1
|
Santisteban Celis IC, Matoba N. Lectibodies as antivirals. Antiviral Res 2024; 227:105901. [PMID: 38734211 DOI: 10.1016/j.antiviral.2024.105901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Growing concerns regarding the emergence of highly transmissible viral diseases highlight the urgent need to expand the repertoire of antiviral therapeutics. For this reason, new strategies for neutralizing and inhibiting these viruses are necessary. A promising approach involves targeting the glycans present on the surfaces of enveloped viruses. Lectins, known for their ability to recognize specific carbohydrate molecules, offer the potential for glycan-targeted antiviral strategies. Indeed, numerous studies have reported the antiviral effects of various lectins of both endogenous and exogenous origins. However, many lectins in their natural forms, are not suitable for use as antiviral therapeutics due to toxicity, other unfavorable pharmacological effects, and/or unreliable manufacturing sources. Therefore, improvements are crucial for employing lectins as effective antiviral therapeutics. A novel approach to enhance lectins' suitability as pharmaceuticals could be the generation of recombinant lectin-Fc fusion proteins, termed "lectibodies." In this review, we discuss the scientific rationale behind lectin-based antiviral strategies and explore how lectibodies could facilitate the development of new antiviral therapeutics. We will also share our perspective on the potential of these molecules to transcend their potential use as antiviral agents.
Collapse
Affiliation(s)
- Ian Carlosalberto Santisteban Celis
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, USA
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, USA; UofL Health - Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
2
|
LeBlanc EV, Kim Y, Capicciotti CJ, Colpitts CC. Hepatitis C Virus Glycan-Dependent Interactions and the Potential for Novel Preventative Strategies. Pathogens 2021; 10:pathogens10060685. [PMID: 34205894 PMCID: PMC8230238 DOI: 10.3390/pathogens10060685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infections continue to be a major contributor to liver disease worldwide. HCV treatment has become highly effective, yet there are still no vaccines or prophylactic strategies available to prevent infection and allow effective management of the global HCV burden. Glycan-dependent interactions are crucial to many aspects of the highly complex HCV entry process, and also modulate immune evasion. This review provides an overview of the roles of viral and cellular glycans in HCV infection and highlights glycan-focused advances in the development of entry inhibitors and vaccines to effectively prevent HCV infection.
Collapse
Affiliation(s)
- Emmanuelle V. LeBlanc
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (E.V.L.); (Y.K.); (C.J.C.)
| | - Youjin Kim
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (E.V.L.); (Y.K.); (C.J.C.)
| | - Chantelle J. Capicciotti
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (E.V.L.); (Y.K.); (C.J.C.)
- Department of Chemistry, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Surgery, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Che C. Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (E.V.L.); (Y.K.); (C.J.C.)
- Correspondence:
| |
Collapse
|
3
|
Structural and Biophysical Characterization of the HCV E1E2 Heterodimer for Vaccine Development. Viruses 2021; 13:v13061027. [PMID: 34072451 PMCID: PMC8227786 DOI: 10.3390/v13061027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
An effective vaccine for the hepatitis C virus (HCV) is a major unmet medical and public health need, and it requires an antigen that elicits immune responses to multiple key conserved epitopes. Decades of research have generated a number of vaccine candidates; based on these data and research through clinical development, a vaccine antigen based on the E1E2 glycoprotein complex appears to be the best choice. One bottleneck in the development of an E1E2-based vaccine is that the antigen is challenging to produce in large quantities and at high levels of purity and antigenic/functional integrity. This review describes the production and characterization of E1E2-based vaccine antigens, both membrane-associated and a novel secreted form of E1E2, with a particular emphasis on the major challenges facing the field and how those challenges can be addressed.
Collapse
|
4
|
Matoba Y, Sato Y, Oda K, Hatori Y, Morimoto K. Lectins engineered to favor a glycan-binding conformation have enhanced antiviral activity. J Biol Chem 2021; 296:100698. [PMID: 33895142 PMCID: PMC8166773 DOI: 10.1016/j.jbc.2021.100698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 01/08/2023] Open
Abstract
Homologues of the Oscillatoria agardhii agglutinin (OAA) lectins contain a sequence repeat of ∼66 amino acids, with the number of tandem repeats varying across family members. OAA homologues bind high-mannose glycans on viral surface proteins, thereby interfering with viral entry into host cells. As such, OAA homologues have potential utility as antiviral agents, but a more detailed understanding of their structure–function relationships would enable us to develop improved constructs. Here, we determined the X-ray crystal structure of free and glycan-bound forms of Pseudomonas taiwanensis lectin (PTL), an OAA-family lectin consisting of two tandem repeats. Like other OAA-family lectins, PTL exhibited a β-barrel-like structure with two symmetrically positioned glycan-binding sites at the opposite ends of the barrel. Upon glycan binding, the conformation of PTL undergoes a more significant change than expected from previous OAA structural analysis. Moreover, the electron density of the bound glycans suggested that the binding affinities are different at the two binding sites. Next, based on analysis of these structures, we used site-specific mutagenesis to create PTL constructs expected to increase the population with a conformation suitable for glycan binding. The engineered PTLs were examined for their antiviral activity against the influenza virus. Interestingly, some exhibited stronger activity compared with that of the parent PTL. We propose that our approach is effective for the generation of potential microbicides with enhanced antiviral activity.
Collapse
Affiliation(s)
- Yasuyuki Matoba
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Yuichiro Sato
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Kosuke Oda
- Department of Virology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuta Hatori
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Kinjiro Morimoto
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan.
| |
Collapse
|
5
|
Jennings ME, Silveira JR, Treier KM, Tracy PB, Matthews DE. Total Retention Liquid Chromatography-Mass Spectrometry to Achieve Maximum Protein Sequence Coverage. Anal Chem 2021; 93:5054-5060. [PMID: 33724001 DOI: 10.1021/acs.analchem.0c04292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptide identification by liquid chromatography-mass spectrometry (LC-MS) requires retention and elution of peptides from the LC column. Although medium and hydrophobic peptides are readily retained by the C18 columns that are commonly used in proteomics, short and hydrophilic peptides are not retained nor measured by MS due to their elution in the void volume after sample injection. These nonretained peptides can possess important post-translational modifications, such as glycosylation or phosphorylation. We describe a total retention LC-MS method that employs a reverse phase C18 column and porous graphitic carbon (PGC) column to retain both hydrophobic and hydrophilic peptides for LC-MS analysis. Our setup uses a single valve with a trapping column and two LC pumps run at low microliter/minute flow rates to deliver separate gradients to parallel capillary C18 and PGC columns. Our capillary LC system balances the need for high sensitivity with ease of implementation as compared to other 2D LC systems that use nanocolumns with multiple trapping columns and multiport valves. We demonstrate the utility of the method identifying hydrophilic peptides that went undetected when only a C18 nanocolumn was used. These missed hydrophilic peptides include tripeptides and N-glycosylated species.
Collapse
|
6
|
Shahid M, Shahzad-Ul-Hussan S. Structural insights of key enzymes into therapeutic intervention against SARS-CoV-2. J Struct Biol 2021; 213:107690. [PMID: 33383190 PMCID: PMC7769706 DOI: 10.1016/j.jsb.2020.107690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/03/2020] [Accepted: 12/23/2020] [Indexed: 01/18/2023]
Abstract
COVID-19 pandemic, caused by SARS-CoV-2, has drastically affected human health all over the world. After the emergence of the pandemic the major focus of efforts to attenuate the infection has been on repurposing the already approved drugs to treat COVID-19 adopting a fast-track strategy. However, to date a specific regimen to treat COVID-19 is not available. Over the last few months a substantial amount of data about the structures of various key proteins and their recognition partners involved in the SARS-CoV-2 pathogenesis has emerged. These studies have not only provided the molecular level descriptions ofthe viral pathogenesis but also laid the foundation for rational drug design and discovery. In this review, we have recapitulated the structural details of four key viral enzymes, RNA-dependent RNA polymerase, 3-chymotrypsin like protease, papain-like protease and helicase, and two host factors including angiotensin-converting enzyme 2 and transmembrane serine protease involved in the SARS-CoV-2 pathogenesis, and described the potential hotspots present on these structures which could be explored for therapeutic intervention. We have also discussed the significance of endoplasmic reticulum α-glucosidases as potential targets for anti-SARS-CoV-2 drug discovery.
Collapse
Affiliation(s)
- Munazza Shahid
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Syed Shahzad-Ul-Hussan
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan.
| |
Collapse
|
7
|
Guest JD, Wang R, Elkholy KH, Chagas A, Chao KL, Cleveland TE, Kim YC, Keck ZY, Marin A, Yunus AS, Mariuzza RA, Andrianov AK, Toth EA, Foung SKH, Pierce BG, Fuerst TR. Design of a native-like secreted form of the hepatitis C virus E1E2 heterodimer. Proc Natl Acad Sci U S A 2021; 118:e2015149118. [PMID: 33431677 PMCID: PMC7826332 DOI: 10.1073/pnas.2015149118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C virus (HCV) is a major worldwide health burden, and a preventive vaccine is needed for global control or eradication of this virus. A substantial hurdle to an effective HCV vaccine is the high variability of the virus, leading to immune escape. The E1E2 glycoprotein complex contains conserved epitopes and elicits neutralizing antibody responses, making it a primary target for HCV vaccine development. However, the E1E2 transmembrane domains that are critical for native assembly make it challenging to produce this complex in a homogenous soluble form that is reflective of its state on the viral envelope. To enable rational design of an E1E2 vaccine, as well as structural characterization efforts, we have designed a soluble, secreted form of E1E2 (sE1E2). As with soluble glycoprotein designs for other viruses, it incorporates a scaffold to enforce assembly in the absence of the transmembrane domains, along with a furin cleavage site to permit native-like heterodimerization. This sE1E2 was found to assemble into a form closer to its expected size than full-length E1E2. Preservation of native structural elements was confirmed by high-affinity binding to a panel of conformationally specific monoclonal antibodies, including two neutralizing antibodies specific to native E1E2 and to its primary receptor, CD81. Finally, sE1E2 was found to elicit robust neutralizing antibodies in vivo. This designed sE1E2 can both provide insights into the determinants of native E1E2 assembly and serve as a platform for production of E1E2 for future structural and vaccine studies, enabling rational optimization of an E1E2-based antigen.
