1
|
Singh AK, Ainciburu M, Wynne K, Bhat SA, Blanco A, Tzani I, Akiba Y, Lalor SJ, Kaunitz J, Bourke B, Kelly VP, Doherty GA, Zerbe CS, Clarke C, Hussey S, Knaus UG. De novo DUOX2 expression in neutrophil subsets shapes the pathogenesis of intestinal disease. Proc Natl Acad Sci U S A 2025; 122:e2421747122. [PMID: 40327691 DOI: 10.1073/pnas.2421747122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
Infiltrating neutrophils are key effector cells in inflammatory bowel disease (IBD) while providing antimicrobial defense and tissue restitution in the intestine. The complexity of neutrophil functions in local environments underscores our limited understanding of how their adaptation in tissues influences disease progression. Here, we demonstrate that neutrophils recruited in murine colitis and infection models, idiopathic IBD, and chronic granulomatous disease-associated IBD undergo extensive transcriptional reprogramming, resulting in the emergence of neutrophil populations that feature unique DUOX2 NADPH oxidase expression. Functional studies utilizing mice with myeloid and neutrophil specific DUOX2 inactivation reveal a vital and dichotomous role for this NADPH oxidase in both colitis and intestinal infection. Niche-directed reprogramming promoted a DUOX2-dependent chemokine and cytokine-rich intestinal environment that amplified and prolonged inflammatory responses, suggesting that selectively suppressing DUOX2 may constitute an anti-inflammatory strategy for IBD treatment. Altering spatiotemporal redox signaling by de novo expression of a ROS-generating enzyme represents an important feature for functional neutrophil diversification in disease, with implications for other neutrophil-driven diseases in specialized niches.
Collapse
Affiliation(s)
- Ashish K Singh
- Conway Institute, University College Dublin, Dublin 4, Ireland
- School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Marina Ainciburu
- National Institute of Bioprocessing Research and Training, Dublin 4, Ireland
| | - Kieran Wynne
- Conway Institute, University College Dublin, Dublin 4, Ireland
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Sajad A Bhat
- Conway Institute, University College Dublin, Dublin 4, Ireland
- School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Alfonso Blanco
- Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Ioanna Tzani
- National Institute of Bioprocessing Research and Training, Dublin 4, Ireland
| | - Yasutada Akiba
- Medical Service, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA 90073
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095
| | - Stephen J Lalor
- Conway Institute, University College Dublin, Dublin 4, Ireland
- School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Jonathan Kaunitz
- Medical Service, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA 90073
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095
| | - Billy Bourke
- School of Medicine, University College Dublin, Dublin 4, Ireland
- National Centre for Pediatric Gastroenterology, Children's Health Ireland Crumlin, Dublin 12, Ireland
| | - Vincent P Kelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Glen A Doherty
- School of Medicine, University College Dublin, Dublin 4, Ireland
- Gastroenterology, St. Vincent's University Hospital, Dublin 4, Ireland
| | - Christa S Zerbe
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Colin Clarke
- National Institute of Bioprocessing Research and Training, Dublin 4, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| | - Séamus Hussey
- School of Medicine, University College Dublin, Dublin 4, Ireland
- National Centre for Pediatric Gastroenterology, Children's Health Ireland Crumlin, Dublin 12, Ireland
- Department of Pediatrics, Royal College of Surgeons Ireland, Dublin 2, Ireland
| | - Ulla G Knaus
- Conway Institute, University College Dublin, Dublin 4, Ireland
- School of Medicine, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
2
|
Li C, Liu W, Fu A, Yang H, Yi G. Potential therapeutic strategies targeting efferocytosis for inflammation resolution and tissue repair in inflammatory bowel disease. Cell Immunol 2025; 411-412:104957. [PMID: 40315792 DOI: 10.1016/j.cellimm.2025.104957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 04/11/2025] [Accepted: 04/19/2025] [Indexed: 05/04/2025]
Abstract
Efferocytosis, the process by which apoptotic cells (ACs) are recognized and cleared by phagocytes, is a critical mechanism in maintaining intestinal immune homeostasis and promoting the resolution of inflammation. Inflammatory bowel disease (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), is characterized by chronic intestinal inflammation, wherein defective efferocytosis contributes to the accumulation of ACs, secondary necrosis, and sustained mucosal damage. This review delineates the molecular mechanisms underlying efferocytosis and systematically examines its functional roles across five key intestinal phagocytic cell types: macrophages, dendritic cells (DCs), neutrophils, intestinal epithelial cells (IECs), and Paneth cells (PCs). Particular emphasis is placed on the dysregulation of efferocytosis capacity in IBD pathogenesis and the consequences of impaired apoptotic cell clearance in both professional and non-professional phagocytes. Furthermore, we evaluate emerging therapeutic strategies designed to restore or enhance efferocytosis, including modulation of macrophage polarization, LC3-associated phagocytosis pathways, nanotechnology-enabled delivery systems, and stem cell-based interventions. A comprehensive understanding of cell-type-specific efferocytosis in the intestinal microenvironment offers promising directions for the development of targeted, inflammation-resolving therapies for IBD.
Collapse
Affiliation(s)
- Chaoquan Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wanting Liu
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Aoni Fu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Haotian Yang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guanghui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
3
|
Yao Y, Yin Y, Shuai F, Lam W, Zhou T, Xie Y, He X, Han X. M2 Macrophage-Derived Extracellular Vesicles Reprogram Immature Neutrophils into Anxa1 hi Neutrophils to Enhance Inflamed Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416159. [PMID: 40277454 DOI: 10.1002/advs.202416159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/22/2025] [Indexed: 04/26/2025]
Abstract
Periodontitis is a microbiome-related inflammation that can lead to irreversible bone reduction and even tooth loss. This study reveals that macrophage polarization states significantly influence periodontal homeostasis, with M2 macrophage-derived extracellular vesicles (M2-EVs) playing a pivotal role in mitigating periodontitis-induced bone loss. Single-cell RNA sequencing of periodontal tissues treated with M2-EVs uncovered a unique Anxa1hi neutrophil subpopulation exhibiting pro-reparative properties. This subpopulation is characterized by immaturity and demonstrated osteogenic and angiogenic capabilities in vivo, partially mediated through the secretion of oncostatin M (OSM) signals. The findings suggest that this functional heterogeneity arises from M2-EVs disrupting the neutrophil maturation trajectory, with pivotal reprogramming genes, such as Acvrl1 and Fpr2, driving the differentiation of the Anxa1hi reparative subpopulation. This work underscores the potential of targeting M2 macrophage-neutrophil interactions to promote the regeneration of inflamed bone tissues.
Collapse
Affiliation(s)
- Yufei Yao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yijia Yin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fangyuan Shuai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Waishan Lam
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tao Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yaxin Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xuesong He
- The ADA Forsyth Institute, 100 Chestnut Street, Somerville, MA, 02143, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, 02115, USA
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
4
|
Westfall S, Gentile ME, Olsen TM, Karo-Atar D, Bogza A, Röstel F, Pardy RD, Mandato G, Fontes G, Herbert D, Melichar HJ, Abadie V, Richer MJ, Vinh DC, Koenig JFE, Harrison OJ, Divangahi M, Weis S, Gregorieff A, King IL. A type 1 immune-stromal cell network mediates disease tolerance against intestinal infection. Cell 2025:S0092-8674(25)00395-2. [PMID: 40267906 DOI: 10.1016/j.cell.2025.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 12/03/2024] [Accepted: 03/26/2025] [Indexed: 04/25/2025]
Abstract
Type 1 immunity mediates host defense through pathogen elimination, but whether this pathway also impacts tissue function is unknown. Here, we demonstrate that rapid induction of interferon γ (IFNγ) signaling coordinates a multicellular response that is critical to limit tissue damage and maintain gut motility following infection of mice with a tissue-invasive helminth. IFNγ production is initiated by antigen-independent activation of lamina propria CD8+ T cells following MyD88-dependent recognition of the microbiota during helminth-induced barrier invasion. IFNγ acted directly on intestinal stromal cells to recruit neutrophils that limited parasite-induced tissue injury. IFNγ sensing also limited the expansion of smooth muscle actin-expressing cells to prevent pathological gut dysmotility. Importantly, this tissue-protective response did not impact parasite burden, indicating that IFNγ supports a disease tolerance defense strategy. Our results have important implications for managing the pathophysiological sequelae of post-infectious gut dysfunction and chronic inflammatory diseases associated with stromal remodeling.
Collapse
Affiliation(s)
- Susan Westfall
- Department of Microbiology and Immunology, Department of Medicine, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, QC, Canada; McGill Centre for Microbiome Research, Montreal, QC, Canada
| | - Maria E Gentile
- Department of Microbiology and Immunology, Department of Medicine, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, QC, Canada; Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tayla M Olsen
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Danielle Karo-Atar
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Andrei Bogza
- Department of Microbiology and Immunology, Department of Medicine, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, QC, Canada; McGill Centre for Microbiome Research, Montreal, QC, Canada
| | - Franziska Röstel
- Institute for Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany; Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Ryan D Pardy
- Institut National de la Recherche Scientifique, Centre Armand-Frappier, Laval, QC, Canada
| | - Giordano Mandato
- Department of Microbiology and Immunology, Department of Medicine, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, QC, Canada; McGill Centre for Microbiome Research, Montreal, QC, Canada
| | - Ghislaine Fontes
- Department of Microbiology and Immunology, Department of Medicine, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, QC, Canada; McGill Centre for Microbiome Research, Montreal, QC, Canada
| | - De'Broski Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heather J Melichar
- Department of Microbiology and Immunology, McGill University Montreal, Montreal, QC, Canada
| | - Valerie Abadie
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Martin J Richer
- Department of Microbiology and Immunology, McGill University Montreal, Montreal, QC, Canada; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Donald C Vinh
- Department of Microbiology and Immunology, Department of Medicine, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Joshua F E Koenig
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Oliver J Harrison
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Maziar Divangahi
- Department of Microbiology and Immunology, Department of Medicine, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Sebastian Weis
- Institute for Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany; Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany; Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Alex Gregorieff
- Department of Pathology, McGill University and Cancer Research Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada; McGill Regenerative Medicine Network, Montreal, QC, Canada
| | - Irah L King
- Department of Microbiology and Immunology, Department of Medicine, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, QC, Canada; McGill Centre for Microbiome Research, Montreal, QC, Canada; McGill Regenerative Medicine Network, Montreal, QC, Canada; McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, QC, Canada.
| |
Collapse
|
5
|
Mou H, Zhang X, Ren F, Deng Y, Chi A, Zhan G, Li D, Sun Q, You W, Ge Y, Zhang M, Ju Z. Nicotinamide mononucleotide supplementation ameliorates testicular damage induced by ischemia-reperfusion through reshaping macrophage and neutrophil inflammatory properties. Int Immunopharmacol 2025; 152:114407. [PMID: 40073809 DOI: 10.1016/j.intimp.2025.114407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/18/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury is the main pathophysiology of testicular torsion-detorsion (T/D). However, there is no safe and effective treatment for testicular I/R injury. METHODS The levels of NAD+ related genes were measured in the sham group, I/R + saline-treated group, and I/R + NMN-treated group by quantitative reverse transcription PCR (qRT-PCR). Testicular NAD+, Malondialdehyde (MDA), and superoxide dismutase (SOD) were evaluated. The markers of testicular function, including sperm quality, testosterone secretion, and the number of germ cells, were compared between groups. The reactive oxygen species (ROS), apoptosis, and immune cells were analyzed by flow cytometry. The expression of inflammatory genes, germ cell markers, and the phosphorylation of p65 and STAT3 were assessed by qRT-PCR, immunofluorescence, and western blot, respectively. RESULTS In this study, we analyzed the therapeutic potentials of NMN supplementation in testicular injury induced by torsion-detorsion in mice. NMN supplementation could increase testicular NAD+ content, increase serum testosterone levels, prevent Leydig cell and germ cell injury, and improve sperm quantity. Mechanistically, NMN supplementation relieved the sharply hostile immune microenvironment. Specifically, NMN supplementation could mitigate the oxidative stress and cell apoptosis in the I/R injured testes, downregulate the protein expression of p-p65 and p-STAT3 in inflammatory pathways, limit the excessive activation of inflammatory responses in testicular tissues, and reshape the inflammatory properties of macrophages and neutrophils. CONCLUSIONS The beneficial effects of NMN supplementation indicated that boosting NAD+ may be a promising and safe strategy to improve clinical outcomes in I/R-induced testicular damage.
Collapse
Affiliation(s)
- Hanchuan Mou
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xian Zhang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Fan Ren
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuanyao Deng
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ani Chi
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Dan Li
- Xiamen Kingdomway Group Company, Xiamen, China
| | - Qingyuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wanling You
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuanlong Ge
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Min Zhang
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
6
|
Jeon S, Cho S, Yoo S, Lee Y, Goo J, Jeong YJ, Nam GH, Shin HT, Park JW, Jeong C, Kim SW, Kim I, Kim IS. Controlled delivery of HIF-1α via extracellular vesicles with collagen-binding activity for enhanced wound healing. J Control Release 2025; 380:330-347. [PMID: 39921033 DOI: 10.1016/j.jconrel.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/14/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Chronic wounds are often characterized by prolonged inflammation, impaired angiogenesis, and dysregulated hypoxic response, partly caused by the insufficient activation of hypoxia-inducible factor-1 alpha (HIF-1α). This study investigated the potential of engineered extracellular vesicles (EVs) to deliver a stable, constitutively active form of HIF-1α (scHIF-1α) to promote wound healing. A collagen-binding domain (CBD) was integrated into EVs to enhance their retention at wound sites, and collagen sponges were employed as scaffolds to ensure sustained, localized release of scHIF-1α EVs. In vitro studies have demonstrated that scHIF-1α EVs significantly improved cell proliferation, migration, and angiogenesis in dermal fibroblasts, endothelial cells, and keratinocytes-key cells involved in the wound healing process. In vivo, scHIF-1α EVs accelerated wound closure, enhanced tissue regeneration, and promoted angiogenesis in various wound healing models, including excisional wounds, surgical skin flaps, and diabetic wounds. The integration of CBD further enhanced EV retention, amplifying therapeutic outcomes. These results propose that scHIF-1α delivery via EVs, particularly when combined with collagen-based sustained-release systems, offers a promising and patient-friendly therapeutic strategy for treating chronic wounds.
