1
|
Fan X, Brunetti TM, Jackson K, Roop DR. Single-Cell Profiling Reveals Global Immune Responses During the Progression of Murine Epidermal Neoplasms. Cancers (Basel) 2025; 17:1379. [PMID: 40282557 PMCID: PMC12025564 DOI: 10.3390/cancers17081379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/01/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Immune cells determine the role of the tumor microenvironment during tumor progression, either suppressing tumor formation or promoting tumorigenesis. This study aimed to fully characterize immune cell responses during skin tumor progression. METHODS Using single-cell RNA sequencing, we analyzed the profile of immune cells in the tumor microenvironment of control mouse skins and skin tumors at the single-cell level. RESULTS We identified 15 CD45+ immune cell clusters, which broadly represent the most functionally characterized immune cell types including macrophages, Langerhans cells (LC), conventional type 1 dendritic cells (cDC1), conventional type 2 dendritic cells (cDC2), migratory/mature dendritic cells (mDC), dendritic epidermal T cells (DETC), dermal γδ T cells (γδT), T cells, regulatory T cells (Tregs), natural killer cells (NK), type 2 innate lymphoid cells (ILC2), neutrophils (Neu), mast cells (Mast), and two proliferating populations (Prolif.1 and Prolif.2). Skin tumor progression reprogramed immune cells and led to a marked increase in the relative percentages of macrophages, cDC2, mDC, Tregs, and Neu. Macrophages, the largest cell cluster of immune cells in skin tumors. In addition, macrophages emerged as the predominant communication 'hub' in skin tumors, highlighting the importance of macrophages during skin tumor progression. In contrast, other immune cell clusters decreased during skin tumor progression, including DETC, γδT, ILC2, and LC. In addition, skin tumor progression dramatically upregulated Jak2/Stat3 expression and the interferon response across various immune cell clusters. Further, skin tumor progression activated T cells and NK cells indicated by elevated expression of IFN-γ and Granzyme B in skin tumors. Meanwhile, a pronounced infiltration of M2-macrophages and Tregs in skin tumors created an immunosuppressive microenvironment, consistent with the elevated expression of the Stat3 pathway in skin tumors. CONCLUSIONS Our study elucidates the immune cell landscape of epidermal neoplasms, offering a comprehensive understanding of the immune response during skin tumor progression and providing new insights into cancer immune evasion mechanisms.
Collapse
Affiliation(s)
- Xiying Fan
- Department of Dermatology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., Room 4007, Aurora, CO 80045, USA;
- Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tonya M. Brunetti
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Kelsey Jackson
- Department of Dermatology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., Room 4007, Aurora, CO 80045, USA;
- Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dennis R. Roop
- Department of Dermatology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., Room 4007, Aurora, CO 80045, USA;
- Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Jean EE, Rossi HL, Hung LY, Inclan-Rico JM, Herbert DR. Myeloid-derived IL-33 drives γδ T cell-dependent resistance against cutaneous infection by Strongyloides ratti. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:vkae038. [PMID: 40073150 PMCID: PMC11952876 DOI: 10.1093/jimmun/vkae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/05/2024] [Indexed: 03/14/2025]
Abstract
Interleukin 33 (IL-33) is a pleiotropic cytokine released from diverse cell types that regulate both pro- and anti-inflammatory responses during pathogen infection. However, it remains unclear whether IL-33 controls key aspects of cutaneous immunity against skin-penetrating parasites. In this study, mice percutaneously infected with the parasitic helminth Strongyloides ratti were investigated to understand mechanisms of anamnestic immunity at the skin barrier. Surprisingly, mice lacking the Type 2 transcription factor STAT6 (signal transducer and activator of transcription 6) had no defects in secondary resistance to infection, whereas IL-33 gene deficiency or local blockade of IL-33 receptor (ST2) signaling abrogated host resistance. Depletion of CD4+ T cells or type 2 innate lymphoid cells had only a moderate impact on protection, but the loss of γδ T cells completely ablated cutaneous immunity against rechallenge. We identified a CD62Lhi IL-33 receptor (ST2)-expressing γδ T cell population that accumulated in the skin of protected mice that was dependent upon IL-33 expression in myeloid lineage antigen-presenting cells. This work suggests a previously unrecognized mechanism wherein noncanonical type 2 immunity operates through myeloid antigen-presenting cells and skin γδ T cells to adaptively repel skin-penetrating helminth larvae.
Collapse
Affiliation(s)
- Erin Evonne Jean
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 United States
| | - Heather Lynn Rossi
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 United States
| | - Li Yin Hung
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 United States
| | - Juan M Inclan-Rico
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 United States
| | - De’Broski R Herbert
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 United States
| |
Collapse
|
3
|
Golzari-Sorkheh M, Yoganathan K, Chen ELY, Singh J, Zúñiga-Pflücker JC. T Cell Development: From T-Lineage Specification to Intrathymic Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:81-137. [PMID: 40067585 DOI: 10.1007/978-3-031-77921-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
T cell development occurs in the thymus in both mice and humans. Upon entry into the thymus, bone marrow-derived blood-borne progenitors receive instructive signals, including Notch signaling, to eliminate their potential to develop into alternative immune lineages while committing to the T cell fate. Upon T-lineage commitment, developing T cells receive further instructional cues to generate different T cell sublineages, which together possess diverse immunological functions to provide host immunity. Over the years, numerous studies have contributed to a greater understanding of key thymic signals that govern T cell differentiation and subset generation. Here, we review these critical signaling factors that govern the different stages of both mouse and human T cell development, while also focusing on the transcriptional changes that mediate T cell identity and diversity.
Collapse
Affiliation(s)
- Mahdieh Golzari-Sorkheh
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kogulan Yoganathan
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Edward L Y Chen
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jastaranpreet Singh
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | | |
Collapse
|
4
|
Fan X, Brunetti TM, Jackson K, Roop DR. Single-Cell Profiling Reveals Global Immune Responses during the Progression of Murine Epidermal Neoplasms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.24.630251. [PMID: 39763798 PMCID: PMC11703249 DOI: 10.1101/2024.12.24.630251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Immune cells determine the role of the tumor microenvironment during tumor progression, either suppressing tumor formation or promoting tumorigenesis. We analyzed the profile of immune cells in the tumor microenvironment of control mouse skins and skin tumors at the single-cell level. We identified 15 CD45 + immune cell clusters, which broadly represent the most functionally characterized immune cell types including macrophages, Langerhans cells (LC), conventional type 1 dendritic cells (cDC1), conventional type 2 dendritic cells (cDC2), migratory/mature dendritic cells (mDC), dendritic epidermal T cells (DETC), dermal γδ T cells (γδT), T cells, regulatory T cells (Tregs), natural killer cells (NK), type 2 innate lymphoid cells (ILC2), neutrophils (Neu), mast cells (Mast), and two proliferating populations (Prolif.1 and Prolif.2). Skin tumor progression reprogramed immune cells and led to a marked increase in the relative percentages of macrophages, cDC2, mDC, Tregs, and Neu. Macrophages, the largest cell cluster of immune cells in skin tumors. In addition, macrophages emerged as the predominant communication 'hub' in skin tumors, highlighting the importance of macrophages during skin tumor progression. In contrast, other immune cell clusters decreased during skin tumor progression, including DETC, γδT, ILC2, and LC. In addition, skin tumor progression dramatically upregulated Jak2/Stat3 expression and the interferon response across various immune cell clusters. Further, skin tumor progression activated T cells and NK cells indicated by elevated expression of IFN-γ and Granzyme B in skin tumors. Meanwhile, a pronounced infiltration of M2-macrophages and Tregs in skin tumors created an immunosuppressive microenvironment, consistent with the elevated expression of the Stat3 pathway in skin tumors. In summary, our study elucidates the immune cell landscape of epidermal neoplasms, offering a comprehensive understanding of the immune response during skin tumor progression and providing new insights into cancer immune evasion mechanisms.
Collapse
|
5
|
Tarrés J, Jové-Juncà T, Hernández-Banqué C, González-Rodríguez O, Ganges L, Gol S, Díaz M, Reixach J, Pena RN, Quintanilla R, Ballester M. Insights into genetic determinants of piglet survival during a PRRSV outbreak. Vet Res 2024; 55:160. [PMID: 39696499 DOI: 10.1186/s13567-024-01421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/14/2024] [Indexed: 12/20/2024] Open
Abstract
Breeding animals to produce more robust and disease-resistant pig populations becomes a complementary strategy to the more conventional methods of biosecurity and vaccination. The objective of this study was to explore the ability of a panel of genetic markers and immunity parameters to predict the survival rates during a natural PRRSV outbreak. Ten-week-old female Duroc pigs (n = 129), obtained from 61 sows and 20 boars, were naturally infected with a highly pathogenic PRRSV genotype 1 strain. Prior to infection, piglets were screened for immunity parameters (IgG levels in plasma and SOX13 mRNA expression in blood) and genetic markers previously associated to PRRSV immune response and immunity traits. Additionally, the 20 boars were genotyped with a panel of 132 single nucleotide polymorphisms (SNPs). Survival analysis showed that mortality was significantly higher for animals with low basal IgG levels in plasma and/or high SOX13 mRNA expression in blood. The genotypes of sires for SNPs associated with IgG plasma levels, CRP in serum, percentage of γδ T cells, lymphocyte phagocytic capacity, total number of lymphocytes and leukocytes, and MCV and MCH were significantly associated with the number of surviving offspring. Furthermore, CD163 and GBP5 markers were also associated to piglet survival. The effects of these SNPs were polygenic and cumulative, survival decreased from 94 to 21% as more susceptible alleles were accumulated for the different markers. Our results confirmed the existence of genetic variability in survival after PRRSV infection and provided a set of genetic markers and immunity traits associated with PRRS resistance.