Collapse
Affiliation(s)
- Johnathan D Guest
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Ruixue Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Khadija H Elkholy
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Cairo 12622, Egypt
| | - Andrezza Chagas
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Kinlin L Chao
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Thomas E Cleveland
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Young Chang Kim
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Abdul S Yunus
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Roy A Mariuzza
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Eric A Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Brian G Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850;
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850;
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| |
Collapse
|
8
|
Dent M, Hamorsky K, Vausselin T, Dubuisson J, Miyata Y, Morikawa Y, Matoba N. Safety and Efficacy of Avaren-Fc Lectibody Targeting HCV High-Mannose Glycans in a Human Liver Chimeric Mouse Model. Cell Mol Gastroenterol Hepatol 2020; 11:185-198. [PMID: 32861832 PMCID: PMC7451001 DOI: 10.1016/j.jcmgh.2020.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Infection with hepatitis C virus (HCV) remains a major cause of morbidity and mortality worldwide despite the recent advent of highly effective direct-acting antivirals. The envelope glycoproteins of HCV are heavily glycosylated with a high proportion of high-mannose glycans (HMGs), which serve as a shield against neutralizing antibodies and assist in the interaction with cell-entry receptors. However, there is no approved therapeutic targeting this potentially druggable biomarker. METHODS The anti-HCV activity of a fusion protein consisting of Avaren lectin and the fragment crystallizable (Fc) region of a human immunoglobulin G1 antibody, Avaren-Fc (AvFc) was evaluated through the use of in vitro neutralization assays as well as an in vivo challenge in a chimeric human liver (PXB) mouse model. Drug toxicity was assessed by histopathology, serum alanine aminotransferase, and mouse body weights. RESULTS AvFc was capable of neutralizing cell culture-derived HCV in a genotype-independent manner, with 50% inhibitory concentration values in the low nanomolar range. Systemic administration of AvFc in a histidine-based buffer was well tolerated; after 11 doses every other day at 25 mg/kg there were no significant changes in body or liver weights or in blood human albumin or serum alanine aminotransferase activity. Gross necropsy and liver pathology confirmed the lack of toxicity. This regimen successfully prevented genotype 1a HCV infection in all animals, although an AvFc mutant lacking HMG binding activity failed. CONCLUSIONS These results suggest that targeting envelope HMGs is a promising therapeutic approach against HCV infection, and AvFc may provide a safe and efficacious means to prevent recurrent infection upon liver transplantation in HCV-related end-stage liver disease patients.
Collapse
Affiliation(s)
| | - Krystal Hamorsky
- Department of Medicine; James Graham Brown Cancer Center; Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Thibaut Vausselin
- University of Lille, Centre national de la recherche scientifique, INSERM, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019, UMR 8204, Center for Infection and Immunity of Lille, Lille, France
| | - Jean Dubuisson
- University of Lille, Centre national de la recherche scientifique, INSERM, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019, UMR 8204, Center for Infection and Immunity of Lille, Lille, France
| | | | | | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology; James Graham Brown Cancer Center; Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, Kentucky.
| |
Collapse
|
9
|
Hargett AA, Renfrow MB. Glycosylation of viral surface proteins probed by mass spectrometry. Curr Opin Virol 2019; 36:56-66. [PMID: 31202133 PMCID: PMC7102858 DOI: 10.1016/j.coviro.2019.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
Abstract
Glycosylation is a common and biologically significant post-translational modification that is found on numerous virus surface proteins (VSPs). Many of these glycans affect virulence through modulating virus receptor binding, masking antigenic sites, or by stimulating the host immune response. Mass spectrometry (MS) has arisen as a pivotal technique for the characterization of VSP glycosylation. This review will cover how MS-based analyses, such as released glycan profiles, glycan site localization, site-occupancy, and site-specific heterogeneity, are being utilized to map VSP glycosylation. Furthermore, this review will provide information on how MS glycoprofiling data are being used in conjunction with molecular and structural experiments to provide a better understanding of the role of specific glycans in VSP function.
Collapse
Affiliation(s)
- Audra A Hargett
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
10
|
Hypervariable region 1 and N-linked glycans of hepatitis C regulate virion neutralization by modulating envelope conformations. Proc Natl Acad Sci U S A 2019; 116:10039-10047. [PMID: 31040211 DOI: 10.1073/pnas.1822002116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
About two million new cases of hepatitis C virus (HCV) infections annually underscore the urgent need for a vaccine. However, this effort has proven challenging because HCV evades neutralizing antibodies (NAbs) through molecular features of viral envelope glycoprotein E2, including hypervariable region 1 (HVR1) and N-linked glycans. Here, we observe large variation in the effects of removing individual E2 glycans across HCV strains H77(genotype 1a), J6(2a), and S52(3a) in Huh7.5 cell infections. Also, glycan-mediated effects on neutralization sensitivity were completely HVR1-dependent, and neutralization data were consistent with indirect protection of epitopes, as opposed to direct steric shielding. Indeed, the effect of removing each glycan was similar both in type (protective or sensitizing) and relative strength across four nonoverlapping neutralization epitopes. Temperature-dependent neutralization (e.g., virus breathing) assays indicated that both HVR1 and protective glycans stabilized a closed, difficult to neutralize, envelope conformation. This stabilizing effect was hierarchical as removal of HVR1 fully destabilized closed conformations, irrespective of glycan status, consistent with increased instability at acidic pH and high temperatures. Finally, we observed a strong correlation between neutralization sensitivity and scavenger receptor BI dependency during viral entry. In conclusion, our study indicates that HVR1 and glycans regulate HCV neutralization by shifting the equilibrium between open and closed envelope conformations. This regulation appears tightly linked with scavenger receptor BI dependency, suggesting a role of this receptor in transitions from closed to open conformations during entry. This importance of structural dynamics of HCV envelope glycoproteins has critical implications for vaccine development and suggests that similar phenomena could contribute to immune evasion of other viruses.
Collapse
|
11
|
Urbanowicz RA, Wang R, Schiel JE, Keck ZY, Kerzic MC, Lau P, Rangarajan S, Garagusi KJ, Tan L, Guest JD, Ball JK, Pierce BG, Mariuzza RA, Foung SKH, Fuerst TR. Antigenicity and Immunogenicity of Differentially Glycosylated Hepatitis C Virus E2 Envelope Proteins Expressed in Mammalian and Insect Cells. J Virol 2019; 93:e01403-18. [PMID: 30651366 PMCID: PMC6430559 DOI: 10.1128/jvi.01403-18] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023] Open
Abstract
The development of a prophylactic vaccine for hepatitis C virus (HCV) remains a global health challenge. Cumulative evidence supports the importance of antibodies targeting the HCV E2 envelope glycoprotein to facilitate viral clearance. However, a significant challenge for a B cell-based vaccine is focusing the immune response on conserved E2 epitopes capable of eliciting neutralizing antibodies not associated with viral escape. We hypothesized that glycosylation might influence the antigenicity and immunogenicity of E2. Accordingly, we performed head-to-head molecular, antigenic, and immunogenic comparisons of soluble E2 (sE2) produced in (i) mammalian (HEK293) cells, which confer mostly complex- and high-mannose-type glycans; and (ii) insect (Sf9) cells, which impart mainly paucimannose-type glycans. Mass spectrometry demonstrated that all 11 predicted N-glycosylation sites were utilized in both HEK293- and Sf9-derived sE2, but that N-glycans in insect sE2 were on average smaller and less complex. Both proteins bound CD81 and were recognized by conformation-dependent antibodies. Mouse immunogenicity studies revealed that similar polyclonal antibody responses were generated against antigenic domains A to E of E2. Although neutralizing antibody titers showed that Sf9-derived sE2 induced moderately stronger responses than did HEK293-derived sE2 against the homologous HCV H77c isolate, the two proteins elicited comparable neutralization titers against heterologous isolates. Given that global alteration of HCV E2 glycosylation by expression in different hosts did not appreciably affect antigenicity or overall immunogenicity, a more productive approach to increasing the antibody response to neutralizing epitopes may be complete deletion, rather than just modification, of specific N-glycans proximal to these epitopes.IMPORTANCE The development of a vaccine for hepatitis C virus (HCV) remains a global health challenge. A major challenge for vaccine development is focusing the immune response on conserved regions of the HCV envelope protein, E2, capable of eliciting neutralizing antibodies. Modification of E2 by glycosylation might influence the immunogenicity of E2. Accordingly, we performed molecular and immunogenic comparisons of E2 produced in mammalian and insect cells. Mass spectrometry demonstrated that the predicted glycosylation sites were utilized in both mammalian and insect cell E2, although the glycan types in insect cell E2 were smaller and less complex. Mouse immunogenicity studies revealed similar polyclonal antibody responses. However, insect cell E2 induced stronger neutralizing antibody responses against the homologous isolate used in the vaccine, albeit the two proteins elicited comparable neutralization titers against heterologous isolates. A more productive approach for vaccine development may be complete deletion of specific glycans in the E2 protein.
Collapse
Affiliation(s)
- Richard A Urbanowicz
- School of Life Sciences, The University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, United Kingdom
| | - Ruixue Wang
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - John E Schiel
- University of Maryland Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, Rockville, Maryland, USA
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Melissa C Kerzic
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Patrick Lau
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Sneha Rangarajan
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Kyle J Garagusi
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Lei Tan
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Johnathan D Guest
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Jonathan K Ball
- School of Life Sciences, The University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, United Kingdom
| | - Brian G Pierce
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Roy A Mariuzza
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Thomas R Fuerst
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
12
|
Bagdonaite I, Vakhrushev SY, Joshi HJ, Wandall HH. Viral glycoproteomes: technologies for characterization and outlook for vaccine design. FEBS Lett 2018; 592:3898-3920. [PMID: 29961944 DOI: 10.1002/1873-3468.13177] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/13/2018] [Accepted: 06/26/2018] [Indexed: 12/27/2022]
Abstract
It has long been known that surface proteins of most enveloped viruses are covered with glycans. It has furthermore been demonstrated that glycosylation is essential for propagation and immune evasion for many viruses. The recent development of high-resolution mass spectrometry techniques has enabled identification not only of the precise structures but also the positions of such post-translational modifications on viruses, revealing substantial differences in extent of glycosylation and glycan maturation for different classes of viruses. In-depth characterization of glycosylation and other post-translational modifications of viral envelope glycoproteins is essential for rational design of vaccines and antivirals. In this Review, we provide an overview of techniques used to address viral glycosylation and summarize information on glycosylation of enveloped viruses representing ongoing public health challenges. Furthermore, we discuss how knowledge on glycosylation can be translated to means to prevent and combat viral infections.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Denmark
| | - Hiren J Joshi
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Denmark
| | - Hans H Wandall
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Denmark
| |
Collapse
|
13
|
Bagdonaite I, Wandall HH. Global aspects of viral glycosylation. Glycobiology 2018; 28:443-467. [PMID: 29579213 PMCID: PMC7108637 DOI: 10.1093/glycob/cwy021] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/10/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
Enveloped viruses encompass some of the most common human pathogens causing infections of different severity, ranging from no or very few symptoms to lethal disease as seen with the viral hemorrhagic fevers. All enveloped viruses possess an envelope membrane derived from the host cell, modified with often heavily glycosylated virally encoded glycoproteins important for infectivity, viral particle formation and immune evasion. While N-linked glycosylation of viral envelope proteins is well characterized with respect to location, structure and site occupancy, information on mucin-type O-glycosylation of these proteins is less comprehensive. Studies on viral glycosylation are often limited to analysis of recombinant proteins that in most cases are produced in cell lines with a glycosylation capacity different from the capacity of the host cells. The glycosylation pattern of the produced recombinant glycoproteins might therefore be different from the pattern on native viral proteins. In this review, we provide a historical perspective on analysis of viral glycosylation, and summarize known roles of glycans in the biology of enveloped human viruses. In addition, we describe how to overcome the analytical limitations by using a global approach based on mass spectrometry to identify viral O-glycosylation in virus-infected cell lysates using the complex enveloped virus herpes simplex virus type 1 as a model. We underscore that glycans often pay important contributions to overall protein structure, function and immune recognition, and that glycans represent a crucial determinant for vaccine design. High throughput analysis of glycosylation on relevant glycoprotein formulations, as well as data compilation and sharing is therefore important to identify consensus glycosylation patterns for translational applications.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| |
Collapse
|
14
|
Affiliation(s)
- David J. Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Biological Sciences and the Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
15
|
Balasco N, Barone D, Iaccarino E, Sandomenico A, De Simone A, Ruvo M, Vitagliano L. Intrinsic structural versatility of the highly conserved 412-423 epitope of the Hepatitis C Virus E2 protein. Int J Biol Macromol 2018; 116:620-632. [PMID: 29758309 DOI: 10.1016/j.ijbiomac.2018.05.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/14/2022]
Abstract
HCV infection is a major threaten for human health as it affects hundreds of million people worldwide. Here we investigated the conformational properties of the 412-423 fragment of the envelope E2 protein, one of the most immunogenic regions of the virus proteome whose characterization may provide interesting insights for anti-HCV vaccine development. The spectroscopic characterization of the polypeptide unravels its unexpected tendency to form amyloid-like aggregates. When kept in monomeric state, it shows a limited tendency to adopt regular secondary structure. Enhanced molecular dynamics simulations, starting from four distinct conformational states, highlight its structural versatility. Interestingly, all multiform conformational states of the polypeptide detected in crystallographic complexes with antibodies are present in the structural ensemble of all simulations. This observation corroborates the idea that known antibodies recognize this region through a conformational selection mechanism. Accordingly, the design of effective anti-HCV vaccines should consider the intrinsic flexibility of this region. The structural versatility of the 412-423 region is particularly puzzling if its remarkable sequence conservation is considered. It is likely that flexibility and sequence conservation are important features that endow this epitope with the ability to accomplish distinct functions such as immunity escape and interaction with host receptors.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging, CNR, Naples I-80134, Italy.