Collapse
Affiliation(s)
- Sungmi Jeon
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, South Korea; Division of Pediatric Plastic Surgery, Seoul National University Children's Hospital, Seoul 03080, South Korea
| | - Seongeon Cho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea; Chemical and Biological Integrative Research Center, Korea Institute Science and Technology, Seoul 02792, South Korea
| | - Seongkyeong Yoo
- Department of Pharmacology and Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea; Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, South Korea
| | - Yeji Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea; Chemical and Biological Integrative Research Center, Korea Institute Science and Technology, Seoul 02792, South Korea
| | - Jiyoung Goo
- Chemical and Biological Integrative Research Center, Korea Institute Science and Technology, Seoul 02792, South Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, South Korea
| | - Yu Jin Jeong
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Gi-Hoon Nam
- SHIFTBIO INC., Seoul, South Korea; Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 02841, South Korea
| | - Hyun-Tae Shin
- Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, South Korea; Department of Dermatology, Inha University College of Medicine, Incheon 22212, South Korea
| | - Jong-Wan Park
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Cherlhyun Jeong
- Chemical and Biological Integrative Research Center, Korea Institute Science and Technology, Seoul 02792, South Korea; Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul 02792, South Korea
| | - Sang Wha Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, South Korea.
| | - Iljin Kim
- Department of Pharmacology and Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea; Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, South Korea.
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea; Chemical and Biological Integrative Research Center, Korea Institute Science and Technology, Seoul 02792, South Korea.
| |
Collapse
|
7
|
Amaral VA, Santana VL, Lisboa ES, Martins FS, Chaud MV, de Albuquerque-Júnior RLC, Santana W, Santos C, de Jesus Santos A, Cardoso JC, Souto EB, Severino P. Chitosan membranes incorporating Aloe vera glycolic extract with joint synthesis of silver nanoparticles for the treatment of skin lesions. Drug Deliv Transl Res 2025; 15:1376-1392. [PMID: 39080213 PMCID: PMC11870935 DOI: 10.1007/s13346-024-01683-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 03/03/2025]
Abstract
New wound dressings based on polymeric membranes have been widely exploited for clinical applications to assist in the healing process and prevent additional complications (e.g., bacterial infections). Here we propose the development of a new production method of polymeric membranes based on chitosan, incorporating glycolic extract of Aloe vera with joint synthesis of silver nanoparticles for use as a new bioactive dressing. The membranes were obtained by casting technique, and their morphological, physicochemical characteristics, degree of swelling, degradation profile and antimicrobial activity evaluated. Morphological analyzes confirmed the synthesis and presence of silver nanoparticles in the polymeric membrane. The chemical compatibility between the materials was demonstrated through thermal analysis (TGA and DSC) combined with ATR-FTIR tests, showing the complexation of the membranes (Mb-Ch-Ex.Av-NPs). All membranes were characterized as hydrophilic material (with a contact angle (ө) < 90°); however, the highest degree of swelling was obtained for the chitosan. (Mb-Ch) membrane (69.91 ± 5.75%) and the lowest for Mb-Ch-Ex.Av-NPs (26.62 ± 8.93%). On the other hand, the degradation profile was higher for Mb-Ch-Ex.Av-NPs (77.85 ± 7.51%) and lower for Mb-Ch (57.60 ± 2.29%). The manufactured bioactive dressings showed activity against Escherichia coli and Staphylococcus aureus. Our work confirmed the development of translucent and flexible chitosan-based membranes, incorporating Aloe vera glycolic extract with joint synthesis of silver nanoparticles for use as a new bioactive dressing, with proven antimicrobial activity.
Collapse
Affiliation(s)
- Venâncio A Amaral
- Institute of Technology and Research, Tiradentes University, Murilo Dantas, 500, Aracaju, 49010-390, Sergipe, Brazil
| | - Victoria L Santana
- Institute of Technology and Research, Tiradentes University, Murilo Dantas, 500, Aracaju, 49010-390, Sergipe, Brazil
| | - Erika S Lisboa
- Institute of Technology and Research, Tiradentes University, Murilo Dantas, 500, Aracaju, 49010-390, Sergipe, Brazil
| | - Fredrico S Martins
- Institute of Technology and Research, Tiradentes University, Murilo Dantas, 500, Aracaju, 49010-390, Sergipe, Brazil
| | - Marco V Chaud
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba - UNISO, University City Campus, Raposo Tavares, Sorocaba, São Paulo, 18023-000, Brazil
| | - Ricardo L C de Albuquerque-Júnior
- Post-Graduating Program in Dentistry, Department of Dentistry, Federal University of Santa Catarina, Florianópolis, 88040-370, Brazil
- Department of Pathology, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-370, Brazil
| | - Wanessa Santana
- Institute of Technology and Research, Tiradentes University, Murilo Dantas, 500, Aracaju, 49010-390, Sergipe, Brazil
| | - Cochiran Santos
- Institute of Technology and Research, Tiradentes University, Murilo Dantas, 500, Aracaju, 49010-390, Sergipe, Brazil
| | - Adriana de Jesus Santos
- Institute of Technology and Research, Tiradentes University, Murilo Dantas, 500, Aracaju, 49010-390, Sergipe, Brazil
| | - Juliana C Cardoso
- Institute of Technology and Research, Tiradentes University, Murilo Dantas, 500, Aracaju, 49010-390, Sergipe, Brazil
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.
| | - Patrícia Severino
- Institute of Technology and Research, Tiradentes University, Murilo Dantas, 500, Aracaju, 49010-390, Sergipe, Brazil.
| |
Collapse
|
8
|
Sadeghi M, Moghaddam A, Amiri AM, Charoghdoozi K, Mohammadi M, Dehnavi S, Orazizadeh M. Improving the Wound Healing Process: Pivotal role of Mesenchymal stromal/stem Cells and Immune Cells. Stem Cell Rev Rep 2025; 21:680-697. [PMID: 39921839 DOI: 10.1007/s12015-025-10849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
Wound healing, a physiological process, involves several different types of cells, from immune cells to non-immune cells, including mesenchymal stromal/stem cells (MSC), and their interactions. Immune cells including macrophages, neutrophils, dendritic cells (DC), innate lymphoid cells (ILC), natural killer (NK) cells, and B and T lymphocytes participate in wound healing by secreting various mediators and interacting with other cells. MSCs, as self-renewing, fast proliferating, and multipotent stromal/stem cells, are found in a wide variety of tissues and critically involved in different phases of wound healing by secreting various molecules that help to improve tissue healing and regeneration. In this review, first, we described the four main phases of wound healing, second, we reviewed the function of MSCs, MSC secretome and immune cells in improving the progress of wound repair (mainly focusing on skin wound healing), third, we explained the immune cells/MSCs interactions in the process of wound healing and regeneration, and finally, we introduce clinical applications of MSCs to improve the process of wound healing.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Moghaddam
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Mohammad Amiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kianush Charoghdoozi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Mohammadi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahmoud Orazizadeh
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
9
|
Lin S, Tang L, Xu N. Research progress and strategy of FGF21 for skin wound healing. Front Med (Lausanne) 2025; 12:1510691. [PMID: 40231082 PMCID: PMC11994443 DOI: 10.3389/fmed.2025.1510691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Fibroblast Growth Factor 21 (FGF21), a pivotal member of the fibroblast growth factor family, exhibits multifaceted biological functions, including the modulation of pro-inflammatory cytokines and metabolic regulation. Recent research has revealed that in impaired skin tissues, FGF21 and its receptors are upregulated and play a significant role in accelerating the wound healing process. However, the clinical application of FGF21 is severely limited by its short in vivo half-life: this factor is often degraded by enzymes before it can exert its therapeutic effects. To address this limitation, the transdermal drug delivery system (TDDS) has emerged as an innovative approach that enables sustained drug release, significantly prolonging the therapeutic duration. Leveraging genetic recombination technology, research teams have ingeniously fused FGF21 with cell-penetrating peptides (CPPs) to construct recombinant FGF21 complexes. These novel conjugates can efficiently penetrate the epidermal barrier and achieve sustained and stable pharmacological activity through TDDS. This review systematically analyzes the potential signaling pathways by which FGF21 accelerates skin wound repair, summarizes the latest advancements in TDDS technology, explores the therapeutic potential of FGF21, and evaluates the efficacy of CPP fusion tags. The manuscript not only proposes an innovative paradigm for the application of FGF21 in skin injury treatment but also provides new insights into its use in transdermal delivery, marking a significant step toward overcoming existing clinical therapeutic challenges. From a clinical medical perspective, this innovative delivery system holds promise for addressing the bioavailability issues of traditional FGF21 therapies, offering new strategies for the clinical treatment of metabolism-related diseases and wound healing. With further research, this technology holds vast potential for clinical applications in hard-to-heal wounds such as diabetic foot ulcers and burns.
Collapse
Affiliation(s)
- Shisheng Lin
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Lu Tang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| |
Collapse
|
10
|
Tillett BJ, Dwiyanto J, Secombe KR, George T, Zhang V, Anderson D, Duggan E, Giri R, Loo D, Stoll T, Morrison M, Begun J, Hill MM, Gurzov EN, Bell KJ, Saad S, Barlow CK, Creek DJ, Chong CW, Mariño E, Hamilton-Williams EE. SCFA biotherapy delays diabetes in humanized gnotobiotic mice by remodeling mucosal homeostasis and metabolome. Nat Commun 2025; 16:2893. [PMID: 40133336 PMCID: PMC11937418 DOI: 10.1038/s41467-025-58319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
Type 1 diabetes (T1D) is linked to an altered gut microbiota characterized by reduced short-chain fatty acid (SCFA) production. Oral delivery of a SCFA-yielding biotherapy in adults with T1D was followed by increased SCFAs, altered gut microbiota and immunoregulation, as well as delaying diabetes in preclinical models. Here, we show that SCFA-biotherapy in humans is accompanied by remodeling of the gut proteome and mucosal immune homeostasis. Metabolomics showed arginine, glutamate, nucleotide and tryptophan metabolism were enriched following the SCFA-biotherapy, and found metabolites that correlated with glycemic control. Fecal microbiota transfer demonstrated that the microbiota of SCFA-responders delayed diabetes progression in humanized gnotobiotic mice. The protected mice increased similar metabolite pathways to the humans including producing aryl-hydrocarbon receptor ligands and reducing inflammatory mucosal immunity and increasing IgA production in the gut. These data demonstrate that a potent SCFA immunomodulator promotes multiple beneficial pathways and supports targeting the microbiota as an approach against T1D. Trial registration: Australia New Zealand Clinical Trials Registry ACTRN12618001391268.
Collapse
Affiliation(s)
- Bree J Tillett
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jacky Dwiyanto
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kate R Secombe
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Thomas George
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Vivian Zhang
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Dovile Anderson
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Monash Proteomics and Metabolomics Platform, Monash University, MelbourneVIC, Australia
| | - Emily Duggan
- Translational Research Institute, Brisbane, QLD, Australia
| | - Rabina Giri
- Mater Research Institute-The University of Queensland, Brisbane, QLD, Australia
| | - Dorothy Loo
- Translational Research Institute, Brisbane, QLD, Australia
| | - Thomas Stoll
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Mark Morrison
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Jakob Begun
- Mater Research Institute-The University of Queensland, Brisbane, QLD, Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Kirstine J Bell
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Sonia Saad
- Department of Medicine, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Christopher K Barlow
- Monash Proteomics and Metabolomics Platform, Monash University, MelbourneVIC, Australia
- Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Darren J Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Monash Proteomics and Metabolomics Platform, Monash University, MelbourneVIC, Australia
| | - Chun Wie Chong
- Monash University Microbiome Research Centre, School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Eliana Mariño
- Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.
- ImmunoBiota Therapeutics Pty Ltd, Melbourne, VIC, Australia.
| | | |
Collapse
|
11
|
Vermeersch G, Gouwy M, Proost P, Struyf S, Devos T. Neutrophils in BCR::ABL1 negative MPN: Contributors or bystanders of fibrosis? Blood Rev 2025:101285. [PMID: 40133166 DOI: 10.1016/j.blre.2025.101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/20/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
BCR::ABL1 negative myeloproliferative neoplasms (MPNs) are a heterogenous group of disorders characterized by clonal proliferation of hematopoietic stem and progenitor cells (HSPCs) within the bone marrow. Although the identification of somatic key driver mutations significantly increased both understanding and diagnostic accuracy of MPNs, many questions about the exact pathophysiology remain unanswered. Increased neutrophil count at diagnosis is a well-recognized predictor of worse disease evolution and survival, nonetheless the exact role of neutrophilic granulocytes within MPN pathophysiology is almost unexplored. As the majority of these cells are residing within the bone marrow, they represent a non-negligible entity within the bone marrow niche and its homeostasis. This review describes how neutrophils might contribute to the development of the inflammatory bone marrow niche, and hereby also fibrosis, associated with MPNs. The versatile functions and effects in different contexts emphasize the necessity for future research oriented to bone marrow in addition to peripheral blood.
Collapse
Affiliation(s)
- Gaël Vermeersch
- Department of Hematology, University Hospitals Leuven, 3000 Leuven, Belgium; Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium.