Collapse
Affiliation(s)
- Joaquim Tarrés
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Spain.
| | - Teodor Jové-Juncà
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Spain
| | - Carles Hernández-Banqué
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Spain
| | - Olga González-Rodríguez
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Spain
| | - Llilianne Ganges
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus Universitat Autònoma de Barcelona (UAB), 08193, Barcelona, Bellaterra, Spain
| | - Sofia Gol
- Selección Batalle SA, Riudarenes, Spain
| | | | | | - Ramona N Pena
- Departament de Ciència Animal, University of Lleida and AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198, Lleida, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Spain.
| |
Collapse
|
6
|
Inadequate Activation of γδT- and B-cells in Patient with Wiskott-Aldrich Syndrome (WAS) Portrayed by TRG and IGH Repertoire Analyses. J Clin Immunol 2023; 43:109-122. [PMID: 36044170 PMCID: PMC9840590 DOI: 10.1007/s10875-022-01349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/11/2022] [Indexed: 01/21/2023]
Abstract
Patients with Wiskott-Aldrich syndrome (WAS) harbor mutations in the WAS gene and suffer from immunodeficiency, microthrombocytopenia, and eczema. T-cells play an important role in immune response in the skin and the γδT-cells have an important role in skin homeostasis. Since WAS patients often present with eczema, we wanted to examine whether the T-cell receptor gamma (TRG) repertoire of the γδT-cells is affected in these patients. In addition, the immunoglobulin heavy chain (IGH) repertoire from genomic DNA of WAS patients was not yet studied. Thus, we sought to determine the effects that specific WAS mutations from our patients have in shaping the TRG and IGH immune repertoires. We collected clinical and genetic data on four WAS patients, each harboring a different mutation in the WAS gene. Using next-generation sequencing (NGS), we analyzed their TRG and IGH repertoires using genomic DNA isolated from their peripheral blood. We analyzed the TRG and IGH repertoire sequences to show repertoire restriction, clonal expansions, preferential utilization of specific V genes, and unique characteristics of the antigen binding region in WAS patients with eczema compared to healthy controls. Both the TRG and IGH repertoire showed diverse repertoire comparable to healthy controls on one the hand, and on the other hand, the IGH repertoire showed increased diversity, more evenly distributed repertoire and immaturity of the antigen binding region. Thus, we demonstrate by analyzing the repertoire based on genomic DNA, the various effect that WAS mutations have in shaping the TRG and IGH adaptive immune repertoires.
Collapse
|
7
|
Zhang W, Pajulas A, Kaplan MH. γδ T Cells in Skin Inflammation. Crit Rev Immunol 2022; 42:43-56. [PMID: 37075018 PMCID: PMC10439530 DOI: 10.1615/critrevimmunol.2022047288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gamma delta (γδ) T cells are a subset of T lymphocytes that express T cell receptor γ and 5 chains and display structural and functional heterogeneity. γδ T cells are typically of low abundance in the body and account for 1-5% of the blood lymphocytes and peripheral lymphoid tissues. As a bridge between innate and adaptive immunity, γδ T cells are uniquely poised to rapidly respond to stimulation and can regulate immune responses in peripheral tissues. The dendritic epidermal T cells in the skin epidermis can secrete growth factors to regulate skin homeostasis and re-epithelization and release inflammatory factors to mediate wound healing during skin inflammatory responses. Dermal γδ T cells can regulate the inflammatory process by producing interleukin-17 and other cytokines or chemokines. Here, we offer a review of the immune functions of γδ T cells, intending to understand their role in regulating skin barrier integrity and skin wound healing, which may be crucial for the development of novel therapeutics in skin diseases like atopic dermatitis and psoriasis.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| | - Abigail Pajulas
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| | - Mark H Kaplan
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| |
Collapse
|
8
|
Damani-Yokota P, Zhang F, Gillespie A, Park H, Burnside A, Telfer JC, Baldwin CL. Transcriptional programming and gene regulation in WC1 + γδ T cell subpopulations. Mol Immunol 2021; 142:50-62. [PMID: 34959072 DOI: 10.1016/j.molimm.2021.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
γδ T cells represent a high proportion of lymphocytes in the blood of ruminants with the majority expressing lineage-specific glycoproteins from the WC1 family. WC1 receptors are coded for by a multigenic array whose genes have variegated but stable expression among cells in the γδ T cell population. WC1 molecules function as hybrid pattern recognition receptors as well as co-receptors for the TCR and are required for responses by the cells. Because of the variegated gene expression, WC1+ γδ T cells can be divided into two main populations known as WC1.1+ and WC1.2+ based on monoclonal antibody reactivity with the expressed WC1 molecules. These subpopulations differ in their ability to respond to specific pathogens. Here, we showed these populations are established in the thymus and that WC1.1+ and WC1.2+ subpopulations have transcriptional programming that is consistent with stratification towards Tγδ1 or Tγδ17. WC1.1+ cells exhibited the Tγδ1 phenotype with greater transcription of Tbx21 and production of more IFNγ while the WC1.2+ subpopulation tended towards Tγδ17 programming producing higher levels of IL-17 and had greater transcription of Rorc. However, when activated both WC1+ subpopulations' cells transcribed Tbx21 and secreted IFNγ and IL-17 reflecting the complexity of these subpopulations defined by WC1 gene expression. The gene networks involved in development of these two subpopulations including expression of their archetypal genes wc1-3 (WC1.1+) and wc1-4 (WC1.2+) were unknown but we report that SOX-13, a γδ T cell fate-determining transcription factor, has differential occupancy on these WC1 gene loci and suggest a model for development of these subpopulations.
Collapse
Affiliation(s)
- Payal Damani-Yokota
- Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Fengqiu Zhang
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Alexandria Gillespie
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Haeree Park
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Amy Burnside
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Janice C Telfer
- Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| | - Cynthia L Baldwin
- Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
9
|
Ullrich L, Lueder Y, Juergens AL, Wilharm A, Barros-Martins J, Bubke A, Demera A, Ikuta K, Patzer GE, Janssen A, Sandrock I, Prinz I, Rampoldi F. IL-4-Producing Vγ1 +/Vδ6 + γδ T Cells Sustain Germinal Center Reactions in Peyer's Patches of Mice. Front Immunol 2021; 12:729607. [PMID: 34804014 PMCID: PMC8600568 DOI: 10.3389/fimmu.2021.729607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
The mucosal immune system is the first line of defense against pathogens. Germinal centers (GCs) in the Peyer's patches (PPs) of the small intestine are constantly generated through stimulation of the microbiota. In this study, we investigated the role of γδ T cells in the GC reactions in PPs. Most γδ T cells in PPs localized in the GCs and expressed a TCR composed of Vγ1 and Vδ6 chains. By using mice with partial and total γδ T cell deficiencies, we found that Vγ1+/Vδ6+ T cells can produce high amounts of IL-4, which drives the proliferation of GC B cells as well as the switch of GC B cells towards IgA. Therefore, we conclude that γδ T cells play a role in sustaining gut homeostasis and symbiosis via supporting the GC reactions in PPs.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/microbiology
- Cell Differentiation
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Germinal Center/immunology
- Germinal Center/metabolism
- Germinal Center/microbiology
- Immunity, Mucosal
- Immunoglobulin A/immunology
- Immunoglobulin A/metabolism
- Immunoglobulin Class Switching
- Interleukin-4/metabolism
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/microbiology
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
- Intraepithelial Lymphocytes/microbiology
- Lymphocyte Activation
- Lymphocyte Depletion
- Mice, Knockout
- Peyer's Patches/immunology
- Peyer's Patches/metabolism
- Peyer's Patches/microbiology
- Phenotype
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Salmonella Infections/immunology
- Salmonella Infections/metabolism
- Salmonella Infections/microbiology
- Salmonella typhimurium/immunology
- Salmonella typhimurium/pathogenicity
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Leon Ullrich
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Yvonne Lueder
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Anja Bubke
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Abdi Demera
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Koichi Ikuta
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | | | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
10
|
Zhou Q, Xiang H, Liu H, Qi B, Shi X, Guo W, Zou J, Wan X, Wu W, Wang Z, Liu W, Xia S, Shang D. Emodin Alleviates Intestinal Barrier Dysfunction by Inhibiting Apoptosis and Regulating the Immune Response in Severe Acute Pancreatitis. Pancreas 2021; 50:1202-1211. [PMID: 34714285 PMCID: PMC8565508 DOI: 10.1097/mpa.0000000000001894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The intestinal barrier injury caused by severe acute pancreatitis (SAP) can induce enterogenous infection, further aggravating the inflammatory reactions and immune responses. This study aimed to test the hypothesis that emodin protects the intestinal function and is involved in the immune response in SAP. METHODS The network pharmacology was established using the Swiss target prediction and pathway enrichment analysis. The SAP mice model was induced by cerulein (50 μg/kg) and lipopolysaccharide (10 mg/kg) hyperstimulation. The pharmacological effect of emodin in treating SAP was evaluated at mRNA and protein levels by various methods. RESULTS The network analysis provided the connectivity between the targets of emodin and the intestinal barrier-associated proteins and predicted the BAX/Bcl-2/caspase 3 signaling pathway. Emodin alleviated the pathological damages to the pancreas and intestine and reduced the high concentrations of serum amylase and cytokines in vivo. Emodin increased the expression of intestinal barrier-related proteins and reversed the changes in the apoptosis-related proteins in the intestine. Simultaneously, emodin regulated the ratio of T helper type 1 (TH1), TH2, TH17, γδ T cells, and interferon γ/interleukin 17 producing γδ T cells. CONCLUSIONS These findings partly verified the mechanism underlying the regulation of the intestinal barrier and immune response by emodin.
