1
|
Zeng X, Pan Y, Lin J, Zheng Z, Wu H, Wang Y, Wu Y, Shen Y, Chen Y, Zhao Y, Xia Q, Duan Y, He K. IL-21R-Targeted Nano-immunosuppressant Prevents Acute Rejection in Allogeneic Transplantation by Blocking Maturation of T Follicular Helper Cells. Acta Biomater 2025; 199:346-360. [PMID: 40339970 DOI: 10.1016/j.actbio.2025.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/24/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
During organ transplantation, immune rejection is a primary cause of graft failure. In the underlying pathophysiology of rejection, T follicular helper (Tfh) cells and interleukin-21 (IL-21) play pivotal roles. Tfh cells exacerbate the humoral immune response by promoting B cell differentiation and antibody production, which leads to damage of the transplanted tissue. IL-21, a key pro-inflammatory cytokine, binds to its receptor (IL-21R) to enhance both the growth and function of Tfh cells, while also further driving B cell activation and differentiation into plasma cells. Building on this knowledge, we have developed a tacrolimus-based nano-inhibitor designed to target Tfh cells. This nano-inhibitor is constructed using a mPEG-PLGA-PLL (PEAL) scaffold, with IL-21R monoclonal antibodies conjugated to its surface, and tacrolimus encapsulated within the structure. In vitro experiments demonstrated that this nano-inhibitor effectively targets Tfh cells, inhibiting the differentiation of naive CD4+ T cells into Tfh cells. In co-culture systems of T and B cells, it significantly suppresses the activation of both cell types, leading to a reduction in IgG antibody production. In vivo, the nano-inhibitor selectively targets secondary lymphoid organs, reduces systemic inflammation, minimizes lymphocyte infiltration into the graft, and induces immune tolerance toward the transplanted tissue. In addition, no significant toxicity was observed in vitro or in vivo. As a therapeutic agent that simultaneously modulates both T and B cell responses, we believe it holds significant promise for broader applications in transplantation immunotherapy. STATEMENT OF SIGNIFICANCE: This study presents a groundbreaking nano-immunosuppressant designed to target both T and B cells, addressing the critical challenge of acute rejection in allogeneic transplantation. By combining tacrolimus nanoparticles with IL-21 receptor antibodies, this immunosuppressant effectively suppresses Tfh cell proliferation and B cell activation, significantly reducing IgG generation. The formulation enhances tacrolimus's bioavailability, minimizes off-target toxicity, and overcomes its narrow therapeutic window. In vitro and in vivo studies show reduced lymphocyte infiltration, lower inflammatory markers, and decreased nephrotoxicity compared to conventional tacrolimus.
Collapse
Affiliation(s)
- Xiandong Zeng
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yixiao Pan
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangtao Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Zhigang Zheng
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huimin Wu
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yining Wang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - You Wu
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Yufei Shen
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Yujia Chen
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Yifan Zhao
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Qiang Xia
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yourong Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China.
| | - Kang He
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
He Y, Feng J, Shi W, Ren Y, Liu Y, Kang H, Tian J, Jie Y. Correlation among ocular surface changes and systemic hematologic indexes and disease activity in primary Sjögren's syndrome: a cross-sectional study. BMC Ophthalmol 2025; 25:270. [PMID: 40329232 PMCID: PMC12054185 DOI: 10.1186/s12886-025-04050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND To explore the relationship among ocular surface changes, systemic hematologic indexes, and disease activity in primary Sjögren's syndrome patients. METHODS Thirty-three primary Sjögren's syndrome patients and 36 healthy controls were recruited in this cross-sectional study. All participants underwent complete ocular surface testing, including dry eye symptoms and signs, tear multi-cytokine analysis, and conjunctival impression cytology (CIC). Multiple systemic hematologic indexes and disease activity were also evaluated, including autoantibodies, immune cells, the EULAR Sjögren's Syndrome Patient Reported Index (ESSPRI), and the EULAR Sjögren's Syndrome Disease Activity Index (ESSDAI). RESULTS Primary Sjögren's syndrome patients exhibited significant dry eye, severe conjunctivochalasis, decreased goblet cell density, and severe squamous epithelial on the ocular surface. Interferon-inducible T cell alpha chemoattractant (I-TAC), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-1β, IL-5, IL-8, IL-10, IL-13, IL-21, C-C motif chemokine ligand (CCL)4, interferon-gamma (IFN-γ), CCL20, and tumor necrosis factor-gamma (TNF-α) in the tear fluid of pSS patients changed significantly. Correlation analysis showed that anti-SSA was relevant to ocular surface disease index (OSDI) score, tear break-up time (TBUT), and meibomian gland secretion (MGS). CD8+ T cell percentages were relevant to TBUT and corneal fluorescein staining score (CFS). IL-8, IL-13, CCL4, and TNF-α were correlated with RF-IgA. IL-1β, CCL4, and TNF-α were correlated with CD8+ T cell counts. IL-5 and CCL20 were correlated with the ratio of helper T cells and suppressor T cells. Tear I-TAC, IL-8, CCL20, and TNF-α were significantly correlated with the ESSDAI of different domains. CONCLUSIONS Our results revealed that the ocular surface changes in pSS patients were significantly correlated with systemic hematologic indexes and disease activity.
Collapse
Affiliation(s)
- Yan He
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmic and Visual Science Key Laboratory, Beijing, China
| | - Jianing Feng
- Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Northwest University Affiliated People's Hospital, Xi'an, Shaanxi, China
| | - Wen Shi
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yuerong Ren
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yingyi Liu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmic and Visual Science Key Laboratory, Beijing, China
| | - Huanmin Kang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Tian
- Department of Rheumatism and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Ying Jie
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmic and Visual Science Key Laboratory, Beijing, China.
| |
Collapse
|
3
|
Tordjman L, Mashoudy KD, Czarnowicki T. Converging paths toward unified therapeutic approaches in atopic dermatitis, vitiligo, and alopecia areata. J Allergy Clin Immunol 2025:S0091-6749(25)00456-7. [PMID: 40274075 DOI: 10.1016/j.jaci.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/01/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025]
Abstract
Emerging evidence reveals significant epidemiologic, genetic, and immunologic connections between atopic dermatitis, vitiligo, and alopecia areata, challenging previously established notions of their distinct pathogenic and molecular signatures. Exploring these commonalities not only enhances our understanding of each disease's pathogenesis, but also supports the development of unified treatment strategies for these frequently co-occurring disorders. This review examines key immune players shared across the 3 conditions, including cytokines, immune cells, and signaling pathways. Building on these insights, we also evaluate a range of therapeutic options-ranging from treatments approved by the Food and Drug Administration to those currently in clinical trials-alongside proposed future therapeutic targets. This comprehensive approach aims to advance our management of these interconnected autoimmune and inflammatory disorders with greater precision.
Collapse
Affiliation(s)
- Lea Tordjman
- University of Miami Miller School of Medicine, Miami, Fla
| | | | - Tali Czarnowicki
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Fla.
| |
Collapse
|
4
|
Sowerby JM, Rao DA. T cell-B cell interactions in human autoimmune diseases. Curr Opin Immunol 2025; 93:102539. [PMID: 40020254 PMCID: PMC11927756 DOI: 10.1016/j.coi.2025.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
Activation of autoreactive B cells and production of specific autoantibodies are hallmark features of many autoimmune diseases. B cell differentiation into antibody-secreting cells typically requires help from cognate T cells, which provide both cytokines and cell surface signals in an intricate intercellular interaction. A range of T cells can provide this help to B cells, including T follicular helper cells in follicles of secondary lymphoid organs, as well as T peripheral helper cells, which accumulate within inflamed target tissues in autoimmune diseases. Here, we discuss recent observations about the phenotypes of B cell-helper T cells that accumulate in inflamed tissues and in circulation of patients with autoimmune diseases, the correlations between B cell-helper T cells and B cells in these tissues, and key mediators of productive T cell-B cell interactions, with a focus on mediators that are being targeted therapeutically. Understanding the scope of B cell-helper T cells and their functions will improve our ability to quantify and track pathologic T cell-B cell interactions in human autoimmune diseases and may highlight critical mediators that can be targeted to suppress these interactions therapeutically.
Collapse
Affiliation(s)
- John M Sowerby
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital and Harvard Medical School, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital and Harvard Medical School, USA.
| |
Collapse
|
5
|
Zhao L, Li N, Shi X, Zhang J, Gao M, Wei Y, Li X, Du B, Sun D, Nian H, Wei R. Enhanced Therapeutic Effect of IL-10-ADSCs on Rabbit Autoimmune Dacryoadenitis By Suppressing T Follicular Helper Cell Responses Via miR-142-5p/RC3H1 Axis. Invest Ophthalmol Vis Sci 2025; 66:66. [PMID: 40261659 PMCID: PMC12020959 DOI: 10.1167/iovs.66.4.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/30/2025] [Indexed: 04/24/2025] Open
Abstract
Purpose Mesenchymal stem cells (MSCs) represent a promising therapeutic strategy in clinical research for dry eye, and their immunomodulatory effects can be enhanced through genetic modification. In this study, we constructed interleukin-10 (IL-10) gene-modified adipose-derived MSCs (IL-10-ADSCs) and investigated their protective effects and underlying mechanisms on rabbit autoimmune dacryoadenitis, an animal model of autoimmune dry eye. Methods ADSCs were isolated from rabbit adipose tissue and transduced with IL-10 overexpressing lentivirus. Then the preventive and therapeutic effects of IL-10-ADSCs on rabbit autoimmune dacryoadenitis were evaluated. Flow cytometry and Western blot were performed to assess the immunomodulatory effects of IL-10-ADSCs on T follicular helper (Tfh) cells. Bioinformatic analyses and functional gain and loss assays were used to determine the molecular mechanism underlying the effects of IL-10-ADSCs on Tfh responses. Results We demonstrated that IL-10-ADSCs maintain the cell surface phenotype and multi-differentiation potentials of MSCs. Intravenous injection of IL-10-ADSCs markedly attenuated autoimmune dacryoadenitis, yielding significantly superior clinical and pathological improvements compared to ADSCs. Further investigation revealed that IL-10-ADSCs administration significantly suppressed Tfh cell responses in vivo and in vitro, contributing to reduced inflammation and improved tissue damage. Mechanistically, IL-10-ADSCs exert their suppressive function on Tfh cells partially through the miR-142-5p/RC3H1 axis. Notably, IL-10-ADSCs subconjunctivally administered after disease onset efficiently ameliorated the severity of autoimmune dacryoadenitis. Conclusions IL-10-ADSCs ameliorate autoimmune dacryoadenitis by suppressing Tfh cell responses via suppressing the miR-142-5p/RC3H1 axis. The enhanced therapeutic effects of IL-10-ADSCs could be of significant value in improving the effectiveness of stem cell therapy in autoimmune dry eye.
Collapse
Affiliation(s)
- Lu Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin, China
| | - Na Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin, China
| | - Xinrui Shi
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin, China
| | - Jiachen Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin, China
| | - Min Gao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin, China
| | - Yankai Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin, China
| | - Xuejia Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin, China
| | - Bei Du
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin, China
| | - Deming Sun
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, United States
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin, China
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Zhuo Y, Fu S, Qiu Y. Regulation of the immune microenvironment by SUMO in diabetes mellitus. Front Immunol 2025; 16:1506500. [PMID: 40078991 PMCID: PMC11896877 DOI: 10.3389/fimmu.2025.1506500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Post-translational modifications such as SUMOylation are crucial for the functionality and signal transduction of a diverse array of proteins. Analogous to ubiquitination, SUMOylation has garnered significant attention from researchers and has been implicated in the pathogenesis of various human diseases in recent years, such as cancer, neurological lesions, cardiovascular diseases, diabetes mellitus, and so on. The pathogenesis of diabetes, particularly type 1 and type 2 diabetes, has been closely associated with immune dysfunction, which constitutes the primary focus of this review. This review will elucidate the process of SUMOylation and its impact on diabetes mellitus development and associated complications, focusing on its regulatory effects on the immune microenvironment. This article summarizes various signaling pathways at both cellular and molecular levels that are implicated in these processes. Furthermore, it proposes potential new targets for drug development aimed at the prevention and treatment of diabetes mellitus based on insights gained from the SUMOylation process.
Collapse
Affiliation(s)
- Yuting Zhuo
- Department of Endocrinology and Metabolism, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shangui Fu
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yue Qiu
- Department of Endocrinology and Metabolism, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
| |
Collapse
|
7
|
Ruan P, Guo H, Yi P, Chen Y, Jia C, Yang M, Deng Y, Li Q, Gao F, Liu Y, Yang M. Inhibition of IL-21/IL-21R Signaling by Fucoxanthin: Structure-Based and Experimental Analysis. Chem Biodivers 2025:e202402522. [PMID: 39953920 DOI: 10.1002/cbdv.202402522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/17/2025]
Abstract
Dysregulated activation of the interleukin-21 (IL-21)/IL-21 receptor (IL-21R) signaling pathway is strongly associated with inflammatory and autoimmune disorders, which positions the pathway as a promising therapeutic target. Given the current lack of approved inhibitors or monoclonal antibodies targeting IL-21/IL-21R, we employed a structure-based virtual screening strategy coupled with experimental validation to identify potential IL-21 antagonists from a library of marine natural products provided by TargetMol. Our investigation identified fucoxanthin, a marine-derived carotenoid, as a potent binder to IL-21R, exhibiting a docking score of -8.19 kcal/mol. Molecular dynamics simulations further confirmed the stability of the IL-21R-fucoxanthin complex, with a calculated binding free energy (ΔG) of -33.25 kcal/mol as determined by MM/PBSA analysis. Importantly, fucoxanthin demonstrated significant immunomodulatory effects by reducing the frequency of key immune cell populations, including CD19+ B cells, memory B cells, and activated follicular helper CD4+ T (Tfh) cells in cultures of peripheral blood mononuclear cells in vitro. These findings suggest that fucoxanthin acts as a potential IL-21 antagonist, offering a novel therapeutic avenue for autoimmune diseases driven by aberrant B- and T-cell differentiation via the IL-21/IL-21R axis.
