1
|
Wen S, Su X, Guo J, Ou Z, Wang L, Yue Z, Zhao J, Ran L, Hu J, Wang Y, Ran M, He Q, Ji P, Ye L, Chen Z, Xu L, Huang Q. Bcl6 controls the stability and suppressive function of regulatory T cells in head and neck squamous cell carcinoma. Genes Dis 2025; 12:101505. [PMID: 40290124 PMCID: PMC12033904 DOI: 10.1016/j.gendis.2024.101505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/16/2024] [Accepted: 12/02/2024] [Indexed: 04/30/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) ranks as the sixth most common cancer globally. Most studies in HNSCC demonstrated that regulatory T (Treg) cells confine the anti-tumor activity of effector T cells which may contribute to the immune escape and uncontrolled tumor progression. Here, we uncovered that the specific abrogation of Bcl6 in Treg cells resulted in significantly delayed malignant transformation of 4NQO-induced tumorigenesis. Bcl6 deficiency impairs the lineage stability of Treg cells by down-regulating the histone H3K4 trimethylation. Importantly, Bcl6 inhibition repressed the tumor growth of murine HNSCC and exhibited synergistic effects with immune checkpoint blockade therapy. These findings suggest that Bcl6 can be exploited as a promising therapeutic target for HNSCC treatment.
Collapse
Affiliation(s)
- Shuqiong Wen
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510055, China
| | - Xingxing Su
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Junyi Guo
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhanpeng Ou
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Lisha Wang
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Zhengliang Yue
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Jing Zhao
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China
| | - Ling Ran
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Jianjun Hu
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Yuzhu Wang
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Mengqu Ran
- Institute of Immunological Innovation and Translation, Chongqing Medical University, Chongqing 400016, China
| | - Qinyi He
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Zhiyu Chen
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Lifan Xu
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Qizhao Huang
- Institute of Immunological Innovation and Translation, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2
|
Ahn W, Han J, Kim N, Hwang YH, Kim W, Lee Y, Lee DY, Cheong IW, Han K, Nam GH, Kim IS, Lee EJ. Hierarchical protein nano-crystalline hydrogel with extracellular vesicles for ectopic lymphoid structure formation. Biomaterials 2025; 318:123166. [PMID: 39933315 DOI: 10.1016/j.biomaterials.2025.123166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Among cancer therapies, immune checkpoint blockade (ICB) has emerged as a prominent approach, substantially enhancing anti-tumor immune responses. However, the efficacy of ICB is often limited in the absence of a pre-existing immune response within the tumor microenvironment. Here, we introduce a novel hierarchical protein hydrogel platform designed to facilitate the formation of artificial tertiary lymphoid structures (aTLS), thereby improving ICB efficacy. Through the integration of self-assembling ferritin protein nanocages, rec1-resilin protein, and CP05 peptide, our hierarchical hydrogels provide a structurally supportive and functionally adaptive scaffold capable of on-demand self-repair in response to mild thermal treatments. The effective encapsulation of extracellular vesicles (EVs) via the CP05 peptide ensures the formation of aTLS with germinal center-like structures within the hierarchical hydrogel. We demonstrate that, combined with ICB therapy, EV-loaded hierarchical hydrogels also induce the TLS within the tumor, markedly promoting immune responses against ICB-resistant tumor. This bioactive hydrogel platform offers a versatile tool for enhancing a broad range of immunotherapies, with potential applications extending beyond TLS to other frameworks that support complex tissue architectures.
Collapse
Affiliation(s)
- Wonkyung Ahn
- Department of Chemical Engineering, School of Chemical Engineering and Applied Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biochemistry & Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Jihoon Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02842, Republic of Korea; Chemical & Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Nayeon Kim
- Department of Chemical Engineering, School of Chemical Engineering and Applied Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yeong Ha Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02842, Republic of Korea; Chemical & Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Wonjun Kim
- Department of Chemical Engineering, School of Chemical Engineering and Applied Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yeram Lee
- Department of Chemical Engineering, School of Chemical Engineering and Applied Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong Yun Lee
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - In Woo Cheong
- Department of Applied Chemistry, School of Chemical Engineering and Applied Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Koohee Han
- Department of Chemical Engineering, School of Chemical Engineering and Applied Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Gi-Hoon Nam
- Department of Biochemistry & Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02842, Republic of Korea; Chemical & Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Eun Jung Lee
- Department of Chemical Engineering, School of Chemical Engineering and Applied Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
3
|
McNitt DH, Williams JM, Santitoro JG, Kim J, Thomas JW, Bonami RH. Type 1 Diabetes Depends on CD4-Driven Expression of the Transcriptional Repressor Bcl6. Diabetes 2025; 74:921-932. [PMID: 39556799 PMCID: PMC12097460 DOI: 10.2337/db23-0709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
High-affinity islet autoantibodies predict type 1 diabetes in mice and humans and implicate germinal centers (GCs) in disease pathogenesis. T follicular helper (Tfh) cells are increased in individuals with type 1 diabetes and alterations in Tfh-like cells in the peripheral blood predicted individual responses to abatacept. Tfh cells support GC responses and depend on the transcriptional repressor BCL6 for their maturation. Therefore, we hypothesized that CD4-driven deletion of Bcl6 would disrupt essential T- and B-cell interactions in GCs to prevent type 1 diabetes. To test this hypothesis, we generated Bcl6fl/fl-CD4.Cre.NOD mice and found they were completely protected against diabetes. Insulitis severity and tertiary lymphoid structure organization were preserved in the pancreas of Bcl6fl/fl-CD4.Cre.NOD mice, which did not show decreases in CD4+, CD8+, and B-cell numbers in the pancreas and draining lymph nodes, relative to control Bcl6fl/fl.NOD mice. CD4-driven loss of functional BCL6 resulted in significantly reduced GC B-cell and Tfh-cell numbers in the pancreatic lymph nodes and pancreas at late prediabetic intervals. Spontaneous anti-insulin autoantibody was blunted in Bcl6fl/fl-CD4.Cre.NOD mice. These data highlight BCL6 as a novel therapeutic target in type 1 diabetes. ARTICLE HIGHLIGHTS Germinal center B cells and CD4+ T follicular helper cells are implicated in the pathogenesis of type 1 diabetes and depend upon the transcriptional repressor BCL6 for their maturation. This study tests the dependence of type 1 diabetes development on BCL6 expression in CD4+ cells. Data presented here show that CD4-driven loss of Bcl6 blocks germinal center formation, spontaneous insulin autoantibody production, and type 1 diabetes in nonobese diabetic mice, despite normal tertiary lymphoid structure formation in pancreatic islets. This study highlights BCL6 as a potential immunomodulatory target in type 1 diabetes.
Collapse
Affiliation(s)
- Dudley H. McNitt
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Jonathan M. Williams
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Joseph G. Santitoro
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Jacob Kim
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - James W. Thomas
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Rachel H. Bonami
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
4
|
Suzuki K, Rao A, Onodera A. The TET-TDG axis in T cells and biological processes. Int Immunol 2025; 37:299-312. [PMID: 39921704 PMCID: PMC12096163 DOI: 10.1093/intimm/dxaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/06/2025] [Indexed: 02/10/2025] Open
Abstract
Ten-eleven translocation (TET) proteins are dioxygenases that sequentially oxidize the methyl group of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). All three epigenetic modifications are intermediates in DNA demethylation. In the "passive" (replication-dependent) DNA demethylation pathway, sequential oxidation reactions by TETs are essential and modified cytosines (C) are diluted at each cycle of DNA replication. In the "active" (replication-independent) DNA demethylation pathway, both thymine DNA glycosylase (TDG) and TETs play important roles. TDG removes 5fC and 5caC from 5fC:G and 5caC:G base pairs and these modified bases are replaced by unmodified C via base excision repair. Through epigenetic regulation of DNA demethylation, TETs and TDG are involved in cell development, differentiation, and homeostasis. The interplay between TDG and TETs is involved in embryo development, stem cell differentiation, neural development, immune responses, and tumorigenesis. Loss-of-function mutations of TET proteins in immune cells are associated with a variety of abnormalities, including inflammation, cancer, and clonal hematopoiesis, a condition related to aging. Loss of TETs also has a significant impact on the plasticity and differentiation of T cells, which contributes to inflammation and cancer. In this review, we describe recent findings in functions of TETs in T cell plasticity and differentiation and the TET-TDG axis in selected biological processes.
Collapse
Affiliation(s)
- Kazumasa Suzuki
- La Jolla Institute for Immunology, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA
| | - Anjana Rao
- La Jolla Institute for Immunology, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
- Program in Immunology, UC San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, UC San Diego, La Jolla, CA 92161, USA
| | - Atsushi Onodera
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba, 263-8522, Japan
- Research Institute of Disaster Medicine (RIDM), Chiba University, Chiba, 260-8670, Japan
- Center for Human Immunological Diseases and Therapy Development (cCHID), Chiba University, Chiba, 260-8670, Japan
| |
Collapse
|
5
|
Freuchet A, Johansson E, Frazier A, Litvan I, Goldman JG, Alcalay RN, Sulzer D, Lindestam Arlehamn CS, Sette A. Differential memory enrichment of cytotoxic CD4 T cells in Parkinson's disease patients reactive to α-synuclein. NPJ Parkinsons Dis 2025; 11:127. [PMID: 40368950 PMCID: PMC12078614 DOI: 10.1038/s41531-025-00981-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/28/2025] [Indexed: 05/16/2025] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease with a largely unknown etiology. Although the loss of dopaminergic neurons in the substantia nigra pars compacta is the pathological hallmark of PD, neuroinflammation also plays a fundamental role in PD pathology. We have previously reported that PD patients have increased frequencies of T cells reactive to peptides from α-synuclein (α-syn). However, not all PD participants respond to α-syn. Furthermore, we have previously found that CD4 T cells from PD participants responding to α-syn (PD_R) are transcriptionally distinct from PD participants not responding to α-syn (PD_NR). To gain further insight into the pathology of PD_R participants, we investigated surface protein expression of 11 proteins whose genes had previously been found to be differentially expressed when comparing PD_R and healthy control participants not responding to α-syn (HC_NR). We found that Cadherin EGF LAG seven-pass G-type receptor 2 (CELSR2) was expressed on a significantly higher proportion of CD4 effector memory T cells (TEM) in PD_R compared to HC_NR. Single-cell RNA sequencing analysis of cells expressing or not expressing CELSR2 revealed that PD_R participants have elevated frequencies of activated TEM subsets and an almost complete loss of cytotoxic TEM cells. Flow cytometry analyses confirmed that Granulysin+ CD4 cytotoxic TEM cells are reduced in PD_R. Taken together, these results provide further insight into the perturbation of T cell subsets in PD_R, and highlights the need for further investigation into the role of Granulysin+ CD4 cytotoxic TEM in PD pathology.
Collapse
Affiliation(s)
- Antoine Freuchet
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Emil Johansson
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - April Frazier
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Irene Litvan
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Jennifer G Goldman
- JPG Enterprises LLC; prior: Shirley Ryan Ability Lab and Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - David Sulzer
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Neurology, Columbia University, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
- Departments of Psychiatry and Pharmacology, Columbia University, New York State Psychiatric Institute, New York, NY, USA
| | - Cecilia S Lindestam Arlehamn
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Center for Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Alessandro Sette
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Liu R, Zhang Z, Zhou C, Wang B, Zhang M, Sun Y, Yao Y, Zhang Y, He Y, Yu J, Xia Y, Liu Y, Ning S, Feng B. Inhibitior of Bcl6 by FX1 protects DSS induced colitis mice through anti-inflammatory effects. Front Immunol 2025; 16:1558845. [PMID: 40416976 PMCID: PMC12098098 DOI: 10.3389/fimmu.2025.1558845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/14/2025] [Indexed: 05/27/2025] Open
Abstract
Introduction Inflammatory bowel disease (IBD) is a complex immune-mediated condition, and biologics are the most commonly used drugs for its treatment. However, there are still cases of ineffective treatment. B-cell lymphoma 6 (Bcl6), a transcriptional suppressor, is known to have regulatory effects on multiple immune-associated cell subsets. FX1, a novel specific BCL6 Bric-à-brac (BTB) inhibitor, has shown positive effects in many disease models, but its effects and mechanisms in IBD control remain unclear. Methods We observed colon length and DAI score of colitis mice after treatment. HE staining section was used to evaluate colonic injury, while the expression of colonic pro-inflammatory cytokines by RT-qPCR. And differences in immune cell subsets between the two groups was analyzed by flow cytometry. Additionally, IHC and RT-qPCR were employed to evaluate the expression of colonic tight junction proteins. Furthermore, RAW264.7 cells and co-cultured Caco2 cells were detected by ELISA and RT-qPCR. Results In the treat group, colitis symptoms in mice were significantly improved, and there was a decrease in proportion of macrophages and protection of intestinal mucosal integrity-indicating anti-inflammatory effects of FX1. In cell experiments, we found that FX1 decreased secretion of pro-inflammatory factors by macrophages and increased expression of tight junction proteins in Caco2 cells after co-culture. Discussion The experimental findings demonstrate the inhibitory effect of FX1 on inflammation in murine colitis model as well as its potential mechanism. BCL6 is a potential target for treating IBD.