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium
| | - Timothy Devos
- Department of Hematology, University Hospitals Leuven, 3000 Leuven, Belgium; Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
12
|
Li S, Dong P, Wu X, Kang Z, Yan G. Global trends in tumor-associated neutrophil research: a bibliometric and visual analysis. Front Immunol 2025; 16:1478092. [PMID: 40160822 PMCID: PMC11949894 DOI: 10.3389/fimmu.2025.1478092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
Background Tumor-associated neutrophils (TANs) play crucial roles in tumor progression, immune response modulation, and the therapeutic outcomes. Despite significant advancements in TAN research, a comprehensive bibliometric analysis that objectively presents the current status and trends in this field is lacking. This study aims to fill this gap by visually analyzing global trends in TANs research using bibliometric and knowledge mapping techniques. Methods We retrieved articles and reviews related to TANs from the Web of Science core collection database, spanning the period from 2012 to2024. The data was analyzed using bibliometric tools such as Excel 365, CiteSpace, VOSviewer, and Bibliometrix (R-Tool of R-Studio) to identify key trends, influential countries and institutions, collaborative networks. and citation patterns. Results A total of 6l5 publications were included in the bibliometric analysis, showing a significant upward trend in TANs research over the last two decades. The United States and China emerged as the leading contributors with the highest number of publications and citations. The journal with the most publications in this field is Frontiers in Immunology, Prominent authors such as Fridlender ZG was identified as the key contributor, with his works frequently cited. The analysis highlighted major research themes. including the role of TANs in tumor microenvironment modulation, their dual functions in tumor promotion and suppression, and the exploration of TANs-targeted therapies, Emerging research hotspots include studies on TANs plasticity and their interactions with other immune cells. Conclusion This study is the first to employ bibliometric methods to visualize trends and frontiers in TANs research. The findings provide valuable insights into the evolution of the field, highlighting critical areas for future investigation and potential collaborative opportunities. This comprehensive analysis serves as a crucial resource for researchers and practitioners aiming to advance TAN research and its application in cancer therapy.
Collapse
Affiliation(s)
- Shaodong Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Peng Dong
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Zhenhua Kang
- Department of Colorectal & Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Guoqiang Yan
- Department of Colorectal & Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Renò F, Pagano CA, Bignotto M, Sabbatini M. Neutrophil Heterogeneity in Wound Healing. Biomedicines 2025; 13:694. [PMID: 40149670 PMCID: PMC11940162 DOI: 10.3390/biomedicines13030694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
Neutrophils are the most abundant type of immune cells and also the most underestimated cell defenders in the human body. In fact, their lifespan has also been extensively revised in recent years, going from a half-life of 8-10 h to a longer lifespan of up to 5.4 days in humans; it has been discovered that their mechanisms of defense are multiple and finely modulated, and it has been suggested that the heterogeneity of neutrophils occurs as well as in other immune cells. Neutrophils also play a critical role in the wound healing process, and their involvement is not limited to the initial stages of defense against pathogens, but extends to the inflammatory phase of tissue reconstruction. Neutrophil heterogeneity has recently been reported at the presence of distinct subtypes expressing different functional states, which contribute uniquely to the different phases of innate immunity and wound healing. This heterogeneity can be induced by the local microenvironment, by the presence of specific cytokines and by the type of injury. The different functional states of neutrophils enable a finely tuned response to injury and stress, which is essential for effective healing. Understanding the functional heterogeneity of neutrophils in wound healing can unveil potential pathological profiles and therapeutic targets. Moreover, the understanding of neutrophil heterogeneity dynamics could help in designing strategies to manage excessive inflammation or impaired healing processes. This review highlights the complexity of neutrophil heterogeneity and its critical roles throughout the phases of wound healing.
Collapse
Affiliation(s)
- Filippo Renò
- Health Sciences Department (DiSS), San Paolo Hospital, Università di Milano, Via A. di Rudini 8, 20142 Milano, Italy; (F.R.); (M.B.)
| | - Corinna Anais Pagano
- Department of Science and Innovation Technology (DISIT), Università del Piemonte Orientale, Via T. Michel 11, 15121 Alessandria, Italy;
| | - Monica Bignotto
- Health Sciences Department (DiSS), San Paolo Hospital, Università di Milano, Via A. di Rudini 8, 20142 Milano, Italy; (F.R.); (M.B.)
| | - Maurizio Sabbatini
- Department of Science and Innovation Technology (DISIT), Università del Piemonte Orientale, Via T. Michel 11, 15121 Alessandria, Italy;
| |
Collapse
|
14
|
Park SY, Pylaeva E, Bhuria V, Gambardella AR, Schiavoni G, Mougiakakos D, Kim SH, Jablonska J. Harnessing myeloid cells in cancer. Mol Cancer 2025; 24:69. [PMID: 40050933 PMCID: PMC11887392 DOI: 10.1186/s12943-025-02249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
Cancer-associated myeloid cells due to their plasticity play dual roles in both promoting and inhibiting tumor progression. Myeloid cells with immunosuppressive properties play a critical role in anti-cancer immune regulation. Cells of different origin, such as tumor associated macrophages (TAMs), tumor associated neutrophils (TANs), myeloid derived suppressor cells (also called MDSCs) and eosinophils are often expanded in cancer patients and significantly influence their survival, but also the outcome of anti-cancer therapies. For this reason, the variety of preclinical and clinical studies to modulate the activity of these cells have been conducted, however without successful outcome to date. In this review, pro-tumor activity of myeloid cells, myeloid cell-specific therapeutic targets, in vivo studies on myeloid cell re-polarization and the impact of myeloid cells on immunotherapies/genetic engineering are addressed. This paper also summarizes ongoing clinical trials and the concept of chimeric antigen receptor macrophage (CAR-M) therapies, and suggests future research perspectives, offering new opportunities in the development of novel clinical treatment strategies.
Collapse
Affiliation(s)
- Su-Yeon Park
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany
| | - Vikas Bhuria
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | | | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Dimitrios Mougiakakos
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany.
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany.
| |
Collapse
|
15
|
Liu Z, Bian X, Luo L, Björklund ÅK, Li L, Zhang L, Chen Y, Guo L, Gao J, Cao C, Wang J, He W, Xiao Y, Zhu L, Annusver K, Gopee NH, Basurto-Lozada D, Horsfall D, Bennett CL, Kasper M, Haniffa M, Sommar P, Li D, Landén NX. Spatiotemporal single-cell roadmap of human skin wound healing. Cell Stem Cell 2025; 32:479-498.e8. [PMID: 39729995 DOI: 10.1016/j.stem.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/24/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024]
Abstract
Wound healing is vital for human health, yet the details of cellular dynamics and coordination in human wound repair remain largely unexplored. To address this, we conducted single-cell multi-omics analyses on human skin wound tissues through inflammation, proliferation, and remodeling phases of wound repair from the same individuals, monitoring the cellular and molecular dynamics of human skin wound healing at an unprecedented spatiotemporal resolution. This singular roadmap reveals the cellular architecture of the wound margin and identifies FOSL1 as a critical driver of re-epithelialization. It shows that pro-inflammatory macrophages and fibroblasts sequentially support keratinocyte migration like a relay race across different healing stages. Comparison with single-cell data from venous and diabetic foot ulcers uncovers a link between failed keratinocyte migration and impaired inflammatory response in chronic wounds. Additionally, comparing human and mouse acute wound transcriptomes underscores the indispensable value of this roadmap in bridging basic research with clinical innovations.
Collapse
Affiliation(s)
- Zhuang Liu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Xiaowei Bian
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Lihua Luo
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Åsa K Björklund
- Department of Life Science, National Bioinformatics Infrastructure Sweden, Göteborg, Sweden; Science for Life Laboratory, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Li Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Letian Zhang
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Yongjian Chen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Lei Guo
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Juan Gao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Chunyan Cao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Jiating Wang
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Wenjun He
- The first affiliated hospital of Soochow University, Department of Plastic and Burn Surgery. NO.188, Shizi Street, Suzhou, Jiangsu, China
| | - Yunting Xiao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Liping Zhu
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Daniela Basurto-Lozada
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - David Horsfall
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Clare L Bennett
- Department of Haematology, University College London (UCL) Cancer Institute, London WC1E 6DD, UK
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Pehr Sommar
- Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Dongqing Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China.
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden.
| |
Collapse
|
16
|
Camargo S, Moskowitz O, Giladi A, Levinson M, Balaban R, Gola S, Raizman A, Lipczyc K, Richter A, Keren-Khadmy N, Barboy O, Dugach Y, Carmi Y, Sonnenblick A, Cohen M. Neutrophils physically interact with tumor cells to form a signaling niche promoting breast cancer aggressiveness. NATURE CANCER 2025; 6:540-558. [PMID: 40055573 DOI: 10.1038/s43018-025-00924-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 02/04/2025] [Indexed: 03/29/2025]
Abstract
Tissue remodeling and cell plasticity in the mammary gland are activated by multilineage communications; however, the dynamic signaling promoting breast cancer remains unclear. Here, by RNA sequencing of single cells and physically interacting cells (PICs) along mammary gland development and carcinogenesis, we uncovered that neutrophils appear transiently during early development and re-emerge in physical interaction with tumor cells in advanced carcinoma. Neutrophil heterogeneity analysis characterized transcriptional states linked to age and cancer stage. Integrating ligand-receptor and PIC sequencing analyses with various functional experiments unveiled a physical and secreted protumorigenic signaling niche. This approach revealed that neutrophils are recruited by tumor-activated macrophages and physically interact with tumor cells, increasing tumor cell proliferative and invasive properties, as well as endothelial proliferation and angiogenesis. The molecular program upregulated in neutrophil-PICs correlates with lower survival in advanced breast cancer patients. Our interaction-driven perspective highlights potential molecular targets and biomarkers for breast cancer treatment.
Collapse
Affiliation(s)
- Sandra Camargo
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ori Moskowitz
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amir Giladi
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, the Netherlands
| | - Maiia Levinson
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Roi Balaban
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shani Gola
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Alice Raizman
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kelly Lipczyc
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Alon Richter
- Department of Pathology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Noa Keren-Khadmy
- Oncology Division, Tel Aviv Sourasky Medical Center, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Oren Barboy
- Department of Systems Immunology, the Weizmann Institute of Science, Rehovot, Israel
| | - Yael Dugach
- Oncology Division, Tel Aviv Sourasky Medical Center, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yaron Carmi
- Department of Pathology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amir Sonnenblick
- Oncology Division, Tel Aviv Sourasky Medical Center, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Merav Cohen
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
17
|
Wang L, Yang L, Tian L, Guo B, Dai T, Lv Q, Xie J, Liu F, Bao H, Cao F, Liu Y, Gao Y, Hou Y, Ye Z, Wang S, Zhang Q, Kong L, Cai B. Exosome-capturing scaffold promotes endogenous bone regeneration through neutrophil-derived exosomes by enhancing fast vascularization. Biomaterials 2025; 319:123215. [PMID: 40023128 DOI: 10.1016/j.biomaterials.2025.123215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 01/19/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Exosomes (Exos), extracellular vesicles of endosomal origin, are a promising therapeutic platform for tissue regeneration. In the current study, an exosome-capturing scaffold (ECS) was designed to attract and anchor exosomes via electrostatic adherence followed by lipophilic interactions. Our findings demonstrate that local enrichment of exosomes in the ECS implanted into critical mandibular defects could significantly accelerate endogenous bone regeneration by enhancing vascularization at the defect site. Notably, neutrophil (PMN)-derived exosomes (PMN-Exos) were identified as the predominant exosome subtype among all captured exosomes. During endogenous bone regeneration, PMN-Exos promoted endogenous vascularization primarily by stimulating the proliferation of endothelial progenitor cells (EPCs), which play a pivotal role in the vasculogenesis of new blood vessels. Mechanistically, vascularization involved PMN-Exo-derived miR455-3p, which promotes EPC proliferation by targeting the Smad4 pathway. In conclusion, this study offers an ECS with broad application prospects for enhancing tissue regeneration by accelerating vascularization. The elucidation of underlying mechanisms paves the way for developing novel strategies to regenerate various tissues and organs.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Luying Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Lei Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Taiqiang Dai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Qianxin Lv
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Jirong Xie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Fuwei Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Han Bao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Feng Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Ya Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China; College of Life Sciences, Northwest University, Xi'an, 710069, China.
| | - Ye Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yan Hou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R, China.
| | - Shenqiang Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Liang Kong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Bolei Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
18
|
Li C, Gu S, Zhang Y, Zhang Z, Wang J, Gao T, Zhong K, Shan K, Ye G, Ke Y, Chen Y. Histone deacetylase in inflammatory bowel disease: novel insights. Therap Adv Gastroenterol 2025; 18:17562848251318833. [PMID: 39963253 PMCID: PMC11831641 DOI: 10.1177/17562848251318833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is characterized by chronic nonspecific intestinal inflammation. Despite considerable efforts, IBD remains a heavy burden on society and human health, with increasing morbidity. Posttranslational modification, especially histone acetylation, is a key process in controlling DNA transcriptional activity. Histone deacetylases (HDACs) play a vital role in the mechanism of IBD pathogenesis through histone and nonhistone protein deacetylation. Herein, we present a summary of different categories of HDACs as well as HDAC inhibitors (HDACis) and analyze the role of HDAC inhibition in alleviating IBD along with its mechanism, as well as clinical potential of HDACis in IBD treatment.