| | - Daniela Barone
- Institute of Biostructures and Bioimaging, CNR, Naples I-80134, Italy; Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Caserta 81100, Italy
| | - Emanuela Iaccarino
- Institute of Biostructures and Bioimaging, CNR, Naples I-80134, Italy; Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Caserta 81100, Italy
| | | | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging, CNR, Naples I-80134, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Naples I-80134, Italy.
| |
Collapse
|
16
|
Lavie M, Hanoulle X, Dubuisson J. Glycan Shielding and Modulation of Hepatitis C Virus Neutralizing Antibodies. Front Immunol 2018; 9:910. [PMID: 29755477 PMCID: PMC5934428 DOI: 10.3389/fimmu.2018.00910] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) envelope glycoprotein heterodimer, E1E2, plays an essential role in virus entry and assembly. Furthermore, due to their exposure at the surface of the virion, these proteins are the major targets of anti-HCV neutralizing antibodies. Their ectodomain are heavily glycosylated with up to 5 sites on E1 and up to 11 sites on E2 modified by N-linked glycans. Thus, one-third of the molecular mass of E1E2 heterodimer corresponds to glycans. Despite the high sequence variability of E1 and E2, N-glycosylation sites of these proteins are generally conserved among the seven major HCV genotypes. N-glycans have been shown to be involved in E1E2 folding and modulate different functions of the envelope glycoproteins. Indeed, site-directed mutagenesis studies have shown that specific glycans are needed for virion assembly and infectivity. They can notably affect envelope protein entry functions by modulating their affinity for HCV receptors and their fusion activity. Importantly, glycans have also been shown to play a key role in immune evasion by masking antigenic sites targeted by neutralizing antibodies. It is well known that the high mutational rate of HCV polymerase facilitates the appearance of neutralization resistant mutants, and occurrence of mutations leading to glycan shifting is one of the mechanisms used by this virus to escape host humoral immune response. As a consequence of the importance of the glycan shield for HCV immune evasion, the deletion of N-glycans also leads to an increase in E1E2 immunogenicity and can induce a more potent antibody response against HCV.
Collapse
Affiliation(s)
- Muriel Lavie
- University of Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection & Immunity of Lille, Lille, France
| | - Xavier Hanoulle
- University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Jean Dubuisson
- University of Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection & Immunity of Lille, Lille, France
| |
Collapse
|
17
|
Guo Y, Yu H, Zhong Y, He Y, Qin X, Qin Y, Zhou Y, Zhang P, Zhang Y, Li Z, Jia Z. Lectin microarray and mass spectrometric analysis of hepatitis C proteins reveals N-linked glycosylation. Medicine (Baltimore) 2018; 97:e0208. [PMID: 29642144 PMCID: PMC5908620 DOI: 10.1097/md.0000000000010208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We used lectin microarray and mass spectrometric analysis to identify the N-linked glycosylation patterns of hepatitis C virus (HCV) particles. HCV J6/JFH-1 chimeric cell culture (HCVcc) in the culture supernatant was concentrated and purified by ultrafiltration and sucrose gradient ultracentrifugation. Twelve fractions were collected from the top and analyzed for viral infectivity and HCV RNA content after sucrose gradient separation. HCV RNA and proteins were separated by ultracentrifugation in a continuous 10% to 60% sucrose gradient to purify viral particles based on their sedimentation velocities. HCVcc particles were found mainly in fractions 6 to 8, as determined by quantitative polymerase chain reaction (qPCR) analysis for HCV RNA and ELISA of the HCV core protein. The N-glycans on HCV proteins were analyzed by lectin microarray and mass spectrometry. We identified that 32 of 37 lectins displayed the positive binding signals and 16 types of N-glycoforms of which the major HCV glycoforms were high mannose-type N-linked oligosaccharides, hybrid N-glycans, and fucosylated N-glycans. Our study provided new detailed information regarding the majority of the glycan-protein profile, complementing to previous findings of glycan-HCV protein interactions.
Collapse
Affiliation(s)
- Yonghong Guo
- Department of Infectious Diseases, The Second Affiliated Hospital, Xi’an Jiaotong University
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Science, Northwest University
| | - Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Science, Northwest University
| | - Yu He
- Department of Infectious Diseases and Center of Liver Diseases, Tangdu Hospital, The Fourth Military Medical University, Baqiao District, Xi’an, Shaanxi, China
| | - Xinmin Qin
- Laboratory for Functional Glycomics, College of Life Science, Northwest University
| | - Yuan Qin
- Department of Infectious Diseases and Center of Liver Diseases, Tangdu Hospital, The Fourth Military Medical University, Baqiao District, Xi’an, Shaanxi, China
| | - Yun Zhou
- Department of Infectious Diseases and Center of Liver Diseases, Tangdu Hospital, The Fourth Military Medical University, Baqiao District, Xi’an, Shaanxi, China
| | - Peixin Zhang
- Department of Infectious Diseases and Center of Liver Diseases, Tangdu Hospital, The Fourth Military Medical University, Baqiao District, Xi’an, Shaanxi, China
| | - Ying Zhang
- Department of Infectious Diseases and Center of Liver Diseases, Tangdu Hospital, The Fourth Military Medical University, Baqiao District, Xi’an, Shaanxi, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Science, Northwest University
| | - Zhansheng Jia
- Department of Infectious Diseases and Center of Liver Diseases, Tangdu Hospital, The Fourth Military Medical University, Baqiao District, Xi’an, Shaanxi, China
| |
Collapse
|
18
|
Fuerst TR, Pierce BG, Keck ZY, Foung SKH. Designing a B Cell-Based Vaccine against a Highly Variable Hepatitis C Virus. Front Microbiol 2018; 8:2692. [PMID: 29379486 PMCID: PMC5775222 DOI: 10.3389/fmicb.2017.02692] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023] Open
Abstract
The ability to use structure-based design and engineering to control the molecular shape and reactivity of an immunogen to induce protective responses shows great promise, along with corresponding advancements in vaccine testing and evaluation systems. We describe in this review new paradigms for the development of a B cell-based HCV vaccine. Advances in test systems to measure in vitro and in vivo antibody-mediated virus neutralization include retroviral pseudotype particles expressing HCV E1E2 glycoproteins (HCVpp), infectious cell culture-derived HCV virions (HCVcc), and surrogate animal models mimicking acute HCV infection. Their applications have established the role of broadly neutralizing antibodies to control HCV infection. However, the virus has immunogenic regions in the viral envelope glycoproteins that are associated with viral escape or non-neutralizing antibodies. These regions serve as immunologic decoys that divert the antibody response from less prominent conserved regions mediating virus neutralization. This review outlines the immunogenic regions on E2, which are roughly segregated into the hypervariable region 1 (HVR1), and five clusters of overlapping epitopes designated as antigenic domains A-E. Understanding the molecular architecture of conserved neutralizing epitopes within these antigenic domains, and how other antigenic regions or decoys deflect the immune response from these conserved regions will provide a roadmap for the rational design of an HCV vaccine.
Collapse
Affiliation(s)
- Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Brian G Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
19
|
Zhang Z, Xu H, Si L, Chen Y, Zhang B, Wang Y, Wu Y, Zhou X, Zhang L, Zhou D. Construction of an inducible stable cell line for efficient incorporation of unnatural amino acids in mammalian cells. Biochem Biophys Res Commun 2017; 489:490-496. [DOI: 10.1016/j.bbrc.2017.05.178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
|
20
|
Wang Y, Wang J, Wu S, Zhu H. The unexpected structures of hepatitis C virus envelope proteins. Exp Ther Med 2017; 14:1859-1865. [PMID: 28962094 PMCID: PMC5609170 DOI: 10.3892/etm.2017.4745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 11/18/2016] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) envelope proteins are essential not only for maintaining the viral life cycle, but also for evading the host's immune response and in clinical intervention. A thorough understanding of HCV envelope proteins depends on the availability of detailed structural information. Two crystal structures of the E2 core portion and of the E2 ectodomain, and one structure of the N-terminus of E1 ectodomain have shed new light on the complexity of HCV envelope proteins. In addition, the full-length E1-E2 complex has recently been modeled. The present review focuses on these advancements, introduces the recently solved structures and their biological implications and proposes novel ideas for studying the full-length E1-E2 complex.