Collapse
Affiliation(s)
- Pinglang Ruan
- Department of Dermatology Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Guo
- Department of Dermatology Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongjian Chen
- Department of Dermatology, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Chen Jia
- Department of Dermatology Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miao Yang
- Department of Dermatology Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaxiong Deng
- Department of Dermatology Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianwen Li
- Department of Dermatology Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fei Gao
- The First Hospital of Changsha, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yu Liu
- Department of Dermatology Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Dermatology Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Kaye AD, Thompson N, Coreil CB, Amedio LS, Rodriguez VA, Vu JN, Ahmadzadeh S, Kallurkar A, Moss TW, Shekoohi S, Varrassi G. Emerging Novel Therapies for the Treatment of Psoriasis: A Narrative Review. Cureus 2025; 17:e79693. [PMID: 40161116 PMCID: PMC11952081 DOI: 10.7759/cureus.79693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Psoriasis is a chronic autoimmune and autoinflammatory disorder defined by abnormal skin cell turnover and inflammation, resulting in the formation of plaques on the skin. Although biologic therapies targeting interleukin (IL)-17 and IL-23 have significantly improved the treatment landscape for moderate-to-severe psoriasis, they are not effective for all patients. This highlights the need for additional therapeutic strategies. In recent years, exploring novel treatment avenues such as targeting IL-21, small nucleolar RNA (snoRNA) Snora73, the gut microbiome, and natural remedies have shown increasing promise in managing psoriasis. Interleukin-21 is a cytokine that plays a critical role in the differentiation and function of Th17 cells, which are central to the pathogenesis of psoriasis. Recent studies have demonstrated that neutralizing IL-21 with specific antibodies can help restore immune homeostasis, reducing disease severity and improving patient outcomes. Targeting IL-21 may be particularly beneficial for patients resistant to conventional therapies like IL-17 and IL-23 inhibitors. In addition to IL-21, snoRNA Snora73 has emerged as a novel target for psoriasis treatment. Snora73 regulates cell proliferation by interacting with miR-3074-5p and pre-B-cell leukemia homeobox 1 (PBX1), promoting abnormal cell turnover in psoriasis. The gut microbiome is increasingly recognized for its role in autoimmune diseases, including psoriasis. Imbalances in the microbiome have been linked to disease exacerbation, triggering systemic inflammation and altering immune responses. Moreover, various natural treatments have gained attention for their anti-inflammatory properties. These natural therapies could serve as adjuncts to existing treatments, offering a complementary approach that minimizes side effects while improving patient outcomes. Targeting IL-21, Snora73, and the gut microbiome, as well as utilizing natural treatments, may provide new opportunities for more effective, personalized management of psoriasis.
Collapse
Affiliation(s)
- Alan D Kaye
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Nicholas Thompson
- Medicine, School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Camille B Coreil
- Medicine, School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Lane S Amedio
- Medicine, School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Victoria A Rodriguez
- Medicine, School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Judy N Vu
- Medicine, School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Shahab Ahmadzadeh
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Anusha Kallurkar
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Taylor W Moss
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Sahar Shekoohi
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | | |
Collapse
|
9
|
Opmeer Y, van Steenbeek FG, Rozendom C, Fieten H, Diaz Espineira MM, Stassen QEM, van Kooten PJ, Rutten VPMG, Hytönen MK, Lohi H, Mandigers PJJ, Leegwater PA. Polymyositis in Kooiker dogs is associated with a 39 kb deletion upstream of the canine IL21/IL2 locus. PLoS Genet 2025; 21:e1011538. [PMID: 39746095 PMCID: PMC11731761 DOI: 10.1371/journal.pgen.1011538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 01/14/2025] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Recently we characterized polymyositis in the Dutch Kooiker dog. The familial occurrence of the disease were suggestive of an inherited cause. Here we report the results of our molecular genetic investigation. A genome-wide association study of 33 cases and 106 controls indicated the involvement of a region on chromosome CFA19 (p = 4.7*10-10). Haplotype analysis indicated that the cases shared a 2.9 Mb region in the homozygous or the heterozygous state. Next Generation Sequencing of genomic DNA implicated a deletion of a 39 kb DNA fragment, located 10 kb upstream of the neighbouring interleukin genes IL21 and IL2. The frequency of the deletion allele was 0.81 in the available cases and 0.25 in a random sample of the Kooiker dog breed. Leukocytes of affected, untreated dogs that were homozygous for the deletion overexpress IL21 and IL2 upon stimulation with mitogens. We suggest that elements located 10-49 kb upstream of the IL21/IL2 locus play an important role in the regulation of the canine genes and that deletion of these elements is a risk factor for polymyositis in Kooiker dogs. Postulating causality, the penetrance of the disease phenotype was estimated at 10-20% for homozygous dogs and 0.5-2% for dogs that were heterozygous for the deletion. Our results suggest that distant variants upstream of IL21 could also be important for human autoimmune diseases that have been found to be associated with the IL21/IL2 chromosome region.
Collapse
Affiliation(s)
- Yvet Opmeer
- Expertise Centre of Genetics, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank G. van Steenbeek
- Expertise Centre of Genetics, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Claudia Rozendom
- Expertise Centre of Genetics, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hille Fieten
- Expertise Centre of Genetics, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Montse M. Diaz Espineira
- Expertise Centre of Genetics, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Qurine E. M. Stassen
- Expertise Centre of Genetics, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Peter J. van Kooten
- Section Immunology, Div Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Victor P. M. G. Rutten
- Section Immunology, Div Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Dept of Veterinary Tropical Diseases, Fac of Veterinary Science, University of Pretoria, Republic of South Africa
| | - Marjo K. Hytönen
- Department of Veterinary Biosciences, Department of Medical and Clinical Genetics, University of Helsinki and Folkhälsan Research Center, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, Department of Medical and Clinical Genetics, University of Helsinki and Folkhälsan Research Center, Helsinki, Finland
| | - Paul J. J. Mandigers
- Expertise Centre of Genetics, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Peter A. Leegwater
- Expertise Centre of Genetics, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
10
|
Pareek A, Mehlawat K, Tripathi K, Pareek A, Chaudhary S, Ratan Y, Apostolopoulos V, Chuturgoon A. Melittin as a therapeutic agent for rheumatoid arthritis: mechanistic insights, advanced delivery systems, and future perspectives. Front Immunol 2024; 15:1510693. [PMID: 39759520 PMCID: PMC11695321 DOI: 10.3389/fimmu.2024.1510693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Rheumatoid arthritis (RA), a condition characterized by joint deterioration through the action of matrix metalloproteinases (MMPs), is prevalent worldwide. Bee venom (BV) has traditionally been used in Chinese medicine for pain, arthritis, rheumatism, skin diseases, etc. BV is enriched with active substances, notably melittin and phospholipase A2 (PLA2), offering significant therapeutic potential. Hence, the review summarizes current insights into BV's composition, antiarthritic mechanism and pharmacological benefits, focusing on melittin. Constituting 50-60% of BV, melittin notably downregulates nuclear factor Kappa B (NF-κB) activity, inhibits MMP-1 and MMP-8, and diminishes tumor necrosis factor (TNF-α), all of which contribute to the mitigation of type 2 collagen degradation. Despite its potential, melittin exhibits hemolytic activity and can significantly affect cell membranes, limiting its application, which poses a challenge to its therapeutic use. To overcome these challenges, delivery techniques utilizing nanocarriers and modifications in amino acid sequencing have been developed. Recent advancements in delivery systems, including nanocarriers, transdermal patches, and nanoemulsions, aim to minimize toxicity, expanding its therapeutic utility for RA. This article explores these novel strategies, underlining the evolving role of melittin in RA management.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | | | | | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | | | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
11
|
Zheng X, Tong T, Duan L, Ma Y, Lan Y, Shao Y, Liu H, Chen W, Yang T, Yang L. VSIG4 induces the immunosuppressive microenvironment by promoting the infiltration of M2 macrophage and Tregs in clear cell renal cell carcinoma. Int Immunopharmacol 2024; 142:113105. [PMID: 39260310 DOI: 10.1016/j.intimp.2024.113105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma and has a poor prognosis. Despite the impressive advancements in treating ccRCC using immune checkpoint (IC) blockade, such as PD-1/PD-L1 inhibitors, a considerable number of ccRCC patients experience adaptive resistance. Therefore, exploring new targetable ICs will provide additional treatment options for ccRCC patients. We comprehensively analyzed multi-omics data and performed functional experiments, such as pathologic review, bulk transcriptome data, single-cell sequencing data, Western blotting, immunohistochemistry and in vitro/in vivo experiments, to explore novel immunotherapeutic targets in ccRCC. It was found that immune-related genes VSIG4, SAA1, CD7, FOXP3, IL21, TNFSF13B, BATF, CD72, MZB1, LTB, CCL25 and KLRK1 were significantly upregulated in ccRCC (Student's t test and p-value < 0.05; 36 normal and 267 ccRCC tissues in raining cohort; 36 normal and 266 ccRCC tissues in validation cohort) and correlated with the poor prognosis of ccRCC patients (Wald test and p-value < 0.05 in univariate cox analysis; log-rank test and p-value < 0.05 in Kaplan-Meier method; 267 patients in training cohort and 266 in validation cohort). In particular, we found the novel IC target VSIG4 was specifically expressed in inhibitory immune cells M2-biased tumor-associated macrophages (TAMs), conventional dendritic cell 2 (cDC2) cells, and cycling myeloid cells in ccRCC microenvironment. Moreover, VSIG4 showed a closely relation with resistance of Ipilimumab/Nivolumab immunotherapy in ccRCC. Furthermore, VSIG4 promoted the infiltration of M2 macrophages, Tregs, and cDC2 in ccRCC tissues. VSIG4+ TAMs and VSIG4+ cDC2s may be a kind of immune cell subtypes related to immunosuppression. VSIG4 may play similar roles with other IC ligands, as it is highly expressed on the surface of antigen-presenting cells and ccRCC cells to inhibit T cells activity and facilitate immune escape. Targeting IC gene VSIG4 may provide a novel immunotherapeutic strategy to ccRCC patients with resistance to existing targeted therapy options.
Collapse
Affiliation(s)
- Xiwang Zheng
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030000, Shanxi, China; Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Tong Tong
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Lianrui Duan
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Yanjie Ma
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yan Lan
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Ying Shao
- Department of Pathophysiology, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Hangfeng Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Wenjing Chen
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030000, Shanxi, China; Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Tao Yang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030000, Shanxi, China; Key laboratory of Digestive Disease & Organ Transplantation in Shanxi Province, The First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China; Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan 030000, Shanxi, China; Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan 030000, Shanxi, China.
| | - Lijun Yang
- Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan 030000, Shanxi, China; Department of Pharmacology, Shanxi Medical University, Taiyuan 030000, Shanxi, China; Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan 030000, Shanxi, China.
| |
Collapse
|
12
|
Scapin G, Cagdas E, Grav LM, Lewis NE, Goletz S, Hafkenscheid L. Implications of glycosylation for the development of selected cytokines and their derivatives for medical use. Biotechnol Adv 2024; 77:108467. [PMID: 39447666 DOI: 10.1016/j.biotechadv.2024.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Cytokines are important regulators of immune responses, making them attractive targets for autoimmune diseases and cancer therapeutics. Yet, the significance of cytokine glycosylation remains underestimated. Many cytokines carry N- and O-glycans and some even undergo C-mannosylation. Recombinant cytokines produced in heterologous host cells may lack glycans or exhibit a different glycosylation pattern such as varying levels of galactosylation, sialylation, fucosylation or xylose addition compared to their human counterparts, potentially impacting critical immune interactions. We focused on cytokines that are currently utilized or designed in advanced therapeutic formats, including immunocytokines, fusokines, engager cytokines, and genetically engineered 'supercytokines.' Despite the innovative designs of these cytokine derivatives, their glycosylation patterns have not been extensively studied. By examining the glycosylation of the human native cytokines, G-CSF and GM-CSF, interferons β and γ, TNF-α and interleukins-2, -3 -4, -6, -7, -9, -12, -13, -15, -17A, -21, and - 22, we aim to assess its potential impact on their therapeutic derivatives. Understanding the glycosylation of the native cytokines could provide critical insights into the safety, efficacy, and functionality of these next-generation cytokine therapies, affecting factors such as stability, bioactivity, antigenicity, and half-life. This knowledge can guide the choice of optimal expression hosts for production and advance the development of effective cytokine-based therapeutics and synthetic immunology drugs.