Collapse
Affiliation(s)
- Chunxiao Li
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shaobo Gu
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Yihong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenruo Zhang
- Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Junzhuo Wang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ting Gao
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kangpeng Zhong
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Keshu Shan
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guoliang Ye
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yini Ke
- Department of Rheumatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Chen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| |
Collapse
|
19
|
Mansour RM, Mageed SSA, Awad FA, Sadek MM, Adel SA, Ashraf A, Alam-Eldein KM, Ahmed NE, Abdelaziz RY, Tolba EF, Mohamed HH, Rizk NI, Mohamed MO, Mohammed OA, Doghish AS. miRNAs and their multifaceted role in cutaneous wound healing. Funct Integr Genomics 2025; 25:33. [PMID: 39903291 DOI: 10.1007/s10142-025-01535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 02/06/2025]
Abstract
The dynamic, complex process of cutaneous wound healing is required to restore skin integrity following an injury. This intricate process consists of four sequential and overlapping phases: hemostasis, inflammation, proliferation, and remodeling. Hemostasis immediately begins to function in response to vascular injury, forming a clot that stops the bleeding. To fight infection and remove debris, immune cells are enlisted during the inflammatory phase. Angiogenesis, re-epithelialization, and the creation of new tissue are all components of proliferation, whereas tissue maturation and scarring are the outcomes of remodeling. Chronic wounds, like those found in diabetic ulcers, frequently stay in a state of chronic inflammation because they are unable to go through these stages in a coordinated manner. The important regulatory roles that microRNAs (miRNAs) play in both normal and pathological wound healing have been highlighted by recent investigations. The miRNAs, small non-coding RNAs, modulate gene expression post-transcriptionally, profoundly impacting cellular functions. During the inflammatory phase, miRNAs control pro- and anti-inflammatory cytokines, as well as the activity of immune cells such as neutrophils and macrophages. Additionally, miRNAs are essential components of signaling networks related to inflammation, such as the toll-like receptor (TLR), nuclear factor kappa B (NF-kB), and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways. Some miRNAs have been discovered to either increase or alleviate inflammatory reactions, indicating their potential as therapeutic targets. Other miRNAs aid in angiogenesis by promoting the development of new blood vessels, which are essential for providing oxygen and nutrients to the healing tissue. They also affect keratinocyte migration and proliferation during the re-epithelialization phase, which involves growing new epithelial cells over the lesion. Another function of miRNAs is that they control the deposition of extracellular matrix (ECM) and the creation of scars during the remodeling phase. The abnormal expression of miRNAs in chronic wounds has led to the exploration of miRNA-based treatments. With a focus on resistant instances such as diabetic wounds, these therapeutic techniques seek to improve wound healing results by correcting the dysregulated miRNA expression.
Collapse
Affiliation(s)
- Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Farah A Awad
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mohamed M Sadek
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Shehab Ahmed Adel
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Khaled M Alam-Eldein
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nada E Ahmed
- Medical Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Rana Y Abdelaziz
- Medical Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Esraa Farid Tolba
- Medical Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
- Research and Development Specialist at Misr Technology for Biological Industries (MTBI), Cairo, Egypt
| | - Hend H Mohamed
- School of Biotechnology and Science Academy, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Mohamed O Mohamed
- Department of Biotechnology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| |
Collapse
|
20
|
Xu F, Gao Y, Xin H, Cao C, Ma W, Sun W, Ma Q. A review on multifunctional calcium alginate fibers for full-time and multipurposed wound treatment: From fundamentals to advanced applications. Int J Biol Macromol 2025; 290:139133. [PMID: 39722391 DOI: 10.1016/j.ijbiomac.2024.139133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Recent progress in wound healing has highlighted the need for more effective treatment strategies capable of addressing the complex biological and physiological challenges of wound repair. Traditional wound dressings often fail to address the complex and evolving needs of chronic, acute, and burn wounds, particularly in terms of promoting healing, preventing infection, and supporting tissue regeneration. In response to these challenges, calcium alginate fibers (CAFs) have emerged as promising materials, characterized by their exceptional structural properties and diverse biological functions, offering significant commercial potential for the development of advanced wound dressings and therapeutic solutions. Here, a brief review of the CAFs for promoting wound healing is presented, with specific discussions of the fundamental characteristics of CAFs and its feasibility to be applied for adjusting physiological and pathological processes involved in wound healing. Then, a comprehensive and in-depth depiction of emerging representative fabrication techniques for generating CAFs is categorized and reviewed. Moreover, emerging applications benefits from the CAFs are reviewed, highlighting the multifunctional roles and benefits of CAFs in facilitating wound repair. Finally, the challenges and perspectives for further advancing CAFs toward a more powerful and versatile therapeutic strategy are discussed, particularly regarding new opportunities in biomedical research and clinical applications.
Collapse
Affiliation(s)
- Fenglan Xu
- Department of Clinical Pharmacy, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yang Gao
- Department of Pharmacy, Weifang People's Hospital, Weifang 261041, China; School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Huan Xin
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Chenxi Cao
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Wenyuan Ma
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
21
|
He W, Yan L, Hu D, Hao J, Liou Y, Luo G. Neutrophil heterogeneity and plasticity: unveiling the multifaceted roles in health and disease. MedComm (Beijing) 2025; 6:e70063. [PMID: 39845896 PMCID: PMC11751288 DOI: 10.1002/mco2.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
Neutrophils, the most abundant circulating leukocytes, have long been recognized as key players in innate immunity and inflammation. However, recent discoveries unveil their remarkable heterogeneity and plasticity, challenging the traditional view of neutrophils as a homogeneous population with a limited functional repertoire. Advances in single-cell technologies and functional assays have revealed distinct neutrophil subsets with diverse phenotypes and functions and their ability to adapt to microenvironmental cues. This review provides a comprehensive overview of the multidimensional landscape of neutrophil heterogeneity, discussing the various axes along which diversity manifests, including maturation state, density, surface marker expression, and functional polarization. We highlight the molecular mechanisms underpinning neutrophil plasticity, focusing on the complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications that shape neutrophil responses. Furthermore, we explore the implications of neutrophil heterogeneity and plasticity in physiological processes and pathological conditions, including host defense, inflammation, tissue repair, and cancer. By integrating insights from cutting-edge research, this review aims to provide a framework for understanding the multifaceted roles of neutrophils and their potential as therapeutic targets in a wide range of diseases.
Collapse
Affiliation(s)
- Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Dongxue Hu
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| |
Collapse
|
22
|
Harju N, Kauppinen A, Loukovaara S. Fibrotic Changes in Rhegmatogenous Retinal Detachment. Int J Mol Sci 2025; 26:1025. [PMID: 39940795 PMCID: PMC11817287 DOI: 10.3390/ijms26031025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Rhegmatogenous retinal detachment (RRD) is a sight-threatening condition involving retinal detachment and the accumulation of fluid in the subretinal space. Proliferative vitreoretinopathy (PVR) is a pathologic complication that develops after RRD surgery, and approximately 5-10% of RRD cases develop post-operative PVR. Prolonged inflammation in the wound healing process, epithelial-mesenchymal transition (EMT), retinal pigment epithelial (RPE) cell migration and proliferation, and epiretinal, intraretinal, and subretinal fibrosis are typical in the formation of PVR. RPE cells undergo EMT and become fibroblast-like cells that migrate to the retina and vitreous, promoting PVR formation. Fibroblasts transform into myofibroblasts, which promote fibrosis by overproducing the extracellular matrix (ECM). RPE cells, fibroblasts, glial cells, macrophages, T lymphocytes, and increased ECM production form contractile epiretinal membranes. Cytokine release, complement activation, RPE cells, glial cells, and endothelial cells are all involved in retinal immune responses. Normally, wounds heal within 4 to 6 weeks, including hemostasis, inflammation, proliferation, and remodeling phases. Properly initiated inflammation, complement activation, and the function of neutrophils and glial cells heal the wound in the first stage. In a retinal wound, glial cells proliferate and fill the injured area. Gliosis tries to protect the neurons and prevent damage, but it becomes harmful when it causes scarring. If healing is complicated, prolonged inflammation leads to pathological fibrosis. Currently, there is no preventive treatment for the formation of PVR, and it is worth studying in the future.
Collapse
Affiliation(s)
- Niina Harju
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Sirpa Loukovaara
- Unit of Vitreoretinal Surgery, Department of Ophthalmology, Helsinki University Central Hospital, 00029 Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
23
|
Su Q, Lu Y, He S, Liang J, Huang S, He Y, An Z. Assessing inflammatory protein factors in inflammatory bowel Disease using multivariable mendelian randomization. Sci Rep 2025; 15:210. [PMID: 39747981 PMCID: PMC11696058 DOI: 10.1038/s41598-024-84447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), decreases quality of life and causes disability. The underlying processes are not fully understood. This study uses Mendelian randomization (MR) analysis to identify cytokines that may be associated with UC and CD, aiding in early diagnosis and treatment decisions. Methods Genome-wide association study (GWAS) data for inflammatory cytokine levels were obtained from a cohort of 14,824 individuals of European descent. The outcome data were then analyzed using summary-level GWAS data for UC and CD from the International Inflammatory Bowel Disease Genetics Consortium (IIBDGC). The analysis was primarily conducted using inverse-variance weighted (IVW) methods, with MR-Egger and weighted median serving as supplementary analyses. Sensitivity analyses included Cochran's Q test, MR-Egger intercept test, MR-PRESSO, and leave-one-out analysis.The inflammatory cytokines were subjected to additional scrutiny through the application of the Steiger test and reverse Mendelian randomization analysis. Subsequently, multivariable Mendelian randomization (MVMR) was employed to examine the associations of metabolites on UC and CD, in conjunction with linkage disequilibrium score regression (LDSC) and colocalization analysis. After FDR correction, we identified significant genetic associations of two inflammatory proteins (CXCL5 and CXCL9) with UC, and CXCL5 and IL-18R1 with CD. These findings were further validated by MVMR. Colocalization analyses demonstrated substantial genetic overlap between inflammatory proteins and IBD, with CXCL5 showing strong evidence of shared genetic variants with UC, and CXCL9 exhibiting genetic colocalization with CD, suggesting common genetic determinants underlying these inflammatory protein-IBD relationships. The current work presents evidence that presents evidence of significant associations between seven inflammatory protein factors and UC, as well as three inflammatory protein factors and CD. These findings provide novel insights into the biological mechanisms of IBD, and have implications for the screening, prevention, and treatment of IBD.
Collapse
Affiliation(s)
- Qiang Su
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yun Lu
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Rheumatology and Hematology, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Song He
- Department of Gastroenterology, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jiang Liang
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
- Department of Rheumatology and Hematology, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
| | - Song Huang
- Anorectal Surgery Department, Fenggang County Traditional Chinese Medicine Hospital, Zunyi, Guizhou, China
| | - Yuanli He
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
- Department of Geriatry, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
| | - Zhenxiang An
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
- Department of Gastroenterology, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
| |
Collapse
|
24
|
Paskhalova YS, Mitish VA, Khamidulin GV, Chekmareva IA, Terekhova RP, Demidova VS, Paklina OV. [Phage therapy analysis of effectiveness in comorbid patients with wounds and surgical infections of various etiology based on the results of a comparative clinical study]. Khirurgiia (Mosk) 2025:124-138. [PMID: 40103254 DOI: 10.17116/hirurgia2025031124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
BACKGROUND The continued importance of addressing the issue of treating purulent wounds and surgical infections of different origins and localization against the background of increased resistance of their main pathogens dictates the need to develop alternative protocols and search for new treatment strategies, the effectiveness of which is confirmed by objective diagnostic methods. OBJECTIVE The aim of the study was to analyze the effectiveness of phage therapy in comparison with traditional methods of local drug and systemic treatment in comorbid patients with surgical infection of various etiologies and localization by studying the microbiological spectrum, cytology of wound impressions and morphological, including electron microscopic examination of tissue biopsies. MATERIAL AND METHODS The results of the research are presented: a post-marketing, prospective, randomized, comparative clinical trial enrolling 70 adult patients with complicated skin, soft tissue, and bone infections of various etiologies and localizations, conducted at the Department of Wounds and Wound Infections, National Medical Research Center for Surgery named after A. Vishnevsky, Ministry of Health of the Russian Federation. During the study, clinical (edema, pain, the nature of wound discharge, the appearance of granulation tissue), laboratory (the presence and regression of signs of a systemic response to the presence of a surgical infection), microbiological (qualitative and quantitative), cytological and electron microscopic parameters were analyzed in all patients. Parametric data were evaluated based on the mean and standard deviation (SD) at 4 study points: point 1 (2±1 days), point 2 (4±1 days), point 3 (6±1 days) and point 4 (8±1 days). The key endpoint was the transition of the wound process into the regeneration phase. RESULTS According to the study protocol, all the patients included in the analysis had purulent-necrotic wounds of soft tissues and bones different etiology and localization, requiring surgical debridement. To randomize patients into groups, upon admission or intraoperatively, material was collected for qualitative and quantitative microbiological, cytological, morphological and electron microscopic studies. Randomization into groups of bacteriophages was possible in the presence of sensitivity of isolated cultures to the "Piobacteriophage complex" liquid (Piofag, JSC NPO Microgen, Russia). In the postoperative period, patients of group 1 (n=20) received systemic and local phage therapy (20 ml 3 times a day, according to the instructions), in group 2 (n=20) - systemic and local phage therapy, combined with local negative pressure (-120 mmHg, constant mode), delivery of bacteriophages to the surgical infection site was carried out using VitMobil instillation (VitMedical, Russia), systemic (levofloxacin 500 mg twice a day) and local (multicomponent polythylene glycol-based ointment with fluoroquinolones - Oflomelid, Russia) antibacterial therapy was performed in group 3 (n=30). An analysis of the treatment results indicates the high effectiveness of the proposed protocol in all study groups. In group 2 (local negative pressure with bacteriophage instillation in combination with systemic phage therapy) the best microbiological, cytological, histological and clinical efficacy was noted, indicating the potentiation of both methods of treating purulent wounds of various etiology and localization (the first signs of relief of the inflammatory phase were noted by 4±1 days after surgery). In general, key endpoints (the transition of the wound process to the regeneration phase) were achieved in all the studied groups with good tolerability of therapy and a high safety profile. No additional surgical interventions were required in any group, and no deaths were reported. No adverse events requiring discontinuation or change of treatment option have been reported. Based on the results obtained, the use of Pyobacteriophage complex liquid can be recommended for the complex treatment of purulent-necrotic wounds of various etiologies and localization in the presence of multiple antibiotic resistance, as well as in cases where systemic antibacterial therapy is contraindicated. The most effective is a combination of general and local phage therapy by various delivery routes (in particular, using vacuum devices with the possibility of instillation). CONCLUSION The principles of treatment of soft tissues and bones severe surgical infection in comorbid patients in our country are still based on the method of active surgical treatment of wounds developed in the Department of Wounds and Wound Infections of the Vishnevsky Institute of Surgery (now, the Vishnevsky National Research Medical Center of Surgery of the Ministry of Health of the Russian Federation). In relation to the first phase of wound healing, the results of treatment will largely depend on the radicality and thoroughness of the primary surgical debridement of the purulent focus, general and local treatment in the perioperative period. The increasing problem of resistance, the formation of biofilm forms of pathogens in chronic wounds, and comorbidity, which limits us to using a number of reserve antibiotics due to their toxicity, determine the importance of finding alternative treatment protocols for such complex clinical situations. The results of the study are encouraging and demonstrate that practical healthcare should continue to pay attention to the study and use of bacteriophage drugs in the complex treatment of surgical infection. It is necessary to look for new ways to deliver these drugs directly to the infection site in order to maintain their optimal concentration and activity.
