1
|
Zheng S, Wang C, Fu J, Shao J. Investigating Overlapping Immune-related Genetic Markers in Cholangiocarcinoma and Inflammatory Bowel Disease for Predictive Prognosis. J Immunother 2025:00002371-990000000-00142. [PMID: 40384613 DOI: 10.1097/cji.0000000000000562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/09/2025] [Indexed: 05/20/2025]
Abstract
This study aims to explore the common immune-related gene characteristics of cholangiocarcinoma (CHOL) and inflammatory bowel disease (IBD) to predict disease prognosis. By analyzing the gene expression data from the TCGA, GEO, and NGDC databases, differentially expressed immune-related genes (DE-IRGs) were screened, and a prognostic model was constructed. The results showed that CCR7, OSM, S100P, ACVR1C, OSMR, SPP1, and PIK3R3 were key immune-related genes, and their expressions were closely related to the occurrence and development of CHOL and IBD. Patients in the low immune risk score (IRS) group had more abundant antitumor immune cell infiltration, while those in the high IRS group had more macrophage infiltration. In addition, the model based on these genes had good predictive ability for the diagnosis and prognosis of CHOL and IBD, with an area under the ROC curve (AUC) value exceeding 0.7. This study also predicted potential small molecule drugs that might be effective for the treatment of CHOL, such as Umbralisib and Tamoxifen. In conclusion, this study provides new biomarkers and potential targets for diagnosis, prognosis assessment, and treatment of CHOL and IBD.
Collapse
Affiliation(s)
| | | | | | - Jinfan Shao
- Colorectal Surgery, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital
| |
Collapse
|
2
|
Li Z, Zeng L, Huang W, Zhang X, Zhang L, Xie Q. Angiogenic Factors and Inflammatory Bowel Diseases. Biomedicines 2025; 13:1154. [PMID: 40426981 PMCID: PMC12108873 DOI: 10.3390/biomedicines13051154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/29/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is characterized by chronic intestinal inflammation and impaired epithelial barrier function. Emerging evidence highlights the critical role of vascular remodeling and angiogenesis in IBD pathogenesis. This review explores the intricate relationship between blood vessels and the intestinal epithelial barrier, emphasizing how aberrant vascularization contributes to barrier dysfunction and disease progression. In IBD, excessive angiogenesis is driven by hypoxia, immune cell infiltration, and pro-inflammatory cytokines, further perpetuating inflammation and tissue damage. Key angiogenic factors, such as vascular endothelial growth factor (VEGF), angiopoietins, and platelet-derived growth factor (PDGF), are upregulated in IBD, promoting pathological vessel formation. These newly formed vessels are often immature and hyperpermeable, exacerbating leukocyte recruitment and inflammatory responses. Given the pivotal role of angiogenesis in IBD, anti-angiogenic therapies have emerged as a potential therapeutic strategy. Preclinical and clinical studies targeting VEGF and other angiogenic pathways have shown promise in reducing inflammation and promoting mucosal healing. This review summarizes current knowledge on vascular-epithelial interactions in IBD, the mechanisms driving pathological angiogenesis, and the therapeutic potential of anti-angiogenic approaches, providing insights for future research and treatment development.
Collapse
Affiliation(s)
- Zhiru Li
- Clinical Medical School, University of Electronic Science and Technology of China, Chengdu 610072, China;
| | - Li Zeng
- Department of Geriatric Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; (L.Z.); (W.H.); (X.Z.); (L.Z.)
| | - Wei Huang
- Department of Geriatric Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; (L.Z.); (W.H.); (X.Z.); (L.Z.)
| | - Xinxing Zhang
- Department of Geriatric Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; (L.Z.); (W.H.); (X.Z.); (L.Z.)
| | - Li Zhang
- Department of Geriatric Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; (L.Z.); (W.H.); (X.Z.); (L.Z.)
| | - Qin Xie
- Department of Geriatric Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; (L.Z.); (W.H.); (X.Z.); (L.Z.)
| |
Collapse
|
3
|
Mahdy RNE, Nader MA, Helal MG, Abu-Risha SE, Abdelmageed ME. Protective effect of Dulaglutide, a GLP1 agonist, on acetic acid-induced ulcerative colitis in rats: involvement of GLP-1, TFF-3, and TGF-β/PI3K/NF-κB signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5611-5628. [PMID: 39579211 PMCID: PMC11985593 DOI: 10.1007/s00210-024-03631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
A chronic inflammatory condition of the colon called ulcerative colitis (UC) is characterized by mucosal surface irritation that extends from the rectum to the near proximal colon portions. The rationale of this work was to conclude if dulaglutide (Dula) could protect rats from developing colitis caused by exposure to acetic acid (AA). Rats were randomly divided into seven groups (each with eight rats): Normal control, Dula control, AA (received 2 milliliters of 3% v/v AA through the rectum), Sulfasalazine (SLZ); given SLZ (100 mg/kg) orally from day 11 to day 21 then AA intrarectally on day 22 and Dula groups ( pretreated with 50, 100 or 150 μg/kg subcutaneous injection of Dula - once weekly for three weeks and AA on day 22 to induce ulcerative colitis, colon tissues and blood samples were taken on day 23. By generating colonic histological deviations such as inflammatory processes, goblet cell death, glandular hyperplasia, and mucosa ulcers, Dula dropped AA-induced colitis. Additionally, these modifications diminished blood lactate dehydrogenase (LDH), C-reactive protein (CRP), colon weight, and the weight/length ratio of the colon. In addition, Dula decreased the oxidative stress biomarker malondialdehyde (MDA) and increased the antioxidant enzymes (total antioxidant capacity (TAC), reduced glutathione (GSH), and superoxide dismutase (SOD) concentrations). Dula also significantly reduced the expression of transforming growth factor-1 (TGF-β1), phosphatidylinositol-3-kinase (PI3K), protein kinase B (AKT) signaling pathway, and the inflammatory cytokines: nuclear factor kappa B (NF-κB), interleukin-6 (IL-6), and interferon-γ (IFN-γ) in colonic cellular structures. In addition, Dula enforced the levels of glucagon-like peptide-1 (GLP-1) and trefoil factor-3 (TFF-3) that were crucial to intestinal mucosa regeneration and healing of wounds. By modulating TGF-β1 in conjunction with other inflammatory pathways like PI3K/AKT and NF-κB, regulating the oxidant/antioxidant balance, and improving the integrity of the intestinal barrier, Dula prevented AA-induced colitis in rats.
Collapse
Affiliation(s)
- Raghda N El Mahdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmacy Practice, Faculty of Pharmacy, Sinai University- Kantra Branch, Ismailia, Egypt
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Sally E Abu-Risha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
4
|
Kaden T, Alonso‐Román R, Stallhofer J, Gresnigt MS, Hube B, Mosig AS. Leveraging Organ-on-Chip Models to Investigate Host-Microbiota Dynamics and Targeted Therapies for Inflammatory Bowel Disease. Adv Healthc Mater 2025; 14:e2402756. [PMID: 39491534 PMCID: PMC12004439 DOI: 10.1002/adhm.202402756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/29/2024] [Indexed: 11/05/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic gastrointestinal disease with drastically increasing incidence rates. Due to its multifactorial etiology, a precise investigation of the pathogenesis is extremely difficult. Although reductionist cell culture models and more complex disease models in animals have clarified the understanding of individual disease mechanisms and contributing factors of IBD in the past, it remains challenging to bridge research and clinical practice. Conventional 2D cell culture models cannot replicate complex host-microbiota interactions and stable long-term microbial culture. Further, extrapolating data from animal models to patients remains challenging due to genetic and environmental diversity leading to differences in immune responses. Human intestine organ-on-chip (OoC) models have emerged as an alternative in vitro model approach to investigate IBD. OoC models not only recapitulate the human intestinal microenvironment more accurately than 2D cultures yet may also be advantageous for the identification of important disease-driving factors and pharmacological interventions targets due to the possibility of emulating different complexities. The predispositions and biological hallmarks of IBD focusing on host-microbiota interactions at the intestinal mucosal barrier are elucidated here. Additionally, the potential of OoCs to explore microbiota-related therapies and personalized medicine for IBD treatment is discussed.
Collapse
Affiliation(s)
- Tim Kaden
- Dynamic42 GmbH07745JenaGermany
- Institute of Biochemistry IICenter for Sepsis Control and CareJena University Hospital07747JenaGermany
| | - Raquel Alonso‐Román
- Department of Microbial Pathogenicity MechanismsLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute07745JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07745JenaGermany
- Junior Research Group Adaptive Pathogenicity StrategiesLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute07745JenaGermany
| | | | - Mark S. Gresnigt
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07745JenaGermany
- Junior Research Group Adaptive Pathogenicity StrategiesLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute07745JenaGermany
| | - Bernhard Hube
- Department of Microbial Pathogenicity MechanismsLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute07745JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07745JenaGermany
- Institute of MicrobiologyFaculty of Biological SciencesFriedrich Schiller University07743JenaGermany
| | - Alexander S. Mosig
- Institute of Biochemistry IICenter for Sepsis Control and CareJena University Hospital07747JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07745JenaGermany
| |
Collapse
|
5
|
Li Z, Chu T, Sun X, Zhuang S, Hou D, Zhang Z, Sun J, Liu Y, Li J, Bian Y. Polyphenols-rich Portulaca oleracea L. (purslane) alleviates ulcerative colitis through restiring the intestinal barrier, gut microbiota and metabolites. Food Chem 2025; 468:142391. [PMID: 39675274 DOI: 10.1016/j.foodchem.2024.142391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/03/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Ulcerative colitis (UC) is a recurrent intestinal disease caused by a complex of factors, and there are serious adverse effects and tolerance problems associated with the current long-term use of therapeutic drugs. The development of natural food sources and multi-targeted drugs for the treatment of UC is imminent. Portulaca oleracea L. (PO), as a vegetable, has been shown in studies to have an anti-UC effects. However, the relationship between the abundant active ingredients contained in Portulaca oleracea L. and the improvement of intestinal barrier, gut microbiota and metabolites is unclear. In the present study, Portulaca oleracea L. which was found to be rich in phenolic acid-based active ingredients, were effective in alleviating dextran sulfate sodium (DSS)-induced body weight loss, disease activity index (DAI) score and colon length in mice. It also decreased C-reactive protein (CRP) and myeloperoxidase (MPO) responses, reduced the permeation of fluorescein isothiocyanate (FITC)-dextran, lipopolysaccharide (LPS) and evans blue (EB), and improved histopathological scores. Meanwhile, in vitro and in vivo validation revealed the protective effects of purslane on the intestinal barrier indicators ZO-1, Occludin and Claudin-1, and inhibited the expression of inflammation-associated iNOS and NLRP3 proteins through the NF-κB signaling pathway. In addition, purslane increased the diversity of the intestinal flora, enhancing the proportion of the genera Butyricoccus, Dorea and Bifidobacterium and decreasing the percentage of Bacteroides, Turicibacter and Parabacteroides. Serum metabolomics analysis showed that the imbalance of 39 metabolites was significantly reversed after PO deployment. Enrichment analysis showed that Pentose phosphate pathway and Pyruvate metabolism pathway were the key pathways of PO against UC. Overall, purslane effectively improved the intestinal barrier disruption and intestinal inflammation by inhibiting the NF-κB signaling pathway, and adjusted the disorder of gut microbiota and metabolites to exert anti-UC effects.
Collapse
Affiliation(s)
- Zheng Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianjiao Chu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xin Sun
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shen Zhuang
- College of Veterinary Medicine & Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Dianbo Hou
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhaohan Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jialu Sun
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Jing Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yifei Bian
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
6
|
Zhang Y, Zhou M, Zhu L, Chen L, Zhang H, Huang Z, Zhou H. Tubeimoside I Inhibits the Proliferation of Liver Cancer Through Inactivating NF-κB Pathway by Regulating TNFAIP3 Expression. Drug Des Devel Ther 2025; 19:1895-1908. [PMID: 40098908 PMCID: PMC11912915 DOI: 10.2147/dddt.s507656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
Purpose This study aims to evaluate the therapeutic potential of tubeimoside I (TBMS1), a monomer compound extracted from the tubers of Chinese herb Bolbostemma paniculatum (Maxim). Franquet (Cucurbitaceae), in the treatment of liver cancer. Specifically, we sought to elucidate the underlying mechanisms through which TBMS1 exerts its anticancer effects. Methods The effects of TBMS1 on the viability, proliferation, and apoptosis of two liver cancer cell lines, MHCC97-H and SNU-449, were comprehensively assessed using Cell Counting Kit-8 (CCK-8), colony formation, 5-ethynyl-2'-deoxyuridine (EDU) assay, and flow cytometry assays. To uncover the molecular mechanisms, RNA sequencing was performed to identify the downstream targets of TBMS1. Additionally, we utilized network pharmacology to predict TBMS1 targets in liver cancer and employed Venn diagram analysis to integrate these predictions with our experimental findings. Pathway enrichment analysis was conducted using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases to elucidate the biological processes involved. Furthermore, a subcutaneous xenograft tumor model was established to investigate the in vivo antitumor efficacy of TBMS1. Results In vitro experiments demonstrated that TBMS1 significantly enhanced cell apoptosis and inhibited the growth of liver cancer cells. Both network pharmacology predictions and RNA-seq analyses revealed that the downstream target genes of TBMS1 were highly enriched in the NF-κB signaling pathway. Notably, we observed a significant upregulation of TNFα-induced protein 3 (TNFAIP3) expression with increasing concentrations of TBMS1. In vivo studies further confirmed that TBMS1 treatment dramatically reduced the volume and weight of liver cancer tumors compared to controls. Conclusion Our study provides compelling evidence that TBMS1 suppresses liver cancer progression by inactivating the NF-κB pathway and regulating TNFAIP3 expression. These findings offer novel insights and a theoretical basis for the development of targeted therapies for liver cancer.
