1
|
Lamb ER, Glomski IJ, Harper TA, Solga MD, Criss AK. High-dimensional spectral flow cytometry of activation and phagocytosis by peripheral human polymorphonuclear leukocytes. J Leukoc Biol 2025; 117:qiaf025. [PMID: 40036255 DOI: 10.1093/jleuko/qiaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/16/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
Polymorphonuclear leukocytes (PMNs) are terminally differentiated phagocytes with pivotal roles in infection, inflammation, tissue injury, and resolution. PMNs display a breadth of responses to diverse endogenous and exogenous stimuli, making understanding of these innate immune responders vital yet challenging to achieve. Here, we report a 22-color spectral flow cytometry panel to profile primary human PMNs for surface marker expression of activation, degranulation, phagocytosis, migration, chemotaxis, and interaction with fluorescently labeled cargo. We demonstrate the surface marker response of PMNs to phorbol ester stimulation compared with untreated controls in an adherent PMN model with additional analysis of intra- and inter-subject variability. PMNs challenged with the Gram-negative bacterial pathogen Neisseria gonorrhoeae revealed infectious dose-dependent changes in surface marker expression in bulk, population-level analysis. Imaging flow cytometry complemented spectral cytometry, demonstrating that fluorescence signal from labeled bacteria corresponded with bacterial burden on a per-cell basis. Spectral flow cytometry subsequently identified surface markers, which varied with direct PMN-bacterium association as well as those which varied in the presence of bacteria but without phagocytosis. This spectral panel protocol highlights best practices for efficient customization and is compatible with downstream approaches such as spectral cell sorting and single-cell RNA-sequencing for applicability to diverse research questions in the field of PMN biology.
Collapse
Affiliation(s)
- Evan R Lamb
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Box 800734, Charlottesville, VA 22908-0734, United States
| | - Ian J Glomski
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Box 800734, Charlottesville, VA 22908-0734, United States
| | - Taylor A Harper
- Flow Cytometry Core Facility, University of Virginia School of Medicine, Box 800741, Charlottesville, VA 22908-0741, United States
| | - Michael D Solga
- Flow Cytometry Core Facility, University of Virginia School of Medicine, Box 800741, Charlottesville, VA 22908-0741, United States
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Box 800734, Charlottesville, VA 22908-0734, United States
| |
Collapse
|
2
|
Wu Y, Dahlgren C, Forsman H, Sundqvist M. LTB 4 is converted into a potent human neutrophil NADPH oxidase activator via a receptor transactivation mechanism in which the BLT 1 receptor activates the free fatty acid receptor 2. Prostaglandins Leukot Essent Fatty Acids 2025; 205:102680. [PMID: 40199055 DOI: 10.1016/j.plefa.2025.102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/10/2025]
Abstract
The endogenous neutrophil chemoattractant leukotriene B4 (LTB4) is a biased signalling agonist that potently increases the intracellular concentration of free calcium ions ([Ca2+]i), but alone is a weak activator of the neutrophil superoxide anion (O2-)-generating NADPH oxidase. However, in this study we show that an allosteric modulator of the free fatty acid 2 receptor (FFA2R) converts LTB4 into a potent NADPH oxidase activating agonist. While an allosteric modulation of FFA2R was required for LTB4 receptor 1 (BLT1R)-mediated activation of the NADPH oxidase, the LTB4-induced increase in [Ca2+]i was not affected by the modulator. Thus, the biased BLT1R signalling pattern was altered in the presence of the allosteric FFA2R modulator, being biased with a preference towards the signals that activate the NADPH oxidase relative to an increase in [Ca2+]i. Both BLT1R and FFA2R belong to the family of G protein-coupled receptors (GPCRs), and our results show that a communication between the activated BLT1R and the allosterically modulated FFA2Rs generates signals that induce NADPH oxidase activity. This is consistent with a previously described receptor transactivation (crosstalk) model whereby the function of one neutrophil GPCR can be regulated by receptor downstream signals generated by another GPCR. Furthermore, the finding that an allosteric FFA2R modulator sensitises not only the response induced by orthosteric FFA2R agonists but also the response induced by LTB4, violates the receptor restriction properties that normally define the selectivity of allosteric GPCR modulators.
Collapse
Affiliation(s)
- Yanling Wu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
3
|
Chen T, Zhan X, Zhu J, Zhou C, Huang C, Wu S, Yao Y, Zhang B, Feng S, Chen J, Xue J, Yang Z, Liu C. Integrating multiomics and Single-Cell communication analysis to uncover Ankylosing spondylitis mechanisms. Int Immunopharmacol 2024; 143:113276. [PMID: 39357209 DOI: 10.1016/j.intimp.2024.113276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Ankylosing spondylitis (AS) is a chronic inflammatory joint disorder, necessitating early diagnosis and effective treatment. The specific mechanism of action of Cassia twigs in the treatment of AS is not fully understood. METHODS Blood samples and clinical data from 28,458 individuals (6,101 with AS, 22,357 without AS) were collected. To construct a predictive model, we utilized logistic regressions and machine learning techniques to create a dynamic nomogram. Immune cell infiltration was evaluated using the GSE73754 dataset. Subsequently, we obtained vertebral bone marrow blood from AS patients for 10X single-cell sequencing. We also extracted and purified total RNA from hip joint ligament tissue samples from six AS patients and six non-AS patients. The genes related to the expression of AS and Cassia twigs were analyzed comprehensively, and the specific drug targets were identified by molecular docking. The interactions between immune cells through cell communication analysis were elucidated. RESULTS We developed a dynamic nomogram incorporating the neutrophil count (NEUT) and other variables. Neutrophil immune responses were confirmed through immune infiltration analysis utilizing GSE73754. We observed the early involvement of neutrophils in the pathology of AS. The CAT-expressing Cassia twigs gene could be used as a drug target for the treatment of AS. Moreover, comprehensive RNA analysis revealed notable CAT expression in neutrophils and various other immune cells. CONCLUSIONS Neutrophils play dual roles in AS, regulating inflammation and initiating differentiation signals to other cells. The CAT gene, which is expressed in Cassia twigs, has emerged as a potential therapeutic target for AS treatment.
Collapse
Affiliation(s)
- Tianyou Chen
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| | - Xinli Zhan
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| | - Jichong Zhu
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| | - Chenxing Zhou
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| | - Chengqian Huang
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| | - Shaofeng Wu
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| | - Yuanlin Yao
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| | - Bin Zhang
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| | - Sitan Feng
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| | - Jiarui Chen
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| | - Jiang Xue
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| | - Zhenwei Yang
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| | - Chong Liu
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| |
Collapse
|
4
|
Lamb ER, Glomski IJ, Harper TA, Solga MD, Criss AK. High-dimensional spectral flow cytometry of activation and phagocytosis by peripheral human polymorphonuclear leukocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626241. [PMID: 39677791 PMCID: PMC11642744 DOI: 10.1101/2024.12.01.626241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Polymorphonuclear lymphocytes (PMNs) are terminally differentiated phagocytes with pivotal roles in infection, inflammation, tissue injury, and resolution. PMNs can display a breadth of responses to diverse endogenous and exogenous stimuli, making understanding of these innate immune responders vital yet challenging to achieve. Here, we report a 22-color spectral flow cytometry panel to profile primary human PMNs on population and single cell levels for surface marker expression of activation, degranulation, phagocytosis, migration, chemotaxis, and interaction with fluorescently labeled cargo. We demonstrate the surface protein response of PMNs to phorbol ester stimulation compared to untreated controls in an adherent PMN model with additional analysis of intra- and inter-subject variability. PMNs challenged with the Gram-negative bacterial pathogen Neisseria gonorrhoeae revealed infectious dose-dependent changes in surface marker expression in bulk, population-level analysis. Imaging flow cytometry complemented spectral cytometry, demonstrating that fluorescence signal from labeled bacteria corresponded with bacterial burden on a per-cell basis. Spectral flow cytometry subsequently identified surface markers which varied with direct PMN-bacterium association as well as those which varied in the presence of bacteria but without phagocytosis. This spectral panel protocol highlights best practices for efficient customization and is compatible with downstream approaches such as spectral cell sorting and single-cell RNA-sequencing for applicability to diverse research questions in the field of PMN biology.
Collapse
Affiliation(s)
- Evan R. Lamb
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ian J. Glomski
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Taylor A. Harper
- Flow Cytometry Core Facility, University of Virginia, Charlottesville, VA, USA
| | - Michael D. Solga
- Flow Cytometry Core Facility, University of Virginia, Charlottesville, VA, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
5
|
Futosi K, Mócsai A. Neutrophil IL-26 fuels autoinflammation. J Exp Med 2024; 221:e20240229. [PMID: 38557722 PMCID: PMC10983689 DOI: 10.1084/jem.20240229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Pustular psoriasis is an inflammatory skin disease with features of neutrophil-mediated sterile autoinflammation. In this issue of JEM, Baldo et al. (https://doi.org/10.1084/jem.20231464) show that this autoinflammation is driven by a vicious cycle through neutrophil-derived IL-26.
Collapse
Affiliation(s)
- Krisztina Futosi
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- HUN-REN–SU Inflammation Physiology Research Group, Hungarian Research Network and Semmelweis University, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- HUN-REN–SU Inflammation Physiology Research Group, Hungarian Research Network and Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Zheng X, Zhao Y, Wang D, Pan S, Yushuaima, Huang Z, Ye M, Zhang S. A new hematological parameter model for the diagnosis and prognosis of sepsis in emergency department: A single-center retrospective study. Int J Lab Hematol 2024; 46:250-258. [PMID: 37904344 DOI: 10.1111/ijlh.14193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023]
Abstract
INTRODUCTION Sepsis, a syndrome of organ dysfunction caused by an unregulated host response to infection. This study aimed to develop a novel sepsis diagnostic model of hematological parameters and evaluate its effectiveness in the early identification and prognosis of sepsis in emergency departments. METHODS A retrospective study was conducted in Emergency Department. Cell population data parameters related to monocytes and neutrophils were obtained using the Mindary BC-6800 plus hematology analyzer. Receiver operating characteristic (ROC) curve analysis, logistic regression analysis was performed to assess the performance of the parameters and establish a diagnostic and prognostic model of sepsis, which was then verified with a validation cohort. RESULTS Mon_XW exhibited the best diagnostic performance (area under the ROC curve [AUC] = 0.848, 95% confidence interval [CI]: 0.810-0.885, p < 0.001), followed by Neu_Y and Neu_YW (AUC = 0.777 95% CI: 0.730-0.824, p < 0.001). Logistic regression analysis identified Mon_XW and Neu_Y as independent predictors, which were used to establish a diagnostic model named hematological parameter for sepsis (HPS). HPS demonstrated the best diagnostic performance with an AUC of 0.862 (95% CI: 0.826-0.898, p < 0.001), sensitivity of 70.0%, and specificity of 87.1%, compared to C-reactive protein (CRP) and procalcitonin (PCT). The validation cohort also found that the positive predictive value of HPS was 70.4% and the negative predictive value was 92.2%. CONCLUSION The developed HPS model showed promising diagnostic efficacy for sepsis in the emergency department, which outperformed CRP and PCT in terms of sensitivity and specificity. By enabling early identification and prognosis of sepsis, that contributes to reducing sepsis-related mortality.