Collapse
Affiliation(s)
- Qi Zhou
- From the Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University
- Institute (College) of Integrative Medicine
| | - Hong Xiang
- From the Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University
| | - Han Liu
- Department of Oral Pathology, Dalian Medical University
| | - Bing Qi
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xueying Shi
- From the Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University
- Institute (College) of Integrative Medicine
| | - Wenhui Guo
- From the Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University
| | - Jiacheng Zou
- Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, Goleta, CA
| | - Xueting Wan
- From the Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University
| | - Wenjing Wu
- From the Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University
| | - Zhengpeng Wang
- From the Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University
| | - Wenhui Liu
- From the Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University
| | - Shilin Xia
- From the Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University
| | - Dong Shang
- From the Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University
- Institute (College) of Integrative Medicine
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Liu Y, Cook C, Sedgewick AJ, Zhang S, Fassett MS, Ricardo-Gonzalez RR, Harirchian P, Kashem SW, Hanakawa S, Leistico JR, North JP, Taylor MA, Zhang W, Man MQ, Charruyer A, Beliakova-Bethell N, Benz SC, Ghadially R, Mauro TM, Kaplan DH, Kabashima K, Choi J, Song JS, Cho RJ, Cheng JB. Single-Cell Profiling Reveals Divergent, Globally Patterned Immune Responses in Murine Skin Inflammation. iScience 2020; 23:101582. [PMID: 33205009 PMCID: PMC7648132 DOI: 10.1016/j.isci.2020.101582] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 01/01/2023] Open
Abstract
Inflammatory response heterogeneity has impeded high-resolution dissection of diverse immune cell populations during activation. We characterize mouse cutaneous immune cells by single-cell RNA sequencing, after inducing inflammation using imiquimod and oxazolone dermatitis models. We identify 13 CD45+ subpopulations, which broadly represent most functionally characterized immune cell types. Oxazolone pervasively upregulates Jak2/Stat3 expression across T cells and antigen-presenting cells (APCs). Oxazolone also induces Il4/Il13 expression in newly infiltrating basophils, and Il4ra and Ccl24, most prominently in APCs. In contrast, imiquimod broadly upregulates Il17/Il22 and Ccl4/Ccl5. A comparative analysis of single-cell inflammatory transcriptional responses reveals that APC response to oxazolone is tightly restricted by cell identity, whereas imiquimod enforces shared programs on multiple APC populations in parallel. These global molecular patterns not only contrast immune responses on a systems level but also suggest that the mechanisms of new sources of inflammation can eventually be deduced by comparison to known signatures. Oxazolone pervasively upregulates Jak2/Stat3 expression across T cells and APCs Il4/Il13 induction in skin by oxazolone is dominated by infiltrating basophils Imiquimod broadly increases Il17/Il22 and Ccl4/Ccl5, extending to non-T cells Oxazolone induces more highly compartmentalized immune cell responses than imiquimod
Collapse
Affiliation(s)
- Yale Liu
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, ShaanXi, China
| | - Christopher Cook
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
| | | | - Shuyi Zhang
- Department of Physics, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Marlys S. Fassett
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Department of Immunology and Microbiology, University of California, San Francisco, San Francisco, CA, USA
| | - Roberto R. Ricardo-Gonzalez
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Department of Immunology and Microbiology, University of California, San Francisco, San Francisco, CA, USA
| | - Paymann Harirchian
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
| | - Sakeen W. Kashem
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Sho Hanakawa
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jacob R. Leistico
- Department of Physics, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jeffrey P. North
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Mark A. Taylor
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Wei Zhang
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
| | - Mao-Qiang Man
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
| | - Alexandra Charruyer
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
| | - Nadejda Beliakova-Bethell
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0679, USA
- Veterans Affairs Medical Center, San Diego, CA, USA
| | | | - Ruby Ghadially
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
| | - Theodora M. Mauro
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
| | - Daniel H. Kaplan
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Singapore Immunology Network (SIgN) and Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern School of Medicine, Chicago, IL, USA
| | - Jun S. Song
- Department of Physics, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Raymond J. Cho
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Corresponding author
| | - Jeffrey B. Cheng
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
- Corresponding author
| |
Collapse
|
12
|
Natural Self-Ligand Gamma Delta T Cell Receptors (γδTCRs) Insight: The Potential of Induced IgG. Vaccines (Basel) 2020; 8:vaccines8030436. [PMID: 32759782 PMCID: PMC7564284 DOI: 10.3390/vaccines8030436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
A γδ T cell acquires functional properties in response to the gamma delta T cell receptor γδTCR signal strength during its development in the thymus. The elucidation of the potential ligands of γδ T cell receptors are of extreme importance; however, they are still not understood. Here we revise the actual state of the art of candidates to exert the function of γδTCR ligands, and propose a theoretical contribution about new potential ligands of γδTCRs, based on biological and hypothetical pieces of evidence in the literature. In conclusion, we hypothetically suggest a possible role of induced antibodies according to the individual’s immune status, mainly of the IgG subclass, acting as γδTCR ligands. Considering that IgG production is involved in some essential immunotherapy protocols, and almost all vaccination protocols, our discussion opens a new and broad field to further exploration.
Collapse
|
13
|
Hahn AM, Winkler TH. Resolving the mystery-How TCR transgenic mouse models shed light on the elusive case of gamma delta T cells. J Leukoc Biol 2020; 107:993-1007. [PMID: 32068302 DOI: 10.1002/jlb.1mr0120-237r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 12/22/2022] Open
Abstract
Cutting-edge questions in αβ T cell biology were addressed by investigating a range of different genetically modified mouse models. In comparison, the γδ T cell field lacks behind on the availability of such models. Nevertheless, transgenic mouse models proved useful for the investigation of γδ T cell biology and their stepwise development in the thymus. In general, animal models and especially mouse models give access to a wide range of opportunities of modulating γδ T cells, which is unachievable in human beings. Because of their complex biology and specific tissue tropism, it is especially challenging to investigate γδ T cells in in vitro experiments since they might not reliably reflect their behavior and phenotype under physiologic conditions. This review aims to provide a comprehensive historical overview about how different transgenic mouse models contributed in regards of the understanding of γδ T cell biology, whereby a special focus is set on studies including the elusive role of the γδTCR. Furthermore, evolutionary and translational remarks are discussed under the aspect of future implications for the field. The ultimate full understanding of γδ T cells will pave the way for their usage as a powerful new tool in immunotherapy.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Lineage/genetics
- Cell Lineage/immunology
- Cell Movement
- Founder Effect
- Gene Expression
- Humans
- Immunotherapy/methods
- Mice
- Mice, Transgenic/genetics
- Mice, Transgenic/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction
- Species Specificity
- T-Lymphocytes/classification
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Anne M Hahn
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| |
Collapse
|
14
|
Lee HW, Chung YS, Kim TJ. Heterogeneity of Human γδ T Cells and Their Role in Cancer Immunity. Immune Netw 2020; 20:e5. [PMID: 32158593 PMCID: PMC7049581 DOI: 10.4110/in.2020.20.e5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 12/24/2022] Open
Abstract
The γδ T cells are unconventional lymphocytes that function in both innate and adaptive immune responses against various intracellular and infectious stresses. The γδ T cells can be exploited as cancer-killing effector cells since γδ TCRs recognize MHC-like molecules and growth factor receptors that are upregulated in cancer cells, and γδ T cells can differentiate into cytotoxic effector cells. However, γδ T cells may also promote tumor progression by secreting IL-17 or other cytokines. Therefore, it is essential to understand how the differentiation and homeostasis of γδ T cells are regulated and whether distinct γδ T cell subsets have different functions. Human γδ T cells are classified into Vδ2 and non-Vδ2 γδ T cells. The majority of Vδ2 γδ T cells are Vγ9δ2 T cells that recognize pyrophosphorylated isoprenoids generated by the dysregulated mevalonate pathway. In contrast, Vδ1 T cells expand from initially diverse TCR repertoire in patients with infectious diseases and cancers. The ligands of Vδ1 T cells are diverse and include the growth factor receptors such as endothelial protein C receptor. Both Vδ1 and Vδ2 γδ T cells are implicated to have immunotherapeutic potentials for cancers, but the detailed elucidation of the distinct characteristics of 2 populations will be required to enhance the immunotherapeutic potential of γδ T cells. Here, we summarize recent progress regarding cancer immunology of human γδ T cells, including their development, heterogeneity, and plasticity, the putative mechanisms underlying ligand recognition and activation, and their dual effects on tumor progression in the tumor microenvironment.