Collapse
Affiliation(s)
- Yajun Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Mingqin Zhou
- Department of Critical Care Medicine, Cancer Hospital of Shantou University Medical College, Shantou, People’s Republic of China
| | - Liwen Zhu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Medical Innovation Technology Transformation Center of Shenzhen Second People’s Hospital, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Lichan Chen
- Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Haohua Zhang
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Medical Innovation Technology Transformation Center of Shenzhen Second People’s Hospital, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Zhen Huang
- Department of Laboratory Medicine of Pingshan District Maternal and Child Healthcare Hospital, Shenzhen, People’s Republic of China
| | - Hongzhong Zhou
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Medical Innovation Technology Transformation Center of Shenzhen Second People’s Hospital, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China
| |
Collapse
|
7
|
Li S, Wang H, Li B, Lu H, Zhao J, Gao A, An Y, Yang J, Ma T. Multi-Omics Analysis Reveals the Negative Effects of High-Concentrate Diets on the Colonic Epithelium of Dumont Lambs. Animals (Basel) 2025; 15:749. [PMID: 40076032 PMCID: PMC11898968 DOI: 10.3390/ani15050749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Feeding HC diets has been found to induce metabolic dysregulation in the colon. However, the mechanisms by which changes in colonic flora and metabolites damage the colonic epithelium are poorly studied. Therefore, the present experiment used a multi-omics technique to investigate the mechanism of colonic injury induced by high-concentrate diets in lambs. Twelve male Dumont lambs were randomly split into two groups: a low-concentrate diet (LC = concentrate/forage = 30:70) group and a high-concentrate diet (HC = concentrate/forage = 70:30) group. The results showed that the HC group presented significantly increased lipopolysaccharide (LPS) concentrations in the colonic epithelium and significantly decreased serum total cholesterol (TC), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) levels (p < 0.05), which led to cavities and inflammatory cell infiltration in the colonic epithelium. The HC group had significantly lower pH and less VFAs in colon contents, as well as a significantly increased abundance of bacteria of the genera [Eubacterium]_coprostanoligenes_group, Rikenellaceae_RC9_gut_group, Treponema, Clostridia_UCG-014, Alistipes, Ruminococcus, Christensenellaceae_R-7_group, UCG-002, Bacteroidales_RF16_group and Lachnospiraceae_AC2044_group compared to the LC diet group. These microorganisms significantly increased the level of metabolites of cholic acid, chenodeoxycholic acid, LysoPA (P-16:0/0:0), methapyrilene, and fusaric acid. A transcriptome analysis showed that cytokine-cytokine receptor interaction, glutathione metabolism, and the peroxisome signaling pathway were downregulated in the colon epithelium of the lambs fed the HC diet. Therefore, the HC diet caused epithelial inflammation and oxidative damage by affecting the interaction between the microbial flora of the colon and metabolites and the host epithelium, which eventually disrupted colon homeostasis and had a negative impact on sheep health.
Collapse
Affiliation(s)
- Shufang Li
- Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.); (B.L.); (H.L.); (J.Z.); (J.Y.); (T.M.)
| | - Hairong Wang
- Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.); (B.L.); (H.L.); (J.Z.); (J.Y.); (T.M.)
| | - Boyang Li
- Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.); (B.L.); (H.L.); (J.Z.); (J.Y.); (T.M.)
| | - Henan Lu
- Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.); (B.L.); (H.L.); (J.Z.); (J.Y.); (T.M.)
| | - Jianxin Zhao
- Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.); (B.L.); (H.L.); (J.Z.); (J.Y.); (T.M.)
| | - Aiwu Gao
- Food Science, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Yawen An
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010018, China;
| | - Jinli Yang
- Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.); (B.L.); (H.L.); (J.Z.); (J.Y.); (T.M.)
| | - Tian Ma
- Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.); (B.L.); (H.L.); (J.Z.); (J.Y.); (T.M.)
| |
Collapse
|
8
|
Zhao L, Yu J, Liu Y, Liu Y, Zhao Y, Li MY. The major roles of intestinal microbiota and TRAF6/NF-κB signaling pathway in acute intestinal inflammation in mice, and the improvement effect by Hippophae rhamnoides polysaccharide. Int J Biol Macromol 2025; 296:139710. [PMID: 39793780 DOI: 10.1016/j.ijbiomac.2025.139710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Acute enteritis, an intestinal disease with intestinal inflammation and injury as the main pathological manifestations. Inhibiting the inflammatory response is critical to the treatment of acute enteritis. Previous studies have shown that the Hippophae rhamnoides polysaccharide (HRP) has strong immune-enhancing effects. However, their functions regarding the intestines and the underlying mechanism are still unclear. In this study, the role of HRP in lipopolysaccharide (LPS)-induced acute enteritis in mice and its related mechanisms are discussed from two aspects: intestinal inflammation and intestinal microbiota. Kunming mice were inoculated with LPS to establish animal models of acute enteritis. The results showed that HRP attenuated the histological damage and maintained the intestine mucosal barrier via up-regulating the expression of occludin, claudin-1, and zona occludens-1 (ZO-1), and suppressing the levels of pro-inflammatory cytokines (tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β)). The relative mRNA and protein levels of nuclear factor-kappa B p65 (NF-κBp65) and tumor necrosis factor-receptor-associated factor 6 (TRAF6) in the intestine tissues of LPS-induced acute enteritis mice significantly increased, whereas these adverse changes were alleviated in the HRP intervention groups. Notably, HRP may regulate the expression of the TRAF6/NF-κB signaling pathway by affecting the diversity of the intestinal microbiota. Microbiota analysis showed that HRP promoted the proliferation of beneficial bacteria, including Clostridia_UCG-014, Candidatus_Saccharimonas, Lachnospiraceae_NK4A136_group, Bacteroidota, Deferribacterota, and reduced the abundance of Atopostipes, Corynebacterium, Actinobacteriota, and Desulfobacterota. The studies conformed that the gut microbiota is crucial in HRP-mediated immunity regulation. HRP shows great potential as an immune enhancer and a natural medicine for treating intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Lei Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, Heilongjiang 163319, China; Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs PR China, Daqing, Heilongjiang 163319, China
| | - Jie Yu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Yunzhuo Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Yihan Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Yiran Zhao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Mu-Yang Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, Heilongjiang 163319, China; Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs PR China, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
9
|
Yang M, Lu Y, Jin S, Liu W, Yao M, Jiang Z, Shu Y. Postoperative Tongqi Formula ameliorates postoperative ileus via p38 MAPK signaling pathway and metabolic disorder. Heliyon 2025; 11:e41217. [PMID: 39811334 PMCID: PMC11732544 DOI: 10.1016/j.heliyon.2024.e41217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Aim of the study This study investigated the mechanism by which the Postoperative Tongqi Formula (PTQF) treats postoperative ileus (POI) through regulation of the p38 MAPK signaling pathway, Zona occludens 1 (ZO-1) protein, and metabolism. Methods The primary components of PTQF were characterized using UHPLC-Q-TOF-MS/MS. The identified compounds subsequently employed network pharmacology to predict the signaling pathways associated with the inflammatory phase of POI. The anti-inflammatory effects of PTQF were evaluated in vitro using RAW264.7 cells. A rat model of POI was used to assess efficacy based on the spleen index and charcoal powder propulsion rat in the small intestine. Furthermore, pathological damage to the small intestine was analyzed using hematoxylin and eosin (HE) staining as well as immunofluorescence to evaluate ZO-1 protein expression. Inflammatory cytokine levels were quantified using enzyme-linked immunosorbent assay (ELISA). Subsequently, Western blot analysis was performed to examine the p38 MAPK signaling pathway. Finally, a metabolomics approach was employed to analyze serum samples to identify potential metabolic pathways. Results A total of 130 chemical constituents were identified in PTQF. Following the network pharmacology analysis of these compounds, the p38 MAPK signaling pathway was chosen for further investigation. In vitro, PTQF effectively inhibited inflammatory responses in RAW264.7 cells. Results from the spleen index and charcoal powder propulsion rate indicated that PTQF alleviated the inflammatory phase of POI in rats by mitigating systemic and intestinal inflammation. This was supported by reduced levels of inflammatory factors, modulation of ZO-1 protein expression, and a decrease in p38 MAPK phosphorylation levels. Furthermore, serum metabolomics revealed nine differential metabolites linked to intestinal inflammation. Conclusion PTQF mitigates inflammation and intestinal damage in POI rats by modulating inflammatory factors, ZO-1 protein expression, the p38 MAPK signaling pathway, and metabolic disturbances.
Collapse
Affiliation(s)
- Mengmeng Yang
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuxuan Lu
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shufan Jin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wanqiu Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Miaoshi Yao
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Zhiwei Jiang
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Yachun Shu
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| |
Collapse
|
10
|
Zhang M, Liu T, Luo L, Xie Y, Wang F. Biological characteristics, immune infiltration and drug prediction of PANoptosis related genes and possible regulatory mechanisms in inflammatory bowel disease. Sci Rep 2025; 15:2033. [PMID: 39814753 PMCID: PMC11736032 DOI: 10.1038/s41598-024-84911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025] Open
Abstract
PANoptosis is one of several modes of programmed cell death (PCD) and plays an important role in many inflammatory and immune diseases. The role of PANoptosis in inflammatory bowel disease (IBD) is currently unknown. Differentially expressed PANoptosis-related genes (DE-PRGs) were identified, and pathway enrichment analyses were performed. LASSO regression model construction, a nomogram model, calibration curves, ROC and DCA curves were used to evaluate the predictive value of the model. Predicts transcription factors (TFs) and small-molecule drugs of DE-PRGs were analysed. Model genes and immuno-infiltration were analysed. The PANoptosis features of IBD include 12 genes: OGT, TLR2, GZMB, TLR4, PPIF, YBX3, CASP5, BCL2L1, CASP6, MEFV, GSDMB and BAX. The enrichment analysis suggested that these genes were related to TNF signalling, NF-κB, pyroptosis and necroptosis. Machine learning identified three model genes: OGT, GZMB and CASP5. The nomogram model, calibration curves, ROC and DCA curves have strong predictive value. Immuno-infiltration analysis revealed that immune cell infiltration was increased in patients with IBD, and the model genes were closely related to the infiltration of various immune cells. The TFs associated with DE-PRGs were RELA, NFKB1, HIF1A, TP53 and SP1. In addition, the Connectivity Map (CMap) database identified the top 10 small-molecule compounds, including buspirone, chloroquine, spectinomycin and chlortetracycline. This study indicate that DE-PRGs model genes have good predictive ability for IBD. Moreover, PANoptosis may mediate the process of IBD through TNF signalling, NF-κB, pyroptosis, necroptosis and immune mechanisms. These results present a new horizon for the research and treatment of IBD.
Collapse
Affiliation(s)
- Minglin Zhang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Tong Liu
- Department of General Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Lijun Luo
- School of Medical Laboratory Science, Hebei North University, Zhangjiakou, Hebei, China
| | - Yuxin Xie
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, 201 Dalian Street, Zunyi, 563003, Guizhou, China.
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
11
|
Zhang XW, Li X, Yin Y, Wang M, Wang YF, Chen JY, Zhao YR. Effects of ursolic acid on growth performance, serum biochemistry, antioxidant capacity, and intestinal health of broilers. Animal 2025; 19:101385. [PMID: 39708735 DOI: 10.1016/j.animal.2024.101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024] Open
Abstract
Previous studies have shown that adding 450 mg/kg of ursolic acid (UA) can improve the growth performance of broilers. However, the specific mechanism is still unclear. Therefore, the purpose of this study was to further explore whether UA promotes the growth of broilers by affecting the intestinal environment of broilers. We randomly divided 120 broilers with similar BW (46.53 ± 0.05 g) into two groups. Each group had six replicates, with 10 broilers per replicate. The broilers were fed either the corn-soybean meal-basal diet (CON group) or the corn-soybean meal-basal diet supplemented with 450 mg/kg UA (UA group). This study lasted 42 days. Adding UA increased the daily weight gain and feed conversion ratio of broilers (P < 0.05). The UA group exhibited reduced aspartate aminotransferase, total cholesterol, interleukin 6 and interleukin 1, and triacylglycerol levels, with increased interleukin 10 and high-density lipoprotein cholesterol in serum (P < 0.05). The UA supplementation improved total antioxidant capacity, total superoxide dismutase, and glutathione peroxidase activity in serum (P < 0.05), and increased these levels in the jejunum (P < 0.05). It reduced malondialdehyde concentration in the jejunum and ileum (P < 0.05), improved jejunal morphology by increasing villus height and villus-to-crypt ratio, and decreased crypt depth (P < 0.05). Gene expression of zona occludens 1 and Claudin-1 was higher, while interleukin 6 was lower in the UA group (P < 0.05). Additionally, interleukin 10 gene expression in jejunal mucosa was higher (P < 0.05). Significant differences were observed in the abundance of Bacteroides, proteobacteria, and desulfurisation bacteria (P < 0.05), with higher Barnesiella and Clostridia_UCG-014, and lower Romboutsia in the UA group (P < 0.05). Barnesiella negatively correlated with interleukin 6, interleukin 1, and triacylglycerol, but positively correlated with interleukin 10 (P < 0.05). In conclusion, adding 450 mg/kg UA to broiler feed can improve serum and jejunal antioxidant capacity, reduce jejunal and ileal inflammation, improve jejunal morphology, and regulate caecal microbiota structure composition, promoting broiler growth.
Collapse
Affiliation(s)
- X W Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - X Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Y Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - M Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Y F Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - J Y Chen
- Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Y R Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
12
|
Lin J, Yuan M, Shi HY, Liu Q, Du S, Zhang MX, Li QQ, Yang ZB, Lin P. Phellinus linteus (Agaricomycetes) Polysaccharides Ameliorate Inflammatory Injury in H2O2-Induced Caco-2 Cells and DSS-Induced Ulcerative Colitis Mice. Int J Med Mushrooms 2025; 27:17-32. [PMID: 40094337 DOI: 10.1615/intjmedmushrooms.2025058082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Phellinus linteus (Agaricomycetes) is a valuable medicinal mushroom traditionally used as a food supplement and medicinal ingredient. Polysaccharides of Ph. linteus (PLP) possess strong anti-inflammatory effects and gut microbiota modulating properties. However, the mechanism of its efficacy in ulcerative colitis (UC) remains unclear. This study utilized 1mM H2O2 to induce an in vitro model of UC in Caco-2 cells. Additionally, a 3% solution of dextran sulfate sodium salt (DSS) was employed to establish an in vivo UC model in mice. After treating the cells with PLP at various concentrations, there was a significant reduction in the mRNA expression of TNF-α and IL-6, and the nuclear factor-κB (NF-κB) signaling pathway was also inhibited. Concurrently, symptoms such as colon shortening, weight loss, and a decrease in disease activity index (DAI) scores were significantly improved in UC mice. Additionally, the treatment led to downregulated expression of TNF-α and IFN-γ mRNA in colon tissues. PLP had shown potential in reducing inflammation and oxidative stress in Caco-2 cells, demonstrating therapeutic effects in treating UC-like inflammation by inhibiting the NF-κ signaling pathway and activating the nuclear factor erythroid derived 2-like 2(Nrf2)/heme oxygenase-1(HO-1) signaling pathway. These findings suggest that PLP has great potential for further investigation and development in UC treatment.
Collapse
Affiliation(s)
- Jun Lin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Meng Yuan
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Hong-Yu Shi
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Qiang Liu
- Shandong Focusfreda Biotech Co. Ltd., Qufu 273165, P.R. China
| | - Shuai Du
- Shandong Focusfreda Biotech Co. Ltd., Qufu 273165, P.R. China
| | - Mei-Xia Zhang
- Shandong Focusfreda Biotech Co. Ltd., Qufu 273165, P.R. China
| | - Qu-Quan Li
- Shandong Focusfreda Biotech Co. Ltd., Qufu 273165, P.R. China
| | - Zhen-Bang Yang
- Shandong Focusfreda Biotech Co. Ltd., Qufu 273165, P.R. China
| | - Pei Lin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Ma R, Liang S, Zeng W, Li J, Lai Y, Yang X, Diao F. Single-cell RNA sequencing reveals the important role of Dcaf17 in spermatogenesis of golden hamsters†. Biol Reprod 2024; 111:1326-1340. [PMID: 39239833 DOI: 10.1093/biolre/ioae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/10/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024] Open
Abstract
Dcaf17, also known as DDB1- and CUL4-associated factor 17, is a member of the DCAF family and acts as the receptor for the CRL4 ubiquitin E3 ligase complex. Several previous studies have reported that mutations in Dcaf17 cause Woodhouse-Sakati syndrome, which results in oligoasthenoteratozoospermia and male infertility. As a model to explore the role of Dcaf17 in the male reproductive system, we created Dcaf17-deficient male golden hamsters using CRISPR-Cas9 technology; the results of which demonstrate that deletion of Dcaf17 led to abnormal spermatogenesis and infertility. To uncover the underlying molecular mechanisms involved, we conducted single cell Ribonucleic Acid sequencing analysis to evaluate the effect of Dcaf17 deficiency on transcriptional levels in spermatogenic cells during various stages of spermatogenesis. These data emphasize the significant regulatory role played by Dcaf17 in early spermatogenic cells, with many biological processes being affected, including spermatogenesis and protein degradation. Dysregulation of genes associated with these functions ultimately leads to abnormalities. In summary, our findings highlight the critical function of Dcaf17 in spermatogenesis and clarify the specific stage at which Dcaf17 exerts its effects, while simultaneously providing a novel animal model for the study of Dcaf17.