Collapse
Affiliation(s)
- Xiaohe Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yating Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shiyao Pan
- Department of Clinical Research and Medical Affairs, Shenzhen Mindray Bio-Medical Electronic Co. Ltd., Shenzhen, China
| | - Yushuaima
- Department of Clinical Research and Medical Affairs, Shenzhen Mindray Bio-Medical Electronic Co. Ltd., Shenzhen, China
| | - Zena Huang
- Yunkang School of Medicine and Health, Nanfang College, Guangzhou, China
| | - Manman Ye
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shihong Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Xie D, Quan J, Yu X, Liang Z, Chen Y, Wu L, Lin L, Fan L. Molecular mechanism of Jianpiyifei II granules in the treatment of chronic obstructive pulmonary disease: Network pharmacology analysis, molecular docking, and experimental assessment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155273. [PMID: 38342020 DOI: 10.1016/j.phymed.2023.155273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/24/2023] [Accepted: 12/10/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is defined by persistent airway and lung inflammation, excessive mucus production, remodeling of the airways, and damage to the alveolar tissue. Based on clinical experience, it has been observed that Jianpiyifei II (JPYF II) granules exhibit a significant therapeutic impact on individuals suffering from stable COPD. Nevertheless, the complete understanding of JPYF II's potential mode of action against COPD remains to be further clarified. PURPOSE To further investigate the underlying mechanism of JPYF II for treating COPD and clarify the role of the IL-17 pathway in the treatment. METHODS A variety of databases were utilized to acquire JPYF II's bioactive components, as well as related targets of JPYF II and COPD. Cytoscape was utilized to establish multiple interaction networks for the purpose of topological analyses and core-target screening. The Metascape was utilized to identify the function of target genes and crucial signaling pathways. To evaluate the interactions between bioactive ingredients and central target proteins, molecular docking simulations were conducted. Following that, a sequence of experiments was conducted both in the laboratory and in living organisms, which included analyzing the cell counts in bronchoalveolar lavage fluid (BALF), examining lung tissue for histopathological changes, conducting immunohistochemistry, RT‒qPCR, ELISA, and Western blotting. RESULTS In JPYF II, 88 bioactive ingredients were predicted to have a total of 342 targets. After conducting Venn analysis, it was discovered that 284 potential targets of JPYF II were linked to the provision of defensive benefits against COPD. The PPI network yielded a total of twenty-four core targets. The findings from the analysis of enrichment and gene‒pathway network suggested that JPYF II targeted Hsp90, MAPKs, ERK, AP-1, TNF-α, IL-6, COX-2, CXCL8, and MMP-9 as crucial elements for COPD treatment through the IL-17 pathway. Additionally, JPYF II might modulate MAPK signaling pathways and the downstream transcription factor AP-1 via IL-17 regulation. According to the findings from molecular docking, it was observed that the 24 core target proteins exhibited robust binding affinities towards the top 10 bioactive compounds. Furthermore, the treatment of COPD through the regulation of MAPKs in the IL-17 pathway was significantly influenced by flavonoids and sterols found in JPYF II. In vitro, these observations were further confirmed. In vivo results demonstrated that JPYF II reduced inflammatory cell infiltration in pulmonary tissues and the quantity of inflammatory cells in BALF obtained from LPS- and CS-stimulated mice. Moreover, the administration of JPYF II resulted in the inhibition of IL-17 mRNA and protein levels, phosphorylation levels of MAPK proteins, and expression of phosphorylated AP-1 proteins. It also suppressed the expression of downstream effector genes and proteins associated with the IL-17/MAPK/AP-1 signaling axis in lung tissues and BALF. CONCLUSION This research reveals that JPYF II improves COPD by controlling the IL-17/MAPK/AP-1 signaling axis within the IL-17 pathway for the first time. These findings offer potential approaches for the creation of novel medications that specifically target IL-17 and proteins involved in the IL-17 pathway to address COPD.
Collapse
Affiliation(s)
- Dan Xie
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Jingyu Quan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xuhua Yu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Ziyao Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Yuanbin Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Lei Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| | - Lin Lin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| | - Long Fan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| |
Collapse
|
8
|
Guo Z, Xu G, Xu J, Huang Y, Liu C, Cao Y. Role of Lipocalin-2 in N1/N2 Neutrophil Polarization After Stroke. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:525-535. [PMID: 37073144 DOI: 10.2174/1871527322666230417112850] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 04/20/2023]
Abstract
BACKGROUND Neutrophils and Lipocalin-2 (LCN2) play pivotal roles in cerebral ischemiareperfusion (I/R) injury. However, their contribution is not fully clarified. OBJECTIVE This study aimed to explore the role of LCN2 and its association with neutrophil polarization in I/R injury. METHODS A mouse model of middle cerebral artery occlusion (MCAO) was used to induce cerebral ischemia. LCN2mAb was administered 1 h and Anti-Ly6G was administered for 3d before MCAO. The role of LCN2 in the polarity transition of neutrophils was explored using an in vitro HL-60 cell model. RESULTS LCN2mAb pretreatment had neuroprotective effects in mice. The expression of Ly6G was not significantly different, but the expression of N2 neutrophils was increased. In the in vitro study, LCN2mAb-treated N1-HL-60 cells induced N2-HL-60 polarization. CONCLUSION LCN2 may affect the prognosis of ischemic stroke by mediating neutrophil polarization.
Collapse
Affiliation(s)
- Zhiliang Guo
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
| | - Guoli Xu
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou 215004, Jiangsu, China
| | - Jiaping Xu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
| | - Yaqian Huang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
| | - Chunfeng Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
| | - Yongjun Cao
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
| |
Collapse
|
9
|
Káposztás E, Balogh L, Mócsai A, Kemecsei É, Jakus Z, Németh T. The selective inhibition of the Syk tyrosine kinase ameliorates experimental autoimmune arthritis. Front Immunol 2023; 14:1279155. [PMID: 38111569 PMCID: PMC10725968 DOI: 10.3389/fimmu.2023.1279155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/07/2023] [Indexed: 12/20/2023] Open
Abstract
Autoimmune arthritis - such as rheumatoid arthritis - affect a significant proportion of the population, which can cause everyday joint pain, decreased mobility and reduced quality of life. Despite having more and more therapeutic options available, there are still a lot of patients who cannot reach remission or low disease activity by current therapies. This causes an urgent need for the development of new treatment options. The Syk tyrosine kinase plays an essential role in B cell receptor, Fc receptor and integrin signaling. It has been shown that the hematopoietic cell-specific deletion of Syk resulted in a complete protection against autoantibody-induced experimental arthritis. This prompted us to test the effect of entospletinib, a second generation, Syk-selective inhibitor, which has a tolerable safety profile according to hematological clinical trials, in experimental autoimmune arthritis. We found that entospletinib dose-dependently decreased the macroscopic signs of joint inflammation, while it did not affect the health status of the animals. In line with these findings, local neutrophil accumulation and cytokine levels were reduced compared to the vehicle-treated group, while macrophage accumulation and synovial fibroblast numbers were not significantly altered. Meanwhile, entospletinib dose-dependently decreased the cell responses of immune complex- or integrin ligand-activated neutrophils. Overall, we found that selective Syk inhibition by entospletinib reduced the activity of autoantibody-induced experimental arthritis, which seems to be based mainly on the effect of the inhibitor on neutrophil functions. Our data raise the possibility that entospletinib could be a good drug candidate in the treatment of human autoimmune arthritis.
Collapse
Affiliation(s)
- Eszter Káposztás
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- MTA-SE “Lendület” Translational Rheumatology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Lili Balogh
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- MTA-SE “Lendület” Translational Rheumatology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- ELKH-SE Inflammation Physiology Research Group, Eötvös Loránd Research Network and Semmelweis University, Budapest, Hungary
| | - Éva Kemecsei
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Zoltán Jakus
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- MTA-SE “Lendület” Translational Rheumatology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
10
|
Lawrence S, Mueller BR, Benn EKT, Kim-Schulze S, Kwon P, Robinson-Papp J. Autonomic Neuropathy is Associated with More Densely Interconnected Cytokine Networks in People with HIV. J Neuroimmune Pharmacol 2023; 18:563-572. [PMID: 37923971 PMCID: PMC10997189 DOI: 10.1007/s11481-023-10088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
The autonomic nervous system (ANS) plays a complex role in the regulation of the immune system, with generally inhibitory effects via activation of β-adrenergic receptors on immune cells. We hypothesized that HIV-associated autonomic neuropathy (HIV-AN) would result in immune hyperresponsiveness which could be depicted using network analyses. Forty-two adults with well-controlled HIV underwent autonomic testing to yield the Composite Autonomic Severity Score (CASS). The observed range of CASS was 2-5, consistent with normal to moderate HIV-AN. To construct the networks, participants were divided into 4 groups based on the CASS (i.e., 2, 3, 4 or 5). Forty-four blood-based immune markers were included as nodes in all networks and the connections (i.e., edges) between pairs of nodes were determined by their bivariate Spearman's Rank Correlation Coefficient. Four centrality measures (strength, closeness, betweenness and expected influence) were calculated for each node in each network. The median value of each centrality measure across all nodes in each network was calculated as a quantitative representation of network complexity. Graphical representation of the four networks revealed greater complexity with increasing HIV-AN severity. This was confirmed by significant differences in the median value of all four centrality measures across the networks (p ≤ 0.025 for each). Among people with HIV, HIV-AN is associated with stronger and more numerous positive correlations between blood-based immune markers. Findings from this secondary analysis can be used to generate hypotheses for future studies investigating HIV-AN as a mechanism contributing to the chronic immune activation observed in HIV.
Collapse
Affiliation(s)
- Steven Lawrence
- Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Bridget R Mueller
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emma K T Benn
- Center for Scientific Diversity, Center for Biostatistics, and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrick Kwon
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Jessica Robinson-Papp
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
11
|
Song Z, Bhattacharya S, Clemens RA, Dinauer MC. Molecular regulation of neutrophil swarming in health and disease: Lessons from the phagocyte oxidase. iScience 2023; 26:108034. [PMID: 37854699 PMCID: PMC10579437 DOI: 10.1016/j.isci.2023.108034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Neutrophil swarming is a complex coordinated process in which neutrophils sensing pathogen or damage signals are rapidly recruited to sites of infections or injuries. This process involves cooperation between neutrophils where autocrine and paracrine positive-feedback loops, mediated by receptor/ligand pairs including lipid chemoattractants and chemokines, amplify localized recruitment of neutrophils. This review will provide an overview of key pathways involved in neutrophil swarming and then discuss the cell intrinsic and systemic mechanisms by which NADPH oxidase 2 (NOX2) regulates swarming, including modulation of calcium signaling, inflammatory mediators, and the mobilization and production of neutrophils. We will also discuss mechanisms by which altered neutrophil swarming in disease may contribute to deficient control of infections and/or exuberant inflammation. Deeper understanding of underlying mechanisms controlling neutrophil swarming and how neutrophil cooperative behavior can be perturbed in the setting of disease may help to guide development of tools for diagnosis and precision medicine.
Collapse
Affiliation(s)
- Zhimin Song
- Guangzhou National Laboratory, Guangzhou 510320, Guangdong Province, China
| | - Sourav Bhattacharya
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Regina A. Clemens
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Mary C. Dinauer
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
12
|
Futosi K, Németh T, Horváth ÁI, Abram CL, Tusnády S, Lowell CA, Helyes Z, Mócsai A. Myeloid Src-family kinases are critical for neutrophil-mediated autoinflammation in gout and motheaten models. J Exp Med 2023; 220:e20221010. [PMID: 37074415 PMCID: PMC10120404 DOI: 10.1084/jem.20221010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 01/27/2023] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
Autoinflammatory diseases include a number of monogenic systemic inflammatory diseases, as well as acquired autoinflammatory diseases such as gout. Here, we show that the myeloid Src-family kinases Hck, Fgr, and Lyn are critical for experimental models of gout, as well as for genetically determined systemic inflammation in the Ptpn6me-v/me-v (motheaten viable) mouse model. The Hck-/-Fgr-/-Lyn-/- mutation abrogated various monosodium urate (MSU) crystal-induced pro-inflammatory responses of neutrophils, and protected mice from the development of gouty arthritis. The Src-family inhibitor dasatinib abrogated MSU crystal-induced responses of human neutrophils and reduced experimental gouty arthritis in mice. The Hck-/-Fgr-/-Lyn-/- mutation also abrogated spontaneous inflammation and prolonged the survival of the Ptpn6me-v/me-v mice. Spontaneous adhesion and superoxide release of Ptpn6me-v/me-v neutrophils were also abolished by the Hck-/-Fgr-/-Lyn-/- mutation. Excessive activation of tyrosine phosphorylation pathways in myeloid cells may characterize a subset of autoinflammatory diseases.