Collapse
Affiliation(s)
- Yunyun Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, School of Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, School of Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shanshan Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, School of Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, School of Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
21
|
Effects of microvirin monomers and oligomers on hepatitis C virus. Biosci Rep 2017; 37:BSR20170015. [PMID: 28507200 PMCID: PMC6434159 DOI: 10.1042/bsr20170015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 12/25/2022] Open
Abstract
Microvirin (MVN) is a carbohydrate-binding protein which shows high specificity for high-mannose type N-glycan structures. In the present study, we tried to identify whether MVN could bind to high-mannose containing hepatitis C virus (HCV) envelope glycoproteins, which are heavily decorated high-mannose glycans. In addition, recombinantly expressed MVN oligomers in di-, tri- and tetrameric form were evaluated for their viral inhibition. MVN oligomers bound more efficiently to HCV virions, and displayed in comparison with the MVN monomer a higher neutralization potency against HCV infection. The antiviral effect was furthermore affected by the peptide linker sequence connecting the MVN monomers. The results indicate that MVN oligomers such as trimers and tetramers may be used as future neutralization agents against HCV infections.
Collapse
|
22
|
Uddin R, Downard KM. Subtyping of hepatitis C virus with high resolution mass spectrometry. CLINICAL MASS SPECTROMETRY (DEL MAR, CALIF.) 2017; 4-5:19-24. [PMID: 39193130 PMCID: PMC11322781 DOI: 10.1016/j.clinms.2017.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023]
Abstract
A proteotyping approach using high resolution mass spectrometry has been applied, for the first time, to subtype the hepatitis C virus based upon detection of one or more signature peptides derived from the E1 and E2 envelope glycoproteins. These signature peptides represent conserved peptide segments within these proteins for particular subtypes of the virus that are found to be unique in mass when compared with the theoretical masses for all peptide segments of translated HCV proteins within a specifically constructed database. The successful application of the approach to three different subtypes of the virus (i.e., 1a, 1b and 2b) is demonstrated for protein and whole virus proteolytic digests. The approach has the potential to replace existing PCR-based subtyping by offering a more direct and cost comparable strategy that is not challenged by mixed infection scenarios.
Collapse
Affiliation(s)
- Reaz Uddin
- University of New South Wales, Sydney, Australia
| | | |
Collapse
|
23
|
Castelli M, Clementi N, Pfaff J, Sautto GA, Diotti RA, Burioni R, Doranz BJ, Dal Peraro M, Clementi M, Mancini N. A Biologically-validated HCV E1E2 Heterodimer Structural Model. Sci Rep 2017; 7:214. [PMID: 28303031 PMCID: PMC5428263 DOI: 10.1038/s41598-017-00320-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/21/2017] [Indexed: 12/14/2022] Open
Abstract
The design of vaccine strategies and the development of drugs targeting the early stages of Hepatitis C virus (HCV) infection are hampered by the lack of structural information about its surface glycoproteins E1 and E2, the two constituents of HCV entry machinery. Despite the recent crystal resolution of limited versions of both proteins in truncated form, a complete picture of the E1E2 complex is still missing. Here we combined deep computational analysis of E1E2 secondary, tertiary and quaternary structure with functional and immunological mutational analysis across E1E2 in order to propose an in silico model for the ectodomain of the E1E2 heterodimer. Our model describes E1-E2 ectodomain dimerization interfaces, provides a structural explanation of E1 and E2 immunogenicity and sheds light on the molecular processes and disulfide bridges isomerization underlying the conformational changes required for fusion. Comprehensive alanine mutational analysis across 553 residues of E1E2 also resulted in identifying the epitope maps of diverse mAbs and the disulfide connectivity underlying E1E2 native conformation. The predicted structure unveils E1 and E2 structures in complex, thus representing a step towards the rational design of immunogens and drugs inhibiting HCV entry.
Collapse
Affiliation(s)
- Matteo Castelli
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Via Olgettina 58, 20132, Milano, Italy
| | - Nicola Clementi
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Via Olgettina 58, 20132, Milano, Italy
| | - Jennifer Pfaff
- Integral Molecular, 3711 Market St #900, Philadelphia, PA, 19104, USA
| | - Giuseppe A Sautto
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Via Olgettina 58, 20132, Milano, Italy
| | - Roberta A Diotti
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Via Olgettina 58, 20132, Milano, Italy
| | - Roberto Burioni
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Via Olgettina 58, 20132, Milano, Italy
| | - Benjamin J Doranz
- Integral Molecular, 3711 Market St #900, Philadelphia, PA, 19104, USA
| | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Route Cantonale, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Via Olgettina 58, 20132, Milano, Italy
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Via Olgettina 58, 20132, Milano, Italy.
| |
Collapse
|
24
|
Xiang T, Yang G, Liu X, Zhou Y, Fu Z, Lu F, Gu J, Taniguchi N, Tan Z, Chen X, Xie Y, Guan F, Zhang XL. Alteration of N-glycan expression profile and glycan pattern of glycoproteins in human hepatoma cells after HCV infection. Biochim Biophys Acta Gen Subj 2017; 1861:1036-1045. [PMID: 28229927 DOI: 10.1016/j.bbagen.2017.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/09/2017] [Accepted: 02/11/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatitis C virus (HCV) infection causes chronic liver diseases, liver fibrosis and even hepatocellular carcinoma (HCC). However little is known about any information of N-glycan pattern in human liver cell after HCV infection. METHODS The altered profiles of N-glycans in HCV-infected Huh7.5.1 cell were analyzed by using mass spectrometry. Then, lectin microarray, lectin pull-down assay, reverse transcription-quantitative real time PCR (RT-qPCR) and western-blotting were used to identify the altered N-glycosylated proteins and glycosyltransferases. RESULTS Compared to uninfected cells, significantly elevated levels of fucosylated, sialylated and complex N-glycans were found in HCV infected cells. Furthermore, Lens culinaris agglutinin (LCA)-binding glycoconjugates were increased most. Then, the LCA-agarose was used to precipitate the specific glycosylated proteins and identify that fucosylated modified annexin A2 (ANXA2) and heat shock protein 90 beta family member 1 (HSP90B1) was greatly increased in HCV-infected cells. However, the total ANXA2 and HSP90B1 protein levels remained unchanged. Additionally, we screened the mRNA expressions of 47 types of different glycosyltransferases and found that α1,6-fucosyltransferase 8 (FUT8) was the most up-regulated and contributed to strengthen the LCA binding capability to fucosylated modified ANXA2 and HSP90B1 after HCV infection. CONCLUSIONS HCV infection caused the altered N-glycans profiles, increased expressions of FUT8, fucosylated ANXA2 and HSP90B1 as well as enhanced LCA binding to Huh7.5.1. GENERAL SIGNIFICANCE Our results may lay the foundation for clarifying the role of N-glycans and facilitate the development of novel diagnostic biomarkers and therapeutic targets based on the increased FUT8, fucosylated ANXA2 and HSP90B1 after HCV infection.
Collapse
Affiliation(s)
- Tian Xiang
- State Key Laboratory of Virology. Hubei province Key Laboratory of Allergy and Immune-related diseases, Medical Research Institute, Department of Immunology of Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Ganglong Yang
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyu Liu
- State Key Laboratory of Virology. Hubei province Key Laboratory of Allergy and Immune-related diseases, Medical Research Institute, Department of Immunology of Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yidan Zhou
- University of Illinois at Urbana-Champaign, School of Molecular and Cellular Biology, Department of Microbiology, IL 61801, USA
| | - Zhongxiao Fu
- State Key Laboratory of Virology. Hubei province Key Laboratory of Allergy and Immune-related diseases, Medical Research Institute, Department of Immunology of Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Fangfang Lu
- State Key Laboratory of Virology. Hubei province Key Laboratory of Allergy and Immune-related diseases, Medical Research Institute, Department of Immunology of Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi 981-8558, Japan
| | - Naoyuki Taniguchi
- Systems Glycobiology Group, Global Research Cluster, RIKEN and RIKEN-Max Planck Joint Research Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zengqi Tan
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xi Chen
- Wuhan Institute of Biotechnology, Medical Research Institute of Wuhan University, Wuhan 430071, China
| | - Yan Xie
- State Key Laboratory of Virology. Hubei province Key Laboratory of Allergy and Immune-related diseases, Medical Research Institute, Department of Immunology of Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Feng Guan
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology. Hubei province Key Laboratory of Allergy and Immune-related diseases, Medical Research Institute, Department of Immunology of Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| |
Collapse
|
25
|
Anti-influenza virus activity of high-mannose binding lectins derived from genus Pseudomonas. Virus Res 2016; 223:64-72. [PMID: 27374061 PMCID: PMC7173227 DOI: 10.1016/j.virusres.2016.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022]
Abstract
Three Pseudomonas-derived lectins: PFL, PML, and PTL, have been examined for anti-influenza virus activity against several strains of influenza virus. These lectins would bind high-mannose glycan and blocked the entry of influenza virus into the host cells. It is expected that these lectins could have an antiviral activity against not only influenza virus but also other enveloped viruses including HIV as described by many other studies. These three lectins will be applicable to a novel microbicide.
Lectin PFL binding high-mannose glycan derived from Pseudomonas fluorescens and other homologous lectins: PML derived from Pseudomonas mandelii and PTL derived from Pseudomonas taiwanensis were examined for antiviral activity. The cDNA of these lectin genes were synthesized, cloned, expressed in Escherichia coli. The expressed lectins were purified by gel filtrations, and supplied to cultures infected with several strains of influenza virus. These three lectins have inhibited propagation of influenza viruses with a similar extent, 50% of inhibition-dose was around ten nanomolar concentration. An immunofluorescent microscopy, a microarray analysis, and several infection experiments with different time periods of lectin addition or using the competitor substrates indicated that binding of these lectins with high-mannose glycan on HA protein of influenza virus could block the virus entry into the host cells, thereby resulting in inhibition of the virus propagation. These Pseudomonas-derived lectins would be protential and attractive antiviral agents targeting glycoproteins of enveloped viruses including influenza virus.