Collapse
Affiliation(s)
- Rongzhu Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Jiangsu Province, China
| | - Shuang Liang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Department of Cell Biology, Animal Core facility, Key Laboratory of Model Animal, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing China
| | - Wentao Zeng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Department of Cell Biology, Animal Core facility, Key Laboratory of Model Animal, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing China
| | - Jianmin Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Department of Cell Biology, Animal Core facility, Key Laboratory of Model Animal, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing China
| | - Yana Lai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Department of Cell Biology, Animal Core facility, Key Laboratory of Model Animal, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing China
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Jiangsu Province, China
| | - Feiyang Diao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Jiangsu Province, China
| |
Collapse
|
14
|
Wang YN, Zhai XY, Wang Z, Gao CL, Mi SC, Tang WL, Fu XM, Li HB, Yue LF, Li PF, Xi SY. Jianpi-Huatan-Huoxue-Anshen formula ameliorates gastrointestinal inflammation and microecological imbalance in chemotherapy-treated mice transplanted with H22 hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16:4209-4231. [DOI: 10.4251/wjgo.v16.i10.4209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Jianpi-Huatan-Huoxue-Anshen formula [Tzu-Chi cancer-antagonizing & life-protecting II decoction (TCCL)] is a Chinese medical formula that has been clinically shown to reduce the gastrointestinal side effects of chemotherapy in cancer patients and improve their quality of life. However, its effect and mechanism on the intestinal microecology after chemotherapy are not yet clear.
AIM To discover the potential mechanisms of TCCL on gastrointestinal inflammation and microecological imbalance in chemotherapy-treated mice transplanted with hepatocellular carcinoma (HCC).
METHODS Ninety-six mice were inoculated subcutaneously with HCC cells. One week later, the mice received a large dose of 5-fluorouracil by intraperitoneal injection to establish a HCC chemotherapy model. Thirty-six mice were randomly selected before administration, and feces, ileal tissue, and ileal contents were collected from each mouse. The remaining mice were randomized into normal saline, continuous chemotherapy, Yangzheng Xiaoji capsules-treated, and three TCCL-treated groups. After treatment, feces, tumors, liver, spleen, thymus, stomach, jejunum, ileum, and colon tissues, and ileal contents were collected. Morphological changes, serum levels of IL-1β, IL-6, IL-8, IL-10, IL-22, TNF-α, and TGF-β, intestinal SIgA, and protein and mRNA expression of ZO-1, NF-κB, Occludin, MUC-2, Claudin-1, and IκB-α in colon tissues were documented. The effect of TCCL on the abundance and diversity of intestinal flora was analyzed using 16S rDNA sequencing.
RESULTS TCCL treatment improved thymus and spleen weight, thymus and spleen indexes, and body weight, decreased tumor volumes and tumor tissue cell density, and alleviated injury to gastric, ileal, and colonic mucosal tissues. Among proteins and genes associated with inflammation, IL-10, TGF-β, SIgA, ZO-1, MUC-2, and Occludin were upregulated, whereas NF-κB, IL-1β, IL-6, TNF-α, IL-22, IL-8, and IκB-α were downregulated. Additionally, TCCL increased the proportions of fecal Actinobacteria, AF12, Adlercreutzia, Clostridium, Coriobacteriaceae, and Paraprevotella in the intermediate stage of treatment, decreased the proportions of Mucipirillum, Odoribacter, RF32, YS2, and Rikenellaceae but increased the proportions of p_Deferribacteres and Lactobacillus at the end of treatment. Studies on ileal mucosal microbiota showed similar findings. Moreover, TCCL improved community richness, evenness, and the diversity of fecal and ileal mucosal flora.
CONCLUSION TCCL relieves pathological changes in tumor tissue and chemotherapy-induced gastrointestinal injury, potentially by reducing the release of pro-inflammatory factors to repair the gastrointestinal mucosa, enhancing intestinal barrier function, and maintaining gastrointestinal microecological balance. Hence, TCCL is a very effective adjuvant to chemotherapy.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of TCM, Xiang’an Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Xiang-Yang Zhai
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Zheng Wang
- Department of TCM, Xiang’an Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Chun-Ling Gao
- Department of Radiotherapy, Chenggong Hospital of Xiamen University, PLA 73rd Army Hospital, Xiamen 361003, Fujian Province, China
| | - Sui-Cai Mi
- Department of Oncology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361015, Fujian Province, China
| | - Wen-Li Tang
- Department of TCM, Xiang’an Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Xue-Min Fu
- Department of TCM, Xiang’an Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Huai-Bang Li
- Department of TCM, Xiang’an Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Li-Feng Yue
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Peng-Fei Li
- Department of TCM, Xiang’an Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Sheng-Yan Xi
- Department of TCM, Xiang’an Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| |
Collapse
|
15
|
He X, Yang Y, Zhou S, Wei Q, Zhou H, Tao J, Yang G, You M. Alterations in microbiota-metabolism-circRNA crosstalk in autism spectrum disorder-like behaviours caused by maternal exposure to glyphosate-based herbicides in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117060. [PMID: 39299209 DOI: 10.1016/j.ecoenv.2024.117060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Epidemiological evidence indicates exposure to glyphosate-based herbicides (GBHs) increases the risk for autism spectrum disorder (ASD). The gut microbiota has been found to influence ASD behaviours through the microbiota-gut-brain axis. However, the underlying links between early life GBH exposure and ASD-like phenotypes through the microbiota-gut-brain axis remain unclear. Therefore, we exposed mice to low-dose GBH (0.10, 0.25, 0.50, and 1.00 %) and determined the effects on ASD-like behaviours. Furthermore, three kinds of omics (gut microbiomics, metabolomics, and transcriptomics) were conducted to investigate the effects of GBH exposure on gut microbiota, gut metabolites, and circular RNAs (circRNAs) in the prefrontal cortex (PFC) using a cross-generational mouse model. Behavioural analyses suggested social impairment and repetitive/stereotypic behaviours in the GBH-exposed offspring. Furthermore, maternal exposure to glyphosate significantly altered the ASD-associated gut microbiota of offspring, and ASD-associated gut metabolites were identified. Specifically, we found that alterations in the gut microenvironment may contribute to changes in gut permeability and the blood-brain barrier, which are related to changes in the levels of circRNAs in the PFC. Our results suggest a potential effect of circRNAs through the disruption of the gut-brain interaction, which is an important factor in the pathogenesis of ASD in offspring induced by maternal exposure to GBH.
Collapse
Affiliation(s)
- Xiu He
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Yongyong Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Shun Zhou
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Qinghao Wei
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Hao Zhou
- Department of Developmental Behavioural Pediatrics, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Junyan Tao
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Guanghong Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China; Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China.
| | - Mingdan You
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 561113, China.
| |
Collapse
|
16
|
Oumeddour DZ, Al-Dalali S, Zhao L, Zhao L, Wang C. Recent advances on cyanidin-3-O-glucoside in preventing obesity-related metabolic disorders: A comprehensive review. Biochem Biophys Res Commun 2024; 729:150344. [PMID: 38976946 DOI: 10.1016/j.bbrc.2024.150344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Anthocyanins, found in various pigmented plants as secondary metabolites, represent a class of dietary polyphenols known for their bioactive properties, demonstrating health-promoting effects against several chronic diseases. Among these, cyanidin-3-O-glucoside (C3G) is one of the most prevalent types of anthocyanins. Upon consumption, C3G undergoes phases I and II metabolism by oral epithelial cells, absorption in the gastric epithelium, and gut transformation (phase II & microbial metabolism), with limited amounts reaching the bloodstream. Obesity, characterized by excessive body fat accumulation, is a global health concern associated with heightened risks of disability, illness, and mortality. This comprehensive review delves into the biodegradation and absorption dynamics of C3G within the gastrointestinal tract. It meticulously examines the latest research findings, drawn from in vitro and in vivo models, presenting evidence underlining C3G's bioactivity. Notably, C3G has demonstrated significant efficacy in combating obesity, by regulating lipid metabolism, specifically decreasing lipid synthesis, increasing fatty acid oxidation, and reducing lipid accumulation. Additionally, C3G enhances energy homeostasis by boosting energy expenditure, promoting the activity of brown adipose tissue, and stimulating mitochondrial biogenesis. Furthermore, C3G shows potential in managing various prevalent obesity-related conditions. These include cardiovascular diseases (CVD) and hypertension through the suppression of reactive oxygen species (ROS) production, enhancement of endogenous antioxidant enzyme levels, and inhibition of the nuclear factor-kappa B (NF-κB) signaling pathway and by exercising its cardioprotective and vascular effects by decreasing pulmonary artery thickness and systolic pressure which enhances vascular relaxation and angiogenesis. Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) are also managed by reducing gluconeogenesis via AMPK pathway activation, promoting autophagy, protecting pancreatic β-cells from oxidative stress and enhancing glucose-stimulated insulin secretion. Additionally, C3G improves insulin sensitivity by upregulating GLUT-1 and GLUT-4 expression and regulating the PI3K/Akt pathway. C3G exhibits anti-inflammatory properties by inhibiting the NF-κB pathway, reducing pro-inflammatory cytokines, and shifting macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. C3G demonstrates antioxidative effects by enhancing the expression of antioxidant enzymes, reducing ROS production, and activating the Nrf2/AMPK signaling pathway. Moreover, these mechanisms also contribute to attenuating inflammatory bowel disease and regulating gut microbiota by decreasing Firmicutes and increasing Bacteroidetes abundance, restoring colon length, and reducing levels of inflammatory cytokines. The therapeutic potential of C3G extends beyond metabolic disorders; it has also been found effective in managing specific cancer types and neurodegenerative disorders. The findings of this research can provide an important reference for future investigations that seek to improve human health through the use of naturally occurring bioactive compounds.
Collapse
Affiliation(s)
- Dounya Zad Oumeddour
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Sam Al-Dalali
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China; Department of Food Science and Technology, Faculty of Agriculture and Food Science, Ibb University, Ibb, 70270, Yemen.
| | - Liang Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Lei Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Chengtao Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
17
|
Li Y, Zhou E, Yu Y, Wang B, Zhang L, Lei R, Xue B, Tian X, Niu J, Liu J, Zhang K, Luo B. Butyrate attenuates cold-induced hypertension via gut microbiota and activation of brown adipose tissue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173835. [PMID: 38851345 DOI: 10.1016/j.scitotenv.2024.173835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVE Chronic exposure to cold temperature is known to elevate blood pressure, leading to a condition known as cold-induced hypertension (CIH). Our previous research suggested correlations between alterations in gut microbiota, decrease in butyrate level, and the onset and progression of CIH. However, the role of butyrate in CIH and the underlying mechanisms need further investigation. METHODS We exposed Specific Pathogen Free (SPF) rats to continuous cold temperature (4 ± 1 °C) for 6 weeks to establish a CIH rat model. Rats were divided into different groups by dose and duration, and the rats under cold were administered with butyrate (0.5 or 1 g/kg/day) daily. We assessed hypertension-associated phenotypes, pathological morphological changes, and endocrine-related phenotypes of brown adipose tissue (BAT). The effects of butyrate on gut microbiota and intestinal content metabolism were evaluated by 16s RNA sequencing and non-targeted metabolomics, respectively. RESULTS The systolic blood pressure (SBP) of rats exposed to cold after supplemented with butyrate were significantly lower than that of the Cold group. Butyrate may increase the species, abundance, and diversity of gut microbiota in rats. Specifically, butyrate intervention enriched beneficial bacterial genera, such as Lactobacillaceae, and decreased the levels of harmful bacteria genera, such as Actinobacteriota and Erysipeiotrichaceae. Cold exposure significantly increased BAT cells and the number of mitochondria. After butyrate supplementation, the levels of peroxisome proliferator-activated receptor gamma coactivator 1a and fibroblast growth factor 21 in BAT were significantly elevated (P < 0.05), and the volume and number of lipid droplets increased. The levels of ANG II and high-density lipoprotein were elevated in the Cold group but decreased after butyrate supplementation. CONCLUSION Butyrate may attenuate blood pressure in CIH by promoting the growth of beneficial bacteria and the secretion of beneficial derived factors produced by BAT, thus alleviating the elevation of blood pressure induced by cold. This study demonstrates the anti-hypertensive effects of butyrate and its potential therapeutic mechanisms, offering novel insights to the prevention and treatment of CIH in populations living or working in cold environments.
Collapse
Affiliation(s)
- Yanlin Li
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Erkai Zhou
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Yunhui Yu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Bo Wang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Ling Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Ruoyi Lei
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Baode Xue
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Xiaoyu Tian
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Jingping Niu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Jiangtao Liu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China.
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, One University Place, Rensselaer, NY 12144, USA.
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, People's Republic of China; Shanghai Typhoon Institute, China Meteorological Administration, Shanghai 200030, People's Republic of China.
| |
Collapse
|
18
|
Sheng C, Yao C, Wang J, Mao Y, Fu L, Chen S. Cyclophilin J limits linear ubiquitin signaling and controls colorectal cancer progression. J Biol Chem 2024; 300:107610. [PMID: 39074635 PMCID: PMC11386053 DOI: 10.1016/j.jbc.2024.107610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Exorbitant sustained inflammation is closely linked to inflammation-associated disorders, including cancer. The initiation of gastrointestinal cancers such as colorectal cancer is frequently accelerated by uncontrollable chronic inflammation which is triggered by excessive activation of nuclear factor kappa-B (NF-κB) signaling. Linear ubiquitin chains play an important role in activating canonical NF-κB pathway. The only known E3 complex, linear ubiquitin chain assembly complex is responsible for the synthesis of linear ubiquitin chains, thus leading to the activation of NF-κB axis and promoting the development of inflammation and inflammation-associated cancers. We report here cyclophilin J (CYPJ) which is a negative regulator of the linear ubiquitin chain assembly complex. The N terminus of CYPJ binds to the second Npl4 zinc finger (NZF) domain of HOIL-1-interacting protein and the ubiquitin-like domain of Shank-associated RH domain-interacting protein to disrupt the interaction between HOIL-1-interacting protein and Shank-associated RH domain-interacting protein and thus restrains linear ubiquitin chain synthesis and NF-κB activation. Cypj-deficient mice are highly susceptible to dextran sulfate sodium-induced colitis and dextran sulfate sodium plus azoxymethane-induced colon cancer. Moreover, CYPJ expression is induced by hypoxia. Patients with high expression of both CYPJ and hypoxia-inducible factor-1α have longer overall survival and progression-free survival. These results implicate CYPJ as an unexpected robust attenuator of inflammation-driven tumorigenesis that exerts its effects by controlling linear ubiquitin chain synthesis in NF-κB signal pathway.