Collapse
Affiliation(s)
- Krisztina Futosi
- Department of Physiology, School of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-SE Inflammation Physiology Research Group, Eötvös Loránd Research Network and Semmelweis University, Budapest, Hungary
| | - Tamás Németh
- Department of Physiology, School of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE “Lendület” Translational Rheumatology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Ádám I. Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Clare L. Abram
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Simon Tusnády
- Department of Physiology, School of Medicine, Semmelweis University, Budapest, Hungary
| | - Clifford A. Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Pécs, Hungary
- PharmInVivo Ltd., Pécs, Hungary
| | - Attila Mócsai
- Department of Physiology, School of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-SE Inflammation Physiology Research Group, Eötvös Loránd Research Network and Semmelweis University, Budapest, Hungary
| |
Collapse
|
13
|
Németh T, Balogh L, Káposztás E, Szilveszter KP, Mócsai A. Neutrophil-Specific Syk Expression Is Crucial for Skin Disease in Experimental Epidermolysis Bullosa Acquisita. J Invest Dermatol 2023; 143:1147-1156. [PMID: 36641133 DOI: 10.1016/j.jid.2022.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023]
Abstract
Autoantibodies against the dermal-epidermal junction component type VII collagen (C7) trigger skin disease in the inflammatory form of epidermolysis bullosa acquisita. We have previously identified the Syk tyrosine kinase as a crucial participant in anti-C7 antibody-induced experimental epidermolysis bullosa acquisita. However, it is still unclear which cellular lineage needs to express Syk during the disease process. In this study, we show that the loss of Syk, specifically from neutrophils, results in complete protection from the anti-C7 antibody-initiated skin disease both macroscopically and microscopically. Mice with a neutrophil-specific Syk deletion had decreased neutrophil accumulation and abrogated CXCL2 and IL-1β levels in the skin upon anti-C7 treatment, whereas isolated Syk-deficient neutrophils had decreased superoxide release, cell spreading, and cytokine release on C7-anti-C7 immune complex surfaces. Entospletinib and lanraplenib, two second-generation Syk-specific inhibitors, effectively abrogated immune complex-induced responses of human neutrophils and decreased the anti-C7 antibody-initiated, neutrophil-mediated ex vivo dermal-epidermal separation in human skin samples. Taken together, these results point to a crucial role for Syk in neutrophils in the development and progression of epidermolysis bullosa acquisita and suggest Syk inhibition as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary; MTA-SE "Lendület" ("Momentum") Translational Rheumatology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary; Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary; Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary.
| | - Lili Balogh
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary; MTA-SE "Lendület" ("Momentum") Translational Rheumatology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Eszter Káposztás
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary; MTA-SE "Lendület" ("Momentum") Translational Rheumatology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Kata P Szilveszter
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| |
Collapse
|
14
|
Song Z, Bhattacharya S, Huang G, Greenberg ZJ, Yang W, Bagaitkar J, Schuettpelz LG, Dinauer MC. NADPH oxidase 2 limits amplification of IL-1β-G-CSF axis and an immature neutrophil subset in murine lung inflammation. Blood Adv 2023; 7:1225-1240. [PMID: 36103336 PMCID: PMC10111367 DOI: 10.1182/bloodadvances.2022007652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022] Open
Abstract
The leukocyte NADPH oxidase 2 (NOX2) regulates inflammation independent of its antimicrobial activity. Inherited defects in NOX2 lead to chronic granulomatous disease (CGD), associated with recurrent bacterial and fungal infections, often with excessive neutrophilic inflammation that results in significant inflammatory burden and tissue damage. We previously showed that excessive leukotriene B4 (LTB4) production by NOX2-deficient mouse neutrophils was a key driver of elevated lung neutrophil infiltration in the initial response to pulmonary challenge with the model fungal particle zymosan. We now identify interleukin-1β (IL-1β) and downstream granulocyte colony-stimulating factor (G-CSF) as critical amplifying signals that augment and sustain neutrophil accrual in CGD mice. Neutrophils, delivered into the lung via LTB4, were the primary source of IL-1β within the airways, and their increased numbers in CGD lungs led to significantly elevated local and plasma G-CSF. Elevated G-CSF simultaneously promoted increased granulopoiesis and mobilized the release of higher numbers of an immature CD101- neutrophil subset from the marrow, which trafficked to the lung and acquired a significantly more proinflammatory transcriptome in CGD mice compared with wild-type mice. Thus, neutrophil-produced IL-1β and downstream G-CSF act sequentially but nonredundantly with LTB4 to deploy neutrophils and amplify inflammation in CGD mice after inhalation of zymosan. NOX2 plays a critical role in dampening multiple components of a feed-forward pipeline for neutrophil recruitment, and these findings highlight NOX2 as a key regulator of neutrophil number, subsets, and function at inflamed sites.
Collapse
Affiliation(s)
- Zhimin Song
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Sourav Bhattacharya
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Guangming Huang
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Zev J. Greenberg
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Juhi Bagaitkar
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH
| | - Laura G. Schuettpelz
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Mary C. Dinauer
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
15
|
Lawrence S, Mueller BR, Benn EKT, Kim-Schulze S, Kwon P, Robinson-Papp J. Autonomic Neuropathy is Associated with More Densely Interconnected Cytokine Networks in People with HIV. RESEARCH SQUARE 2023:rs.3.rs-2670770. [PMID: 36993302 PMCID: PMC10055631 DOI: 10.21203/rs.3.rs-2670770/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Introduction The autonomic nervous system (ANS) plays a complex role in the regulation of the immune system, with generally inhibitory effects via activation of β-adrenergic receptors on immune cells. We hypothesized that HIV-associated autonomic neuropathy (HIV-AN) would result in immune hyperresponsiveness which could be depicted using network analyses. Methods Forty-two adults with well-controlled HIV underwent autonomic testing to yield the Composite Autonomic Severity Score (CASS). The observed range of CASS was 2-5, consistent with normal to moderate HIV-AN. To construct the networks, participants were divided into 4 groups based on the CASS (i.e., 2, 3, 4 or 5). Forty-four blood-based immune markers were included as nodes in all networks and the connections (i.e., edges) between pairs of nodes were determined by their bivariate Spearman's Rank Correlation Coefficient. Four centrality measures (strength, closeness, betweenness and expected influence) were calculated for each node in each network. The median value of each centrality measure across all nodes in each network was calculated as a quantitative representation of network complexity. Results Graphical representation of the four networks revealed greater complexity with increasing HIV-AN severity. This was confirmed by significant differences in the median value of all four centrality measures across the networks (p≤0.025 for each). Conclusion Among people with HIV, HIV-AN is associated with stronger and more numerous positive correlations between blood-based immune markers. Findings from this secondary analysis can be used to generate hypotheses for future studies investigating HIV-AN as a mechanism contributing to the chronic immune activation observed in HIV.
Collapse
|
16
|
Sbrana S, Cecchettini A, Bastiani L, Mazzone A, Vozzi F, Caselli C, Neglia D, Clemente A, Scholte AJHA, Parodi O, Pelosi G, Rocchiccioli S. Association of Circulating Neutrophils with Relative Volume of Lipid-Rich Necrotic Core of Coronary Plaques in Stable Patients: A Substudy of SMARTool European Project. Life (Basel) 2023; 13:life13020428. [PMID: 36836785 PMCID: PMC9958623 DOI: 10.3390/life13020428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND AIMS Coronary atherosclerosis is a chronic non-resolving inflammatory process wherein the interaction of innate immune cells and platelets plays a major role. Circulating neutrophils, in particular, adhere to the activated endothelium and migrate into the vascular wall, promoting monocyte recruitment and influencing plaque phenotype and stability at all stages of its evolution. We aimed to evaluate, by flow cytometry, if blood neutrophil number and phenotype-including their phenotypic relationships with platelets, monocytes and lymphocytes-have an association with lipid-rich necrotic core volume (LRNCV), a generic index of coronary plaque vulnerability, in a group of stable patients with chronic coronary syndrome (CCS). METHODS In 55 patients, (68.53 ± 1.07 years of age, mean ± SEM; 71% male), the total LRNCV in each subject was assessed by a quantitative analysis of all coronary plaques detected by computed tomography coronary angiography (CTCA) and was normalized to the total plaque volume. The expression of CD14, CD16, CD18, CD11b, HLA-DR, CD163, CCR2, CCR5, CX3CR1, CXCR4 and CD41a cell surface markers was quantified by flow cytometry. Adhesion molecules, cytokines and chemokines, as well as MMP9 plasma levels, were measured by ELISA. RESULTS On a per-patient basis, LRNCV values were positively associated, by a multiple regression analysis, with the neutrophil count (n°/µL) (p = 0.02), neutrophil/lymphocyte ratio (p = 0.007), neutrophil/platelet ratio (p = 0.01), neutrophil RFI CD11b expression (p = 0.02) and neutrophil-platelet adhesion index (p = 0.01). Significantly positive multiple regression associations of LRNCV values with phenotypic ratios between neutrophil RFI CD11b expression and several lymphocyte and monocyte surface markers were also observed. In the bivariate correlation analysis, a significantly positive association was found between RFI values of neutrophil-CD41a+ complexes and neutrophil RFI CD11b expression (p < 0.0001). CONCLUSIONS These preliminary findings suggest that a sustained increase in circulating neutrophils, together with the up-regulation of the integrin/activation membrane neutrophil marker CD11b may contribute, through the progressive intra-plaque accumulation of necrotic/apoptotic cells exceeding the efferocytosis/anti-inflammatory capacity of infiltrating macrophages and lymphocytes, to the relative enlargement of the lipid-rich necrotic core volume of coronary plaques in stable CAD patients, thus increasing their individual risk of acute complication.
Collapse
Affiliation(s)
- Silverio Sbrana
- CNR Institute of Clinical Physiology, 54100 Massa, Italy
- Correspondence: (S.S.); (S.R.)
| | - Antonella Cecchettini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy
| | - Luca Bastiani
- CNR Institute of Clinical Physiology, 54100 Massa, Italy
| | | | | | | | - Danilo Neglia
- Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | | | | | | | | | - Silvia Rocchiccioli
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy
- Correspondence: (S.S.); (S.R.)
| |
Collapse
|
17
|
Plasma Calprotectin Levels Associate with Suspected Metabolic-Associated Fatty Liver Disease and All-Cause Mortality in the General Population. Int J Mol Sci 2022; 23:ijms232415708. [PMID: 36555350 PMCID: PMC9778771 DOI: 10.3390/ijms232415708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is characterized by hepatic steatosis, metabolic dysregulation, and neutrophilic inflammation. In this study, we hypothesized that systemic levels of plasma calprotectin, as a biomarker of neutrophilic inflammation, may be associated with suspected MAFLD. Plasma calprotectin levels were measured in subjects (n = 5446) participating in the Prevention of Renal and Vascular ENd-stage Disease (PREVEND) cohort study. Suspected MAFLD was defined by the fatty liver index (FLI ≥ 60) and hepatic steatosis index (HSI ≥ 36) as proxies. Plasma calprotectin levels were significantly higher in subjects with FLI ≥ 60 (0.57 [IQR: 0.42−0.79] mg/L, n = 1592) (p < 0.001) compared to subjects with FLI < 60 (0.46 [0.34−0.65] mg/L, n = 3854). Multivariable logistic regression analyses revealed that plasma calprotectin levels were significantly associated with suspected MAFLD (FLI ≥ 60), even after adjustment for potential confounding factors, including current smoking, alcohol consumption, hypertension, diabetes, cardiovascular diseases, insulin resistance (HOMA-IR), hs-CRP, eGFR, and total cholesterol levels (OR 1.19 [95% CI: 1.06−1.33], p = 0.003). Interaction analyses revealed significant effect modifications for the association between plasma calprotectin and suspected MAFLD by BMI (p < 0.001) and hypertension (p = 0.003), with the strongest associations in subjects with normal BMI and without hypertension. Prospectively, plasma calprotectin levels were significantly associated with all-cause mortality after adjustment for potential confounding factors, particularly in subjects without suspected MAFLD (FLI < 60) (hazard ratio (HR) per doubling: 1.34 (1.05−1.72), p < 0.05). In conclusion, higher plasma calprotectin levels are associated with suspected MAFLD and with the risk of all-cause mortality, the latter especially in subjects without suspected MAFLD.
Collapse
|
18
|
Sud’ina GF, Golenkina EA, Prikhodko AS, Kondratenko ND, Gaponova TV, Chernyak BV. Mitochondria-targeted antioxidant SkQ1 inhibits leukotriene synthesis in human neutrophils. Front Pharmacol 2022; 13:1023517. [PMID: 36506526 PMCID: PMC9729262 DOI: 10.3389/fphar.2022.1023517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Leukotrienes are among the most potent mediators of inflammation, and inhibition of their biosynthesis, is becoming increasingly important in the treatment of many pathologies. In this work, we demonstrated that preincubation of human neutrophils with the mitochondria targeted antioxidant SkQ1 (100 nM) strongly inhibits leukotriene synthesis induced by three different stimuli: the Ca2+ ionophore A23187, the chemotactic formyl-peptide fMLP in combination with cytocholasin B, and opsonized zymosan. The SkQ1 analogue lacking the antioxidant quinone moiety (C12TPP) was ineffective, suggesting that mitochondrial production of reactive oxygen species (ROS) is critical for activating of leukotriene synthesis in human neutrophils. The uncoupler of oxidative phosphorylation FCCP also inhibits leukotriene synthesis, indicating that a high membrane potential is a prerequisite for stimulating leukotriene synthesis in neutrophils. Our data show that activation of mitogen-activated protein kinases p38 and ERK1/2, which is important for leukotriene synthesis in neutrophils is a target for SkQ1: 1) the selective p38 inhibitor SB203580 inhibited fMLP-induced leukotriene synthesis, while the ERK1/2 activation inhibitor U0126 suppressed leukotriene synthesis induced by any of the three stimuli; 2) SkQ1 effectively prevents p38 and ERK1/2 activation (accumulation of phosphorylated forms) induced by all three stimuli. This is the first study pointing to the involvement of mitochondrial reactive oxygen species in the activation of leukotriene synthesis in human neutrophils. The use of mitochondria-targeted antioxidants can be considered as a promising strategy for inhibiting leukotriene synthesis and treating various inflammatory pathologies.
