeutic antibodies across many indications.
Collapse
Affiliation(s)
- Michaela Helble
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA; Department of Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacqueline Chu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Kaitlyn Flowers
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Abigail R Trachtman
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Alana Huynh
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Amber Kim
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Nicholas Shupin
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Casey E Hojecki
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Ebony N Gary
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Shahlo Solieva
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA; Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth M Parzych
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA; Department of Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel W Kulp
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA; Department of Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Ami Patel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Chen W, Zhang L, Gao M, Zhang N, Wang R, Liu Y, Niu Y, Jia L. Role of tertiary lymphoid structures and B cells in clinical immunotherapy of gastric cancer. Front Immunol 2025; 15:1519034. [PMID: 39840050 PMCID: PMC11747648 DOI: 10.3389/fimmu.2024.1519034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Gastric cancer is a common malignant tumor of the digestive tract, and its treatment remains a significant challenge. In recent years, the role of various immune cells in the tumor microenvironment in cancer progression and treatment has gained increasing attention. Immunotherapy, primarily based on immune checkpoint inhibitors, has notably improved the prognosis of patients with gastric cancer; however, challenges regarding therapeutic efficacy persist. Histological features within the tumor microenvironment, such as tertiary lymphoid structures (TLSs), tumor-infiltrating lymphocytes, and the proportion of intratumoral stroma, are emerging as potentially effective prognostic factors. In gastric cancer, TLSs may serve as local immune hubs, enhancing the ability of immune cells to interact with and recognize tumor antigens, which is closely linked to the effectiveness of immunotherapy and improved survival rates in patients. However, the specific cell type driving TLS formation in tumors has not yet been elucidated. Mature TLSs are B-cell regions containing germinal centers. During germinal center formation, B cells undergo transformations to become mature cells with immune function, exerting anti-tumor effects. Therefore, targeting B cells within TLSs could provide new avenues for gastric cancer immunotherapy. This review, combined with current research on TLSs and B cells in gastric cancer, elaborates on the relationship between TLSs and B cells in the prognosis and immunotherapy of patients with gastric cancer, aiming to provide effective guidance for precise immunotherapy.
Collapse
Affiliation(s)
- Weiyi Chen
- Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Lingli Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Man Gao
- Bayannur Clinical Medical College, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ning Zhang
- Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia, China
| | - Rumeng Wang
- Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia, China
| | - Yang Liu
- Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia, China
| | - Yan Niu
- Medical Experiment Center, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Lizhou Jia
- Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia, China
- Medical Experiment Center, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
14
|
Wiarda JE, Shircliff AL, Becker SR, Stasko JB, Sivasankaran SK, Ackermann MR, Loving CL. Conserved B cell signaling, activation, and differentiation in porcine jejunal and ileal Peyer's patches despite distinct immune landscapes. Mucosal Immunol 2024; 17:1222-1241. [PMID: 39147277 DOI: 10.1016/j.mucimm.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Peyer's patches (PPs) are B cell-rich sites of intestinal immune induction, yet PP-associated B cell signaling, activation, and differentiation are poorly defined. Single-cell and spatial transcriptomics were completed to study B cells from porcine jejunum and ileum containing PPs. Intestinal locations had distinct immune landscapes, including more follicular B cells in ileum and increased MHC-II-encoding gene expression in jejunal B cells. Despite distinct landscapes, conserved B cell dynamics were detected across intestinal locations, including B cell signaling to CD4+ macrophages that are putative phagocytic, cytotoxic, effector cells and deduced routes of B cell activation/differentiation, including resting B cells migrating into follicles to replicate/divide or differentiate into antibody-secreting cells residing in intestinal crypts. A six-biomarker panel recapitulated transcriptomics findings of B cell phenotypes, frequencies, and spatial locations via ex vivo and in situ staining. Findings convey conserved B cell dynamics across intestinal locations containing PPs, despite location-specific immune environments. Results establish a benchmark of B cell dynamics for understanding intestinal immune induction important to promoting gut/overall health.
Collapse
Affiliation(s)
- Jayne E Wiarda
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA; Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, USA
| | - Adrienne L Shircliff
- Microscopy Services Laboratory, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Sage R Becker
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA; Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, USA; Immunobiology Graduate Program, Iowa State University, Ames, IA, USA
| | - Judith B Stasko
- Microscopy Services Laboratory, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Sathesh K Sivasankaran
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA; Genome Informatics Facility, Iowa State University, Ames, IA, USA
| | - Mark R Ackermann
- Office of the Director, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Crystal L Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA.
| |
Collapse
|
15
|
Sanchez GM, Hirsch ES, VanValkenburg A, Mayer DP, Gbedande K, Francis RL, Song W, Antao OQ, Brimmer KE, Lemenze A, Stephens R, Johnson WE, Weinstein JS. Aberrant zonal recycling of germinal center B cells impairs appropriate selection in lupus. Cell Rep 2024; 43:114978. [PMID: 39527476 PMCID: PMC11682828 DOI: 10.1016/j.celrep.2024.114978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/28/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Autoimmune diseases such as lupus are characterized by polyclonal B cell activation, leading to the production of autoantibodies. The mechanism leading to B cell dysregulation is unclear; however, the defect may lie in selection within germinal centers (GCs). GC B cells cycle between proliferation and mutation in the dark zone and selection in the light zone (LZ). Temporal assessment of GCs from mice with either persistent infection or lupus showed an accumulation of LZ B cells. Yet, only in lupus, GC B cells exhibited reduced proliferation and progressive loss of MYC and FOXO1, which regulate zonal recycling and differentiation. As lupus progressed, decreased mutational frequency and repertoire diversity were associated with reduced responsiveness to CD40 signaling, despite accumulation of plasma cells. Collectively, these findings suggest that lupus disease progression coincides with an intrinsic defect in LZ B cell signaling, altering the zonal recycling, selection, and differentiation of autoreactive B cells.
Collapse
Affiliation(s)
- Gina M Sanchez
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Eden S Hirsch
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Arthur VanValkenburg
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Daniel P Mayer
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Komi Gbedande
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Rebecca L Francis
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Wenzhi Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA
| | - Olivia Q Antao
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Kyleigh E Brimmer
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Alexander Lemenze
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Robin Stephens
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - W Evan Johnson
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jason S Weinstein
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
16
|
Dieudonné Y, Lorenzetti R, Rottura J, Janowska I, Frenger Q, Jacquel L, Vollmer O, Carbone F, Chengsong Z, Luka M, Depauw S, Wadier N, Giorgiutti S, Nespola B, Herb A, Voll RE, Guffroy A, Poindron V, Ménager M, Martin T, Soulas-Sprauel P, Rizzi M, Korganow AS, Gies V. Defective germinal center selection results in persistence of self-reactive B cells from the primary to the secondary repertoire in Primary Antiphospholipid Syndrome. Nat Commun 2024; 15:9921. [PMID: 39548093 PMCID: PMC11568317 DOI: 10.1038/s41467-024-54228-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Primary antiphospholipid syndrome (PAPS) is a life-threatening clotting disorder mediated by pathogenic autoantibodies. Here we dissect the origin of self-reactive B cells in human PAPS using peripheral blood and bone marrow of patients with triple-positive PAPS via combined single-cell RNA sequencing, B cell receptors (BCR) repertoire profiling, CITEseq analysis and single cell immortalization. We find that antiphospholipid (aPL)-specific B cells are present in the naive compartment, polyreactive, and derived from the natural repertoire. Furthermore, B cells with aPL specificities are not eliminated in patients with PAPS, persist until the memory and long-lived plasma cell stages, likely after defective germinal center selection, while becoming less polyreactive. Lastly, compared with the non-PAPS cells, PAPS B cells exhibit distinct IFN and APRIL signature as well as dysregulated mTORC1 and MYC pathways. Our findings may thus elucidate the survival mechanisms of these autoreactive B cells and suggest potential therapeutic targets for the treatment of PAPS.
Collapse
Affiliation(s)
- Yannick Dieudonné
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France.