Collapse
Affiliation(s)
- Yu S Paskhalova
- A.V. Vishnevsky National Medical Research Center of Surgery, Moscow, Russia
- Peoples' Friendship University of Russia named after Patrice Lumumba, Moscow, Russia
| | - V A Mitish
- A.V. Vishnevsky National Medical Research Center of Surgery, Moscow, Russia
- Peoples' Friendship University of Russia named after Patrice Lumumba, Moscow, Russia
| | - G V Khamidulin
- Peoples' Friendship University of Russia named after Patrice Lumumba, Moscow, Russia
| | - I A Chekmareva
- A.V. Vishnevsky National Medical Research Center of Surgery, Moscow, Russia
- Peoples' Friendship University of Russia named after Patrice Lumumba, Moscow, Russia
| | - R P Terekhova
- A.V. Vishnevsky National Medical Research Center of Surgery, Moscow, Russia
| | - V S Demidova
- A.V. Vishnevsky National Medical Research Center of Surgery, Moscow, Russia
| | - O V Paklina
- A.V. Vishnevsky National Medical Research Center of Surgery, Moscow, Russia
- A.S. Loginov Moscow Clinical Scientific and Practical Center Moscow Healthcare Department, Moscow, Russia
| |
Collapse
|
25
|
Rahayu P, Dermawan D, Nailufar F, Sulistyaningrum E, Tjandrawinata RR. Unlocking the wound-healing potential: An integrative in silico proteomics and in vivo analysis of Tacorin, a bioactive protein fraction from Ananas comosus (L.) Merr. Stem. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141060. [PMID: 39608696 DOI: 10.1016/j.bbapap.2024.141060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/14/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024]
Abstract
Tacorin, a bioactive protein fraction derived from pineapple stem (Ananas comosus), has emerged as a promising therapeutic agent for wound healing. This study employs an integrated approach, combining in silico proteomics and in vivo investigations, to unravel the molecular mechanisms underlying Tacorin's wound healing properties. In the domain of in silico proteomics, the composition of Tacorin is elucidated through LC/MS-MS protein sequencing, revealing ananain (23.77 kDa) and Jacalin-like lectin (14.99 kDa) as its predominant constituents. Molecular protein-protein docking simulations unveil favorable interactions between Tacorin's components and key regulators of wound healing, including TGF-β, TNF-α, and MMP-2. The calculated free binding energies indicate strong binding affinities between Tacorin proteins and their target receptors. Specifically, ananain demonstrates a binding affinity of -12.2 kcal/mol with TGF-β, suggesting its potential as a potent activator of TGF-β-mediated signaling, while Jacalin-like lectin exhibits the most favorable binding affinity of -8.7 kcal/mol with TNF-α. Subsequent 100 ns molecular dynamics (MD) simulations provide insights into the dynamic behavior and stability of Tacorin-receptor complexes, shedding light on the molecular determinants of Tacorin's therapeutic effects. Complementing the in silico analyses, in vivo studies evaluate Tacorin's efficacy in wound healing using skin and uterine incision models. Tacorin treatment accelerates wound closure and promotes tissue repair in both models, as evidenced by macroscopic observations and histological assessments. Overall, this study provides compelling evidence of Tacorin's therapeutic potential in wound healing and underscores the importance of elucidating its molecular mechanisms for further development and clinical translation.
Collapse
Affiliation(s)
- Puji Rahayu
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Jababeka Industrial Estate II, Jl. Industri Selatan V Blok PP No. 7 Cikarang, 17550, Indonesia
| | - Doni Dermawan
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Jababeka Industrial Estate II, Jl. Industri Selatan V Blok PP No. 7 Cikarang, 17550, Indonesia
| | - Florensia Nailufar
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Jababeka Industrial Estate II, Jl. Industri Selatan V Blok PP No. 7 Cikarang, 17550, Indonesia
| | - Erna Sulistyaningrum
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Jababeka Industrial Estate II, Jl. Industri Selatan V Blok PP No. 7 Cikarang, 17550, Indonesia
| | - Raymond R Tjandrawinata
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Jababeka Industrial Estate II, Jl. Industri Selatan V Blok PP No. 7 Cikarang, 17550, Indonesia; Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, South Jakarta 12930, Indonesia.
| |
Collapse
|
26
|
Dai Y, Zhang Q, Gu R, Chen J, Ye P, Zhu H, Tang M, Nie X. Metal ion formulations for diabetic wound healing: Mechanisms and therapeutic potential. Int J Pharm 2024; 667:124889. [PMID: 39481815 DOI: 10.1016/j.ijpharm.2024.124889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Metals are vital in human physiology, which not only act as enzyme catalysts in the processes of superoxide dismutase and glucose phosphorylation, but also affect the redox process, osmotic adjustment, metabolism and neural signals. However, metal imbalances can lead to diseases such as diabetes, which is marked by chronic hyperglycemia and affects wound healing. The hyperglycemic milieu of diabetes impairs wound healing, posing significant challenges to patient quality of life. Wound healing encompasses a complex cascade of hemostasis, inflammation, proliferation, and remodeling phases, which are susceptible to disruption in hyperglycemic conditions. In recent decades, metals have emerged as critical facilitators of wound repair by enhancing antimicrobial properties (e.g., iron and silver), providing angiogenic stimulation (copper), promoting antioxidant activity and growth factor synthesis (zinc), and supporting wound closure (calcium and magnesium). Consequently, research has pivoted towards the development of metal ion-based therapeutics, including innovative formulations such as nano-hydrogels, nano-microneedle dressings, and microneedle patches. Prepared by combining macromolecular materials such as chitosan, hyaluronic acid and sodium alginate with metals, aiming at improving the management of diabetic wounds. This review delineates the roles of key metals in human physiology and evaluates the application of metal ions in diabetic wound management strategies.
Collapse
Affiliation(s)
- Yuhe Dai
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Qianbo Zhang
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Rifang Gu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; School Medical Office, Zunyi Medical University, Zunyi 563006, China.
| | - Jitao Chen
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Penghui Ye
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Huan Zhu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Ming Tang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
27
|
Zhang F, Xia Y, Su J, Quan F, Zhou H, Li Q, Feng Q, Lin C, Wang D, Jiang Z. Neutrophil diversity and function in health and disease. Signal Transduct Target Ther 2024; 9:343. [PMID: 39638788 PMCID: PMC11627463 DOI: 10.1038/s41392-024-02049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Neutrophils, the most abundant type of granulocyte, are widely recognized as one of the pivotal contributors to the acute inflammatory response. Initially, neutrophils were considered the mobile infantry of the innate immune system, tasked with the immediate response to invading pathogens. However, recent studies have demonstrated that neutrophils are versatile cells, capable of regulating various biological processes and impacting both human health and disease. Cytokines and other active mediators regulate the functional activity of neutrophils by activating multiple receptors on these cells, thereby initiating downstream signal transduction pathways. Dysfunctions in neutrophils and disruptions in neutrophil homeostasis have been implicated in the pathogenesis of numerous diseases, including cancer and inflammatory disorders, often due to aberrant intracellular signaling. This review provides a comprehensive synthesis of neutrophil biological functions, integrating recent advancements in this field. Moreover, it examines the biological roles of receptors on neutrophils and downstream signaling pathways involved in the regulation of neutrophil activity. The pathophysiology of neutrophils in numerous human diseases and emerging therapeutic approaches targeting them are also elaborated. This review also addresses the current limitations within the field of neutrophil research, highlighting critical gaps in knowledge that warrant further investigation. In summary, this review seeks to establish a comprehensive and multidimensional model of neutrophil regulation, providing new perspectives for potential clinical applications and further research.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yidan Xia
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fushi Quan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.
| | - Ziping Jiang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China.
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
28
|
Zhang ZH, Zhan ZY, Jiang M, Wang XY, Quan SL, Wu YL, Nan JX, Lian LH. Casting NETs on Psoriasis: The modulation of inflammatory feedback targeting IL-36/IL-36R axis. Int Immunopharmacol 2024; 142:113190. [PMID: 39306890 DOI: 10.1016/j.intimp.2024.113190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
NETosis happens when neutrophils are activated and neutrophil extracellular traps (NETs) are formed synchronously, which is a hallmark of psoriasis. However, the specific trigger that drives NET formation and the distinct contents and interaction with interleukin-36 receptor (IL-36R) of NETs remain to be further elucidated. This work identified NET formation driven by toll-like receptor (TLR) 3 ligand (especially polyinosinic-polycytidylic acid (Poly(I:C)) were enhanced by purinergic receptor P2X ligand-gated ion channel 7 receptor (P2X7R) ligands (especially adenosine 5'-triphosphate (ATP)). NET formation was accompanied by the secretion of inflammatory cytokines and characterized by IL-1β decoration. NET formation blockade decreased expressions of inflammatory cytokines and chemokines, which consequently improved inflammatory responses. Additionally, imiquimod (IMQ)-induced psoriasiform symptoms including neutrophilic infiltration tended to be time-sensitive. Mouse primary keratinocytes and mice deficient in Il1rl2, which encodes IL-36R, mitigated inflammatory responses and NET formation, thereby delaying the pathophysiology of psoriasis. Together, the findings provided the therapeutic potential for IL-36 targeting NET inhibitors in psoriasis treatment.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Zi-Ying Zhan
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Min Jiang
- Department of Pharmacology, Binzhou Medical University, Yantai Campus, Yantai, Shandong Province, China
| | - Xiang-Yuan Wang
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Shu-Lin Quan
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| |
Collapse
|
29
|
Chen SD, Chu CY, Wang CB, Yang Y, Xu ZY, Qu YL, Man Y. Integrated-omics profiling unveils the disparities of host defense to ECM scaffolds during wound healing in aged individuals. Biomaterials 2024; 311:122685. [PMID: 38944969 DOI: 10.1016/j.biomaterials.2024.122685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Extracellular matrix (ECM) scaffold membranes have exhibited promising potential to better the outcomes of wound healing by creating a regenerative microenvironment around. However, when compared to the application in younger individuals, the performance of the same scaffold membrane in promoting re-epithelialization and collagen deposition was observed dissatisfying in aged mice. To comprehensively explore the mechanisms underlying this age-related disparity, we conducted the integrated analysis, combing single-cell RNA sequencing (scRNA-Seq) with spatial transcriptomics, and elucidated six functionally and spatially distinctive macrophage groups and lymphocytes surrounding the ECM scaffolds. Through intergroup comparative analysis and cell-cell communication, we characterized the dysfunction of Spp1+ macrophages in aged mice impeded the activation of the type Ⅱ immune response, thus inhibiting the repair ability of epidermal cells and fibroblasts around the ECM scaffolds. These findings contribute to a deeper understanding of biomaterial applications in varied physiological contexts, thereby paving the way for the development of precision-based biomaterials tailored specifically for aged individuals in future therapeutic strategies.
Collapse
Affiliation(s)
- Shuai-Dong Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chen-Yu Chu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chen-Bing Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Yang Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhao-Yu Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi-Li Qu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Man
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
30
|
Zhao Y, Tan M, Yin Y, Zhang J, Song Y, Li H, Yan L, Jin Y, Wu Z, Yang T, Jiang T, Li H. Comprehensive macro and micro views on immune cells in ischemic heart disease. Cell Prolif 2024; 57:e13725. [PMID: 39087342 PMCID: PMC11628753 DOI: 10.1111/cpr.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Ischemic heart disease (IHD) is a prevalent cardiovascular condition that remains the primary cause of death due to its adverse ventricular remodelling and pathological changes in end-stage heart failure. As a complex pathologic condition, it involves intricate regulatory processes at the cellular and molecular levels. The immune system and cardiovascular system are closely interconnected, with immune cells playing a crucial role in maintaining cardiac health and influencing disease progression. Consequently, alterations in the cardiac microenvironment are influenced and controlled by various immune cells, such as macrophages, neutrophils, dendritic cells, eosinophils, and T-lymphocytes, along with the cytokines they produce. Furthermore, studies have revealed that Gata6+ pericardial cavity macrophages play a key role in regulating immune cell migration and subsequent myocardial tissue repair post IHD onset. This review outlines the role of immune cells in orchestrating inflammatory responses and facilitating myocardial repair following IHD, considering both macro and micro views. It also discusses innovative immune cell-based therapeutic strategies, offering new insights for further research on the pathophysiology of ischemic heart disease and immune cell-targeted therapy for IHD.