Collapse
Affiliation(s)
- Giulia Scapin
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Ece Cagdas
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Lise Marie Grav
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| | - Lise Hafkenscheid
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
13
|
Um IG, Woo JS, Lee YJ, Lee SY, Jeong HY, Na HS, Lee JS, Lee AR, Park SH, Cho ML. IL-21 drives skin and lung inflammation and fibrosis in a model for systemic sclerosis. Immunol Lett 2024; 270:106924. [PMID: 39260526 DOI: 10.1016/j.imlet.2024.106924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Systemic sclerosis (SSc) is an autoimmune disease characterized by vasculopathy, abnormal inflammation, and fibrosis of the skin and internal organs, notably the skin and lungs, significantly impairing quality of life. There is currently no cure for SSc, and its etiology remains largely unknown, presenting a primary barrier to effective treatment. We investigated the role of interleukin-21 (IL-21) in the pathogenesis of SSc. METHODS We assessed the expression levels of fibrosis-related genes in human dermal fibroblasts exposed to IL-21 and TGF beta. We also induced SSc in wild-type C57BL/6 mice and IL-21 knockout (KO) mice with a C57BL/6 background using bleomycin (Bleomycin). Histological analyses were conducted on skin and lung tissues from these mice. The distribution and expression levels of fibrosis-related proteins in the tissues were examined via immunohistochemistry and quantitative real-time PCR. Furthermore, we measured the frequency of Th1, Th2, and Th17 cells among splenocytes through flow cytometry. RESULTS IL-21 activation led to STAT3 phosphorylation more than TGF beta in dermal fibroblasts. In IL-21 KO mice with BLM-induced SSc, skin thickness and lung fibrosis were reduced. The absence of IL-21 in these mice resulted in suppressed expression of fibrosis-related genes, including Col1a1, Col1a2, Col3a1, CTGF, α-SMA, STAT3, and TGFβ, in the skin and lungs. It also led to a decreased frequency of Th1, Th2, and Th17 cells, as well as a lower Th17/Treg ratio among splenocytes, factors known to contribute to the development of SSc. CONCLUSIONS IL-21 contributes to the development of SSc by promoting the expression of fibrosis-related genes and modulating the levels of CD4+ T cells.
Collapse
Affiliation(s)
- In Gyu Um
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jin Seok Woo
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Young Joon Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seon-Yeong Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ha Yeon Jeong
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hun Sik Na
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jeong Su Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - A Ram Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Mi-La Cho
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
| |
Collapse
|
14
|
Qu R, Zhao Y, Zhang Y. The mechanism of cytokine regulation of cancer occurrence and development in the tumor microenvironment and its application in cancer treatment: a narrative review. Transl Cancer Res 2024; 13:5649-5663. [PMID: 39525000 PMCID: PMC11543031 DOI: 10.21037/tcr-24-679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024]
Abstract
Background and Objective The occurrence and development of tumors in human tissues widely depend on their surrounding environment, known as the tumor microenvironment (TME), which comprises various cells, molecules, and blood vessels. Through modifications, organization, and integration, these elements serve as potential therapeutic targets in anti-cancer therapy, supporting and promoting the proliferation, invasion, and metabolism of tumor cells. Cytokines within TME are responsible for immune cell activation, proliferation, and differentiation, thereby influencing the tumor's behavior. This article reviews the use of cytokines in tumor immunotherapy and combs the network signals that cytokines mediate in the development of malignancies. Methods A literature search of international sources was carried out on the PubMed and Web of Science databases, using main keywords such as "tumor immunotherapy", "cytokines", "chemokines", "tumor microenvironment", "recombinant cytokine engineering", and "tumor necrosis factor superfamily". Key Content and Findings The review provides a thorough summary of the functions of tumor necrosis factor superfamilies, chemokines, and interleukins within the TME as well as their therapeutic uses. Their potential as novel targets for tumor treatment is also evaluated. Furthermore, this paper focuses on various feasible strategies for recombinant cytokines reported in recent years, especially the cytokine engineering methods for targeting tumors. Ultimately, this paper contributes to an enhanced understanding among researchers of the mechanisms underlying the impact of the TME on disease development, thereby laying a solid foundation for the future development of new tumor therapies based on cytokines within the TME. Conclusions Cytokine immunotherapy holds promise on antitumor therapy. It is anticipated that the effectiveness of tumor treatment and the quality of life for tumor patients will continue to improve with ongoing research and development in this field.
Collapse
Affiliation(s)
- Run Qu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
| | - Yanhong Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
| | - Yuzhe Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, China
| |
Collapse
|
15
|
Lin Y, Yan GJ, Liu MY, Cao Y, Zhang K, Wang N, Long FL, Mao DW. Review of the potential value of serum interleukin levels as prognostic biomarkers of liver failure. World J Clin Cases 2024; 12:6045-6056. [PMID: 39328855 PMCID: PMC11326103 DOI: 10.12998/wjcc.v12.i27.6045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/29/2024] Open
Abstract
Liver failure (LF) is prevalent in China and is characterized by complex pathogenesis, challenging clinical management, poor prognosis, and rising incidence and mortality rates. The immune status is an important factor affecting LF prognosis. Interleukins (Ils) are a type of cytokine that act and interact with multiple cells, including immune cells. These signaling molecules play important roles in intercellular information transmission, including the regulation of immune cells; mediation of the activation, proliferation, and differentiation of T and B cells; and orchestration of the inflammatory response. To date, many studies have explored the correlation between IL expression and liver disease prognosis, but few studies have evaluated Ils as the prognostic biomarkers of LF. This article reviews the potential use of Ils as the prognostic biomarkers of LF. Particularly, it evaluates the predictive values of IL-21, IL-22, and IL-31, the three often overlooked yet promising prognostic biomarkers, in predicting susceptibility to LF. Harnessing biomarkers for early prognostic insights can facilitate tailored treatment strategies and enhance patient survival. Thus, this article focuses on the identification of IL-21, IL-22, and IL-33 as biomarkers in preclinical and clinical studies on LF and reviews their role as biomarkers in the pathogenesis and diagnosis of LF.
Collapse
Affiliation(s)
- Yong Lin
- Graduate School, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi Zhuang Autonomous Region, China
| | - Geng-Jie Yan
- Graduate School, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi Zhuang Autonomous Region, China
| | - Mei-Yan Liu
- Graduate School, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi Zhuang Autonomous Region, China
| | - Yin Cao
- Guangxi School of Chinese Medicine, Guangxi University of Traditional Chinese Medicine, Nanning 530022, Guangxi Zhuang Autonomous Region, China
| | - Kan Zhang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi Zhuang Autonomous Region, China
| | - Na Wang
- Department of Administration, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi Zhuang Autonomous Region, China
| | - Fu-Li Long
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi Zhuang Autonomous Region, China
| | - De-Wen Mao
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
16
|
Xu J, Gao H, Azhar MS, Xu H, Chen S, Li M, Ni X, Yan T, Zhou H, Long Q, Yi W. Interleukin signaling in the regulation of natural killer cells biology in breast cancer. Front Immunol 2024; 15:1449441. [PMID: 39380989 PMCID: PMC11459090 DOI: 10.3389/fimmu.2024.1449441] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
In the field of breast cancer treatment, the immunotherapy involving natural killer (NK) cells is increasingly highlighting its distinct potential and significance. Members of the interleukin (IL) family play pivotal regulatory roles in the growth, differentiation, survival, and apoptosis of NK cells, and are central to their anti-tumor activity. These cytokines enhance the ability of NK cells to recognize and eliminate tumor cells by binding to specific receptors and activating downstream signaling pathways. Furthermore, interleukins do not function in isolation; the synergistic or antagonistic interactions between different interleukins can drive NK cells toward various functional pathways, ultimately leading to diverse outcomes for breast cancer patients. This paper reviews the intricate relationship between NK cells and interleukins, particularly within the breast cancer tumor microenvironment. Additionally, we summarize the latest clinical studies and advancements in NK cell therapy for breast cancer, along with the potential applications of interleukin signaling in these therapies. In conclusion, this article underscores the critical role of NK cells and interleukin signaling in breast cancer treatment, providing valuable insights and a significant reference for future research and clinical practice.
Collapse
Affiliation(s)
- Jiachi Xu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Hongyu Gao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Muhammad Salman Azhar
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haifan Xu
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Siyuan Chen
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Mingcan Li
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xinxi Ni
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Ting Yan
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Hui Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Long
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| |
Collapse
|
17
|
Meng Q, Ma J, Cui J, Gu Y, Shan Y. Subpopulation dynamics of T and B lymphocytes in Sjögren's syndrome: implications for disease activity and treatment. Front Immunol 2024; 15:1468469. [PMID: 39290700 PMCID: PMC11405198 DOI: 10.3389/fimmu.2024.1468469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disorder primarily affecting the body's exocrine glands, particularly the salivary and lacrimal glands, which lead to severe symptoms of dry eyes and mouth. The pathogenesis of SS involves the production of autoantibodies by activated immune cells, and secretion of multiple cytokines, which collectively lead to tissue damage and functional impairment. In SS, the Immune interaction among T and B cells is particularly significant. Lymphocytic infiltration in the salivary glands is predominantly composed of CD4+ T cells, whose activation cause the death of glandular epithelial cells and subsequent tissue destruction. The excessive activity of T cells contributes significantly to the disease mechanism, with helper T cells (CD4+) differentiating into various subgroups including Th1/Th2, Th17, as well as Treg, each contributing to the pathological process through distinct cytokine secretion. In patients with SS, B cells are excessively activated, leading to substantial production of autoantibodies. These antibodies can attack self-tissues, especially the lacrimal and salivary glands, causing inflammation and tissue damage. Changes in B cell subpopulations in SS patients, such as increases in plasmablasts and plasma cells, correlate positively with serum autoantibody levels and disease progression. Therapies targeting T cells and B cells are extensively researched with the aim of alleviating symptoms and improving the quality of life for patients. Understanding how these cells promote disease development through various mechanisms, and further identifying novel T and B cell subgroups with functional characterization, will facilitate the development of more effective strategies to treat SS.
Collapse
Affiliation(s)
- Qingliang Meng
- Department of Rheumatism, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Junfu Ma
- Department of Rheumatism, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Jiakang Cui
- Department of Rheumatism, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yangyi Gu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shan
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Espinoza-García N, Salazar-Camarena DC, Marín-Rosales M, Reyes-Mata MP, Ramírez-Dueñas MG, Muñoz-Valle JF, Borunda-Calderón IM, González-Palacios A, Palafox-Sánchez CA. High Interleukin 21 Levels in Patients with Systemic Lupus Erythematosus: Association with Clinical Variables and rs2221903 Polymorphism. J Clin Med 2024; 13:4512. [PMID: 39124778 PMCID: PMC11313274 DOI: 10.3390/jcm13154512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Background: Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody production and diverse tissue and organ inflammatory affections. Interleukin 21 (IL-21) is implicated in B cell survival, proliferation, differentiation, class switching, and immunoglobulin production; therefore, it is considered a key cytokine in the pathogenesis of SLE. However, its association with disease activity and clinical phenotypes remains unclear. We aimed to evaluate the association of IL-21 levels with the disease activity and clinical phenotypes in patients with SLE. Also, we analyzed the IL21 polymorphisms associated with increased IL-21 levels. Methods: The IL-21 serum levels were determined using the enzyme-linked immunosorbent assay (ELISA) method. The rs2221903 and rs2055979 polymorphisms were assessed in 300 healthy controls (HCs) and 300 patients with SLE by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. The levels of IL-21 were monitored during follow-up visits in 59 patients with SLE. Results: The patients with SLE showed higher IL-21 levels compared to the HCs. The IL-21 levels did not correlate with Mex-SLEDAI and were not different in patients with inactive, mild-moderate, and severe disease. The IL-21 levels were increased in patients with hematological affection. The ROC curve analysis revealed that the IL-21 levels had good predictive power in discriminating among patients with SLE and HCs. In a follow-up analysis, the levels of IL-21 remained higher in the patients with SLE even when the patients were in remission. Also, the rs2221903 polymorphism was associated with increased IL-21 levels. Conclusions: This study highlights the importance of IL-21 as a key cytokine in SLE. IL-21 levels are higher in patients with SLE and remain increased regardless of disease activity. According to the ROC analysis, IL-21 is a potential biomarker of SLE. Further longitudinal studies are needed to explore the relationship between IL-21 and the clinical phenotypes of SLE.
Collapse
Affiliation(s)
- Noemí Espinoza-García
- Doctorado en Ciencias en Biología Molecular en Medicina (DCBMM), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Diana Celeste Salazar-Camarena
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.C.S.-C.); (M.M.-R.); (M.P.R.-M.); (A.G.-P.)
| | - Miguel Marín-Rosales
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.C.S.-C.); (M.M.-R.); (M.P.R.-M.); (A.G.-P.)
- Hospital General de Occidente, Secretaría de Salud Jalisco, Guadalajara 45170, Jalisco, Mexico
| | - María Paulina Reyes-Mata
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.C.S.-C.); (M.M.-R.); (M.P.R.-M.); (A.G.-P.)
| | - María Guadalupe Ramírez-Dueñas
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.G.R.-D.); (J.F.M.-V.)
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.G.R.-D.); (J.F.M.-V.)
| | - Itzel María Borunda-Calderón
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Aarón González-Palacios
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.C.S.-C.); (M.M.-R.); (M.P.R.-M.); (A.G.-P.)
| | - Claudia Azucena Palafox-Sánchez
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.C.S.-C.); (M.M.-R.); (M.P.R.-M.); (A.G.-P.)