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France.
| | - Raquel Lorenzetti
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Rheumatology and Clinical Immunology, Medical University of Graz, Graz, Austria
| | - Julien Rottura
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Life Sciences, Strasbourg, France
| | - Iga Janowska
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Quentin Frenger
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Life Sciences, Strasbourg, France
| | - Léa Jacquel
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Olivier Vollmer
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Francesco Carbone
- Université Paris Cité, Institut Imagine, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, Paris, France
| | - Zhu Chengsong
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marine Luka
- Université Paris Cité, Institut Imagine, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, Paris, France
| | - Sabine Depauw
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Nadège Wadier
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Stéphane Giorgiutti
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Benoît Nespola
- Laboratoire d'Immunologie, Plateau technique de Biologie, Strasbourg University Hospital, Strasbourg, France
| | - Agathe Herb
- Hematology laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Reinhard Edmund Voll
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Aurélien Guffroy
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Vincent Poindron
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
| | - Mickaël Ménager
- Université Paris Cité, Institut Imagine, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, Paris, France
| | - Thierry Martin
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Pauline Soulas-Sprauel
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Pharmacy, Illkirch, France
| | - Marta Rizzi
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- CIBSS - Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Anne-Sophie Korganow
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Vincent Gies
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France.
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Université de Strasbourg, Faculty of Pharmacy, Illkirch, France.
| |
Collapse
|
17
|
Corcoran SR, Phelan JD, Choi J, Shevchenko G, Fenner RE, Yu X, Scheich S, Hsiao T, Morris VM, Papachristou EK, Kishore K, D'Santos CS, Ji Y, Pittaluga S, Wright GW, Urlaub H, Pan KT, Oellerich T, Muppidi J, Hodson DJ, Staudt LM. Molecular Determinants of Sensitivity to Polatuzumab Vedotin in Diffuse Large B-Cell Lymphoma. Cancer Discov 2024; 14:1653-1674. [PMID: 38683128 DOI: 10.1158/2159-8290.cd-23-0802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Polatuzumab vedotin (Pola-V) is an antibody-drug conjugate directed to the CD79B subunit of the B-cell receptor (BCR). When combined with conventional immunochemotherapy, Pola-V improves outcomes in diffuse large B-cell lymphoma (DLBCL). To identify determinants of Pola-V sensitivity, we used CRISPR-Cas9 screening for genes that modulated Pola-V toxicity for lymphomas or the surface expression of its target, CD79B. Our results reveal the striking impact of CD79B glycosylation on Pola-V epitope availability on the lymphoma cell surface and on Pola-V toxicity. Genetic, pharmacological, and enzymatic approaches that remove sialic acid from N-linked glycans enhanced lymphoma killing by Pola-V. Pola-V toxicity was also modulated by KLHL6, an E3 ubiquitin ligase that is recurrently inactivated in germinal center derived lymphomas. We reveal how KLHL6 targets CD79B for degradation in normal and malignant germinal center B cells, thereby determining expression of the surface BCR complex. Our findings suggest precision medicine strategies to optimize Pola-V as a lymphoma therapeutic. Significance: These findings unravel the molecular basis of response heterogeneity to Pola-V and identify approaches that might be deployed therapeutically to enhance the efficacy of CD79B-specific tumor killing. In addition, they reveal a novel post-translational mechanism used by normal and malignant germinal center B cells to regulate expression of the BCR. See related commentary by Leveille, p. 1577 See related article by Meriranta et al.
Collapse
Affiliation(s)
- Sean R Corcoran
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Galina Shevchenko
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Rachel E Fenner
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Tony Hsiao
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Vivian M Morris
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | | | - Kamal Kishore
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Clive S D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Yanlong Ji
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland
| | - George W Wright
- Biometrics Research Program, National Cancer Institute, NIH, Bethesda, Maryland
| | - Henning Urlaub
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kuan-Ting Pan
- University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Thomas Oellerich
- University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Jagan Muppidi
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Daniel J Hodson
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
18
|
Inoue T, Baba Y, Kurosaki T. BCR signaling in germinal center B cell selection. Trends Immunol 2024; 45:693-704. [PMID: 39168721 DOI: 10.1016/j.it.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
When mature B cells are activated by antigens, the selection of these activated B cells takes place particularly during T cell-dependent immune responses in which an improved antibody repertoire is generated through somatic hypermutation in germinal centers (GCs). In this process the importance of antigen presentation by GC B cells, and subsequent T follicular helper (Tfh) cell help in positive selection of GC B cells, has been well appreciated. By contrast, the role of B cell receptor (BCR) signaling per se remains unclear. Strong experimental support for the involvement of BCR signaling in GC B cell selection has now been provided. Interestingly, these studies suggest that several checkpoints operating through the BCR ensure affinity maturation.
Collapse
Affiliation(s)
- Takeshi Inoue
- Department of Molecular Systems Immunology, University of Tokyo Pandemic Preparedness, Infection, and Advanced Research Center (UTOPIA), Tokyo, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, World Premier International (WPI) Immunology Frontier Research Center, Osaka University, Osaka, Japan; Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.
| |
Collapse
|
19
|
Kaur C, Thakur A, Liou KC, Rao NV, Nepali K. Spleen tyrosine kinase (SYK): an emerging target for the assemblage of small molecule antitumor agents. Expert Opin Investig Drugs 2024; 33:897-914. [PMID: 39096234 DOI: 10.1080/13543784.2024.2388559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/13/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION Spleen tyrosine kinase (SYK), a nonreceptor tyrosine kinase, has emerged as a vital component in the complex symphony of cancer cell survival and division. SYK activation (constitutive) is documented in various B-cell malignancies, and its inhibition induces programmed cell death. In some instances, it also acts as a tumor suppressor. AREAS COVERED Involvement of the SYK in the cancer growth, specifically in the progression of chronic lymphocytic leukemia (CLL), diffuse large B cell lymphomas (DLBCLs), acute myeloid leukemia (AML), and multiple myeloma (MM) is discussed. Therapeutic strategies to target SYK in cancer, including investigational SYK inhibitors, combinations of SYK inhibitors with other drugs targeting therapeutically relevant targets, and recent advancements in constructing new structural assemblages as SYK inhibitors, are also covered. EXPERT OPINION The SYK inhibitor field is currently marred by the poor translation rate of SYK inhibitors from preclinical to clinical studies. Also, dose-limited toxicities associated with the applications of SYK inhibitors have been evidenced. Thus, the development of new SYK inhibitory structural templates is in the need of the hour. To accomplish the aforementioned, interdisciplinary teams should incessantly invest efforts to expand the size of the armory of SYK inhibitors.
Collapse
Affiliation(s)
- Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ke-Chi Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Neralla Vijayakameswara Rao
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
20
|
Hollern D. Memory B cell fitness and anergy has significant links to cancer lethality. Cell 2024; 187:4551-4553. [PMID: 39178833 DOI: 10.1016/j.cell.2024.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/26/2024]
Abstract
Two recent studies reveal that the extent of fitness or anergy in tumor-associated memory B cells is vital to anti-tumor immune response, cancer patient survival, and response to immune therapy. The impact of these seminal findings demonstrates the untapped potential for using B cells to combat the lethality of cancer.
Collapse
Affiliation(s)
- Daniel Hollern
- Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Cancer Center, Salk Institute for Biological Studies, La Jolla, CA, USA; School of Biological Sciences and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Deobagkar-Lele M, Crawford G, Crockford TL, Back J, Hodgson R, Bhandari A, Bull KR, Cornall RJ. B cells require DOCK8 to elicit and integrate T cell help when antigen is limiting. Sci Immunol 2024; 9:eadd4874. [PMID: 39121196 PMCID: PMC7616390 DOI: 10.1126/sciimmunol.add4874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/01/2023] [Accepted: 07/12/2024] [Indexed: 08/11/2024]
Abstract
Dedicator of cytokinesis 8 (DOCK8) immunodeficiency syndrome is characterized by a failure of the germinal center response, a process involving the proliferation and positive selection of antigen-specific B cells. Here, we describe how DOCK8-deficient B cells are blocked at a light-zone checkpoint in the germinal centers of immunized mice, where they are unable to respond to T cell-dependent survival and selection signals and consequently differentiate into plasma cells or memory B cells. Although DOCK8-deficient B cells can acquire and present antigen to initiate activation of cognate T cells, integrin up-regulation, B cell-T cell conjugate formation, and costimulation are insufficient for sustained B cell and T cell activation when antigen availability is limited. Our findings provide an explanation for the failure of the humoral response in DOCK8 immunodeficiency syndrome and insight into how the level of available antigen modulates B cell-T cell cross-talk to fine-tune humoral immune responses and immunological memory.