Collapse
Affiliation(s)
- Hye Won Lee
- Department of Hospital Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yun Shin Chung
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Tae Jin Kim
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| |
Collapse
|
15
|
Santos LS, Sgnotto FDR, Inoue AHS, Padreca AF, Menghini RP, Duarte AJDS, Victor JR. IgG from Non-atopic Individuals Induces In Vitro IFN-γ and IL-10 Production by Human Intra-thymic γδT Cells: A Comparison with Atopic IgG and IVIg. Arch Immunol Ther Exp (Warsz) 2019; 67:263-270. [PMID: 31087106 DOI: 10.1007/s00005-019-00545-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/27/2019] [Indexed: 01/22/2023]
Abstract
Matured in the thymus, γδT cells can modulate the development of allergy in humans. The main γδT cell subsets have been described as interleukin (IL)-17A or interferon (IFN)-γ producers, but these cells can also produce other modulatory cytokines, such as IL-4 and IL-10. Here, we aimed to evaluate whether IgG can modulate the profile of cytokine production by γδT cells during their maturation in the thymus and after its migration to peripheral tissues. Thymic tissues were obtained from 12 infants, and peripheral blood mononuclear cells (PBMCs) were obtained from adults (both groups without an atopic background). IgG was purified from atopic and non-atopic volunteers. Thymocytes and PBMCs were cultured with purified atopic or non-atopic IgG, and intracellular cytokine production and phenotype were assessed. Mock and IVIg conditions were used as controls. IgG from non-atopic individuals induced IFN-γ and IL-10 production by thymic γδT cells, and no effect was observed on peripheral γδT cells. IL-17 production was inhibited by non-atopic IgG on thymic γδT cells and augmented by atopic IgG on peripheral γδT cells. Modulated thymic γδT cells did not produce IFN-γ and IL-10 simultaneously. We additionally evaluated the phenotype of intrathymic γδT cells and observed that IgG from all groups could induce CD25 expression and could not influence the CD28 expression of these cells. This report describes evidence revealing that IgG may influence the production of IFN-γ and IL-10 by intrathymic γδT cells depending on the donor atopic state. This observation is unprecedented and needs to be considered in further studies in the IgG immunotherapy field.
Collapse
Affiliation(s)
- Ludimila Souza Santos
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 500, 3rd Floor, 05403-000, São Paulo, Brazil
| | | | - Amanda Harumi Sabô Inoue
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 500, 3rd Floor, 05403-000, São Paulo, Brazil
| | - Archangelo Fernandes Padreca
- Division of Environmental Health, Faculdades Metropolitanas Unidas (FMU), Laureate International Universities, São Paulo, Brazil
| | - Ricardo Palamar Menghini
- Division of Environmental Health, Faculdades Metropolitanas Unidas (FMU), Laureate International Universities, São Paulo, Brazil
| | - Alberto José da Silva Duarte
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 500, 3rd Floor, 05403-000, São Paulo, Brazil.,Division of Pathology, Medical School, University of São Paulo, São Paulo, Brazil
| | - Jefferson Russo Victor
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 500, 3rd Floor, 05403-000, São Paulo, Brazil. .,Division of Environmental Health, Faculdades Metropolitanas Unidas (FMU), Laureate International Universities, São Paulo, Brazil.
| |
Collapse
|
16
|
Molecular identification and gene expression profiles of the T cell receptors and co-receptors in developing red-tailed phascogale (Phascogale calura) pouch young. Mol Immunol 2018; 101:268-275. [DOI: 10.1016/j.molimm.2018.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/16/2018] [Accepted: 07/02/2018] [Indexed: 11/23/2022]
|
17
|
Paiola M, Knigge T, Duflot A, Pinto PIS, Farcy E, Monsinjon T. Oestrogen, an evolutionary conserved regulator of T cell differentiation and immune tolerance in jawed vertebrates? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:48-61. [PMID: 29408048 DOI: 10.1016/j.dci.2018.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 06/07/2023]
Abstract
In teleosts, as in mammals, the immune system is tightly regulated by sexual steroid hormones, such as oestrogens. We investigated the effects of 17β-oestradiol on the expression of several genes related to T cell development and resulting T cell subpopulations in sea bass, Dicentrarchus labrax, for a primary lymphoid organ, the thymus, and two secondary lymphoid organs, the head-kidney and the spleen. In parallel, the oxidative burst capacity was assessed in leucocytes of the secondary lymphoid organs. Apoptosis- and proliferation-related genes, indicative of B and T cell clonal selection and lymphoid progenitor activity, were not affected by elevated oestrogen-levels. Sex-related oestrogen-responsiveness in T cell and antigen-presenting cell markers was observed, the expression of which was differentially induced by oestrogen-exposure in the three lymphoid organs. Remarkably, in the spleen, oestrogen increased regulatory T cell-related gene expression was associated with a decrease in oxidative burst capacity. To the best of our knowledge, this study indicates for the first time that physiological levels of oestrogen are likely to promote immune tolerance by modulating thymic function (i.e., T cell development and output) and peripheral T cells in teleosts, similar to previously reported oestrogenic effects in mammals.
Collapse
Affiliation(s)
- Matthieu Paiola
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| | - Thomas Knigge
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| | - Aurélie Duflot
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| | - Patricia I S Pinto
- Laboratory of Comparative Endocrinology and Integrative Biology, CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Emilie Farcy
- Montpellier University, UMR MARBEC (UM, CNRS, Ifremer, IRD), 34095 Montpellier, France
| | - Tiphaine Monsinjon
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France.
| |
Collapse
|
18
|
Kim G, Gu MJ, Kim SJ, Ko KH, Kye YC, Kim CG, Cho JH, Lee WK, Song KD, Chu H, Park YM, Han SH, Yun CH. Transcription Factor KLF10 Constrains IL-17-Committed Vγ4 + γδ T Cells. Front Immunol 2018. [PMID: 29541070 PMCID: PMC5835516 DOI: 10.3389/fimmu.2018.00196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
γδ T cells, known to be an important source of innate IL-17 in mice, provide critical contributions to host immune responses. Development and function of γδ T cells are directed by networks of diverse transcription factors (TFs). Here, we examine the role of the zinc finger TFs, Kruppel-like factor 10 (KLF10), in the regulation of IL-17-committed CD27- γδ T (γδ27--17) cells. We found selective augmentation of Vγ4+ γδ27- cells with higher IL-17 production in KLF10-deficient mice. Surprisingly, KLF10-deficient CD127hi Vγ4+ γδ27--17 cells expressed higher levels of CD5 than their wild-type counterparts, with hyper-responsiveness to cytokine, but not T-cell receptor, stimuli. Thymic maturation of Vγ4+ γδ27- cells was enhanced in newborn mice deficient in KLF10. Finally, a mixed bone marrow chimera study indicates that intrinsic KLF10 signaling is requisite to limit Vγ4+ γδ27--17 cells. Collectively, these findings demonstrate that KLF10 regulates thymic development of Vγ4+ γδ27- cells and their peripheral homeostasis at steady state.
Collapse
Affiliation(s)
- Girak Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Min Jeong Gu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Soo Ji Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kwang Hyun Ko
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Yoon-Chul Kye
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Cheol Gyun Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jae-Ho Cho
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, South Korea
| | - Woon-Kyu Lee
- College of Medicine, Inha University, Incheon, South Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, South Korea
| | - Hyuk Chu
- Division of Bacterial Disease Research, Center for Infectious Disease Research, National Institute of Health, Korea Centers for Disease Control and Prevention, Osong, South Korea
| | - Yeong-Min Park
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Center for Food Bioconvergence, Seoul National University, Seoul, South Korea.,Institute of Green Bio Science Technology, Seoul National University, Pyeongchang, South Korea
| |
Collapse
|
19
|
Muro R, Nitta T, Nakano K, Okamura T, Takayanagi H, Suzuki H. γδTCR recruits the Syk/PI3K axis to drive proinflammatory differentiation program. J Clin Invest 2017; 128:415-426. [PMID: 29202478 DOI: 10.1172/jci95837] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/31/2017] [Indexed: 12/14/2022] Open
Abstract
γδT cells produce inflammatory cytokines and have been implicated in the pathogenesis of cancer, infectious diseases, and autoimmunity. The T cell receptor (TCR) signal transduction that specifically regulates the development of IL-17-producing γδT (γδT17) cells largely remains unclear. Here, we showed that the receptor proximal tyrosine kinase Syk is essential for γδTCR signal transduction and development of γδT17 in the mouse thymus. Zap70, another tyrosine kinase essential for the development of αβT cells, failed to functionally substitute for Syk in the development of γδT17. Syk induced the activation of the PI3K/Akt pathway upon γδTCR stimulation. Mice deficient in PI3K signaling exhibited a complete loss of γδT17, without impaired development of IFN-γ-producing γδT cells. Moreover, γδT17-dependent skin inflammation was ameliorated in mice deficient in RhoH, an adaptor known to recruit Syk. Thus, we deciphered lineage-specific TCR signaling and identified the Syk/PI3K pathway as a critical determinant of proinflammatory γδT cell differentiation.