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.G.R.-D.); (J.F.M.-V.)
| |
Collapse
|
19
|
LIU X, ZHANG Y, ZHANG X, HE G, CAI W. [Progress of IL-21 and Tfh Mediated Immunotherapy in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:550-558. [PMID: 39147710 PMCID: PMC11331254 DOI: 10.3779/j.issn.1009-3419.2024.101.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Indexed: 08/17/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a prevalent and aggressive global malignancy. Conventional surgical treatments, radiotherapy, chemotherapy, and targeted therapies often fall short in halting disease progression due to inherent limitations, resulting in suboptimal prognosis. Despite the advent of immunotherapy drugs offering new hope for NSCLC treatment, current efficacy remains insufficient to meet all patient needs. Therefore, actively exploring novel immunotherapeutic approaches to further reduce mortality rates in NSCLC patients has become a crucial focus of NSCLC research. This article aims to systematically review the anti-tumor effects of interleukin-21 and follicular helper T cells in NSCLC immunotherapy by summarizing and analyzing relevant literatures from both domestic and international sources, as well as exploring the potential for enhancing NSCLC treatment prospects through immune checkpoint regulation via immunotherapeutic means.
.
Collapse
|
20
|
Lei L, Feng S. Immune interplay from circulation to local lesion in pemphigus pathogenesis. J Autoimmun 2024; 147:103261. [PMID: 38797047 DOI: 10.1016/j.jaut.2024.103261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Pemphigus, a potentially lethal autoimmune skin disease, is mediated by desmoglein-specific antibodies, manifesting cutaneous and mucosal blisters and erosions. The interaction between multiple immune counterparts contributes to the progress of pemphigus. Currently, the emergence of bioinformatic analysis enables investigators to gain a global picture of the pemphigus immune network, based on the exhaustive pedigree annotation of multiple subsets. T helper subsets dominate the landscape as mentioned previously, and innate immune cells have been involved as well. Of particular interests is which phenotype of T cells orchestrates the autoimmune process and chronic inflammation in a certain condition. In this review, the circulatory and peripheral immune cells and cytokine components constituting the immune microenvironment are separately discussed to provide a perspective on pemphigus pathogenesis, with particular reference to insights provided by the bioinformation technique.
Collapse
Affiliation(s)
- Li Lei
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - SuYing Feng
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
21
|
Chang MJ, Feng QF, Hao JW, Zhang YJ, Zhao R, Li N, Zhao YH, Han ZY, He PF, Wang CH. Deciphering the molecular landscape of rheumatoid arthritis offers new insights into the stratified treatment for the condition. Front Immunol 2024; 15:1391848. [PMID: 38983856 PMCID: PMC11232074 DOI: 10.3389/fimmu.2024.1391848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024] Open
Abstract
Background For Rheumatoid Arthritis (RA), a long-term chronic illness, it is essential to identify and describe patient subtypes with comparable goal status and molecular biomarkers. This study aims to develop and validate a new subtyping scheme that integrates genome-scale transcriptomic profiles of RA peripheral blood genes, providing a fresh perspective for stratified treatments. Methods We utilized independent microarray datasets of RA peripheral blood mononuclear cells (PBMCs). Up-regulated differentially expressed genes (DEGs) were subjected to functional enrichment analysis. Unsupervised cluster analysis was then employed to identify RA peripheral blood gene expression-driven subtypes. We defined three distinct clustering subtypes based on the identified 404 up-regulated DEGs. Results Subtype A, named NE-driving, was enriched in pathways related to neutrophil activation and responses to bacteria. Subtype B, termed interferon-driving (IFN-driving), exhibited abundant B cells and showed increased expression of transcripts involved in IFN signaling and defense responses to viruses. In Subtype C, an enrichment of CD8+ T-cells was found, ultimately defining it as CD8+ T-cells-driving. The RA subtyping scheme was validated using the XGBoost machine learning algorithm. We also evaluated the therapeutic outcomes of biological disease-modifying anti-rheumatic drugs. Conclusions The findings provide valuable insights for deep stratification, enabling the design of molecular diagnosis and serving as a reference for stratified therapy in RA patients in the future.
Collapse
Affiliation(s)
- Min-Jing Chang
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Qi-Fan Feng
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, China
| | - Jia-Wei Hao
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Ya-Jing Zhang
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Rong Zhao
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, China
| | - Nan Li
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Yu-Hui Zhao
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Zi-Yi Han
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Pei-Feng He
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Cai-Hong Wang
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, China
| |
Collapse
|
22
|
Seyedsadr M, Bang MF, McCarthy EC, Zhang S, Chen HC, Mohebbi M, Hugo W, Whitmire JK, Lechner MG, Su MA. A pathologically expanded, clonal lineage of IL-21-producing CD4+ T cells drives inflammatory neuropathy. J Clin Invest 2024; 134:e178602. [PMID: 39087473 PMCID: PMC11290969 DOI: 10.1172/jci178602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/04/2024] [Indexed: 08/02/2024] Open
Abstract
Inflammatory neuropathies, which include chronic inflammatory demyelinating polyneuropathy (CIDP) and Guillain Barré syndrome (GBS), result from autoimmune destruction of the PNS and are characterized by progressive weakness and sensory loss. CD4+ T cells play a key role in the autoimmune destruction of the PNS. Yet, key properties of pathogenic CD4+ T cells remain incompletely understood. Here, we used paired single-cell RNA-Seq (scRNA-Seq) and single-cell T cell receptor-sequencing (scTCR-Seq) of peripheral nerves from an inflammatory neuropathy mouse model to identify IL-21-expressing CD4+ T cells that were clonally expanded and multifunctional. These IL-21-expressing CD4+ T cells consisted of 2 transcriptionally distinct expanded cell populations, which expressed genes associated with T follicular helper (Tfh) and T peripheral helper (Tph) cell subsets. Remarkably, TCR clonotypes were shared between these 2 IL-21-expressing cell populations, suggesting a common lineage differentiation pathway. Finally, we demonstrated that IL-21 receptor-KO (IL-21R-KO) mice were protected from neuropathy development and had decreased immune infiltration into peripheral nerves. IL-21 signaling upregulated CXCR6, a chemokine receptor that promotes CD4+ T cell localization in peripheral nerves. Together, these findings point to IL-21 signaling, Tfh/Tph differentiation, and CXCR6-mediated cellular localization as potential therapeutic targets in inflammatory neuropathies.
Collapse
Affiliation(s)
| | - Madison F. Bang
- Department of Microbiology, Immunology, and Molecular Genetics and
| | | | - Shirley Zhang
- Department of Microbiology, Immunology, and Molecular Genetics and
| | - Ho-Chung Chen
- Department of Microbiology, Immunology, and Molecular Genetics and
| | - Mahnia Mohebbi
- Department of Microbiology, Immunology, and Molecular Genetics and
| | - Willy Hugo
- Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Jason K. Whitmire
- Department of Genetics, UNC Chapel Hill, Chapel Hill, North Carolina, USA
| | - Melissa G. Lechner
- Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Maureen A. Su
- Department of Microbiology, Immunology, and Molecular Genetics and
- Department of Pediatrics, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
23
|
Guzik TJ, Nosalski R, Maffia P, Drummond GR. Immune and inflammatory mechanisms in hypertension. Nat Rev Cardiol 2024; 21:396-416. [PMID: 38172242 DOI: 10.1038/s41569-023-00964-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Hypertension is a global health problem, with >1.3 billion individuals with high blood pressure worldwide. In this Review, we present an inflammatory paradigm for hypertension, emphasizing the crucial roles of immune cells, cytokines and chemokines in disease initiation and progression. T cells, monocytes, macrophages, dendritic cells, B cells and natural killer cells are all implicated in hypertension. Neoantigens, the NLRP3 inflammasome and increased sympathetic outflow, as well as cytokines (including IL-6, IL-7, IL-15, IL-18 and IL-21) and a high-salt environment, can contribute to immune activation in hypertension. The activated immune cells migrate to target organs such as arteries (especially the perivascular fat and adventitia), kidneys, the heart and the brain, where they release effector cytokines that elevate blood pressure and cause vascular remodelling, renal damage, cardiac hypertrophy, cognitive impairment and dementia. IL-17 secreted by CD4+ T helper 17 cells and γδ T cells, and interferon-γ and tumour necrosis factor secreted by immunosenescent CD8+ T cells, exert crucial effector roles in hypertension, whereas IL-10 and regulatory T cells are protective. Effector mediators impair nitric oxide bioavailability, leading to endothelial dysfunction and increased vascular contractility. Inflammatory effector mediators also alter renal sodium and water balance and promote renal fibrosis. These mechanisms link hypertension with obesity, autoimmunity, periodontitis and COVID-19. A comprehensive understanding of the immune and inflammatory mechanisms of hypertension is crucial for safely and effectively translating the findings to clinical practice.
Collapse
Affiliation(s)
- Tomasz J Guzik
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK.
- Department of Medicine and Omicron Medical Genomics Laboratory, Jagiellonian University, Collegium Medicum, Kraków, Poland.
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance ARUA & The Guild, Glasgow, UK.
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Pasquale Maffia
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance ARUA & The Guild, Glasgow, UK
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Grant R Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Kojima K, Chambers JK, Nakashima K, Uchida K. Pro-inflammatory cytokine expression and the STAT1/3 pathway in canine chronic enteropathy and intestinal T-cell lymphoma. Vet Pathol 2024; 61:382-392. [PMID: 37906531 DOI: 10.1177/03009858231207017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The accumulation of intraepithelial lymphocytes (IELs) is a histopathological feature of canine chronic enteropathy (CE), and IELs are considered the cells of origin of intestinal T-cell lymphoma (ITCL). However, the pathogenic mechanism of IEL activation in CE remains unclear. This study hypothesized that the expression of proinflammatory cytokines, associated with cytotoxic T/NK-cell activation, is upregulated in CE and ITCL, and examined the expression of IFN-γ, IL-2, IL-12p35, IL-12p40, IL-15, and IL-21 and the downstream signal transducers and activators of transcription (STAT) pathway in the duodenal mucosa of dogs without lesions (n = 11; NC), with IEL-CE (n = 19; CE without intraepithelial lymphocytosis), IEL+CE (n = 29; CE with intraepithelial lymphocytosis), and with ITCL (n = 60). Quantitative polymerase chain reaction (PCR) revealed that IFN-γ and IL-21 were higher in IEL+CE than in IEL-CE or NC. Western blot revealed upregulation of STAT1 and STAT3 in IEL+CE. Double-labeling immunohistochemistry revealed a positive correlation between the Ki67 index of CD3+ T-cells and IFN-γ expression levels. Immunohistochemistry revealed a higher ratio of p-STAT1-positive villi in IEL+CE and ITCL than IEL-CE and NC, which positively correlated with IFN-γ expression levels. Among the 60 ITCL cases, neoplastic lymphocytes were immunopositive for p-STAT1 in 28 cases and p-STAT3 in 29 cases. These results suggest that IFN-γ and IL-21 contribute to the pathogenesis of IEL+CE, and IFN-γ may be involved in T-cell activation and mucosal injury in CE. STAT1 and STAT3 activation in ITCL cells suggests a role for the upregulation of the STAT pathway in the pathogenesis of ITCL.
Collapse
Affiliation(s)
| | | | - Ko Nakashima
- Japan Small Animal Medical Center, Tokorozawa, Japan
| | | |
Collapse
|
25
|
Wu Z, Li H, Xu H, Feng F, Zhang F, Zhang S, Wang L, Li Y. ChIP-seq analysis found IL21R, a target gene of GTF2I-the susceptibility gene for primary biliary cholangitis in Chinese Han. Hepatol Int 2024; 18:509-516. [PMID: 37713154 DOI: 10.1007/s12072-023-10586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
AIMS Aimed to identify a new susceptibility gene associated with primary biliary cholangitis (PBC) in Chinese Han and investigate the possible mechanism of that gene in PBC. METHODS A total of 466 PBC and 694 healthy controls (HC) were included in our study, and genotyping GTF2I gene variants by Sequenom. CD19 + B cells were isolated for Chromatin immunoprecipitation sequencing (ChIP-seq). Additionally, MEME-ChIP was utilized to perform searches for known motifs and de novo motif discovery. The GTF2I ChIP-seq of hematopoietic cell line (K562) results were obtained from ENCODE (GSE176987, GSE177691). The Genomic HyperBrowser was used to determine overlap and hierarchal clustering between ours and ENCODE datasets. RESULTS The frequency of the rs117026326 variant T allele was significantly higher in PBC patients than that in HC (20.26% compared with 13.89%, Pc = 1.09E-04). Furthermore, we observed an elevated proportion of GTF2I binding site located in the upstream and 5' UTR of genes in PBC in comparison with HC. Additionally, an in-depth analysis of IL21R region revealed that GTF2I might bind to the IL21R promoter to regulate the expression of the IL21R, with four peaks of GTF2I binding sites, including three increased binding sites in upstream, one increased binding site in 5' UTR. Motif analysis by MEME-ChIP uncovered five significant motifs. A significant overlap between our ChIP and GSE176987, GSE17769 were found by the Genomic HyperBroswer. CONCLUSIONS Our study confirmed that GTF2I was associated with PBC in Chinese Han. Furthermore, our gene function analysis indicated that IL21R may be the target gene regulated by GTF2I.
