1
|
Binder U, Skerra A. Strategies for extending the half-life of biotherapeutics: successes and complications. Expert Opin Biol Ther 2025; 25:93-118. [PMID: 39663567 DOI: 10.1080/14712598.2024.2436094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION Engineering of the drug half-life in vivo has become an integral part of modern biopharmaceutical development due to the fact that many proteins/peptides with therapeutic potential are quickly cleared by kidney filtration after injection and, thus, circulate only a few hours in humans (or just minutes in mice). AREAS COVERED Looking at the growing list of clinically approved biologics that have been modified for prolonged activity, and also the plethora of such drugs under preclinical and clinical development, it is evident that not one solution fits all needs, owing to the vastly different structural features and functional properties of the pharmacologically active entities. This article provides an overview of established half-life extension strategies, as well as of emerging novel concepts for extending the in vivo stability of biologicals, and their pros and cons. EXPERT OPINION Beyond the classical and still dominating technologies for improving drug pharmacokinetics and bioavailability, Fc fusion and PEGylation, various innovative approaches that offer advantages in different respects have entered the clinical stage. While the Fc fusion partner may be gradually superseded by engineered albumin-binding domains, chemical PEGylation may be replaced by biodegradable recombinant amino-acid polymers like PASylation, thus also offering a purely biotechnological manufacturing route.
Collapse
Affiliation(s)
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Freising, Germany
| |
Collapse
|
2
|
Paudyal B, Moorhouse E, Sharma B, Dodds M, Nguyen V, Milad M, Tchilian E. Comparative pharmacokinetics of porcine and human anti-influenza hemagglutinin monoclonal antibodies in outbred pigs and minipigs. Front Immunol 2024; 15:1471412. [PMID: 39544926 PMCID: PMC11560753 DOI: 10.3389/fimmu.2024.1471412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/30/2024] [Indexed: 11/17/2024] Open
Abstract
Assessing the pharmacokinetics of monoclonal antibodies (mAbs) in relevant animal models is essential for designing improved formulations and developing mAb delivery platforms. We have established the pig, a large natural host animal for influenza with many similarities to humans, as a robust model for testing the therapeutic efficacy of anti-influenza mAbs and evaluating mAb delivery platforms. Here, we compared the pharmacokinetic characteristics of two anti-influenza hemagglutinin mAbs, human 2-12C and porcine pb27, in Göttingen minipigs and Landrace × Large White outbred pigs. Minipigs offer the advantage of a more stable weight, whereas outbred pigs are more readily available but exhibit rapid growth. Outbred pigs and minipigs showed similar pharmacokinetics and a similar porcine pb27 half-life (half-life of 15.7 days for outbred pigs and 16.6 days for minipigs). In contrast, the half-life of human 2-12C was more rapid in two of the minipigs but not in the outbred pigs, correlating with the development of antidrug antibodies in the two minipigs. Our results demonstrate that both outbred pigs and minipigs are appropriate models for pharmacokinetic studies and the evaluation of mAb delivery platforms, potentially bridging the gap between small animals and human trials.