Collapse
Affiliation(s)
- Yongjian Zhao
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Mingyue Tan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Department of Geriatrics, Southwest HospitalThe Third Military Medical University (Army Medical University)ChongqingChina
| | - Yunfei Yin
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Jun Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yiyi Song
- Suzhou Medical College of Soochow UniversityJiangsuChina
| | - Hang Li
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Lin Yan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yifeng Jin
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Ziyue Wu
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Tianke Yang
- Department of Ophthalmology, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Tingbo Jiang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Hongxia Li
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
31
|
Wang Z, Li B, Bao L, Chen Y, Yang J, Xu F, Shi S, Chen W, Wang B, Liu Y. Fusobacterium Nucleatum Aggravates Intestinal Barrier Impairment and Colitis Through IL-8 Induced Neutrophil Chemotaxis by Activating Epithelial Cells. J Inflamm Res 2024; 17:8407-8420. [PMID: 39534061 PMCID: PMC11556331 DOI: 10.2147/jir.s470376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Background Inflammatory bowel disease (IBD) is affected by interactions between intestinal microbial factors, abnormal inflammation, and an impaired intestinal mucosal barrier. Neutrophils (NE) are key players in IBD. Fusobacterium nucleatum (F. nucleatum) is reported to contribute to IBD progression. However, the relationship between F. nucleatum, abnormal inflammation, and intestinal barrier impairment should be interpreted to understand the role of F. nucleatum in IBD. Methods Dextran sulfate sodium (DSS)-induced colitis model was established and mice were orally administered with F. nucleatum. F. nucleatum colonization was confirmed by fluorescence in situ hybridization (FISH) and PCR. Intestinal barrier impairment was investigated by tight junction protein expression. Immuno-histochemistry (IHC) for Ly6G and flow cytometry detection to measure NE chemotaxis in mouse colon tissues. Caco-2 monolayers were used to evaluate epithelial integrity and permeability in vitro. A transwell model involving caco-2 cells and NE co-culture was used to assess NE chemotaxis. NE chemokines were measured by ELISA. A mouse model of NE exhaustion using an anti-Ly6G antibody was used to identify the role of NEs in F. nucleatum-induced colitis. Transcriptome sequencing and bioinformatics analysis were applied to screen cytokines and signaling pathways. Results Administration of F. nucleatum aggravated colitis in the DSS model. F. nucleatum infection downregulates ZO-1 and Occludin expression and increases intestinal permeability. Additionally, F. nucleatum-induced NE chemotaxis decreases the integrity and permeability of the caco-2 monolayer. F. nucleatum-induced NE chemotaxis is dependent on IEC-derived interleukin 8 (IL-8) secretion, mediated by the TLR2/ERK signaling pathway. In addition, NE exhaustion in mice inhibited F. nucleatum-induced intestinal barrier impairment and colitis. Conclusion F. nucleatum improves NE chemotaxis by infecting intestinal epithelial cells (IECs) to secrete IL-8 and aggravate intestinal barrier impairment, contributing to the progression of intestinal inflammation. Examining and eliminating F. nucleatum could be a valuable microbiome-based method for IBD surveillance and prevention.
Collapse
Affiliation(s)
- Zhiyue Wang
- Department of Pancreatic and Gastrointestinal Surgery Division, Ningbo No.2 hospital, Ningbo, People’s Republic of China
- Ningbo Key Laboratory of Intestinal Microecology and Human Major Diseases, Ningbo, People’s Republic of China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery Division, Ningbo No.2 hospital, Ningbo, People’s Republic of China
- Ningbo Key Laboratory of Intestinal Microecology and Human Major Diseases, Ningbo, People’s Republic of China
| | - Liqing Bao
- Department of Pancreatic and Gastrointestinal Surgery Division, Ningbo No.2 hospital, Ningbo, People’s Republic of China
- Ningbo Key Laboratory of Intestinal Microecology and Human Major Diseases, Ningbo, People’s Republic of China
- Department of Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, People’s Republic of China
| | - Yu Chen
- Department of Pancreatic and Gastrointestinal Surgery Division, Ningbo No.2 hospital, Ningbo, People’s Republic of China
- Ningbo Key Laboratory of Intestinal Microecology and Human Major Diseases, Ningbo, People’s Republic of China
| | - Jinhua Yang
- Department of Pancreatic and Gastrointestinal Surgery Division, Ningbo No.2 hospital, Ningbo, People’s Republic of China
- Ningbo Key Laboratory of Intestinal Microecology and Human Major Diseases, Ningbo, People’s Republic of China
| | - Fangqi Xu
- Department of Pancreatic and Gastrointestinal Surgery Division, Ningbo No.2 hospital, Ningbo, People’s Republic of China
- Ningbo Key Laboratory of Intestinal Microecology and Human Major Diseases, Ningbo, People’s Republic of China
- Department of Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, People’s Republic of China
| | - Shang Shi
- Department of Breast Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, People’s Republic of China
| | - Wanlu Chen
- Ningbo Key Laboratory of Intestinal Microecology and Human Major Diseases, Ningbo, People’s Republic of China
- Department of Neurosurgery, Ningbo No.2 hospital, Ningbo, People’s Republic of China
| | - Boding Wang
- Ningbo Key Laboratory of Intestinal Microecology and Human Major Diseases, Ningbo, People’s Republic of China
- Department of Neurosurgery, Ningbo No.2 hospital, Ningbo, People’s Republic of China
| | - Yang Liu
- Department of Pancreatic and Gastrointestinal Surgery Division, Ningbo No.2 hospital, Ningbo, People’s Republic of China
- Ningbo Key Laboratory of Intestinal Microecology and Human Major Diseases, Ningbo, People’s Republic of China
| |
Collapse
|
32
|
Guth C, Limjunyawong N, Pundir P. The evolving role of mast cells in wound healing: insights from recent research and diverse models. Immunol Cell Biol 2024; 102:878-890. [PMID: 39377394 DOI: 10.1111/imcb.12824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
Chronic wounds significantly burden health care systems worldwide, requiring novel strategies to ease their impact. Many physiological processes underlying wound healing are well studied but the role of mast cells remains controversial. Mast cells are innate immune cells and play an essential role in barrier function by inducing inflammation to defend the host against chemical irritants and infections, among others. Many mast cell-derived mediators have proposed roles in wound healing; however, in vivo evidence using mouse models has produced conflicting results. Recently, studies involving more complex wound models such as infected wounds, diabetic wounds and wounds healing under psychological stress suggest that mast cells play critical roles in these processes. This review briefly summarizes the existing literature regarding mast cells in normal wounds and the potential reasons for the contradictory results. Focus will be placed on examining more recent work emerging in the last 5 years that explores mast cells in more complex systems of wound healing, including infection, psychological stress and diabetes, with a discussion of how these discoveries may inspire future work in the field.
Collapse
Affiliation(s)
- Colin Guth
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Nathachit Limjunyawong
- Research Department, Center of Research Excellence in Allergy and Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Priyanka Pundir
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
33
|
Pommerolle L, Arif M, Behee M, Appolonia CN, Basu A, Wolf KM, Zawatsky CN, Johnson N, Rivellini O, Park JK, Cinar R. Chronic Alcohol Intake Compromises Lung Immunity by Altering Immunometabolism in Humans and Mouse Models. Am J Respir Cell Mol Biol 2024; 71:559-576. [PMID: 39024537 PMCID: PMC11568473 DOI: 10.1165/rcmb.2024-0086oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Chronic alcohol consumption disrupts lung immunity and host defense mechanisms, rendering individuals with alcohol use disorder more susceptible to developing inflammatory lung conditions with poor prognoses. Here, we focused on investigating the molecular and cellular effects of alcohol ingestion on lung immunity in male and female subjects using population-based human lung transcriptomics analysis and an experimental mouse model of chronic alcohol drinking using the National Institute on Alcohol Abuse and Alcoholism alcohol feeding model. Flow cytometry and transcriptomics analyses in lungs revealed a sexually dimorphic effect of chronic alcohol drinking on lung immunity in both human and mouse. Male lungs were more sensitive to chronic alcohol drinking-induced dysregulation of lung immunity compared with female lungs. Furthermore, comparative transcriptomics analysis using lungs and liver samples from matched human and mouse subjects demonstrated that lungs were more sensitive than liver to the effects of alcohol in downregulating immune-related genes and pathways. Furthermore, the transcriptomics analysis provided evidence that immunometabolic change is a central driver in lung alteration by downregulating the immune pathways and upregulating metabolic pathways. Chronic alcohol consumption resulted in reduced mTOR signaling and decreased immune cell populations. The mTOR signaling axis may serve as an upstream regulator of alcohol-induced dysregulation in lung immunity.
Collapse
Affiliation(s)
| | - Muhammad Arif
- Section on Fibrotic Disorders
- Laboratory of Cardiovascular Physiology and Tissue Injury, and
| | | | | | | | | | | | | | - Olivia Rivellini
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Joshua K. Park
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | | |
Collapse
|
34
|
Zhao Z, Rong Y, Yin R, Zeng R, Xu Z, Lv D, Hu Z, Cao X, Tang B. Skin Microbiota, Immune Cell, and Skin Fibrosis: A Comprehensive Mendelian Randomization Study. Biomedicines 2024; 12:2409. [PMID: 39457721 PMCID: PMC11505207 DOI: 10.3390/biomedicines12102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Microbiota dysbiosis has been reported to lead to leaky epithelia and trigger numerous dermatological conditions. However, potential causal associations between skin microbiota and skin fibrosis and whether immune cells act as mediators remain unclear. METHODS Summary statistics of skin microbiota, immune cells, and skin fibrosis were identified from large-scale genome-wide association studies summary data. Bidirectional Mendelian randomization was performed to ascertain unidirectional causal effects between skin microbiota, immune cells, and skin fibrosis. We performed a mediation analysis to identify the role of immune cells in the pathway from skin microbiota to skin fibrosis. RESULTS Three specific skin microbiotas were positively associated with skin fibrosis, while the other three were negative. A total of 15 immune cell traits were associated with increased skin fibrosis risk, while 27 were associated with a decreased risk. Moreover, two immune cell traits were identified as mediating factors. CONCLUSIONS Causal associations were identified between skin microbiota, immune cells, and skin fibrosis. There is evidence that immune cells exert mediating effects on skin microbiota in skin fibrosis. In addition, some strains exhibit different effects on skin fibrosis in distinct environments.
Collapse
Affiliation(s)
- Zirui Zhao
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Z.Z.); (Y.R.); (Z.X.); (D.L.); (Z.H.)
| | - Yanchao Rong
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Z.Z.); (Y.R.); (Z.X.); (D.L.); (Z.H.)
| | - Rong Yin
- Department of Dermatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Ruixi Zeng
- Department of Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Zhongye Xu
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Z.Z.); (Y.R.); (Z.X.); (D.L.); (Z.H.)
| | - Dongming Lv
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Z.Z.); (Y.R.); (Z.X.); (D.L.); (Z.H.)
| | - Zhicheng Hu
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Z.Z.); (Y.R.); (Z.X.); (D.L.); (Z.H.)
| | - Xiaoling Cao
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Z.Z.); (Y.R.); (Z.X.); (D.L.); (Z.H.)
| | - Bing Tang
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Z.Z.); (Y.R.); (Z.X.); (D.L.); (Z.H.)
| |
Collapse
|
35
|
Wang ZC, Hu YY, Shen XZ, Tan WQ. Absence of Langerhans cells resulted in over-influx of neutrophils and increased bacterial burden in skin wounds. Cell Death Dis 2024; 15:760. [PMID: 39424788 PMCID: PMC11489468 DOI: 10.1038/s41419-024-07143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Langerhans cells (LCs) are resident dendritic cells in the epidermis and their roles in presenting antigens derived from microorganisms present in the skin has been well appreciated. However, it is generally thought that incoming neutrophils are mainly responsible for eradicating invading pathogens in the early stage of wounds and a role of LCs in innate immunity is elusive. In the current study, we showed that wounds absent of LCs had a delayed closure. Mechanistically, LCs were the primary cells in warding off bacteria invasion at the early stage of wound healing. Without LCs, commensal bacteria quickly invaded and propagated in the wounded area. keratinocytes surrounding the wounds responded to the excessive bacteria by elevated production of CXCL5, resulting in an over-influx of neutrophils. The over-presence of activated neutrophils, possibly together with the aggravated invasion of bacteria, was detrimental to epidermal progenitor cell propagation and re-epithelialization. These observations underscore an indispensable role of LCs as effective guardians that preclude both bacteria invasion and damages inflicted by secondary inflammation.
Collapse
Affiliation(s)
- Zheng-Cai Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Yan Hu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Z Shen
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
36
|
Zhang Y, Li X, Dai Y, Han Y, Wei X, Wei G, Chen W, Kong S, He Y, Liu H, Ma N, Bin J, Tan N, He P, Liu Y. Neutrophil N1 polarization induced by cardiomyocyte-derived extracellular vesicle miR-9-5p aggravates myocardial ischemia/reperfusion injury. J Nanobiotechnology 2024; 22:632. [PMID: 39415256 PMCID: PMC11484374 DOI: 10.1186/s12951-024-02902-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
Neutrophil polarization contributes to inflammation and its resolution, but the role of neutrophil polarization in myocardial ischemia/reperfusion (I/R) injury remains unknown. Cardiomyocytes (CMs) participate in cardiac inflammation by secreting extracellular vesicles (EVs). Therefore, we investigated the role of neutrophil polarization in myocardial I/R injury and the mechanism by which CM-derived EVs regulated neutrophil polarization. In the present study, our data showed that N1 neutrophil polarization enlarged cardiac infarct size and exacerbated cardiac dysfunction at the early stage of myocardial I/R. Further, CM-EV-derived miR-9-5p was identified as a mediator inducing neutrophils to the N1 phenotype. Mechanistically, miR-9-5p directly suppressed SOCS5 and SIRT1 expression, resulting in activating JAK2/STAT3 and NF-κB signaling pathways in neutrophils. Importantly, we confirmed that serum EV-derived miR-9-5p levels were independently associated with cardiovascular mortality in patients with ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention. These findings suggest neutrophil polarization is a promising therapeutic target against myocardial I/R-induced inflammation and injury, and serum EV-derived miR-9-5p is a promising prognostic biomarker for cardiovascular mortality in patients with ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention.