Collapse
Affiliation(s)
- Mukta Deobagkar-Lele
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Greg Crawford
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Tanya L. Crockford
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Jennifer Back
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Rose Hodgson
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Aneesha Bhandari
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Katherine R Bull
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
- CAMS-Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford
- Oxford Kidney Unit, Oxford University Hospitals Trust, Oxford
| | - Richard J. Cornall
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
- CAMS-Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford
| |
Collapse
|
22
|
Huang H, Narayanan HV, Hoffmann A. Synergy and antagonism in the integration of BCR and CD40 signals that control B-cell proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605521. [PMID: 39131345 PMCID: PMC11312454 DOI: 10.1101/2024.07.28.605521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
In response to infection or vaccination, a successful antibody response must enrich high-affinity antigen-reactive B-cells through positive selection, but eliminate auto-reactive B-cells through negative selection. B-cells receive signals from the B-cell receptor (BCR) which binds the antigen, and the CD40 receptor which is stimulated by neighboring T-cells that also recognize the antigen. How BCR and CD40 signaling are integrated quantitatively to jointly determine B-cell fate decision and proliferation remains unclear. To investigate this, we developed a differential-equations-based model of the BCR and CD40 signaling networks activating NFκB. Our model accurately recapitulates the NFκB dynamics of B-cells stimulated through their BCR and CD40 receptors, correctly predicting that costimulation induces more NFκB activity. However, when linking it to established cell fate decision models of cell survival and cell cycle control, it predicted potentiated population expansion that was not observed experimentally. We found that this discrepancy was due to a time-dependent functional antagonism exacerbated by BCR-induced caspase activity that can trigger apoptosis in founder cells, unless NFκB-induced survival gene expression protects B-cells in time. Guided by model predictions, sequential co-stimulation experiments revealed how the temporal dynamics of BCR and CD40 signaling control the fate decision between negative and positive selection of B-cell clonal expansion. Our quantitative findings highlight a complex non-monotonic integration of BCR and CD40 signals that is controlled by a balance between NFκB and cell-death pathways, and suggest a mechanism for regulating the stringency of B-cell selection during an antibody response.
Collapse
Affiliation(s)
- Helen Huang
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics (MIMG)
- Institute for Quantitative and Computational Biosciences (QCBio)
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, USA
| | - Haripriya Vaidehi Narayanan
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics (MIMG)
- Institute for Quantitative and Computational Biosciences (QCBio)
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics (MIMG)
- Institute for Quantitative and Computational Biosciences (QCBio)
| |
Collapse
|
23
|
Kim Y, Manara F, Grassmann S, Belcheva KT, Reyes K, Kim H, Downs-Canner S, Yewdell WT, Sun JC, Chaudhuri J. IL-21 Shapes the B Cell Response in a Context-Dependent Manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.600808. [PMID: 39026745 PMCID: PMC11257567 DOI: 10.1101/2024.07.13.600808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The cytokine interleukin-21 (IL-21) is a pivotal T cell-derived signal crucial for germinal center (GC) responses, but the precise mechanisms by which IL-21 influences B cell function remain elusive. Here, we investigated the B cell-intrinsic role of IL-21 signaling by employing a novel IL-21 receptor ( Il21r ) conditional knock-out mouse model and ex vivo culture systems and uncovered a surprising duality of IL-21 signaling in B cells. While IL-21 stimulation of naïve B cells led to Bim-dependent apoptosis, it promoted robust proliferation of pre-activated B cells, particularly class-switched IgG1 + B cells ex vivo . Consistent with this, B cell-specific deletion of Il21r led to a severe defect in IgG1 responses in vivo following immunization. Intriguingly, Il21r -deleted B cells are significantly impaired in their ability to transition from a pre-GC to a GC state following immunization. Although Il21r -deficiency did not affect the proportion of IgG1 + B cells among GC B cells, it greatly diminished the proportion of IgG1 + B cells among the plasmablast/plasma cell population. Collectively, our data suggest that IL-21 serves as a critical regulator of B cell fates, influencing B cell apoptosis and proliferation in a context-dependent manner.
Collapse
|
24
|
Cyster JG, Wilson PC. Antibody modulation of B cell responses-Incorporating positive and negative feedback. Immunity 2024; 57:1466-1481. [PMID: 38986442 PMCID: PMC11257158 DOI: 10.1016/j.immuni.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
Antibodies are powerful modulators of ongoing and future B cell responses. While the concept of antibody feedback has been appreciated for over a century, the topic has seen a surge in interest due to the evidence that the broadening of antibody responses to SARS-CoV-2 after a third mRNA vaccination is a consequence of antibody feedback. Moreover, the discovery that slow antigen delivery can lead to more robust humoral immunity has put a spotlight on the capacity for early antibodies to augment B cell responses. Here, we review the mechanisms whereby antibody feedback shapes B cell responses, integrating findings in humans and in mouse models. We consider the major influence of epitope masking and the diverse actions of complement and Fc receptors and provide a framework for conceptualizing the ways antigen-specific antibodies may influence B cell responses to any form of antigen, in conditions as diverse as infectious disease, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
| | - Patrick C Wilson
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
25
|
Ritter J, Szelinski F, Aue A, Stefanski AL, Rincon-Arevalo H, Chen Y, Nitschke E, Dang VD, Wiedemann A, Schrezenmeier E, Lino AC, Dörner T. Elevated unphosphorylated STAT1 and IRF9 in T and B cells of primary sjögren's syndrome: Novel biomarkers for disease activity and subsets. J Autoimmun 2024; 147:103243. [PMID: 38788537 DOI: 10.1016/j.jaut.2024.103243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 03/23/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVES Autoreactive B cells and interferon (IFN) signature are hallmarks of primary sjögren's syndrome (pSS), but how IFN signaling pathways influence autoantibody production and clinical manifestations remain unclear. More detailed studies hold promise for improved diagnostic methodologies and personalized treatment. METHODS We analyzed peripheral blood T and B cell subsets from 34 pSS patients and 38 healthy donors (HDs) at baseline and upon stimulation regarding their expression levels of type I and II IFN signaling molecules (STAT1/2, IRF1, IRF9). Additionally, we investigated how the levels of these molecules correlated with serological and clinical characteristics and performed ROC analysis. RESULTS Patients showed elevated IFN pathway molecules, including STAT1, STAT2 and IRF9 among most T and B cell subsets. We found a reduced ratio of phosphorylated STAT1 and STAT2 in patients in comparison to HDs, although B cells from patients were highly responsive by increased phosphorylation upon IFN stimulation. Correlation matrices showed further interrelations between STAT1, IRF1 and IRF9 in pSS. Levels of STAT1 and IRF9 in T and B cells correlated with the IFN type I marker Siglec-1 (CD169) on monocytes. High levels of STAT1 and IRF9 within pSS B cells were significantly associated with hypergammaglobulinemia as well as anti-SSA/anti-SSB autoantibodies. Elevated STAT1 levels were found in patients with extraglandular disease and could serve as a biomarker for this subgroup (p < 0.01). Notably, IRF9 levels in T and B cells correlated with EULAR Sjögren's syndrome disease activity index (ESSDAI). CONCLUSION Here, we provide evidence that in active pSS patients, enhanced IFN signaling incl. unphosphorylated STAT1 and STAT2 with IRFs entertain chronic T and B cell activation. Furthermore, increased STAT1 levels candidate as biomarker of extraglandular disease, while IRF9 levels can serve as biomarker for disease activity.