Collapse
Affiliation(s)
| | - Zhe Zhang
- *Correspondence: Zhe Zhang, ; Baisui Feng,
| | | | | | | | | | | | | | | | | | | | | | | | - Baisui Feng
- Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Hu M, Zhou Y, Yao Z, Tang Y, Zhang Y, Liao J, Cai X, Liu L. T cell dysregulation in rheumatoid arthritis: Recent advances and natural product interventions. Int Immunopharmacol 2025; 153:114499. [PMID: 40120382 DOI: 10.1016/j.intimp.2025.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/28/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Autoimmune diseases result from chronic and dysregulated activation of the immune system, culminating in pathological self-tissue damage. These disorders are primarily driven by adaptive immune responses, particularly those mediated by T and B lymphocytes, which mistakenly target self-antigens expressed in host tissues. In rheumatoid arthritis (RA), the pathogenesis is closely associated with the emergence of tissue-invasive effector T cells and the functional impairment of regulatory T cells (Tregs), both of which play pivotal roles in disease progression. Therapeutic interventions targeting these dysregulated T cell populations have emerged as a promising strategy for RA management. Although synthetic immunosuppressants remain the mainstay of RA treatment, their long-term application is often hampered by adverse effects, diminished therapeutic efficacy, and poor patient adherence. These limitations highlight the critical need for the development of novel therapeutic approaches. Natural compounds derived from medicinal plants have been widely utilized in the clinical management of RA, with growing evidence supporting their immunomodulatory potential, particularly in restoring T cell-mediated immune tolerance. This review aims to provide a comprehensive overview of recent advances in understanding T cell dysregulation in RA and to elucidate the mechanisms through which natural compounds regulate immune responses. By integrating current findings, this work seeks to offer a theoretical foundation for the optimized use of natural compounds in the treatment of RA, while exploring their potential in advancing precision medicine and personalized therapeutic strategies.
Collapse
Affiliation(s)
- Mingyue Hu
- Department of Rheumatology of First Hospital and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Yujun Zhou
- The General Surgery Department of Xiangya Hospital Affiliated to Central South University, Changsha, Hunan 410028, China
| | - Zhongliu Yao
- Department of Rheumatology of First Hospital and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Yuanyuan Tang
- Department of Rheumatology of First Hospital and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Ye Zhang
- Department of Rheumatology of First Hospital and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jing Liao
- Department of Rheumatology of First Hospital and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Xiong Cai
- Department of Rheumatology of First Hospital and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
8
|
Christodoulou M, Moysidou E, Lioulios G, Stai S, Lazarou C, Xochelli A, Fylaktou A, Stangou M. T-Follicular Helper Cells and Their Role in Autoimmune Diseases. Life (Basel) 2025; 15:666. [PMID: 40283219 PMCID: PMC12028949 DOI: 10.3390/life15040666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
T-follicular helper (Tfh) cells, a specialized subset of CD4+ cells, are the immune mediators connecting cellular and humoral immunity, as they lead B-cell proliferation within germinal centers, and orchestrate their response, including activation, class switching, and production of a diverse array of high-affinity antibodies. Their interactions with B cells is regulated by a wide complex of transcriptional and cytokine-driven pathways. A major contribution of Tfh cells to autoimmune diseases is through their production of cytokines, particularly IL-21, which supports the proliferation and differentiation of autoreactive B cells. Elevated levels of circulating Tfh-like cells and IL-21 have been observed in patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) correlating strongly with disease severity and autoantibody levels. The feedback loop between Tfh cells and IL-21 or other signal pathways, such as Bcl-6, ICOS, and PD-1, not only sustains Tfh cell function but also drives the continuous expansion of autoreactive B cells, leading to chronic inflammation through the production of high-affinity pathogenic autoantibodies. By understanding these interactions, Tfh pathways may serve as potential therapeutic targets, with IL-21, ICOS, and PD1 blockades emerging as promising innovative therapeutic strategies to manage autoimmune diseases. Although a variety of studies have been conducted investigating the role of Tfh cells in SLE and RA, this review aims to reveal the gap in the literature regarding the role of such subpopulations in the pathogenesis of other autoimmune diseases, such as Anca-associated vasculitis (AAV), and express the need to conduct similar studies. Tfh cell-related biomarkers can be used to assess disease activity and transform autoimmune disease treatment, leading to more personalized and effective care for patients with chronic autoimmune conditions.
Collapse
Affiliation(s)
- Michalis Christodoulou
- School of Medicine, Aristotle University of Thessaloniki, Department of Nephrology, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (M.C.); (E.M.); (G.L.); (S.S.); (C.L.)
| | - Eleni Moysidou
- School of Medicine, Aristotle University of Thessaloniki, Department of Nephrology, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (M.C.); (E.M.); (G.L.); (S.S.); (C.L.)
| | - Georgios Lioulios
- School of Medicine, Aristotle University of Thessaloniki, Department of Nephrology, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (M.C.); (E.M.); (G.L.); (S.S.); (C.L.)
| | - Stamatia Stai
- School of Medicine, Aristotle University of Thessaloniki, Department of Nephrology, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (M.C.); (E.M.); (G.L.); (S.S.); (C.L.)
| | - Christina Lazarou
- School of Medicine, Aristotle University of Thessaloniki, Department of Nephrology, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (M.C.); (E.M.); (G.L.); (S.S.); (C.L.)
| | - Aliki Xochelli
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.X.); (A.F.)
| | - Asimina Fylaktou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.X.); (A.F.)
| | - Maria Stangou
- School of Medicine, Aristotle University of Thessaloniki, Department of Nephrology, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (M.C.); (E.M.); (G.L.); (S.S.); (C.L.)
| |
Collapse
|
9
|
Sabzevari A, Ung J, Craig JW, Jayappa KD, Pal I, Feith DJ, Loughran TP, O'Connor OA. Management of T-cell malignancies: Bench-to-bedside targeting of epigenetic biology. CA Cancer J Clin 2025. [PMID: 40232267 DOI: 10.3322/caac.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 04/16/2025] Open
Abstract
The peripheral T-cell lymphomas (PTCL) are the only disease for which four histone deacetylase (HDAC) inhibitors have been approved globally as single agents. Although it is not clear why the PTCL exhibit such a vulnerability to these drugs, understanding the biological basis for this activity is essential. Many lines of data have established that the PTCL exhibit marked sensitivity to other epigenetically targeted drugs, including EZH2 and DNMT3 (DNA-methyltransferase 3) inhibitors. Even more compelling is the finding that combinations of drugs targeting the epigenetic biology of PTCL are beginning to produce provocative data, leading some to wonder if these agents can replace historical chemotherapy regimens routinely used for patients with the disease. Simultaneously, the field has identified a spectrum of mutations in genes governing epigenetic biology in many subtypes of PTCL, although the T follicular helper lymphomas, including angioimmunoblastic T-cell lymphoma, appear to be particularly enriched for these genetic features. While the direct relationship between the presence of any one of these mutations and responsiveness to a particular epigenetic drug has yet to be established, it is increasingly accepted that the PTCL may be the prototypical epigenetic disease as no other form of cancer has exhibited such a vulnerability to this diversity of epigenetically targeted agents. Herein, we comprehensively review this esoteric and rapidly evolving field to identify themes and lessons from these experiences that may guide efforts to improve outcomes of patients with T-cell neoplasms. Furthermore, we will discuss how these concepts might be applied to the broader field of cancer medicine.
Collapse
Affiliation(s)
- Ariana Sabzevari
- Department of Microbiology, Immunology, and Cancer Biology, Charlottesville, Virginia, USA
| | - Johnson Ung
- Department of Microbiology, Immunology, and Cancer Biology, Charlottesville, Virginia, USA
| | - Jeffrey W Craig
- Department of Pathology, University of Virginia Medical Center, Charlottesville, Virginia, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, Virginia, USA
| | - Kallesh D Jayappa
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Ipsita Pal
- University of Virginia Comprehensive Cancer Center, Charlottesville, Virginia, USA
| | - David J Feith
- University of Virginia Comprehensive Cancer Center, Charlottesville, Virginia, USA
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Thomas P Loughran
- University of Virginia Comprehensive Cancer Center, Charlottesville, Virginia, USA
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Owen A O'Connor
- Department of Microbiology, Immunology, and Cancer Biology, Charlottesville, Virginia, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, Virginia, USA
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
10
|
Lv Z, Jiao J, Xue W, Shi X, Wang R, Wu J. Activation-induced cytidine deaminase in tertiary lymphoid structures: dual roles and implications in cancer prognosis. Front Oncol 2025; 15:1555491. [PMID: 40270606 PMCID: PMC12014437 DOI: 10.3389/fonc.2025.1555491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/25/2025] [Indexed: 04/25/2025] Open
Abstract
Activation-induced cytidine deaminase (AID) serves as a critical molecular orchestrator in the germinal center (GC) reaction within secondary lymphoid organs (SLOs), driving the production of high-affinity antibodies through somatic hypermutation. While its pathological implications are well-documented - including ectopic expression in non-B cell populations and transcriptional dysregulation linked to hematological malignancies and solid tumorigenesis - the cellular provenance of AID in solid tumors remains an unresolved paradox. This review advances two principal hypotheses: (1) AID may derive from tertiary lymphoid structures (TLSs), ectopic immune niches mirroring SLO organization, and (2) exhibits context-dependent transcriptional duality, capable of both potentiating and suppressing gene expression based on microenvironmental cues. Through systematic analysis of AID/GC involvement across cancer subtypes, we delineate mechanistic connections between lymphoid neogenesis and tumor progression. Our examination extends to TLS architecture, revealing three critical dimensions: (i) structural organization and cellular heterogeneity, (ii) developmental trajectories, and (iii) bidirectional interactions with tumor microenvironments. Crucially, we establish functional parallels between tumor-infiltrating B cells (TIL-Bs) in SLOs versus TLSs, while elucidating the differential roles of AID in canonical GC versus TLS-associated GC formation. This synthesis ultimately proposes that AID's functional dichotomy - acting as both oncogenic collaborator and tumor suppressor - underlies the paradoxical prognostic associations observed with TLS presence across malignancies. The review thereby provides a conceptual framework reconciling AID's dual functionality with the context-dependent immunobiology of tumor-associated lymphoid structures.
Collapse
Affiliation(s)
- Zhuangwei Lv
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Junna Jiao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, China
| | - Wuyang Xue
- Department of Laboratory Medicine, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiaoyu Shi
- School of Junji College, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ruihan Wang
- School of Junji College, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jinhua Wu
- School of Junji College, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
11
|
Xin M, Wang A, Ji M, Wu J, Jiang B, Shi M, Song L, Xin Z. Molecular Biology and Functions of T Follicular Helper Cells in Cancer and Immunotherapy. Immune Netw 2025; 25:e7. [PMID: 40342840 PMCID: PMC12056291 DOI: 10.4110/in.2025.25.e7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/22/2024] [Accepted: 01/08/2025] [Indexed: 05/11/2025] Open
Abstract
T follicular helper (Tfh) cells are integral to the germinal center (GC) response and the development of potent humoral immunity. By priming B cells, Tfh cells can initiate both extrafollicular and GC-dependent Ab responses. The dynamic physical interactions between Tfh and B cells constitute the primary platform for Tfh cells to provide essential "help" factors to B cells, as well as for reciprocal signaling from B cells to sustain the helper state of Tfh cells. In recent years, significant advancements have been made in understanding the diverse roles of Tfh cells across various diseases, particularly in cancer. Notably, beyond the classical GC-Tfh cells, it is increasingly recognized that the Tfh cell phenotype is highly heterogeneous and dynamic, which adds complexity to their roles in disease contexts. This review aims to encapsulate progress in Tfh cell biology, with a focus on their role in cancer and immunotherapy.
Collapse
Affiliation(s)
- Mengyuan Xin
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
| | - Antuo Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
| | - Minghao Ji
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Jingru Wu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Bin Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Mo Shi
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Liang Song
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Zhongwei Xin
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
| |
Collapse
|
12
|
Ahmadivand S, Fux R, Palić D. Role of T Follicular Helper Cells in Viral Infections and Vaccine Design. Cells 2025; 14:508. [PMID: 40214462 PMCID: PMC11987902 DOI: 10.3390/cells14070508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
T follicular helper (Tfh) cells are a specialized subset of CD4+ T lymphocytes that are essential for the development of long-lasting humoral immunity. Tfh cells facilitate B lymphocyte maturation, promote germinal center formation, and drive high-affinity antibody production. Our current knowledge of Tfh interactions with the humoral immune system effectors suggests that they have a critical role in supporting the immune response against viral infections. This review discusses the mechanisms through which Tfh cells influence anti-viral immunity, highlighting their interactions with B cells and their impact on antibody quality and quantity. We explore the role of Tfh cells in viral infections and examine how vaccine design can be improved to enhance Tfh cell responses. Innovative vaccine platforms, such as mRNA vaccines and self-assembling protein nanoplatforms (SAPNs), are promising strategies to enhance Tfh cell activation. Their integration and synergistic combination could further enhance immunity and Tfh responses (SAPN-RNA vaccines). In summary, we provide a comprehensive overview of the current insights into Tfh cells' role during viral infections, emphasizing their potential as strategic targets for innovative vaccine development.