Collapse
Affiliation(s)
- Ziyan Wu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Shuaifuyuan Hutong, Dongcheng District, Beijing, 100730, China
| | - Haolong Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Shuaifuyuan Hutong, Dongcheng District, Beijing, 100730, China
| | - Honglin Xu
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Futai Feng
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shulan Zhang
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Li Wang
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Shuaifuyuan Hutong, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
26
|
Deng B, Huang H, Deng L, Zhao Z, Liu M, Lin H, Wang X, Tian R, Tu X, Peng A, Liang E, Bao K, Zhou Y, Xu P, He M. Imbalance of T follicular helper cell subsets trigger the differentiation of pathogenic B cells in idiopathic membranous nephropathy. Inflamm Res 2024:10.1007/s00011-023-01838-5. [PMID: 38467875 DOI: 10.1007/s00011-023-01838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/19/2023] [Accepted: 12/12/2023] [Indexed: 03/13/2024] Open
Abstract
OBJECTIVE This study aims to elucidate the role of T follicular helper (Tfh) cells and their subsets in idiopathic membranous nephropathy (IMN). METHODS The frequencies of Tfh cell subsets and B cell subsets in peripheral blood (PB) were detected in both IMN patients and healthy controls (HCs). The involvement of Tfh cells in the disease pathogenesis was examined by coculturing human Tfh cells with B cells. The dynamic changes of Tfh cells in PB or spleen were monitored in passive Heymann nephritis (PHN) rats. RESULTS The frequencies of circulating Tfh (cTfh) cells, cTfh2 cells, and plasmablasts were enriched in the PB of patients with IMN. cTfh cells expressed higher ICOS, and lower BTLA than healthy counterparts. The frequency of ICOS + cTfh2 was associated with the severity of IMN, including 24h urine protein, IgG4 concentration and the IgG4: IgG ratio. Positive correlations were also observed between the frequency of cTfh2 cells with plasmablasts, serum IL-21 and IL-4 levels. Importantly, cTfh cells isolated from IMN patients were able to induce the differentiation of B cells to memory B cells (MBC) and plasmablasts, this process could be substantially attenuated by blocking the IL-21. Similar increases of ICOS + cTfh cells were also detected in spleen of PHN rats, concomitant with elevated urine protein levels. CONCLUSIONS Collectively, our results demonstrate that the imbalance of cTfh cell subsets play a crucial pathogenic role in IMN by inducing the differentiation of B cells through IL-21, and cTfh2 cells might serve as useful markers to evaluate the progression of IMN.
Collapse
Affiliation(s)
- Bishun Deng
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huijie Huang
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Deng
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziling Zhao
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miao Liu
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haibiao Lin
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaowan Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruimin Tian
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoxin Tu
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Anping Peng
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Enyu Liang
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kun Bao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuting Zhou
- Clinical Laboratory of Urumqi Blood Center, Urumqi, China
| | - Peng Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Min He
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
27
|
Qian H, Meng J, Yuan T, Jiang H, Zhou L, Zhang L, Zhao J, Bao N. Gene Expression in Synovium of Rotator Cuff Tear Patients Determined by RNA Sequencing. Biochem Genet 2024; 62:452-467. [PMID: 37380850 DOI: 10.1007/s10528-023-10411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 05/30/2023] [Indexed: 06/30/2023]
Abstract
Rotator cuff tear (RCT) is a common shoulder disorder related to pain and dysfunction. However, the pathological mechanism of RCT remains unclear. Thus, this study aims to investigate the molecular events in RCT synovium and identify possible target genes and pathways as determined by RNA sequencing (RNA-Seq). The synovial tissue was biopsied from 3 patients with RCT (RCT group) and 3 patients with shoulder instability (Control group) during arthroscopic surgery. Then, differentially expressed (DE) mRNAs, long non-coding RNAs (lncRNAs) and micro RNAs (miRNAs) were comprehensively profiled by RNA-Seq. Gene ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and competing endogenous RNA (ceRNA) network analysis were performed to identify the potential functions of these DE genes. 447 mRNAs, 103 lncRNAs and 15 miRNAs were identified differentially expressed. The DE mRNAs were highlighted in inflammatory pathway including up-regulated T cell costimulation, positive regulation of T cell activation, and T cell receptor signaling. Down-regulated fatty acid degradation pathway and 5'-AMP-activated protein kinase (AMPK) signaling in RCT group are also enriched. Validation assay showed that the expression of pro-inflammatory molecules including IL21R, CCR5, TNFSF11, and MMP11 was significantly increased in RCT group compared with Control group. CeRNA analysis further revealed lncRNA-miRNA-mRNA regulatory networks involving IL21R and TNFSF11 in RCT. Activated synovial inflammation is the remarkable event of RCT. Importantly, increased T cell activation and disordered fatty acid metabolism signaling might play a significant role. ceRNA networks involving IL21R and TNFSF11 identified could potentially control the progression of RCT. In conclusion, our findings could provide new evidence for the molecular mechanisms of RCT and might identify new therapeutic targets.
Collapse
Affiliation(s)
- Hong Qian
- Department of Orthopedics, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, #305, East Zhongshan Road, Nanjing, 210002, China
| | - Jia Meng
- Department of Orthopedics, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, #305, East Zhongshan Road, Nanjing, 210002, China
| | - Tao Yuan
- Department of Orthopedics, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, #305, East Zhongshan Road, Nanjing, 210002, China
| | - Hui Jiang
- Department of Orthopedics, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, #305, East Zhongshan Road, Nanjing, 210002, China
| | - Li Zhou
- Department of Orthopedics, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, #305, East Zhongshan Road, Nanjing, 210002, China
| | - Lei Zhang
- Department of Orthopedics, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, #305, East Zhongshan Road, Nanjing, 210002, China.
| | - Jianning Zhao
- Department of Orthopedics, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, #305, East Zhongshan Road, Nanjing, 210002, China.
| | - Nirong Bao
- Department of Orthopedics, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, #305, East Zhongshan Road, Nanjing, 210002, China.
| |
Collapse
|
28
|
Zeng L, Yu G, Yang K, He Q, Hao W, Xiang W, Long Z, Chen H, Tang X, Sun L. Exploring the mechanism of Celastrol in the treatment of rheumatoid arthritis based on systems pharmacology and multi-omics. Sci Rep 2024; 14:1604. [PMID: 38238321 PMCID: PMC10796403 DOI: 10.1038/s41598-023-48248-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/23/2023] [Indexed: 01/22/2024] Open
Abstract
To explore the molecular network mechanism of Celastrol in the treatment of rheumatoid arthritis (RA) based on a novel strategy (integrated systems pharmacology, proteomics, transcriptomics and single-cell transcriptomics). Firstly, the potential targets of Celastrol and RA genes were predicted through the database, and the Celastrol-RA targets were obtained by taking the intersection. Then, transcriptomic data and proteomic data of Celastrol treatment of RA were collected. Subsequently, Celastrol-RA targets, differentially expressed genes, and differentially expressed proteins were imported into Metascape for enrichment analysis, and related networks were constructed. Finally, the core targets of Celastrol-RA targets, differentially expressed genes, and differentially expressed proteins were mapped to synoviocytes of RA mice to find potential cell populations for Celastrol therapy. A total of 195 Celastrol-RA targets, 2068 differential genes, 294 differential proteins were obtained. The results of enrichment analysis showed that these targets, genes and proteins were mainly related to extracellular matrix organization, TGF-β signaling pathway, etc. The results of single cell sequencing showed that the main clusters of these targets, genes, and proteins could be mapped to RA synovial cells. For example, Mmp9 was mainly distributed in Hematopoietic cells, especially in Ptprn+fibroblast. The results of molecular docking also suggested that Celastrol could stably combine with molecules predicted by network pharmacology. In conclusion, this study used systems pharmacology, transcriptomics, proteomics, single-cell transcriptomics to reveal that Celastrol may regulate the PI3K/AKT signaling pathway by regulating key targets such as TNF and IL6, and then play an immune regulatory role.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Ganpeng Yu
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, China
| | - Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Hua Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Anhui, China.
| |
Collapse
|
29
|
Seyedsadr M, Bang M, McCarthy E, Zhang S, Chen HC, Mohebbi M, Hugo W, Whitmire JK, Lechner MG, Su MA. A pathologically expanded, clonal lineage of IL-21 producing CD4+ T cells drives Inflammatory neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574553. [PMID: 38260637 PMCID: PMC10802410 DOI: 10.1101/2024.01.07.574553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Inflammatory neuropathies, which include CIDP (chronic inflammatory demyelinating polyneuropathy) and GBS (Guillain Barre Syndrome), result from autoimmune destruction of the peripheral nervous system (PNS) and are characterized by progressive weakness and sensory loss. CD4+ T cells play a key role in the autoimmune destruction of the PNS. Yet, key properties of pathogenic CD4+ T cells remain incompletely understood. Here, we use paired scRNAseq and scTCRseq of peripheral nerves from an inflammatory neuropathy mouse model to identify IL-21 expressing CD4+ T cells that are clonally expanded and multifunctional. These IL-21-expressing CD4+ T cells are comprised of two transcriptionally distinct expanded populations, which express genes associated with Tfh and Tph subsets. Remarkably, TCR clonotypes are shared between these two IL-21-expressing populations, suggesting a common lineage differentiation pathway. Finally, we demonstrate that IL-21 signaling is required for neuropathy development and pathogenic T cell infiltration into peripheral nerves. IL-21 signaling upregulates CXCR6, a chemokine receptor that promotes CD4+ T cell localization in peripheral nerves. Together, these findings point to IL-21 signaling, Tfh/Tph differentiation, and CXCR6-mediated cellular localization as potential therapeutic targets in inflammatory neuropathies.
Collapse
Affiliation(s)
- Maryamsadat Seyedsadr
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Madison Bang
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Ethan McCarthy
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Shirley Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Ho-Chung Chen
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Mahnia Mohebbi
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Willy Hugo
- Department of Medicine, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | | | - Melissa G. Lechner
- Department of Medicine, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Maureen A. Su
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
- Department of Pediatrics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| |
Collapse
|
30
|
Huang Y, Sun X, Nie G, Xu H, Zou M. Follicular Helper T Cells in Peyer's Patches and Galactose- Deficient Iga1 Contribute to Iga Nephropathy. Curr Mol Med 2024; 24:1033-1044. [PMID: 37475555 DOI: 10.2174/1566524023666230720112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Common primary glomerulonephritis with aberrant mucosal immunity is IgA nephropathy (IgAN). T follicular helper (TFH) cells are essential in regulating B cell differentiation. Peyer's patches (PPs) are the main site where IgA+ plasmablasts differentiate. OBJECTIVE Our study aimed to investigate the TFH cell's potential contribution to the etiology of IgA nephropathy. METHODS In PPs from IgAN mouse models, the ratio of the TFH cell, B220+IgA+, B220+IgM+, and B220-IgA+ lymphocytes were assessed. Then, we used Western blot to assess the expression of Bcl-6, Blimp- 1, and IL-21 proteins in PPs and used RTPCR to assess the expression of IL-21 and TGF-β1 mRNA. TFH cells coculture with spleen cells to measure the degree of IL-21 and the ratio of activation marker CD69 on the TFH cells. Naive B cells (CD27-IgD+) from children suffering from IgAN were cultured with TFH cell-related cytokines. The supernatant was detected to assess the excretion of galactose-deficient IgA1 (Gd-IgA1). RESULTS IgAN mice developed noticeably increased degrees of IL-21 and CD69 on TFH cells than controls did, as well as higher percentages of B220+IgA+, B220+IgM+, B220+IgA+, TGF- β1, and IL-21 mRNA and Bcl-6, IL-21 proteins in PPs. The Gd-IgA1 level in the supernatant and IgAN- positive children's serum were noticeably higher than those of the healthy controls (P < 0.05). PPs provide the microenvironment to induce the production of IgA-secreting plasmablasts. CONCLUSION TFH cells may be a key moderator to induce B cell differentiation into IgAsecreting plasmablasts and produce Gd-IgA1, which plays a significant part in IgAN's pathogenesis. It could be a new therapeutic target in the future.
Collapse
Affiliation(s)
- Yuye Huang
- Department of Pediatrics, General Hospital of Central Theater Command, No. 627, Wuluo Road, Wuhan 430030, Hubei Province, P.R. China
| | - Xunling Sun
- Department of Pediatrics, General Hospital of Central Theater Command, No. 627, Wuluo Road, Wuhan 430030, Hubei Province, P.R. China
| | - Guoming Nie
- Department of Pediatrics, General Hospital of Central Theater Command, No. 627, Wuluo Road, Wuhan 430030, Hubei Province, P.R. China
| | - Hongtao Xu
- Department of Pediatrics, General Hospital of Central Theater Command, No. 627, Wuluo Road, Wuhan 430030, Hubei Province, P.R. China
| | - Minshu Zou
- Department of Pediatrics, General Hospital of Central Theater Command, No. 627, Wuluo Road, Wuhan 430030, Hubei Province, P.R. China
| |
Collapse
|
31
|
Shbeer AM, Ahmed Robadi I. The role of Interleukin-21 in autoimmune Diseases: Mechanisms, therapeutic Implications, and future directions. Cytokine 2024; 173:156437. [PMID: 37972478 DOI: 10.1016/j.cyto.2023.156437] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
IL-21 is a multifunctional cytokine that regulates the functional activity of various immune cells. Initial studies have shown that IL-21 can influence the differentiation, proliferation and function of T and B cells, as well as promote the maturation and increase the cytotoxicity of CD8 + T cells and NK cells. During humoral immune responses, IL-21 has significant effects on B cell activation, differentiation and apoptosis. In addition, IL-21 promotes the differentiation of both naive and memory B cells, ultimately leading to the activation of plasma cells. The function of IL-21 in the immune system is complex, as it has the ability to either stimulate or inhibit immune responses. in addition, IL-21 facilitates the differentiation of naive and memory B cells into plasma cells. The functionality of IL-21 in the immune system is diverse, as it has the ability to stimulate or inhibit immune responses. This cytokine has been implicated in several diseases including cancer, allergies and autoimmune diseases. Research has suggested that this cytokine is involved in the development of autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. Several studies have suggested that inhibition of IL-21 has a therapeutic effect on autoimmune diseases. Therefore, targeting both the cytokine's receptor and IL-21 in autoimmune diseases may be an effective approach to reduce the severity of the disease or to treat it. This review will examine the biological effects of IL-21 on various immune cells and the role of the cytokine in autoimmune diseases.