Collapse
Affiliation(s)
- Chunjie Sheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China.
| | - Chen Yao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Yizhi Mao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Lingyi Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Shuai Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China.
| |
Collapse
|
19
|
Xu R, Du W, Yang Q, Du A. ITGB2 related to immune cell infiltration as a potential therapeutic target of inflammatory bowel disease using bioinformatics and functional research. J Cell Mol Med 2024; 28:e18501. [PMID: 39088353 PMCID: PMC11293422 DOI: 10.1111/jcmm.18501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 08/03/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic systemic inflammatory condition regarded as a major risk factor for colitis-associated cancer. However, the underlying mechanisms of IBD remain unclear. First, five GSE data sets available in GEO were used to perform 'batch correction' and Robust Rank Aggregation (RRA) to identify differentially expressed genes (DEGs). Candidate molecules were identified using CytoHubba, and their diagnostic effectiveness was predicted. The CIBERSORT algorithm evaluated the immune cell infiltration in the intestinal epithelial tissues of patients with IBD and controls. Immune cell infiltration in the IBD and control groups was determined using the least absolute shrinkage selection operator algorithm and Cox regression analysis. Finally, a total of 51 DEGs were screened, and nine hub genes were identified using CytoHubba and Cytoscape. GSE87466 and GSE193677 were used as extra data set to validate the expression of the nine hub genes. CD4-naïve T cells, gamma-delta T cells, M1 macrophages and resting dendritic cells (DCs) are the main immune cell infiltrates in patients with IBD. Signal transducer and activator of transcription 1, CCR5 and integrin subunit beta 2 (ITGB2) were significantly upregulated in the IBD mouse model, and suppression of ITGB2 expression alleviated IBD inflammation in mice. Additionally, the expression of ITGB2 was upregulated in IBD-associated colorectal cancer (CRC). The silence of ITGB2 suppressed cell proliferation and tumour growth in vitro and in vivo. ITGB2 resting DCs may provide a therapeutic strategy for IBD, and ITGB2 may be a potential diagnostic marker for IBD-associated CRC.
Collapse
Affiliation(s)
- Rong Xu
- Department of Pathology, Changde Hospital, Xiangya School of MedicineCentral South University (The First People's Hospital of Changde City)ChangdeHunanChina
| | - Wei Du
- Department of Pathology, Changde Hospital, Xiangya School of MedicineCentral South University (The First People's Hospital of Changde City)ChangdeHunanChina
| | - Qinglong Yang
- Department of General SurgeryGuizhou Provincial People's HospitalGuiyangGuizhouChina
| | - Ashuai Du
- Department of Infectious DiseasesGuizhou Provincial People's HospitalGuiyangGuizhouChina
| |
Collapse
|
20
|
Kazemifard N, Farmani M, Baradaran Ghavami S, Kazemi M, Shahrokh S, Asadzadeh Aghdaei H, Zali M. A prediction of the CRNDE role by modulating NF-κB pathway in inflammatory bowel disease (IBD). Biochem Biophys Rep 2024; 38:101731. [PMID: 38766384 PMCID: PMC11101873 DOI: 10.1016/j.bbrep.2024.101731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate multiple pathways and cellular mechanisms. Recent research has emphasized their involvement in the pathogenesis of complex diseases, such as Inflammatory Bowel Disease (IBD) which is characterized by chronic inflammation of the intestines. The two most common types of IBD are ulcerative colitis and Crohn's disease. CRNDE lncRNA was initially detected in colorectal cancer (CRC) and found to be involved in the tumorigenesis pathways. Further studies revealed the role of CRNDE in activating inflammation and promoting the release of inflammatory cytokines. This study utilizes the RNA-seq data analysis and bioinformatics tools to clarify the role of CRNDE in the IBD pathogenesis and confirms its expression in inflamed HT-29 and Caco-2 cell lines and also colonic and blood samples of UC patients and controls ex vivo. Based on our results, CRNDE was significantly upregulated in IBD samples compared to controls in RNA-seq data analysis and Real-time PCR of inflamed HT-29 cell line and colonic biopsies from UC patients. Additionally, predicted that its expression is positively correlated with the pro-inflammatory cytokines production. CRNDE interactions was investigated with several inflammation-related miRNAs and regulatory proteins computationally. Thus, CRNDE upregulation in the colon of IBD patients could be involved in IBD pathogenesis by promoting inflammatory pathways and targeting anti-inflammatory miRNAs.
Collapse
Affiliation(s)
- Nesa Kazemifard
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Farmani
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Baradaran Ghavami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Reproductive Sciences and Sexual Health Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shabnam Shahrokh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Burgos-Molina AM, Téllez Santana T, Redondo M, Bravo Romero MJ. The Crucial Role of Inflammation and the Immune System in Colorectal Cancer Carcinogenesis: A Comprehensive Perspective. Int J Mol Sci 2024; 25:6188. [PMID: 38892375 PMCID: PMC11172443 DOI: 10.3390/ijms25116188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic inflammation drives the growth of colorectal cancer through the dysregulation of molecular pathways within the immune system. Infiltration of immune cells, such as macrophages, into tumoral regions results in the release of proinflammatory cytokines (IL-6; IL-17; TNF-α), fostering tumor proliferation, survival, and invasion. Tumors employ various mechanisms to evade immune surveillance, effectively 'cloaking' themselves from detection and subsequent attack. A comprehensive understanding of these intricate molecular interactions is paramount for advancing novel strategies aimed at modulating the immune response against cancer.
Collapse
Affiliation(s)
- Antonio Manuel Burgos-Molina
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
| | - Teresa Téllez Santana
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
- Research Network on Chronic Diseases, Primary Care, and Health Promotion (RICAPPS), Carlos III Health Institute (Instituto de Salud Carlos III), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
- Málaga Biomedical Research Institute (Instituto de Investigación Biomédica de Málaga, IBIMA), Calle Doctor Miguel Díaz Recio, 28, 29010 Málaga, Spain
| | - Maximino Redondo
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
- Research Network on Chronic Diseases, Primary Care, and Health Promotion (RICAPPS), Carlos III Health Institute (Instituto de Salud Carlos III), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
- Málaga Biomedical Research Institute (Instituto de Investigación Biomédica de Málaga, IBIMA), Calle Doctor Miguel Díaz Recio, 28, 29010 Málaga, Spain
- Research Unit, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Spain
| | - María José Bravo Romero
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
| |
Collapse
|
22
|
Deng X, Luo Y, Lu M, Lin Y, Ma L. Identification of GMFG as a novel biomarker in IgA nephropathy based on comprehensive bioinformatics analysis. Heliyon 2024; 10:e28997. [PMID: 38601619 PMCID: PMC11004809 DOI: 10.1016/j.heliyon.2024.e28997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Background IgA nephropathy (IgAN) stands as the most prevalent form of glomerulonephritis and ranks among the leading causes of end-stage renal disease worldwide. Regrettably, we continue to grapple with the absence of dependable diagnostic markers and specific therapeutic agents for IgAN. Therefore, this study endeavors to explore novel biomarkers and potential therapeutic targets in IgAN, while also considering their relevance in the context of tumors. Methods We gathered IgAN datasets from the Gene Expression Omnibus (GEO) database. Subsequently, leveraging these datasets, we conducted an array of analyses, encompassing differential gene expression, weighted gene co-expression network analysis (WGCNA), machine learning, receiver operator characteristic (ROC) curve analysis, gene expression validation, clinical correlations, and immune infiltration. Finally, we carried out pan-cancer analysis based on hub gene. Results We obtained 1391 differentially expressed genes (DEGs) in GSE93798 and 783 DGEs in GSE14795, respectively. identifying 69 common genes for further investigation. Subsequently, GMFG was identified the hub gene based on machine learning. In the verification set and the training set, the GMFG was higher in the IgAN group than in the healthy group and all of the GMFG area under the curve (AUC) was more 0.8. In addition, GMFG has a close relationship with the prognosis of malignancies and a range of immune cells. Conclusions Our study suggests that GMFG could serve as a promising novel biomarker and potential therapeutic target for both IgAN and certain types of tumors.
Collapse
Affiliation(s)
- Xiaoqi Deng
- Department of Nephrology, Zigong Fourth People's Hospital, Zigong, 643000, Sichuan Province, China
| | - Yu Luo
- Chongqing Medical University, Chongqing, 400000, China
| | - Meiqi Lu
- School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Yun Lin
- Department of Nephrology, Zigong Fourth People's Hospital, Zigong, 643000, Sichuan Province, China
| | - Li Ma
- Department of Nephrology, Zigong Fourth People's Hospital, Zigong, 643000, Sichuan Province, China
| |
Collapse
|
23
|
Zhang C, Yu M, Hepperla AJ, Zhang Z, Raj R, Zhong H, Zhou J, Hu L, Fang J, Liu H, Liang Q, Jia L, Liao C, Xi S, Simon JM, Xu K, Liu Z, Nam Y, Kapur P, Zhang Q. Von Hippel Lindau tumor suppressor controls m6A-dependent gene expression in renal tumorigenesis. J Clin Invest 2024; 134:e175703. [PMID: 38618952 PMCID: PMC11014668 DOI: 10.1172/jci175703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/01/2024] [Indexed: 04/16/2024] Open
Abstract
N6-Methyladenosine (m6A) is the most abundant posttranscriptional modification, and its contribution to cancer evolution has recently been appreciated. Renal cancer is the most common adult genitourinary cancer, approximately 85% of which is accounted for by the clear cell renal cell carcinoma (ccRCC) subtype characterized by VHL loss. However, it is unclear whether VHL loss in ccRCC affects m6A patterns. In this study, we demonstrate that VHL binds and promotes METTL3/METTL14 complex formation while VHL depletion suppresses m6A modification, which is distinctive from its canonical E3 ligase role. m6A RNA immunoprecipitation sequencing (RIP-Seq) coupled with RNA-Seq allows us to identify a selection of genes whose expression may be regulated by VHL-m6A signaling. Specifically, PIK3R3 is identified to be a critical gene whose mRNA stability is regulated by VHL in a m6A-dependent but HIF-independent manner. Functionally, PIK3R3 depletion promotes renal cancer cell growth and orthotopic tumor growth while its overexpression leads to decreased tumorigenesis. Mechanistically, the VHL-m6A-regulated PIK3R3 suppresses tumor growth by restraining PI3K/AKT activity. Taken together, we propose a mechanism by which VHL regulates m6A through modulation of METTL3/METTL14 complex formation, thereby promoting PIK3R3 mRNA stability and protein levels that are critical for regulating ccRCC tumorigenesis.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Miaomiao Yu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Austin J. Hepperla
- Lineberger Comprehensive Cancer Center, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina, USA
- Department of Genetics, Neuroscience Center and
- UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, UNC, Chapel Hill, North Carolina, USA
| | - Zhao Zhang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Rishi Raj
- Department of Biochemistry, Department of Biophysics, Simmons Comprehensive Cancer Center and
| | - Hua Zhong
- Department of Pathology, Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jin Zhou
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lianxin Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jun Fang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hongyi Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Qian Liang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Liwei Jia
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sichuan Xi
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeremy M. Simon
- Lineberger Comprehensive Cancer Center, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina, USA
- Department of Genetics, Neuroscience Center and
- UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, UNC, Chapel Hill, North Carolina, USA
| | - Kexin Xu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Zhijie Liu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yunsun Nam
- Department of Biochemistry, Department of Biophysics, Simmons Comprehensive Cancer Center and
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, Department of Urology
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
24
|
Salem MB, El-Lakkany NM, Seif el-Din SH, Hammam OA, Samir S. Diosmin alleviates ulcerative colitis in mice by increasing Akkermansia muciniphila abundance, improving intestinal barrier function, and modulating the NF-κB and Nrf2 pathways. Heliyon 2024; 10:e27527. [PMID: 38500992 PMCID: PMC10945203 DOI: 10.1016/j.heliyon.2024.e27527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Ulcerative colitis is a common type of inflammatory bowel disease that affects millions of individuals around the world. Traditional UC treatment has focused on suppressing immune responses rather than treating the underlying causes of UC, which include oxidative stress, inflammation, and microbiota dysbiosis. Diosmin (DIO), a naturally occurring flavonoid, possesses antioxidant and anti-inflammatory properties. This study aimed to assess the efficacy of DIO in treating dextran-sulfate sodium (DSS)-induced colitis, and to investigate some of its underlying mechanisms, with an emphasis on Akkermansia muciniphila abundance, inflammatory markers, and intestinal barrier function. C57BL/6 mice were given 4% (w/v) DSS to induce colitis. DSS-induced mice were administered DIO (100 and 200 mg/kg) or sulfasalazine orally for 7 days. Every day, the disease activity index (DAI) was determined by recording body weight, diarrhea, and bloody stool. Changes in fecal A. muciniphila abundance, colonic MUC1 and MUC2 expression, as well as oxidative stress and inflammatory markers were all assessed. Histopathological changes, colonic PIK3PR3 and ZO-1 levels, and immunohistochemical examinations of occludin and claudin-1, were investigated. DIO administration resulted in a dose-dependent decrease in DAI, as well as increase in A. muciniphila abundance and MUC2 expression while decreasing MUC1 expression. DIO also dramatically reduced colonic oxidative stress and inflammation by regulating the NF-κB and Nrf2 cascades, restored intestinal barrier integrity by inhibiting PIK3R3 and inducing ZO-1, and improved occludin/claudin-1 gene expression and immunostaining. This study provides the first evidence that DIO preserves intestinal barrier integrity and increases A. muciniphila abundance in DSS-induced colitis. However, more research is required to explore the impact of DIO on the overall composition and diversity of the gut microbiota. Likewise, it will be important to fully understand the molecular mechanisms by which A. muciniphila maintains intestinal barrier function and its potential use as an adjuvant in the treatment of UC.