Collapse
Affiliation(s)
- Basudev Paudyal
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | | | - Bhawna Sharma
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Michael Dodds
- Integrated Drug Development, Certara, Radnor, PA, United States
| | - Victor Nguyen
- Milad Pharmaceutical Consulting LLC, Plymouth, MI, United States
| | - Mark Milad
- Milad Pharmaceutical Consulting LLC, Plymouth, MI, United States
| | - Elma Tchilian
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| |
Collapse
|
3
|
Al-Adimi G, Bhakta V, Eltringham-Smith LJ, Shirobokov V, Sheffield WP. Extension of the circulatory half-life of recombinant ecallantide via albumin fusion without loss of anti-kallikrein activity. J Biotechnol 2024; 391:11-19. [PMID: 38844246 DOI: 10.1016/j.jbiotec.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Ecallantide comprises Kunitz Domain 1 of Tissue Factor Pathway Inhibitor, mutated at seven amino acid positions to inhibit plasma kallikrein (PK). It is used to treat acute hereditary angioedema (HAE). We appended hexahistidine tags to the N- or C-terminus of recombinant Ecallantide (rEcall) and expressed and purified the resulting proteins, with or without fusion to human serum albumin (HSA), using Pichia pastoris. The inhibitory constant (Ki) of rEcall-H6 or H6-rEcall for PK was not increased by albumin fusion. When 125I-labelled rEcall proteins were injected intravenously into mice, the area under the clearance curve (AUC) was significantly increased, 3.4- and 3.6-fold, for fusion proteins H6-rEcall-HSA and HSA-rEcall-H6 versus their unfused counterparts but remained 2- to 3-fold less than that of HSA-H6. The terminal half-life of H6-rEcall-HSA and HSA-H6 did not differ, although that of HSA-rEcall-H6 was significantly shorter than either other protein. Receptor Associated Protein (RAP), a Low-density lipoprotein Receptor-related Protein (LRP1) antagonist, competed H6-rEcall-HSA clearance more effectively than intravenous immunoglobulin (IVIg), a neonatal Fc receptor (FcRn) antagonist. HSA fusion decreases rEcall clearance in vivo, but LRP1-mediated clearance remains more important than FcRn-mediated recycling for rEcall fusion proteins. The properties of H6-rEcall-HSA warrant investigation in a murine model of HAE.
Collapse
Affiliation(s)
- Ghofran Al-Adimi
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Varsha Bhakta
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Valerie Shirobokov
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - William P Sheffield
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
4
|
Tang B, Xie X, Lu J, Huang W, Yang J, Tian J, Lei L. Designing biomaterials for the treatment of autoimmune diseases. APPLIED MATERIALS TODAY 2024; 39:102278. [DOI: 10.1016/j.apmt.2024.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
5
|
Dinesen A, Andersen VL, Elkhashab M, Pilati D, Bech P, Fuchs E, Samuelsen TR, Winther A, Cai Y, Märcher A, Wall A, Omer M, Nielsen JS, Chudasama V, Baker JR, Gothelf KV, Wengel J, Kjems J, Howard KA. An Albumin-Holliday Junction Biomolecular Modular Design for Programmable Multifunctionality and Prolonged Circulation. Bioconjug Chem 2024; 35:214-222. [PMID: 38231391 PMCID: PMC10886128 DOI: 10.1021/acs.bioconjchem.3c00491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024]
Abstract
Combinatorial properties such as long-circulation and site- and cell-specific engagement need to be built into the design of advanced drug delivery systems to maximize drug payload efficacy. This work introduces a four-stranded oligonucleotide Holliday Junction (HJ) motif bearing functional moieties covalently conjugated to recombinant human albumin (rHA) to give a "plug-and-play" rHA-HJ multifunctional biomolecular assembly with extended circulation. Electrophoretic gel-shift assays show successful functionalization and purity of the individual high-performance liquid chromatography-purified modules as well as efficient assembly of the rHA-HJ construct. Inclusion of an epidermal growth factor receptor (EGFR)-targeting nanobody module facilitates specific binding to EGFR-expressing cells resulting in approximately 150-fold increased fluorescence intensity determined by flow cytometric analysis compared to assemblies absent of nanobody inclusion. A cellular recycling assay demonstrated retained albumin-neonatal Fc receptor (FcRn) binding affinity and accompanying FcRn-driven cellular recycling. This translated to a 4-fold circulatory half-life extension (2.2 and 0.55 h, for the rHA-HJ and HJ, respectively) in a double transgenic humanized FcRn/albumin mouse. This work introduces a novel biomolecular albumin-nucleic acid construct with extended circulatory half-life and programmable multifunctionality due to its modular design.