Collapse
Affiliation(s)
- Sohrab Ahmadivand
- Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Robert Fux
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, 80539 Munich, Germany;
| | - Dušan Palić
- Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| |
Collapse
|
13
|
Ansari A, Sachan S, Ahuja J, Venkadesan S, Nikam B, Kumar V, Jain S, Singh BP, Coshic P, Sikka K, Wig N, Sette A, Weiskopf D, Mohanty D, Soneja M, Gupta N. Distinct features of a peripheral T helper subset that drives the B cell response in dengue virus infection. Cell Rep 2025; 44:115366. [PMID: 40073863 PMCID: PMC12032839 DOI: 10.1016/j.celrep.2025.115366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/28/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Dengue-virus-induced humoral immunity can increase the risk of severe disease, but the factors influencing this response are poorly understood. Here, we investigate the contribution of CD4+ T cells to B cell responses in human dengue infection. We identify a dominant peripheral PD-1+ T cell subset that accumulates in severe patients and could induce B cell differentiation via interleukin-21 (IL-21)-related pathway. Single-cell analyses reveal heterogeneity within PD-1+ cells, demonstrating the coexistence of subsets with "helper" (IL-21+) or "cytotoxic" characteristics. The IL-21+ subset displays a distinct clonotypic and transcriptomic signature compared to follicular helper T cells and persists as a memory in lymph nodes. Notably, we show that the IL-21+ subset seems to majorly drive the extrafollicular B cell responses in dengue. Our study establishes the peripheral IL-21+ subset as a potential determinant of the humoral response to dengue virus infection. These findings provide important insights into the T-cell-dependent regulation of humoral responses and can inform the design of effective dengue vaccines.
Collapse
Affiliation(s)
- Asgar Ansari
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Shilpa Sachan
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Jatin Ahuja
- Department of Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Bhushan Nikam
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Vinod Kumar
- Department of Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Shweta Jain
- Department of Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Bhanu Pratap Singh
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Poonam Coshic
- Department of Transfusion Medicine, AIIMS, New Delhi 110029, India
| | - Kapil Sikka
- Department of Otorhinolaryngology, Head and Neck Surgery, AIIMS, New Delhi 110029, India
| | - Naveet Wig
- Department of Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Debasisa Mohanty
- Bioinformatics Center, National Institute of Immunology, New Delhi 110067, India
| | - Manish Soneja
- Department of Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Nimesh Gupta
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India.
| |
Collapse
|
14
|
Tatsumi N, El-Fenej J, Davila-Pagan A, Kumamoto Y. CD301b + dendritic cell-derived IL-2 dictates CD4 + T helper cell differentiation. Nat Commun 2025; 16:2002. [PMID: 40011469 PMCID: PMC11865452 DOI: 10.1038/s41467-025-55916-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/31/2024] [Indexed: 02/28/2025] Open
Abstract
T helper (Th) cell differentiation is fundamental to functional adaptive immunity. Different subsets of dendritic cells (DC) preferentially induce different types of Th cells, but the DC-derived mechanism for Th type 2 (Th2) differentiation is not fully understood. Here, we show that in mice, CD301b+ DCs, a major Th2-inducing DC subset, drive Th2 differentiation through cognate interaction by rapidly inducing IL-2 receptor signalling in CD4+ T cells. Mechanistically, CD40 engagement prompts IL-2 production selectively from CD301b+ DCs to maximize CD25 expression in CD4+ T cells, which instructs the Th2 fate decision, while simultaneously skewing CD4+ T cells away from the T follicular helper fate. Moreover, CD301b+ DCs utilize their own CD25 to facilitate directed action of IL-2 toward cognate CD4+ T cells, as genetic deletion of CD25 in CD301b+ DCs results in reduced IL-2-mediated signalling in antigen-specific CD4+ T cells and hence their Th2 differentiation. These results highlight the critical role of DC-intrinsic CD40-IL-2 axis in Th cell fate decision.
Collapse
Affiliation(s)
- Naoya Tatsumi
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Jihad El-Fenej
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Alejandro Davila-Pagan
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yosuke Kumamoto
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA.
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
15
|
Perkins B, Novis CL, Baessler A, Sircy LM, Thomas MM, Harrison-Chau M, Richens AW, Fuchs B, Nguyen NX, Flint K, Strobelt BM, Varley KE, Hale JS. Dnmt3a-dependent de novo DNA methylation enforces lineage commitment and preserves functionality of memory Th1 and Tfh cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.03.623450. [PMID: 39677644 PMCID: PMC11642886 DOI: 10.1101/2024.12.03.623450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Following acute viral infection, naïve CD4+ T cells differentiate into T follicular helper (Tfh) and T helper 1 (Th1) cells that generate long-lived memory cells. However, it is unclear how memory Tfh and Th1 cells maintain their lineage commitment. We demonstrate that Tfh and Th1 lineages acquire distinct Dnmt3a-dependent de novo DNA methylation programs that are preserved into memory. Dnmt3a deletion impairs lineage commitment and functionality of memory Th1 and Tfh cells, resulting in aberrant Runx1 upregulation that represses germinal center Tfh cell differentiation. In contrast, transient pharmacological DNA methyltransferase inhibition during priming impairs repression of Tfh-associated genes while properly silencing Runx1, and results in enhanced Tfh cell functionality in primary and secondary responses to viral infections. Together, these findings demonstrate that Dnmt3a-mediated epigenetic programing is required to enforce T helper lineage commitment and preserve Tfh and Th1-specific functions during the recall response to infection, and reveal novel strategies to improve long-lived adaptive immunity against infectious diseases.
Collapse
Affiliation(s)
- Bryant Perkins
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Camille L. Novis
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Andrew Baessler
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Linda M. Sircy
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Monyca M. Thomas
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Malia Harrison-Chau
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Andrew W. Richens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Bryce Fuchs
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Nguyen X. Nguyen
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Kaitlyn Flint
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Brittany M. Strobelt
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Katherine E. Varley
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - J. Scott Hale
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
16
|
Hernández Ruiz JJ, Romero Malacara AMC, López Mota LA, Pérez Guzmán MJ. Therapeutic development towards T follicular helper cells as a molecular target in myasthenia gravis disease. J Neuroimmunol 2025; 399:578503. [PMID: 39657358 DOI: 10.1016/j.jneuroim.2024.578503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/07/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024]
Abstract
This review intends to gather literature to provide a comprehensive understanding of the molecular mechanisms and role of T follicular helper cells (Tfh) in the interaction with germinal centers (GCs) in Myasthenia Gravis (MG) disease regarding new developments focusing on Tfh as a therapeutic target and its key regulator B cell lymphoma 6 (Bcl6). Tfh cells are CD4+ T cells specialized in providing signals for the activation and maturation of B cells plus the formation and maintenance of GCs; the role of Bcl6 stands as the key transcriptional factor for the survival of GCs and promotion of Tfh generation. Previous studies have demonstrated gene therapy to be beneficial by achieving re-establishment of "immune homeostasis" and amelioration of the proinflammatory process.
Collapse
Affiliation(s)
- J J Hernández Ruiz
- Facultad Mexicana de Medicina, Universidad La Salle, Fuentes # 17, Av. San Fernando, Col. Tlalpan, C.P.14000 Del. Tlalpan, Mexico City, Mexico.
| | - A M C Romero Malacara
- Facultad Mexicana de Medicina, Universidad La Salle, Fuentes # 17, Av. San Fernando, Col. Tlalpan, C.P.14000 Del. Tlalpan, Mexico City, Mexico
| | - L A López Mota
- Facultad Mexicana de Medicina, Universidad La Salle, Fuentes # 17, Av. San Fernando, Col. Tlalpan, C.P.14000 Del. Tlalpan, Mexico City, Mexico
| | - M J Pérez Guzmán
- Facultad Mexicana de Medicina, Universidad La Salle, Fuentes # 17, Av. San Fernando, Col. Tlalpan, C.P.14000 Del. Tlalpan, Mexico City, Mexico
| |
Collapse
|
17
|
Woolley CR, Chariker JH, Rouchka EC, Ford EE, Hudson E, Rasche KM, Whitley CS, Vanwinkle Z, Casella CR, Smith ML, Mitchell TC. Full-length mRNA sequencing resolves novel variation in 5' UTR length for genes expressed during human CD4 T-cell activation. Immunogenetics 2025; 77:14. [PMID: 39904916 PMCID: PMC11794378 DOI: 10.1007/s00251-025-01371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Isoform sequencing (Iso-Seq) uses long-read technology to produce highly accurate full-length reads of mRNA transcripts. Visualization of individual mRNA molecules can reveal new details of transcript variation within understudied portions of mRNA, such as the 5' untranslated region (UTR). Differential 5' UTRs may contain motifs, upstream open reading frames (uORFs), and secondary structures that can serve to regulate translation or further indicate changes in promoter usage, where transcriptional control may impact protein expression levels. To begin to explore isoform variation during T-cell activation, we generated the first Iso-Seq reference transcriptome of activated human CD4 T cells. Within this dataset, we discovered many novel splice- and end-variant transcripts. Remarkably, one in every eight genes expressed in our dataset was found to have a notable proportion of transcripts with 5' UTR lengthened by over 100 bp compared to the longest corresponding UTR within the Gencode dataset. Among these end-variant transcripts, two novel isoforms were identified for CXCR5, a chemokine receptor associated with T follicular helper cell (Tfh) function and differentiation. When investigated in a model cell system, these lengthened UTR conferred reduced transcript stability and, for one of these isoforms, short uORFs introduced by the added length altered protein expression kinetics. This study highlights instances in which current reference databases are incomplete relative to the information obtained by long-read sequencing of intact mRNA. Iso-Seq is thus a promising approach to better understanding the plasticity of promoter usage, alternative splicing, and UTR sequences that influence RNA stability and translation efficiency.
Collapse
Affiliation(s)
- Cassandra R Woolley
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Julia H Chariker
- Department of Neuroscience Training, University of Louisville School of Medicine, KY, Louisville, USA
| | - Eric C Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
- KY INBRE Bioinformatics Core, University of Louisville School of Medicine, Louisville, KY, USA
| | - Easton E Ford
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Elizabeth Hudson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kamille M Rasche
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Caleb S Whitley
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Zachary Vanwinkle
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Carolyn R Casella
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Melissa L Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Thomas C Mitchell
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
18
|
Matta B, Battaglia J, Lapan M, Sharma V, Barnes BJ. IRF5 Controls Plasma Cell Generation and Antibody Production via Distinct Mechanisms Depending on the Antigenic Trigger. Immunology 2025; 174:226-238. [PMID: 39572974 PMCID: PMC11999051 DOI: 10.1111/imm.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025] Open
Abstract
Elevated levels of serum autoantibodies are a hallmark of systemic lupus erythematosus (SLE) and are produced by plasma cells in response to a variety of antigenic triggers. In SLE, the triggers are complex and may include both T cell-dependent/-independent and TLR-dependent/-independent mechanisms of immune activation, which ultimately contributes to the significant immune dysregulation seen in patients at the level of cytokine production and cellular activation (B cells, T cells, dendritic cells, neutrophils and macrophages). Interferon regulatory factor 5 (IRF5) has been identified as an autoimmune susceptibility gene and polymorphisms in IRF5 associate with altered expression and hyper-activation in distinct SLE immune cell subsets. To gain further insight into the mechanisms that drive IRF5-mediated SLE immune activation, we characterised wild-type (WT) and Irf5 -/- Balb/c mice in response to immunisation. WT and Irf5 -/- Balb/c mice were immunised to activate various signalling pathways in vivo followed by systemic immunophenotyping and detection of antibody production by multi-colour flow cytometry and ELISPOT. We identified two pathways, TLR9-dependent and T cell-dependent that resulted in IRF5 cell type-specific function. Immunisation with either CpG-B + Alum or NP-KLH + Alum but not with R848 + Alum, NP-LPS + Alum or NP-Ficoll+Alum resulted in decreased plasma cell generation and reduced antibody production in Irf5 -/- mice. Notably, the mechanism(s) leading to this downstream phenotype was distinct. In CpG-B + Alum immunised mice, we found reduced activation of plasmacytoid dendritic cells, resulting in reduced IFNα and IL6 production in Irf5 -/- mice. Conversely, mice immunised with NP-KLH + Alum had reduced numbers of T follicular helper cells and germinal centre B cells with reduced expression of Bcl6 in Irf5 -/- mice. Moreover, T follicular helper cells from Irf5 -/- mice were functionally defective. Even though the downstream phenotype of reduced antibody production in Irf5 -/- mice was conserved between T cell-dependent and TLR9-dependent immunisation, the mechanisms leading to this phenotype were antigen- and cell type-specific.