Collapse
Affiliation(s)
- Jacob Ritter
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Charitéplatz 1, 10117, Berlin, Germany
| | - Franziska Szelinski
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany
| | - Arman Aue
- German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany; Department of Nephrology and Intensive Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Ana-Luisa Stefanski
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany
| | - Hector Rincon-Arevalo
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany; Department of Nephrology and Intensive Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany; Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Yidan Chen
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany
| | - Eduard Nitschke
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany
| | - Van Duc Dang
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany
| | - Annika Wiedemann
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany
| | - Eva Schrezenmeier
- German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Charitéplatz 1, 10117, Berlin, Germany; Department of Nephrology and Intensive Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Andreia C Lino
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany.
| |
Collapse
|
26
|
Pankhurst TE, Linterman MA. Highlight of 2023: Advances in germinal centers. Immunol Cell Biol 2024; 102:463-466. [PMID: 38946158 DOI: 10.1111/imcb.12800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
In this article for the Highlight of 2023 series, we discuss recent advances in the fundamental biology of the germinal center response. These discoveries provide important insights as to how the germinal center contributes to protection against infection, and also highlights opportunities for future vaccine development.
Collapse
Affiliation(s)
- Theresa E Pankhurst
- Babraham Institute, Cambridge, UK
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | |
Collapse
|
27
|
Nelke C, Schroeter CB, Barman S, Stascheit F, Masanneck L, Theissen L, Huntemann N, Walli S, Cengiz D, Dobelmann V, Vogelsang A, Pawlitzki M, Räuber S, Konen FF, Skripuletz T, Hartung HP, König S, Roos A, Meisel A, Meuth SG, Ruck T. Identification of disease phenotypes in acetylcholine receptor-antibody myasthenia gravis using proteomics-based consensus clustering. EBioMedicine 2024; 105:105231. [PMID: 38959848 PMCID: PMC11269806 DOI: 10.1016/j.ebiom.2024.105231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The clinical heterogeneity of myasthenia gravis (MG), an autoimmune disease defined by antibodies (Ab) directed against the postsynaptic membrane, constitutes a challenge for patient stratification and treatment decision making. Novel strategies are needed to classify patients based on their biological phenotypes aiming to improve patient selection and treatment outcomes. METHODS For this purpose, we assessed the serum proteome of a cohort of 140 patients with anti-acetylcholine receptor-Ab-positive MG and utilised consensus clustering as an unsupervised tool to assign patients to biological profiles. For in-depth analysis, we used immunogenomic sequencing to study the B cell repertoire of a subgroup of patients and an in vitro assay using primary human muscle cells to interrogate serum-induced complement formation. FINDINGS This strategy identified four distinct patient phenotypes based on their proteomic patterns in their serum. Notably, one patient phenotype, here named PS3, was characterised by high disease severity and complement activation as defining features. Assessing a subgroup of patients, hyperexpanded antibody clones were present in the B cell repertoire of the PS3 group and effectively activated complement as compared to other patients. In line with their disease phenotype, PS3 patients were more likely to benefit from complement-inhibiting therapies. These findings were validated in a prospective cohort of 18 patients using a cell-based assay. INTERPRETATION Collectively, this study suggests proteomics-based clustering as a gateway to assign patients to a biological signature likely to benefit from complement inhibition and provides a stratification strategy for clinical practice. FUNDING CN and CBS were supported by the Forschungskommission of the Medical Faculty of the Heinrich Heine University Düsseldorf. CN was supported by the Else Kröner-Fresenius-Stiftung (EKEA.38). CBS was supported by the Deutsche Forschungsgemeinschaft (DFG-German Research Foundation) with a Walter Benjamin fellowship (project 539363086). The project was supported by the Ministry of Culture and Science of North Rhine-Westphalia (MODS, "Profilbildung 2020" [grant no. PROFILNRW-2020-107-A]).
Collapse
Affiliation(s)
- Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Sumanta Barman
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Frauke Stascheit
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lars Masanneck
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Lukas Theissen
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Sara Walli
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Derya Cengiz
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Vera Dobelmann
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Anna Vogelsang
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Saskia Räuber
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Felix F Konen
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany; Brain and Mind Center, University of Sydney, Sydney NSW, Australia; Department of Neurology, Palacky University Olomouc, Olomouc, Czech Republic
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, Medical Faculty, University of Münster, Münster, Germany
| | - Andreas Roos
- Department of Neuropaediatrics, Neuromuscular Centre, Universitätsmedizin Essen, Essen, Germany
| | - Andreas Meisel
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany.
| |
Collapse
|
28
|
Inoue T, Matsumoto Y, Kawai C, Ito M, Nada S, Okada M, Kurosaki T. Csk restrains BCR-mediated ROS production and contributes to germinal center selection and affinity maturation. J Exp Med 2024; 221:e20231996. [PMID: 38753246 PMCID: PMC11098938 DOI: 10.1084/jem.20231996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/26/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
Compared with naïve B cells, the B cell receptor (BCR) signal in germinal center (GC) B cells is attenuated; however, the significance of this signaling attenuation has not been well defined. Here, to investigate the role of attenuation of BCR signaling, we employed a Csk mutant mouse model in which Csk deficiency in GC B cells resulted in augmentation of net BCR signaling with no apparent effect on antigen presentation. We found that Csk is required for GC maintenance and efficient antibody affinity maturation. Mechanistically, ROS-induced apoptosis was exacerbated concomitantly with mitochondrial dysfunction in Csk-deficient GC B cells. Hence, our data suggest that attenuation of the BCR signal restrains hyper-ROS production, thereby protecting GC B cells from apoptosis and contributing to efficient affinity maturation.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Molecular Systems Immunology, The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), Tokyo, Japan
| | - Yuma Matsumoto
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Chie Kawai
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Mao Ito
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shigeyuki Nada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| |
Collapse
|
29
|
Manakkat Vijay GK, Zhou M, Thakkar K, Rothrauff A, Chawla AS, Chen D, Lau LCW, Gerges PH, Chetal K, Chhibbar P, Fan J, Das J, Joglekar A, Borghesi L, Salomonis N, Xu H, Singh H. Temporal dynamics and genomic programming of plasma cell fates. Nat Immunol 2024; 25:1097-1109. [PMID: 38698087 DOI: 10.1038/s41590-024-01831-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/04/2024] [Indexed: 05/05/2024]
Abstract
Affinity-matured plasma cells (PCs) of varying lifespans are generated through a germinal center (GC) response. The developmental dynamics and genomic programs of antigen-specific PC precursors remain to be elucidated. Here, using a model antigen in mice, we demonstrate biphasic generation of PC precursors, with those generating long-lived bone marrow PCs preferentially produced in the late phase of GC response. Clonal tracing using single-cell RNA sequencing and B cell antigen receptor sequencing in spleen and bone marrow compartments, coupled with adoptive transfer experiments, reveals a new PC transition state that gives rise to functionally competent PC precursors. The latter undergo clonal expansion, dependent on inducible expression of TIGIT. We propose a model for the proliferation and programming of precursors of long-lived PCs, based on extended antigen encounters in the GC.