Collapse
Affiliation(s)
- Anders Dinesen
- Interdisciplinary
Nanoscience Center (iNANO) and Department of Molecular Biology and
Genetics, Aarhus University, DK-8000 Aarhus
C, Denmark
| | - Veronica L. Andersen
- Interdisciplinary
Nanoscience Center (iNANO) and Department of Molecular Biology and
Genetics, Aarhus University, DK-8000 Aarhus
C, Denmark
| | - Marwa Elkhashab
- Interdisciplinary
Nanoscience Center (iNANO) and Department of Molecular Biology and
Genetics, Aarhus University, DK-8000 Aarhus
C, Denmark
| | - Diego Pilati
- Interdisciplinary
Nanoscience Center (iNANO) and Department of Molecular Biology and
Genetics, Aarhus University, DK-8000 Aarhus
C, Denmark
| | - Pernille Bech
- Interdisciplinary
Nanoscience Center (iNANO) and Department of Molecular Biology and
Genetics, Aarhus University, DK-8000 Aarhus
C, Denmark
| | - Elisabeth Fuchs
- Interdisciplinary
Nanoscience Center (iNANO) and Department of Molecular Biology and
Genetics, Aarhus University, DK-8000 Aarhus
C, Denmark
| | - Torbjørn R. Samuelsen
- Interdisciplinary
Nanoscience Center (iNANO) and Department of Molecular Biology and
Genetics, Aarhus University, DK-8000 Aarhus
C, Denmark
| | - Alexander Winther
- Interdisciplinary
Nanoscience Center (iNANO) and Department of Molecular Biology and
Genetics, Aarhus University, DK-8000 Aarhus
C, Denmark
| | - Yunpeng Cai
- Interdisciplinary
Nanoscience Center (iNANO) and Department of Molecular Biology and
Genetics, Aarhus University, DK-8000 Aarhus
C, Denmark
| | - Anders Märcher
- Interdisciplinary
Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Archie Wall
- Department
of Chemistry, University College London, London WC1H 0AJ, U.K.
| | - Marjan Omer
- Interdisciplinary
Nanoscience Center (iNANO) and Department of Molecular Biology and
Genetics, Aarhus University, DK-8000 Aarhus
C, Denmark
| | - Jesper S. Nielsen
- Interdisciplinary
Nanoscience Center (iNANO) and Department of Molecular Biology and
Genetics, Aarhus University, DK-8000 Aarhus
C, Denmark
| | - Vijay Chudasama
- Department
of Chemistry, University College London, London WC1H 0AJ, U.K.
| | - James R. Baker
- Department
of Chemistry, University College London, London WC1H 0AJ, U.K.
| | - Kurt V. Gothelf
- Interdisciplinary
Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jesper Wengel
- Nucleic
Acid Center, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Jørgen Kjems
- Interdisciplinary
Nanoscience Center (iNANO) and Department of Molecular Biology and
Genetics, Aarhus University, DK-8000 Aarhus
C, Denmark
| | - Kenneth A. Howard
- Interdisciplinary
Nanoscience Center (iNANO) and Department of Molecular Biology and
Genetics, Aarhus University, DK-8000 Aarhus
C, Denmark
| |
Collapse
|
6
|
Bernardim B, Conde J, Hakala T, Becher JB, Canzano M, Vasco AV, Knowles TPJ, Cameron J, Bernardes GJL. Cathepsin B Processing Is Required for the In Vivo Efficacy of Albumin-Drug Conjugates. Bioconjug Chem 2024; 35:132-139. [PMID: 38345213 PMCID: PMC10885003 DOI: 10.1021/acs.bioconjchem.3c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Targeted drug delivery approaches that selectively and preferentially deliver therapeutic agents to specific tissues are of great interest for safer and more effective pharmaceutical treatments. We investigated whether cathepsin B cleavage of a valine-citrulline [VC(S)]-containing linker is required for the release of monomethyl auristatin E (MMAE) from albumin-drug conjugates. In this study, we used an engineered version of human serum albumin, Veltis High Binder II (HBII), which has enhanced binding to the neonatal Fc (fragment crystallizable) receptor (FcRn) to improve drug release upon binding and FcRn-mediated recycling. The linker-payload was conjugated to cysteine 34 of albumin using a carbonylacrylic (caa) reagent which produced homogeneous and plasma stable conjugates that retained FcRn binding. Two caa-linker-MMAE reagents were synthesized─one with a cleavable [VC(S)] linker and one with a noncleavable [VC(R)] linker─to question whether protease-mediated cleavage is needed for MMAE release. Our findings demonstrate that cathepsin B is required to achieve efficient and selective antitumor activity. The conjugates equipped with the cleavable [VC(S)] linker had potent antitumor activity in vivo facilitated by the release of free MMAE upon FcRn binding and internalization. In addition to the pronounced antitumor activity of the albumin conjugates in vivo, we also demonstrated their preferable tumor biodistribution and biocompatibility with no associated toxicity or side effects. These results suggest that the use of engineered albumins with high FcRn binding combined with protease cleavable linkers is an efficient strategy to target delivery of drugs to solid tumors.