Collapse
Affiliation(s)
- Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Jenna Battaglia
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Margaret Lapan
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Betsy J. Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Departments of Pediatrics and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
19
|
Cardani-Boulton A, Lin F, Bergmann CC. CD6 regulates CD4 T follicular helper cell differentiation and humoral immunity during murine coronavirus infection. J Virol 2025; 99:e0186424. [PMID: 39679790 PMCID: PMC11784103 DOI: 10.1128/jvi.01864-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
During activation, the T cell transmembrane receptor CD6 becomes incorporated into the T cell immunological synapse where it can exert both co-stimulatory and co-inhibitory functions. Given the ability of CD6 to carry out opposing functions, this study sought to determine how CD6 regulates early T cell activation in response to viral infection. Infection of CD6-deficient mice with a neurotropic murine coronavirus resulted in greater activation and expansion of CD4 T cells in the draining lymph nodes. Further analysis demonstrated that there was also preferential differentiation of CD4 T cells into T follicular helper cells, resulting in accelerated germinal center responses and emergence of high-affinity virus-specific antibodies. Given that CD6 conversely supports CD4 T cell activation in many autoimmune models, we probed potential mechanisms of CD6-mediated suppression of CD4 T cell activation during viral infection. Analysis of CD6 binding proteins revealed that infection-induced upregulation of Ubash3a, a negative regulator of T cell receptor (TCR) signaling, was hindered in CD6-deficient lymph nodes. Consistent with greater T cell activation and reduced UBASH3a activity, the T cell receptor signal strength was intensified in CD6-deficient CD4 T cells. These results reveal a novel immunoregulatory role for CD6 in limiting CD4 T cell activation and deterring CD4 T follicular helper cell differentiation, thereby attenuating antiviral humoral immunity. IMPORTANCE CD6 monoclonal blocking antibodies are being therapeutically administered to inhibit T cell activation in autoimmune disorders. However, the multifaceted nature of CD6 allows for multiple and even opposing functions under different circumstances of T cell activation. We therefore sought to characterize how CD6 regulates T cell activation in the context of viral infections using an in vivo murine coronavirus model. In contrast to its role in autoimmunity, but consistent with its function in the presence of superantigens, we found that CD6 deficiency enhances CD4 T cell activation and CD4 T cell help to germinal center-dependent antiviral humoral responses. Finally, we provide evidence that CD6 regulates transcription of its intracellular binding partner UBASH3a, which suppresses T cell receptor (TCR) signaling and consequently T cell activation. These findings highlight the context-dependent flexibility of CD6 in regulating in vivo adaptive immune responses, which may be targeted to enhance antiviral immunity.
Collapse
MESH Headings
- Animals
- Mice
- Immunity, Humoral/immunology
- Cell Differentiation/immunology
- T Follicular Helper Cells/immunology
- Lymphocyte Activation/immunology
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Mice, Inbred C57BL
- Germinal Center/immunology
- Mice, Knockout
- CD4-Positive T-Lymphocytes/immunology
- Antigens, CD/immunology
- Antigens, CD/genetics
- T-Lymphocytes, Helper-Inducer/immunology
- Signal Transduction
- Murine hepatitis virus/immunology
- Antibodies, Viral/immunology
Collapse
Affiliation(s)
- Amber Cardani-Boulton
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Feng Lin
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Cornelia C. Bergmann
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
20
|
Koenig JFE. T follicular helper and memory B cells in IgE recall responses. Allergol Int 2025; 74:4-12. [PMID: 39562254 DOI: 10.1016/j.alit.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
IgE antibodies raised against innocuous environmental antigens cause allergic diseases like allergic rhinitis, food allergy, and allergic asthma. While some allergies are often outgrown, others (peanut, shellfish, tree nut) are lifelong in the majority of individuals. Lifelong allergies are the result of persistent production of allergen-specific IgE. However, IgE antibodies and the plasma cells that secrete them tend to be short-lived. Persistent allergen-specific IgE titres are thought to be derived from the continued renewal of IgE plasma cells from memory B cells in response to allergen encounters. The initial generation of allergen-specific IgE is driven by B cell activation by IL-4 producing Tfh cells, but the cellular and molecular mechanisms of the long-term production of IgE are poorly characterized. This review investigates the mechanisms governing IgE production and Tfh activation in the primary and recall responses, towards the objective of identifying molecular targets for therapeutic intervention that durably inactivate the IgE recall response.
Collapse
Affiliation(s)
- Joshua F E Koenig
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada; Schroeder Allergy and Immunology Research Institute, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
21
|
Wi T, Choi Y, Kim J, Choi YS, Pipkin ME, Choi J. Efficient gene deletion of Integrin alpha 4 in primary mouse CD4 T cells using CRISPR RNA pair-mediated fragmentation. Front Immunol 2024; 15:1445341. [PMID: 39720725 PMCID: PMC11666438 DOI: 10.3389/fimmu.2024.1445341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/18/2024] [Indexed: 12/26/2024] Open
Abstract
The functional specialization of CD4 T lymphocytes into various subtypes, including TH1 and TFH cells, is crucial for effective immune responses. TFH cells facilitate B cell differentiation within germinal centers, while TH1 cells are vital for cell-mediated immunity against intracellular pathogens. Integrin α4, a cell surface adhesion molecule, plays significant roles in cell migration and co-stimulatory signaling. In this study, we investigated the role of Integrin α4 in regulating TFH and TH1 cell populations during acute viral infection using CRISPR-Cas9 gene editing. To effectively delete the Itga4 in primary mouse CD4 T cells, we selected various combinations of crRNAs and generated ribonucleoprotein complexes with fluorochrome-conjugated tracrRNAs and Cas9 proteins. These crRNA pairs enhanced gene deletion by generating deletions in the gene. By analyzing the effects of Itga4 deficiency on TFH and TH1 cell differentiation during acute LCMV infection, we found that optimized crRNA pairs significantly increased the TH1 cell population. Our results highlight the importance of selecting and combining appropriate crRNAs for effective CRISPR-Cas9 gene editing in primary CD4 T cells. Additionally, our study demonstrates the role of Integrin α4 in regulating the differentiation of CD4 T cells, suggesting the potential molecular mechanisms driving T cell subset differentiation through integrin targeting.
Collapse
Affiliation(s)
- Taeuk Wi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, Republic of Korea
| | - Yurim Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, Republic of Korea
| | - Jungsun Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, Republic of Korea
| | - Youn Soo Choi
- Department of Biomedical Sciences, Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Transplantation Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Matthew E. Pipkin
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States
| | - Jinyong Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
22
|
Li C, Liu P, Zhu H, Yang H, Zha J, Yao H, Zhang S, Huang J, Li G, Jiang G, Jiang Y, Dai A. T follicular helper cell is essential for M2 macrophage polarization and pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension. Respir Res 2024; 25:428. [PMID: 39633343 PMCID: PMC11619207 DOI: 10.1186/s12931-024-03058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Hypoxia-induced pulmonary hypertension (HPH) is a subgroup of type 3 pulmonary hypertension that may cause early right ventricular failure and eventual cardiac failure, which lacks potential therapeutic targets. Our previous research demonstrated that T follicular helper (TFH) cells that produce IL-21 were involved in HPH. However, the molecular mechanisms of TFH/IL-21-mediated pathogenesis of HPH have been elusive. Here we investigate the role of TFH cells and IL-21 in HPH. METHODS Studies were performed in C57BL/6 mice or IL-21 knockout mice exposed to chronic hypoxia to induce PH, and examined by hemodynamics. Molecular and cellular studies were performed in mouse lung and pulmonary arterial smooth muscle cells (PASMCs). M2 signature gene (Fizz1), M1 signature genes (iNos, IL-12β and MMP9), GC B cell and its marker GL-7, caspase-1, M2 macrophages, TFH cells, Bcl-6 and IL-21 level were measured. Proliferation rate of PASMCs was measured by EdU. Pyroptosis was assessed using Hoechst 33,342/PI double fluorescent staining. RESULTS In response to chronic hypoxia exposure-induced pulmonary hypertension, IL-21-/- mice or downregulation of TFH cells in WT mice developed blunted pulmonary hypertension, attenuated pulmonary vascular remodelling. Furthermore, chronic hypoxia exposure significantly increased the germinal center (GC) B cell responses, which were not present in IL-21-/- mice or downregulation of TFH cells in WT mice. Importantly, IL-21 promoted the polarization of primary alveolar macrophages toward the M2 phenotype. Consistently, significantly enhanced expression of M2 macrophage marker Fizz1 were detected in the bronchoalveolar lavage fluid of HPH mice. Moreover, alveolar macrophages that had been cultivated with IL-21 promoted PASMCs proliferation and pyroptosis in vitro, while a selective CX3CR1 antagonist, AZD8797 (AZD), significantly attenuated the proliferation and pyroptosis of the PASMCs. Finally, ECM1 knockdown promoted IL-2-STAT5 signaling and inhibited Bcl-6 signaling to inhibit TFH differentiation in HPH. CONCLUSIONS TFH/IL-21 axis amplified pulmonary vascular remodelling in HPH. This involved M2 macrophage polarization, PASMCs proliferation and pyroptosis. These data suggested that TFH/IL-21 axis may be a novel therapeutic target for the treatment of HPH.
Collapse
Affiliation(s)
- Cheng Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Pingping Liu
- Department of Emergency, Hunan Province Key Laboratory of Pediatric Emergency Medicine, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
| | - Hao Zhu
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Huan Yang
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Jun Zha
- Department of Respiratory and Critical Care Medicine, Changsha Central Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Huiling Yao
- Department of General Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Shaoze Zhang
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Jin Huang
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Guang Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Gang Jiang
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China.
| | - Yongliang Jiang
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China.
| | - Aiguo Dai
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China.
- Hunan Province Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
23
|
Gioulbasani M, Äijö T, Liu S, Montgomery SA, Montgomery ND, Corcoran D, Tsagaratou A. Concomitant loss of TET2 and TET3 results in T cell expansion and genomic instability in mice. Commun Biol 2024; 7:1606. [PMID: 39627458 PMCID: PMC11615039 DOI: 10.1038/s42003-024-07312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
Ten eleven translocation (TET) proteins are tumor suppressors that through their catalytic activity oxidize 5-methylcytosine to 5-hydroxymethylcytosine, to promote DNA demethylation and to regulate gene expression. Notably, TET2 is one of the most frequently mutated genes in hematological malignancies, including T cell lymphomas. However, murine models with deletion of TET2 do not exhibit T cell expansion, presumably due to redundancy with other members of the TET family of proteins. In order to gain insight on the TET mediated molecular events that safeguard T cells from aberrant proliferation we performed serial adoptive transfers of murine CD4 T cells that lack concomitantly TET2 and TET3 to fully immunocompetent congenic mice. Here we show a progressive acquisition of malignant traits upon loss of TET2 and TET3 that is characterized by loss of genomic integrity, acquisition of aneuploidy and upregulation of the protooncogene Myc.
Collapse
Affiliation(s)
- Marianthi Gioulbasani
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Tarmo Äijö
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Siyao Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie A Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Nathan D Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - David Corcoran
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ageliki Tsagaratou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
24
|
Franco Acevedo A, Mack JJ, Valenzuela NM. The transcriptional repressor B cell lymphoma 6 regulates CXCR3 chemokine and human leukocyte antigen II expression in endothelial cells. Am J Transplant 2024; 24:2157-2173. [PMID: 39074669 DOI: 10.1016/j.ajt.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Interferon gamma (IFN-γ) induces an endothelial proimmunogenic phenotype through the JAK/STAT1 pathway, which can shape the activation of alloreactive leukocytes in transplant rejection. In immune cells, the DNA-binding protein B cell lymphoma 6 (BCL6) controls the transcription of inflammatory genes. This study tested if BCL6 modulates IFN-γ-induced gene expression in endothelial cells. In vitro, BCL6 was IFN-γ-inducible in primary human endothelium, along with CXCR3 chemokines and human leukocyte antigen (HLA). BCL6, HLA II, and CXCL9 were also increased in human cardiac transplants during acute rejection. Knockdown of BCL6 augmented, whereas overexpression and BTB domain inhibitors (BCL6-BTBi) suppressed, HLA II and CXCR3 chemokine expression but not HLA I. Further, BCL6 had a greater effect on HLA-DR and DP but was less involved in regulating HLA-DQ expression. The effect correlated with BCL6 binding motifs in or near affected genes. The BCL6 DNA recognition sequence was highly similar to that of STAT1, and BTBi reduced STAT1's transcriptional activity in vitro. Our results show for the first time that BCL6 selectively controls IFN-γ-induced endothelial gene expression, advancing our understanding of the endogenous mechanisms regulating donor immunogenicity.
Collapse
Affiliation(s)
- Adriana Franco Acevedo
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, USA
| | - Julia J Mack
- Department of Cardiology, University of California, Los Angeles, USA
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, USA.
| |
Collapse
|
25
|
Wang J, Hao M, Wang Q, Liu M, Liu G, Han S, Zhao X, Che H. The conformational epitope of Ara h 5 was crucial to the severe reactivity of peanut allergy. Mol Immunol 2024; 176:11-21. [PMID: 39549640 DOI: 10.1016/j.molimm.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 10/23/2024] [Indexed: 11/18/2024]
Abstract
Conformational epitopes are associated with the development of food allergic tolerance and the severity of food allergy. Peanut can trigger severe anaphylactic reactions, however, the reason behind the severe allergic reactions caused by peanut remains unexplained. The purpose of this article was to provide an explanation for the severe allergy caused by peanut, focusing on the conformational epitopes of Ara h 5 and Ara h 8 allergens that exhibit cross-reactivity with asthma reactions. Ara h 5 and Ara h 8 proteins were prepared by an Escherichia coli expression system. IgE reactivity of 37 patients with allergy toward Ara h 5 and Ara h 8 allergens was assessed by using IgE-binding assays, dot blot and western blot. The allergenicity of Ara h 5 and Ara h 8 protein was analysed in mouse model. Conformational IgE epitopes of Ara h 5 was identified using phage peptide library and the Pepitope Server. Compared to Ara h 8, the conformational epitope of Ara h 5 protein was crucial in the process of sensitization. Ara h 5 showed a stronger IgE reactivity and the ability to induce β-hexosaminidase release. Ara h 5 caused more severe lung inflammation than Ara h 8 protein. While Ara h 8 caused more severe intestinal inflammation than Ara h 5. The results showed that the conformational epitope sequences of Ara h 5 were WETIYSR and FHWWYLK. The results provide a theoretical basis for the production of hypoallergenic peanut protein and the immunotherapy of peanut allergy.