Collapse
Affiliation(s)
| | - Ming Zhou
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Medicine, Westlake University, Hangzhou, China
| | - Kairavee Thakkar
- Division of Biomedical Informatics, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA
- Department of Pharmacology and Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Abigail Rothrauff
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanpreet Singh Chawla
- Division of Immunobiology, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA
| | - Dianyu Chen
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Medicine, Westlake University, Hangzhou, China
| | - Louis Chi-Wai Lau
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Habib Gerges
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA
| | - Prabal Chhibbar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jingyu Fan
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jishnu Das
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alok Joglekar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa Borghesi
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA.
| | - Heping Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- School of Medicine, Westlake University, Hangzhou, China.
| | - Harinder Singh
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
30
|
Simpson MJ, Newen AM, McNees C, Sharma S, Pfannenstiel D, Moyer T, Stephany D, Douagi I, Wang Q, Mayer CT. Peripheral apoptosis and limited clonal deletion during physiologic murine B lymphocyte development. Nat Commun 2024; 15:4691. [PMID: 38824171 PMCID: PMC11144239 DOI: 10.1038/s41467-024-49062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Self-reactive and polyreactive B cells generated during B cell development are silenced by either apoptosis, clonal deletion, receptor editing or anergy to avoid autoimmunity. The specific contribution of apoptosis to normal B cell development and self-tolerance is incompletely understood. Here, we quantify self-reactivity, polyreactivity and apoptosis during physiologic B lymphocyte development. Self-reactivity and polyreactivity are most abundant in early immature B cells and diminish significantly during maturation within the bone marrow. Minimal apoptosis still occurs at this site, however B cell receptors cloned from apoptotic B cells show comparable self-reactivity to that of viable cells. Apoptosis increases dramatically only following immature B cells leaving the bone marrow sinusoids, but above 90% of cloned apoptotic transitional B cells are not self-reactive/polyreactive. Our data suggests that an apoptosis-independent mechanism, such as receptor editing, removes most self-reactive B cells in the bone marrow. Mechanistically, lack of survival signaling rather than clonal deletion appears to be the underpinning cause of apoptosis in most transitional B cells in the periphery.
Collapse
Affiliation(s)
- Mikala JoAnn Simpson
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna Minh Newen
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher McNees
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sukriti Sharma
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dylan Pfannenstiel
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Moyer
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Stephany
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Iyadh Douagi
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Christian Thomas Mayer
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
31
|
Noor AAM, Nor AKCM, Redzwan NM. The immunological understanding on germinal center B cells in psoriasis. J Cell Physiol 2024; 239:e31266. [PMID: 38578060 DOI: 10.1002/jcp.31266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/16/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
The development of psoriasis is mainly driven by the dysregulation of T cells within the skin, marking a primary involvement of these cells in the pathogenesis. Although B cells are integral components of the immune system, their role in the initiation and progression of psoriasis is not as pivotal as that of T cells. The paradox of B cell suggests that, while it is crucial for adaptive immunity, B cells may contribute to the exacerbation of psoriasis. Numerous ideas proposed that there are potential relationships between psoriasis and B cells especially within germinal centers (GCs). Recent research projected that B cells might be triggered by autoantigens which then induced molecular mimicry to alter B cells activity within GC and generate autoantibodies and pro-inflammatory cytokines, form ectopic GC, and dysregulate the proliferation of keratinocytes. Hence, in this review, we gathered potential evidence indicating the participation of B cells in psoriasis within the context of GC, aiming to enhance our comprehension and advance treatment strategies for psoriasis thus inviting many new researchers to investigate this issue.
Collapse
Affiliation(s)
- Aina Akmal Mohd Noor
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Abdah Karimah Che Md Nor
- Central Research Laboratory, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Norhanani Mohd Redzwan
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
32
|
Xu M, Wang H, Ren S, Wang B, Yang W, Lv L, Sha X, Li W, Wang Y. Identification of crucial inflammaging related risk factors in multiple sclerosis. Front Mol Neurosci 2024; 17:1398665. [PMID: 38836117 PMCID: PMC11148336 DOI: 10.3389/fnmol.2024.1398665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Background Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammatory demyelinating lesions in the central nervous system. Studies have shown that the inflammation is vital to both the onset and progression of MS, where aging plays a key role in it. However, the potential mechanisms on how aging-related inflammation (inflammaging) promotes MS have not been fully understood. Therefore, there is an urgent need to integrate the underlying mechanisms between inflammaging and MS, where meaningful prediction models are needed. Methods First, both aging and disease models were developed using machine learning methods, respectively. Then, an integrated inflammaging model was used to identify relative risk factors, by identifying essential "aging-inflammation-disease" triples. Finally, a series of bioinformatics analyses (including network analysis, enrichment analysis, sensitivity analysis, and pan-cancer analysis) were further used to explore the potential mechanisms between inflammaging and MS. Results A series of risk factors were identified, such as the protein homeostasis, cellular homeostasis, neurodevelopment and energy metabolism. The inflammaging indices were further validated in different cancer types. Therefore, various risk factors were integrated, and even both the theories of inflammaging and immunosenescence were further confirmed. Conclusion In conclusion, our study systematically investigated the potential relationships between inflammaging and MS through a series of computational approaches, and could present a novel thought for other aging-related diseases.
Collapse
Affiliation(s)
- Mengchu Xu
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Huize Wang
- Department of Nursing, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Siwei Ren
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Bing Wang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Wenyan Yang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Ling Lv
- Department of Thorax, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xianzheng Sha
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Wenya Li
- Department of Thorax, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yin Wang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
33
|
Wright NE, Kennedy DE, Ai J, Veselits ML, Attaway M, Yoon YM, Durkee MS, Veselits J, Maienschein-Cline M, Mandal M, Clark MR. BRWD1 establishes epigenetic states for germinal center initiation, maintenance, and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591154. [PMID: 38712068 PMCID: PMC11071454 DOI: 10.1101/2024.04.25.591154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Germinal center (GC) B cells segregate into three subsets that compartmentalize the antagonistic molecular programs of selection, proliferation, and somatic hypermutation. In bone marrow, the epigenetic reader BRWD1 orchestrates and insulates the sequential stages of cell proliferation and Igk recombination. We hypothesized BRWD1 might play similar insulative roles in the periphery. In Brwd1 -/- follicular B cells, GC initiation and class switch recombination following immunization were inhibited. In contrast, in Brwd1 -/- GC B cells there was admixing of chromatin accessibility across GC subsets and transcriptional dysregulation including induction of inflammatory pathways. This global molecular GC dysregulation was associated with specific defects in proliferation, affinity maturation, and tolerance. These data suggest that GC subset identity is required for some but not all GC-attributed functions. Furthermore, these data demonstrate a central role for BRWD1 in orchestrating epigenetic transitions at multiple steps along B cell developmental and activation pathways.
Collapse
|
34
|
Kurata-Sato I, Mughrabi IT, Rana M, Gerber M, Al-Abed Y, Sherry B, Zanos S, Diamond B. Vagus nerve stimulation modulates distinct acetylcholine receptors on B cells and limits the germinal center response. SCIENCE ADVANCES 2024; 10:eadn3760. [PMID: 38669336 PMCID: PMC11051663 DOI: 10.1126/sciadv.adn3760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Acetylcholine is produced in the spleen in response to vagus nerve activation; however, the effects on antibody production have been largely unexplored. Here, we use a chronic vagus nerve stimulation (VNS) mouse model to study the effect of VNS on T-dependent B cell responses. We observed lower titers of high-affinity IgG and fewer antigen-specific germinal center (GC) B cells. GC B cells from chronic VNS mice exhibited altered mRNA and protein expression suggesting increased apoptosis and impaired plasma cell differentiation. Follicular dendritic cell (FDC) cluster dispersal and altered gene expression suggested poor function. The absence of acetylcholine-producing CD4+ T cells diminished these alterations. In vitro studies revealed that α7 and α9 nicotinic acetylcholine receptors (nAChRs) directly regulated B cell production of TNF, a cytokine crucial to FDC clustering. α4 nAChR inhibited coligation of CD19 to the B cell receptor, presumably decreasing B cell survival. Thus, VNS-induced GC impairment can be attributed to distinct effects of nAChRs on B cells.