Collapse
Affiliation(s)
- Ryunosuke Muro
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan.,Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Tadashi Okamura
- Department of Laboratory Animal Medicine, and.,Section of Animal Models, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Harumi Suzuki
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| |
Collapse
|
20
|
Three distinct developmental pathways for adaptive and two IFN-γ-producing γδ T subsets in adult thymus. Nat Commun 2017; 8:1911. [PMID: 29203769 PMCID: PMC5715069 DOI: 10.1038/s41467-017-01963-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/29/2017] [Indexed: 01/23/2023] Open
Abstract
Murine γδ T cells include subsets that are programmed for distinct effector functions during their development in the thymus. Under pathological conditions, different γδ T cell subsets can be protective or can exacerbate a disease. Here we show that CD117, CD200 and CD371, together with other markers, identify seven developmental stages of γδ T cells. These seven stages can be divided into three distinct developmental pathways that are enriched for different TCRδ repertoires and exhibit characteristic expression patterns associated with adaptive (γδTn), IFN-γ-producing (γδT1) and IFN-γ/IL-4-co-producing γδ T cells (γδNKT). Developmental progression towards both IFN-γ-producing subsets can be induced by TCR signalling, and each pathway results in thymic emigration at a different stage. Finally, we show that γδT1 cells are the predominating IFN-γ-producing subset developing in the adult thymus. Thus, this study maps out three distinct development pathways that result in the programming of γδTn, γδT1 and γδNKT cells.
Collapse
|
21
|
Somech R, Lev A, Lee YN, Simon AJ, Barel O, Schiby G, Avivi C, Barshack I, Rhodes M, Yin J, Wang M, Yang Y, Rhodes J, Marcus N, Garty BZ, Stein J, Amariglio N, Rechavi G, Wiest DL, Zhang Y. Disruption of Thrombocyte and T Lymphocyte Development by a Mutation in ARPC1B. THE JOURNAL OF IMMUNOLOGY 2017; 199:4036-4045. [PMID: 29127144 DOI: 10.4049/jimmunol.1700460] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/06/2017] [Indexed: 01/21/2023]
Abstract
Regulation of the actin cytoskeleton is crucial for normal development and function of the immune system, as evidenced by the severe immune abnormalities exhibited by patients bearing inactivating mutations in the Wiskott-Aldrich syndrome protein (WASP), a key regulator of actin dynamics. WASP exerts its effects on actin dynamics through a multisubunit complex termed Arp2/3. Despite the critical role played by Arp2/3 as an effector of WASP-mediated control over actin polymerization, mutations in protein components of the Arp2/3 complex had not previously been identified as a cause of immunodeficiency. Here, we describe two brothers with hematopoietic and immunologic symptoms reminiscent of Wiskott-Aldrich syndrome (WAS). However, these patients lacked mutations in any of the genes previously associated with WAS. Whole-exome sequencing revealed a homozygous 2 bp deletion, n.c.G623DEL-TC (p.V208VfsX20), in Arp2/3 complex component ARPC1B that causes a frame shift resulting in premature termination. Modeling of the disease in zebrafish revealed that ARPC1B plays a critical role in supporting T cell and thrombocyte development. Moreover, the defects in development caused by ARPC1B loss could be rescued by the intact human ARPC1B ortholog, but not by the p.V208VfsX20 variant identified in the patients. Moreover, we found that the expression of ARPC1B is restricted to hematopoietic cells, potentially explaining why a mutation in ARPC1B has now been observed as a cause of WAS, whereas mutations in other, more widely expressed, components of the Arp2/3 complex have not been observed.
Collapse
Affiliation(s)
- Raz Somech
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel
| | - Atar Lev
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel
| | - Yu Nee Lee
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel
| | - Amos J Simon
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel.,Hematology Laboratory, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - Ortal Barel
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel.,Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - Ginette Schiby
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - Camila Avivi
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - Michele Rhodes
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Jiejing Yin
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Minshi Wang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Yibin Yang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Jennifer Rhodes
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Nufar Marcus
- Allergy and Immunology Unit, Schneider Children's Medical Center of Israel, Felsenstein Medical Research Center, Kipper Institute of Immunology, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 4920235, Israel
| | - Ben-Zion Garty
- Allergy and Immunology Unit, Schneider Children's Medical Center of Israel, Felsenstein Medical Research Center, Kipper Institute of Immunology, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 4920235, Israel
| | - Jerry Stein
- Bone Marrow Transplantation Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 4920235, Israel; and
| | - Ninette Amariglio
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel.,Hematology Laboratory, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel.,Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Gideon Rechavi
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel.,Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111;
| | - Yong Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111;
| |
Collapse
|
22
|
Kadivar M, Petersson J, Svensson L, Marsal J. CD8αβ+ γδ T Cells: A Novel T Cell Subset with a Potential Role in Inflammatory Bowel Disease. THE JOURNAL OF IMMUNOLOGY 2016; 197:4584-4592. [PMID: 27849165 DOI: 10.4049/jimmunol.1601146] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/13/2016] [Indexed: 01/27/2023]
Abstract
γδ T cells have been attributed a wide variety of functions, which in some cases may appear as contradictory. To better understand the enigmatic biology of γδ T cells it is crucial to define the constituting subpopulations. γδ T cells have previously been categorized into two subpopulations: CD8αα+ and CD8- cells. In this study we have defined and characterized a novel subset of human γδ T-cells expressing CD8αβ. These CD8αβ+ γδ T cells differed from the previously described γδ T cell subsets in several aspects, including the degree of enrichment within the gut mucosa, the activation status in blood, the type of TCRδ variant used in blood, and small but significant differences in their response to IL-2 stimulation. Furthermore, the novel subset expressed cytotoxic mediators and CD69, and produced IFN-γ and TNF-α. In patients with active inflammatory bowel disease the mucosal frequencies of CD8αβ+ γδ T cells were significantly lower as compared with healthy controls, correlated negatively with the degree of disease activity, and increased to normal levels as a result of anti-TNF-α therapy. In conclusion, our results demonstrate that CD8αβ+ γδ T cells constitute a novel lymphocyte subset, which is strongly enriched within the gut and may play an important role in gut homeostasis and mucosal healing in inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Julia Petersson
- Immunology Section, Lund University, S-22184 Lund, Sweden; and
| | - Lena Svensson
- Immunology Section, Lund University, S-22184 Lund, Sweden; and
| | - Jan Marsal
- Immunology Section, Lund University, S-22184 Lund, Sweden; and .,Department of Gastroenterology, Skåne University Hospital, S-22185 Lund, Sweden
| |
Collapse
|
23
|
Polasky C, Weigend S, Schrader L, Berndt A. Non-specific activation of CD8α-characterised γδ T cells in PBL cultures of different chicken lines. Vet Immunol Immunopathol 2016; 179:1-7. [DOI: 10.1016/j.vetimm.2016.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/06/2016] [Accepted: 07/13/2016] [Indexed: 12/23/2022]
|
24
|
MicroRNA-181a/b-1 Is Not Required for Innate γδ NKT Effector Cell Development. PLoS One 2015; 10:e0145010. [PMID: 26673421 PMCID: PMC4682956 DOI: 10.1371/journal.pone.0145010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/25/2015] [Indexed: 11/19/2022] Open
Abstract
Thymic development of αβ T lymphocytes into invariant natural killer (NK) T cells depends on their selection via agonistic lipid antigen presented by CD1d. If successful, newly selected NKT cells gain effector functions already in the thymus. Some γδ T cell subsets also acquire effector functions in the thymus. However, it is not clear whether agonistic TCR stimulation is involved in thymic γδ T cell selection and development. Here we combine two genetic models to address this question. MiR-181a/b-1–/–mice, which show impaired agonistic T cell selection of invariant αβ NKT cells, were crossed to Tcrd-H2BeGFP reporter mice to monitor selection, intra-thymic expansion and differentiation of γδ T cells. We found that miR-181a/b-1-deficiency had no effect on numbers of thymic γδ T cell or on their differentiation towards an IL-17- or IFN-γ-producing effector phenotype. Also, the composition of peripheral lymph node γδ T cells was not affected by miR-181a/b-1-deficiency. Dendritic epidermal γδ T cells were normally present in knock-out animals. However, we observed elevated frequencies and numbers of γδ NKT cells in the liver, possibly because γδ NKT cells can expand and replace missing αβ NKT cells in peripheral niches. In summary, we investigated the role of miR-181a/b-1 for selection, intrathymic development and homeostasis of γδ T cells. We conclude that miR-181a/b-1-dependent modulation of T cell selection is not critically required for innate development of γδ NKT cells or of any other γδ T cell subtypes.