Collapse
Affiliation(s)
- Barbara Bernardim
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - João Conde
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Tuuli Hakala
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Julie B. Becher
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Mary Canzano
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Aldrin V. Vasco
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Tuomas P. J. Knowles
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Jason Cameron
- Albumedix
Ltd, Mabel Street, Nottingham NG2 3ED, United Kingdom
| | - Gonçalo J. L. Bernardes
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
7
|
Wu B, Wang J, Chen Y, Fu Y. Inflammation-Targeted Drug Delivery Strategies via Albumin-Based Systems. ACS Biomater Sci Eng 2024; 10:743-761. [PMID: 38194444 DOI: 10.1021/acsbiomaterials.3c01744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Albumin, being the most abundant serum protein, has the potential to significantly enhance the physicochemical properties of therapeutic payloads, thereby improving their pharmacological effects. Apart from its passive transport via the enhanced permeability and retention effect, albumin can actively accumulate in tumor microenvironments or inflammatory tissues via receptor-mediated processes. This unique property makes albumin a promising scaffold for targeted drug delivery. This review focuses on exploring different delivery strategies that combine albumin with drug payloads to achieve targeted therapy for inflammatory diseases. Also, albumin-derived therapeutic products on the market or undergoing clinical trials in the past decade have been summarized to gain insight into the future development of albumin-based drug delivery systems. Given the involvement of inflammation in numerous diseases, drug delivery systems utilizing albumin demonstrate remarkable advantages, including enhanced properties, improved in vivo behavior and efficacy. Albumin-based drug delivery systems have been demonstrated in clinical trials, while more advanced strategies for improving the capacity of drug delivery systems with the help of albumin remain to be discovered. This could pave the way for biomedical applications in more effective and precise treatments.
Collapse
Affiliation(s)
- Bangqing Wu
- Department of Pharmacy, Guiyang Public Health Clinical Center, Guiyang 550004, China
| | - Jingwen Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- Department of Pharmacy, Guiyang Public Health Clinical Center, Guiyang 550004, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Elkhashab M, Dilek Y, Foss M, Creemers LB, Howard KA. A Modular Albumin-Oligonucleotide Biomolecular Assembly for Delivery of Antisense Therapeutics. Mol Pharm 2024; 21:491-500. [PMID: 38214218 PMCID: PMC10848253 DOI: 10.1021/acs.molpharmaceut.3c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024]
Abstract
Antisense nucleic acid drugs are susceptible to nuclease degradation, rapid renal clearance, and short circulatory half-life. In this work, we introduce a modular-based recombinant human albumin-oligonucleotide (rHA-cODN) biomolecular assembly that allows incorporation of a chemically stabilized therapeutic gapmer antisense oligonucleotide (ASO) and FcRn-driven endothelial cellular recycling. A phosphodiester ODN linker (cODN) was conjugated to recombinant human albumin (rHA) using maleimide chemistry, after which a complementary gapmer ASO, targeting ADAMTS5 involved in osteoarthritis pathogenesis, was annealed. The rHA-cODN/ASO biomolecular assembly production, fluorescence labeling, and purity were confirmed using polyacrylamide gel electrophoresis. ASO release was triggered by DNase-mediated degradation of the linker strand, reaching 40% in serum after 72 h, with complete release observed following 30 min of incubation with DNase. Cellular internalization and trafficking of the biomolecular assembly using confocal microscopy in C28/I2 cells showed higher uptake and endosomal localization by increasing incubation time from 4 to 24 h. FcRn-mediated cellular recycling of the assembly was demonstrated in FcRn-expressing human microvascular endothelial cells. ADAMTS5 in vitro silencing efficiency reached 40%, which was comparable to free gapmer after 72 h incubation with human osteoarthritis patients' chondrocytes. This work introduces a versatile biomolecular modular-based "Plug-and-Play" platform potentially applicable for albumin-mediated half-life extension for a range of different types of ODN therapeutics.