Collapse
Affiliation(s)
- Izumi Kurata-Sato
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Ibrahim T. Mughrabi
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Minakshi Rana
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Michael Gerber
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Barbara Sherry
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Betty Diamond
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
35
|
Zhang L, Toboso-Navasa A, Gunawan A, Camara A, Nakagawa R, Katja F, Chakravarty P, Newman R, Zhang Y, Eilers M, Wack A, Tolar P, Toellner KM, Calado DP. Regulation of BCR-mediated Ca 2+ mobilization by MIZ1-TMBIM4 safeguards IgG1 + GC B cell-positive selection. Sci Immunol 2024; 9:eadk0092. [PMID: 38579014 PMCID: PMC7615907 DOI: 10.1126/sciimmunol.adk0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/26/2024] [Indexed: 04/07/2024]
Abstract
The transition from immunoglobulin M (IgM) to affinity-matured IgG antibodies is vital for effective humoral immunity. This is facilitated by germinal centers (GCs) through affinity maturation and preferential maintenance of IgG+ B cells over IgM+ B cells. However, it is not known whether the positive selection of the different Ig isotypes within GCs is dependent on specific transcriptional mechanisms. Here, we explored IgG1+ GC B cell transcription factor dependency using a CRISPR-Cas9 screen and conditional mouse genetics. We found that MIZ1 was specifically required for IgG1+ GC B cell survival during positive selection, whereas IgM+ GC B cells were largely independent. Mechanistically, MIZ1 induced TMBIM4, an ancestral anti-apoptotic protein that regulated inositol trisphosphate receptor (IP3R)-mediated calcium (Ca2+) mobilization downstream of B cell receptor (BCR) signaling in IgG1+ B cells. The MIZ1-TMBIM4 axis prevented mitochondrial dysfunction-induced IgG1+ GC cell death caused by excessive Ca2+ accumulation. This study uncovers a unique Ig isotype-specific dependency on a hitherto unidentified mechanism in GC-positive selection.
Collapse
Affiliation(s)
- Lingling Zhang
- Immunity and Cancer, Francis Crick Institute, London, UK
| | | | - Arief Gunawan
- Immunity and Cancer, Francis Crick Institute, London, UK
| | | | | | | | | | - Rebecca Newman
- Immune Receptor Activation Laboratory, Francis Crick Institute, London, UK
| | - Yang Zhang
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Martin Eilers
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Pavel Tolar
- Immune Receptor Activation Laboratory, Francis Crick Institute, London, UK
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
36
|
Laurent C, Dietrich S, Tarte K. Cell cross talk within the lymphoma tumor microenvironment: follicular lymphoma as a paradigm. Blood 2024; 143:1080-1090. [PMID: 38096368 DOI: 10.1182/blood.2023021000] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/30/2023] [Indexed: 03/22/2024] Open
Abstract
ABSTRACT Follicular lymphoma (FL) is an indolent yet incurable germinal center B-cell lymphoma retaining a characteristic follicular architecture. FL tumor B cells are highly dependent on direct and indirect interactions with a specific and complex tumor microenvironment (TME). Recently, great progress has been made in describing the heterogeneity and dynamics of the FL TME and in depicting how tumor clonal and functional heterogeneity rely on the integration of TME-related signals. Specifically, the FL TME is enriched for exhausted cytotoxic T cells, immunosuppressive regulatory T cells of various origins, and follicular helper T cells overexpressing B-cell and TME reprogramming factors. FL stromal cells have also emerged as crucial determinants of tumor growth and remodeling, with a key role in the deregulation of chemokines and extracellular matrix composition. Finally, tumor-associated macrophages play a dual function, contributing to FL cell phagocytosis and FL cell survival through long-lasting B-cell receptor activation. The resulting tumor-permissive niches show additional layers of site-to-site and kinetic heterogeneity, which raise questions about the niche of FL-committed precursor cells supporting early lymphomagenesis, clonal evolution, relapse, and transformation. In turn, FL B-cell genetic and nongenetic determinants drive the reprogramming of FL immune and stromal TME. Therefore, offering a functional picture of the dynamic cross talk between FL cells and TME holds the promise of identifying the mechanisms of therapy resistance, stratifying patients, and developing new therapeutic approaches capable of eradicating FL disease in its different ecosystems.
Collapse
Affiliation(s)
- Camille Laurent
- Department of Pathology, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalo-Universitaire Toulouse, Centre de Recherches en Cancérologie de Toulouse, Laboratoire d'Excellence TOUCAN, INSERM Unité Mixte de Recherche 1037, Toulouse, France
| | - Sascha Dietrich
- Department of Haematology and Oncology, University Hospital Düsseldorf and Center for Integrated Oncology Aachen Bonn Cologne, Düsseldorf, Germany
| | - Karin Tarte
- Unité Mixte de Recherche S1236, INSERM, Université de Rennes, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
- Department of Biology, Centre Hospitalo-Universitaire de Rennes, Rennes, France
| |
Collapse
|
37
|
Wei X, Shi S, Lu Z, Li C, Xu X, Chai J, Liu X, Hu T, Wang B. Elevated enteric putrescine suppresses differentiation of intestinal germinal center B cells. Int Immunopharmacol 2024; 128:111544. [PMID: 38266445 DOI: 10.1016/j.intimp.2024.111544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
The dysregulation of B cell maturation and putrescine metabolism has been implicated in various diseases. However, the causal relationship between them and the underlying mechanisms remain unclear. In this study, we investigated the impact of exogenous putrescine on B cell differentiation in the intestinal microenvironment. Our results demonstrated that administration of exogenous putrescine significantly impaired the proportion of germinal center B (GC B) cells in Peyer's patches (PPs) and lamina propria. Through integration of bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq), we identified putrescine-mediated changes in gene drivers, including those involved in the B cell receptor (BCR) signaling pathway and fatty acid oxidation. Furthermore, putrescine drinking disrupted T-B cell interactions and increased reactive oxygen species (ROS) production in B cells. In vitro activation of B cells confirmed the direct suppression of putrescine on GC B cells differentiation and ROS production. Additionally, we explored the Pearson correlations between putrescine biosynthesis activity and B cell infiltration in pan-cancers, revealing negative correlations in colon adenocarcinoma, stomach adenocarcinoma, and lung adenocarcinoma, but positive correlations in liver hepatocellular carcinoma, and breast invasive carcinoma. Our findings provided novel insights into the suppressive effects of elevated enteric putrescine on intestinal B cells differentiation and highlighted the complex and distinctive immunoregulatory role of putrescine in different microenvironments. These findings expand our understanding of the role of polyamines in B cell immunometabolism and related diseases.
Collapse
Affiliation(s)
- Xia Wei
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Shaojie Shi
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Zixuan Lu
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Chengyu Li
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Xiangping Xu
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Jinquan Chai
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Xiaofei Liu
- Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China.
| | - Tao Hu
- Department of Immunology, Binzhou Medical University, Yantai, China.
| | - Bin Wang
- Department of Immunology, Binzhou Medical University, Yantai, China.
| |
Collapse
|
38
|
Dominguez-Sola D. Sending positive signals and good (calcium) vibes. J Exp Med 2024; 221:e20231821. [PMID: 38051276 PMCID: PMC10697794 DOI: 10.1084/jem.20231821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
In this issue of JEM, Yada et al. (https://doi.org/10.1084/jem.20222178) demonstrate that effective antibody affinity selection in germinal centers relies on the store-operated calcium entry (SOCE) component of the B cell receptor (BCR) signaling network. Therefore, active BCR signaling is as relevant to positive selection as the function of BCRs as endocytic receptors, answering a question that had puzzled experts for a while. These findings transform our understanding of the mechanisms supporting adaptive immune responses (to vaccines, for example) and have important implications for interpreting the genomics and pathogenesis of germinal center-derived B cell lymphomas.