Collapse
|
26
|
Bagdonaite I, Nordén R, Joshi HJ, Dabelsteen S, Nyström K, Vakhrushev SY, Olofsson S, Wandall HH. A strategy for O-glycoproteomics of enveloped viruses--the O-glycoproteome of herpes simplex virus type 1. PLoS Pathog 2015; 11:e1004784. [PMID: 25830354 PMCID: PMC4382219 DOI: 10.1371/journal.ppat.1004784] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/04/2015] [Indexed: 12/12/2022] Open
Abstract
Glycosylation of viral envelope proteins is important for infectivity and interaction with host immunity, however, our current knowledge of the functions of glycosylation is largely limited to N-glycosylation because it is difficult to predict and identify site-specific O-glycosylation. Here, we present a novel proteome-wide discovery strategy for O-glycosylation sites on viral envelope proteins using herpes simplex virus type 1 (HSV-1) as a model. We identified 74 O-linked glycosylation sites on 8 out of the 12 HSV-1 envelope proteins. Two of the identified glycosites found in glycoprotein B were previously implicated in virus attachment to immune cells. We show that HSV-1 infection distorts the secretory pathway and that infected cells accumulate glycoproteins with truncated O-glycans, nonetheless retaining the ability to elongate most of the surface glycans. With the use of precise gene editing, we further demonstrate that elongated O-glycans are essential for HSV-1 in human HaCaT keratinocytes, where HSV-1 produced markedly lower viral titers in HaCaT with abrogated O-glycans compared to the isogenic counterpart with normal O-glycans. The roles of O-linked glycosylation for viral entry, formation, secretion, and immune recognition are poorly understood, and the O-glycoproteomics strategy presented here now opens for unbiased discovery on all enveloped viruses. Information on site-specific O-glycosylation of viral envelope glycoproteins is generally very limited despite important functions. We present a powerful mass-spectrometry based strategy to globally identify O-glycosylation sites on viral envelope proteins of a given virus in the context of a productive infection. We successfully utilized the strategy to map O-linked glycosylation sites on the complex HSV-1 virus demonstrating that O-glycosylation is widely distributed on most envelope proteins. Moreover, we used genetically engineered keratinocytes lacking O-glycan elongation capacity to demonstrate that O-linked glycans are indeed important for HSV-1 biology as HSV-1 particles produced in these cells had significantly lower titers compared to wild-type keratinocytes. These tools enable wider discovery and detailed analysis of the role of site-specific O-glycosylation in virology.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rickard Nordén
- Department of Clinical Virology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hiren J. Joshi
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sally Dabelsteen
- Institute of Odontology, University of Copenhagen, Copenhagen, Denmark
| | - Kristina Nyström
- Department of Clinical Virology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sergey Y. Vakhrushev
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sigvard Olofsson
- Department of Clinical Virology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hans H. Wandall
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
27
|
Li Y, Pierce BG, Wang Q, Keck ZY, Fuerst TR, Foung SKH, Mariuzza RA. Structural basis for penetration of the glycan shield of hepatitis C virus E2 glycoprotein by a broadly neutralizing human antibody. J Biol Chem 2015; 290:10117-25. [PMID: 25737449 DOI: 10.1074/jbc.m115.643528] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of liver cirrhosis and hepatocellular carcinoma. A challenge for HCV vaccine development is to identify conserved epitopes able to elicit protective antibodies against this highly diverse virus. Glycan shielding is a mechanism by which HCV masks such epitopes on its E2 envelope glycoprotein. Antibodies to the E2 region comprising residues 412-423 (E2(412-423)) have broadly neutralizing activities. However, an adaptive mutation in this linear epitope, N417S, is associated with a glycosylation shift from Asn-417 to Asn-415 that enables HCV to escape neutralization by mAbs such as HCV1 and AP33. By contrast, the human mAb HC33.1 can neutralize virus bearing the N417S mutation. To understand how HC33.1 penetrates the glycan shield created by the glycosylation shift to Asn-415, we determined the structure of this broadly neutralizing mAb in complex with its E2(412-423) epitope to 2.0 Å resolution. The conformation of E2(412-423) bound to HC33.1 is distinct from the β-hairpin conformation of this peptide bound to HCV1 or AP33, because of disruption of the β-hairpin through interactions with the unusually long complementarity-determining region 3 of the HC33.1 heavy chain. Whereas Asn-415 is buried by HCV1 and AP33, it is solvent-exposed in the HC33.1-E2(412-423) complex, such that glycosylation of Asn-415 would not prevent antibody binding. Furthermore, our results highlight the structural flexibility of the E2(412-423) epitope, which may serve as an immune evasion strategy to impede induction of antibodies targeting this site by reducing its antigenicity.
Collapse
Affiliation(s)
- Yili Li
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| | - Brian G Pierce
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850
| | - Qian Wang
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| | - Zhen-Yong Keck
- the Department of Pathology, Stanford University School of Medicine, Stanford, California 94304
| | - Thomas R Fuerst
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| | - Steven K H Foung
- the Department of Pathology, Stanford University School of Medicine, Stanford, California 94304
| | - Roy A Mariuzza
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| |
Collapse
|
28
|
Nayak A, Pattabiraman N, Fadra N, Goldman R, Kosakovsky Pond SL, Mazumder R. Structure-function analysis of hepatitis C virus envelope glycoproteins E1 and E2. J Biomol Struct Dyn 2014; 33:1682-94. [PMID: 25245635 DOI: 10.1080/07391102.2014.967300] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hepatitis C virus (HCV) is the leading cause of chronic liver disease in humans. The envelope proteins of HCV are potential candidates for vaccine development. The absence of three-dimensional (3D) structures for the functional domain of HCV envelope proteins [E1.E2] monomer complex has hindered overall understanding of the virus infection, and also structure-based drug design initiatives. In this study, we report a 3D model containing both E1 and E2 proteins of HCV using the recently published structure of the core domain of HCV E2 and the functional part of E1, and investigate immunogenic implications of the model. HCV [E1.E2] molecule is modeled by using aa205-319 of E1 to aa421-716 of E2. Published experimental data were used to further refine the [E1.E2] model. Based on the model, we predict 77 exposed residues and several antigenic sites within the [E1.E2] that could serve as vaccine epitopes. This study identifies eight peptides which have antigenic propensity and have two or more sequentially exposed amino acids and 12 singular sites are under negative selection pressure that can serve as vaccine or therapeutic targets. Our special interest is 285FLVGQLFTFSPRRHW299 which has five negatively selected sites (L286, V287, G288, T292, and G303) with three of them sequential and four amino acids exposed (F285, L286, T292, and R296). This peptide in the E1 protein maps to dengue envelope vaccine target identified previously by our group. Our model provides for the first time an overall view of both the HCV envelope proteins thereby allowing researchers explore structure-based drug design approaches.
Collapse
Affiliation(s)
- Aparajita Nayak
- a Department of Biochemistry and Molecular Medicine , George Washington University , Washington , DC 20037 , USA
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
UNLABELLED The HIV-1 envelope protein (Env) is heavily glycosylated, with approximately 50% of the Env molecular mass being contributed by N-glycans. HIV-1 Env N-glycans shield the protein backbone and have been shown to play key roles in determining Env structure, surface exposure, and, consequently, antigenicity, infectivity, antibody neutralization, and carbohydrate and receptor binding. Studies of HIV-1 glycosylation have focused mainly on the position of glycosylation, rather than the types of glycans. Also, the role of Env glycan moieties on HIV-1 transmission has not been systematically defined. Using viruses with modified Env glycan content and heterogeneity, we examined the effects of Env glycan moieties on the major events of HIV-1 transmission. Compared to viruses with less oligomannose and more complex Env glycans, viruses with more oligomannose and less complex glycans more efficiently (i) transcytosed across an epithelial cell monolayer, (ii) attached to monocyte-derived macrophages (MDMs), (iii) bound monocyte-derived dendritic cells (MoDCs), and (iv) trans-infected primary lymphocytes via MoDCs. However, viruses with more oligomannose and less complex glycans displayed impaired infectivity in TZMbl cells, MDMs, primary lymphocytes, and fresh human intestinal tissue. Thus, N-linked Env glycans display discordant effects on the major events of HIV-1 transmission, with mature oligosaccharide structures on Env playing a crucial role in HIV-1 infection. Env glycosylation should be taken into consideration in the development of vaccine strategies to interdict HIV-1 transmission. IMPORTANCE HIV-1 Env N-glycans shield the protein backbone and play key roles in determining Env structure and surface exposure, thereby impacting Env antigenicity, infectivity, antibody neutralization, and carbohydrate and receptor binding. Studies of HIV-1 glycosylation have focused mainly on the position of glycosylation, rather than the types of glycans. In the study described in this report, we investigated systematically the role of Env glycan moieties on HIV-1 transmission. We show that N-linked Env glycans display discordant effects on the major events of HIV-1 transmission. These data indicate that Env glycan moieties impact HIV-1 transmission and that modulation of Env glycan moieties offers a potential strategy for the development of therapeutic or prophylactic vaccines against HIV-1.
Collapse
|
30
|
HCV E2 core structures and mAbs: something is still missing. Drug Discov Today 2014; 19:1964-70. [PMID: 25172800 DOI: 10.1016/j.drudis.2014.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/17/2014] [Accepted: 08/21/2014] [Indexed: 02/07/2023]
Abstract
The lack of structural information on hepatitis C virus (HCV) surface proteins has so far hampered the development of effective vaccines. Recently, two crystallographic structures have described the core portion (E2c) of E2 surface glycoprotein, the primary mediator of HCV entry. Despite the importance of these studies, the E2 overall structure is still unknown and, most importantly, several biochemical and functional studies are in disagreement with E2c structures. Here, the main literature will be discussed and an alternative disulfide bridge pattern will be proposed, based on unpublished human monoclonal antibody reactivity. A modeling strategy aiming at recapitulating the available structural and functional studies of E2 will also be proposed.
Collapse
|
31
|
Chen PC, Chuang PK, Chen CH, Chan YT, Chen JR, Lin SW, Ma C, Hsu TL, Wong CH. Role of N-linked glycans in the interactions of recombinant HCV envelope glycoproteins with cellular receptors. ACS Chem Biol 2014; 9:1437-43. [PMID: 24766301 DOI: 10.1021/cb500121c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic hepatitis and hepatocellular carcinoma. It infects human liver cells through several cellular protein receptors including CD81, SR-BI, claudin-1, and occludin. Previous reports also show that lectin receptors can mediate HCV recognition and entry. The envelope proteins of HCV (E1 and E2) are heavily glycosylated, further indicating the possible roles of lectin receptor-virus interaction in HCV infection. However, there is limited study investigating the relationship of HCV envelope glycoproteins and lectin as well as non-lectin receptors. Here we used surface plasmon resonance to examine the binding affinity of different glycoforms of recombinant HCV envelope protein to receptors and inspected the infectivity and assembly of HCV pseudoparticles composed of different glycoforms of envelope proteins. Our results indicated that DC-SIGN, L-SIGN, and Langerin had higher affinity to recombinant HCV envelope proteins in the presence of calcium ions than non-lectin receptors, and envelope proteins with Man8/9 N-glycans showed approximate 10-fold better binding to lectin receptors than envelope proteins with Man5 and complex type N-glycans. Interestingly, comparing among glycoforms, recombinant envelope proteins with Man5 N-glycans showed the highest binding affinity when interacting with non-lectin receptors. In summary, the glycans on HCV envelope protein play a modulatory role in HCV assembly and infection and direct HCV-receptor interaction, which mediates viral entry in different cells. Receptors with high affinity to HCV envelope proteins may be considered as targets for development of a therapeutic strategy against HCV.