Collapse
Affiliation(s)
- Galina F. Sud’ina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia,*Correspondence: Galina F. Sud’ina, ; Boris V. Chernyak,
| | - Ekaterina A. Golenkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia S. Prikhodko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia D. Kondratenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Tatjana V. Gaponova
- National Research Center for Hematology, Russia Federation Ministry of Public Health, Moscow, Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia,*Correspondence: Galina F. Sud’ina, ; Boris V. Chernyak,
| |
Collapse
|
19
|
Prichard A, Khuu L, Whitmore LC, Irimia D, Allen LAH. Helicobacter pylori-infected human neutrophils exhibit impaired chemotaxis and a uropod retraction defect. Front Immunol 2022; 13:1038349. [PMID: 36341418 PMCID: PMC9630475 DOI: 10.3389/fimmu.2022.1038349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Helicobacter pylori is a major human pathogen that colonizes the gastric mucosa and plays a causative role in development of peptic ulcers and gastric cancer. Neutrophils are heavily infected with this organism in vivo and play a prominent role in tissue destruction and disease. Recently, we demonstrated that H. pylori exploits neutrophil plasticity as part of its virulence strategy eliciting N1-like subtype differentiation that is notable for profound nuclear hypersegmentation. We undertook this study to test the hypothesis that hypersegmentation may enhance neutrophil migratory capacity. However, EZ-TAXIScan™ video imaging revealed a previously unappreciated and progressive chemotaxis defect that was apparent prior to hypersegmentation onset. Cell speed and directionality were significantly impaired to fMLF as well as C5a and IL-8. Infected cells oriented normally in chemotactic gradients, but speed and direction were impaired because of a uropod retraction defect that led to cell elongation, nuclear lobe trapping in the contracted rear and progressive narrowing of the leading edge. In contrast, chemotactic receptor abundance, adhesion, phagocytosis and other aspects of cell function were unchanged. At the molecular level, H. pylori phenocopied the effects of Blebbistatin as indicated by aberrant accumulation of F-actin and actin spikes at the uropod together with enhanced ROCKII-mediated phosphorylation of myosin IIA regulatory light chains at S19. At the same time, RhoA and ROCKII disappeared from the cell rear and accumulated at the leading edge whereas myosin IIA was enriched at both cell poles. These data suggest that H. pylori inhibits the dynamic changes in myosin IIA contractility and front-to-back polarity that are essential for chemotaxis. Taken together, our data advance understanding of PMN plasticity and H. pylori pathogenesis.
Collapse
Affiliation(s)
- Allan Prichard
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Lisa Khuu
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Laura C. Whitmore
- Department of Medicine, Division of Infectious Diseases, University of Iowa, Iowa City, IA, United States
| | - Daniel Irimia
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lee-Ann H. Allen
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- Department of Medicine, Division of Infectious Diseases, University of Iowa, Iowa City, IA, United States
- Iowa City VA Healthcare System, Iowa City, IA, United States
- Harry S. Truman Memorial VA Hospital, Columbia, MO, United States
- *Correspondence: Lee-Ann H. Allen,
| |
Collapse
|
20
|
Skinner DD, Syage AR, Olivarria GM, Stone C, Hoglin B, Lane TE. Sustained Infiltration of Neutrophils Into the CNS Results in Increased Demyelination in a Viral-Induced Model of Multiple Sclerosis. Front Immunol 2022; 13:931388. [PMID: 36248905 PMCID: PMC9562915 DOI: 10.3389/fimmu.2022.931388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Intracranial inoculation of the neuroadapted JHM strain of mouse hepatitis virus (JHMV) into susceptible strains of mice results in acute encephalomyelitis followed by a cimmune-mediated demyelination similar to the human demyelinating disease multiple sclerosis (MS). JHMV infection of transgenic mice in which expression of the neutrophil chemoattractant chemokine CXCL1 is under the control of a tetracycline-inducible promoter active within GFAP-positive cells results in sustained neutrophil infiltration in the central nervous system (CNS) that correlates with an increase in spinal cord demyelination. We used single cell RNA sequencing (scRNAseq) and flow cytometry to characterize molecular and cellular changes within the CNS associated with increased demyelination in transgenic mice compared to control animals. These approaches revealed the presence of activated neutrophils as determined by expression of mRNA transcripts associated with neutrophil effector functions, including CD63, MMP9, S100a8, S100a9, and ASPRV1, as well as altered neutrophil morphology and protein expression. Collectively, these findings reveal insight into changes in the profile of neutrophils associated with increased white matter damage in mice persistently infected with a neurotropic coronavirus.
Collapse
Affiliation(s)
- Dominic D. Skinner
- Department of Pathology, Division of Microbiology and Immunology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Amber R. Syage
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| | - Gema M. Olivarria
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| | - Colleen Stone
- Department of Pathology, Division of Microbiology and Immunology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Bailey Hoglin
- Department of Pathology, Division of Microbiology and Immunology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Thomas E. Lane
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, CA, United States,Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, United States,Center for Virus Research, University of California Irvine, Irvine, CA, United States,*Correspondence: Thomas E. Lane,
| |
Collapse
|
21
|
Sewnath CA, Behrens LM, van Egmond M. Targeting myeloid cells with bispecific antibodies as novel immunotherapies of cancer. Expert Opin Biol Ther 2022; 22:983-995. [PMID: 35854649 DOI: 10.1080/14712598.2022.2098675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Most bispecific antibody (BsAb) therapies focus on stimulating the adaptive immune system, in particular T cells, to promote tumor cell killing. Another method to promote tumor eradication is through the engagement of myeloid cells, including macrophages and neutrophils, which are abundantly present and possess intrinsic cytotoxic mechanisms for tumor cell killing, making them interesting effector cells to recruit for BsAb therapy. AREAS COVERED In this review, we describe the evolving knowledge of the role of macrophages and neutrophils in cancer in scientific literature. Moreover, we address the BsAbs that have been developed over the years to recruit these cell types as effector cells in immunotherapy of cancer. This includes the discussion of BsAbs that target Fc receptors (i.e. FcγR and FcαRI) to induce antibody-dependent cellular phagocytosis (ADCP) by macrophages or trogoptosis via neutrophils, as well as BsAbs that interfere with checkpoint inhibition, including the SIRPα-CD47 pathway. EXPERT OPINION Elucidating the complexity of macrophage and neutrophil heterogeneity in cancer may help to specifically enlist the cytotoxic ability of these cells through targeting Fc receptors and checkpoint pathways, which may further enhance anti-cancer immunity.
Collapse
Affiliation(s)
- Celine An Sewnath
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam De Boelelaan, Amsterdam, The Netherlands.,Cancer Biology and Immunology Program, Cancer Centre Amsterdam, Amsterdam, The Netherlands.,Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Leonie M Behrens
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam De Boelelaan, Amsterdam, The Netherlands.,Cancer Biology and Immunology Program, Cancer Centre Amsterdam, Amsterdam, The Netherlands.,Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam De Boelelaan, Amsterdam, The Netherlands.,Cancer Biology and Immunology Program, Cancer Centre Amsterdam, Amsterdam, The Netherlands.,Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands.,Department of Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam De Boelelaan, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Abstract
Neutrophils form cellular clusters or swarms in response to injury or pathogen intrusion. Yet, intracellular signaling events favoring this coordinated response remain to be fully characterized. Here, we show that calcium signals play a critical role during mouse neutrophil clustering around particles of zymosan, a structural fungal component. Pioneer neutrophils recognizing zymosan or live Candida albicans displayed elevated calcium levels. Subsequently, a transient wave of calcium signals in neighboring cells was observed followed by the attraction of neutrophils that exhibited more persistent calcium signals as they reached zymosan particles. Calcium signals promoted LTB4 production while the blocking of extracellular calcium entry or LTB4 signaling abrogated cluster formation. Finally, using optogenetics to manipulate calcium influx in primary neutrophils, we show that calcium signals could initiate recruitment of neighboring neutrophils in an LTB4-dependent manner. Thus, sustained calcium responses at the center of the cluster are necessary and sufficient for the generation of chemoattractive gradients that attract neutrophils in a self-reinforcing process.
Collapse
|
23
|
Ye D, Yao J, Du W, Chen C, Yang Y, Yan K, Li J, Xu Y, Zang S, Zhang Y, Rong X, Zhang R, Xu A, Guo J. Neutrophil Extracellular Traps Mediate Acute Liver Failure in Regulation of miR-223/Neutrophil Elastase Signaling in Mice. Cell Mol Gastroenterol Hepatol 2022; 14:587-607. [PMID: 35660025 PMCID: PMC9307949 DOI: 10.1016/j.jcmgh.2022.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Marked enhancement of neutrophil infiltration in the liver is a hallmark of acute liver failure (ALF), a severe life-threatening disease with varying etiologies. However, the mechanisms and pathophysiological role corresponding to hepatic neutrophil infiltration during ALF development remain poorly characterized. METHODS Experimental ALF was induced in 10-week-old male microRNA-223 (miR-223) knockout (KO) mice, neutrophil elastase (NE) KO mice, and wild-type controls by intraperitoneal injection of galactosamine hydrochloride and lipopolysaccharide. Age-matched mice were injected with phosphate-buffered saline and served as vehicle controls. RESULTS Mouse liver with ALF showed evident formation of neutrophil extracellular traps (NETs), which were enhanced markedly in miR-223 KO mice. The blockade of NETs by pharmacologic inhibitor GSK484 significantly attenuated neutrophil infiltration and massive necrosis in mouse liver with ALF. ALF-related hepatocellular damage and mortality in miR-223 KO mice were aggravated significantly and accompanied by potentiated neutrophil infiltration in the liver when compared with wild-type controls. Transcriptomic analyses showed that miR-223 deficiency in bone marrow predominantly caused the enrichment of pathways involved in neutrophil degranulation. Likewise, ALF-induced hepatic NE enrichment was potentiated in miR-223 KO mice. Genetic ablation of NE blunted the formation of NETs in parallel with significant attenuation of ALF in mice. Pharmaceutically, pretreatment with the NE inhibitor sivelestat protected mice against ALF. CONCLUSIONS The present study showed the miR-223/NE axis as a key modulator of NETs, thereby exacerbating oxidative stress and neutrophilic inflammation to potentiate hepatocellular damage and liver necrosis in ALF development, and offering potential targets against ALF.
Collapse
Affiliation(s)
- Dewei Ye
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China,Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China,Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China,Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China,Correspondence Address correspondence to: Dewei Ye, PhD, Lab 406, 4th Floor, Science and Technology Building, Guangdong Pharmaceutical University, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, 510006, China.
| | - Jianyu Yao
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China,Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China,Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China,Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenfa Du
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China,Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China,Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China,Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Cuishan Chen
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China,Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China,Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China,Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yong Yang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China,Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China,Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China,Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Kaixuan Yan
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China,Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China,Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China,Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jufei Li
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China,Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China,Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China,Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Xu
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shufei Zang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yuying Zhang
- Central Laboratory, Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Xianglu Rong
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China,Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China,Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China,Prof. Aimin Xu, State Key Laboratory of Pharmaceutical Biotechnology, and Department of Medicine, The University of Hong Kong, Room L8-39, Lab Block, 21 Sassoon Road, Hong Kong. Fax: +00852-2816 2095.
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China,Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China,Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China,Prof. Jiao Guo, Room 403, 4th Floor, Science and Technology Building, Guangdong Pharmaceutical University, 280 Waihuan East Road, Guangzhou Higher Education Mega, 510006, China.
| |
Collapse
|
24
|
Lakshmanan HHS, Estonilo A, Reitsma SE, Melrose AR, Subramanian J, Zheng TJ, Maddala J, Tucker EI, Gailani D, McCarty OJT, Jurney PL, Puy C. Revised model of the tissue factor pathway of thrombin generation: Role of the feedback activation of FXI. J Thromb Haemost 2022; 20:1350-1363. [PMID: 35352494 PMCID: PMC9590754 DOI: 10.1111/jth.15716] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/26/2022] [Accepted: 03/16/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Biochemical reaction networks are self-regulated in part due to feedback activation mechanisms. The tissue factor (TF) pathway of blood coagulation is a complex reaction network controlled by multiple feedback loops that coalesce around the serine protease thrombin. OBJECTIVES Our goal was to evaluate the relative contribution of the feedback activation of coagulation factor XI (FXI) in TF-mediated thrombin generation using a comprehensive systems-based analysis. MATERIALS AND METHODS We developed a systems biology model that improves the existing Hockin-Mann (HM) model through an integrative approach of mathematical modeling and in vitro experiments. Thrombin generation measured using in vitro assays revealed that the feedback activation of FXI contributes to the propagation of thrombin generation based on the initial concentrations of TF or activated coagulation factor X (FXa). We utilized experimental data to improve the robustness of the HM model to capture thrombin generation kinetics without a role for FXI before including the feedback activation of FXI by thrombin to construct the extended (ext.) HM model. RESULTS AND CONCLUSIONS Using the ext.HM model, we predicted that the contribution of positive feedback of FXI activation by thrombin can be abolished by selectively eliminating the inhibitory function of tissue factor pathway inhibitor (TFPI), a serine protease inhibitor of FXa and TF-activated factor VII (FVIIa) complex. This prediction from the ext.HM model was experimentally validated using thrombin generation assays with function blocking antibodies against TFPI and plasmas depleted of FXI. Together, our results demonstrate the applications of combining experimental and modeling techniques in predicting complex biochemical reaction systems.