Collapse
Affiliation(s)
- David Dominguez-Sola
- Departments of Oncological Sciences and Pathology, The Tisch Cancer Institute, Marc and Jennifer Lipschultz Precision Immunology Institute, Center for Advanced Blood Cancer Therapies and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
39
|
Abstract
Recent advances in studies of immune memory in mice and humans have reinforced the concept that memory B cells play a critical role in protection against repeated infections, particularly from variant viruses. Hence, insights into the development of high-quality memory B cells that can generate broadly neutralizing antibodies that bind such variants are key for successful vaccine development. Here, we review the cellular and molecular mechanisms by which memory B cells are generated and how these processes shape the antibody diversity and breadth of memory B cells. Then, we discuss the mechanisms of memory B cell reactivation in the context of established immune memory; the contribution of antibody feedback to this process has now begun to be reappreciated.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.
| |
Collapse
|
40
|
ElTanbouly MA, Ramos V, MacLean AJ, Chen ST, Loewe M, Steinbach S, Ben Tanfous T, Johnson B, Cipolla M, Gazumyan A, Oliveira TY, Nussenzweig MC. Role of affinity in plasma cell development in the germinal center light zone. J Exp Med 2024; 221:e20231838. [PMID: 37938344 PMCID: PMC10631489 DOI: 10.1084/jem.20231838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
Protective immune responses to many pathogens depend on the development of high-affinity antibody-producing plasma cells (PC) in germinal centers (GCs). Transgenic models suggest that there is a stringent affinity-based barrier to PC development. Whether a similar high-affinity barrier regulates PC development under physiologic circumstances and the nature of the PC fate decision has not been defined precisely. Here, we use a fate-mapping approach to examine the relationship between GC B cells selected to undergo additional rounds of affinity maturation, GC pre-PC, and PC. The data show that initial PC selection overlaps with GC B cell selection, but that the PC compartment accumulates a less diverse and higher affinity collection of antibodies over time. Thus, whereas the GC continues to diversify over time, affinity-based pre-PC selection sieves the GC to enable the accumulation of a more restricted group of high-affinity antibody-secreting PC.
Collapse
Affiliation(s)
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Andrew J. MacLean
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Spencer T. Chen
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maximilian Loewe
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Sandra Steinbach
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Tarek Ben Tanfous
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Brianna Johnson
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
41
|
Yada Y, Matsumoto M, Inoue T, Baba A, Higuchi R, Kawai C, Yanagisawa M, Kitamura D, Ohga S, Kurosaki T, Baba Y. STIM-mediated calcium influx regulates maintenance and selection of germinal center B cells. J Exp Med 2024; 221:e20222178. [PMID: 37902601 PMCID: PMC10615893 DOI: 10.1084/jem.20222178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/02/2023] [Accepted: 10/05/2023] [Indexed: 10/31/2023] Open
Abstract
Positive selection of high-affinity germinal center (GC) B cells is driven by antigen internalization through their B cell receptor (BCR) and presentation to follicular helper T cells. However, the requirements of BCR signaling in GC B cells remain poorly understood. Store-operated Ca2+ entry, mediated by stromal interacting molecule 1 (STIM1) and STIM2, is the main Ca2+ influx pathway triggered by BCR engagement. Here, we showed that STIM-deficient B cells have reduced B cell competitiveness compared with wild-type B cells during GC responses. B cell-specific deletion of STIM proteins decreased the number of high-affinity B cells in the late phase of GC formation. STIM deficiency did not affect GC B cell proliferation and antigen presentation but led to the enhancement of apoptosis due to the impaired upregulation of anti-apoptotic Bcl2a1. STIM-mediated activation of NFAT was required for the expression of Bcl2a1 after BCR stimulation. These findings suggest that STIM-mediated survival signals after antigen capture regulate the optimal selection and maintenance of GC B cells.
Collapse
Affiliation(s)
- Yutaro Yada
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masanori Matsumoto
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Akemi Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Ryota Higuchi
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Chie Kawai
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
42
|
Inoue T. Memory B cell differentiation from germinal centers. Int Immunol 2023; 35:565-570. [PMID: 37232558 DOI: 10.1093/intimm/dxad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
Establishment of humoral immune memory depends on two layers of defense: pre-existing antibodies secreted by long-lived plasma cells; and the antibodies produced by antigen-reactivated memory B cells. Memory B cells can now be considered as a second layer of defense upon re-infection by variant pathogens that have not been cleared by the long-lived plasma cell-mediated defense. Affinity-matured memory B cells are derived from the germinal center (GC) reaction, but the selection mechanism of GC B cells into the memory compartment is still incompletely understood. Recent studies have revealed the critical determinants of cellular and molecular factors for memory B cell differentiation from the GC reaction. In addition, the contribution of antibody-mediated feedback regulation to B cell selection, as exemplified by the B cell response upon COVID-19 mRNA vaccination, has now garnered considerable attention, which may provide valuable implications for future vaccine design.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
43
|
Sausen DG, Poirier MC, Spiers LM, Smith EN. Mechanisms of T cell evasion by Epstein-Barr virus and implications for tumor survival. Front Immunol 2023; 14:1289313. [PMID: 38179040 PMCID: PMC10764432 DOI: 10.3389/fimmu.2023.1289313] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Epstein-Barr virus (EBV) is a prevalent oncogenic virus estimated to infect greater than 90% of the world's population. Following initial infection, it establishes latency in host B cells. EBV has developed a multitude of techniques to avoid detection by the host immune system and establish lifelong infection. T cells, as important contributors to cell-mediated immunity, make an attractive target for these immunoevasive strategies. Indeed, EBV has evolved numerous mechanisms to modulate T cell responses. For example, it can augment expression of programmed cell death ligand-1 (PD-L1), which inhibits T cell function, and downregulates the interferon response, which has a strong impact on T cell regulation. It also modulates interleukin secretion and can influence major histocompatibility complex (MHC) expression and presentation. In addition to facilitating persistent EBV infection, these immunoregulatory mechanisms have significant implications for evasion of the immune response by tumor cells. This review dissects the mechanisms through which EBV avoids detection by host T cells and discusses how these mechanisms play into tumor survival. It concludes with an overview of cancer treatments targeting T cells in the setting of EBV-associated malignancy.
Collapse
Affiliation(s)
- D. G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | | | | |
Collapse
|
44
|
Roy K, Chakraborty M, Kumar A, Manna AK, Roy NS. The NFκB signaling system in the generation of B-cell subsets: from germinal center B cells to memory B cells and plasma cells. Front Immunol 2023; 14:1185597. [PMID: 38169968 PMCID: PMC10758606 DOI: 10.3389/fimmu.2023.1185597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Memory B cells and antibody-secreting cells are the two prime effector B cell populations that drive infection- and vaccine-induced long-term antibody-mediated immunity. The antibody-mediated immunity mostly relies on the formation of specialized structures within secondary lymphoid organs, called germinal centers (GCs), that facilitate the interactions between B cells, T cells, and antigen-presenting cells. Antigen-activated B cells may proliferate and differentiate into GC-independent plasmablasts and memory B cells or differentiate into GC B cells. The GC B cells undergo proliferation coupled to somatic hypermutation of their immunoglobulin genes for antibody affinity maturation. Subsequently, affinity mature GC B cells differentiate into GC-dependent plasma cells and memory B cells. Here, we review how the NFκB signaling system controls B cell proliferation and the generation of GC B cells, plasmablasts/plasma cells, and memory B cells. We also identify and discuss some important unanswered questions in this connection.