Collapse
Affiliation(s)
- Po-Chang Chen
- Institute
of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Po-Kai Chuang
- Institute
of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhao Y, Ren Y, Zhang X, Zhao P, Tao W, Zhong J, Li Q, Zhang XL. Ficolin-2 inhibits hepatitis C virus infection, whereas apolipoprotein E3 mediates viral immune escape. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:783-96. [PMID: 24928988 DOI: 10.4049/jimmunol.1302563] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human ficolin-2 (L-ficolin/p35) is a lectin-complement pathway activator that is present in normal human plasma and is associated with infectious diseases; however, little is known regarding the roles and mechanisms of ficolin-2 during chronic hepatitis C virus (HCV) infection. In this study, we found that ficolin-2 inhibits the entry of HCV at an early stage of viral infection, regardless of the viral genotype. Ficolin-2 neutralized and inhibited the initial attachment and infection of HCV by binding to the HCV envelope surface glycoproteins E1 and E2, blocking HCV attachment to low-density lipoprotein receptor (LDLR) and scavenger receptor B1, and weakly interfering with CD81 receptor attachment. However, no interference with claudin-1 and occludin receptor attachment was observed. The C-terminal fibrinogen domain (201-313 aa) of ficolin-2 was identified as the critical binding region for the HCV-E1-E2 N-glycans, playing a critical role in the anti-HCV activity. More importantly, we found that apolipoprotein E (ApoE)3, which is enriched in the low-density fractions of HCV RNA-containing particles, promotes HCV infection and inhibits ficolin-2-mediated antiviral activity. ApoE3, but not ApoE2 and ApoE4, blocked the interaction between ficolin-2 and HCV-E2. Our data suggest that the HCV entry inhibitor ficolin-2 is a novel and promising antiviral innate immune molecule, whereas ApoE3 blocks the effect of ficolin-2 and mediates an immune escape mechanism during chronic HCV infection. HCV may be neutralized using compounds directed against the lipoprotein moiety of the viral particle, and ApoE3 may be a new target to combat HCV infection.
Collapse
MESH Headings
- Apolipoprotein E3/genetics
- Apolipoprotein E3/immunology
- Apolipoprotein E3/metabolism
- Binding, Competitive/immunology
- Blotting, Western
- Cell Line, Tumor
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- HEK293 Cells
- HeLa Cells
- Hepacivirus/genetics
- Hepacivirus/immunology
- Hepacivirus/physiology
- Host-Pathogen Interactions/immunology
- Humans
- Lectins/genetics
- Lectins/immunology
- Lectins/metabolism
- Mannans/immunology
- Mannans/metabolism
- Microscopy, Confocal
- Polysaccharides/immunology
- Polysaccharides/metabolism
- Protein Binding/immunology
- RNA Interference
- Receptors, LDL/genetics
- Receptors, LDL/immunology
- Receptors, LDL/metabolism
- Scavenger Receptors, Class B/genetics
- Scavenger Receptors, Class B/immunology
- Scavenger Receptors, Class B/metabolism
- Tetraspanin 28/genetics
- Tetraspanin 28/immunology
- Tetraspanin 28/metabolism
- Tumor Escape/genetics
- Tumor Escape/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/metabolism
- Ficolins
Collapse
Affiliation(s)
- Yinglan Zhao
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Wuhan 430071, China
| | - Yushan Ren
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Wuhan 430071, China
| | - Xuping Zhang
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Wuhan 430071, China
| | - Ping Zhao
- Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| | - Wanyin Tao
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai 200025, China; and
| | - Jin Zhong
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai 200025, China; and
| | - Qiao Li
- University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Wuhan 430071, China;
| |
Collapse
|
33
|
Hamed MR, Brown RJ, Zothner C, Urbanowicz RA, Mason CP, Krarup A, McClure CP, Irving WL, Ball JK, Harris M, Hickling TP, Tarr AW. Recombinant human L-ficolin directly neutralizes hepatitis C virus entry. J Innate Immun 2014; 6:676-84. [PMID: 24854201 PMCID: PMC6741592 DOI: 10.1159/000362209] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 03/16/2014] [Accepted: 03/16/2014] [Indexed: 12/25/2022] Open
Abstract
L-ficolin is a soluble pattern recognition molecule expressed by the liver that contributes to innate immune defense against microorganisms. It is well described that binding of L-ficolin to specific pathogen-associated molecular patterns activates the lectin complement pathway, resulting in opsonization and lysis of pathogens. In this study, we demonstrated that in addition to this indirect effect, L-ficolin has a direct neutralizing effect against hepatitis C virus (HCV) entry. Specific, dose-dependent binding of recombinant L-ficolin to HCV glycoproteins E1 and E2 was observed. This interaction was inhibited by soluble L-ficolin ligands. Interaction of L-ficolin with E1 and E2 potently inhibited entry of retroviral pseudoparticles bearing these glycoproteins. L-ficolin also inhibited entry of cell-cultured HCV in a calcium-dependent manner. Neutralizing concentrations of L-ficolin were found to be circulating in the serum of HCV-infected individuals. This is the first description of direct neutralization of HCV entry by a ficolin and highlights a novel role for L-ficolin as a virus entry inhibitor.
Collapse
Affiliation(s)
- Mohamed R. Hamed
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Richard J.P. Brown
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| | - Carsten Zothner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Richard A. Urbanowicz
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| | - Christopher P. Mason
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| | - Anders Krarup
- Biochemistry Department, University of Oxford, Oxford, UK
| | - C. Patrick McClure
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| | - William L. Irving
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| | - Jonathan K. Ball
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Timothy P. Hickling
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| | - Alexander W. Tarr
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| |
Collapse
|
34
|
Hundt J, Li Z, Liu Q. Post-translational modifications of hepatitis C viral proteins and their biological significance. World J Gastroenterol 2013; 19:8929-8939. [PMID: 24379618 PMCID: PMC3870546 DOI: 10.3748/wjg.v19.i47.8929] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/04/2013] [Indexed: 02/06/2023] Open
Abstract
Replication of hepatitis C virus (HCV) depends on the interaction of viral proteins with various host cellular proteins and signalling pathways. Similar to cellular proteins, post-translational modifications (PTMs) of HCV proteins are essential for proper protein function and regulation, thus, directly affecting viral life cycle and the generation of infectious virus particles. Cleavage of the HCV polyprotein by cellular and viral proteases into more than 10 proteins represents an early protein modification step after translation of the HCV positive-stranded RNA genome. The key modifications include the regulated intramembranous proteolytic cleavage of core protein, disulfide bond formation of core, glycosylation of HCV envelope proteins E1 and E2, methylation of nonstructural protein 3 (NS3), biotinylation of NS4A, ubiquitination of NS5B and phosphorylation of core and NS5B. Other modifications like ubiquitination of core and palmitoylation of core and NS4B proteins have been reported as well. For some modifications such as phosphorylation of NS3 and NS5A and acetylation of NS3, we have limited understanding of their effects on HCV replication and pathogenesis while the impact of other modifications is far from clear. In this review, we summarize the available information on PTMs of HCV proteins and discuss their relevance to HCV replication and pathogenesis.
Collapse
|
35
|
Saeed A, Baloch K, Brown RJP, Wallis R, Chen L, Dexter L, McClure CP, Shakesheff K, Thomson BJ. Mannan binding lectin-associated serine protease 1 is induced by hepatitis C virus infection and activates human hepatic stellate cells. Clin Exp Immunol 2013; 174:265-73. [PMID: 23841802 DOI: 10.1111/cei.12174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2013] [Indexed: 01/26/2023] Open
Abstract
Mannan binding lectin (MBL)-associated serine protease type 1 (MASP-1) has a central role in the lectin pathway of complement activation and is required for the formation of C3 convertase. The activity of MASP-1 in the peripheral blood has been identified previously as a highly significant predictor of the severity of liver fibrosis in hepatitis C virus (HCV) infection, but not in liver disease of other aetiologies. In this study we tested the hypotheses that expression of MASP-1 may promote disease progression in HCV disease by direct activation of hepatic stellate cells (HSCs) and may additionally be up-regulated by HCV. In order to do so, we utilized a model for the maintenance of primary human HSC in the quiescent state by culture on basement membrane substrate prior to stimulation. In comparison to controls, recombinant MASP-1 stimulated quiescent human HSCs to differentiate to the activated state as assessed by both morphology and up-regulation of HSC activation markers α-smooth muscle actin and tissue inhibitor of metalloproteinase 1. Further, the expression of MASP-1 was up-regulated significantly by HCV infection in hepatocyte cell lines. These observations suggest a new role for MASP-1 and provide a possible mechanistic link between high levels of MASP-1 and the severity of disease in HCV infection. Taken together with previous clinical observations, our new findings suggest that the balance of MASP-1 activity may be proinflammatory and act to accelerate fibrosis progression in HCV liver disease.
Collapse
Affiliation(s)
- A Saeed
- School of Molecular Medical Sciences, University of Nottingham, Leicester, UK; School of Pharmacy, University of Nottingham, Leicester, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kachko A, Loesgen S, Shahzad-ul-Hussan S, Tan W, Zubkova I, Takeda K, Wells F, Rubin S, Bewley CA, Major ME. Inhibition of hepatitis C virus by the cyanobacterial protein Microcystis viridis lectin: mechanistic differences between the high-mannose specific lectins MVL, CV-N, and GNA. Mol Pharm 2013; 10:4590-4602. [PMID: 24152340 PMCID: PMC3907190 DOI: 10.1021/mp400399b] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plant or microbial lectins are known to exhibit potent antiviral activities against viruses with glycosylated surface proteins, yet the mechanism(s) by which these carbohydrate-binding proteins exert their antiviral activities is not fully understood. Hepatitis C virus (HCV) is known to possess glycosylated envelope proteins (gpE1E2) and to be potently inhibited by lectins. Here, we tested in detail the antiviral properties of the newly discovered Microcystis viridis lectin (MVL) along with cyanovirin-N (CV-N) and Galanthus nivalis agglutinin (GNA) against cell culture HCV, as well as their binding properties toward viral particles, target cells, and recombinant HCV glycoproteins. Using infectivity assays, CV-N, MVL, and GNA inhibited HCV with IC50 values of 0.6 nM, 30.4 nM, and 11.1 nM, respectively. Biolayer interferometry analysis demonstrated a higher affinity of GNA to immobilized recombinant HCV glycoproteins compared to CV-N and MVL. Complementary studies, including fluorescence-activated cell sorting (FACS) analysis, confocal microscopy, and pre- and post-virus binding assays, showed a complex mechanism of inhibition for CV-N and MVL that includes both viral and cell association, while GNA functions by binding directly to the viral particle. Combinations of GNA with CV-N or MVL in HCV infection studies revealed synergistic inhibitory effects, which can be explained by different glycan recognition profiles of the mainly high-mannoside specific lectins, and supports the hypothesis that these lectins inhibit through different and complex modes of action. Our findings provide important insights into the mechanisms by which lectins inhibit HCV infection. Overall, the data suggest MVL and CV-N have the potential for toxicity due to interactions with cellular proteins while GNA may be a better therapeutic agent due to specificity for the HCV gpE1E2.