Collapse
Affiliation(s)
- Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| | - Ibrahim Ahmed Robadi
- Department of pathology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
32
|
Han D, Li F, Zhao Y, Wang B, Wang J, Liu B, Mou K, Meng L, Zheng Y, Lu S, Zhu W, Zhou Y. IL-21 promoting angiogenesis contributes to the development of psoriasis. FASEB J 2024; 38:e23375. [PMID: 38102968 DOI: 10.1096/fj.202201709rrrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Elevated IL-21 expression which can effectively induce Th17 cell differentiation has been implicated in the pathogenesis of psoriasis, but its role in angiogenesis remains poorly understood. METHODS PASI and PSI score assessment was applied to evaluate the severity of psoriatic lesions. The expression of IL-21, IL-21 receptor (IL-21R), CD31, VEGFA, MMP-9, and ICAM-1 in skin was determined by immunohistochemistry or quantitative real-time polymerase chain reaction. The serum level of IL-21 was measured by enzyme-linked immunosorbent assay (ELISA). Then, their correlation was analyzed statistically. Human umbilical vein endothelial cells (HUVECs) cocultured with conditional medium from normal human epidermal keratinocytes (NHEKs) were treated with IL-21 and/or M5 cocktail (mixture of IL-1α, IL-17A, IL-22, TNF-α, and oncostatin M). The migration and tube formation of HUVECs were detected, and the levels of VEGFA, MMP-9, and ICAM-1 in NHEKs were measured by Western blotting or ELISA. RESULTS Increased IL-21 and IL-21R expression was observed in psoriatic sera or skin specimens, with IL-21R mainly locating in keratinocytes and IL-21 in immune cells. Pearson analysis showed significantly positive correlation between IL-21/IL-21R and erythema scores/microvessel density in psoriatic lesions. Moreover, the expression of proangiogenic genes, VEGFA, ICAM-1, and MMP-9 was upregulated in skins of psoriasis. Additionally, in M5 microenvironment, migration and tube formation could be magnified in HUVECs using IL-21 pre-treated NHEK medium. Mechanically, the co-stimulation of IL-21 and M5 to NEHKs increased the expression of ICAM-1. CONCLUSION IL-21 could regulate keratinocytes to secrete ICAM-1, thereby promoting angiogenesis in psoriasis.
Collapse
Affiliation(s)
- Dan Han
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fei Li
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhao
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingyuan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bei Liu
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kuanhou Mou
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liesu Meng
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Yan Zheng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shemin Lu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Yan Zhou
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
33
|
Hu Z, Zuo C, Mao C, Shi C, Xu Y. Peripheral immune markers and amyotrophic lateral sclerosis: a Mendelian randomization study. Front Neurosci 2023; 17:1269354. [PMID: 38188028 PMCID: PMC10768049 DOI: 10.3389/fnins.2023.1269354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction The peripheral immune system changes in amyotrophic lateral sclerosis (ALS), but the causal relationship between the two is still controversial. Methods In this study, we aimed to estimate the causal relationship between peripheral immune markers and ALS using a two-sample Mendelian randomization method. Genome-wide association study (GWAS) data on peripheral blood immune traits from European populations were used for exposure, and ALS summary statistics were used as the outcome. The causal relationship was evaluated by inverse variance weighting, MR-Egger, and weighted median methods and verified by multiple sensitivity analysis. Results We found that the increase of one standard deviation of lymphocyte count is related to reducing ALS risk. CD3 on effector memory CD4+ T cell, HLA DR+ CD4+ T cell, effector memory CD8+ T cell, terminally differentiated CD8+ T cell and CD28- CD8+ T cell is also a protective factor for ALS. Among the circulating immune protein, the increase of one standard deviation of α-2-macroglobulin receptor-associated protein (α-2-MRAP) and C4b showed associated with low risk of ALS, while Interleukin-21 (IL-21) increases the risk of ALS. Discussion Our study further reveals the important role of peripheral immune activity in ALS.
Collapse
Affiliation(s)
- Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Chunyan Zuo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Zhang Z, Zhu T, Zhang L, Xing Y, Yan Z, Li Q. Critical influence of cytokines and immune cells in autoimmune gastritis. Autoimmunity 2023; 56:2174531. [PMID: 36762543 DOI: 10.1080/08916934.2023.2174531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Gastric cancer (GC) is a type of the most common cancers. Autoimmune gastritis (AIG) and infection with Helicobacter pylori (HP) are the risk factors of triggering GC. With the emphasis on the treatment of HP, the incidence and prevalence of HP infection in population is decreasing. However, AIG lacks accurate diagnosis and treatment methods, which occupies high cancer risk factors. AIG is controlled by the immune environment of the stomach, including immune cells, inflammatory cells, and infiltrating intercellular material. Various immune cells or cytokines play a central role in the process of regulating gastric parietal cells. Abnormal expression levels of cytokines involved in immunity are bound to face the risk of tumorigenesis. Therefore, it is particularly important for preventing or treating AIG and avoiding the risk of gastric cancer to clarify the confirmed action mode of immune cells and cytokines in the gastric system. Herein, we briefly reviewed the role of the immune environment under AIG, focussing on describing these double-edged effects between immune cells and cytokines, and pointing out potential research challenges.
Collapse
Affiliation(s)
- Zepeng Zhang
- Kunshan Hospital of Chinese Medicine, Suzhou, Jiangsu, China
| | - Tongtong Zhu
- Kunshan Hospital of Traditional Chinese and Western Medicine, Suzhou, Jiangsu, China
| | - Lei Zhang
- Kunshan Hospital of Chinese Medicine, Suzhou, Jiangsu, China
| | - Yanchao Xing
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiqiang Yan
- Kunshan Hospital of Chinese Medicine, Suzhou, Jiangsu, China
| | - Qingsong Li
- Kunshan Hospital of Chinese Medicine, Suzhou, Jiangsu, China
| |
Collapse
|
35
|
Akgul A, Freguia CF, Maddaloni M, Hoffman C, Voigt A, Nguyen CQ, Fanger NA, Fanger GR, Pascual DW. Treatment with a Lactococcus lactis that chromosomally express E. coli cfaI mitigates salivary flow loss in a Sjögren's syndrome-like disease. Sci Rep 2023; 13:19489. [PMID: 37945636 PMCID: PMC10636062 DOI: 10.1038/s41598-023-46557-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Sjögren's Syndrome (SjS) results in loss of salivary and lacrimal gland excretion due to an autoimmune attack on these secretory glands. Conventional SjS treatments address the symptoms, but not the cause of disease. Recognizing this deficit of treatments to reverse SjS disease, studies were pursued using the fimbriae from enterotoxigenic E. coli, colonization factor antigen I (CFA/I), which has anti-inflammatory properties. To determine if CFA/I fimbriae could attenuate SjS-like disease in C57BL/6.NOD-Aec1Aec2 (SjS) females, the Lactococcus lactis (LL) 301 strain was developed to chromosomally express the cfaI operon. Western blot analysis confirmed CFA/I protein expression, and this was tested in SjS females at different stages of disease. Repeated dosing with LL 301 proved effective in mitigating salivary flow loss and in reducing anti-nuclear antibodies (ANA) and inflammation in the submandibular glands (SMGs) in SjS females and in restoring salivary flow in diseased mice. LL 301 treatment reduced proinflammatory cytokine production with concomitant increases in TGF-β+ CD25+ CD4+ T cells. Moreover, LL 301 treatment reduced draining lymph and SMG follicular T helper (Tfh) cell levels and proinflammatory cytokines, IFN-γ, IL-6, IL-17, and IL-21. Such evidence points to the therapeutic capacity of CFA/I protein to suppress SjS disease and to have restorative properties in combating autoimmune disease.
Collapse
Affiliation(s)
- Ali Akgul
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | | | - Massimo Maddaloni
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | - Carol Hoffman
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | - Alexandria Voigt
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | - Cuong Q Nguyen
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | | | | | - David W Pascual
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
36
|
Liang J, Hu F, Mao L, Qiu Y, Jiang F, Wang Q, Abulikemu K, Hong Y, Ge X, Kang X. Interleukin-37 inhibits desmoglein-3 endocytosis and keratinocyte dissociation via upregulation of Caveolin-1 and inhibition of the STAT3 pathway. J Eur Acad Dermatol Venereol 2023; 37:1920-1927. [PMID: 37262304 DOI: 10.1111/jdv.19239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/05/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Pemphigus vulgaris (PV) is a potentially fatal autoimmune bullous disease primarily caused by acantholysis of keratinocytes attributed to pathogenic desmoglein-3 (Dsg3) autoantibodies. Interleukin-37 (IL-37) reportedly plays important roles in a variety of autoimmune diseases, but its role in PV is not clear. OBJECTIVES To investigate whether IL-37 plays a role in the occurrence and progression of PV. METHODS HaCaT keratinocytes were stimulated with anti-Dsg3 antibody to establish an in vitro PV model, which was defined as anti-Dsg3 group. Cells incubated with medium without anti-Dsg3 treatment were used as control. IL-37 was cultured with these cells infected with or without lentiviral vector shRNA-Caveolin-1 (sh-Cav-1-LV). Cell dissociation assay and immunocytofluorescence were performed to assess keratinocyte dissociation, keratin retraction and Dsg3 endocytosis. Real-time PCR was used to detect the mRNA level of Cav-1, and western blot was used to determine the protein expression of Cav-1, Dsg3, STAT3 and phosphorylated-STAT3 (p-STAT3). RESULTS The anti-Dsg3 group showed more cell debris, increased keratin retraction, increased Dsg3 endocytosis, reduced Cav-1 expression and co-localization than the control group, while IL-37 treatment neutralized all of these changes. Interestingly, Cav-1 knockdown supressed the inhibitory effect of IL-37 on keratinocyte dissociation and Dsg3 internalization. The protein expression of p-STAT3 was increased in keratinocytes of the PV model but decreased by IL-37. Re-activation of the STAT3 pathway by colivelin supressed the inhibitory effect of IL-37 on keratinocyte dissociation and Dsg3 internalization, along with upregulation of Cav-1 and Dsg3. CONCLUSIONS IL-37 inhibited keratinocyte dissociation and Dsg3 endocytosis in an in vitro PV model through the upregulating Cav-1 and inhibiting STAT3 pathway.
Collapse
Affiliation(s)
- Junqin Liang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Fengxia Hu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Lidan Mao
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Yun Qiu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Fanhe Jiang
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
| | - Qian Wang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Kailibinuer Abulikemu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Yongzhen Hong
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Xinyu Ge
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Xiaojing Kang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| |
Collapse
|
37
|
Luo R, Chang D, Zhang N, Cheng Y, Ge S, Xu G. T Follicular Helper Cells in Tertiary Lymphoid Structure Contribute to Renal Fibrosis by IL-21. Int J Mol Sci 2023; 24:12535. [PMID: 37628716 PMCID: PMC10454845 DOI: 10.3390/ijms241612535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Tertiary lymphoid structure (TLS) represents lymphocyte clusters in non-lymphoid organs. The formation and maintenance of TLS are dependent on follicular helper T (TFH) cells. However, the role of TFH cells during renal TLS formation and the renal fibrotic process has not been comprehensively elucidated in chronic kidney disease. Here, we detected the circulating TFH cells from 57 IgAN patients and found that the frequency of TFH cells was increased in IgA nephropathy patients with renal TLS and also increased in renal tissues from the ischemic-reperfusion-injury (IRI)-induced TLS model. The inducible T-cell co-stimulator (ICOS) is one of the surface marker molecules of TFH. Remarkably, the application of an ICOS-neutralizing antibody effectively prevented the upregulation of TFH cells and expression of its canonical functional mediator IL-21, and also reduced renal TLS formation and renal fibrosis in IRI mice in vivo. In the study of this mechanism, we found that recombinant IL-21 could directly promote renal fibrosis and the expression of p65. Furthermore, BAY 11-7085, a p65 selective inhibitor, could effectively alleviate the profibrotic effect induced by IL-21 stimulation. Our results together suggested that TFH cells contribute to TLS formation and renal fibrosis by IL-21. Targeting the ICOS-signaling pathway network could reduce TFH cell infiltration and alleviate renal fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Shuwang Ge
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.L.)
| | - Gang Xu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.L.)
| |
Collapse
|
38
|
Sagrero-Fabela N, Ortíz-Lazareno PC, Salazar-Camarena DC, Cruz A, Cerpa-Cruz S, Muñoz-Valle JF, Marín-Rosales M, Alvarez-Gómez JA, Palafox-Sánchez CA. BAFFR expression in circulating T follicular helper (CD4 +CXCR5 +PD-1 +) and T peripheral helper (CD4 +CXCR5 -PD-1 +) cells in systemic lupus erythematosus. Lupus 2023; 32:1093-1104. [PMID: 37460408 DOI: 10.1177/09612033231189804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND Circulating T follicular helper (cTfh) and T peripheral helper (Tph) subpopulations are shown to be higher in systemic lupus erythematosus (SLE) patients and have been involved in promoting extrafollicular B cell responses. However, a possible association with the B cell activating factor (BAFF), a cytokine mainly related to B cell responses and disease activity in SLE, has not been investigated. Therefore, this study aimed to evaluate the association of cTfh and Tph subpopulations with the BAFF system expression and clinical activity in SLE patients. METHODS This study included 43 SLE patients and 12 healthy subjects (HS). The identification of cTfh (CD4+CXCR5+PD-1+), Tph (CD4+CXCR5-PD-1+) cells, expression of membrane-bound BAFF (mBAFF), BAFFR, TACI, BCMA, and intracellular IL-21 was performed by flow cytometry. Serum levels of IL-21, CXCL13, and BAFF were analyzed using ELISA. The SLEDAI-2K score was used to evaluate disease activity in SLE patients. RESULTS Compared with HS, SLE patients showed a significantly increased percentage of cTfh and Tph cells, higher in patients with clearly active disease. SLE patients had markedly higher IL-21-producing cTfh and Tph cells than HS. Both subpopulations were positively correlated with the disease activity in SLE patients. Tph cells were negatively correlated with CD19+CXCR5+ B cells and positively correlated with CD19+CXCR5- B cells. A low expression of mBAFF and their receptors TACI and BCMA was found on cTfh and Tph cells in SLE patients and HS. However, SLE patients with clearly active disease showed decreased expression of BAFFR on cTfh and Tph subpopulations than patients with mildly active/nonactive disease. Serum IL-21, CXCL13, and BAFF levels were higher in SLE patients than in HS. Levels of CXCL13 were correlated with disease activity. Non-significant correlations were observed among T cell subpopulations and IL-21, CXCL13, and BAFF levels. CONCLUSIONS This study emphasizes the importance of cTfh and Tph cells in SLE pathogenesis. Besides the importance of IL-21, our results suggest that BAFFR could play a role in cTfh and Tph subpopulations in the autoimmunity context.