Collapse
Affiliation(s)
- Junjuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, PR China
| | - Mengzhen Hao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - QianWei Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Manman Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Guirong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Shiwen Han
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, PR China
| | - Huilian Che
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
26
|
Iwata M, Takada A, Sakamoto R, Song SY, Ito E. The active form of vitamin D (calcitriol) promotes CXCR5 expression during follicular helper T cell differentiation. Int Immunol 2024; 37:53-70. [PMID: 39101520 PMCID: PMC11587897 DOI: 10.1093/intimm/dxae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 08/03/2024] [Indexed: 08/06/2024] Open
Abstract
Follicular helper T (Tfh) cells promote B cell differentiation and antibody production in the B cell follicles of secondary lymphoid organs. Tfh cells express their signature transcription factor BCL6, interleukin (IL)-21, and surface molecules including inducible T cell costimulator (ICOS), programmed cell death-1 (PD-1), and C-X-C motif chemokine receptor 5 (CXCR5). Migration of Tfh cells to B cell follicles largely depends on the CXCR5 expression induced by interactions with antigen-presenting dendritic cells in the T cell area. How Tfh cells acquire sufficient levels of CXCR5 expression, however, has remained unclear. Using our in vitro culture system to generate CXCR5low Tfh-like cells from naive CD4+ T cells with IL-6 in the absence of other cell types, we found that the active form of vitamin D, calcitriol, markedly enhanced CXCR5 expression after the release from persistent T cell receptor (TCR) stimulation. CH-223191, an aryl hydrocarbon receptor antagonist, further enhanced CXCR5 expression. IL-12 but not IL-4, in place of IL-6, also supported calcitriol to enhance CXCR5 expression even before the release from TCR stimulation, whereas the cell viability sharply decreased after the release. The Tfh-like cells generated with IL-6 and calcitriol exhibited chemotaxis toward C-X-C motif chemokine ligand 13 (CXCL13), expressed IL-21, and helped B cells to produce IgG antibodies in vitro more efficiently than Tfh-like cells generated without added calcitriol. Calcitriol injections into antigen-primed mice increased the proportion of CXCR5+PD-1+CD4+ cells in their lymphoid organs, and enhanced T cell entry into B cell follicles. These results suggest that calcitriol promotes CXCR5 expression in developing Tfh cells and regulates their functional differentiation.
Collapse
Affiliation(s)
- Makoto Iwata
- Research Organization for Nano and Life Innovation, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
| | - Ayumi Takada
- Department of Biology, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
| | - Rei Sakamoto
- Department of Biology, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
| | - Si-Young Song
- Waseda Research Institute for Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
| | - Etsuro Ito
- Research Organization for Nano and Life Innovation, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
- Department of Biology, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
| |
Collapse
|
27
|
Lee KH, Stafford AM, Pacheco-Vergara M, Cichewicz K, Canales CP, Seban N, Corea M, Rahbarian D, Bonekamp KE, Gillie GR, Pacheco-Cruz D, Gill AM, Hwang HE, Uhl KL, Jager TE, Shinawi M, Li X, Obenaus A, Crandall S, Jeong J, Nord A, Kim CH, Vogt D. Complimentary vertebrate Wac models exhibit phenotypes relevant to DeSanto-Shinawi Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595966. [PMID: 38826421 PMCID: PMC11142245 DOI: 10.1101/2024.05.26.595966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Monogenic syndromes are associated with neurodevelopmental changes that result in cognitive impairments, neurobehavioral phenotypes including autism and attention deficit hyperactivity disorder (ADHD), and seizures. Limited studies and resources are available to make meaningful headway into the underlying molecular mechanisms that result in these symptoms. One such example is DeSanto-Shinawi Syndrome (DESSH), a rare disorder caused by pathogenic variants in the WAC gene. Individuals with DESSH syndrome exhibit a recognizable craniofacial gestalt, developmental delay/intellectual disability, neurobehavioral symptoms that include autism, ADHD, behavioral difficulties and seizures. However, no thorough studies from a vertebrate model exist to understand how these changes occur. To overcome this, we developed both murine and zebrafish Wac/wac deletion mutants and studied whether their phenotypes recapitulate those described in individuals with DESSH syndrome. We show that the two Wac models exhibit craniofacial and behavioral changes, reminiscent of abnormalities found in DESSH syndrome. In addition, each model revealed impacts to GABAergic neurons and further studies showed that the mouse mutants are susceptible to seizures, changes in brain volumes that are different between sexes and relevant behaviors. Finally, we uncovered transcriptional impacts of Wac loss of function that will pave the way for future molecular studies into DESSH. These studies begin to uncover some biological underpinnings of DESSH syndrome and elucidate the biology of Wac, with advantages in each model.
Collapse
Affiliation(s)
- Kang-Han Lee
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - April M Stafford
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Maria Pacheco-Vergara
- Department of Molecular Pathology, New York University College of Dentistry, New York, NY 10010, USA
| | - Karol Cichewicz
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Cesar P Canales
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Nicolas Seban
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Melissa Corea
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Darlene Rahbarian
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Kelly E. Bonekamp
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Grant R. Gillie
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Dariangelly Pacheco-Cruz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Alyssa M Gill
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Hye-Eun Hwang
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Katie L Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | | | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Andre Obenaus
- Director, Preclinical and Translational Imaging Center, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Shane Crandall
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Juhee Jeong
- Department of Molecular Pathology, New York University College of Dentistry, New York, NY 10010, USA
| | - Alex Nord
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Daniel Vogt
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
28
|
He Z, Glass MC, Venkatesan P, Feser ML, Lazaro L, Okada LY, Tran NTT, He YD, Zaim SR, Bennett CE, Ravisankar P, Dornisch EM, Arishi NA, Asamoah AG, Barzideh S, Becker LA, Bemis EA, Buckner JH, Collora CE, Criley MAL, Demoruelle MK, Fleischer CL, Garber J, Genge PC, Gong Q, Graybuck LT, Gustafson CE, Hattel BC, Hernandez V, Heubeck AT, Kawelo EK, Krishnan U, Kuan EL, Kuhn KA, LaFrance CM, Lee KJ, Li R, Lord C, Mettey RR, Moss L, Musgrove B, Nguyen K, Ochoa A, Parthasarathy V, Pebworth MP, Pedrick C, Peng T, Phalen CG, Reading J, Roll CR, Seifert JA, Siedschlag MD, Speake C, Striebich CC, Stuckey TJ, Swanson EG, Takada H, Thai T, Thomson ZJ, Trieu N, Tsaltskan V, Wang W, Weiss MDA, Westermann A, Zhang F, Boyle DL, Goldrath AW, Bumol TF, Li XJ, Holers VM, Skene PJ, Savage AK, Firestein GS, Deane KD, Torgerson TR, Gillespie MA. Systemic inflammation and lymphocyte activation precede rheumatoid arthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620344. [PMID: 39554042 PMCID: PMC11565773 DOI: 10.1101/2024.10.25.620344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Some autoimmune diseases, including rheumatoid arthritis (RA), are preceded by a critical subclinical phase of disease activity. Proactive clinical management is hampered by a lack of biological understanding of this subclinical 'at-risk' state and the changes underlying disease development. In a cross-sectional and longitudinal multi-omics study of peripheral immunity in the autoantibody-positive at-risk for RA period, we identified systemic inflammation, proinflammatory-skewed B cells, expanded Tfh17-like cells, epigenetic bias in naive T cells, TNF+IL1B+ monocytes resembling a synovial macrophage population, and CD4 T cell transcriptional features resembling those suppressed by abatacept (CTLA4-Ig) in RA patients. Our findings characterize pathogenesis prior to clinical diagnosis and suggest the at-risk state exhibits substantial immune alterations that could potentially be targeted for early intervention to delay or prevent autoimmunity. We provide a suite of tools at https://apps.allenimmunology.org/aifi/insights/ra-progression/ to facilitate exploration and enhance accessibility of this extensive dataset.
Collapse
Affiliation(s)
- Ziyuan He
- Allen Institute for Immunology, Seattle WA 98109, USA
| | | | | | - Marie L. Feser
- University of Colorado Anschutz Medical Campus, Aurora CO 80045, USA
| | | | | | | | - Yudong D. He
- Allen Institute for Immunology, Seattle WA 98109, USA
| | | | | | | | | | - Najeeb A. Arishi
- University of Colorado Anschutz Medical Campus, Aurora CO 80045, USA
| | - Ashley G. Asamoah
- University of Colorado Anschutz Medical Campus, Aurora CO 80045, USA
| | - Saman Barzideh
- University of Colorado Anschutz Medical Campus, Aurora CO 80045, USA
| | | | | | - Jane H. Buckner
- BRI Center for Interventional Immunology, Seattle WA 98101, USA
| | | | | | | | | | | | | | - Qiuyu Gong
- Allen Institute for Immunology, Seattle WA 98109, USA
| | | | | | - Brian C. Hattel
- University of Colorado Anschutz Medical Campus, Aurora CO 80045, USA
| | | | | | | | | | - Emma L. Kuan
- Allen Institute for Immunology, Seattle WA 98109, USA
| | - Kristine A. Kuhn
- University of Colorado Anschutz Medical Campus, Aurora CO 80045, USA
| | | | - Kevin J. Lee
- Allen Institute for Immunology, Seattle WA 98109, USA
| | - Ruoxin Li
- Allen Institute for Immunology, Seattle WA 98109, USA
| | - Cara Lord
- Allen Institute for Immunology, Seattle WA 98109, USA
| | | | - LauraKay Moss
- University of Colorado Anschutz Medical Campus, Aurora CO 80045, USA
| | | | | | - Andrea Ochoa
- University of California, San Diego, CA 92093, USA
| | | | | | - Chong Pedrick
- University of Colorado Anschutz Medical Campus, Aurora CO 80045, USA
| | - Tao Peng
- Allen Institute for Immunology, Seattle WA 98109, USA
| | | | | | | | | | | | - Cate Speake
- BRI Center for Interventional Immunology, Seattle WA 98101, USA
| | | | | | | | - Hideto Takada
- University of Colorado Anschutz Medical Campus, Aurora CO 80045, USA
| | - Tylor Thai
- University of Colorado Anschutz Medical Campus, Aurora CO 80045, USA
| | | | - Nguyen Trieu
- University of California, San Diego, CA 92093, USA
| | | | - Wei Wang
- University of California, San Diego, CA 92093, USA
| | | | | | - Fan Zhang
- University of Colorado Anschutz Medical Campus, Aurora CO 80045, USA
| | | | | | | | - Xiao-jun Li
- Allen Institute for Immunology, Seattle WA 98109, USA
| | - V. Michael Holers
- University of Colorado Anschutz Medical Campus, Aurora CO 80045, USA
| | | | | | | | - Kevin D. Deane
- University of Colorado Anschutz Medical Campus, Aurora CO 80045, USA
| | | | | |
Collapse
|
29
|
Verstegen NJM, Jorritsma T, ten Brinke A, Barberis M, van Ham SM. TCR-CD3 signal strength regulates plastic coexpression of IL-4 and IFN-γ in Tfh-like cells. Front Immunol 2024; 15:1481243. [PMID: 39582865 PMCID: PMC11581847 DOI: 10.3389/fimmu.2024.1481243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 11/26/2024] Open
Abstract
The development of T follicular helper (Tfh) cells is an ongoing process resulting in the formation of various Tfh subsets. Despite advancements, the precise impact of T cell receptor (TCR) stimulation on this process remains incompletely understood. This study explores how TCR-CD3 signaling strength influences naive CD4+ T cell differentiation into Tfh-like cells and the concurrent expression of interleukin-21 (IL-21), interleukin-4 (IL-4), and interferon-gamma (IFN-γ). Strong TCR-CD3 stimulation induces proliferation and increased IL-21 expression in Tfh-like cells, which exhibit a characteristic phenotype expressing CXCR5 and PD1. The coexpression of IL-4 and IFN-γ in IL-21-producing Tfh-like cells is controlled by the strength TCR-CD3 stimulation; low stimulation favors IL-4, while strong stimulation enhances IFN-γ secretion. Exogenous addition of the effector cytokines IL-21 and IL-4 further modulate cytokine coexpression. These findings highlight the intricate regulatory mechanisms governing cytokine production and plasticity in Tfh-like cells, providing insights into B cell response modulation. In vivo, antigen availability may regulate Tfh cell plasticity, impacting subsequent B cell differentiation, emphasizing the need for further exploration through animal models or antigen-specific Tfh cell analyses in human lymph node biopsies.