Collapse
Affiliation(s)
| | - Aldrich Estonilo
- Department of Biomedical Engineering, San Jose State University, San Jose, California, USA
| | - Stéphanie E. Reitsma
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Alexander R. Melrose
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Tony J. Zheng
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeevan Maddala
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, West Virginia, USA
| | - Erik I. Tucker
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Aronora, Inc., Portland, Oregon, USA
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Owen J. T. McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Patrick L. Jurney
- Department of Biomedical Engineering, San Jose State University, San Jose, California, USA
| | - Cristina Puy
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
25
|
Cuppen JJM, Gradinaru C, Raap-van Sleuwen BE, de Wit ACE, van der Vegt TAAJ, Savelkoul HFJ. LF-EMF Compound Block Type Signal Activates Human Neutrophilic Granulocytes In Vivo. Bioelectromagnetics 2022; 43:309-316. [PMID: 35481557 PMCID: PMC9324799 DOI: 10.1002/bem.22406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 11/07/2022]
Abstract
This research aims to demonstrate in a randomized, placebo-controlled crossover design study that a nominal 5 μT low-frequency electromagnetic field (LF-EMF) signal for 30 min activates neutrophils in vivo in humans. Granularity of neutrophils was measured in blood samples of healthy human volunteers (n = 32) taken before and after exposure for both the exposure and control sessions. A significant decrease in the granularity, indicative of neutrophil activation, was observed both in the exposure measurements and the exposure minus control measurements. Earlier EMF publications show immune function increase in isolated cells and more effective immune responses in animals with infections. This result, therefore, supports the thesis that the exposure can activate the innate immune system in humans, speed up the innate immune response, and may have potential beneficial effects in infectious disease. © 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Jan J M Cuppen
- Umani Medical BV, Waalre, The Netherlands.,Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | | | | | | | | | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
26
|
Hou M, Wu X, Zhao Z, Deng Q, Chen Y, Yin L. Endothelial cell-targeting, ROS-ultrasensitive drug/siRNA co-delivery nanocomplexes mitigate early-stage neutrophil recruitment for the anti-inflammatory treatment of myocardial ischemia reperfusion injury. Acta Biomater 2022; 143:344-355. [PMID: 35189380 DOI: 10.1016/j.actbio.2022.02.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/30/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
Abstract
Neutrophils serve as a key contributor to the pathophysiology of myocardial ischemia reperfusion injury (MIRI), because the unregulated activation and infiltration of neutrophils lead to overwhelming inflammation in the myocardium to cause tissue damage. Herein, endothelial cell-targeting and reactive oxygen species (ROS)-ultrasensitive nanocomplexes (NCs) were developed to mediate efficient co-delivery of VCAM-1 siRNA (siVCAM-1) and dexamethasone (DXM), which cooperatively inhibited neutrophil recruitment by impeding neutrophil migration and adhesion. RPPT was first synthesized via crosslinking of PEI 600 with ditellurium followed by modification with PEG and the endothelial cell-targeting peptide cRGD. RPPT was allowed to envelope the DXM-loaded PLGA nanoparticles and condense the siVCAM-1. After systemic administration in rats experiencing MIRI, the cRGD-modified NCs efficiently targeted and entered the inflamed endothelial cells, wherein RPPT was sensitively degraded by over-produced ROS to trigger intracellular siVCAM-1 release and potentiate the VCAM-1 silencing efficiency. As a consequence of the complementary function of DXM and siVCAM-1, the NCs notably mitigated neutrophil infiltration into ischemic myocardium, provoking potent anti-inflammatory efficacy to reduce MIRI and recover cardiac function. The present study offers an effective approach for the controlled co-delivery of siRNA and drug cargoes, and it also highlights the importance of multi-dimensional manipulation of neutrophils in anti-inflammatory treatment. STATEMENT OF SIGNIFICANCE: The unregulated activation and infiltration of neutrophils lead to overwhelming inflammation in the myocardium after myocardial ischemia reperfusion injury (MIRI). Here, endothelial cell-targeting and ROS-ultrasensitive nanocomplexes (NCs), comprised of PLGA NPs decorated with cRGD-poly(ethylene glycol) (PEG)-modified, ditellurium-crosslinked PEI (RPPT), were developed to mediate efficient co-delivery of VCAM-1 siRNA (siVCAM-1) and dexamethasone (DXM). DXM and siVCAM-1 with complementary functions inhibited both the migration and adhesion of neutrophils, efficiently interventing the neutrophil recruitment and interrupting the self-amplified inflammation cascade in the injured myocardium. The molecular design of RPPT renders an effective example for constructing polymeric materials with high ROS sensitivity, and it resolves the critical dilemma related to polycation-mediated siRNA delivery, such as siRNA encapsulation versus release, and transfection efficiency versus toxicity.
Collapse
|
27
|
Szilveszter KP, Vikár S, Horváth ÁI, Helyes Z, Sárdy M, Mócsai A. Phospholipase Cγ2 is Essential for Experimental Models of Epidermolysis Bullosa Acquisita. J Invest Dermatol 2021; 142:1114-1125. [PMID: 34656615 DOI: 10.1016/j.jid.2021.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022]
Abstract
Phospholipase Cγ2 (PLCγ2) mediates tyrosine kinase‒coupled receptor signaling in various hematopoietic lineages. Although PLCγ2 has been implicated in certain human and mouse inflammatory disorders, its contribution to autoimmune and inflammatory skin diseases is poorly understood. In this study, we tested the role of PLCγ2 in a mouse model of epidermolysis bullosa acquisita triggered by antibodies against type VII collagen (C7), a component of the dermo-epidermal junction. PLCγ2-deficient (Plcg2-/-) mice and bone marrow chimeras with a Plcg2-/- hematopoietic system were completely protected from signs of anti-C7-induced skin disease, including skin erosions, dermal‒epidermal separation, and inflammation, despite normal circulating levels and skin deposition of anti-C7 antibodies. PLCγ2 was required for the tissue infiltration of neutrophils, eosinophils, and monocytes/macrophages as well as for the accumulation of proinflammatory mediators (including IL-1β, MIP-2, and LTB4) and reactive oxygen species. Mechanistic experiments revealed a role for PLCγ2 in the release of proinflammatory mediators and reactive oxygen species but not in the intrinsic migratory capacity of leukocytes. The phospholipase C inhibitor U73122 inhibited dermal-epidermal separation of human skin sections incubated with human neutrophils in the presence of anti-C7 antibodies. Taken together, our results suggest a critical role for PLCγ2 in the pathogenesis of the inflammatory form of epidermolysis bullosa acquisita.
Collapse
Affiliation(s)
- Kata P Szilveszter
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Simon Vikár
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ádám I Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; Molecular Pharmacology Research Group, Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; Molecular Pharmacology Research Group, Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary; PharmInVivo Ltd, Pécs, Hungary
| | - Miklós Sárdy
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
28
|
Lin YJ, Wei KC, Chen PY, Lim M, Hwang TL. Roles of Neutrophils in Glioma and Brain Metastases. Front Immunol 2021; 12:701383. [PMID: 34484197 PMCID: PMC8411705 DOI: 10.3389/fimmu.2021.701383] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils, which are the most abundant circulating leukocytes in humans, are the first line of defense against bacterial and fungal infections. Recent studies have reported the role and importance of neutrophils in cancers. Glioma and brain metastases are the most common malignant tumors of the brain. The tumor microenvironment (TME) in the brain is complex and unique owing to the brain-blood barrier or brain-tumor barrier, which may prevent drug penetration and decrease the efficacy of immunotherapy. However, there are limited studies on the correlation between brain cancer and neutrophils. This review discusses the origin and functions of neutrophils. Additionally, the current knowledge on the correlation between neutrophil-to-lymphocyte ratio and prognosis of glioma and brain metastases has been summarized. Furthermore, the implications of tumor-associated neutrophil (TAN) phenotypes and the functions of TANs have been discussed. Finally, the potential effects of various treatments on TANs and the ability of neutrophils to function as a nanocarrier of drugs to the brain TME have been summarized. However, further studies are needed to elucidate the complex interactions between neutrophils, other immune cells, and brain tumor cells.
Collapse
Affiliation(s)
- Ya-Jui Lin
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, Chang Gung Medical Foundation, New Taipei, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pin-Yuan Chen
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
29
|
Fontoura MA, Rocha RF, Marques RE. Neutrophil Recruitment and Participation in Severe Diseases Caused by Flavivirus Infection. Life (Basel) 2021; 11:717. [PMID: 34357089 PMCID: PMC8304117 DOI: 10.3390/life11070717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are first-line responders to infections and are recruited to target tissues through the action of chemoattractant molecules, such as chemokines. Neutrophils are crucial for the control of bacterial and fungal infections, but their role in the context of viral infections has been understudied. Flaviviruses are important human viral pathogens transmitted by arthropods. Infection with a flavivirus may result in a variety of complex disease manifestations, including hemorrhagic fever, encephalitis or congenital malformations. Our understanding of flaviviral diseases is incomplete, and so is the role of neutrophils in such diseases. Here we present a comprehensive overview on the participation of neutrophils in severe disease forms evolving from flavivirus infection, focusing on the role of chemokines and their receptors as main drivers of neutrophil function. Neutrophil activation during viral infection was shown to interfere in viral replication through effector functions, but the resulting inflammation is significant and may be detrimental to the host. For congenital infections in humans, neutrophil recruitment mediated by CXCL8 would be catastrophic. Evidence suggests that control of neutrophil recruitment to flavivirus-infected tissues may reduce immunopathology in experimental models and patients, with minimal loss to viral clearance. Further investigation on the roles of neutrophils in flaviviral infections may reveal unappreciated functions of this leukocyte population while increasing our understanding of flaviviral disease pathogenesis in its multiple forms.
Collapse
Affiliation(s)
- Marina Alves Fontoura
- Brazilian Biosciences National Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, Campinas 13083-100, Brazil; (M.A.F.); (R.F.R.)
- Cellular and Structural Biology Graduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-865, Brazil
| | - Rebeca Fróes Rocha
- Brazilian Biosciences National Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, Campinas 13083-100, Brazil; (M.A.F.); (R.F.R.)
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-970, Brazil
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, Campinas 13083-100, Brazil; (M.A.F.); (R.F.R.)
| |
Collapse
|
30
|
Akhavan Rezayat A, Ghasemi Nour M, Bondarsahebi Y, Hozhabrossadati SA, Amirkhanlou F, Akhavan Rezayat S, Kiani M, Imani B. The effects of melatonin therapy on the treatment of patients with Non-alcoholic steatohepatitis: A systematic review and Meta-analysis on clinical trial studies. Eur J Pharmacol 2021; 905:174154. [PMID: 34058202 DOI: 10.1016/j.ejphar.2021.174154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
Melatonin has shown promising effects in controlling the progress of non-alcoholic fatty liver disease (NAFLD), introducing it as a possible candidate for NAFLD treatment. In this context, the current study is aimed to evaluate melatonin's effect on the plasma levels of Gamma-glutamyl transpeptidase, cholesterol, triglyceride, and liver aminotransferases in NAFLD patients. NAFLD and melatonin, as well as their related terms, were searched in electronic databases, until May 1st, 2020. The initial search identified 1152 studies. Considering inclusion and exclusion criteria, the final seven articles were included in the study. The methodology of the articles was assessed by the Newcastle-Ottawa Scale. Alanine transaminase levels were significantly lowered with melatonin treatment but not earlier than the 4th week (P = 0.010 and 0.519, respectively). Aspartate aminotransferase levels didn't show significant alteration before 4 weeks, although exhibiting substantial decline in total (P = 0.697 and 0.008, respectively). Alkaline phosphatase changes under 4 weeks of follow-up were not significant (P = 0.3), however, it decreased significantly in total (P = 0.006). A significant decline was detected in triglyceride levels after melatonin treatment (P = 0.015). There was a significant reduction in cholesterol levels (P = 0.005). Gamma-glutamyl transpeptidase levels were also significantly different after the administration of melatonin (P < 0.001). Melatonin could reduce the progress of NAFLD. It might also decrement hepatic function parameters. Thus, it could be used for managing NAFLD and possibly as part of the treatment plan for patients with NAFLD.