Collapse
Affiliation(s)
- Maha Badr Salem
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| | - Naglaa Mohamed El-Lakkany
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| | - Sayed Hassan Seif el-Din
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| | - Olfat Ali Hammam
- Department of Pathology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| | - Safia Samir
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| |
Collapse
|
25
|
Zhang C, Li Q, Xing J, Yang Y, Zhu M, Lin L, Yu Y, Cai X, Wang X. Tannic acid and zinc ion coordination of nanase for the treatment of inflammatory bowel disease by promoting mucosal repair and removing reactive oxygen and nitrogen species. Acta Biomater 2024; 177:347-360. [PMID: 38373525 DOI: 10.1016/j.actbio.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/18/2024] [Accepted: 02/11/2024] [Indexed: 02/21/2024]
Abstract
Colon mucosal overexpression of reactive oxygen and nitrogen species (RONS) accelerates the development of inflammatory bowel disease (IBD) and destroys the mucosa and its barrier. IBD can be alleviated by removing RONS from the inflamed colon. The preparation of strong and efficient nanoantioxidants remains a challenge despite the development of numerous nanoantioxidants. In this paper, Zn-TA nanoparticles with fine hollow microstructure (HZn-TA) were successfully prepared and could be effectively used to treat IBD. In the first step, ZIF-8 nanoparticles were synthesized by a one-pot method. On this basis, HZn-TA nanoparticles were etched by TA, and a multifunctional nanase was developed for the treatment of IBD. RONS, including reactive oxygen species (ROS) and nitric oxide (NO), can be eliminated to increase cell survival following Hydrogen peroxide (H2O2) stimulation, including reactive oxygen species (ROS) and nitric oxide (NO with hydrogen peroxide (H2O2). In a model for preventing and delaying acute colitis, clearance of RONS has been shown to reduce intestinal inflammation in mice by reducing colon damage, proinflammatory cytokine levels, the spleen index, and body weight. Intestinal mucosal healing can be promoted by HZn-TA nanoparticles, which can upregulate zonula occludens protein 1 (ZO-1) and claudin-1 expression. Based on the results of this study, HZn-TA nanoparticles were able to effectively treat IBD with minimal adverse effects by being biocompatible, multienzyme active, and capable of scavenging RONS. Therefore, we pioneered the application of HZn-TA nanoparticles for the treatment of IBD, which are capable of clearing RONS without significant adverse effects. STATEMENT OF SIGNIFICANCE: ➢ HZn-TA nanoparticles were successfully prepared and could be effectively used to treat IBD. ➢ Intestinal mucosal healing can be promoted by HZn-TA nanoparticles, which can upregulate ZO-1 and claudin-1 expression. ➢ HZn-TA nanoparticles were able to effectively treat IBD with minimal adverse effects by being biocompatible, multienzyme active, and capable of scavenging RONS.
Collapse
Affiliation(s)
- Cong Zhang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, PR China; Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Qingrong Li
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, PR China
| | - Jianghao Xing
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, PR China
| | - Yan Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Mengmei Zhu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, PR China
| | - Liting Lin
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, PR China
| | - Yue Yu
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| | - Xiaojun Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, PR China.
| | - Xianwen Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, PR China; School of Biomedical Engineering, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
26
|
Song Y, Sun M, Mu G, Tuo Y. Exopolysaccharide secreted by Lactiplantibacillus plantarum Y12 showed inhibitory effect on the pathogenicity of Shigella flexneri in vitro and in vivo. Int J Biol Macromol 2024; 261:129478. [PMID: 38237822 DOI: 10.1016/j.ijbiomac.2024.129478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Shigella flexneri is a prevalent foodborne and waterborne pathogen that threatens human health. Our previous research indicated that the Lactiplantibacillus plantarum Y12 exopolysaccharide (L-EPS) potentially inhibited the pathogenicity of S. flexneri. The in vitro results of this study demonstrated that L-EPS effectively mitigated the symptoms induced by S. flexneri in HT-29 cells, including inhibited gene expression levels of IL-1β, IL-6, IL-8, TNF-α, TLR 2/4, and NOD1/2; decreased apoptosis ratio; and alleviated damage degree of intestinal barrier function (Zona occludens 1, Occludin, and Claudin-1). The in vivo results demonstrated that S. flexneri treated with L-EPS elicited mild adverse physiological manifestations, an inflammatory response, and tissue damage. The infection of S. flexneri caused significant alterations in the abundance of phylum (Firmicutes, Bacteroidota, Actinobacteriota, and Proteobacteria), family (Lachnospiraceae, Muribaculaceae, Rikenellaceae, Prevotellaceaea, Ruminococcaceae, and Lactobaillaceae), and genus (Escherichia Shigella and Lachnospirillaceae NK4A136 group) within the cecal microbiota. These changes were accompanied by perturbations in taurine and hypotaurine metabolism, tricarboxylic acid (TCA) cycle activity, arginine biosynthesis, and histidine metabolic pathways. However, intervention with L-EPS attenuated the dysbiosis of cecal microbiota and metabolic disturbances. In summary, our research suggested a potential application of L-EPS as a functional food additive for mitigating S. flexneri infection.
Collapse
Affiliation(s)
- Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Mengying Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
27
|
Xu H, Jiang W, Li X, Jiang J, Afridi SK, Deng L, Li R, Luo E, Zhang Z, Huang YWA, Cui Y, So KF, Chen H, Qiu W, Tang C. hUC-MSCs-derived MFGE8 ameliorates locomotor dysfunction via inhibition of ITGB3/ NF-κB signaling in an NMO mouse model. NPJ Regen Med 2024; 9:4. [PMID: 38242900 PMCID: PMC10798960 DOI: 10.1038/s41536-024-00349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Neuromyelitis optica (NMO) is a severe autoimmune inflammatory disease of the central nervous system that affects motor function and causes relapsing disability. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have been used extensively in the treatment of various inflammatory diseases, due to their potent regulatory roles that can mitigate inflammation and repair damaged tissues. However, their use in NMO is currently limited, and the mechanism underlying the beneficial effects of hUC-MSCs on motor function in NMO remains unclear. In this study, we investigate the effects of hUC-MSCs on the recovery of motor function in an NMO systemic model. Our findings demonstrate that milk fat globule epidermal growth 8 (MFGE8), a key functional factor secreted by hUC-MSCs, plays a critical role in ameliorating motor impairments. We also elucidate that the MFGE8/Integrin αvβ3/NF-κB signaling pathway is partially responsible for structural and functional recovery, in addition to motor functional enhancements induced by hUC-MSC exposure. Taken together, these findings strongly support the involvement of MFGE8 in mediating hUC-MSCs-induced improvements in motor functional recovery in an NMO mouse model. In addition, this provides new insight on the therapeutic potential of hUC-MSCs and the mechanisms underlying their beneficial effects in NMO.
Collapse
Affiliation(s)
- Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China
| | - Wei Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China
| | - Xuejia Li
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Jiaohua Jiang
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Shabbir Khan Afridi
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Longhui Deng
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Rui Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China
| | - Ermei Luo
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Zhaoqing Zhang
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship 15 Street, Providence, RI, 02903, USA
| | - Yaxiong Cui
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Kwok-Fai So
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Haijia Chen
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China.
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China.
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China.
| |
Collapse
|
28
|
Zhang H, Shi Y, Lin C, He C, Wang S, Li Q, Sun Y, Li M. Overcoming cancer risk in inflammatory bowel disease: new insights into preventive strategies and pathogenesis mechanisms including interactions of immune cells, cancer signaling pathways, and gut microbiota. Front Immunol 2024; 14:1338918. [PMID: 38288125 PMCID: PMC10822953 DOI: 10.3389/fimmu.2023.1338918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Inflammatory bowel disease (IBD), characterized primarily by gastrointestinal inflammation, predominantly manifests as Crohn's disease (CD) and ulcerative colitis (UC). It is acknowledged that Inflammation plays a significant role in cancer development and patients with IBD have an increased risk of various cancers. The progression from inflammation to carcinogenesis in IBD is a result of the interplay between immune cells, gut microbiota, and carcinogenic signaling pathways in epithelial cells. Long-term chronic inflammation can lead to the accumulation of mutations in epithelial cells and the abnormal activation of carcinogenic signaling pathways. Furthermore, Immune cells play a pivotal role in both the acute and chronic phases of IBD, contributing to the transformation from inflammation to tumorigenesis. And patients with IBD frequently exhibit dysbiosis of the intestinal microbiome. Disruption of the gut microbiota and subsequent immune dysregulation are central to the pathogenesis of both IBD and colitis associated colorectal cancer (CAC). The proactive management of inflammation combined with regular endoscopic and tumor screenings represents the most direct and effective strategy to prevent the IBD-associated cancer.
Collapse
Affiliation(s)
- Haonan Zhang
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yulu Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chanchan Lin
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Chengcheng He
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanping Wang
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Sun
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingsong Li
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
29
|
Ding M, Wang C, Hu J, She J, Shi R, Liu Y, Sun Q, Xu H, Zhou G, Wu W, Xia H. PLOD3 facilitated T cell activation in the colorectal tumor microenvironment and liver metastasis by the TNF-α/ NF-κB pathway. J Transl Med 2024; 22:30. [PMID: 38184566 PMCID: PMC10771005 DOI: 10.1186/s12967-023-04809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/16/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) has been the third most prevalent cancer worldwide. Liver metastasis is the critical factor for the poor prognosis of CRC. Here, we investigated the expression and role of PLOD3 in CRC. METHODS Different liver metastasis models were established by injecting PLOD3 stable knockdown or overexpression CT26 or MC38 mouse CRC cells into the spleen of mice to verify the tumorigenicity and metastasis ability in vivo. RESULTS We identified PLOD3 is significantly overexpressed in liver metastasis samples of CRC. High expression of PLOD3 was significantly associated with poor survival of CRC patients. The knockdown of PLOD3 exhibited remarkable inhibition of proliferation, migration, and invasion in CRC cells, while the opposite results could be found in different PLOD3-overexpressed CRC cells. Stable knockdown of PLOD3 also significantly inhibited liver metastasis of CRC cells in different xenografts models, while stable overexpression of PLOD3 promotes liver metastasis and tumor progression. Further studies showed that PLOD3 facilitated the T cell activation in the tumor microenvironment and affected the TNF-α/ NF-κB pathway. CONCLUSIONS This study revealed the essential biological functions of PLOD3 in colon cancer progression and metastasis, suggesting that PLOD3 is a promising translational medicine target and bioengineering targeting PLOD3 overcomes CRC liver metastasis.
Collapse
Affiliation(s)
- Min Ding
- Department of Pathology & Nanjing Drum Tower Hospital Clinical College & Key Laboratory of Antibody Technique of National Health Commission && Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 211166, China
- Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, 210009, China
- Department of General Surgery & High Talent & Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Cheng Wang
- Department of Pathology & Nanjing Drum Tower Hospital Clinical College & Key Laboratory of Antibody Technique of National Health Commission && Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 211166, China
| | - Junhong Hu
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Junjun She
- Department of General Surgery & High Talent & Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ruoyu Shi
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, 169856, Singapore
| | - Yixuan Liu
- Department of Pathology & Nanjing Drum Tower Hospital Clinical College & Key Laboratory of Antibody Technique of National Health Commission && Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 211166, China
| | - Qi Sun
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Haojun Xu
- Department of Pathology & Nanjing Drum Tower Hospital Clinical College & Key Laboratory of Antibody Technique of National Health Commission && Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 211166, China
| | - Guoren Zhou
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, China.
| | - Wenlan Wu
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, China.
| | - Hongping Xia
- Department of Pathology & Nanjing Drum Tower Hospital Clinical College & Key Laboratory of Antibody Technique of National Health Commission && Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 211166, China.
- Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, 210009, China.
- Department of General Surgery & High Talent & Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
30
|
Wojcik-Grzybek D, Sliwowski Z, Kwiecien S, Ginter G, Surmiak M, Hubalewska-Mazgaj M, Chmura A, Wojcik A, Kosciolek T, Danielak A, Targosz A, Strzalka M, Szczyrk U, Ptak-Belowska A, Magierowski M, Bilski J, Brzozowski T. Alkaline Phosphatase Relieves Colitis in Obese Mice Subjected to Forced Exercise via Its Anti-Inflammatory and Intestinal Microbiota-Shaping Properties. Int J Mol Sci 2024; 25:703. [PMID: 38255781 PMCID: PMC10815191 DOI: 10.3390/ijms25020703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Intestinal alkaline phosphatase (IAP) is an enzyme that plays a protective role in the gut. This study investigated the effect of IAP treatment on experimental colitis in mice subjected to forced exercise on a high-fat diet. C57BL/6 mice with TNBS colitis were fed a high-fat diet and subjected to forced treadmill exercise with or without IAP treatment. Disease activity, oxidative stress, inflammatory cytokines, and gut microbiota were assessed. Forced exercise exacerbated colitis in obese mice, as evidenced by increased disease activity index (DAI), oxidative stress markers, and proinflammatory adipokines and cytokines. IAP treatment significantly reduced these effects and promoted the expression of barrier proteins in the colonic mucosa. Additionally, IAP treatment altered the gut microbiota composition, favoring beneficial Verrucomicrobiota and reducing pathogenic Clostridia and Odoribacter. IAP treatment ameliorates the worsening effect of forced exercise on murine colitis by attenuating oxidative stress, downregulating proinflammatory biomarkers, and modulating the gut microbiota. IAP warrants further investigation as a potential therapeutic strategy for ulcerative colitis.
Collapse
Affiliation(s)
- Dagmara Wojcik-Grzybek
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Zbigniew Sliwowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Slawomir Kwiecien
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Grzegorz Ginter
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Marcin Surmiak
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Magdalena Hubalewska-Mazgaj
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Anna Chmura
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Adrianna Wojcik
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Tomasz Kosciolek
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Cracow, Poland
| | - Aleksandra Danielak
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Aneta Targosz
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Malgorzata Strzalka
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Urszula Szczyrk
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Agata Ptak-Belowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Marcin Magierowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Jan Bilski
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Cracow, Poland;
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| |
Collapse
|
31
|
Chen S, Huang J, Liu T, Zhang F, Zhao C, Jin E, Li S. PI3K/Akt signaling pathway mediates the effect of low-dose boron on barrier function, proliferation and apoptosis in rat intestinal epithelial cells. Sci Rep 2024; 14:393. [PMID: 38172276 PMCID: PMC10764725 DOI: 10.1038/s41598-023-50800-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Boron is an essential trace element with roles in growth, development, and physiological functions; however, its mechanism of action is still unclear. In this study, the regulatory roles of the PI3K/Akt signaling pathway on boron-induced changes in barrier function, proliferation, and apoptosis in rat intestinal epithelial cells were evaluated. Occludin levels, the proportion of cells in the G2/M phase, cell proliferation rate, and mRNA and protein expression levels of PCNA were higher, while the proportions of cells in the G0/G1 and S phases, apoptosis rate, and caspase-3 mRNA and protein expression levels were lower in cells treated with 0.8 mmol/L boron than in control IEC-6 cells (P < 0.01 or P < 0.05). However, 40 mmol/L boron decreased ZO-1 and Occludin levels, the proportion of cells in the G2/M phase, cell proliferation rate, and mRNA and protein levels of PCNA and increased the apoptosis rate and caspase-3 mRNA expression (P < 0.01 or P < 0.05). After specifically blocking PI3K and Akt signals (using LY294002 and MK-2206 2HCL), 0.8 mmol/L boron had no effects on Occludin, PCNA level, apoptosis rates, and caspase-3 levels (P < 0.05); however, the proliferation rate and PCNA levels decreased significantly (P < 0.01 or P < 0.05). The addition of 40 mmol/L boron did not affect ZO-1 and Occludin levels and did not affect the apoptosis rate or PCNA and caspase-3 levels. These results suggested that the PI3K/Akt signaling pathway mediates the effects of low-dose boron on IEC-6 cells.