Collapse
|
25
|
Control of murine cytomegalovirus infection by γδ T cells. PLoS Pathog 2015; 11:e1004481. [PMID: 25658831 PMCID: PMC4450058 DOI: 10.1371/journal.ppat.1004481] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 09/18/2014] [Indexed: 12/28/2022] Open
Abstract
Infections with cytomegalovirus (CMV) can cause severe disease in immunosuppressed patients and infected newborns. Innate as well as cellular and humoral adaptive immune effector functions contribute to the control of CMV in immunocompetent individuals. None of the innate or adaptive immune functions are essential for virus control, however. Expansion of γδ T cells has been observed during human CMV (HCMV) infection in the fetus and in transplant patients with HCMV reactivation but the protective function of γδ T cells under these conditions remains unclear. Here we show for murine CMV (MCMV) infections that mice that lack CD8 and CD4 αβ-T cells as well as B lymphocytes can control a MCMV infection that is lethal in RAG-1-/- mice lacking any T- and B-cells. γδ T cells, isolated from infected mice can kill MCMV infected target cells in vitro and, importantly, provide long-term protection in infected RAG-1-/- mice after adoptive transfer. γδ T cells in MCMV infected hosts undergo a prominent and long-lasting phenotypic change most compatible with the view that the majority of the γδ T cell population persists in an effector/memory state even after resolution of the acute phase of the infection. A clonotypically focused Vγ1 and Vγ2 repertoire was observed at later stages of the infection in the organs where MCMV persists. These findings add γδ T cells as yet another protective component to the anti-CMV immune response. Our data provide clear evidence that γδ T cells can provide an effective control mechanism of acute CMV infections, particularly when conventional adaptive immune mechanisms are insufficient or absent, like in transplant patient or in the developing immune system in utero. The findings have implications in the stem cell transplant setting, as antigen recognition by γδ T cells is not MHC-restricted and dual reactivity against CMV and tumors has been described. Cytomegalovirus is a clinically important pathogen. While infection in hosts with a functional immune system is usually asymptomatic, the virus can cause significant morbidity and mortality in individuals with an immature or suppressed immune system. The virus causes severe clinical complication in transplant recipients and congenital CMV infections are the most common infectious cause of neurological disorders in children. Multiple layers of innate and adoptive immunity are involved in the control of CMV and single deficiencies of one immune cell type can be compensated by other immune cells. Expansions of γδ T lymphocytes, which are regarded as innate-like cells with adaptive-like potential, have been shown to be associated with CMV infections in human transplant patients and neonates. Their role in protective immunity against CMV has been unclear, however. Here we show direct evidence in the murine CMV model (MCMV) that γδ T lymphocytes can provide protection against a lethal MCMV infection in the absence of any other cells of the adoptive immune system. Upon infection, γδ T lymphocytes undergo a significant expansion and a prominent and long-lasting phenotypic change. These findings have implications for the development of new cellular therapy regimens in CMV infections in the transplant setting that should be evaluated in the future.
Collapse
|
26
|
Rei M, Pennington DJ, Silva-Santos B. The emerging Protumor role of γδ T lymphocytes: implications for cancer immunotherapy. Cancer Res 2015; 75:798-802. [PMID: 25660949 DOI: 10.1158/0008-5472.can-14-3228] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor-infiltrating lymphocytes are key mediators of tumor immune surveillance and are important prognostic indicators in cancer progression. Among the various lymphocyte subsets implicated in protection against cancer are γδ T lymphocytes, which can kill tumor cells and secrete potent antitumor cytokines. By contrast, recent reports have revealed an unexpected series of protumor functions of γδ T cells in mouse models and human patients. In particular, specific γδ T-cell subsets are capable of recruiting immunosuppressive myeloid populations, inhibiting antitumor responses, and enhancing angiogenesis, thus promoting cancer progression. A common mediator of such functions appears to be the cytokine IL17, whose pathogenic effects can override the antitumor immune response orchestrated by IFNγ. Here, we review these studies and discuss their implications for the manipulation of γδ T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Margarida Rei
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Prof. Egas Moniz, Lisboa, Portugal. Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom. Graduate Program in Areas of Basic and Applied Biology, Universidade do Porto, Porto, Portugal
| | - Daniel J Pennington
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Prof. Egas Moniz, Lisboa, Portugal.
| |
Collapse
|
27
|
Patil RS, Bhat SA, Dar AA, Chiplunkar SV. The Jekyll and Hyde story of IL17-Producing γδT Cells. Front Immunol 2015; 6:37. [PMID: 25699053 PMCID: PMC4316782 DOI: 10.3389/fimmu.2015.00037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/20/2015] [Indexed: 12/19/2022] Open
Abstract
In comparison to conventional αβT cells, γδT cells are considered as specialized T cells based on their contributions in regulating immune response. γδT cells sense early environmental signals and initiate local immune-surveillance. The development of functional subtypes of γδT cells takes place in the thymus but they also exhibit plasticity in response to the activating signals and cytokines encountered in the extrathymic region. Thymic development of Tγδ1 requires strong TCR, CD27, and Skint-1 signals. However, differentiation of IL17-producing γδT cells (Tγδ17) is independent of Skint-1 or CD27 but requires notch signaling along with IL6 and TGFβ cytokines in the presence of weak TCR signal. In response to cytokines like IL23, IL6, and IL1β, Tγδ17 outshine Th17 cells for early activation and IL17 secretion. Despite expressing similar repertoire of lineage transcriptional factors, cytokines, and chemokine receptors, Tγδ17 cells differ from Th17 in spatial and temporal fashion. There are compelling reasons to consider significant role of Tγδ17 cells in regulating inflammation and thereby disease outcome. Tγδ17 cells regulate mobilization of innate immune cells and induce keratinocytes to secrete anti-microbial peptides thus exhibiting protective functions in anti-microbial immunity. In contrast, dysregulated Tγδ17 cells inhibit Treg cells, exacerbate autoimmunity, and are also known to support carcinogenesis by enhancing angiogenesis. The mechanism associated with this dual behavior of Tγδ17 is not clear. To exploit, Tγδ17 cells for beneficial use requires comprehensive analysis of their biology. Here, we summarize the current understanding on the characteristics, development, and functions of Tγδ17 cells in various pathological scenarios.
Collapse
Affiliation(s)
- Rushikesh S Patil
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre , Kharghar , India
| | - Sajad A Bhat
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre , Kharghar , India
| | - Asif A Dar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre , Kharghar , India
| | - Shubhada V Chiplunkar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre , Kharghar , India
| |
Collapse
|
28
|
Ribeiro ST, Ribot JC, Silva-Santos B. Five Layers of Receptor Signaling in γδ T-Cell Differentiation and Activation. Front Immunol 2015; 6:15. [PMID: 25674089 PMCID: PMC4306313 DOI: 10.3389/fimmu.2015.00015] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/08/2015] [Indexed: 12/15/2022] Open
Abstract
The contributions of γδ T-cells to immunity to infection or tumors critically depend on their activation and differentiation into effectors capable of secreting cytokines and killing infected or transformed cells. These processes are molecularly controlled by surface receptors that capture key extracellular cues and convey downstream intracellular signals that regulate γδ T-cell physiology. The understanding of how environmental signals are integrated by γδ T-cells is critical for their manipulation in clinical settings. Here, we discuss how different classes of surface receptors impact on human and murine γδ T-cell differentiation, activation, and expansion. In particular, we review the role of five receptor types: the T-cell receptor (TCR), costimulatory receptors, cytokine receptors, NK receptors, and inhibitory receptors. Some of the key players are the costimulatory receptors CD27 and CD28, which differentially impact on pro-inflammatory subsets of γδ T-cells; the cytokine receptors IL-2R, IL-7R, and IL-15R, which drive functional differentiation and expansion of γδ T-cells; the NK receptor NKG2D and its contribution to γδ T-cell cytotoxicity; and the inhibitory receptors PD-1 and BTLA that control γδ T-cell homeostasis. We discuss these and other receptors in the context of a five-step model of receptor signaling in γδ T-cell differentiation and activation, and discuss its implications for the manipulation of γδ T-cells in immunotherapy.