Collapse
Affiliation(s)
- Niels J. M. Verstegen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Tineke Jorritsma
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Anja ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Molecular Systems Biology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Centre for Mathematical and Computational Biology (CMCB), University of Surrey, Guildford, United Kingdom
| | - S. Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
30
|
Liongue C, Almohaisen FLJ, Ward AC. B Cell Lymphoma 6 (BCL6): A Conserved Regulator of Immunity and Beyond. Int J Mol Sci 2024; 25:10968. [PMID: 39456751 PMCID: PMC11507070 DOI: 10.3390/ijms252010968] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
B cell lymphoma 6 (BCL6) is a conserved multi-domain protein that functions principally as a transcriptional repressor. This protein regulates many pivotal aspects of immune cell development and function. BCL6 is critical for germinal center (GC) formation and the development of high-affinity antibodies, with key roles in the generation and function of GC B cells, follicular helper T (Tfh) cells, follicular regulatory T (Tfr) cells, and various immune memory cells. BCL6 also controls macrophage production and function as well as performing a myriad of additional roles outside of the immune system. Many of these regulatory functions are conserved throughout evolution. The BCL6 gene is also important in human oncology, particularly in diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL), but also extending to many in other cancers, including a unique role in resistance to a variety of therapies, which collectively make BCL6 inhibitors highly sought-after.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Farooq L. J. Almohaisen
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Department of Medical Laboratory Techniques, Southern Technical University, Basra 61001, Iraq
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
31
|
Del Carmen Crespo Oliva C, Labrie M, Allard-Chamard H. T peripheral helper (Tph) cells, a marker of immune activation in cancer and autoimmune disorders. Clin Immunol 2024; 266:110325. [PMID: 39067677 DOI: 10.1016/j.clim.2024.110325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
T peripheral helper (Tph) cells are a newly discovered subtype of CD4+ T cells that have emerged as the counterpart of T follicular helper (Tfh) cells in the peripheral tissues. These two cell types share some common characteristics, such as high levels of PD1 and CXCL13 expression, but differ in the expression of transcription factors and chemokine receptors. Tph cells have been studied in relation to B cells' effector functions, including cytokines production and antibody-mediated immune responses. However, their role in the inflammatory-mediated development of malignancies remains poorly understood. Tph cells were initially identified in the synovium of rheumatoid arthritis patients and have since been found to be expanded in several autoimmune diseases. They have been linked to a worse prognosis in autoimmune conditions, but intriguingly, their presence has been correlated with better outcomes in certain types of cancer. The functions of Tph cells are still being investigated, but recent data suggests their involvement in the assembly of tertiary lymphoid structures (TLS). Furthermore, their interaction with B cells, which have been mainly described as possessing a memory phenotype, promotes their development. In this review, we explore the role of Tph cells in peripheral immune responses during cancer and autoimmune disorders.
Collapse
Affiliation(s)
- Celia Del Carmen Crespo Oliva
- Department of Medicine, Cancer Research Institute, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Department of Immunology and Cell Biology, Cancer Research Institute, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Department of Obstetrics and Gynecology, Cancer Research Institute, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marilyne Labrie
- Department of Immunology and Cell Biology, Cancer Research Institute, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Department of Obstetrics and Gynecology, Cancer Research Institute, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Hugues Allard-Chamard
- Department of Medicine, Cancer Research Institute, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Division of Rheumatology, Department of Medicine, Faculty of Medicine andd Health Sciences, Université de sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
32
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
33
|
Dai Q, Li M, Tian X, Song Y, Zhao J. Identification of Lupus-Associated Genes in the Pathogenesis of Pre-eclampsia Via Bioinformatic Analysis. Bioinform Biol Insights 2024; 18:11779322241271558. [PMID: 39170671 PMCID: PMC11337183 DOI: 10.1177/11779322241271558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/28/2024] [Indexed: 08/23/2024] Open
Abstract
Pre-eclampsia (PE) is a severe pregnancy complication that is more common in patients with systemic lupus erythematosus (SLE). Although the exact causes of these conditions are not fully understood, the immune system plays a key role. To investigate the connection between SLE and PE, we analyzed genes associated with SLE that may contribute to the development of PE. We collected 9 microarray data sets from the NCBI GEO database and used Limma to identify the differentially expressed genes (DEGs). In addition, we employed weighted gene co-expression network analysis (WGCNA) to pinpoint the hub genes of SLE and examined immune infiltration using Cibersort. By constructing a protein-protein interaction (PPI) network and using CytoHubba, we identified the top 20 PE hub genes. Subsequently, we created a nomogram and conducted a receiver operating characteristic (ROC) analysis to predict the risk of PE. Our analysis, including gene set enrichment analysis (GSEA) and PE DEGs enrichment analysis, revealed significant involvement in placenta development and immune response. Two pivotal genes, BCL6 and MME, were identified, and their validity was confirmed using 5 data sets. The nomogram demonstrated good diagnostic performance (AUC: 0.82-0.96). Furthermore, we found elevated expression levels of both genes in SLE peripheral blood mononuclear cells (PBMCs) and PE placental specimens within the case group. Analysis of immune infiltration in the SLE data set showed a strong positive correlation between the expression of both genes and neutrophil infiltration. BCL6 and MME emerged as crucial genes in lupus-related pregnancies associated with the development of PE, for which we devised a nomogram. These findings provide potential candidate genes for further research in the diagnosis and understanding of the pathophysiology of PE.
Collapse
Affiliation(s)
- Qianwen Dai
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yijun Song
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
34
|
Moysi E, Sharma AA, O’Dell S, Georgakis S, Del Rio Estrada PM, Torres-Ruiz F, Navarro MG, Villalobos YAL, Rios SA, Reyes-Teran G, Beddall MH, Ko SH, Belinky F, Orfanakis M, de Leval L, Enriquez AB, Buckner CM, Moir S, Doria-Rose N, Boritz E, Mascola JR, Sekaly RP, Koup RA, Petrovas C. Neutralization activity in chronic HIV infection is characterized by a distinct programming of follicular helper CD4 T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605954. [PMID: 39131331 PMCID: PMC11312598 DOI: 10.1101/2024.07.31.605954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
A subset of people living with HIV (PLWH) can produce broadly neutralizing antibodies (bNAbs) against HIV, but the lymph node (LN) dynamics that promote the generation of these antibodies are poorly understood. Here, we explored LN-associated histological, immunological, and virological mechanisms of bNAb generation in a cohort of anti-retroviral therapy (ART)-naïve PLWH. We found that participants who produce bNAbs, termed neutralizers, have a superior LN-associated B cell follicle architecture compared with PLWH who do not. The latter was associated with a significantly higher in situ prevalence of Bcl-6hi follicular helper CD4 T cells (TFH), expressing a molecular program that favors their differentiation and stemness, and significantly reduced IL-10 follicular suppressor CD4 T cells. Furthermore, our data reveal possible molecular targets mediating TFH- B cell interactions in neutralizers. Together, we identify cellular and molecular mechanisms that contribute to the development of bNAbs in PLWH.
Collapse
Affiliation(s)
- Eirini Moysi
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Ashish A. Sharma
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sijy O’Dell
- Virology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Spiros Georgakis
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Perla Mariana Del Rio Estrada
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Fernanda Torres-Ruiz
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Mauricio González Navarro
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico, Subdireccion de Otorrinolaringologia, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”
| | - Yara Andrea Luna Villalobos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Santiago Avila Rios
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Gustavo Reyes-Teran
- Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Secretaría de Salud de México, Mexico City, Mexico
| | - Margaret H. Beddall
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Sung-Hee Ko
- Virus Persistence and Dynamics Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Frida Belinky
- Virus Persistence and Dynamics Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Michail Orfanakis
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laurence de Leval
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ana B. Enriquez
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Susan Moir
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Nicole Doria-Rose
- Virology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Eli Boritz
- Virus Persistence and Dynamics Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - John R. Mascola
- Virology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
- ModeX Therapeutics, Weston, MA, USA
| | - Rafick-Pierre Sekaly
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard A. Koup
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Cardani-Boulton A, Lin F, Bergmann CC. CD6 Regulates CD4 T Follicular Helper Cell Differentiation and Humoral Immunity During Murine Coronavirus Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605237. [PMID: 39091786 PMCID: PMC11291160 DOI: 10.1101/2024.07.26.605237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
During activation the T cell transmembrane receptor CD6 becomes incorporated into the T cell immunological synapse where it can exert both co-stimulatory and co-inhibitory functions. Given the ability of CD6 to carry out opposing functions, this study sought to determine how CD6 regulates early T cell activation in response to viral infection. Infection of CD6 deficient mice with a neurotropic murine coronavirus resulted in greater activation and expansion of CD4 T cells in the draining lymph nodes. Further analysis demonstrated that there was also preferential differentiation of CD4 T cells into T follicular helper cells, resulting in accelerated germinal center responses and emergence of high affinity virus specific antibodies. Given that CD6 conversely supports CD4 T cell activation in many autoimmune models, we probed potential mechanisms of CD6 mediated suppression of CD4 T cell activation during viral infection. Analysis of CD6 binding proteins revealed that infection induced upregulation of Ubash3a, a negative regulator of T cell receptor signaling, was hindered in CD6 deficient lymph nodes. Consistent with greater T cell activation and reduced UBASH3a activity, the T cell receptor signal strength was intensified in CD6 deficient CD4 T cells. These results reveal a novel immunoregulatory role for CD6 in limiting CD4 T cell activation and deterring CD4 T follicular helper cell differentiation, thereby attenuating antiviral humoral immunity.
Collapse
Affiliation(s)
- Amber Cardani-Boulton
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Western Reserve University, Cleveland Clinic, Lerner College of Medicine, Cleveland, OH
| | - Feng Lin
- Case Western Reserve University, Cleveland Clinic, Lerner College of Medicine, Cleveland, OH
- Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Cornelia C Bergmann
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Western Reserve University, Cleveland Clinic, Lerner College of Medicine, Cleveland, OH
| |
Collapse
|
36
|
LIU X, ZHANG Y, ZHANG X, HE G, CAI W. [Progress of IL-21 and Tfh Mediated Immunotherapy in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:550-558. [PMID: 39147710 PMCID: PMC11331254 DOI: 10.3779/j.issn.1009-3419.2024.101.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Indexed: 08/17/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a prevalent and aggressive global malignancy. Conventional surgical treatments, radiotherapy, chemotherapy, and targeted therapies often fall short in halting disease progression due to inherent limitations, resulting in suboptimal prognosis. Despite the advent of immunotherapy drugs offering new hope for NSCLC treatment, current efficacy remains insufficient to meet all patient needs. Therefore, actively exploring novel immunotherapeutic approaches to further reduce mortality rates in NSCLC patients has become a crucial focus of NSCLC research. This article aims to systematically review the anti-tumor effects of interleukin-21 and follicular helper T cells in NSCLC immunotherapy by summarizing and analyzing relevant literatures from both domestic and international sources, as well as exploring the potential for enhancing NSCLC treatment prospects through immune checkpoint regulation via immunotherapeutic means.
.
Collapse
|
37
|
Liang C, Spoerl S, Xiao Y, Habenicht KM, Haeusl SS, Sandner I, Winkler J, Strieder N, Eder R, Stanewsky H, Alexiou C, Dudziak D, Rosenwald A, Edinger M, Rehli M, Hoffmann P, Winkler TH, Berberich-Siebelt F. Oligoclonal CD4 +CXCR5 + T cells with a cytotoxic phenotype appear in tonsils and blood. Commun Biol 2024; 7:879. [PMID: 39025930 PMCID: PMC11258247 DOI: 10.1038/s42003-024-06563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
In clinical situations, peripheral blood accessible CD3+CD4+CXCR5+ T-follicular helper (TFH) cells may have to serve as a surrogate indicator for dysregulated germinal center responses in tissues. To determine the heterogeneity of TFH cells in peripheral blood versus tonsils, CD3+CD4+CD45RA-CXCR5+ cells of both origins were sorted. Transcriptomes, TCR repertoires and cell-surface protein expression were analysed by single-cell RNA sequencing, flow cytometry and immunohistochemistry. Reassuringly, all blood-circulating CD3+CD4+CXCR5+ T-cell subpopulations also appear in tonsils, there with some supplementary TFH characteristics, while peripheral blood-derived TFH cells display markers of proliferation and migration. Three further subsets of TFH cells, however, with bona fide T-follicular gene expression patterns, are exclusively found in tonsils. One additional, distinct and oligoclonal CD4+CXCR5+ subpopulation presents pronounced cytotoxic properties. Those 'killer TFH (TFK) cells' can be discovered in peripheral blood as well as among tonsillar cells but are located predominantly outside of germinal centers. They appear terminally differentiated and can be distinguished from all other TFH subsets by expression of NKG7 (TIA-1), granzymes, perforin, CCL5, CCR5, EOMES, CRTAM and CX3CR1. All in all, this study provides data for detailed CD4+CXCR5+ T-cell assessment of clinically available blood samples and extrapolation possibilities to their tonsil counterparts.
Collapse
Affiliation(s)
- Chunguang Liang
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Silvia Spoerl
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Yin Xiao
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Katharina M Habenicht
- Division of Genetics, Department Biology, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sigrun S Haeusl
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Isabel Sandner
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Julia Winkler
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | | | - Rüdiger Eder
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | | | - Christoph Alexiou
- Department of Otorhinolaryngology, Head & Neck Surgery, Else Kröner-Fresenius-Foundation-Professorship, Section of Experimental Oncology & Nanomedicine (SEON), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Matthias Edinger
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Michael Rehli
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Petra Hoffmann
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Thomas H Winkler
- Division of Genetics, Department Biology, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
38
|
Vidyarthi A, Craft J. CBLs downregulation foretells T cell ubiquitination leading to autoimmunity. Cell Chem Biol 2024; 31:1239-1241. [PMID: 39029453 DOI: 10.1016/j.chembiol.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/21/2024]
Abstract
In a study published in the July issue of Immunity, Li et al.1 demonstrate that expression of the E3 ubiquitin ligases CBL and CBL-B is downregulated in Tfh cells in SLE with Tfh cell expansion and autoimmunity. This leads to reduced ubiquitination of the T cell costimulator ICOS which regulates proteostasis of the Tfh cell transcription factor BCL6 via chaperone-mediated autophagy.