Collapse
Affiliation(s)
- Marwa Elkhashab
- Interdisciplinary
Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Yeter Dilek
- Department
of Orthopedics, University Medical Center
Utrecht, 3584 CT Utrecht, The Netherlands
| | - Morten Foss
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus
C, Denmark
| | - Laura B. Creemers
- Department
of Orthopedics, University Medical Center
Utrecht, 3584 CT Utrecht, The Netherlands
| | - Kenneth A. Howard
- Interdisciplinary
Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
9
|
Wasko J, Wolszczak M, Zajaczkowska Z, Dudek M, Kolesinska B. Human serum albumin as a potential drug delivery system for N-methylated hot spot insulin analogs inhibiting hormone aggregation. Bioorg Chem 2024; 143:107104. [PMID: 38194903 DOI: 10.1016/j.bioorg.2024.107104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
The purpose of this study was to investigate whether Human Serum Albumin (HSA) can bind N-methylated analogs of hot spots of native insulin. Three N-methylated derivatives of the A13-A19 fragment of native insulin were used: L(N-Me)YQLENY (1), LYQ(N-Me)LENY (2), and L(N-Me)YQ(N-Me)LENY (3). The studied N-methylated insulin fragments possess inhibiting potential against hormone aggregation. A variety of research techniques, including spectroscopic methods and microscopy assays, were used to study the interaction of HSA with the N-methylated insulin fragments. Based on spectroscopic measurements with Congo Red and Thioflavin T, all the analyzed N-methylated peptides were able to interact with the HSA surface. The CD spectrum registered for HSA in the presence of L(N-Me)YQLENY showed the smallest content of α-helix conformation, indicating the most compact HSA structure. Based on the results of MST, the dissociation constants (Kd) for complexes of HSA and peptides 1-3 were 19.2 nM (complex 1), 15.6 nM (complex 2), and 8.07 nM (complex 3). Microscopy assays, dynamic light scattering measurements as well as computer simulation of protein-ligand interaction also confirmed the possibility of docking the N-methylated inhibitors within HSA.
Collapse
Affiliation(s)
- Joanna Wasko
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Poland.
| | - Marian Wolszczak
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, Poland.
| | - Zuzanna Zajaczkowska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Poland.
| | - Mariusz Dudek
- Institute of Materials Science and Engineering, The Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego 1/15, Poland.
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Poland.
| |
Collapse
|
10
|
Yang R, Zhang W, Shang X, Chen H, Mu X, Zhang Y, Zheng Q, Wang X, Liu Y. Neutrophil-related genes predict prognosis and response to immune checkpoint inhibitors in bladder cancer. Front Pharmacol 2022; 13:1013672. [PMID: 36339597 PMCID: PMC9635818 DOI: 10.3389/fphar.2022.1013672] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/12/2022] [Indexed: 12/20/2023] Open
Abstract
Neutrophils play a key role in the occurrence and development of cancer. However, the relationship between neutrophils and cancer prognosis remains unclear due to their great plasticity and diversity. To explore the effects of neutrophils on the clinical outcome of bladder cancer, we acquired and analyzed gene expression data and clinical information of bladder cancer patients from IMvigor210 cohort and The Cancer Genome Atlas dataset (TCGA) database. We established a neutrophil-based prognostic model incorporating five neutrophil-related genes (EMR3, VNN1, FCGRT, HIST1H2BC, and MX1) and the predictive value of the model was validated in both an internal and an external validation cohort. Multivariate Cox regression analysis further proved that the model remained an independent prognostic factor for overall survival and a nomogram was constructed for clinical practice. Additionally, FCGRT was identified as the key neutrophil-related gene linked to an adverse prognosis of bladder cancer. Up-regulation of FCGRT indicated activated cancer metabolism, immunosuppressive tumor environment, and dysregulated functional status of immune cells. FCGRT overexpression was also correlated with decreased expression of PD-L1 and low levels of tumor mutation burden (TMB). FCGRT predicted a poor response to immunotherapy and had a close correlation with chemotherapy sensitivity. Taken together, a novel prognostic model was developed based on the expression level of neutrophil-related genes. FCGRT served as a promising candidate biomarker for anti-cancer drug response, which may contribute to individualized prognostic prediction and may contribute to clinical decision-making.