Collapse
Affiliation(s)
- Koushik Roy
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Mainak Chakraborty
- Division of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ashok Kumar
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Asit Kumar Manna
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Neeladri Sekhar Roy
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
45
|
Wang Z, You T, Su Q, Deng W, Li J, Hu S, Shi S, Zou Z, Xiao J, Duan X. Laser-Activatable In Situ Vaccine Enhances Cancer-Immunity Cycle. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307193. [PMID: 37951210 DOI: 10.1002/adma.202307193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/05/2023] [Indexed: 11/13/2023]
Abstract
The immune response in cancer reflects a series of carefully regulated events; however, current tumor immunotherapies typically address a single key aspect to enhance anti-tumor immunity. In the present study, a nanoplatform (Fe3 O4 @IR820@CpG)-based immunotherapy strategy that targets the multiple key steps in cancer-immunity cycle is developed: 1) promotes the release of tumor-derived proteins (TDPs), including tumor-associated antigens and pro-immunostimulatory factors), in addition to the direct killing effect, by photothermal (PTT) and photodynamic therapy (PDT); 2) captures the released TDPs and delivers them, together with CpG (a Toll-like receptor 9 agonist) to antigen-presenting cells (APCs) to promote antigen presentation and T cell activation; 3) enhances the tumor-killing ability of T cells by combining with anti-programmed death ligand 1 antibody (α-PD-L1), which collectively advances the outstanding of the anti-tumor effects on colorectal, liver and breast cancers. The broad-spectrum anti-tumor activity of Fe3 O4 @IR820@CpG with α-PD-L1 demonstrates that optimally manipulating anti-cancer immunity not singly but as a group provides promising clinical strategies.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Department of Burns and Wound Repairing, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Tingting You
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Blood Transfusion, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Qianyi Su
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenjia Deng
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - JiaBao Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Saixiang Hu
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shengjun Shi
- Department of Burns and Wound Repairing, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Zhaowei Zou
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jisheng Xiao
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaopin Duan
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
46
|
Raso F, Liu S, Simpson MJ, Barton GM, Mayer CT, Acharya M, Muppidi JR, Marshak-Rothstein A, Reboldi A. Antigen receptor signaling and cell death resistance controls intestinal humoral response zonation. Immunity 2023; 56:2373-2387.e8. [PMID: 37714151 PMCID: PMC10591993 DOI: 10.1016/j.immuni.2023.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023]
Abstract
Immunoglobulin A (IgA) maintains commensal communities in the intestine while preventing dysbiosis. IgA generated against intestinal microbes assures the simultaneous binding to multiple, diverse commensal-derived antigens. However, the exact mechanisms by which B cells mount broadly reactive IgA to the gut microbiome remains elusive. Here, we have shown that IgA B cell receptor (BCR) is required for B cell fitness during the germinal center (GC) reaction in Peyer's patches (PPs) and for generation of gut-homing plasma cells (PCs). We demonstrate that IgA BCR drove heightened intracellular signaling in mouse and human B cells, and as a consequence, IgA+ B cells received stronger positive selection cues. Mechanistically, IgA BCR signaling offset Fas-mediated death, possibly rescuing low-affinity B cells to promote a broad humoral response to commensals. Our findings reveal an additional mechanism linking BCR signaling, B cell fate, and antibody production location, which have implications for how intestinal antigen recognition shapes humoral immunity.
Collapse
Affiliation(s)
- Fiona Raso
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shuozhi Liu
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Mikala J Simpson
- Experimental Immunology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Gregory M Barton
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Christian T Mayer
- Experimental Immunology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Mridu Acharya
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jagan R Muppidi
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Ann Marshak-Rothstein
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
47
|
Vijay GKM, Zhou M, Thakkar K, Rothrauff A, Chawla AS, Chen D, Lau LCW, Habib P, Chetal K, Chhibbar P, Fan J, Das J, Joglekar A, Borghesi L, Salomonis N, Xu H, Singh H. Temporal dynamics and genomic programming of plasma cell fates. RESEARCH SQUARE 2023:rs.3.rs-3296446. [PMID: 37720050 PMCID: PMC10503833 DOI: 10.21203/rs.3.rs-3296446/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Affinity-matured plasma cells (PCs) of varying lifespans are generated through a germinal center (GC) response. The developmental dynamics and genomic programs of antigen-specific PC precursors remain to be elucidated. Using a model antigen, we demonstrate biphasic generation of PC precursors, with those generating long-lived bone marrow PCs preferentially produced in the late phase of GC response. Clonal tracing using scRNA-seq+BCR-seq in spleen and bone marrow compartments, coupled with adoptive transfer experiments, reveal a novel PC transition state that gives rise to functionally competent PC precursors. The latter undergo clonal expansion, dependent on inducible expression of TIGIT. We propose a model for the proliferation and programming of precursors of long-lived PCs, based on extended antigen encounters followed by reduced antigen availability.
Collapse
Affiliation(s)
- Godhev Kumar Manakkat Vijay
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- These authors contributed equally
| | - Ming Zhou
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- These authors contributed equally
| | - Kairavee Thakkar
- Division of Bioinformatics, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio, USA
- Department of Pharmacology and Physiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
- These authors contributed equally
| | - Abigail Rothrauff
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanpreet Singh Chawla
- Division of Immunobiology, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dianyu Chen
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Louis Chi-Wai Lau
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Habib
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kashish Chetal
- Division of Bioinformatics, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio, USA
| | - Prabal Chhibbar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jingyu Fan
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jishnu Das
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alok Joglekar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa Borghesi
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nathan Salomonis
- Division of Bioinformatics, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio, USA
| | - Heping Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Harinder Singh
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
48
|
Wright NE, Mandal M, Clark MR. Molecular mechanisms insulating proliferation from genotoxic stress in B lymphocytes. Trends Immunol 2023; 44:668-677. [PMID: 37573227 PMCID: PMC10530527 DOI: 10.1016/j.it.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 08/14/2023]
Abstract
In mammals, B cells strictly segregate proliferation from somatic mutation as they develop within the bone marrow and then mature through germinal centers (GCs) in the periphery. Failure to do so risks autoimmunity and neoplastic transformation. Recent work has described how B cell progenitors transition between proliferation and mutation via cytokine signaling pathways, epigenetic chromatin regulation, and remodeling of 3D chromatin conformation. We propose a three-zone model of the GC that describes how proliferation and mutation are regulated. Using this model, we consider how recent mechanistic discoveries in B cell progenitors inform models of GC B cell function and reveal fundamental mechanisms underpinning humoral immunity, autoimmunity, and lymphomagenesis.
Collapse
Affiliation(s)
- Nathaniel E Wright
- Department of Medicine, Section of Rheumatology, and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Malay Mandal
- Department of Medicine, Section of Rheumatology, and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Marcus R Clark
- Department of Medicine, Section of Rheumatology, and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
49
|
Linterman MA. Age-dependent changes in T follicular helper cells shape the humoral immune response to vaccination. Semin Immunol 2023; 69:101801. [PMID: 37379670 DOI: 10.1016/j.smim.2023.101801] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Vaccination is an excellent strategy to limit the morbidity and mortality associated with infectious disease. Vaccination creates protective, long-lived antibody-mediated immunity by inducing the germinal centre response, an intricate immune reaction that produces memory B cells and long-lived antibody-secreting plasma cells that provide protection against (re)infection. The magnitude and quality of the germinal centre response declines with age, contributing to poor vaccine-induced immunity in older individuals. T follicular helper cells are essential for the formation and function of the germinal centre response. This review will discuss how age-dependent changes in T follicular helper cells influence the germinal centre response, and the evidence that age-dependent changes need not be a barrier to successful vaccination in the later years of life.
Collapse
Affiliation(s)
- Michelle A Linterman
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom.
| |
Collapse
|
50
|
Carrasco YR. Building the synapse engine to drive B lymphocyte function. Immunol Lett 2023; 260:S0165-2478(23)00112-8. [PMID: 37369313 DOI: 10.1016/j.imlet.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
B cell receptor (BCR)-mediated antigen-specific recognition activates B lymphocytes and drives the humoral immune response. This enables the generation of antibody-producing plasma cells, the effector arm of the B cell immune response, and of memory B cells, which confer protection against additional encounters with antigen. B cells search for cognate antigen in the complex cellular microarchitecture of secondary lymphoid organs, where antigens are captured and exposed on the surface of different immune cells. While scanning the cell network, the BCR can be stimulated by a specific antigen and elicit the establishment of the immune synapse with the antigen-presenting cell. At the immune synapse, an integrin-enriched supramolecular domain is assembled at the periphery of the B cell contact with the antigen-presenting cell, ensuring a stable and long-lasting interaction. The coordinated action of the actomyosin cytoskeleton and the microtubule network in the inner B cell space provides a structural framework that integrates signaling events and antigen uptake through the generation of traction forces and organelle polarization. Accordingly, the B cell immune synapse can be envisioned as a temporal engine that drives the molecular mechanisms needed for successful B cell activation. Here, I review different aspects of the B cell synapse engine and provide insights into other aspects poorly known or virtually unexplored.
Collapse
Affiliation(s)
- Yolanda R Carrasco
- B Lymphocyte Dynamics Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, 28049, Spain.
| |
Collapse
|