Collapse
Affiliation(s)
- Sérgio T Ribeiro
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| | - Julie C Ribot
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| | - Bruno Silva-Santos
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| |
Collapse
|
29
|
|
30
|
Lafont V, Sanchez F, Laprevotte E, Michaud HA, Gros L, Eliaou JF, Bonnefoy N. Plasticity of γδ T Cells: Impact on the Anti-Tumor Response. Front Immunol 2014; 5:622. [PMID: 25538706 PMCID: PMC4259167 DOI: 10.3389/fimmu.2014.00622] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/21/2014] [Indexed: 01/17/2023] Open
Abstract
The tumor immune microenvironment contributes to tumor initiation, progression, and response to therapy. Among the immune cell subsets that play a role in the tumor microenvironment, innate-like T cells that express T cell receptors composed of γ and δ chains (γδ T cells) are of particular interest. γδ T cells can contribute to the immune response against many tumor types (lymphoma, myeloma, melanoma, breast, colon, lung, ovary, and prostate cancer) directly through their cytotoxic activity and indirectly by stimulating or regulating the biological functions of other cell types required for the initiation and establishment of the anti-tumor immune response, such as dendritic cells and cytotoxic CD8+ T cells. However, the notion that tumor-infiltrating γδ T cells are a good prognostic marker in cancer was recently challenged by studies showing that the presence of these cells in the tumor microenvironment was associated with poor prognosis in both breast and colon cancer. These findings suggest that γδ T cells may also display pro-tumor activities. Indeed, breast tumor-infiltrating γδ T cells could exert an immunosuppressive activity by negatively regulating dendritic cell maturation. Furthermore, recent studies demonstrated that signals from the microenvironment, particularly cytokines, can confer some plasticity to γδ T cells and promote their differentiation into γδ T cells with regulatory functions. This review focuses on the current knowledge on the functional plasticity of γδ T cells and its effect on their anti-tumor activities. It also discusses the putative mechanisms underlying γδ T cell expansion, differentiation, and recruitment in the tumor microenvironment.
Collapse
Affiliation(s)
- Virginie Lafont
- U896, Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM , Montpellier , France ; Centre Régional de Lutte Contre le Cancer CRLC Val d'Aurelle - Paul Lamarque, Université Montpellier 1 , Montpellier , France
| | - Françoise Sanchez
- U896, Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM , Montpellier , France ; Centre Régional de Lutte Contre le Cancer CRLC Val d'Aurelle - Paul Lamarque, Université Montpellier 1 , Montpellier , France
| | - Emilie Laprevotte
- U896, Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM , Montpellier , France ; Centre Régional de Lutte Contre le Cancer CRLC Val d'Aurelle - Paul Lamarque, Université Montpellier 1 , Montpellier , France
| | - Henri-Alexandre Michaud
- U896, Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM , Montpellier , France ; Centre Régional de Lutte Contre le Cancer CRLC Val d'Aurelle - Paul Lamarque, Université Montpellier 1 , Montpellier , France
| | - Laurent Gros
- U896, Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM , Montpellier , France ; Centre Régional de Lutte Contre le Cancer CRLC Val d'Aurelle - Paul Lamarque, Université Montpellier 1 , Montpellier , France
| | - Jean-François Eliaou
- U896, Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM , Montpellier , France ; Centre Régional de Lutte Contre le Cancer CRLC Val d'Aurelle - Paul Lamarque, Université Montpellier 1 , Montpellier , France ; Département d'Immunologie, Centre Hospitalier Régional Universitaire de Montpellier et Faculté de Médecine, Université Montpellier 1 , Montpellier , France
| | - Nathalie Bonnefoy
- U896, Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM , Montpellier , France ; Centre Régional de Lutte Contre le Cancer CRLC Val d'Aurelle - Paul Lamarque, Université Montpellier 1 , Montpellier , France
| |
Collapse
|
31
|
Blanco R, Borroto A, Schamel W, Pereira P, Alarcon B. Conformational changes in the T cell receptor differentially determine T cell subset development in mice. Sci Signal 2014; 7:ra115. [DOI: 10.1126/scisignal.2005650] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
32
|
Rei M, Gonçalves-Sousa N, Lança T, Thompson RG, Mensurado S, Balkwill FR, Kulbe H, Pennington DJ, Silva-Santos B. Murine CD27(-) Vγ6(+) γδ T cells producing IL-17A promote ovarian cancer growth via mobilization of protumor small peritoneal macrophages. Proc Natl Acad Sci U S A 2014; 111:E3562-70. [PMID: 25114209 PMCID: PMC4151711 DOI: 10.1073/pnas.1403424111] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cancer-associated inflammation mobilizes a variety of leukocyte populations that can inhibit or enhance tumor cell growth in situ. These subsets include γδ T cells, which can infiltrate tumors and typically provide large amounts of antitumor cytokines, such as IFN-γ. By contrast, we report here that in a well-established transplantable (ID8 cell line) model of peritoneal/ovarian cancer, γδ T cells promote tumor cell growth. γδ T cells accumulated in the peritoneal cavity in response to tumor challenge and could be visualized within solid tumor foci. Functional characterization of tumor-associated γδ T cells revealed preferential production of interleukin-17A (IL-17), rather than IFN-γ. Consistent with this finding, both T cell receptor (TCR)δ-deficient and IL-17-deficient mice displayed reduced ID8 tumor growth compared with wild-type animals. IL-17 production by γδ T cells in the tumor environment was essentially restricted to a highly proliferative CD27((-)) subset that expressed Vγ6 instead of the more common Vγ1 and Vγ4 TCR chains. The preferential expansion of IL-17-secreting CD27((-)) Vγ6((+)) γδ T cells associated with the selective mobilization of unconventional small peritoneal macrophages (SPMs) that, in comparison with large peritoneal macrophages, were enriched for IL-17 receptor A, and for protumor and proangiogenic molecular mediators, which were up-regulated by IL-17. Importantly, SPMs were uniquely and directly capable of promoting ovarian cancer cell proliferation. Collectively, this work identifies an IL-17-dependent lymphoid/myeloid cross-talk involving γδ T cells and SPMs that promotes tumor cell growth and thus counteracts cancer immunosurveillance.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Female
- Inflammation Mediators/metabolism
- Interleukin-17/biosynthesis
- Lymphocytes, Tumor-Infiltrating/classification
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/pathology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neovascularization, Pathologic
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/pathology
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Interleukin-17/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- Tumor Necrosis Factor Receptor Superfamily, Member 7/deficiency
- Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
Collapse
Affiliation(s)
- Margarida Rei
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London E1 2AT, United Kingdom; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; and
| | - Natacha Gonçalves-Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Telma Lança
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Richard G Thompson
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Sofia Mensurado
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Frances R Balkwill
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Hagen Kulbe
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Daniel J Pennington
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London E1 2AT, United Kingdom;
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| |
Collapse
|
33
|
Gustafsson K, Anderson J, Fisher JPH, Yan M. Regeneration of stalled immune responses to transformed and infected cells using γδ T cells. Drug Discov Today 2014; 19:787-793. [PMID: 24681060 PMCID: PMC4437461 DOI: 10.1016/j.drudis.2014.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/14/2014] [Accepted: 03/20/2014] [Indexed: 12/26/2022]
Abstract
Manipulation of the human immune system is becoming more of a therapeutic focus as a treatment option or complement. Prominent examples are the increasing use of monoclonal antibodies in combating malignant tumours, and the numerous adoptive immunotherapy trials underway. One important aspect of any use of the human immune system in this regard is to harness the power of professional antigen-presenting cells (pAPC), that is, dendritic cells (DC), to direct immune responses. Here, we review how recent findings regarding the biology of γδT cells have revealed that they, surprisingly, could serve as convenient tools for this purpose, in that they combine innate cytotoxic cell and pAPC functions in one cell type, with potential benefits in cancer immunotherapy and infectious disease.
Collapse
Affiliation(s)
- Kenth Gustafsson
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - John Anderson
- Molecular Haematology and Cancer Biology Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Jonathan P H Fisher
- Molecular Haematology and Cancer Biology Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Mengyong Yan
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- Molecular Haematology and Cancer Biology Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
34
|
Deniger DC, Maiti SN, Mi T, Switzer KC, Ramachandran V, Hurton LV, Ang S, Olivares S, Rabinovich BA, Huls MH, Lee DA, Bast RC, Champlin RE, Cooper LJN. Activating and propagating polyclonal gamma delta T cells with broad specificity for malignancies. Clin Cancer Res 2014; 20:5708-19. [PMID: 24833662 DOI: 10.1158/1078-0432.ccr-13-3451] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE To activate and propagate populations of γδ T cells expressing polyclonal repertoire of γ and δ T-cell receptor (TCR) chains for adoptive immunotherapy of cancer, which has yet to be achieved. EXPERIMENTAL DESIGN Clinical-grade artificial antigen-presenting cells (aAPC) derived from K562 tumor cells were used as irradiated feeders to activate and expand human γδ T cells to clinical scale. These cells were tested for proliferation, TCR expression, memory phenotype, cytokine secretion, and tumor killing. RESULTS γδ T-cell proliferation was dependent upon CD137L expression on aAPC and addition of exogenous IL2 and IL21. Propagated γδ T cells were polyclonal as they expressed TRDV1, TRDV2-2, TRDV3, TRDV5, TRDV7, and TRDV8 with TRGV2, TRGV3F, TRGV7, TRGV8, TRGV9*A1, TRGV10*A1, and TRGV11 TCR chains. IFNγ production by Vδ1, Vδ2, and Vδ1(neg)Vδ2(neg) subsets was inhibited by pan-TCRγδ antibody when added to cocultures of polyclonal γδ T cells and tumor cell lines. Polyclonal γδ T cells killed acute and chronic leukemia, colon, pancreatic, and ovarian cancer cell lines, but not healthy autologous or allogeneic normal B cells. Blocking antibodies demonstrated that polyclonal γδ T cells mediated tumor cell lysis through combination of DNAM1, NKG2D, and TCRγδ. The adoptive transfer of activated and propagated γδ T cells expressing polyclonal versus defined Vδ TCR chains imparted a hierarchy (polyclonal>Vδ1>Vδ1(neg)Vδ2(neg)>Vδ2) of survival of mice with ovarian cancer xenografts. CONCLUSIONS Polyclonal γδ T cells can be activated and propagated with clinical-grade aAPCs and demonstrate broad antitumor activities, which will facilitate the implementation of γδ T-cell cancer immunotherapies in humans.