Collapse
Affiliation(s)
- Rui Yang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, China
| | - Wengang Zhang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, China
| | - Xiaoling Shang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, China
| | - Hang Chen
- School of Basic Medical Sciences, Shandong First Medical University, Jinan, China
| | - Xin Mu
- Department of Medical Imaging Center, Third People’s Hospital of Jinan, Jinan, China
| | - Yuqing Zhang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, China
| | - Qi Zheng
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, China
| | - Xiuwen Wang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, China
| | - Yanguo Liu
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, China
| |
Collapse
|
11
|
Zhang W, Xiang Y, Wang L, Wang F, Li G, Zhuang X. Translational pharmacokinetics of a novel bispecific antibody against Ebola virus (MBS77E) from animal to human by PBPK modeling & simulation. Int J Pharm 2022; 626:122160. [PMID: 36089211 DOI: 10.1016/j.ijpharm.2022.122160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/11/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022]
Abstract
The goal of this study was to construct a PBPK model to accelerate the translation of MBS77E, a humanized bispecific antibody against the Ebola virus. In-depth nonclinical pharmacokinetic studies in rats, monkeys, wild-type mice and transgenic mice were conducted. The pH-dependent affinities (KD) of MBS77E to recombinant FcRn of different species were determined by surface plasmon resonance analysis. A mechanistic whole-body PBPK model of MBS77E was developed and validated in the assessment of PK profiles and tissue distributions in preclinical models. This PBPK model was finally used to predict human PK behaviors of MBS77E. Simulations from the PBPK model with measured and fitted parameters were able to yield good predictions of the serum and tissue pharmacokinetic parameters of MBS77E within 2-fold errors. The predicted serum concentration in humans was able to maintain a sufficiently high level for more than 14 days after 50 mg/kg i.v. administrating. This achievement unlocks that PBPK modeling is a powerful tool to gain insights into the properties of antibody drugs. It guided experimental efforts to obtain necessary information before entry into humans.
Collapse
Affiliation(s)
- Wenpeng Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yanan Xiang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Lingchao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Furun Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Guanglu Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
12
|
An albumin-angiotensin converting enzyme 2-based SARS-CoV-2 decoy with FcRn-driven half-life extension. Acta Biomater 2022; 153:411-418. [PMID: 36162760 PMCID: PMC9508356 DOI: 10.1016/j.actbio.2022.09.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/23/2022] [Accepted: 09/19/2022] [Indexed: 12/05/2022]
Abstract
The emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutants and breakthrough infections despite available coronavirus disease 2019 (COVID-19) vaccines calls for antiviral therapeutics. The application of soluble angiotensin converting enzyme 2 (ACE2) as a SARS-CoV-2 decoy that reduces cell bound ACE2-mediated virus entry is limited by a short plasma half-life. This work presents a recombinant human albumin ACE2 genetic fusion (rHA-ACE2) to increase the plasma half-life by an FcRn-driven cellular recycling mechanism, investigated using a wild type (WT) albumin sequence and sequence engineered with null FcRn binding (NB). Binding of rHA-ACE2 fusions to SARS-CoV-2 spike protein subdomain 1 (S1) was demonstrated (WT-ACE2 KD = 32.8 nM and NB-ACE2 KD = 31.7 nM) using Bio-Layer Interferometry and dose-dependent in vitro inhibition of host cell infection of pseudotyped viruses displaying surface SARS-CoV-2 spike (S) protein. FcRn-mediated in vitro recycling was translated to a five times greater plasma half-life of WT-ACE2 (t½ β = 13.5 h) than soluble ACE2 (t½ β = 2.8 h) in humanised FcRn/albumin double transgenic mice. The rHA-ACE2-based SARS-CoV-2 decoy system exhibiting FcRn-driven circulatory half-life extension introduced in this work offers the potential to expand and improve the anti-COVID-19 anti-viral drug armoury. Statement of significance The COVID-19 pandemic has highlighted the need for rapid development of efficient antiviral therapeutics to combat SARS-CoV-2 and new mutants to lower morbidity and mortality in severe cases, and for people that are unable to receive a vaccine. Here we report a therapeutic albumin ACE2 fusion protein (rHA-ACE2), that can bind SARS-CoV-2 S protein decorated virus-like particles to inhibit viral infection, and exhibits extended in vivo half-life compared to ACE2 alone. Employing ACE2 as a binding decoy for the virus is expected to efficiently inhibit all SARS-CoV-2 mutants as they all rely on binding with endogenous ACE2 for viral cell entry and, therefore, rHA-ACE2 constitutes a versatile addition to the therapeutic arsenal for combatting COVID-19.