Collapse
Affiliation(s)
- Shuqin Chen
- College of Animal Science, Anhui Science and Technology University, No. 9, Donghua Road, Fengyang County, Chuzhou City, Anhui Province, China
| | - Jialiang Huang
- College of Animal Science, Anhui Science and Technology University, No. 9, Donghua Road, Fengyang County, Chuzhou City, Anhui Province, China
| | - Ting Liu
- College of Animal Science, Anhui Science and Technology University, No. 9, Donghua Road, Fengyang County, Chuzhou City, Anhui Province, China
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, No. 9, Donghua Road, Fengyang County, Chuzhou City, Anhui Province, China
| | - Chunfang Zhao
- College of Animal Science, Anhui Science and Technology University, No. 9, Donghua Road, Fengyang County, Chuzhou City, Anhui Province, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, No. 9, Donghua Road, Fengyang County, Chuzhou City, Anhui Province, China.
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou City, Anhui Province, China.
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, No. 9, Donghua Road, Fengyang County, Chuzhou City, Anhui Province, China.
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou City, Anhui Province, China.
| |
Collapse
|
32
|
Liu R, Wang Q, Zhang X. Identification of prognostic coagulation-related signatures in clear cell renal cell carcinoma through integrated multi-omics analysis and machine learning. Comput Biol Med 2024; 168:107779. [PMID: 38061153 DOI: 10.1016/j.compbiomed.2023.107779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024]
Abstract
Clear cell renal cell carcinoma is a threat to public health with high morbidity and mortality. Clinical evidence has shown that cancer-associated thrombosis poses significant challenges to treatments, including drug resistance and difficulties in surgical decision-making in ccRCC. However, the coagulation pathway, one of the core mechanisms of cancer-associated thrombosis, recently found closely related to the tumor microenvironment and immune-related pathway, is rarely researched in ccRCC. Therefore, we integrated bulk RNA-seq data, DNA mutation and methylation data, single-cell data, and proteomic data to perform a comprehensive analysis of coagulation-related genes in ccRCC. First, we demonstrated the importance of the coagulation-related gene set by consensus clustering. Based on machine learning, we identified 5 coagulation signature genes and verified their clinical value in TCGA, ICGC, and E-MTAB-1980 databases. It's also demonstrated that the specific expression patterns of coagulation signature genes driven by CNV and methylation were closely correlated with pathways including apoptosis, immune infiltration, angiogenesis, and the construction of extracellular matrix. Moreover, we identified two types of tumor cells in single-cell data by machine learning, and the coagulation signature genes were differentially expressed in two types of tumor cells. Besides, the signature genes were proven to influence immune cells especially the differentiation of T cells. And their protein level was also validated.
Collapse
Affiliation(s)
- Ruijie Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Qi Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
33
|
Yuan L, Zhu C, Gu F, Zhu M, Yao J, Zhu C, Li S, Wang K, Hu P, Zhang Y, Cai D, Liu HY. Lactobacillus johnsonii N5 from heat stress-resistant pigs improves gut mucosal immunity and barrier in dextran sodium sulfate-induced colitis. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:210-224. [PMID: 38033603 PMCID: PMC10685162 DOI: 10.1016/j.aninu.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 12/02/2023]
Abstract
Developing effective strategies to prevent diarrhea and associated-gut disorders in mammals has gained great significance. Owing to the many health benefits provided by the commensal microbiota of the intestinal tract, such as against environmental perturbation, we explored the host phenotype-associated microbes and their probiotic potential. Based on the observations that the chronic heat stress-exposed weaned piglets present as heat stress-susceptible (HS-SUS) or heat stress-resistant (HS-RES) individuals, we confirmed the phenotypic difference between the two on growth performance (P < 0.05), diarrhea index (P < 0.001), intestinal heat shock protein 70 (HSP70) regulation (P < 0.01), and inflammatory responses (P < 0.01). By comparing the gut microbiome using 16S rRNA gene sequencing and KEGG functional analysis, we found that Lactobacillus johnsonii exhibited significantly higher relative abundance in the HS-RES piglets than in the HS-SUS ones (P < 0.05). Further experiments using a mouse model for chemical-induced inflammation and intestinal injury demonstrated that oral administration of a representative L. johnsonii N5 (isolated from the HS-RES piglets) ameliorated the clinical and histological signs of colitis while suppressing intestinal pro-inflammatory cytokines TNF-α and IL-6 production (P < 0.05). We found that N5 treatment enhanced tight junction proteins ZO-1 and occludin and cytoprotective HSP70 levels under physiological condition and restored their mucosal expressions in colitis (P < 0.05). In support of the high production of the anti-inflammatory cytokine IL-10, N5 promoted the intestinal Peyer's patches MHCII+ and CD103+ dendritic cell populations (P < 0.05), increased the regulatory T (Treg) cell numbers (P < 0.05), and decreased the Th17 population and its IL-17a production under physiological condition and during colitis (P < 0.01). Our results shed light on understanding the interaction between commensal Lactobacillus and the host health, and provide L. johnsonii N5 as an alternative to antibiotics for preventing diarrhea and intestinal diseases.
Collapse
Affiliation(s)
- Long Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chuyang Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Fang Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Miaonan Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiacheng Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Cuipeng Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shicheng Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kun Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yunzeng Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
34
|
Gao S, Sun C, Kong J. Vitamin D Attenuates Ulcerative Colitis by Inhibiting ACSL4-Mediated Ferroptosis. Nutrients 2023; 15:4845. [PMID: 38004239 PMCID: PMC10675831 DOI: 10.3390/nu15224845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND With environmental and lifestyle changes, recent epidemiological studies have shown that the prevalence of Ulcerative Colitis (UC) is on the rise, while treatment options are limited. There is an urgent need to explore the underlying mechanisms of vitamin D (VD) as an effective treatment. METHODS Dextran sulfate sodium-induced mice and lipopolysaccharide-induced HCT116 cells were used to establish the classic UC models in vivo and in vitro, respectively. Typical symbols of inflammation (IL-6, COX-2), oxidative stress (MDA, MPO, GSH), and ferroptosis (ACSL4, GPX4, SLC7A11, and Iron) were analyzed by Western blot, Immunohistochemistry, RT-PCR, and relative assay kits. The inflammation factors and oxidative stress injury of cells transfected with ACSL4+/+ plasmids were tested by Western blot, MDA, and MPO methods. RESULTS Vitamin D attenuated the levels of COX-2, IL-6, Iron, MDA, and MPO and improved SOD1 and GSH contents in DSS + VD and LPS + VD groups, compared with model groups. Ferrostatin-1 (Fer-1) could relieve the levels of COX-2, IL-6, Iron, MDA, and MPO while increasing the contents of SOD1 and GSH in DSS + Fer-1 and LPS + Fer-1 compared to model groups. VD downregulated the expression of ACSL4 and upregulated GPX4 in tissues and cells. After transfected with ACSL4+/+ plasmids, we found VD's role of downregulating inflammation and oxidative stress was relieved. CONCLUSIONS Vitamin D can relieve UC by inhibiting ferroptosis both in mice and in cells through the negative regulation of ACSL4, providing new insight into the therapeutic function of VD on UC.
Collapse
Affiliation(s)
- Shuo Gao
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Can Sun
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Juan Kong
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
35
|
Wang J, Yao M, Zou J, Ding W, Sun M, Zhuge Y, Gao F. pH-Sensitive Nanoparticles for Colonic Delivery Anti-miR-301a in Mouse Models of Inflammatory Bowel Diseases. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2797. [PMID: 37887947 PMCID: PMC10610125 DOI: 10.3390/nano13202797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Though the anti-miR-301a (anti-miR) is a promising treatment strategy for inflammatory bowel disease (IBD), the degradability and the poor targeting of the intestine are a familiar issue. This study aimed to develop a multifunctional oral nanoparticle delivery system loaded with anti-miR for improving the targeting ability and the therapeutic efficacy. The HA-CS/ES100/PLGA nanoparticles (HCeP NPs) were prepared using poly (lactic-co-glycolic acid) copolymer (PLGA), enteric material Eudragit®S100 (ES100), chitosan (CS), and hyaluronic acid (HA). The toxicity of nanoparticles was investigated via the Cell Counting Kit-8, and the cellular uptake and inflammatory factors of nanoparticles were further studied. Moreover, we documented the colon targeting and pharmacodynamic properties of nanoparticles. The nanoparticles with uniform particle size exhibited pH-sensitive release, favorable gene protection, and storage stability. Cytology experiments showed that anti-miR@HCeP NPs improved the cellular uptake through HA and reduced pro-inflammatory factors. Administering anti-miR@HCeP NPs orally to IBD mice markedly reduced their pro-inflammatory factors levels and disease activity indices. We also confirmed that anti-miR@HCeP NPs mostly accumulated in the colon site, and effectively repaired the intestinal barrier, as well as relieved intestinal inflammation. The above nanoparticle is a candidate of the treatment for IBD due to its anti-inflammatory properties.
Collapse
Affiliation(s)
- Junshan Wang
- Department of Gastroenterology, Chongming Branch of Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 202157, China
| | - Min Yao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (M.Y.); (J.Z.); (W.D.); (M.S.)
| | - Jiafeng Zou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (M.Y.); (J.Z.); (W.D.); (M.S.)
| | - Wenxing Ding
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (M.Y.); (J.Z.); (W.D.); (M.S.)
| | - Mingyue Sun
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (M.Y.); (J.Z.); (W.D.); (M.S.)
| | - Ying Zhuge
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Feng Gao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (M.Y.); (J.Z.); (W.D.); (M.S.)
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
36
|
Zhao Z, Luan T, Wan J, Du H, Hu J, Liu H, Gong X, Kuang G, Wang B. Elucidating Cuproptosis-Associated Genes in the Progression from Nash to HCC Using Bulk and Single-Cell RNA Sequencing Analyses and Experimental Validation. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1639. [PMID: 37763758 PMCID: PMC10536385 DOI: 10.3390/medicina59091639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Background and Objectives: Non-alcoholic steatohepatitis (NASH) is a significant risk factor for hepatocellular carcinoma (HCC) development. Timely treatment during the NASH stage is essential to minimize the possibility of disease progression to HCC. Cuproptosis is a newly identified form of cellular death that could impact the progression of various diseases and cancers. Materials and Methods: Transcriptome and single-cell sequencing datasets were utilized to investigate the role of cuproptosis-related genes (CRGs) in NASH progression to HCC. FDX1, LIPT1, and PDHP were identified as CRGs in NASH patients, and FDX1, DBT, GCSH, SLC31A1, and DLAT were identified as CRGs in patients with NASH progressing to HCC. FDX1 was found to play a significant role in both NASH patients and patients with NASH progressing to HCC. This study constructed cuproptosis-related clusters (CRCs) using the Nonnegative Matrix Factorization algorithm, and they were linked to fatty acid metabolism and the PPAR signaling pathway in both NASH CRCs and HCC CRCs. The Weighted Correlation Network Analysis algorithm identified CRP, CRC, TAT, CXCL10, and ACTA1 as highly relevant genes in NASH CRCs and HCC CRCs. The expression of FDX1 was validated in both mouse models and human NASH samples. Results: The investigation highlights FDX1 as a pivotal CRG in both NASH and NASH progression to HCC. The comprehensive characterization of CRGs sheds light on their potential biofunctional importance in the context of NASH and HCC. Our experimental results show that FDX1 expression was significantly increased in NASH patients. Conclusions: The present study identified key CRGs, revealing their potential impact on NASH and HCC. Meanwhile, targeting FDX1 may prevent the progression of NASH to HCC.
Collapse
Affiliation(s)
- Zizuo Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China;
| | - Tiankuo Luan
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China; (T.L.); (X.G.)
| | - Jingyuan Wan
- Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China; (J.W.); (H.D.); (J.H.); (H.L.)
| | - Hui Du
- Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China; (J.W.); (H.D.); (J.H.); (H.L.)
| | - Jun Hu
- Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China; (J.W.); (H.D.); (J.H.); (H.L.)
| | - Hao Liu
- Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China; (J.W.); (H.D.); (J.H.); (H.L.)
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China; (T.L.); (X.G.)
| | - Ge Kuang
- Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China; (J.W.); (H.D.); (J.H.); (H.L.)
| | - Bin Wang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China;
| |
Collapse
|
37
|
Liu Y, Wu Z, Fu Z, Han Y, Wang J, Zhang Y, Liang B, Tao Y, Zhang Y, Shen C, Xu Y, Yin S, Chen B, Liu Y, Pan H, Liang Z, Wu K. A predictive model of immune infiltration and prognosis of head and neck squamous cell carcinoma based on cell adhesion-related genes: including molecular biological validation. Front Immunol 2023; 14:1190678. [PMID: 37691922 PMCID: PMC10484396 DOI: 10.3389/fimmu.2023.1190678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Background Focal adhesion serves as a bridge between tumour cells and the extracellular matrix (ECM) and has multiple roles in tumour invasion, migration, and therapeutic resistance. However, studies on focal adhesion-related genes (FARGs) in head and neck squamous cell carcinoma (HNSCC) are limited. Methods Data on HNSCC samples were obtained from The Cancer Genome Atlas and GSE41613 datasets, and 199 FARGs were obtained from the Molecular Signatures database. The integrated datasets' dimensions were reduced by the use of cluster analysis, which was also used to classify patients with HNSCC into subclusters. A FARG signature model was developed and utilized to calculate each patient's risk score using least extreme shrinkage and selection operator regression analysis. The risk score was done to quantify the subgroups of all patients. We evaluated the model's value for prognostic prediction, immune infiltration status, and therapeutic response in HNSCC. Preliminary molecular and biological experiments were performed to verify these results. Results Two different HNSCC molecular subtypes were identified according to FARGs, and patients with C2 had a shorter overall survival (OS) than those with C1. We constructed an FARG signature comprising nine genes. We constructed a FARG signature consisting of nine genes. Patients with higher risk scores calculated from the FARG signature had a lower OS, and the FARG signature was considered an independent prognostic factor for HNSCC in univariate and multivariate analyses. FARGs are associated with immune cell invasion, gene mutation status, and chemosensitivity. Finally, we observed an abnormal overexpression of MAPK9 in HNSCC tissues, and MAPK9 knockdown greatly impeded the proliferation, migration, and invasion of HNSCC cells. Conclusion The FARG signature can provide reliable prognostic prediction for patients with HNSCC. Apart from that, the genes in this model were related to immune invasion, gene mutation status, and chemosensitivity, which may provide new ideas for targeted therapies for HNSCC.