Collapse
Affiliation(s)
- Arash Akhavan Rezayat
- Students Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ghasemi Nour
- Students Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yones Bondarsahebi
- Students Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fatemeh Amirkhanlou
- Students Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammadali Kiani
- Pediatric Gastroenterology, Mashhad University of Medical Sciences, Mashhad, Khorasan, Iran
| | - Bahareh Imani
- Social Determinants of Health Research Center, Mashhad University of Medical Science, Mashhad, Iran.
| |
Collapse
|
31
|
Futosi K, Kása O, Szilveszter KP, Mócsai A. Neutrophil Phospholipase Cγ2 Drives Autoantibody-Induced Arthritis Through the Generation of the Inflammatory Microenvironment. Arthritis Rheumatol 2021; 73:1614-1625. [PMID: 33645887 DOI: 10.1002/art.41704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 02/19/2021] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Gain-of-function mutations and genome-wide association studies have linked phospholipase Cγ2 (PLCγ2) to various inflammatory diseases, including arthritis in humans and mice. PLCγ2-deficient (Plcg2-/- ) mice are also protected against experimental arthritis. This study was undertaken to test how PLCγ2 triggers autoantibody-induced arthritis in mice. METHODS PLCγ2 was deleted from various mouse cellular lineages. Deletion efficacy and specificity were tested by immunoblotting and intracellular flow cytometry. Autoantibody-induced arthritis was triggered by K/BxN serum transfer. The role of neutrophil PLCγ2 was further investigated by analysis of the inflammatory exudate, competitive in vivo migration assays, and in vitro functional studies. RESULTS PLCγ2 deficiency in the entire hematopoietic compartment completely blocked autoantibody-induced arthritis. Arthritis development was abrogated by deletion of PLCγ2 from myeloid cells or neutrophils but not from mast cells or platelets. Neutrophil infiltration was reduced in neutrophil-specific PLCγ2-deficient (Plcg2Δ PMN ) mice. However, this was not due to an intrinsic migration defect since Plcg2Δ PMN neutrophils accumulated normally when wild-type cells were also present in mixed bone marrow chimeras. Instead, the Plcg2Δ PMN mutation blocked the accumulation of interleukin-1β, macrophage inflammatory protein 2 (MIP-2), and leukotriene B4 (LTB4 ) in synovial tissues and reduced the secondary infiltration of macrophages. These findings were supported by in vitro studies showing normal chemotactic migration but defective immune complex-induced respiratory burst and MIP-2 or LTB4 release in PLCγ2-deficient neutrophils. CONCLUSION Neutrophil PLCγ2 is critical for arthritis development, supposedly through the generation of the inflammatory microenvironment. PLCγ2-expressing neutrophils exert complex indirect effects on other inflammatory cells. PLCγ2-targeted therapies may provide particular benefit in inflammatory diseases with a major neutrophil component.
Collapse
Affiliation(s)
| | - Orsolya Kása
- Semmelweis University School of Medicine, Budapest, Hungary
| | | | - Attila Mócsai
- Semmelweis University School of Medicine, Budapest, Hungary
| |
Collapse
|
32
|
Zdziennicka J, Szponder T, Wessely-Szponder J. Application of Natural Neutrophil Products for Stimulation of Monocyte-Derived Macrophages Obtained before and after Osteochondral or Bone Injury. Microorganisms 2021; 9:microorganisms9010124. [PMID: 33430306 PMCID: PMC7825756 DOI: 10.3390/microorganisms9010124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
We evaluated the use of some neutrophil products, namely; autologous rabbit antimicrobial neutrophil extract (rANE), heterologous porcine antimicrobial neutrophil extract (pANE), neutrophil degranulation products (DGP) and neutrophil microvesicles (MVs) for stimulation of monocyte-derived macrophages (MDMs) to improve healing. Two animal models were evaluated; the rabbit model for autologous osteochondral transplantation (OT) with application of rabbit ANE, DGP or MVs for MDMs stimulation, and the ovine model of the insertion of a Ti implant with the use of porcine ANE, and ovine DGP or MVs for MDMs stimulation. Macrophage activity was assessed on the basis of free radical generation and arginase activity. We estimated that DGP acted in a pro-inflammatory way both on rabbit and ovine MDMs. On the other hand, MVs acted as anti-inflammatory stimulator on MDMs in both experiments. The response to ANE depended on origin of extract (autologous or heterologous). Macrophages from rabbits before and after OT stimulated with autologous extract generated lower amount of NO and superoxide, especially after transplantation. In the ovine model of Ti implant insertion, heterologous ANE evoked increased macrophage pro-inflammatory activity. Our study revealed that these neutrophil products could regulate activity of macrophages, polarizing them into pro-or anti-inflammatory phenotypes that could enhance bone and osteochondral tissue healing.
Collapse
Affiliation(s)
- Joanna Zdziennicka
- Department of Pathophysiology, Institute of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland;
| | - Tomasz Szponder
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, Głęboka 30, 20-612 Lublin, Poland;
| | - Joanna Wessely-Szponder
- Department of Pathophysiology, Institute of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland;
- Correspondence:
| |
Collapse
|
33
|
Hwang S, Yun H, Moon S, Cho YE, Gao B. Role of Neutrophils in the Pathogenesis of Nonalcoholic Steatohepatitis. Front Endocrinol (Lausanne) 2021; 12:751802. [PMID: 34707573 PMCID: PMC8542869 DOI: 10.3389/fendo.2021.751802] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) includes a spectrum of liver disorders, from fatty liver to nonalcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma. Compared with fatty liver, NASH is characterized by increased liver injury and inflammation, in which liver-infiltrating immune cells, with neutrophil infiltration as a hallmark of NASH, play a critical role in promoting the progression of fatty liver to NASH. Neutrophils are the first responders to injury and infection in various tissues, establishing the first line of defense through multiple mechanisms such as phagocytosis, cytokine secretion, reactive oxygen species production, and neutrophil extracellular trap formation; however, their roles in the pathogenesis of NASH remain obscure. The current review summarizes the roles of neutrophils that facilitate the progression of fatty liver to NASH and their involvement in inflammation resolution during NASH pathogenesis. The notion that neutrophils are potential therapeutic targets for the treatment of NASH is also discussed.
Collapse
Affiliation(s)
- Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, South Korea
| | - Hwayoung Yun
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, South Korea
| | - Sungwon Moon
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, South Korea
| | - Ye Eun Cho
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, South Korea
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
34
|
Ma Y, Hu C, Yan W, Jiang H, Liu G. Lactobacillus pentosus Increases the Abundance of Akkermansia and Affects the Serum Metabolome to Alleviate DSS-Induced Colitis in a Murine Model. Front Cell Dev Biol 2020; 8:591408. [PMID: 33195257 PMCID: PMC7609924 DOI: 10.3389/fcell.2020.591408] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/22/2020] [Indexed: 12/28/2022] Open
Abstract
Lactobacillus pentosus has the beneficial function of regulating the host’s immune system and plays an indispensable role in intestinal health. The purpose of this study was to investigate the specific mechanism by which L. pentosus relieves dextran sulfate sodium (DSS) induced ulcerative colon inflammation. We randomly divided 24 mice into three groups, which were administered either a basic diet, drinking water with 2.5% DSS (DSS), or drinking water with 2.5% DSS and intragastric administration of L. pentosus (DSS + L. pentosus). DSS was added to the drinking water on days 8 to 12, and L. pentosus was administered on days 12 to 19. Serum was collected for metabolomic analysis, colon length and weight were measured, and colon contents were collected to detect microbial structural composition. Compared with the DSS group, the DSS + L. pentosus group had significantly higher levels of indolepyruvate and pantothenic acid in the serum and significantly lower levels of 3,4-dimethyl-5-pentyl-2-furannonanoic acid and 5-oxo-6-trans-leukotriene B4. Moreover, compared with the other two groups, the DSS + L. pentosus group had a significantly greater abundance of Akkermansia. The abundance of Akkermansia was positively correlated with indolepyruvate and pantothenic acid levels. Therefore, L. pentosus can interact with Akkermansia to increase its abundance in the intestinal tract. This results in the production of metabolites that are beneficial for the regulation of intestinal immunity, thereby alleviating DSS-induced ulcerative colon inflammation.
Collapse
Affiliation(s)
- Yong Ma
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Chao Hu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Wenxin Yan
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Hongmei Jiang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
35
|
The role of neutrophils in innate immunity-driven nonalcoholic steatohepatitis: lessons learned and future promise. Hepatol Int 2020; 14:652-666. [PMID: 32880077 DOI: 10.1007/s12072-020-10081-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
The enrichment of innate immune cells and the enhanced inflammation represent the hallmark of non-alcoholic steatohepatitis (NASH), the advanced subtype with a significantly increased risk of progression to end-stage liver diseases within the spectrum of non-alcoholic fatty liver disease. Neutrophils are traditionally recognized as key components in the innate immune system to defend against pathogens. Recently, a growing body of evidence supports neutrophils as emerging key player in mediating the transition from steatosis to NASH, which is largely inspired by the histological findings in human liver biopsy indicating the enhanced infiltration of neutrophils as one of the key histological features of NASH. In this review, we discuss data regarding histological perspectives of hepatic infiltration of neutrophils in NASH. We also highlight the pathophysiological role of neutrophils in promoting metabolic inflammation in the liver through the release of a vast array of granule proteins, the interaction with other pro-inflammatory immune cells, and the formation of neutrophil extracellular traps. Neutrophil granule proteins possess pleiotropic effects on regulating neutrophil biology and functions. A variety of granule proteins (including lipocalin-2, myeloperoxidase, proteinase 3, neutrophil elastase, etc.) produced by neutrophils enhance liver metabolic inflammation, thereby promoting NASH progression by mediating neutrophil-macrophage interaction. Therapeutically, pharmacological inhibitors targeting neutrophil granule proteins hold promise to combat NASH. In addition, this article also summarizes potentials of neutrophils and its derived various granule proteins for the accurate, even non-invasive diagnosis of NASH.
Collapse
|
36
|
Sapey E. Neutrophil Modulation in Alpha-1 Antitrypsin Deficiency. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2020; 7:247-259. [PMID: 32697897 DOI: 10.15326/jcopdf.7.3.2019.0164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Neutrophils have been implicated in the pathogenesis of alpha-1 antitrypsin deficiency (AATD) since the first descriptions of the disease. Neutrophil proteinases can cause all lung manifestations of AATD, from small airways destruction, to emphysema, to chronic bronchitis and airflow obstruction. Initially, it was proposed that neutrophil functions were normal in AATD, responding in an initially physiological manner to a high burden of pulmonary inflammation. More recent studies have shed new light on this, describing changes in neutrophil responses (a modulation of usual cellular functions) in the presence of inflammation or infection which might enhance tissue damage while impeding bacterial clearance, providing some evidence to support there being an AATD neutrophil phenotype. Many facets of neutrophil function in AATD can be explained by the loss of alpha-1 antitrypsin (AAT) in diverse biological processes. If this were the only reason for altered neutrophil functions, one would predict similar disease presentation across affected people. However, this is not the case. Despite similar (low) levels of AAT, lung disease is extremely variable in AATD, with some patients suffering a significant burden of lung disease and some much less, irrespective of smoking habits and, in some cases, despite augmentation therapy. This review will explore how complex neutrophil responses are and how they are altered with age, inflammation and AATD. Further, it will discuss the need to understand more completely which aspects of AATD-associated disease are driven by neutrophils and how patients more susceptible to neutrophil dysfunction could be identified to potentially stratify treatment approaches.