Collapse
Affiliation(s)
- Yeshen Zhang
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510510, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510510, China
| | - Yining Dai
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yuan Han
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510510, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510510, China
| | - Xiaomin Wei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510510, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510510, China
| | - Guoquan Wei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510510, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510510, China
| | - Weikun Chen
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Siyu Kong
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yu He
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Haobin Liu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Ning Ma
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510510, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510510, China
| | - Ning Tan
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Pengcheng He
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Department of Cardiology, Heyuan People's Hospital, Heyuan, 517000, China.
| | - Yuanhui Liu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
37
|
Azzouz D, Palaniyar N. How Do ROS Induce NETosis? Oxidative DNA Damage, DNA Repair, and Chromatin Decondensation. Biomolecules 2024; 14:1307. [PMID: 39456240 PMCID: PMC11505619 DOI: 10.3390/biom14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are intricate, DNA-based, web-like structures adorned with cytotoxic proteins. They play a crucial role in antimicrobial defense but are also implicated in autoimmune diseases and tissue injury. The process of NET formation, known as NETosis, is a regulated cell death mechanism that involves the release of these structures and is unique to neutrophils. NETosis is heavily dependent on the production of reactive oxygen species (ROS), which can be generated either through NADPH oxidase (NOX) or mitochondrial pathways, leading to NOX-dependent or NOX-independent NETosis, respectively. Recent research has revealed an intricate interplay between ROS production, DNA repair, and NET formation in different contexts. UV radiation can trigger a combined process of NETosis and apoptosis, known as apoNETosis, driven by mitochondrial ROS and DNA repair. Similarly, in calcium ionophore-induced NETosis, both ROS and DNA repair are key components, but only play a partial role. In the case of bacterial infections, the early stages of DNA repair are pivotal. Interestingly, in serum-free conditions, spontaneous NETosis occurs through NOX-derived ROS, with early-stage DNA repair inhibition halting the process, while late-stage inhibition increases it. The intricate balance between DNA repair processes and ROS production appears to be a critical factor in regulating NET formation, with different pathways being activated depending on the nature of the stimulus. These findings not only deepen our understanding of the mechanisms behind NETosis but also suggest potential therapeutic targets for conditions where NETs contribute to disease pathology.
Collapse
Affiliation(s)
- Dhia Azzouz
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nades Palaniyar
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
38
|
Wang Y, Wang X, Niu X, Han K, Ru N, Xiang J, Linghu E. Identification of COL3A1 as a candidate protein involved in the crosstalk between obesity and diarrhea using quantitative proteomics and machine learning. Eur J Pharmacol 2024; 981:176881. [PMID: 39127300 DOI: 10.1016/j.ejphar.2024.176881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/05/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Increasing epidemiologic studies have shown a positive correlation between obesity and chronic diarrhea. Nevertheless, the precise etiology remains uncertain. METHODS We performed a comprehensive proteomics analysis utilizing the data-independent acquisition (DIA) technique on jejunal tissues from patients with obesity and chronic diarrhea (OD, n = 33), obese patients (OB, n = 10), and healthy controls (n = 8). Differentially expressed proteins (DEPs) in OD vs. control and OD vs. OB comparisons were subjected to pathway enrichment and protein-protein interaction (PPI) network analysis. Machine learning algorithms were adopted on overlapping DEPs in both comparisons. The candidate protein was further validated using Western blot, immunohistochemistry (IHC), and in vitro experiments. RESULTS We identified 189 and 228 DEPs in OD vs. control and OD vs. OB comparisons, respectively. DEPs in both comparisons were co-enriched in extracellular matrix (ECM) organization. Downregulated DEPs were associated with tight junction and ECM-receptor interaction in OD vs. control and OD vs. OB comparisons, respectively. Machine learning algorithms selected 3 proteins from 14 overlapping DEPs in both comparisons, among which collagen alpha-1(III) chain (COL3A1) was identified as a core protein in PPI networks. Western blot and IHC verified the expression of COL3A1. Moreover, the tight junction-related proteins decreased after the knockdown of COL3A1 in Caco2 intestinal cells upon PA challenge, consistent with the proteomics results. CONCLUSIONS We generated in-depth profiling of a proteomic dataset from samples of OD patients and provided unique insights into disease pathogenesis. COL3A1 was involved in the crosstalk between obesity and intestinal homeostasis via the ECM-receptor interaction pathway.
Collapse
Affiliation(s)
- Yan Wang
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiangyao Wang
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaotong Niu
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China; Medical School of Chinese PLA, Beijing, 100853, China
| | - Ke Han
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China; Medical School of Chinese PLA, Beijing, 100853, China
| | - Nan Ru
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jingyuan Xiang
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China; Medical School of Chinese PLA, Beijing, 100853, China
| | - Enqiang Linghu
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
39
|
Yam AO, Jakovija A, Gatt C, Chtanova T. Neutrophils under the microscope: neutrophil dynamics in infection, inflammation, and cancer revealed using intravital imaging. Front Immunol 2024; 15:1458035. [PMID: 39439807 PMCID: PMC11493610 DOI: 10.3389/fimmu.2024.1458035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Neutrophils rapidly respond to inflammation resulting from infection, injury, and cancer. Intravital microscopy (IVM) has significantly advanced our understanding of neutrophil behavior, enabling real-time visualization of their migration, interactions with pathogens, and coordination of immune responses. This review delves into the insights provided by IVM studies on neutrophil dynamics in various inflammatory contexts. We also examine the dual role of neutrophils in tumor microenvironments, where they can either facilitate or hinder cancer progression. Finally, we highlight how computational modeling techniques, especially agent-based modeling, complement experimental data by elucidating neutrophil kinetics at the level of individual cells as well as their collective behavior. Understanding the role of neutrophils in health and disease is essential for developing new strategies for combating infection, inflammation and cancer.
Collapse
Affiliation(s)
- Andrew O. Yam
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
- Immune Biotherapeutics Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- The Kinghorn Cancer Centre, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Arnolda Jakovija
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Catherine Gatt
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Tatyana Chtanova
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
40
|
Fang B, Peng Z, Chen B, Rao J. Hemp Protein Isolate-Based Natural Thermal-Reversible Hydrogel as a Novel Wound Dressing Material. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51916-51931. [PMID: 39302428 DOI: 10.1021/acsami.4c05854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Hydrogels, due to their excellent microstructure and mechanical strength, have become a novel biomaterial in wound dressing. However, plant proteins have never been considered because of their poor original gelling performances and insufficient rheological properties. Here, we reported the fabrication of a plant protein-based thermal-reversible gel using a reverse micelle-extracted hemp protein isolate (HPI). A systematic study was conducted to fully reveal their microstructure, rheological properties, and anti-inflammatory effect to lay a foundation for this newly developed plant protein hydrogel as a potential natural wound dressing. By modulating protein concentration (4% HPI) and temperature (85 °C), a thermal-reversible HPI gel appeared as a filament structure with the major molecular driving force of hydrophobic interactions and hydrogen bonds. By characterizing the rheological properties, lower gel strength and wider linear viscoelastic regime were determined in the thermal-reversible HPI gel compared with a thermal-irreversible HPI gel. Besides, large amplitude oscillatory shear data identified the thermal-reversible gel as a soft gel which demonstrated intracycle strain stiffening and shear thinning behavior. Moreover, the thermal-reversible HPI gel is nontoxic and has benefits in neutrophil growth with injectability and perfect wound coverage. This study opens a novel means to form a natural thermal-reversible hydrogel that can be a new material source for wound dressing.
Collapse
Affiliation(s)
- Baochen Fang
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Zhicheng Peng
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
41
|
da Costa ALA, Soares MA, Lourenço TGB, Guimarães-Pinto K, Filardy AD, de Oliveira AM, de Luca BG, Magliano DAC, Araujo OMO, Moura L, Lopes RT, Palhares de Miranda AL, Tributino JLM, Vieira Colombo AP. Periodontal pathogen Aggregatibacter actinomycetemcomitans JP2 correlates with colonic leukocytes decrease and gut microbiome imbalance in mice. J Periodontal Res 2024; 59:961-973. [PMID: 38757372 DOI: 10.1111/jre.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
AIM Evidence suggests that translocation of oral pathogens through the oral-gut axis may induce intestinal dysbiosis. This study aimed to evaluate the impact of a highly leukotoxic Aggregatibacter actinomycetemcomitans (Aa) strain on the gut microbiota, intestinal mucosal integrity and immune system in healthy mice. METHODS Eight-week-old male C57BL6 mice were divided into control (n = 16) and JP2 groups (n = 19), which received intragastric gavage with PBS and with a suspension of Aa JP2 (HK921), respectively, twice a week for 4 weeks. Colonic lamina propria, fecal material, serum, gingival tissues, and mandibles were obtained for analyses of leukocyte populations, inflammatory mediators, mucosal integrity, alveolar bone loss, and gut microbiota. Differences between groups for these parameters were examined by non-parametric tests. RESULTS The gut microbial richness and the number of colonic macrophages, neutrophils, and monocytes were significantly lower in Aa JP2-infected mice than in controls (p < .05). In contrast, infected animals showed higher abundance of Clostridiaceae, Lactobacillus taiwanensis, Helicobacter rodentium, higher levels of IL-6 expression in colonic tissues, and higher splenic MPO activity than controls (p < .05). No differences in tight junction expression, serum endotoxin levels, and colonic inflammatory cytokines were observed between groups. Infected animals presented also slightly more alveolar bone loss and gingival IL-6 levels than controls (p < .05). CONCLUSION Based on this model, intragastric administration of Aa JP2 is associated with changes in the gut ecosystem of healthy hosts, characterized by less live/recruited myeloid cells, enrichment of the gut microbiota with pathobionts and decrease in commensals. Negligible levels of colonic pro-inflammatory cytokines, and no signs of mucosal barrier disruption were related to these changes.
Collapse
Affiliation(s)
- André L A da Costa
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Cellular Immunology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana A Soares
- Department of Pharmaceutical Biotechnology, Laboratory of Studies in Experimental Pharmacology, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Talita G B Lourenço
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kamila Guimarães-Pinto
- Cellular Immunology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra D Filardy
- Cellular Immunology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Miranda de Oliveira
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Olga M O Araujo
- Laboratory of Nuclear Instrumentation, Nuclear Engineering Program, Institute Alberto Luiz de Coimbra of Graduate and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Moura
- Laboratory of Nuclear Instrumentation, Nuclear Engineering Program, Institute Alberto Luiz de Coimbra of Graduate and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Tadeu Lopes
- Laboratory of Nuclear Instrumentation, Nuclear Engineering Program, Institute Alberto Luiz de Coimbra of Graduate and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Luisa Palhares de Miranda
- Cellular Immunology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge L M Tributino
- Molecular Pharmacology Laboratory, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Vieira Colombo
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Cao L, Wang XL, Chu T, Wang YW, Fan YQ, Chen YH, Zhu YW, Zhang J, Ji XY, Wu DD. Role of gasotransmitters in necroptosis. Exp Cell Res 2024; 442:114233. [PMID: 39216662 DOI: 10.1016/j.yexcr.2024.114233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Gasotransmitters are endogenous gaseous signaling molecules that can freely pass through cell membranes and transmit signals between cells, playing multiple roles in cell signal transduction. Due to extensive and ongoing research in this field, we have successfully identified many gasotransmitters so far, among which nitric oxide, carbon monoxide, and hydrogen sulfide are best studied. Gasotransmitters are implicated in various diseases related to necroptosis, such as cardiovascular diseases, inflammation, ischemia-reperfusion, infectious diseases, and neurological diseases. However, the mechanisms of their effects on necroptosis are not fully understood. This review focuses on endogenous gasotransmitter synthesis and metabolism and discusses their roles in necroptosis, aiming to offer new insights for the therapeutic approaches to necroptosis-associated diseases.
Collapse
Affiliation(s)
- Lei Cao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Xue-Li Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Wen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yong-Qi Fan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Hang Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Jing Zhang
- Department of Stomatology, The First Affiliated Hospital of Henan University, Kaifeng, Henan, 475001, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Kaifeng, Henan, 475000, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
43
|
Maldonado F, Albornoz M, Enríquez I, Espinoza C, Chang H, Carrasco L, Díaz-Papapietro C, Medina F, González R, Cáceres M. Association of neutrophil-to-lymphocyte ratio with age and 180-day mortality after emergency surgery. BMC Anesthesiol 2024; 24:329. [PMID: 39289610 PMCID: PMC11406743 DOI: 10.1186/s12871-024-02718-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND To examine the relationship between neutrophil-to-lymphocyte ratio (NLR), age, and mortality rates after emergency surgery. METHODS In this observational study, a total of 851 patients undergoing emergency surgery between January 2022 and January 2023 were retrospective examined. Using 30 and 180 days mortality data, NLR differences and receiver operating characteristic (ROC) curves were analyzed using a 65-year threshold. A multiple logistic regression model was constructed incorporating age and NLR. Finally, Kaplan-Meier curves were constructed for mortality. RESULTS Among 851 patients, the 30 and 180 days mortality rates were 5.2% and 10.8%, respectively. Median NLR in 30 days was 5.6 (3.1 to 9.6) in survivors and 8.7 (4.6 to 13.4) in deceased patients (p < 0.0001); in 180 days, it was 5.5 (3.1 to 9.8) and 8.8 (4.8 to 14.5), respectively (p < 0.0001). In the 30- and 180-days mortality analyses, median NLRs were 5.1 (2.9 to 8.9) and 4.9 (2.9 to 8.8) in survivors and 10.6 (6.9 to 16.6) and 9.3 (5.4 to 14.9) in deceased patients aged < 65 years, respectively. The ROC AUC in patients younger than 65 years was higher for 30 days (AUC 0.75; 95% CI 0.72 to 0.87) and 180 days (AUC 0.73; 95% CI 0.64 to 0.81). Multivariate logistic regression revealed that the NLR (odds ratio, 1.03 [95% CI 1.005 to 1.053; p = 0.0133) and age (odds ratio, 1.05 [95% CI 1.034 to 1.064; p < 0.0001) significantly contributed to the model. Survival analysis revealed differences in the 180 days mortality (p = 0.0006). CONCLUSION We observed differences in preoperative NLR between patients who survived and those who died after emergency surgery. Age impacts the use of NLR as a mortality risk factor. TRIAL REGISTRATION NCT06549101, retrospectively registered.