Collapse
Affiliation(s)
- Nefertari Sagrero-Fabela
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Pablo C Ortíz-Lazareno
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, México
| | - Diana C Salazar-Camarena
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Alvaro Cruz
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Sergio Cerpa-Cruz
- Departamento de Reumatología, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, México
| | - José F Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Miguel Marín-Rosales
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
- Hospital General de Occidente, Secretaría de Salud Jalisco, Guadalajara, México
| | - Jhonatan A Alvarez-Gómez
- Doctorado en Ciencias en Biología Molecular en Medicina (DCBMM), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Claudia A Palafox-Sánchez
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| |
Collapse
|
39
|
Ober-Reynolds B, Wang C, Ko JM, Rios EJ, Aasi SZ, Davis MM, Oro AE, Greenleaf WJ. Integrated single-cell chromatin and transcriptomic analyses of human scalp identify gene-regulatory programs and critical cell types for hair and skin diseases. Nat Genet 2023; 55:1288-1300. [PMID: 37500727 PMCID: PMC11190942 DOI: 10.1038/s41588-023-01445-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/17/2023] [Indexed: 07/29/2023]
Abstract
Genome-wide association studies have identified many loci associated with hair and skin disease, but identification of causal variants requires deciphering of gene-regulatory networks in relevant cell types. We generated matched single-cell chromatin profiles and transcriptomes from scalp tissue from healthy controls and patients with alopecia areata, identifying diverse cell types of the hair follicle niche. By interrogating these datasets at multiple levels of cellular resolution, we infer 50-100% more enhancer-gene links than previous approaches and show that aggregate enhancer accessibility for highly regulated genes predicts expression. We use these gene-regulatory maps to prioritize cell types, genes and causal variants implicated in the pathobiology of androgenetic alopecia (AGA), eczema and other complex traits. AGA genome-wide association studies signals are enriched in dermal papilla regulatory regions, supporting the role of these cells as drivers of AGA pathogenesis. Finally, we train machine learning models to nominate single-nucleotide polymorphisms that affect gene expression through disruption of transcription factor binding, predicting candidate functional single-nucleotide polymorphism for AGA and eczema.
Collapse
Affiliation(s)
| | - Chen Wang
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
- Division of Dermatology, Department of Medicine, Santa Clara Valley Medical Center, San Jose, CA, USA
- Institute of Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Justin M Ko
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Eon J Rios
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
- Division of Dermatology, Department of Medicine, Santa Clara Valley Medical Center, San Jose, CA, USA
| | - Sumaira Z Aasi
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Mark M Davis
- Institute of Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Anthony E Oro
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
40
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 316] [Impact Index Per Article: 158.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
41
|
Zhong Z, Wang Z, Xie X, Tian S, Wang F, Wang Q, Ni S, Pan Y, Xiao Q. Evaluation of the Genetic Diversity, Population Structure and Selection Signatures of Three Native Chinese Pig Populations. Animals (Basel) 2023; 13:2010. [PMID: 37370521 DOI: 10.3390/ani13122010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Indigenous pig populations in Hainan Province live in tropical climate conditions and a relatively closed geographical environment, which has contributed to the formation of some excellent characteristics, such as heat tolerance, strong disease resistance and excellent meat quality. Over the past few decades, the number of these pig populations has decreased sharply, largely due to a decrease in growth rate and poor lean meat percentage. For effective conservation of these genetic resources (such as heat tolerance, meat quality and disease resistance), the whole-genome sequencing data of 78 individuals from 3 native Chinese pig populations, including Wuzhishan (WZS), Tunchang (TC) and Dingan (DA), were obtained using a 150 bp paired-end platform, and 25 individuals from two foreign breeds, including Landrace (LR) and Large White (LW), were downloaded from a public database. A total of 28,384,282 SNPs were identified, of which 27,134,233 SNPs were identified in native Chinese pig populations. Both genetic diversity statistics and linkage disequilibrium (LD) analysis indicated that indigenous pig populations displayed high genetic diversity. The result of population structure implied the uniqueness of each native Chinese pig population. The selection signatures were detected between indigenous pig populations and foreign breeds by using the population differentiation index (FST) method. A total of 359 candidate genes were identified, and some genes may affect characteristics such as immunity (IL-2, IL-21 and ZFYVE16), adaptability (APBA1), reproduction (FGF2, RNF17, ADAD1 and HIPK4), meat quality (ABCA1, ADIG, TLE4 and IRX5), and heat tolerance (VPS13A, HSPA4). Overall, the findings of this study will provide some valuable insights for the future breeding, conservation and utilization of these three Chinese indigenous pig populations.
Collapse
Affiliation(s)
- Ziqi Zhong
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Ziyi Wang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Xinfeng Xie
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Shuaishuai Tian
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Feifan Wang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Qishan Wang
- Hainan Yazhou Bay Seed Laboratory, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Shiheng Ni
- Animal Husbandry Technology Extending Stations of Hainan Province, Haikou 570203, China
| | - Yuchun Pan
- Hainan Yazhou Bay Seed Laboratory, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Qian Xiao
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
42
|
Sallese M, Efthymakis K, Marchioni M, Neri B, Dufrusine B, Dainese E, Di Nicola M, Neri M. Gene Expression Profiling in Coeliac Disease Confirmed the Key Role of the Immune System and Revealed a Molecular Overlap with Non-Celiac Gluten Sensitivity. Int J Mol Sci 2023; 24:ijms24097769. [PMID: 37175481 PMCID: PMC10178871 DOI: 10.3390/ijms24097769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Coeliac disease (CeD) is an immune-mediated disorder triggered by the ingestion of gluten and an as yet unidentified environmental factor in genetically predisposed individuals. The disease involves a major autoimmune component that primarily damages the intestinal mucosa; although, it also has systemic involvement. The Th1 inflammatory response is one of the main events leading to mucosal damage; although, enterocytes and the innate immune response also participate in the pathological mechanism. In this study, we performed an analysis of the gene expression profile of the intestinal mucosa of patients with active disease and compared it with that of patients who do not suffer from gluten-related disorders but report dyspeptic symptoms. This analysis identified 1781 differentially expressed (DE) genes, of which 872 were downregulated and 909 upregulated. Gene Ontology and pathway analysis indicated that the innate and adaptive immune response, in particular the Th1 pathway, are important pathogenetic mechanisms of CeD, while the key cytokines are IL27, IL21, IL2, IL1b, TNF, CSF2 and IL7, as well as type I (IFNA1, IFNA2) and type II (IFNG) interferons. Finally, the comparison between the DE genes identified in this study and those identified in our previous study in the intestinal mucosa of patients with non-celiac gluten sensitivity (NCGS) revealed a high degree of molecular overlap. About 30% of the genes dysregulated in NCGS, most of which are long non-coding RNAs, are also altered in CeD suggesting that these diseases may have a common root (dysregulated long non-coding RNAs) from which they develop towards an inflammatory phenotype of variable degree in the case of CeD and NCGS respectively.
Collapse
Affiliation(s)
- Michele Sallese
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, 66100 Chieti, Italy
| | - Konstantinos Efthymakis
- Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Ageing Sciences, 'G. d'Annunzio' University of Chieti-Pescara, 66100 Chieti, Italy
| | - Michele Marchioni
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, 66100 Chieti, Italy
| | - Benedetto Neri
- Gastroenterology Unit, Department of Systems Medicine, University 'Tor Vergata' of Rome, 00133 Roma, Italy
| | - Beatrice Dufrusine
- Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Enrico Dainese
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Marta Di Nicola
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, 66100 Chieti, Italy
| | - Matteo Neri
- Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Ageing Sciences, 'G. d'Annunzio' University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
43
|
Tangye SG, Pathmanandavel K, Ma CS. Cytokine-mediated STAT-dependent pathways underpinning human B-cell differentiation and function. Curr Opin Immunol 2023; 81:102286. [PMID: 36764056 DOI: 10.1016/j.coi.2023.102286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/10/2023]
Abstract
B cells are fundamental to host defence against infectious diseases; indeed, the ability of humans to elicit robust antibody responses following exposure to foreign antigens underpins long-lived humoral immunity and serological memory, as well as the success of most currently administered vaccines. However, B cells also have a dark side - they can cause myriad diseases, including autoimmunity, atopy, allergy and malignancy. Thus, it is critical to understand the molecular requirements for generating effective, high-affinity, specific immune responses following natural infection or vaccination, as well as for constraining B-cell function to mitigate B-cell-mediated immune dyscrasias. In this review, we discuss recent developments that have been derived from the identification and detailed analysis of individuals with inborn errors of immunity that disrupt cytokine signalling, resulting in immune dysregulatory conditions. These studies have defined fundamental cytokine/cytokine receptor/signal transducer and activator of transcription (STAT) signalling pathways that are critical for the generation and maintenance of human memory B-cell and plasma cell subsets during host defence, as well as revealed mechanisms of disease pathogenesis causing immune deficiency, autoimmunity and atopy. More importantly, these studies have identified molecules that could be targeted to either enhance humoral immunity in the settings of infection or vaccination, or attenuate humoral immunity that contributes to antibody-mediated autoimmunity or allergy.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW 2010, Australia; CIRCA (Clinical Immunogenomics Research Consortium of Australasia), Australia.
| | - Karrnan Pathmanandavel
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW 2010, Australia; CIRCA (Clinical Immunogenomics Research Consortium of Australasia), Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW 2010, Australia; CIRCA (Clinical Immunogenomics Research Consortium of Australasia), Australia
| |
Collapse
|
44
|
Ciecko AE, Wang Y, Harleston S, Drewek A, Serreze DV, Geurts AM, Lin CW, Chen YG. Heterogeneity of Islet-Infiltrating IL-21+ CD4 T Cells in a Mouse Model of Type 1 Diabetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:935-946. [PMID: 36762954 PMCID: PMC10483376 DOI: 10.4049/jimmunol.2200712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/29/2023] [Indexed: 02/11/2023]
Abstract
IL-21 is essential for type 1 diabetes (T1D) development in the NOD mouse model. IL-21-expressing CD4 T cells are present in pancreatic islets where they contribute to T1D progression. However, little is known about their phenotype and differentiation states. To fill this gap, we generated, to our knowledge, a novel IL-21 reporter NOD strain to further characterize IL-21+ CD4 T cells in T1D. IL-21+ CD4 T cells accumulate in pancreatic islets and recognize β cell Ags. Single-cell RNA sequencing revealed that CD4 T effector cells in islets actively express IL-21 and they are highly diabetogenic despite expressing multiple inhibitory molecules, including PD-1 and LAG3. Islet IL-21+ CD4 T cells segregate into four phenotypically and transcriptionally distinct differentiation states, that is, less differentiated early effectors, T follicular helper (Tfh)-like cells, and two Th1 subsets. Trajectory analysis predicts that early effectors differentiate into both Tfh-like and terminal Th1 cells. We further demonstrated that intrinsic IL-27 signaling controls the differentiation of islet IL-21+ CD4 T cells, contributing to their helper function. Collectively, our study reveals the heterogeneity of islet-infiltrating IL-21+ CD4 T cells and indicates that both Tfh-like and Th1 subsets produce IL-21 throughout their differentiation process, highlighting the important sources of IL-21 in T1D pathogenesis.