Collapse
Affiliation(s)
- Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
37
|
Ibrahim S, Harris-Kawano A, Haider I, Mirmira RG, Sims EK, Anderson RM. A novel Cre-enabled tetracycline-inducible transgenic system for tissue-specific cytokine expression in the zebrafish: CETI-PIC3. Dis Model Mech 2020; 13:dmm042556. [PMID: 32457041 PMCID: PMC7328138 DOI: 10.1242/dmm.042556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/17/2020] [Indexed: 01/21/2023] Open
Abstract
Maladaptive signaling by pro-inflammatory cytokines (PICs), such as TNFα, IL1β and IFNɣ, can activate downstream signaling cascades that are implicated in the development and progression of multiple inflammatory diseases. Despite playing critical roles in pathogenesis, the availability of in vivo models in which to model tissue-specific induction of PICs is limited. To bridge this gap, we have developed a novel multi-gene expression system dubbed Cre-enabled and tetracycline-inducible transgenic system for conditional, tissue-specific expression of pro-inflammatory cytokines (CETI-PIC3). This binary transgenic system permits the stoichiometric co-expression of proteins Tumor necrosis factor a (Tnfa), Interleukin-1 beta (Il1b) and Interferon gamma (Ifng1), and H2B-GFP fluorescent reporter in a dose-dependent manner. Furthermore, cytokine misexpression is enabled only in tissue domains that can be defined by Cre recombinase expression. We have validated this system in zebrafish using an insulin:cre line. In doubly transgenic fish, quantitative real-time polymerase chain reaction demonstrated increased expression levels of tnfa, il1b and ifng1 mRNA. Moreover, specific expression in pancreatic β cells was demonstrated by both Tnfa immunofluorescence and GFP fluorescence. Cytokine-overexpressing islets elicited specific responses: β cells exhibited increased expression of genes associated with reactive oxidative species-mediated stress and endoplasmic reticulum stress, surveilling and infiltrating macrophages were increased, and β cell death was promoted. This powerful and versatile model system can be used for modeling, analysis and therapy development of diseases with an underlying inflammatory etiology.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sara Ibrahim
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Arianna Harris-Kawano
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Isra Haider
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Raghavendra G Mirmira
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Emily K Sims
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ryan M Anderson
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
38
|
Song Z, Huang G, Chiquetto Paracatu L, Grimes D, Gu J, Luke CJ, Clemens RA, Dinauer MC. NADPH oxidase controls pulmonary neutrophil infiltration in the response to fungal cell walls by limiting LTB4. Blood 2020; 135:891-903. [PMID: 31951647 PMCID: PMC7082617 DOI: 10.1182/blood.2019003525] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
Leukocyte reduced NADP (NADPH) oxidase plays a key role in host defense and immune regulation. Genetic defects in NADPH oxidase result in chronic granulomatous disease (CGD), characterized by recurrent bacterial and fungal infections and aberrant inflammation. Key drivers of hyperinflammation induced by fungal cell walls in CGD are still incompletely defined. In this study, we found that CGD (CYBB-) neutrophils produced higher amounts of leukotriene B4 (LTB4) in vitro after activation with zymosan or immune complexes, compared with wild-type (WT) neutrophils. This finding correlated with increased calcium influx in CGD neutrophils, which was restrained in WT neutrophils by the electrogenic activity of NADPH oxidase. Increased LTB4 generation by CGD neutrophils was also augmented by paracrine cross talk with the LTB4 receptor BLT1. CGD neutrophils formed more numerous and larger clusters in the presence of zymosan in vitro compared with WT cells, and the effect was also LTB4- and BLT1-dependent. In zymosan-induced lung inflammation, focal neutrophil infiltrates were increased in CGD compared with WT mice and associated with higher LTB4 levels. Inhibiting LTB4 synthesis or antagonizing the BLT1 receptor after zymosan challenge reduced lung neutrophil recruitment in CGD to WT levels. Thus, LTB4 was the major driver of excessive neutrophilic lung inflammation in CGD mice in the early response to fungal cell walls, likely by a dysregulated feed-forward loop involving amplified neutrophil production of LTB4. This study identifies neutrophil LTB4 generation as a target of NADPH oxidase regulation, which could potentially be exploited therapeutically to reduce excessive inflammation in CGD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mary C Dinauer
- Department of Pediatrics
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO
| |
Collapse
|
39
|
IL-4 controls activated neutrophil FcγR2b expression and migration into inflamed joints. Proc Natl Acad Sci U S A 2020; 117:3103-3113. [PMID: 31980518 PMCID: PMC7022208 DOI: 10.1073/pnas.1914186117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neutrophils are the most abundant immune cells found in actively inflamed joints of patients with rheumatoid arthritis (RA), and most animal models for RA depend on neutrophils for the induction of joint inflammation. Exogenous IL-4 and IL-13 protect mice from antibody-mediated joint inflammation, although the mechanism is not understood. Neutrophils display a very strong basal expression of STAT6, which is responsible for signaling following exposure to IL-4 and IL-13. Still, the role of IL-4 and IL-13 in neutrophil biology has not been well studied. This can be explained by the low neutrophil surface expression of the IL-4 receptor α-chain (IL-4Rα), essential for IL-4- and IL-13-induced STAT6 signaling. Here we identify that colony stimulating factor 3 (CSF3), released during acute inflammation, mediates potent STAT3-dependent neutrophil IL-4Rα up-regulation during sterile inflammatory conditions. We further demonstrate that IL-4 limits neutrophil migration to inflamed joints, and that CSF3 combined with IL-4 or IL-13 results in a prominent neutrophil up-regulation of the inhibitory Fcγ receptor (FcγR2b). Taking these data together, we demonstrate that the IL-4 and CSF3 pathways are linked and play important roles in regulating proinflammatory neutrophil behavior.
Collapse
|
40
|
Németh T, Sperandio M, Mócsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov 2020; 19:253-275. [PMID: 31969717 DOI: 10.1038/s41573-019-0054-z] [Citation(s) in RCA: 450] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
|
41
|
Stevens JS, Gray MC, Morisseau C, Criss AK. Endocervical and Neutrophil Lipoxygenases Coordinate Neutrophil Transepithelial Migration to Neisseria gonorrhoeae. J Infect Dis 2019; 218:1663-1674. [PMID: 29905822 DOI: 10.1093/infdis/jiy347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022] Open
Abstract
Background Infection with Neisseria gonorrhoeae (GC) is characterized by robust neutrophil influx that is insufficient to clear the bacteria. Sustained neutrophilic inflammation contributes to serious clinical sequelae that particularly affect women, including pelvic inflammatory disease and infertility. Methods We established a 3-component system using GC, End1 polarized human endocervical cells, and primary human neutrophils to investigate neutrophil transepithelial migration following infection. Results Neutrophil migration across endocervical monolayers increased with the infectious dose and required GC-epithelial cell contact. Epithelial protein kinase C, cytosolic phospholipase A2, 12R-lipoxygenase (LOX), and eLOX3 hepoxilin synthase were required for neutrophil transmigration to GC, and migration was abrogated by blocking the MRP2 efflux pump and by adding recombinant soluble epoxide hydrolase. These results are all consistent with epithelial cell production of the neutrophil chemoattractant hepoxilin A3 (HXA3). Neutrophil transmigration was also accompanied by increasing apical concentrations of leukotriene B4 (LTB4). Neutrophil 5-lipoxygenase and active BLT1 receptor were required for apical LTB4 and neutrophil migration. Conclusions Our data support a model in which GC-endocervical cell contact infection stimulates HXA3 production, driving neutrophil migration that is amplified by neutrophil-derived LTB4. Therapeutic targeting of these pathways could limit inflammation and deleterious clinical sequelae in women with gonorrhea.
Collapse
Affiliation(s)
- Jacqueline S Stevens
- Department of Microbiology, University of Virginia, Charlottesville.,Department of Immunology, University of Virginia, Charlottesville.,Department of Cancer Biology, University of Virginia, Charlottesville
| | - Mary C Gray
- Department of Microbiology, University of Virginia, Charlottesville.,Department of Immunology, University of Virginia, Charlottesville.,Department of Cancer Biology, University of Virginia, Charlottesville
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Research Center, University of California, Davis
| | - Alison K Criss
- Department of Microbiology, University of Virginia, Charlottesville.,Department of Immunology, University of Virginia, Charlottesville.,Department of Cancer Biology, University of Virginia, Charlottesville
| |
Collapse
|
42
|
Walters N, Nguyen LTH, Zhang J, Shankaran A, Reátegui E. Extracellular vesicles as mediators of in vitro neutrophil swarming on a large-scale microparticle array. LAB ON A CHIP 2019; 19:2874-2884. [PMID: 31343025 DOI: 10.1039/c9lc00483a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Neutrophils combat infections and promote healing of damaged tissues while protecting the surrounding healthy tissue through a process called swarming. Swarming neutrophils release soluble factors that recruit additional neutrophils and shape the inflammation response. Additionally, neutrophils release extracellular vesicles (EVs), which are gaining attention as important intercellular mediators. We developed a large-scale array of bioparticles on a glass substrate that triggers neutrophil swarming in vitro in a spatially and temporally controlled manner that facilitates the analysis of neutrophil migration. Our platform can generate 30 000 neutrophil swarms on a glass slide in a highly reproducible manner (98% patterning efficiency), which produces an EV-rich supernatant that enables quantitative characterization of inflammation-specific EVs. Healthy neutrophils were able to form uniform swarms across the bioparticle array, which demonstrates a high degree of intercellular coordination. However, neutrophils swarming on the bioparticle array tended to have a lower radial velocity than neutrophils swarming toward a single target. After collecting and isolating EVs released by swarming and non-swarming neutrophils, we found that neutrophils constitutively release exosomes and microvesicles. Furthermore, EVs released by swarming neutrophils cause neutrophil activation and contain the proinflammatory mediator galectin-3, suggesting that EVs have an active role during neutrophil swarming. Ultimately, understanding EVs' role in intercellular communication during swarming will improve understanding of the complex signaling pathways involved in the regulation of inflammation.
Collapse
Affiliation(s)
- Nicole Walters
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Luong T H Nguyen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Jingjing Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Ajay Shankaran
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA. and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
43
|
Tiwari P, Nagatake T, Hirata S, Sawane K, Saika A, Shibata Y, Morimoto S, Honda T, Adachi J, Abe Y, Isoyama J, Tomonaga T, Kiyono H, Kabashima K, Kunisawa J. Dietary coconut oil ameliorates skin contact hypersensitivity through mead acid production in mice. Allergy 2019; 74:1522-1532. [PMID: 30843234 DOI: 10.1111/all.13762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/19/2018] [Accepted: 01/13/2019] [Indexed: 01/03/2023]
Abstract
Coconut oil is used as a dietary oil worldwide, and its healthy effects are recognized by the fact that coconut oil is easy to digest, helps in weight management, increases healthy cholesterol, and provides instant energy. Although topical application of coconut oil is known to reduce skin infection and inflammation, whether dietary coconut oil has any role in decreasing skin inflammation is unknown. In this study, we showed the impact of dietary coconut oil in allergic skin inflammation by using a mouse model of contact hypersensitivity (CHS). Mice maintained on coconut oil showed amelioration of skin inflammation and increased levels of cis-5, 8, 11-eicosatrienoic acid (mead acid) in serum. Intraperitoneal injection of mead acid inhibited CHS and reduced the number of neutrophils infiltrating to the skin. Detailed mechanistic studies unveiled that mead acid inhibited the directional migration of neutrophils by inhibiting the filamentous actin polymerization and leukotriene B4 production required for secondary recruitment of neutrophils. Our findings provide valuable insights into the preventive roles of coconut oil and mead acid against skin inflammation, thereby offering attractive therapeutic possibilities.
Collapse
Affiliation(s)
- Prabha Tiwari
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city, Osaka Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city, Osaka Japan
| | - So‐ichiro Hirata
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city, Osaka Japan
- Department of Microbiology and Immunology Kobe University Graduate School of Medicine Kobe‐city, Hyogo Japan
| | - Kento Sawane
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city, Osaka Japan
- Graduate School of Pharmaceutical Sciences Osaka University Suita‐city, Osaka Japan
- Innovation Center Nippon Flour Mills Co., Ltd Atsugi-city, Kanagawa Japan
| | - Azusa Saika
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city, Osaka Japan
- Graduate School of Pharmaceutical Sciences Osaka University Suita‐city, Osaka Japan
| | - Yuki Shibata
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city, Osaka Japan
- Graduate School of Pharmaceutical Sciences Osaka University Suita‐city, Osaka Japan
| | - Sakiko Morimoto
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city, Osaka Japan
| | - Tetsuya Honda
- Department of Dermatology Kyoto University Graduate School of Medicine Kyoto-city, Kyoto Japan
| | - Jun Adachi
- Laboratory of Proteome Research NIBIOHN Ibaraki‐city, Osaka Japan
| | - Yuichi Abe
- Laboratory of Proteome Research NIBIOHN Ibaraki‐city, Osaka Japan
| | - Junko Isoyama
- Laboratory of Proteome Research NIBIOHN Ibaraki‐city, Osaka Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research NIBIOHN Ibaraki‐city, Osaka Japan
| | - Hiroshi Kiyono
- International Research and Development Center for Mucosal Vaccines The Institute of Medical Science, The University of Tokyo Minato-ku, Tokyo Japan
- Department of Immunology, Graduate School of Medicine Chiba University Chiba‐city, Chiba Japan
- Division of Gastroenterology, Department of Medicine University of California, San Diego (UCSD) San Diego California
- CU‐UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV) UCSD San Diego California
| | - Kenji Kabashima
- Department of Dermatology Kyoto University Graduate School of Medicine Kyoto-city, Kyoto Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city, Osaka Japan
- Department of Microbiology and Immunology Kobe University Graduate School of Medicine Kobe‐city, Hyogo Japan
- Graduate School of Pharmaceutical Sciences Osaka University Suita‐city, Osaka Japan
- International Research and Development Center for Mucosal Vaccines The Institute of Medical Science, The University of Tokyo Minato-ku, Tokyo Japan
- Graduate School of Medicine and Graduate School of Dentistry Osaka University Suita‐city, Osaka Japan
| |
Collapse
|
44
|
Zhu L, Liu L, Zhang Y, Pu L, Liu J, Li X, Chen Z, Hao Y, Wang B, Han J, Li G, Liang S, Xiong H, Zheng H, Li A, Xu J, Zeng H. High Level of Neutrophil Extracellular Traps Correlates With Poor Prognosis of Severe Influenza A Infection. J Infect Dis 2019; 217:428-437. [PMID: 29325098 DOI: 10.1093/infdis/jix475] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
Abstract
Background Most patients with severe infection with influenza A virus (IAV) progress to acute respiratory distress syndrome and even multiple organ dysfunction syndrome (MODS). Neutrophil extracellular traps (NETs) can be induced by pathogens and are responsible for immune tissue damage. We conducted a prospective study on the production and effects of NETs in H7N9 and H1N1 patients. Methods We investigated NET production in plasma and supernatant of cultured neutrophils by measuring cell-free deoxyribonucleic acid (DNA) and myeloperoxidase (MPO)-DNA complexes with PicoGreen dye and enzyme-linked immunosorbent assay methods, respectively. We also observed NET structure by immunofluorescence staining. Results We found that patients with severe influenza showed elevated plasma NET level on the day of admission. Neutrophils from these patients showed higher capacity to release MPO-DNA complex in response to interleukin-8 or lipopolysaccharide stimulation. We also found that NETs from H7N9 and H1N1 patients increased the permeability of alveolar epithelial cells, and, consequently, NET production was positively correlated with acute physiology and chronic health evaluation (APACHE) II score and MODS. Conclusions These data indicate that high level of NETs contributes to lung injury and is correlated with severity of disease. Thus, NETs might be a key factor to predict the poor prognosis in IAV patients.