Collapse
Affiliation(s)
- Felipe Maldonado
- Department of Anesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile.
| | | | | | | | - Hui Chang
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Laura Carrasco
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Catalina Díaz-Papapietro
- Department of Anesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Felipe Medina
- Instituto de Salud Poblacional, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Roberto González
- Department of Anesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Mónica Cáceres
- Cellular and Molecular Biology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| |
Collapse
|
44
|
Zhang W, Feng J, Ni Y, Li G, Wang Y, Cao Y, Zhou M, Zhao C. The role of SLC7A11 in diabetic wound healing: novel insights and new therapeutic strategies. Front Immunol 2024; 15:1467531. [PMID: 39290692 PMCID: PMC11405230 DOI: 10.3389/fimmu.2024.1467531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetic wounds are a severe complication of diabetes, characterized by persistent, non-healing ulcers due to disrupted wound-healing mechanisms in a hyperglycemic environment. Key factors in the pathogenesis of these chronic wounds include unresolved inflammation and antioxidant defense imbalances. The cystine/glutamate antiporter SLC7A11 (xCT) is crucial for cystine import, glutathione production, and antioxidant protection, positioning it as a vital regulator of diabetic wound healing. Recent studies underscore the role of SLC7A11 in modulating immune responses and oxidative stress in diabetic wounds. Moreover, SLC7A11 influences critical processes such as insulin secretion and the mTOR signaling pathway, both of which are implicated in delayed wound healing. This review explores the mechanisms regulating SLC7A11 and its impact on immune response, antioxidant defenses, insulin secretion, and mTOR pathways in diabetic wounds. Additionally, we highlight the current advancements in targeting SLC7A11 for treating related diseases and conceptualize its potential applications and value in diabetic wound treatment strategies, along with the challenges encountered in this context.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Ni
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gen Li
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
45
|
Zheng C, Li J, Chen H, Ma X, Si T, Zhu W. Dual role of CD177 + neutrophils in inflammatory bowel disease: a review. J Transl Med 2024; 22:813. [PMID: 39223577 PMCID: PMC11370282 DOI: 10.1186/s12967-024-05539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Inflammatory bowel disease (IBD) represents a group of recurrent chronic inflammatory disorders associated with autoimmune dysregulation, typically characterized by neutrophil infiltration and mucosal inflammatory lesions. Neutrophils, as the earliest immune cells to arrive at inflamed tissues, play a dual role in the onset and progression of mucosal inflammation in IBD. Most of these cells specifically express CD177, a molecule increasingly recognized for its critical role in the pathogenesis of IBD. Under IBD-related inflammatory stimuli, CD177 is highly expressed on neutrophils and promotes their migration. CD177 + neutrophils activate bactericidal and barrier-protective functions at IBD mucosal inflammation sites and regulate the release of inflammatory mediators highly correlated with the severity of inflammation in IBD patients, thus playing a dual role. However, mitigating the detrimental effects of neutrophils in inflammatory bowel disease remains a challenge. Based on these data, we have summarized recent articles on the role of neutrophils in intestinal inflammation, with a particular emphasis on CD177, which mediates the recruitment, transepithelial migration, and activation of neutrophils, as well as their functional consequences. A better understanding of CD177 + neutrophils may contribute to the development of novel therapeutic targets to selectively modulate the protective role of this class of cells in IBD.
Collapse
Affiliation(s)
- Chengli Zheng
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiekai Li
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailin Chen
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolin Ma
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianyu Si
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenwei Zhu
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
46
|
Xue GZ, Ma HZ, Wuren TN. The role of neutrophils in chronic cough. Hum Cell 2024; 37:1316-1324. [PMID: 38913146 DOI: 10.1007/s13577-024-01089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/18/2024] [Indexed: 06/25/2024]
Abstract
Chronic cough is a common disorder lasting more than 8 weeks and affecting all age groups. The evidence supporting the role of neutrophils in chronic cough pathology is based on many patients with chronic cough developing airway neutrophilia. How neutrophils influence the development of chronic cough is unknown. However, they are likely involved in multiple aspects of cough etiology, including promoting airway inflammation, airway remodeling, hyper-responsiveness, local neurogenic inflammation, and other possible mechanisms. Neutrophilic airway inflammation is also associated with refractory cough, poor control of underlying diseases (e.g., asthma), and insensitivity to cough suppressant therapy. The potential for targeting neutrophils in chronic cough needs exploration, including developing new drugs targeting one or more neutrophil-mediated pathways or altering the neutrophil phenotype to alleviate chronic cough. How the airway microbiome differs, plays a role, and interacts with neutrophils in different cough etiologies is poorly understood. Future studies should focus on understanding the relationship between the airway microbiome and neutrophils.
Collapse
Affiliation(s)
- Guan-Zhen Xue
- School of Medicine, Qinghai University, Research Center for High Altitude Medicine, No.16 Kunlun Road, Xining, Qinghai Province, China
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining, Qinghai Province, China
| | - Hai-Zhen Ma
- Qinghai Provincial People's Hospital, Xining, Qinghai Province, China
| | - Ta-Na Wuren
- School of Medicine, Qinghai University, Research Center for High Altitude Medicine, No.16 Kunlun Road, Xining, Qinghai Province, China.
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining, Qinghai Province, China.
| |
Collapse
|
47
|
Ranhotra HS. Discrete interplay of gut microbiota L-tryptophan metabolites in host biology and disease. Mol Cell Biochem 2024; 479:2273-2290. [PMID: 37861881 DOI: 10.1007/s11010-023-04867-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023]
Abstract
The gut microbiota and the host maintain a conjoint relationship and together achieve optimal physiology via a multitude of interactive signalling cues. Dietary-derived L-tryptophan (L-trp) is enzymatically metabolized by the resident symbiotic gut microbiota to indole and various indole derivatives. Indole and indole metabolites secreted by the gut bacteria act locally in the intestinal cells as well as distally and modulate tissue-specific functions which are beneficial to the host. Functions attributed to these microbial indole metabolites in the host include regulation of intestinal permeability, immunity and mucosal roles, inflammation, and insulin sensitivity. On the other hand, dysregulation of gut microbiota L-trp metabolism compromises the optimal availability of indole and indole metabolites and can induce the onset of metabolic disorders, inflammation, liver steatosis, and decrease gut barrier integrity. Gut dysbiosis is regarded as one of the prime reasons for this deregulated microbial-derived indole metabolites. A number of indole metabolites from the gut bacteria have been identified recently displaying variable affinity towards xenobiotic nuclear receptors. Microbial metabolite mimicry concept can be used to design and develop novel indole-moiety-containing compounds with higher affinity towards the receptors and efficacy in preclinical studies. Such compounds may serve as therapeutic drugs in clinical trials in the future. In this article, I review L-trp metabolism in the host and gut microbiota and the various physiological functions, patho-physiologies associated with the microbial-released indole metabolites in the host, including the metabolite mimicry-based concept to develop tailored indole-containing novel experimental drugs.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- Department of Biochemistry, St. Edmund's College, Shillong, 793 003, India.
| |
Collapse
|
48
|
P A, P A, M RJ, Joy JM, Mathew S. Developmental prospects of carrageenan-based wound dressing films: Unveiling techno-functional properties and freeze-drying technology for the development of absorbent films - A review. Int J Biol Macromol 2024; 276:133668. [PMID: 38992537 DOI: 10.1016/j.ijbiomac.2024.133668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
This review explores the intricate wound healing process, emphasizing the critical role of dressing material selection, particularly for chronic wounds with high exudate levels. The aim is to tailor biodegradable dressings for comprehensive healing, focusing on maximizing moisture retention, a vital element for adequate recovery. Researchers are designing advanced wound dressings that enhance techno-functional and bioactive properties, minimizing healing time and ensuring cost-effective care. The study delves into wound dressing materials, highlighting carrageenan biocomposites superior attributes and potential in advancing wound care. Carrageenan's versatility in various biomedical applications demonstrates its potential for tissue repair, bone regeneration, and drug delivery. Ongoing research explores synergistic effects by combining carrageenan with other novel materials, aiming for complete biocompatibility. As innovative solutions emerge, carrageenan-based wound-healing medical devices are poised for global accessibility, addressing challenges associated with the complex wound-healing process. The exceptional physico-mechanical properties of carrageenan make it well-suited for highly exudating wounds, offering a promising avenue to revolutionize wound care through freeze-drying techniques. This thorough approach to evaluating the wound healing effectiveness of carrageenan-based films, particularly emphasizing the development potential of lyophilized films, has the potential to significantly improve the quality of life for patients receiving wound healing treatments.
Collapse
Affiliation(s)
- Amruth P
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India; Department of Life Sciences, Christ University, Hosur Main Road, Bhavani Nagar, Bangalore 560029, Karnataka, India
| | - Akshay P
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Rosemol Jacob M
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Jean Mary Joy
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India; St.Teresa's College (Autonomous), Ernakulam, Kerala-682011
| | - Suseela Mathew
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India.
| |
Collapse
|
49
|
Clayton SM, Shafikhani SH, Soulika AM. Macrophage and Neutrophil Dysfunction in Diabetic Wounds. Adv Wound Care (New Rochelle) 2024; 13:463-484. [PMID: 38695109 PMCID: PMC11535468 DOI: 10.1089/wound.2023.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Significance: The incidence of diabetes continues to rise throughout the world in an alarming rate. Diabetic patients often develop diabetic foot ulcers (DFUs), many of which do not heal. Non-healing DFUs are a major cause of hospitalization, amputation, and increased morbidity. Understanding the underlying mechanisms of impaired healing in DFU is crucial for its management. Recent Advances: This review focuses on the recent advancements on macrophages and neutrophils in diabetic wounds and DFUs. In particular, we discuss diabetes-induced dysregulations and dysfunctions of macrophages and neutrophils. Critical Issues: It is well established that diabetic wounds are characterized by stalled inflammation that results in impaired healing. Recent findings in the field suggest that dysregulation of macrophages and neutrophils plays a critical role in impaired healing in DFUs. The delineation of mechanisms that restore macrophage and neutrophil function in diabetic wound healing is the focus of intense investigation. Future Directions: The breadth of recently generated knowledge on the activity of macrophages and neutrophils in diabetic wound healing is impressive. Experimental models have delineated pathways that hold promise for the treatment of diabetic wounds and DFUs. These pathways may be useful targets for further clinical investigation.
Collapse
Affiliation(s)
- Shannon M. Clayton
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Sasha H. Shafikhani
- Department of Internal Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University, Chicago, Illinois, USA
| | - Athena M. Soulika
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| |
Collapse
|
50
|
Kenney HM, Battaglia J, Herman K, Beck LA. Atopic dermatitis and IgE-mediated food allergy: Common biologic targets for therapy and prevention. Ann Allergy Asthma Immunol 2024; 133:262-277. [PMID: 38908432 DOI: 10.1016/j.anai.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
OBJECTIVE To highlight common mechanistic targets for the treatment of atopic dermatitis (AD) and IgE-mediated food allergy (IgE-FA) with potential to be effective for both diseases and prevent atopic progression. DATA SOURCES Data sources were PubMed searches or National Clinical Trials (NCT)-registered clinical trials related to AD, IgE-FA, and other atopic conditions, especially focused on the pediatric population. STUDY SELECTIONS Human seminal studies and/or articles published in the past decade were emphasized with reference to preclinical models when relevant. NCT-registered clinical trials were filtered by inclusion of pediatric subjects younger than 18 years with special focus on children younger than 12 years as a critical period when AD and IgE-FA diseases may often be concurrent. RESULTS AD and IgE-FA share several pathophysiologic features, including epithelial barrier dysfunction, innate and adaptive immune abnormalities, and microbial dysbiosis, which may be critical for the clinical progression between these diseases. Revolutionary advances in targeted biologic therapies have shown the benefit of inhibiting type 2 immune responses, using dupilumab (anti-interleukin-4Rα) or omalizumab (anti-IgE), to potentially reduce symptom burden for both diseases in pediatric populations. Although the potential for biologics to promote disease remission (AD) or sustained unresponsiveness (IgE-FA) remains unclear, the refinement of biomarkers to predict infants at risk for atopic disorders provides promise for prevention through timely intervention. CONCLUSION AD and IgE-FA exhibit common features that may be leveraged to develop biologic therapeutic strategies to treat both conditions and even prevent atopic progression. Future studies should be designed with consistent age stratification in the pediatric population and standardized regimens of adjuvant oral immunotherapy or dose escalation (IgE-FA) to improve cross-study interpretation.
Collapse
Affiliation(s)
- H Mark Kenney
- Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Jennifer Battaglia
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Katherine Herman
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; Division of Allergy and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Lisa A Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|