Collapse
Affiliation(s)
- Ashley E Ciecko
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- The Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI
| | - Yu Wang
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI
| | - Stephanie Harleston
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- The Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI
| | - Amber Drewek
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- The Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI
| | | | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI
| | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- The Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI
| |
Collapse
|
45
|
Chu CQ. Animal models for large vessel vasculitis - The unmet need. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2023; 4:4-10. [PMID: 37138652 PMCID: PMC10150876 DOI: 10.2478/rir-2023-0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/19/2023] [Indexed: 05/05/2023]
Abstract
Our understanding of the pathogenesis of large vessel vasculitis (LVV) are mainly achieved by studying the arteries taken from temporal artery biopsy in giant cell arteries (GCA) or surgical or autopsy specimens in Takayasu arteritis (TAK). These artery specimens provide invaluable information about pathological changes in these conditions that GCA and TAK are similar but are distinctly different in immune cell infiltrate and distribution of inflammatory cells in anatomical locations. However, these specimens of established arteritis do not provide information of the arteritis initiation and early events which are impossible to obtain in human artery specimens. Animal models for LVV are needed but not available. Here, several approaches are proposed for experimentation to generate animal models to aid in delineating the interaction of immune reaction with arterial wall components.
Collapse
Affiliation(s)
- Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, Oregon97239, USA
- Innovent Biologics (USA), Rockville, Maryland20850, USA
| |
Collapse
|
46
|
Chen X, Wang Y, Huang X, Geng S, Li C, Zeng L, Huang L, Du X, Weng J, Lai P. Targeting Bcl-6 prevents sclerodermatous chronic graft-versus-host disease by abrogating T follicular helper differentiation in mice. Int Immunopharmacol 2023; 117:109746. [PMID: 36827923 DOI: 10.1016/j.intimp.2023.109746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Chronic graft-versus-host disease (cGVHD) is the most common cause of non-relapse mortality (NRM) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). CD4+ follicular helper T (Tfh) cells, specialized providers of T cell help to B cells, play a vital role in GVHD pathogenesis. B-cell lymphoma-6 (Bcl-6) transcription factor has been shown to be required for Tfh-mediated germinal center reactions. In this study, we would like to evaluate the effect of Bcl-6 on Tfh function in sclerodermatous cGVHD and the efficacy of Bcl-6 inhibitors (Bcl-6i) for treating a minor histocompatibility complex (miHC) mismatch model of sclerodermatous cGVHD (scl-cGVHD). METHODS A minor histocompatibility haploidentical model of scl-cGVHD was established and received intraperitoneal injection of 79-6, a small-molecule inhibitor of Bcl-6. The clinical manifestations and survival times of cGVHD mice were recorded. The histological assessment was performed by hematoxylin-eosin (HE) and Masson's trichrome staining on the skin and lung tissues. Tfh cells and germinal center B cells in the spleen and peripheral blood were detected by flow cytometry. The cellular markers were immunostained in different organs. ELISA was performed to detect cytokine secretion. RESULTS Bcl-6 inhibition by 79-6 improved the clinical manifestation of scl-cGVHD mice and prolonged their survival. The histopathologic damage, particular the fibrotic changes of scl-cGVHD mice was significantly relieved after 79-6 treatment. Furthermore, 79-6 treatment not only suppressed the development and function of Tfh and Tph cells in the peripheral blood, but also reduced the survival of Tfh cells in the spleen. Moreover, 79-6 decreased the frequency of GC plasmocytes accompanied by a reduction in IL-21. CONCLUSIONS Our study demonstrates that Bcl-6 inhibitor could prevent murine sclerodermatous chronic graft-versus-host disease by abrogating T follicular helper differentiation and suppressing the function of GC B cells, indicating that Bcl-6 inhibition may be a potential treatment for patients with cGVHD.
Collapse
Affiliation(s)
- Xiaomei Chen
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong 510080, PR China
| | - Yulian Wang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong 510080, PR China
| | - Xin Huang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong 510080, PR China
| | - Suxia Geng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong 510080, PR China
| | - Chao Li
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong 510080, PR China
| | - Lingji Zeng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong 510080, PR China
| | - Lisi Huang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong 510080, PR China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong 510080, PR China.
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong 510080, PR China.
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong 510080, PR China.
| |
Collapse
|
47
|
Xing Y, Xie S, Shi W, Zeng X, Deng W, Tang Q. Targeting interleukin-21 inhibits stress overload-induced cardiac remodelling via the TIMP4/MMP9 signalling pathway. Eur J Pharmacol 2023; 940:175482. [PMID: 36587888 DOI: 10.1016/j.ejphar.2022.175482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Increased inflammatory mediators produced by inflamed cells are often connected with pressure-induced cardiac remodelling and heart failure. Interleukin-21 (IL-21) serves as an immunomodulator involved in multiple pathological processes, while the role of IL-21 in pressure-induced cardiac remodelling remains unclear. EXPERIMENT APPROACH Cardiac function, CD4+T-cell infiltration, and IL-21 and IL-21 receptor expression levels were investigated in a pressure overload mouse model induced by aortic banding (AB) surgery. Western blotting and qPCR were used to detect the effects of IL-21 on inflammation, apoptosis, and fibrosis in the myocardium after AB surgery. In addition, the signal transduction mechanisms underlying these effects were investigated in vivo and in vitro by qPCR and western blotting. KEY RESULTS IL-21 levels in mice rapidly increased in the acute phase after AB surgery. Compared with those in the control group, the transverse aortas of mice in the AB surgery group contracted. However, it must be noted that neutralizing IL-21 could reduce myocardial injury and remodelling, while the administration of exogenous IL-21 recombinant protein had the opposite effect. Mechanistically, we learned that IL-21 is effective in inducing the activation of tissue inhibitor of metalloproteinase 4 (TIMP4) and matrix metalloproteinase 9 (MMP-9) signalling in vitro and in vivo. We believe that increased activation and secretion of IL-21 and CD4+ T cells may contribute to stress overload-induced cardiac remodelling. CONCLUSION These findings reveal a novel mechanism by which IL-21 stimulates myocardial inflammation, apoptosis, and fibrosis to induce stress-overload-induced myocardial remodelling by activating the TIMP4/MMP9 signalling pathway.
Collapse
Affiliation(s)
- Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Wenke Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Xiaofeng Zeng
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China.
| |
Collapse
|
48
|
Lv Y, Ricard L, Gaugler B, Huang H, Ye Y. Biology and clinical relevance of follicular cytotoxic T cells. Front Immunol 2022; 13:1036616. [PMID: 36591286 PMCID: PMC9794565 DOI: 10.3389/fimmu.2022.1036616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Follicular cytotoxic T (Tfc) cells are a newly identified subset of CD8+ T cells enriched in B cell follicles and their surroundings, which integrate multiple functions such as killing, memory, supporting and regulation. Tfc cells share similarities with follicular helper T (Tfh) cells, conventional cytotoxic CD8+ T (Tc cells)cells and follicular regulatory T (Tfr) cells, while they express distinct transcription factors, phenotype, and perform different functions. With the participation of cytokines and cell-cell interactions, Tfc cells modulate Tfh cells and B cells and play an essential role in regulating the humoral immunity. Furthermore, Tfc cells have been found to change in their frequencies and functions during the occurrence and progression of chronic infections, immune-mediated diseases and cancers. Strategies targeting Tfc cells are under investigations, bringing novel insights into control of these diseases. We summarize the characteristics of Tfc cells, and introduce the roles and potential targeting modalities of Tfc cells in different diseases.
Collapse
Affiliation(s)
- Yuqi Lv
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Liangzhu Laboratory of Zhejiang University Medical Center, Hangzhou, Zhejiang, China,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Province Stem Cell and Cellular Immunotherapy Engineering Laboratory, Hangzhou, Zhejiang, China
| | - Laure Ricard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France,AP-HP, Hôpital Saint-Antoine, Service d’Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - Béatrice Gaugler
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France,AP-HP, Hôpital Saint-Antoine, Service d’Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Liangzhu Laboratory of Zhejiang University Medical Center, Hangzhou, Zhejiang, China,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Province Stem Cell and Cellular Immunotherapy Engineering Laboratory, Hangzhou, Zhejiang, China,*Correspondence: Yishan Ye, ; He Huang,
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Liangzhu Laboratory of Zhejiang University Medical Center, Hangzhou, Zhejiang, China,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Province Stem Cell and Cellular Immunotherapy Engineering Laboratory, Hangzhou, Zhejiang, China,*Correspondence: Yishan Ye, ; He Huang,
| |
Collapse
|
49
|
Li S, Mancuso N, Metayer C, Ma X, de Smith AJ, Wiemels JL. Incorporation of DNA methylation quantitative trait loci (mQTLs) in epigenome-wide association analysis: application to birthweight effects in neonatal whole blood. Clin Epigenetics 2022; 14:158. [PMID: 36457128 PMCID: PMC9714153 DOI: 10.1186/s13148-022-01385-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Epigenome-wide association studies (EWAS) have helped to define the associations between DNA methylation and many clinicopathologic and developmental traits. Since DNA methylation is affected by genetic variation at certain loci, EWAS associations may be potentially influenced by genetic effects. However, a formal assessment of the value of incorporating genetic variation in EWAS evaluations is lacking especially for multiethnic populations. METHODS Using single nucleotide polymorphism (SNP) from Illumina Omni Express or Affymetrix PMDA arrays and DNA methylation data from the Illumina 450 K or EPIC array from 1638 newborns of diverse genetic ancestries, we generated DNA methylation quantitative trait loci (mQTL) databases for both array types. We then investigated associations between neonatal DNA methylation and birthweight (incorporating gestational age) using EWAS modeling, and reported how EWAS results were influenced by controlling for mQTLs. RESULTS For CpGs on the 450 K array, an average of 15.4% CpGs were assigned as mQTLs, while on the EPIC array, 23.0% CpGs were matched to mQTLs (adjusted P value < 0.05). The CpGs associated with SNPs were enriched in the CpG island shore regions. Correcting for mQTLs in the EWAS model for birthweight helped to increase significance levels for top hits. For CpGs overlapping genes associated with birthweight-related pathways (nutrition metabolism, biosynthesis, for example), accounting for mQTLs changed their regression coefficients more dramatically (> 20%) than for other random CpGs. CONCLUSION DNA methylation levels at circa 20% CpGs in the genome were affected by common SNP genotypes. EWAS model fit significantly improved when taking these genetic effects into consideration. Genetic effects were stronger on CpGs overlapping genetic elements associated with control of gene expression.
Collapse
Affiliation(s)
- Shaobo Li
- grid.42505.360000 0001 2156 6853Department of Population and Public Health Sciences, Center for Genetic Epidemiology, University of Southern California, USC Health Sciences Campus, 1520 San Pablo St., Los Angeles, CA USA
| | - Nicholas Mancuso
- grid.42505.360000 0001 2156 6853Department of Population and Public Health Sciences, Center for Genetic Epidemiology, University of Southern California, USC Health Sciences Campus, 1520 San Pablo St., Los Angeles, CA USA
| | - Catherine Metayer
- grid.47840.3f0000 0001 2181 7878School of Public Health, University of California Berkeley, Berkeley, CA USA
| | - Xiaomei Ma
- grid.47100.320000000419368710Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT USA
| | - Adam J. de Smith
- grid.42505.360000 0001 2156 6853Department of Population and Public Health Sciences, Center for Genetic Epidemiology, University of Southern California, USC Health Sciences Campus, 1520 San Pablo St., Los Angeles, CA USA
| | - Joseph L. Wiemels
- grid.42505.360000 0001 2156 6853Department of Population and Public Health Sciences, Center for Genetic Epidemiology, University of Southern California, USC Health Sciences Campus, 1520 San Pablo St., Los Angeles, CA USA
| |
Collapse
|
50
|
Zhang JY, Hamey F, Trzupek D, Mickunas M, Lee M, Godfrey L, Yang JHM, Pekalski ML, Kennet J, Waldron-Lynch F, Evans ML, Tree TIM, Wicker LS, Todd JA, Ferreira RC. Low-dose IL-2 reduces IL-21 + T cell frequency and induces anti-inflammatory gene expression in type 1 diabetes. Nat Commun 2022; 13:7324. [PMID: 36443294 PMCID: PMC9705541 DOI: 10.1038/s41467-022-34162-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
Despite early clinical successes, the mechanisms of action of low-dose interleukin-2 (LD-IL-2) immunotherapy remain only partly understood. Here we examine the effects of interval administration of low-dose recombinant IL-2 (iLD-IL-2) in type 1 diabetes using high-resolution single-cell multiomics and flow cytometry on longitudinally-collected peripheral blood samples. Our results confirm that iLD-IL-2 selectively expands thymic-derived FOXP3+HELIOS+ regulatory T cells and CD56bright NK cells, and show that the treatment reduces the frequency of IL-21-producing CD4+ T cells and of two innate-like mucosal-associated invariant T and Vγ9Vδ2 CD8+ T cell subsets. The cellular changes induced by iLD-IL-2 associate with an anti-inflammatory gene expression signature, which remains detectable in all T and NK cell subsets analysed one month after treatment. These findings warrant investigations into the potential longer-term clinical benefits of iLD-IL-2 in immunotherapy.
Collapse
Affiliation(s)
- Jia-Yuan Zhang
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Fiona Hamey
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Dominik Trzupek
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Marius Mickunas
- Department of Immunobiology, King's College London, School of Immunology and Microbial Sciences, London, UK
| | - Mercede Lee
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Leila Godfrey
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jennie H M Yang
- Department of Immunobiology, King's College London, School of Immunology and Microbial Sciences, London, UK
| | - Marcin L Pekalski
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jane Kennet
- Wellcome-MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Biomedical Campus, Cambridge, UK
| | | | - Mark L Evans
- Wellcome-MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Biomedical Campus, Cambridge, UK
| | - Timothy I M Tree
- Department of Immunobiology, King's College London, School of Immunology and Microbial Sciences, London, UK
| | - Linda S Wicker
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - John A Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Ricardo C Ferreira
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|