Collapse
Affiliation(s)
- Alla Kachko
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 USA
| | - Sandra Loesgen
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda Maryland 20892, USA
| | - Syed Shahzad-ul-Hussan
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda Maryland 20892, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda Maryland 20892, USA
| | - Wendy Tan
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 USA
| | - Iryna Zubkova
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 USA
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD 20892. USA
| | - Frances Wells
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 USA
| | - Steven Rubin
- Laboratory of Method Development, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892. USA
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda Maryland 20892, USA
| | - Marian E. Major
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 USA
| |
Collapse
|
37
|
Perdivara I, Perera L, Sricholpech M, Terajima M, Pleshko N, Yamauchi M, Tomer KB. Unusual fragmentation pathways in collagen glycopeptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1072-1081. [PMID: 23633013 PMCID: PMC3679267 DOI: 10.1007/s13361-013-0624-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/20/2013] [Accepted: 03/23/2013] [Indexed: 05/29/2023]
Abstract
Collagens are the most abundant glycoproteins in the body. One characteristic of this protein family is that the amino acid sequence consists of repeats of three amino acids -(X-Y-Gly)n. Within this motif, the Y residue is often 4-hydroxyproline (HyP) or 5-hydroxylysine (HyK). Glycosylation in collagen occurs at the 5-OH group in HyK in the form of two glycosides, galactosylhydroxylysine (Gal-HyK) and glucosyl galactosylhydroxylysine (GlcGal-HyK). In collision induced dissociation (CID), collagen tryptic glycopeptides exhibit unexpected gas-phase dissociation behavior compared to typical N- and O-linked glycopeptides (i.e., in addition to glycosidic bond cleavages, extensive cleavages of the amide bonds are observed). The Gal- or GlcGal- glycan modifications are largely retained on the fragment ions. These features enable unambiguous determination of the amino acid sequence of collagen glycopeptides and the location of the glycosylation site. This dissociation pattern was consistent for all analyzed collagen glycopeptides, regardless of their length or amino acid composition, collagen type or tissue. The two fragmentation pathways-amide bond and glycosidic bond cleavage-are highly competitive in collagen tryptic glycopeptides. The number of ionizing protons relative to the number of basic sites (i.e., Arg, Lys, HyK, and N-terminus) is a major driving force of the fragmentation. We present here our experimental results and employ quantum mechanics calculations to understand the factors enhancing the labile character of the amide bonds and the stability of hydroxylysine glycosides in gas phase dissociation of collagen glycopeptides.
Collapse
Affiliation(s)
- Irina Perdivara
- Mass Spectrometry Group, NIH/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Lalith Perera
- Computational Chemistry Group, NIH/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | | | - Masahiko Terajima
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Pennsylvania, USA
| | - Mitsuo Yamauchi
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Kenneth B. Tomer
- Mass Spectrometry Group, NIH/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| |
Collapse
|
38
|
Pantua H, Diao J, Ultsch M, Hazen M, Mathieu M, McCutcheon K, Takeda K, Date S, Cheung TK, Phung Q, Hass P, Arnott D, Hongo JA, Matthews DJ, Brown A, Patel AH, Kelley RF, Eigenbrot C, Kapadia SB. Glycan Shifting on Hepatitis C Virus (HCV) E2 Glycoprotein Is a Mechanism for Escape from Broadly Neutralizing Antibodies. J Mol Biol 2013; 425:1899-1914. [DOI: 10.1016/j.jmb.2013.02.025] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/15/2013] [Accepted: 02/22/2013] [Indexed: 12/14/2022]
|
39
|
Froehlich JW, Dodds ED, Wilhelm M, Serang O, Steen JA, Lee RS. A classifier based on accurate mass measurements to aid large scale, unbiased glycoproteomics. Mol Cell Proteomics 2013; 12:1017-25. [PMID: 23438733 DOI: 10.1074/mcp.m112.025494] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Determining which glycan moieties occupy specific N-glycosylation sites is a highly challenging analytical task. Arguably, the most common approach involves LC-MS and LC-MS/MS analysis of glycopeptides generated by proteases with high cleavage site specificity; however, the depth achieved by this approach is modest. Nonglycosylated peptides are a major challenge to glycoproteomics, as they are preferentially selected for data-dependent MS/MS due to higher ionization efficiencies and higher stoichiometric levels in moderately complex samples. With the goal of improving glycopeptide coverage, a mass defect classifier was developed that discriminates between peptides and glycopeptides in complex mixtures based on accurate mass measurements of precursor peaks. By using the classifier, glycopeptides that were not fragmented in an initial data-dependent acquisition run may be targeted in a subsequent analysis without any prior knowledge of the glycan or protein species present in the mixture. Additionally, from probable glycopeptides that were poorly fragmented, tandem mass spectra may be reacquired using optimal glycopeptide settings. We demonstrate high sensitivity (0.892) and specificity (0.947) based on an in silico dataset spanning >100,000 tryptic entries. Comparable results were obtained using chymotryptic species. Further validation using published data and a fractionated tryptic digest of human urinary proteins was performed, yielding a sensitivity of 0.90 and a specificity of 0.93. Lists of glycopeptides may be generated from an initial proteomics experiment, and we show they may be efficiently targeted using the classifier. Considering the growing availability of high accuracy mass analyzers, this approach represents a simple and broadly applicable means of increasing the depth of MS/MS-based glycoproteomic analyses.
Collapse
Affiliation(s)
- John W Froehlich
- Department of Urology and Urological Diseases Research Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
40
|
Bräutigam J, Scheidig AJ, Egge-Jacobsen W. Mass spectrometric analysis of hepatitis C viral envelope protein E2 reveals extended microheterogeneity of mucin-type O-linked glycosylation. Glycobiology 2012; 23:453-74. [PMID: 23242014 DOI: 10.1093/glycob/cws171] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The infectious liver disease hepatitis C is caused by the small, enveloped, positive single-strand RNA hepatitis C virus (HCV). The HCV genome encodes for a single polyprotein precursor of ∼3010 amino acid residues. Host and cellular proteases co- and posttranslational process the precursor creating six nonstructural (NS) proteins and four structural components. Properly folded forms of the envelope proteins E1 and E2 form the associated E1-E2 complex. This complex represents a significant antigenic component at the viral surface that can interact with several target cell receptors. Extent and type of glycosylation is an important factor for virulence and escape from the immune system. Detailed characterization of the glycosylated sites is helpful for the understanding of different phenotypes as well as for the development of E1/E2-related treatments of HCV infection. Here, we have investigated in detail the O-linked glycosylation of the HCV envelope protein E2 expressed in and isolated from human embryonic kidney (HEK 293) cells. Using nano-liquid chromatography and tandem mass spectrometry approaches, we clearly have identified six residues for O-linked glycosylation within isolated glycopeptides (Ser393, Thr396, Ser401, Ser404, Thr473 and Thr518), carrying mainly Core 1 and Core 2 mucin-type structures. Based on our data, Thr385 is probably glycosylated as well. In addition, we could show that Ser479 within the hyper variable region (HVR) I is not O-glycosylated. For most of these sites, different degrees of microheterogeneity could be verified. Concerning HCV E2, this is the first case of experimentally proven O-linked glycosylation in detail via mass spectrometry.
Collapse
Affiliation(s)
- Joachim Bräutigam
- Department of Structural Biology, Centre for Biochemistry and Molecular Biology, Christian-Albrechts Universität, 24118 Kiel, Germany
| | | | | |
Collapse
|
41
|
Kong L, Julien JP, Calarese D, Scanlan C, Lee HK, Rudd P, Wong CH, Dwek RA, Burton DR, Wilson IA. Toward a Carbohydrate-Based HIV-1 Vaccine. ACTA ACUST UNITED AC 2012. [DOI: 10.1021/bk-2012-1102.ch007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- Leopold Kong
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jean-Philippe Julien
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Daniel Calarese
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Christopher Scanlan
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Hing-Ken Lee
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Pauline Rudd
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Chi-Huey Wong
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Raymond A. Dwek
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Dennis R. Burton
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Ian A. Wilson
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007-2008. MASS SPECTROMETRY REVIEWS 2012; 31:183-311. [PMID: 21850673 DOI: 10.1002/mas.20333] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 05/31/2023]
Abstract
This review is the fifth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2008. The first section of the review covers fundamental studies, fragmentation of carbohydrate ions, use of derivatives and new software developments for analysis of carbohydrate spectra. Among newer areas of method development are glycan arrays, MALDI imaging and the use of ion mobility spectrometry. The second section of the review discusses applications of MALDI MS to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, biopharmaceuticals, glycated proteins, glycolipids, glycosides and various other natural products. There is a short section on the use of MALDI mass spectrometry for the study of enzymes involved in glycan processing and a section on the use of MALDI MS to monitor products of the chemical synthesis of carbohydrates with emphasis on carbohydrate-protein complexes and glycodendrimers. Corresponding analyses by electrospray ionization now appear to outnumber those performed by MALDI and the amount of literature makes a comprehensive review on this technique impractical. However, most of the work relating to sample preparation and glycan synthesis is equally relevant to electrospray and, consequently, those proposing analyses by electrospray should also find material in this review of interest.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
43
|
Tarr AW, Urbanowicz RA, Ball JK. The role of humoral innate immunity in hepatitis C virus infection. Viruses 2012; 4:1-27. [PMID: 22355450 PMCID: PMC3280516 DOI: 10.3390/v4010001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 12/19/2022] Open
Abstract
Infection with Hepatitis C Virus (HCV) causes chronic disease in approximately 80% of cases, resulting in chronic inflammation and cirrhosis. Current treatments are not completely effective, and a vaccine has yet to be developed. Spontaneous resolution of infection is associated with effective host adaptive immunity to HCV, including production of both HCV-specific T cells and neutralizing antibodies. However, the supporting role of soluble innate factors in protection against HCV is less well understood. The innate immune system provides an immediate line of defense against infections, triggering inflammation and playing a critical role in activating adaptive immunity. Innate immunity comprises both cellular and humoral components, the humoral arm consisting of pattern recognition molecules such as complement C1q, collectins and ficolins. These molecules activate the complement cascade, neutralize pathogens, and recruit antigen presenting cells. Here we review the current understanding of anti-viral components of the humoral innate immune system that play a similar role to antibodies, describing their role in immunity to HCV and their potential contribution to HCV pathogenesis.
Collapse
Affiliation(s)
- Alexander W. Tarr
- Biomedical Research Unit in Gastroenterology, School of Molecular Medical Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2UH, UK; (R.A.U.); (J.K.B.)
| | | | | |
Collapse
|
44
|
Zheng J, Sugrue RJ, Tang K. Mass spectrometry based proteomic studies on viruses and hosts--a review. Anal Chim Acta 2011; 702:149-59. [PMID: 21839192 PMCID: PMC7094357 DOI: 10.1016/j.aca.2011.06.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 02/07/2023]
Abstract
In terms of proteomic research in the 21st century, the realm of virology is still regarded as an enormous challenge mainly brought by three aspects, namely, studying on the complex proteome of the virus with unexpected variations, developing more accurate analytical techniques as well as understanding viral pathogenesis and virus-host interaction dynamics. Progresses in these areas will be helpful to vaccine design and antiviral drugs discovery. Mass spectrometry based proteomics have shown exceptional display of capabilities, not only precisely identifying viral and cellular proteins that are functionally, structurally, and dynamically changed upon virus infection, but also enabling us to detect important pathway proteins. In addition, many isolation and purification techniques and quantitative strategies in conjunction with MS can significantly improve the sensitivity of mass spectrometry for detecting low-abundant proteins, replenishing the stock of virus proteome and enlarging the protein-protein interaction maps. Nevertheless, only a small proportion of the infectious viruses in both of animal and plant have been studied using this approach. As more virus and host genomes are being sequenced, MS-based proteomics is becoming an indispensable tool for virology. In this paper, we provide a brief review of the current technologies and their applications in studying selected viruses and hosts.