Collapse
Affiliation(s)
| | - Joe Craft
- Yale University School of Medicine, New Haven, CT 06520-8031, USA.
| |
Collapse
|
39
|
Li X, Sun W, Huang M, Gong L, Zhang X, Zhong L, Calderon V, Bian Z, He Y, Suh WK, Li Y, Song T, Zou Y, Lian ZX, Gu H. Deficiency of CBL and CBLB ubiquitin ligases leads to hyper T follicular helper cell responses and lupus by reducing BCL6 degradation. Immunity 2024; 57:1603-1617.e7. [PMID: 38761804 DOI: 10.1016/j.immuni.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/01/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
Recent evidence reveals hyper T follicular helper (Tfh) cell responses in systemic lupus erythematosus (SLE); however, molecular mechanisms responsible for hyper Tfh cell responses and whether they cause SLE are unclear. We found that SLE patients downregulated both ubiquitin ligases, casitas B-lineage lymphoma (CBL) and CBLB (CBLs), in CD4+ T cells. T cell-specific CBLs-deficient mice developed hyper Tfh cell responses and SLE, whereas blockade of Tfh cell development in the mutant mice was sufficient to prevent SLE. ICOS was upregulated in SLE Tfh cells, whose signaling increased BCL6 by attenuating BCL6 degradation via chaperone-mediated autophagy (CMA). Conversely, CBLs restrained BCL6 expression by ubiquitinating ICOS. Blockade of BCL6 degradation was sufficient to enhance Tfh cell responses. Thus, the compromised expression of CBLs is a prevalent risk trait shared by SLE patients and causative to hyper Tfh cell responses and SLE. The ICOS-CBLs axis may be a target to treat SLE.
Collapse
Affiliation(s)
- Xin Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China; Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada.
| | - Weili Sun
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Mengxing Huang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Liying Gong
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Xiaochen Zhang
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Department of Microbiology, Infectiology, and Immunology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Li Zhong
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | | | - Zhenhua Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, China
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Woong-Kyung Suh
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Yang Li
- Department of Rheumatology and Immunology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Tengfei Song
- The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Yongrui Zou
- The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Zhe-Xiong Lian
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China.
| | - Hua Gu
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada; Department of Microbiology, Infectiology, and Immunology, University of Montreal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
40
|
Cheng Q, Yang X, Zou T, Sun L, Zhang X, Deng L, Wu M, Gai W, Jiang H, Guo T, Lu Y, Dong J, Niu C, Pan W, Zhang J. RACK1 enhances STAT3 stability and promotes T follicular helper cell development and function during blood-stage Plasmodium infection in mice. PLoS Pathog 2024; 20:e1012352. [PMID: 39024388 PMCID: PMC11288429 DOI: 10.1371/journal.ppat.1012352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/30/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
CD4+ T cells are central mediators of protective immunity to blood-stage malaria, particularly for their capacity in orchestrating germinal center reaction and generating parasite-specific high-affinity antibodies. T follicular helper (Tfh) cells are predominant CD4+ effector T cell subset implicated in these processes, yet the factors and detailed mechanisms that assist Tfh cell development and function during Plasmodium infection are largely undefined. Here we provide evidence that receptor for activated C kinase 1 (RACK1), an adaptor protein of various intracellular signals, is not only important for CD4+ T cell expansion as previously implied but also plays a prominent role in Tfh cell differentiation and function during blood-stage Plasmodium yoelii 17XNL infection. Consequently, RACK1 in CD4+ T cells contributes significantly to germinal center formation, parasite-specific IgG production, and host resistance to the infection. Mechanistic exploration detects specific interaction of RACK1 with STAT3 in P. yoelii 17XNL-responsive CD4+ T cells, ablation of RACK1 leads to defective STAT3 phosphorylation, accompanied by substantially lower amount of STAT3 protein in CD4+ T cells, whereas retroviral overexpression of RACK1 or STAT3 in RACK1-deficient CD4+ T cells greatly restores STAT3 activity and Bcl-6 expression under the Tfh polarization condition. Further analyses suggest RACK1 positively regulates STAT3 stability by inhibiting the ubiquitin-proteasomal degradation process, thus promoting optimal STAT3 activity and Bcl-6 induction during Tfh cell differentiation. These findings uncover a novel mechanism by which RACK1 participates in posttranslational regulation of STAT3, Tfh cell differentiation, and subsequent development of anti-Plasmodium humoral immunity.
Collapse
Affiliation(s)
- Qianqian Cheng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiqin Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tao Zou
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lin Sun
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Xueting Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lijiao Deng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Mengyao Wu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wenbin Gai
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hui Jiang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tingting Guo
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yuchen Lu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chunxiao Niu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Weiqing Pan
- Department of Tropical Diseases, Navy Medical University, Shanghai, China
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
41
|
Fang Q, Lu X, Zhu Y, Lv X, Yu F, Ma X, Liu B, Zhang H. Development of a PCSK9-targeted nanoparticle vaccine to effectively decrease the hypercholesterolemia. Cell Rep Med 2024; 5:101614. [PMID: 38897173 PMCID: PMC11228807 DOI: 10.1016/j.xcrm.2024.101614] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/28/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the low-density lipoprotein receptor (LDLR) and mediates its internalization and degradation, resulting in an increase in LDL cholesterol levels. Recently, PCSK9 emerged as a therapeutic target for hypercholesterolemia and atherosclerosis. In this study, we develop a PCSK9 nanoparticle (NP) vaccine by covalently conjugating the catalytic domain (aa 153-aa 454, D374Y) of PCSK9 to self-assembled 24-mer ferritin NPs. We demonstrate that the PCSK9 NP vaccine effectively induces interfering antibodies against PCSK9 and reduces serum lipids levels in both a high-fat diet-induced hypercholesterolemia model and an adeno-associated virus-hPCSK9D374Y-induced hypercholesterolemia model. Additionally, the vaccine significantly reduces plaque lesion areas in the aorta and macrophages infiltration in an atherosclerosis mouse model. Furthermore, we discover that the vaccine's efficacy relied on T follicular help cells and LDLR. Overall, these findings suggest that the PCSK9 NP vaccine holds promise as an effective treatment for hypercholesterolemia and atherosclerosis.
Collapse
Affiliation(s)
- Qiannan Fang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Xinyu Lu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Yuanqiang Zhu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University·Zhaoqing Hospital, Zhaoqing, Guangdong 510630, China
| | - Xi Lv
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Fei Yu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Xiancai Ma
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong 510005, China
| | - Bingfeng Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
42
|
Park J, Lee J, Hur Y, Kim CJ, Kim HB, Um D, Kim DS, Lee JY, Park S, Park Y, Kim TK, Im SH, Kim SW, Kwok SK, Lee Y. ETV5 promotes lupus pathogenesis and follicular helper T cell differentiation by inducing osteopontin expression. Proc Natl Acad Sci U S A 2024; 121:e2322009121. [PMID: 38843187 PMCID: PMC11181037 DOI: 10.1073/pnas.2322009121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Follicular helper T (TFH) cells mediate germinal center reactions to generate high affinity antibodies against specific pathogens, and their excessive production is associated with the pathogenesis of systemic autoimmune diseases such as systemic lupus erythematosus (SLE). ETV5, a member of the ETS transcription factor family, promotes TFH cell differentiation in mice. In this study, we examined the role of ETV5 in the pathogenesis of lupus in mice and humans. T cell-specific deletion of Etv5 alleles ameliorated TFH cell differentiation and autoimmune phenotypes in lupus mouse models. Further, we identified SPP1 as an ETV5 target that promotes TFH cell differentiation in both mice and humans. Notably, extracellular osteopontin (OPN) encoded by SPP1 enhances TFH cell differentiation by activating the CD44-AKT signaling pathway. Furthermore, ETV5 and SPP1 levels were increased in CD4+ T cells from patients with SLE and were positively correlated with disease activity. Taken together, our findings demonstrate that ETV5 is a lupus-promoting transcription factor, and secreted OPN promotes TFH cell differentiation.
Collapse
Affiliation(s)
- Jiho Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Jongeun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Yunjung Hur
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Chan-Johng Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Han Bit Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Dahun Um
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Da Som Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul06591, Republic of Korea
| | - June-Yong Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, and Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Sungjun Park
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon34114, Republic of Korea
| | - Youngjae Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul06591, Republic of Korea
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul03722, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul06591, Republic of Korea
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul06591, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul03722, Republic of Korea
| |
Collapse
|
43
|
Mo WJ, Liang ZQ, Huang JZ, Huang ZG, Zhi ZF, Chen JH, Chen G, Zeng JJ, Feng ZB. Clinicopathological role of Cyclin A2 in uterine corpus endometrial carcinoma: Integration of tissue microarrays and ScRNA-Seq. Int J Biol Markers 2024; 39:168-183. [PMID: 38646803 DOI: 10.1177/03936155241238759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
BACKGROUND The comprehensive expression level and potential molecular role of Cyclin A2 (CCNA2) in uterine corpus endometrial carcinoma (UCEC) remains undiscovered. METHODS UCEC and normal endometrium tissues from in-house and public databases were collected for investigating protein and messenger RNA expression of CCNA2. The transcription factors of CCNA2 were identified by the Cistrome database. The prognostic significance of CCNA2 in UCEC was evaluated through univariate and multivariate Cox regression as well as Kaplan-Meier curve analysis. Single-cell RNA-sequencing (scRNA-seq) analysis was performed to explore cell types in UCEC, and the AUCell algorithm was used to investigate the activity of CCNA2 in different cell types. RESULTS A total of 32 in-house UCEC and 30 normal endometrial tissues as well as 720 UCEC and 165 control samples from public databases were eligible and collected. Integrated calculation showed that the CCNA2 expression was up-regulated in the UCEC tissues (SMD = 2.43, 95% confidence interval 2.23∼2.64). E2F1 and FOXM1 were identified as transcription factors due to the presence of binding peaks on transcription site of CCNA2. CCNA2 predicted worse prognosis in UCEC. However, CCNA2 was not an independent prognostic factor in UCEC. The scRNA-seq analysis disclosed five cell types: B cells, T cells, monocytes, natural killer cells, and epithelial cells in UCEC. The expression of CCNA2 was mainly located in B cells and T cells. Moreover, CCNA2 was active in T cells and B cells using the AUCell algorithm. CONCLUSION CCNA2 was up-regulated and mainly located in T cells and B cells in UCEC. Overexpression of CCNA2 predicted unfavorable prognosis of UCEC.
Collapse
Affiliation(s)
- Wei-Jia Mo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zi-Qian Liang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jie-Zhuang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhi-Fu Zhi
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun-Hong Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing-Jing Zeng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
44
|
Kim YJ, Choi J, Choi YS. Transcriptional regulation of Tfh dynamics and the formation of immunological synapses. Exp Mol Med 2024; 56:1365-1372. [PMID: 38825646 PMCID: PMC11263543 DOI: 10.1038/s12276-024-01254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 06/04/2024] Open
Abstract
Inside germinal centers (GCs), antigen-specific B cells rely on precise interactions with immune cells and strategic localization between the dark and light zones to clonally expand, undergo affinity maturation, and differentiate into long-lived plasma cells or memory B cells. Follicular helper T (Tfh) cells, the key gatekeepers of GC-dependent humoral immunity, exhibit remarkable dynamic positioning within secondary lymphoid tissues and rely on intercellular interactions with antigen-presenting cells (APCs) during their differentiation and execution of B-cell-facilitating functions within GCs. In this review, we briefly cover the transcriptional regulation of Tfh cell differentiation and function and explore the molecular mechanisms governing Tfh cell motility, their interactions with B cells within GCs, and the impact of their dynamic behavior on humoral responses.
Collapse
Affiliation(s)
- Ye-Ji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jinyong Choi
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea.
- Transplantation Research Institute, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
45
|
Yan M, Gao J, Lan M, Wang Q, Cao Y, Zheng Y, Yang Y, Li W, Yu X, Huang X, Dou L, Liu B, Liu J, Cheng H, Ouyang K, Xu K, Sun S, Liu J, Tang W, Zhang X, Man Y, Sun L, Cai J, He Q, Tang F, Li J, Shen T. DEAD-box helicase 17 (DDX17) protects cardiac function by promoting mitochondrial homeostasis in heart failure. Signal Transduct Target Ther 2024; 9:127. [PMID: 38782919 PMCID: PMC11116421 DOI: 10.1038/s41392-024-01831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/23/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
DEAD-box helicase 17 (DDX17) is a typical member of the DEAD-box family with transcriptional cofactor activity. Although DDX17 is abundantly expressed in the myocardium, its role in heart is not fully understood. We generated cardiomyocyte-specific Ddx17-knockout mice (Ddx17-cKO), cardiomyocyte-specific Ddx17 transgenic mice (Ddx17-Tg), and various models of cardiomyocyte injury and heart failure (HF). DDX17 is downregulated in the myocardium of mouse models of heart failure and cardiomyocyte injury. Cardiomyocyte-specific knockout of Ddx17 promotes autophagic flux blockage and cardiomyocyte apoptosis, leading to progressive cardiac dysfunction, maladaptive remodeling and progression to heart failure. Restoration of DDX17 expression in cardiomyocytes protects cardiac function under pathological conditions. Further studies showed that DDX17 can bind to the transcriptional repressor B-cell lymphoma 6 (BCL6) and inhibit the expression of dynamin-related protein 1 (DRP1). When DDX17 expression is reduced, transcriptional repression of BCL6 is attenuated, leading to increased DRP1 expression and mitochondrial fission, which in turn leads to impaired mitochondrial homeostasis and heart failure. We also investigated the correlation of DDX17 expression with cardiac function and DRP1 expression in myocardial biopsy samples from patients with heart failure. These findings suggest that DDX17 protects cardiac function by promoting mitochondrial homeostasis through the BCL6-DRP1 pathway in heart failure.