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Zhechen Wu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Ziyue Fu
- Anhui Medical University, Hefei, Anhui, China
| | - Yanxun Han
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | | | - Yanqiang Zhang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Bingyu Liang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Ye Tao
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Yuchen Zhang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | | | - Yidan Xu
- Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Siyue Yin
- Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bangjie Chen
- Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yehai Liu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Haifeng Pan
- Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhang Liang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Kaile Wu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
38
|
Li K, Wu J, Xu S, Li X, Zhang Y, Gao XJ. Rosmarinic acid alleviates intestinal inflammatory damage and inhibits endoplasmic reticulum stress and smooth muscle contraction abnormalities in intestinal tissues by regulating gut microbiota. Microbiol Spectr 2023; 11:e0191423. [PMID: 37594285 PMCID: PMC10654191 DOI: 10.1128/spectrum.01914-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/03/2023] [Indexed: 08/19/2023] Open
Abstract
The host-bacterial interactions play the key role in inflammatory bowel disease (IBD). Dysbiosis of the intestinal flora can lead to pathological changes in the intestine. Rosmarinic acid (RA) is a natural phenolic acid compound with antioxidant, anti-cancer, anti-inflammatory, anti-apoptotic, anti-fibrotic, and anti-bacterial activities that has a palliative effect on acute IBD. We have established an in vivo model for mice. Histological staining was performed to directly observe RA alterations in the intestinal tract. The alteration of RA on mouse intestinal flora was observed by 16S rRNA high-throughput sequencing, and the effect of RA on intestinal mechanism of action was detected by qPCR and western blot. The results showed that RA had a significant protective effect on the intestine. RA upregulated the abundance of Lactobacillus johnsonii and Candidatus Arthromitus sp SFB-mouse-NL and downregulated the abundance of Bifidobacterium pseudolongum, Escherichia coli, and Romboutsia ilealis. RA downregulated the expressions of ROCK, RhoA, CaM, MLC, MLCK, ZEB1, ZO-1, ZO-2, occludin, E-cadherin, IL-1β, IL-6, TNF-α, GRP78, PERK, IRE1, ATF6, CHOP, Caspase12, Caspase9, Caspase3, Bax, Cytc, RIPK1, RIPK3, MLKL, and upregulated the expression of IL-10 and Bcl-2. These results displayed that RA inhibited the inflammation, which is caused by tight junction damage, by repairing intestinal flora dysbiosis, relieved endoplasmic reticulum stress, inhibited cell death, and corrected smooth muscle contractile dysregulation. The results of this study revealed RA could have a protective effect on the small intestine of mice by regulating intestinal flora. IMPORTANCE Inflammatory bowel disease (IBD) is a chronic, relapsing, remitting disorder of the gastrointestinal system. In this study, we investigated the protective effects of rosmarinic acid on the intestinal tract. The results showed that RA was effective in reducing inflammatory damage, endoplasmic reticulum stress, smooth muscle contraction abnormalities, and regulating intestinal flora disorders.
Collapse
Affiliation(s)
- Kan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Jiawei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Shuang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Xueying Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Yanhe Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Xue-jiao Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
39
|
Matsumoto T, Matsumoto J, Matsushita Y, Arimura M, Aono K, Aoki M, Terada K, Mori M, Haramaki Y, Imatoh T, Yamauchi A, Migita K. Bortezomib Increased Vascular Permeability by Decreasing Cell-Cell Junction Molecules in Human Pulmonary Microvascular Endothelial Cells. Int J Mol Sci 2023; 24:10842. [PMID: 37446020 DOI: 10.3390/ijms241310842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Bortezomib (BTZ), a chemotherapeutic drug used to treat multiple myeloma, induces life-threatening side effects, including severe pulmonary toxicity. However, the mechanisms underlying these effects remain unclear. The objectives of this study were to (1) investigate whether BTZ influences vascular permeability and (2) clarify the effect of BTZ on the expression of molecules associated with cell-cell junctions using human pulmonary microvascular endothelial cells in vitro. Clinically relevant concentrations of BTZ induced limited cytotoxicity and increased the permeability of human pulmonary microvascular endothelial cell monolayers. BTZ decreased the protein expression of claudin-5, occludin, and VE-cadherin but not that of ZO-1 and β-catenin. Additionally, BTZ decreased the mRNA expression of claudin-5, occludin, ZO-1, VE-cadherin, and β-catenin. Our results suggest that BTZ increases the vascular permeability of the pulmonary microvascular endothelium by downregulating cell-cell junction molecules, particularly claudin-5, occludin, and VE-cadherin.
Collapse
Affiliation(s)
- Taichi Matsumoto
- Basic Medical Research Unit, St. Mary's Research Center, 422, Tsubuku-honmachi, Kurume 830-8543, Fukuoka, Japan
| | - Junichi Matsumoto
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Fukuoka, Japan
| | - Yuka Matsushita
- Department of Drug Informatics and Translational Research, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Fukuoka, Japan
| | - Moeno Arimura
- Department of Drug Informatics and Translational Research, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Fukuoka, Japan
| | - Kentaro Aono
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Fukuoka, Japan
| | - Mikiko Aoki
- Department of Pathology, Faculty of Medicine, Fukuoka University, 7-45-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Fukuoka, Japan
| | - Kazuki Terada
- Division of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1, Kamiohno, Himeji 670-8524, Hyogo, Japan
| | - Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Fukuoka, Japan
| | - Yutaka Haramaki
- Psychology Program, Graduate School of Humanities and Social Sciences, Hiroshima University, Kagamiyama, 1-1-1, Kagamiyama, Higashi-Hiroshima City 739-8512, Hiroshima, Japan
| | - Takuya Imatoh
- Department of Drug Informatics and Translational Research, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Fukuoka, Japan
| | - Atsushi Yamauchi
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Fukuoka, Japan
| | - Keisuke Migita
- Department of Drug Informatics and Translational Research, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Fukuoka, Japan
| |
Collapse
|
40
|
Hua H, Pan C, Chen X, Jing M, Xie J, Gao Y, Huang J, Chen X, Gao Y, Xu C, Li P. Probiotic lactic acid bacteria alleviate pediatric IBD and remodel gut microbiota by modulating macrophage polarization and suppressing epithelial apoptosis. Front Microbiol 2023; 14:1168924. [PMID: 37396394 PMCID: PMC10308112 DOI: 10.3389/fmicb.2023.1168924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/24/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction The incidence of pediatric inflammatory bowel disease (PIBD) continues to rise. It was reported that the probiotic lactic acid bacteria Pediococcus pentosaceus (P. pentosaceus) can interfere with intestinal immunity, but it is still unknown whether it can alleviate PIBD and the concrete mechanism of immune regulation is unclear. Methods For this study, 3-week-old juvenile mice were selected for modeling the development of PIBD. The mice treated with 2% DSS were randomly divided into two groups, which were given P. pentosaceus CECT8330 and equal amounts of solvent, respectively. The feces and intestinal tissue were collected for the mechanism exploration in vivo. THP-1 and NCM460 cells were used to investigate the effects of P. pentosaceus CECT8330 on macrophage polarization, epithelial cell apoptosis, and their crosstalk in vitro. Results P. pentosaceus CECT8330 obviously alleviated colitis symptoms of juvenile mice, including weight loss, colon length shortening, spleen swelling, and intestinal barrier function. Mechanistically, P. pentosaceus CECT8330 could inhibit intestinal epithelial apoptosis by suppressing the NF-κB signaling pathway. Meanwhile, it reprogramed macrophages from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype, leading to a decreased secretion of IL-1β which contributes to the reduction in ROS production and epithelial apoptosis. Additionally, the 16S rRNA sequence analysis revealed that P. pentosaceus CECT8330 could recover the balance of gut microbiota, and a significantly increased content of Akkermansia muciniphila was particularly observed. Conclusion P. pentosaceus CECT8330 shifts macrophage polarization toward an anti-inflammatory M2 phenotype. The decreased production of IL-1β leads to a reduction in ROS, NF-κB activation, and apoptosis in the intestinal epithelium, all of which help to repair the intestinal barrier and adjust gut microbiota in juvenile colitis mice.
Collapse
Affiliation(s)
- Huiying Hua
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun Pan
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xixi Chen
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengxia Jing
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinfang Xie
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanqi Gao
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiebin Huang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuehua Chen
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujing Gao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Chundi Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pu Li
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Meng Y, Qiu X, Tang Z, Mao Y, Tan Y. Lactobacillus paracasei L9 affects disease progression in experimental autoimmune neuritis by regulating intestinal flora structure and arginine metabolism. J Neuroinflammation 2023; 20:122. [PMID: 37217991 DOI: 10.1186/s12974-023-02808-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Autoimmune neuropathies are common peripheral nervous system (PNS) disorders. Environmental influences and dietary components are known to affect the course of autoimmune diseases. Intestinal microorganisms can be dynamically regulated through diet, and this study combines intestinal microorganisms with diseases to open up new therapeutic ideas. METHODS In Lewis rats, a model of EAN was established with P0 peptide, Lactobacillus were used as treatment, serum T-cell ratio, inflammatory factors, sciatic neuropathological changes, and pathological inflammatory effects on intestinal mucosa were detected, and fecal metabolomics and 16 s microbiome analysis were performed to further explore the mechanism. RESULTS In the EAN rat model, Lactobacillus paracasei L9 (LP) could dynamically regulate the CD4+/CD8+T balance in serum, reduce serum IL-1, IL-6 and TNF-α expression levels, improve sciatic nerve demyelination and inflammatory infiltration, and reduce nervous system score. In the rat model of EAN, intestinal mucosa was damaged. Occludin and ZO-1 were downregulated. IL-1, TNF-α and Reg3γ were upregulated. LP gavage induced intestinal mucosa recovery; occludin and ZO-1 upregulation; IL-1, TNF-α and Reg3γ downregulation. Finally, metabolomics and 16 s microbiome analysis were performed, and differential metabolites were enriched with an important metabolic pathway, arginine and proline metabolism. CONCLUSION LP improved EAN in rats by influencing intestinal community and the lysine and proline metabolism.
Collapse
Affiliation(s)
- Yuting Meng
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Xiangjie Qiu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Zhongxiang Tang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Yu Mao
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
42
|
Lan K, Yang H, Zheng J, Hu H, Zhu T, Zou X, Hu B, Liu H. Poria cocos oligosaccharides ameliorate dextran sodium sulfate-induced colitis mice by regulating gut microbiota dysbiosis. Food Funct 2023; 14:857-873. [PMID: 36537246 DOI: 10.1039/d2fo03424g] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Poria cocos, a widely accepted function food in China, has multiple pharmacological activities. This study aimed to investigate the therapeutic effect and molecular mechanism of Poria cocos oligosaccharides (PCOs) against dextran sodium sulfate (DSS)-induced mouse colitis. In this study, BALB/c mice were treated with 3% (w/v) DSS for seven days to establish a colitis model. The results showed that oral administration of PCOs (200 mg per kg per day) significantly reversed the changes in the physiological indices in colitis mice, including body weight, disease activity index scores (DAI), spleen index, and colon length. From the qRT-PCR assay, it was observed that PCOs suppressed the mRNA expression of pro-inflammatory cytokines, such as Tnf-α, Il-1β, and Il-6. In addition, PCOs protected the intestinal barrier from damage by promoting the expression of mucins and tight junction proteins at both mRNA and protein levels. Upon 16S rDNA sequencing, it was observed that PCO treatment partly reversed the changes in the gut microbiota of colitis mice by selectively regulating the abundance of specific bacteria. And Odoribacter, Muribaculum, Desulfovibrio, Oscillibacter, Escherichia-Shigella, and Turicibacter might be the critical bacteria in improving colitis via PCOs. Finally, using antibiotic mixtures to destroy the intestinal bacteria, we documented that PCO fermentation broth (PCO FB) instead of PCOs prevented the occurrence of colitis in gut microbiota-depleted mice. In conclusion, PCOs showed a protective effect on colitis by reversing gut microbiota dysbiosis. Our study sheds light on the potential application of PCOs as a prebiotic for treating colitis.
Collapse
Affiliation(s)
- Ke Lan
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, P. R. China.
| | - Huabing Yang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, P. R. China.
| | - Junping Zheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, P. R. China.
| | - Haiming Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, P. R. China.
| | - Tianxiang Zhu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, P. R. China.
| | - Xiaojuan Zou
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, P. R. China.
| | - Baifei Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, P. R. China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, P. R. China.
| |
Collapse
|
43
|
Zhong Y, Tu Y, Ma Q, Chen L, Zhang W, Lu X, Yang S, Wang Z, Zhang L. Curcumin alleviates experimental colitis in mice by suppressing necroptosis of intestinal epithelial cells. Front Pharmacol 2023; 14:1170637. [PMID: 37089942 PMCID: PMC10119427 DOI: 10.3389/fphar.2023.1170637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Curcumin, the primary bioactive substance in turmeric, exhibits potential therapeutic effects on ulcerative colitis. However, its mechanism for regulating necroptosis in colitis has not been fully elucidated. In this study, the effect of curcumin on experimental colitis-induced necroptosis of intestinal epithelial cells was investigated, and its molecular mechanism was further explored. We found that curcumin blocked necroptosis in a dose-dependent manner by inhibiting the phosphorylation of RIP3 and MLKL instead of RIP1 in HT-29 cells. Co-Immunoprecipitation assay showed that curcumin weakened the interaction between RIP1 and RIP3, possibly due to the direct binding of curcumin to RIP3 as suggested by drug affinity responsive target stability analysis. In a classical in vivo model of TNF-α and pan-caspase inhibitor-induced necroptosis in C57BL/6 mice, curcumin potently inhibited systemic inflammatory responses initiated by the necroptosis signaling pathway. Then, using a dextran sodium sulfate-induced colitis model in C57BL/6 mice, we found that curcumin inhibited the expression of p-RIP3 in the intestinal epithelium, reduced intestinal epithelial cells loss, improved the function of the intestinal tight junction barrier, and reduced local intestinal inflammation. Collectively, our findings suggest that curcumin is a potent targeted RIP3 inhibitor with anti-necroptotic and anti-inflammatory effects, maintains intestinal barrier function, and effectively alleviates colitis injury.
Collapse
Affiliation(s)
- Yuting Zhong
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Ye Tu
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, China
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
| | - Qingshan Ma
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linlin Chen
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
| | - Wenzhao Zhang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
| | - Xin Lu
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
| | - Shuo Yang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
- *Correspondence: Lichao Zhang, ; Zhibin Wang, ; Shuo Yang,
| | - Zhibin Wang
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, China
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
- *Correspondence: Lichao Zhang, ; Zhibin Wang, ; Shuo Yang,
| | - Lichao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Lichao Zhang, ; Zhibin Wang, ; Shuo Yang,
| |
Collapse
|
44
|
Qi X, Wang Q, Yu M, Kong Y, Shi F, Wang S. Bioinformatic analysis identifies the immunological profile of turner syndrome with different X chromosome origins. Front Endocrinol (Lausanne) 2023; 14:1024244. [PMID: 36733527 PMCID: PMC9887020 DOI: 10.3389/fendo.2023.1024244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION Turner syndrome (TS) is a chromosomal disorder that affects phenotypic females who have one intact X chromosome and complete or partial absence of the second sex chromosome in association with one or more clinical manifestations. However, the immunological profile of TS with different X chromosome origins is incompletely understood. METHODS In this study, transcriptomic expression profiles of 26 TS (45,X) samples and 10 normal karyotype (46,XX) samples derived from GSE46687 cohort were employed. Differentially expressed immune-related genes (DEIRGs) between monosomy X TS patients with different X chromosome origins and normal females were investigated respectively. Subsequently, functional annotation, protein-protein interaction (PPI) network analysis, immunocyte infiltration evaluation, tissue-specific gene expression and Weighted gene co expression network analysis (WGCNA) were performed to explore the immunological characteristic in TS with different X chromosome origins. RESULTS 34 and 52 DEIRGs were respectively identified in 45,Xm and 45,Xp patients compared with normal individuals. The identified DEIRGs in Xm group were significantly enriched in pathways associated with cancer. In Xp TS patients, the most enriched signals were immune response-related. A majority of genes involved in the above pathways were downregulated. PPI analysis identified 4 (FLT3, IL3RA, CSF2RA, PIK3R3) and 6 (PDGFRB, CSF2, IL5, PRL, CCL17 and IL2)hub genes for Xm and Xp groups, respectively. CIBERSORT results showed that the proportion of Tregs in the Xm group and the naive B cells and resting NK cells in the Xp group significantly increased, respectively. Tissue-specific expression results indicated that BDCA4+_dentritic cells and CD19+ B cells were the prominent specific expressed tissues in Xp patients. Results of WGCNA support the above analysis. CONCLUSIONS This study aims at studying the immunological characteristics of TS with different X chromosome origins. Pathways in cancer in Xm group and immune response in Xp group were suppressed. 4 and 6 hub IRGs were identified as biomarkers for Xm and Xp patients, respectively. B cells played important roles in Xp patients. Further studies are needed to draw more attention to the functional validation of these hub genes and the roles of B cells.