Collapse
Affiliation(s)
- Jie Zheng
- Division of Chemical Biology and Biotechnology, School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Richard J. Sugrue
- Division of Molecular and Cell Biology, School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Kai Tang
- Division of Chemical Biology and Biotechnology, School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
45
|
Perdivara I, Peddada SD, Miller FW, Tomer KB, Deterding LJ. Mass spectrometric determination of IgG subclass-specific glycosylation profiles in siblings discordant for myositis syndromes. J Proteome Res 2011; 10:2969-78. [PMID: 21609021 DOI: 10.1021/pr200397h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many autoimmune conditions are believed to result from chronic inflammation as a consequence of the interaction of genetic and environmental factors in susceptible individuals. One common feature in some autoimmune diseases is the decrease in terminal galactosylation of the constant region N-glycan of the total plasma immunoglobulin. To determine whether a similar pattern is characteristic for the autoimmune disorder myositis, we analyzed the antibody subclass specific glycosylation in patients with myositis, their asymptomatic siblings, and healthy unrelated age- and sex-matched controls. The antibody subclass specific glycosylation was determined from the LC-MS analyses of the IgG glycopeptides generated by trypsin digestion of the antibody heavy chain. The glycosylation profiles of the IgG subclasses were determined relative to the total abundance of all glycoforms. We found elevated amounts of glycoforms lacking terminal galactose in myositis patients. Pairwise statistical analyses reveals that galactosylation is statistically different between the myositis patients and control groups. Furthermore, the trend analysis for glycosylation indicates a pattern of decreasing galactosylation in the order controls ≥ siblings ≥ myositis patients, suggesting the existence of a genetic, immune-related predisposition in the group of asymptomatic siblings that can be detected before the onset of clinical symptoms at the level of plasma proteins.
Collapse
Affiliation(s)
- Irina Perdivara
- Laboratory of Structural Biology, NIH/DHHS, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
46
|
Differences in the fractional abundances of carbohydrates of natural and recombinant human tissue factor. Biochim Biophys Acta Gen Subj 2010; 1810:398-405. [PMID: 21172408 DOI: 10.1016/j.bbagen.2010.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 11/23/2022]
Abstract
BACKGROUND Tissue factor (TF) is a single polypeptide integral membrane glycoprotein composed of 263 residues and is essential to life in its role as the initiator of blood coagulation. Previously we have shown that the activity of the natural placental TF (pTF) and the recombinant TF (rTF) from Sf9 insect cells is different (Krudysz-Amblo, J. et al (2010) J. Biol. Chem. 285, 3371-3382). METHODS In this study, using mass spectrometry, we show by quantitative analysis that the extent of glycosylation varies on each protein. RESULTS AND CONCLUSIONS Fractional abundance of each glycan composition at each of the three glycosylation sites reveals the most pronounced difference to be at asparagine (Asn) 11. This residue is located in the region of extensive TF-factor VIIa (FVIIa) interaction. Carbohydrate fractional abundance at Asn11 revealed that glycosylation in the natural placental TF is much more prevalent (~76%) than in the recombinant protein (~20%). The extent of glycosylation on Asn124 and Asn137 is similar in the two proteins, despite the pronounced differences in the carbohydrate composition. Additionally, 77% of rTF exists as TF des-1, 2 (missing the first two amino acids from the N-terminus). In contrast, only 31% of pTF is found in the des-1, 2 form. CONCLUSION These observations may attribute to the difference in the ability of TF-FVIIa complex to activate factor X (FX). GENERAL SIGNIFICANCE Structural and functional comparison of the recombinant and natural protein advances our understanding and knowledge on the biological activity of TF.
Collapse
|
47
|
Brown KS, Keogh MJ, Owsianka AM, Adair R, Patel AH, Arnold JN, Ball JK, Sim RB, Tarr AW, Hickling TP. Specific interaction of hepatitis C virus glycoproteins with mannan binding lectin inhibits virus entry. Protein Cell 2010; 1:664-74. [PMID: 21203938 DOI: 10.1007/s13238-010-0088-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 06/24/2010] [Indexed: 01/26/2023] Open
Abstract
Mannan-binding lectin (MBL) is a soluble innate immune protein that binds to glycosylated targets. MBL acts as an opsonin and activates complement, contributing to the destruction and clearance of infecting microorganisms. Hepatitis C virus (HCV) encodes two envelope glycoproteins E1 and E2, expressed as non-covalent E1/E2 heterodimers in the viral envelope. E1 and E2 are potential ligands for MBL. Here we describe an analysis of the interaction between HCV and MBL using recombinant soluble E2 ectodomain fragment, the full-length E1/E2 heterodimer, expressed in vitro, and assess the effect of this interaction on virus entry. A binding assay using antibody capture of full length E1/E2 heterodimers was used to demonstrate calcium dependent, saturating binding of MBL to HCV glycoproteins. Competition with various saccharides further confirmed that the interaction was via the lectin domain of MBL. MBL binds to E1/E2 representing a broad range of virus genotypes. MBL was shown to neutralize the entry into Huh-7 cells of HCV pseudoparticles (HCVpp) bearing E1/E2 from a wide range of genotypes. HCVpp were neutralized to varying degrees. MBL was also shown to neutralize an authentic cell culture infectious virus, strain JFH-1 (HCVcc). Furthermore, binding of MBL to E1/E2 was able to activate the complement system via MBL-associated serine protease 2. In conclusion, MBL interacts directly with HCV glycoproteins, which are present on the surface of the virion, resulting in neutralization of HCV particles.
Collapse
Affiliation(s)
- Kristelle S Brown
- Institute of Infection, Immunity and Inflammation, School of Molecular Medical Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Envelope glycans of immunodeficiency virions are almost entirely oligomannose antigens. Proc Natl Acad Sci U S A 2010; 107:13800-5. [PMID: 20643940 DOI: 10.1073/pnas.1006498107] [Citation(s) in RCA: 278] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The envelope spike of HIV is one of the most highly N-glycosylated structures found in nature. However, despite extensive research revealing essential functional roles in infection and immune evasion, the chemical structures of the glycans on the native viral envelope glycoprotein gp120--as opposed to recombinantly generated gp120--have not been described. Here, we report on the identity of the N-linked glycans from primary isolates of HIV-1 (clades A, B, and C) and from the simian immunodeficiency virus. MS analysis reveals a remarkably simple and highly conserved virus-specific glycan profile almost entirely devoid of medial Golgi-mediated processing. In stark contrast to recombinant gp120, which shows extensive exposure to cellular glycosylation enzymes (>70% complex type glycans), the native envelope shows barely detectable processing beyond the biosynthetic intermediate Man5GlcNAc2 (<2% complex type glycans). This oligomannose (Man5-9GlcNAc2) profile is conserved across primary isolates and geographically divergent clades but is not reflected in the current generation of gp120 antigens used for vaccine trials. In the context of vaccine design, we also note that Manalpha1-->2Man-terminating glycans (Man6-9GlcNAc2) of the type recognized by the broadly neutralizing anti-HIV antibody 2G12 are 3-fold more abundant on the native envelope than on the recombinant monomer and are also found on isolates not neutralized by 2G12. The Manalpha1-->2Man residues of gp120 therefore provide a vaccine target that is physically larger and antigenically more conserved than the 2G12 epitope itself. This study revises and extends our understanding of the glycan shield of HIV with implications for AIDS vaccine design.
Collapse
|
49
|
Astronomo RD, Kaltgrad E, Udit AK, Wang SK, Doores KJ, Huang CY, Pantophlet R, Paulson JC, Wong CH, Finn MG, Burton DR. Defining criteria for oligomannose immunogens for HIV using icosahedral virus capsid scaffolds. ACTA ACUST UNITED AC 2010; 17:357-70. [PMID: 20416507 DOI: 10.1016/j.chembiol.2010.03.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 03/24/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
Abstract
The broadly neutralizing antibody 2G12 recognizes a conserved cluster of high-mannose glycans on the surface envelope spike of HIV, suggesting that the "glycan shield" defense of the virus can be breached and may, under the right circumstances, serve as a vaccine target. In an attempt to recreate features of the glycan shield semisynthetically, oligomannosides were coupled to surface lysines on the icosahedral capsids of bacteriophage Q beta and cowpea mosaic virus (CPMV). The Q beta glycoconjugates, but not CPMV, presented oligomannose clusters that bind the antibody 2G12 with high affinity. However, antibodies against these 2G12 epitopes were not detected in immunized rabbits. Rather, alternative oligomannose epitopes on the conjugates were immunodominant and elicited high titers of anti-mannose antibodies that do not crossreact with the HIV envelope. The results presented reveal important design considerations for a carbohydrate-based vaccine component for HIV.
Collapse
Affiliation(s)
- Rena D Astronomo
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
François KO, Balzarini J. Potential of carbohydrate-binding agents as therapeutics against enveloped viruses. Med Res Rev 2010; 32:349-87. [PMID: 20577974 PMCID: PMC7168447 DOI: 10.1002/med.20216] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Twenty‐seven years after the discovery of HIV as the cause of AIDS more than 25 drugs directed against four different viral targets (i.e. reverse transcriptase, protease, integrase, envelope gp41) and one cellular target (i.e. CCR5 co‐receptor) are available for treatment. However, the search for an efficient vaccine is still ongoing. One of the main problems is the presence of a continuously evolving dense carbohydrate shield, consisting of N‐linked glycans that surrounds the virion and protects it against efficient recognition and persistent neutralization by the immune system. However, several lectins from the innate immune system specifically bind to these glycans in an attempt to process the virus antigens to provoke an immune response. Across a wide variety of different species in nature lectins can be found that can interact with the glycosylated envelope of HIV‐1 and can block the infection of susceptible cells by the virus. In this review, we will give an overview of the lectins from non‐mammalian origin that are endowed with antiviral properties and discuss the complex interactions between lectins of the innate immune system and HIV‐1. Also, attention will be given to different carbohydrate‐related modalities that can be exploited for antiviral chemotherapy. © 2010 Wiley Periodicals, Inc. Med Res Rev
Collapse
Affiliation(s)
- K O François
- Rega Institute for Medical Research, K. U. Leuven, B-3000 Leuven, Belgium
| | | |
Collapse
|