Collapse
Affiliation(s)
- Drew C Deniger
- Departments of Pediatrics, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | | | | | | | | | - Lenka V Hurton
- Departments of Pediatrics, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | | | | | | | | | - Dean A Lee
- Departments of Pediatrics, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | | | - Richard E Champlin
- Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center; and
| | - Laurence J N Cooper
- Departments of Pediatrics, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| |
Collapse
|
35
|
Calvaruso M, Gulino A, Buffa S, Guarnotta C, Franco G, Cacciatore M, Bonura MG, Franco V, Florena AM. Challenges and new prospects in hepatosplenic γδ T-cell lymphoma. Leuk Lymphoma 2014; 55:2457-65. [PMID: 24506469 DOI: 10.3109/10428194.2014.889821] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Peripheral T-cell lymphomas (PTCLs) are a heterogeneous group of lymphoid neoplasms characterized by aggressive clinical behavior and dismal prognosis. Hepatosplenic γδ T-cell lymphoma (γδ-HSTL) is a particular form of PTCL that arises from a small subset of γ/δ T-cell receptor-expressing lymphocytes. γδ-HSTL has a rapidly progressive course and poor outcome due also to its refractoriness to conventional chemotherapy regimens. The very low incidence of γδ-HSTL, along with its propensity to mimic different pathological entities, makes this lymphoma a true diagnostic challenge. In this review, we highlight the biological and clinical features of γδ-HSTL that contribute to making this lymphoma a mostly incurable disease. Moreover, we provide a new insight into the crosstalk between HSTL clones and the bone marrow, liver and spleen vascular microenvironment, in which neoplastic cells reside and proliferate. We further discuss γδ-HSTL associated molecules that might be proposed as potential targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Marco Calvaruso
- Laboratorio di Tecnologie Oncologiche - HSR Giglio, C. da Pietrapollastra-Pisciotto , Cefalù , Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Reinhardt A, Ravens S, Fleige H, Haas JD, Oberdörfer L, Łyszkiewicz M, Förster R, Prinz I. CCR7-mediated migration in the thymus controls γδ T-cell development. Eur J Immunol 2014; 44:1320-9. [PMID: 24500801 DOI: 10.1002/eji.201344330] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 12/19/2013] [Accepted: 01/28/2014] [Indexed: 01/15/2023]
Abstract
αβ T-cell development and selection proceed while thymocytes successively migrate through distinct regions of the thymus. For γδ T cells, the interplay of intrathymic migration and cell differentiation is less well understood. Here, we crossed C-C chemokine receptor (CCR)7-deficient (Ccr7(-/-) ) and CCR9-deficient mice (Ccr9(-/-) ) to mice with a TcrdH2BeGFP reporter background to investigate the impact of thymic localization on γδ T-cell development. γδ T-cell frequencies and numbers were decreased in CCR7-deficient and increased in CCR9-deficient mice. Transfer of CCR7- or CCR9-deficient BM into irradiated C57BL/6 WT recipients reproduced these phenotypes, pointing toward cell-intrinsic migration defects. Monitoring recent thymic emigrants by intrathymic labeling allowed us to identify decreased thymic γδ T-cell output in CCR7-deficient mice. In vitro, CCR7-deficient precursors showed normal γδ T-cell development. Immunohistology revealed that CCR7 and CCR9 expression was important for γδ T-cell localization within thymic medulla or cortex, respectively. However, γδ T-cell motility was unaltered in CCR7- or CCR9-deficient thymi. Together, our results suggest that proper intrathymic localization is important for normal γδ T-cell development.
Collapse
Affiliation(s)
- Annika Reinhardt
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Ribot JC, Ribeiro ST, Correia DV, Sousa AE, Silva-Santos B. Human γδ thymocytes are functionally immature and differentiate into cytotoxic type 1 effector T cells upon IL-2/IL-15 signaling. THE JOURNAL OF IMMUNOLOGY 2014; 192:2237-43. [PMID: 24489097 DOI: 10.4049/jimmunol.1303119] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cytotoxicity and IFN-γ production by human γδ T cells underlie their potent antitumor functions. However, it remains unclear where and how human γδ T cells acquire these key effector properties. Given the recent disclosure of a major contribution of the thymus to murine γδ T cell functional differentiation, in this study we have analyzed a series of human pediatric thymuses. We found that ex vivo-isolated γδ thymocytes produced negligible IFN-γ and lacked cytolytic activity against leukemia cells. However, these properties were selectively acquired upon stimulation with IL-2 or IL-15, but not IL-4 or IL-7. Unexpectedly, TCR activation was dispensable for these stages of functional differentiation. The effects of IL-2/IL-15 depended on MAPK/ERK signaling and induced de novo expression of the transcription factors T-bet and eomesodermin, as well as the cytolytic enzyme perforin, required for the cytotoxic type 1 program. These findings have implications for the manipulation of γδ T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Julie C Ribot
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | | | | | | | | |
Collapse
|
38
|
Prinz I, Silva-Santos B, Pennington DJ. Functional development of γδ T cells. Eur J Immunol 2013; 43:1988-94. [DOI: 10.1002/eji.201343759] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/05/2013] [Accepted: 07/05/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Immo Prinz
- Institute for Immunology; Hannover Medical School; Germany
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon; Portugal
| | - Daniel J. Pennington
- Blizard Institute; Barts and The London School of Medicine; Queen Mary University of London; London; UK
| |
Collapse
|
39
|
Abstract
γδ T cells are a unique and conserved population of lymphocytes that have been the subject of a recent explosion of interest owing to their essential contributions to many types of immune response and immunopathology. But what does the integration of recent and long-established studies really tell us about these cells and their place in immunology? The time is ripe to consider the evidence for their unique and crucial functions. We conclude that whereas B cells and αβ T cells are commonly thought to contribute primarily to the antigen-specific effector and memory phases of immunity, γδ T cells are distinct in that they combine conventional adaptive features (inherent in their T cell receptors and pleiotropic effector functions) with rapid, innate-like responses that can place them in the initiation phase of immune reactions. This underpins a revised perspective on lymphocyte biology and the regulation of immunogenicity.
Collapse
|
40
|
Intestinal intraepithelial TCRγδ+ T cells are activated by normal commensal bacteria. J Microbiol 2012; 50:837-41. [DOI: 10.1007/s12275-012-2468-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
|
41
|
Kim JS, Jordan MS. Diversity of IL-17-producing T lymphocytes. Cell Mol Life Sci 2012; 70:2271-90. [PMID: 23052209 DOI: 10.1007/s00018-012-1163-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/31/2012] [Accepted: 09/06/2012] [Indexed: 12/14/2022]
Abstract
Interleukin (IL)-17 is a pro-inflammatory cytokine that plays critical roles in host defense against extracellular bacteria and fungi and also in the pathogenesis of autoimmune diseases. While CD4+ TCRαβ+ T helper (Th) 17 cells are the best-described cellular source of IL-17, many innate-like T cells are in fact potent producers of IL-17. Given the increasing interest in therapeutic modulation of the IL-17 axis, it is crucial to better understand the cellular origins of IL-17 in various infection and diseases settings. While the diverse population of IL-17-producing T cells share many common characteristics, notable differences also exist. In this review, we discuss the heterogeneity of IL-17-producing T cell types focusing on their development, regulation, and function.
Collapse
Affiliation(s)
- Jiyeon S Kim
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
42
|
Pang DJ, Neves JF, Sumaria N, Pennington DJ. Understanding the complexity of γδ T-cell subsets in mouse and human. Immunology 2012; 136:283-90. [PMID: 22385416 DOI: 10.1111/j.1365-2567.2012.03582.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
γδ T cells are increasingly recognized as having important functional roles in a range of disease scenarios such as infection, allergy, autoimmunity and cancer. With this has come realization that γδ cells are not a homogeneous population of cells with a single physiological role. Instead, ever increasing complexity in both phenotype and function is being ascribed to γδ cell subsets from various tissues and locations, and in both mouse and human. Here, we review this complexity by describing how diverse γδ cell subsets are generated in the murine thymus, and how these events relate to subsequent γδ subset function in the periphery. We then review the two major γδ cell populations in human, highlighting the several similarities of Vδ1(+) cells to certain murine γδ subsets, and describing the remarkable functional plasticity of human Vδ2(+) cells. A better understanding of this spectrum of γδ cell phenotypes should facilitate more targeted approaches to utilise their tremendous functional potential in the clinic.
Collapse
Affiliation(s)
- Dick J Pang
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | | | | | | |
Collapse
|