Collapse
|
13
|
Ward ES, Gelinas D, Dreesen E, Van Santbergen J, Andersen JT, Silvestri NJ, Kiss JE, Sleep D, Rader DJ, Kastelein JJP, Louagie E, Vidarsson G, Spriet I. Clinical Significance of Serum Albumin and Implications of FcRn Inhibitor Treatment in IgG-Mediated Autoimmune Disorders. Front Immunol 2022; 13:892534. [PMID: 35757719 PMCID: PMC9231186 DOI: 10.3389/fimmu.2022.892534] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022] Open
Abstract
Serum albumin (SA), the most abundant soluble protein in the body, maintains plasma oncotic pressure and regulates the distribution of vascular fluid and has a range of other important functions. The goals of this review are to expand clinical knowledge regarding the functions of SA, elucidate effects of dysregulated SA concentration, and discuss the clinical relevance of hypoalbuminemia resulting from various diseases. We discuss potential repercussions of SA dysregulation on cholesterol levels, liver function, and other processes that rely on its homeostasis, as decreased SA concentration has been shown to be associated with increased risk for cardiovascular disease, hyperlipidemia, and mortality. We describe the anti-inflammatory and antioxidant properties of SA, as well as its ability to bind and transport a plethora of endogenous and exogenous molecules. SA is the primary serum protein involved in binding and transport of drugs and as such has the potential to affect, or be affected by, certain medications. Of current relevance are antibody-based inhibitors of the neonatal Fc receptor (FcRn), several of which are under clinical development to treat immunoglobulin G (IgG)-mediated autoimmune disorders; some have been shown to decrease SA concentration. FcRn acts as a homeostatic regulator of SA by rescuing it, as well as IgG, from intracellular degradation via a common cellular recycling mechanism. Greater clinical understanding of the multifunctional nature of SA and the potential clinical impact of decreased SA are needed; in particular, the potential for certain treatments to reduce SA concentration, which may affect efficacy and toxicity of medications and disease progression.
Collapse
Affiliation(s)
- E Sally Ward
- Cancer Sciences Unit, Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | | | - Erwin Dreesen
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | | | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Pharmacology, University of Oslo, Oslo, Norway
| | | | - Joseph E Kiss
- Vitalant Northeast Division and Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Daniel J Rader
- Departments of Genetics and Medicine, Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John J P Kastelein
- Department of Vascular Medicine, Genetics of Cardiovascular Disease, Academic Medical Center (AMC) of the University of Amsterdam, Amsterdam, Netherlands
| | | | - Gestur Vidarsson
- Department of Experimental Immunohematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Isabel Spriet
- Department of Clinical Pharmacology and Pharmacotherapy, KU Leuven, Leuven, Belgium.,Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Dinesen A, Winther A, Wall A, Märcher A, Palmfeldt J, Chudasama V, Wengel J, Gothelf KV, Baker JR, Howard KA. Albumin Biomolecular Drug Designs Stabilized through Improved Thiol Conjugation and a Modular Locked Nucleic Acid Functionalized Assembly. Bioconjug Chem 2022; 33:333-342. [PMID: 35129956 DOI: 10.1021/acs.bioconjchem.1c00561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Albumin-nucleic acid biomolecular drug designs offer modular multifunctionalization and extended circulatory half-life. However, stability issues associated with conventional DNA nucleotides and maleimide bioconjugation chemistries limit the clinical potential. This work aims to improve the stability of this thiol conjugation and nucleic acid assembly by employing a fast-hydrolyzing monobromomaleimide (MBM) linker and nuclease-resistant nucleotide analogues, respectively. The biomolecular constructs were formed by site-selective conjugation of a 12-mer oligonucleotide to cysteine 34 (Cys34) of recombinant human albumin (rHA), followed by annealing of functionalized complementary strands bearing either a fluorophore or the cytotoxic drug monomethyl auristatin E (MMAE). Formation of conjugates and assemblies was confirmed by gel shift analysis and mass spectrometry, followed by investigation of serum stability, neonatal Fc receptor (FcRn)-mediated cellular recycling, and cancer cell killing. The MBM linker afforded rapid conjugation to rHA and remained stable during hydrolysis. The albumin-nucleic acid biomolecular assembly composed of stabilized oligonucleotides exhibited high serum stability and retained FcRn engagement mediating FcRn-mediated cellular recycling. The MMAE-containing assembly exhibited cytotoxicity in the human MIA PaCa-2 pancreatic cancer cell line with an IC50 of 342 nM, triggered by drug release from breakdown of an acid-labile linker. In summary, this work presents rHA-nucleic acid module-based assemblies with improved stability and retained module functionality that further promotes the drug delivery potential of this biomolecular platform.