Collapse
Affiliation(s)
- Xiao Qi
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Qinghua Wang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Mingdong Yu
- Department of Spine Surgery, Weifang People’s Hospital, Weifang, Shandong, China
| | - Yujia Kong
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Fuyan Shi
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang, Shandong, China
- *Correspondence: Fuyan Shi, ; Suzhen Wang,
| | - Suzhen Wang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, Weifang, Shandong, China
- *Correspondence: Fuyan Shi, ; Suzhen Wang,
| |
Collapse
|
45
|
You Y, Xiao Y, Lu Y, Du J, Cai H, Cai W, Yan W. Postbiotic muramyl dipeptide alleviates colitis via activating autophagy in intestinal epithelial cells. Front Pharmacol 2022; 13:1052644. [PMID: 36506547 PMCID: PMC9727138 DOI: 10.3389/fphar.2022.1052644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
The pathogenesis of IBD is complicated and still unclear. Nucleotide-binding oligomerization domain 2 (NOD2) plays a significant role in regulating gut inflammation under the activation of muramyl dipeptide (MDP), which is used as a postbiotic. The study aimed to investigate the effect of MDP on the intestinal barrier in colitis and the mechanism involved. In this study, C57BL/6 mice were challenged with dextran sodium sulfate (DSS) for establishing a colitis model with the pre-treatment of MDP in vivo. Intestinal permeability was reflected by detecting the serum concentration of 4 kDa Fluorescein Isothiocyanate-Dextran. The expression of inflammation, barrier-related proteins, and autophagy was tested by Western Blotting. Proliferation and apoptosis in intestinal epithelial cells were detected by immunohistochemistry. Caco-2 cells were exposed to lipopolysaccharide for imitating inflammation in vitro. The findings showed that administration of MDP ameliorated losses of body weight loss, gross injury, and histology score of the colon in the DSS-induced colitis mice. MDP significantly ameliorated the condition of gut permeability, and promoted intestinal barrier repair by increasing the expression of Zonula occludens-1 and E-cadherin. Meanwhile, MDP promoted proliferation and reduced apoptosis of intestinal epithelial cells. In the experiment group treated with MDP, LC3 was upregulated, and p62 was downregulated, respectively. These results suggested that MDP stimulation attenuates intestinal inflammation both in vivo and in vitro. Potentially, MDP reduced the intestinal barrier damage by regulating autophagy in intestinal epithelial cells. Future trials investigating the effects of MDP-based postbiotics on IBD may be promising.
Collapse
Affiliation(s)
- Yaying You
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute for Pediatric Research, Shanghai, China,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yongtao Xiao
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute for Pediatric Research, Shanghai, China,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Lu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jun Du
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Hui Cai
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute for Pediatric Research, Shanghai, China,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Wei Cai
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute for Pediatric Research, Shanghai, China,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China,*Correspondence: Weihui Yan, ; Wei Cai,
| | - Weihui Yan
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute for Pediatric Research, Shanghai, China,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China,*Correspondence: Weihui Yan, ; Wei Cai,
| |
Collapse
|
46
|
Ruan S, Zha L. Moronic acid improves intestinal inflammation in mice with chronic colitis by inhibiting intestinal macrophage polarization. J Biochem Mol Toxicol 2022; 36:e23188. [PMID: 35924425 DOI: 10.1002/jbt.23188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022]
Abstract
This study focuses on exploring the role and mechanism of moronic acid (MOA), a small triterpenoid molecule, against inflammatory bowel disease (IBD). Intestinal macrophages were cultured in vitro, and their M1 polarization was induced by lipopolysaccharide (LPS) and interferon gamma (IFN-γ). After intervention with MOA, the proportion of M1 macrophages was detected, and the levels of inflammatory cytokines (TNF-α, IL-6, and IL-1β) were examined by ELISA. IFA staining was performed to determine the P50 and CD86 expressions, while DCFH-DA was used to determine the reactive oxygen species (ROS) level, as well as the p-P50 and NLRP3 protein levels. Additionally, we also used N-acetylcysteine, a ROS inhibitor, to further explore the association between MOA and ROS-NF-κB signaling. In murine experimentation, colitis was induced in mice with DSS. After MOA intervention, we assessed the mucosal barrier damage, tissue ROS, as well as protein and inflammatory cytokine levels. MOA could inhibit the M1 polarization of intestinal macrophages, suppress the expressions of inflammatory cytokines, and reduce the level of ROS-NF-κB-NLRP3 signaling. After inhibiting ROS through NAC treatment, the effect of MOA was evidently weakened. Clearly, MOA exerted its activity via ROS. In the murine model, MOA could lower the CD86 level in the intestinal tissues, inhibit the M1 polarization of macrophages, and reduce the tissue levels of inflammatory cytokines. This study finds that MOA can regulate ROS-NF-κB-NLRP3 signaling by inhibiting ROS, thereby suppressing the M1 polarization of intestinal macrophages, which plays a protective role in IBD.
Collapse
Affiliation(s)
- Shuiliang Ruan
- Department of Gastroenterology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Li Zha
- Department of Gastroenterology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
47
|
Kim MR, Cho SY, Lee HJ, Kim JY, Nguyen UTT, Ha NM, Choi KY, Cha KH, Kim JH, Kim WK, Kang K. Schisandrin C improves leaky gut conditions in intestinal cell monolayer, organoid, and nematode models by increasing tight junction protein expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154209. [PMID: 35689901 DOI: 10.1016/j.phymed.2022.154209] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/25/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Leaky gut symptoms and inflammatory bowel disease (IBD) are associated with damaged intestinal mucosa, intestinal permeability dysfunction by epithelial cell cytoskeleton contraction, disrupted intercellular tight junction (TJ) protein expression, and abnormal immune responses and are intractable diseases. PURPOSE We evaluated the effects of schisandrin C, a dibenzocyclooctadiene lignan from Schisandra chinensis, on intestinal inflammation and permeability dysfunction in gut mimetic systems: cultured intestinal cells, intestinal organoids, and a Caenorhabditis elegans model. METHODS Schisandrin C was selected from 9 lignan compounds from S. chinensis based on its anti-inflammatory effects in HT-29 human intestinal cells. IL-1β and Pseudomonas aeruginosa supernatants were used to disrupt intestinal barrier formation in vitro and in C. elegans, respectively. The effects of schisandrin C on transepithelial electrical resistance (TEER) and intestinal permeability were evaluated in intestinal cell monolayers, and its effect on intestinal permeability dysfunction was tested in mouse intestinal organoids and C. elegans by measuring fluorescein isothiocyanate (FITC)-dextran efflux. The effect of schisandrin C on TJ protein expression was investigated by western blotting and fluorescence microscopy. The signaling pathway underlying these effects was also elucidated. RESULTS Schisandrin C ameliorated intestinal permeability dysfunction in three IBD model systems and enhanced epithelial barrier formation via upregulation of ZO-1 and occludin in intestinal cell monolayers and intestinal organoids. In Caco-2 cells, schisandrin C restored IL-1β-mediated increases in MLCK and p-MLC expression, in turn blocking cytoskeletal contraction and subsequent intestinal permeabilization. Schisandrin C inhibited NF-ĸB and p38 MAPK signaling, which regulates MLCK expression and structural reorganization of the TJ complex in Caco-2 cells. Schisandrin C significantly improved abnormal FITC-dextran permeabilization in both intestinal organoids and C. elegans. CONCLUSION Schisandrin C significantly improves abnormal intestinal permeability and regulates the expression of TJ proteins, long MLCK, p-MLC, and inflammation-related proteins, which are closely related to leaky gut symptoms and IBD development. Therefore, schisandrin C is a candidate to treat leaky gut symptoms and IBDs.
Collapse
Affiliation(s)
- Mi Ri Kim
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, 25451, South Korea; Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung, Gangwon-do, 25457, South Korea
| | - Su-Yeon Cho
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, 25451, South Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea
| | - Hee Ju Lee
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, 25451, South Korea
| | - Joo Yeon Kim
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, 25451, South Korea
| | - Uyen Tran Tu Nguyen
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, 25451, South Korea
| | - Ngoc Minh Ha
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, 25451, South Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea
| | - Ki Young Choi
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, 25451, South Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea
| | - Kwang Hyun Cha
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, 25451, South Korea
| | - Jeong-Ho Kim
- Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung, Gangwon-do, 25457, South Korea
| | - Won Kyu Kim
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, 25451, South Korea.
| | - Kyungsu Kang
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, 25451, South Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea.
| |
Collapse
|
48
|
Sohn EJ. PIK3R3, a regulatory subunit of PI3K, modulates ovarian cancer stem cells and ovarian cancer development and progression by integrative analysis. BMC Cancer 2022; 22:708. [PMID: 35761259 PMCID: PMC9238166 DOI: 10.1186/s12885-022-09807-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background Ovarian cancer is the most lethal gynecologic disease and is one of the most commonly diagnosed cancers among women worldwide. The phosphatidylinositol 3-kinase (PI3K) family plays an important regulatory role in various cancer signaling pathways, including those involved in ovarian cancer development; however, its exact function remains to be fully understood. We conducted this study to understand the role of P13K in the molecular mechanisms underlying ovarian cancer development. Methods To determine the differential gene expression of phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3), a regulatory subunit of PI3K, in normal, tumor, and metastatic ovary tissues, TNM plotter analysis was performed. The microarray dataset GSE53759 was downloaded from Gene Expression Omnibus. ROC plotter analysis was conducted to understand the potential of PIK3R3 as a predictive marker for effectiveness of therapy in ovarian cancer. muTarget was used to identify mutations that alter PIK3R3 expression in ovarian cancer. To determine the interacting partners for PIK3R3 in ovarian tissues, the interactome-atlas tool was used. The Kyoto encyclopedia of genes and genomes (KEGG) analysis was conducted to identify the pathways in which these interacting partners were primarily enriched. Results PIK3R3 was overexpressed in ovarian and metastatic tumors. Elevated PIK3R3 levels were observed in ovarian cancer stem cells, wherein inhibiting PIK3R3 expression significantly reduced the size of ovarian cancer spheroids. Treatment of ovarian cancer stem cells with PF-04691502 (10 μM), an inhibitor of both PI3K and mTOR kinases, also reduced the size of spheroids and the level of OCT4. PIK3R3 was highly expressed in ovarian cancer with several somatic mutations and was predicted better outcomes in patients undergoing Avastin® chemotherapy using bioinformatic tool. Protein interaction analysis showed that PIK3R3 interacts with 157 genes, including GRB2, EGFR, ERBB3, PTK2, HCK, IGF1R, YES1, and PIK3CA, in the ovary. KEGG enrichment analysis revealed that the interacting partners of PIK3R3 are involved in the ErbB signaling pathway, proteoglycans in cancer, FoxO, prolactin, chemokine, and insulin signaling pathways. Conclusions PIK3R3 plays a pivotal role in ovarian cancer development and is therefore a potential candidate for developing novel therapeutic approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09807-7.
Collapse
Affiliation(s)
- Eun Jung Sohn
- Pusan National University, Yangsan, 50612, Republic of Korea.
| |
Collapse
|
49
|
Yuan S, Wang Q, Li J, Xue JC, Li Y, Meng H, Hou XT, Nan JX, Zhang QG. Inflammatory bowel disease: an overview of Chinese herbal medicine formula-based treatment. Chin Med 2022; 17:74. [PMID: 35717380 PMCID: PMC9206260 DOI: 10.1186/s13020-022-00633-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/02/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent inflammatory disease of the intestine, including Crohn's disease (CD) and ulcerative colitis (UC), whose etiology and pathogenesis have not been fully understood. Due to its prolonged course and chronic recurrence, IBD imposes a heavy economic burden and psychological stress on patients. Traditional Chinese Herbal Medicine has unique advantages in IBD treatment because of its symptomatic treatment. However, the advantages of the Chinese Herbal Medicine Formula (CHMF) have rarely been discussed. In recent years, many scholars have conducted fundamental studies on CHMF to delay IBD from different perspectives and found that CHMF may help maintain intestinal integrity, reduce inflammation, and decrease oxidative stress, thus playing a positive role in the treatment of IBD. Therefore, this review focuses on the mechanisms associated with CHMF in IBD treatment. CHMF has apparent advantages. In addition to the exact composition and controlled quality of modern drugs, it also has multi-component and multi-target synergistic effects. CHMF has good prospects in the treatment of IBD, but its multi-agent composition and wide range of targets exacerbate the difficulty of studying its treatment of IBD. Future research on CHMF-related mechanisms is needed to achieve better efficacy.
Collapse
Affiliation(s)
- Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002 Jilin China
- Present Address: Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning China
| | - Qi Wang
- Present Address: Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning China
| | - Jiao Li
- Present Address: Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, 133002 Jilin China
| | - Jia-Chen Xue
- Present Address: Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, 133002 Jilin China
| | - You Li
- Present Address: Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning China
| | - Huan Meng
- Present Address: Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning China
| | - Xiao-Ting Hou
- Present Address: Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002 Jilin China
| | - Qing-Gao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002 Jilin China
- Present Address: Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, 133002 Jilin China
| |
Collapse
|
50
|
Ram AK, Vairappan B. Role of zonula occludens in gastrointestinal and liver cancers. World J Clin Cases 2022; 10:3647-3661. [PMID: 35647143 PMCID: PMC9100728 DOI: 10.12998/wjcc.v10.i12.3647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/08/2021] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
A growing body of evidence suggests that tight junction (TJ) proteins play a crucial role in the pathogenesis of various diseases, including gastrointestinal (GI) cancer and hepatocellular carcinoma (HCC). TJ proteins primarily maintain the epithelial and endothelial cells intact together through integral proteins however, recent reports suggest that they also regulate gene expression necessary for cell proliferation, angiogenesis, and metastasis through adapter proteins such as zonula occludens (ZO). ZO proteins are membrane-associated cytosolic scaffolding proteins that modulate cell proliferation by interacting with several transcription factors. Reduced ZO proteins in GI cancer and HCC are correlated with tumor development and poor prognosis. Pubmed has searched for using the keyword ZO and gastric cancer, ZO and cancer, and ZO and HCC for the last ten years to date. This review summarized the role of ZO proteins in cell proliferation and their expression in GI cancer and HCC. Furthermore, therapeutic interventions targeting ZO in GI and liver cancers are reviewed.
Collapse
Affiliation(s)
- Amit Kumar Ram
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| | - Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| |
Collapse
|