Collapse
Affiliation(s)
- Liuluan Zhu
- Institute of Infectious Diseases, Capital Medical University, China.,Beijing Key Laboratory of Emerging Infectious Diseases, China
| | - Lu Liu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, China
| | - Yue Zhang
- Institute of Infectious Diseases, Capital Medical University, China.,Beijing Key Laboratory of Emerging Infectious Diseases, China
| | - Lin Pu
- Intensive Care Unit, Capital Medical University, China
| | - Jingyuan Liu
- Intensive Care Unit, Capital Medical University, China
| | - Xingwang Li
- The National Clinical Key Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, China
| | - Zhihai Chen
- The National Clinical Key Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, China
| | - Yu Hao
- Institute of Infectious Diseases, Capital Medical University, China.,Beijing Key Laboratory of Emerging Infectious Diseases, China
| | - Beibei Wang
- Institute of Infectious Diseases, Capital Medical University, China.,Beijing Key Laboratory of Emerging Infectious Diseases, China
| | - Junyan Han
- Institute of Infectious Diseases, Capital Medical University, China.,Beijing Key Laboratory of Emerging Infectious Diseases, China
| | - Guoli Li
- Institute of Infectious Diseases, Capital Medical University, China.,Beijing Key Laboratory of Emerging Infectious Diseases, China
| | - Shuntao Liang
- Institute of Infectious Diseases, Capital Medical University, China.,Beijing Key Laboratory of Emerging Infectious Diseases, China
| | - Haofeng Xiong
- Intensive Care Unit, Capital Medical University, China
| | - Hong Zheng
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Ang Li
- Intensive Care Unit, Capital Medical University, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, China
| | - Hui Zeng
- Institute of Infectious Diseases, Capital Medical University, China.,Beijing Key Laboratory of Emerging Infectious Diseases, China
| |
Collapse
|
45
|
Protocols to Interrogate the Interactions Between Neisseria gonorrhoeae and Primary Human Neutrophils. Methods Mol Biol 2019; 1997:319-345. [PMID: 31119632 DOI: 10.1007/978-1-4939-9496-0_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neisseria gonorrhoeae (Gc) infection of its obligate human host results in a robust neutrophil-driven immune response. Despite neutrophils' intrinsic ability to neutralize microbes, Gc can survive in the presence of neutrophils. To interrogate how this pathogen evades killing by neutrophils, we employ an ex vivo model of Gc infection with Interleukin-8-primed and adhered primary human neutrophils. This chapter will describe how primary human neutrophils are purified from venous blood, how Gc is prepared for infection, how to assess Gc survival in the presence of human neutrophils by enumeration of colony forming units, and how to determine Gc internalization by human neutrophils using an immunofluorescence-based approach.
Collapse
|
46
|
Zhang J, Su R, Jian X, An H, Jiang R, Mok CKP. The D253N Mutation in the Polymerase Basic 2 Gene in Avian Influenza (H9N2) Virus Contributes to the Pathogenesis of the Virus in Mammalian Hosts. Virol Sin 2018; 33:531-537. [PMID: 30569291 DOI: 10.1007/s12250-018-0072-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
Mutations in the polymerase basic 2 (PB2) gene of avian influenza viruses are important signatures for their adaptation to mammalian hosts. Various adaptive mutations have been identified around the 627 and nuclear localization sequence (NLS) domains of PB2 protein, and these mutations contribute to the replicative ability of avian influenza viruses. However, few studies have focused on adaptive mutations in other regions of PB2. In this study, we investigated the functional roles of the D253N mutation in PB2 in an H9N2 virus. This mutation was found to affect an amino acid residue in the middle domain of the PB2 protein. The virus with the D253N mutation showed higher polymerase activity and transiently increased viral replication in human cells. However, the mutant did not show significant differences in viral replication in the respiratory tract of mice upon infection. Our results supported that the D253N mutation in the middle domain of PB2, similar to mutations at the 627 and NLS domains, specifically contributed to the replication of avian influenza viruses in human cells.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Laboratory Medicine Center, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, 528200, China
| | - Rong Su
- Laboratory Medicine Center, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, 528200, China
| | - Xiaoyun Jian
- Department of Respiratory Medicine, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, 528200, China
| | - Hongliang An
- Laboratory Medicine Center, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, 528200, China
| | - Ronbing Jiang
- Laboratory Medicine Center, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, 528200, China
| | - Chris Ka Pun Mok
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China. .,HKU-Pasteur Research Pole, School of Public Health, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
47
|
Diesel exhaust particle promotes tumor lung metastasis via the induction of BLT1-mediated neutrophilic lung inflammation. Cytokine 2018; 111:530-540. [DOI: 10.1016/j.cyto.2018.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/12/2018] [Accepted: 05/29/2018] [Indexed: 01/18/2023]
|
48
|
van der Windt DJ, Sud V, Zhang H, Varley PR, Goswami J, Yazdani HO, Tohme S, Loughran P, O’Doherty RM, Minervini MI, Huang H, Simmons RL, Tsung A. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology 2018; 68:1347-1360. [PMID: 29631332 PMCID: PMC6173613 DOI: 10.1002/hep.29914] [Citation(s) in RCA: 342] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/11/2018] [Accepted: 03/30/2018] [Indexed: 12/14/2022]
Abstract
UNLABELLED Nonalcoholic steatohepatitis (NASH) is a progressive, inflammatory form of fatty liver disease. It is the most rapidly rising risk factor for the development of hepatocellular carcinoma (HCC), which can arise in NASH with or without cirrhosis. The inflammatory signals promoting the progression of NASH to HCC remain largely unknown. The propensity of neutrophils to expel decondensed chromatin embedded with inflammatory proteins, known as neutrophil extracellular traps (NETs), has been shown to be important in chronic inflammatory conditions and in cancer progression. In this study, we asked whether NET formation occurs in NASH and contributes to the progression of HCC. We found elevated levels of a NET marker in serum of patients with NASH. In livers from STAM mice (NASH induced by neonatal streptozotocin and high-fat diet), early neutrophil infiltration and NET formation were seen, followed by an influx of monocyte-derived macrophages, production of inflammatory cytokines, and progression of HCC. Inhibiting NET formation, through treatment with deoxyribonuclease (DNase) or using mice knocked out for peptidyl arginine deaminase type IV (PAD4-/- ), did not affect the development of a fatty liver but altered the consequent pattern of liver inflammation, which ultimately resulted in decreased tumor growth. Mechanistically, we found that commonly elevated free fatty acids stimulate NET formation in vitro. CONCLUSION Our findings implicate NETs in the protumorigenic inflammatory environment in NASH, suggesting that their elimination may reduce the progression of liver cancer in NASH. (Hepatology 2018).
Collapse
Affiliation(s)
- Dirk J. van der Windt
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Vikas Sud
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Hongji Zhang
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Patrick R. Varley
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Julie Goswami
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Hamza O. Yazdani
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Patricia Loughran
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Robert M. O’Doherty
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Marta I. Minervini
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Hai Huang
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA,Department of Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Richard L. Simmons
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
49
|
Crisford H, Sapey E, Stockley RA. Proteinase 3; a potential target in chronic obstructive pulmonary disease and other chronic inflammatory diseases. Respir Res 2018; 19:180. [PMID: 30236095 PMCID: PMC6149181 DOI: 10.1186/s12931-018-0883-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a common, multifactorial lung disease which results in significant impairment of patients' health and a large impact on society and health care burden. It is believed to be the result of prolonged, destructive neutrophilic inflammation which results in progressive damage to lung structures. During this process, large quantities of neutrophil serine proteinases (NSPs) are released which initiate the damage and contribute towards driving a persistent inflammatory state.Neutrophil elastase has long been considered the key NSP involved in the pathophysiology of COPD. However, in recent years, a significant role for Proteinase 3 (PR3) in disease development has emerged, both in COPD and other chronic inflammatory conditions. Therefore, there is a need to investigate the importance of PR3 in disease development and hence its potential as a therapeutic target. Research into PR3 has largely been confined to its role as an autoantigen, but PR3 is involved in triggering inflammatory pathways, disrupting cellular signalling, degrading key structural proteins, and pathogen response.This review summarises what is presently known about PR3, explores its involvement particularly in the development of COPD, and indicates areas requiring further investigation.
Collapse
Affiliation(s)
- Helena Crisford
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2GW, UK.
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, Centre for Translational Inflammation Research, University of Birmingham Research Laboratories, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham, B15 2WB, UK.
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2GW, UK
| | - Robert A Stockley
- University Hospital Birmingham NHS Foundation Trust, Edgbaston, Birmingham, B15 2GW, UK
| |
Collapse
|
50
|
Keszei M, Record J, Kritikou JS, Wurzer H, Geyer C, Thiemann M, Drescher P, Brauner H, Köcher L, James J, He M, Baptista MA, Dahlberg CI, Biswas A, Lain S, Lane DP, Song W, Pütsep K, Vandenberghe P, Snapper SB, Westerberg LS. Constitutive activation of WASp in X-linked neutropenia renders neutrophils hyperactive. J Clin Invest 2018; 128:4115-4131. [PMID: 30124469 PMCID: PMC6118594 DOI: 10.1172/jci64772] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023] Open
Abstract
Congenital neutropenia is characterized by low absolute neutrophil numbers in blood, leading to recurrent bacterial infections, and patients often require life-long granulocyte CSF (G-CSF) support. X-linked neutropenia (XLN) is caused by gain-of-function mutations in the actin regulator Wiskott-Aldrich syndrome protein (WASp). To understand the pathophysiology in XLN and the role of WASp in neutrophils, we here examined XLN patients and 2 XLN mouse models. XLN patients had reduced myelopoiesis and extremely low blood neutrophil number. However, their neutrophils had a hyperactive phenotype and were present in normal numbers in XLN patient saliva. Murine XLN neutrophils were hyperactivated, with increased actin dynamics and migration into tissues. We provide molecular evidence that the hyperactivity of XLN neutrophils is caused by WASp in a constitutively open conformation due to contingent phosphorylation of the critical tyrosine-293 and plasma membrane localization. This renders WASp activity less dependent on regulation by PI3K. Our data show that the amplitude of WASp activity inside a cell could be enhanced by cell-surface receptor signaling even in the context in which WASp is already in an active conformation. Moreover, these data categorize XLN as an atypical congenital neutropenia in which constitutive activation of WASp in tissue neutrophils compensates for reduced myelopoiesis.
Collapse
Affiliation(s)
- Marton Keszei
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julien Record
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Joanna S. Kritikou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Wurzer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chiara Geyer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Meike Thiemann
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Paul Drescher
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hanna Brauner
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Köcher
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jaime James
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Minghui He
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marisa A.P. Baptista
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Carin I.M. Dahlberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Amlan Biswas
- Gastroenterology Division, Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sonia Lain
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - David P. Lane
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Katrin Pütsep
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Vandenberghe
- Center for Human Genetics, Katholieke Universiteit (KU) Leuven and Hematology/Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Scott B. Snapper
- Gastroenterology Division, Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lisa S. Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|