Collapse
Affiliation(s)
- Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
- Peking University Fifth School of Clinical Medicine, Beijing, 100730, China
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Junpeng Gao
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, 100871, China
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ming Lan
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
| | - Que Wang
- Department of Health Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuan Cao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
- Peking University Fifth School of Clinical Medicine, Beijing, 100730, China
| | - Yuxuan Zheng
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yao Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Wenlin Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiaoxue Yu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Bing Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Junmeng Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology and Department of Cardiology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Kun Xu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Shenghui Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Jin Liu
- Experimental Technology Center for Life Sciences at Beijing Normal University, Beijing, 100875, China
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiyue Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Yong Man
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Liang Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Jianping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Qing He
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
- Peking University Fifth School of Clinical Medicine, Beijing, 100730, China.
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
- Peking University Fifth School of Clinical Medicine, Beijing, 100730, China.
- Graduate School of Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
46
|
Liu G, Wang Z, Li S. Heterogeneity and plasticity of tissue-resident memory T cells in skin diseases and homeostasis: a review. Front Immunol 2024; 15:1378359. [PMID: 38779662 PMCID: PMC11109409 DOI: 10.3389/fimmu.2024.1378359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Skin tissue-resident memory T (Trm) cells are produced by antigenic stimulation and remain in the skin for a long time without entering the peripheral circulation. In the healthy state Trm cells can play a patrolling and surveillance role, but in the disease state Trm cells differentiate into various phenotypes associated with different diseases, exhibit different localizations, and consequently have local protective or pathogenic roles, such as disease recurrence in vitiligo and maintenance of immune homeostasis in melanoma. The most common surface marker of Trm cells is CD69/CD103. However, the plasticity of tissue-resident memory T cells after colonization remains somewhat uncertain. This ambiguity is largely due to the variation in the functionality and ultimate destination of Trm cells produced from memory cells differentiated from diverse precursors. Notably, the presence of Trm cells is not stationary across numerous non-lymphoid tissues, most notably in the skin. These cells may reenter the blood and distant tissue sites during the recall response, revealing the recycling and migration potential of the Trm cell progeny. This review focuses on the origin and function of skin Trm cells, and provides new insights into the role of skin Trm cells in the treatment of autoimmune skin diseases, infectious skin diseases, and tumors.
Collapse
Affiliation(s)
- Guomu Liu
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun, China
| | - Ziyue Wang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Shanshan Li
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
47
|
Lin M, Huang L, Huang J, Yu J, Yang X, Yang J. Modulation of PKM2 inhibits follicular helper T cell differentiation and ameliorates inflammation in lupus-prone mice. J Autoimmun 2024; 145:103198. [PMID: 38428341 DOI: 10.1016/j.jaut.2024.103198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
OBJECTIVES Expansion of follicular helper T (Tfh) cells and abnormal glucose metabolism are present in patients with systemic lupus erythematosus (SLE). Pyruvate kinase M2 (PKM2) is one of the key glycolytic enzymes, and the underlying mechanism of PKM2-mediated Tfh cell glycolysis in SLE pathogenesis remains elusive. METHODS We analyzed the percentage of Tfh cells and glycolysis in CD4+ T cells from SLE patients and healthy donors and performed RNA sequencing analysis of peripheral blood CD4+ T cells and differentiated Tfh cells from SLE patients. Following Tfh cell development in vitro and following treatment with PKM2 activator TEPP-46, PKM2 expression, glycolysis, and signaling pathway proteins were analyzed. Finally, diseased MRL/lpr mice were treated with TEPP-46 and assessed for treatment effects. RESULTS We found that Tfh cell percentage and glycolysis levels were increased in SLE patients and MRL/lpr mice. TEPP-46 induced PKM2 tetramerization, thereby inhibiting Tfh cell glycolysis levels. On the one hand, TEPP-46 reduced the dimeric PKM2 entering the nucleus and reduced binding to the transcription factor BCL6. On the other hand, TEPP-46 inhibited the AKT/GSK-3β pathway and glycolysis during Tfh cell differentiation. Finally, we confirmed that TEPP-46 effectively alleviated inflammatory damage in lupus-prone mice and reduced the expansion of Tfh cells in vivo. CONCLUSIONS Our results demonstrate the involvement of PKM2-mediated glycolysis in Tfh cell differentiation and SLE pathogenesis, and PKM2 could be a key therapeutic target for the treatment of SLE.
Collapse
Affiliation(s)
- Manna Lin
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liuting Huang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junxia Huang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Yu
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xue Yang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Ji Yang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
48
|
Xiao H, Ulmert I, Bach L, Huber J, Narasimhan H, Kurochkin I, Chang Y, Holst S, Mörbe U, Zhang L, Schlitzer A, Pereira CF, Schraml BU, Baumjohann D, Lahl K. Genomic deletion of Bcl6 differentially affects conventional dendritic cell subsets and compromises Tfh/Tfr/Th17 cell responses. Nat Commun 2024; 15:3554. [PMID: 38688934 PMCID: PMC11061177 DOI: 10.1038/s41467-024-46966-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/13/2024] [Indexed: 05/02/2024] Open
Abstract
Conventional dendritic cells (cDC) play key roles in immune induction, but what drives their heterogeneity and functional specialization is still ill-defined. Here we show that cDC-specific deletion of the transcriptional repressor Bcl6 in mice alters the phenotype and transcriptome of cDC1 and cDC2, while their lineage identity is preserved. Bcl6-deficient cDC1 are diminished in the periphery but maintain their ability to cross-present antigen to CD8+ T cells, confirming general maintenance of this subset. Surprisingly, the absence of Bcl6 in cDC causes a complete loss of Notch2-dependent cDC2 in the spleen and intestinal lamina propria. DC-targeted Bcl6-deficient mice induced fewer T follicular helper cells despite a profound impact on T follicular regulatory cells in response to immunization and mounted diminished Th17 immunity to Citrobacter rodentium in the colon. Our findings establish Bcl6 as an essential transcription factor for subsets of cDC and add to our understanding of the transcriptional landscape underlying cDC heterogeneity.
Collapse
Affiliation(s)
- Hongkui Xiao
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), 2800, Kongens, Lyngby, Denmark
| | - Isabel Ulmert
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), 2800, Kongens, Lyngby, Denmark
| | - Luisa Bach
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Johanna Huber
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Munich, Germany
| | - Hamsa Narasimhan
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximillians-Universität München, Planegg-Martinsried, Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Munich, Germany
| | - Ilia Kurochkin
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Yinshui Chang
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Munich, Germany
| | - Signe Holst
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), 2800, Kongens, Lyngby, Denmark
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Urs Mörbe
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), 2800, Kongens, Lyngby, Denmark
| | - Lili Zhang
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Carlos-Filipe Pereira
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Barbara U Schraml
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximillians-Universität München, Planegg-Martinsried, Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Munich, Germany
| | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany.
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Munich, Germany.
| | - Katharina Lahl
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), 2800, Kongens, Lyngby, Denmark.
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.
- Immunology Section, Lund University, Lund, 221 84, Sweden.
| |
Collapse
|
49
|
Tchen J, Simon Q, Chapart L, Thaminy MK, Vibhushan S, Saveanu L, Lamri Y, Saidoune F, Pacreau E, Pellefigues C, Bex-Coudrat J, Karasuyama H, Miyake K, Hidalgo J, Fallon PG, Papo T, Blank U, Benhamou M, Hanouna G, Sacre K, Daugas E, Charles N. PD-L1- and IL-4-expressing basophils promote pathogenic accumulation of T follicular helper cells in lupus. Nat Commun 2024; 15:3389. [PMID: 38649353 PMCID: PMC11035650 DOI: 10.1038/s41467-024-47691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by anti-nuclear autoantibodies whose production is promoted by autoreactive T follicular helper (TFH) cells. During SLE pathogenesis, basophils accumulate in secondary lymphoid organs (SLO), amplify autoantibody production and disease progression through mechanisms that remain to be defined. Here, we provide evidence for a direct functional relationship between TFH cells and basophils during lupus pathogenesis, both in humans and mice. PD-L1 upregulation on basophils and IL-4 production are associated with TFH and TFH2 cell expansions and with disease activity. Pathogenic TFH cell accumulation, maintenance, and function in SLO were dependent on PD-L1 and IL-4 in basophils, which induced a transcriptional program allowing TFH2 cell differentiation and function. Our study establishes a direct mechanistic link between basophils and TFH cells in SLE that promotes autoantibody production and lupus nephritis.
Collapse
Affiliation(s)
- John Tchen
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Quentin Simon
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
- Inovarion, 75005, Paris, France
| | - Léa Chapart
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Morgane K Thaminy
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Shamila Vibhushan
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Loredana Saveanu
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Yasmine Lamri
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Fanny Saidoune
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Emeline Pacreau
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Christophe Pellefigues
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Julie Bex-Coudrat
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Juan Hidalgo
- Universidad Autonoma de Barcelona, Facultad de Biociencias, Unidad de Fisiologia Animal Bellaterra, Bellaterra Campus, 08193, Barcelona, Spain
| | | | - Thomas Papo
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
- Service de Médecine Interne, Hôpital Bichat, Assistance Publique - Hôpitaux de Paris, 75018, Paris, France
| | - Ulrich Blank
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Marc Benhamou
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Guillaume Hanouna
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
- Service de Néphrologie, Hôpital Bichat, Assistance Publique - Hôpitaux de Paris, 75018, Paris, France
| | - Karim Sacre
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
- Service de Médecine Interne, Hôpital Bichat, Assistance Publique - Hôpitaux de Paris, 75018, Paris, France
| | - Eric Daugas
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
- Service de Néphrologie, Hôpital Bichat, Assistance Publique - Hôpitaux de Paris, 75018, Paris, France
| | - Nicolas Charles
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France.
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France.
| |
Collapse
|
50
|
Abushahba MFN, Dadelahi AS, Ponzilacqua-Silva B, Moley CR, Skyberg JA. Contrasting roles for IgM and B-cell MHCII expression in Brucella abortus S19 vaccine-mediated efficacy against B. melitensis infection. mSphere 2024; 9:e0075023. [PMID: 38349167 PMCID: PMC10964430 DOI: 10.1128/msphere.00750-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
Brucellosis, caused by the bacterium Brucella, poses a significant global threat to both animal and human health. Although commercial live Brucella vaccines including S19, RB51, and Rev1 are available for animals, their unsuitability for human use and incomplete efficacy in animals necessitate the further study of vaccine-mediated immunity to Brucella. In this study, we employed in vivo B-cell depletion, as well as immunodeficient and transgenic mouse models, to comprehensively investigate the roles of B cells, antigen uptake and presentation, antibody production, and class switching in the context of S19-mediated immunity against brucellosis. We found that antibody production, and in particular secretory IgM plays a protective role in S19-mediated immunity against virulent Brucella melitensis early after the challenge in a manner associated with complement activation. While T follicular helper cell deficiency dampened IgG production and vaccine efficacy at later stages of the challenge, this effect appeared to be independent of antibody production and rather was associated with altered T-cell function. By contrast, B-cell MHCII expression negatively impacted vaccine efficacy at later timepoints after the challenge. In addition, B-cell depletion after vaccination, but before the challenge, enhanced S19-mediated protection against brucellosis, suggesting a deleterious role of B cells during the challenge phase. Collectively, our findings indicate antibody production is protective, while B-cell MHCII expression is deleterious, to live vaccine-mediated immunity against brucellosis. IMPORTANCE Brucella is a neglected zoonotic pathogen with a worldwide distribution. Our study delves into B-cell effector functions in live vaccine-mediated immunity against brucellosis. Notably, we found antibody production, particularly secretory IgM, confers protection against virulent Brucella melitensis in vaccinated mice, which was associated with complement activation. By contrast, B-cell MHCII expression negatively impacted vaccine efficacy. In addition, B-cell depletion after vaccination, but before the B. melitensis challenge, enhanced protection against infection, suggesting a detrimental B-cell role during the challenge phase. Interestingly, deficiency of T follicular helper cells, which are crucial for aiding germinal center B cells, dampened vaccine efficacy at later stages of challenge independent of antibody production. This study underscores contrasting and phase-dependent roles of B-cell effector functions in vaccine-mediated immunity against Brucella.
Collapse
Affiliation(s)
- Mostafa F. N. Abushahba
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, USA
- Department of Zoonoses, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Alexis S. Dadelahi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, USA
| | - Bárbara Ponzilacqua-Silva
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, USA
| | - Charles R. Moley
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, USA
| | - Jerod A. Skyberg
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|