Collapse
Affiliation(s)
- Anders Dinesen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Alexander Winther
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Archie Wall
- Department of Chemistry, University College London, London WC1H 0AJ, U.K
| | - Anders Märcher
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus N, Denmark
| | - Vijay Chudasama
- Department of Chemistry, University College London, London WC1H 0AJ, U.K
| | - Jesper Wengel
- Nucleic Acid Center, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Kurt V Gothelf
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - James R Baker
- Department of Chemistry, University College London, London WC1H 0AJ, U.K
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
15
|
Wolfe GI, Ward ES, de Haard H, Ulrichts P, Mozaffar T, Pasnoor M, Vidarsson G. IgG regulation through FcRn blocking: A novel mechanism for the treatment of myasthenia gravis. J Neurol Sci 2021; 430:118074. [PMID: 34563918 DOI: 10.1016/j.jns.2021.118074] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
The neonatal Fc receptor (FcRn) is an MHC class I-like molecule that is widely distributed in mammalian organs, tissues, and cells. FcRn is critical to maintaining immunoglobulin G (IgG) and albumin levels through rescuing these molecules from lysosomal degradation. IgG autoantibodies are associated with many autoimmune diseases, including myasthenia gravis (MG), a rare neuromuscular autoimmune disease that causes debilitating and, in its generalized form (gMG), potentially life-threatening muscle weakness. IgG autoantibodies are directly pathogenic in MG and target neuromuscular junction proteins, causing neuromuscular transmission failure. Treatment approaches that reduce autoantibody levels, such as therapeutic plasma exchange and intravenous immunoglobulin, have been shown to be effective for gMG patients but are not indicated as ongoing maintenance therapies and can be associated with burdensome side effects. Agents that block FcRn-mediated recycling of IgG represent a rational and promising approach for the treatment of gMG. Blocking FcRn allows targeted reduction of all IgG subtypes without decreasing concentrations of other Ig isotypes; therefore, FcRn blocking could be a safe and effective treatment strategy for a broad population of gMG patients. Several FcRn-blocking antibodies and one antibody Fc fragment have been developed and are currently in various stages of clinical development. This article describes the mechanism of FcRn blockade as a novel approach for IgG-mediated disease therapy and reviews promising clinical data using such FcRn blockers for the treatment of gMG.
Collapse
Affiliation(s)
- Gil I Wolfe
- Department of Neurology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, SUNY, Buffalo, NY, USA.
| | - E Sally Ward
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, SO16 6YD, UK
| | - Hans de Haard
- argenx, Zwijnaarde, Belgium, University of California, Irvine, CA, USA
| | - Peter Ulrichts
- argenx, Zwijnaarde, Belgium, University of California, Irvine, CA, USA
| | - Tahseen Mozaffar
- Department of Neurology, University of California, Irvine, CA, USA
| | - Mamatha Pasnoor
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gestur Vidarsson
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
16
|
Shi Y, Lu A, Wang X, Belhadj Z, Wang J, Zhang Q. A review of existing strategies for designing long-acting parenteral formulations: Focus on underlying mechanisms, and future perspectives. Acta Pharm Sin B 2021; 11:2396-2415. [PMID: 34522592 PMCID: PMC8424287 DOI: 10.1016/j.apsb.2021.05.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
The need for long-term treatments of chronic diseases has motivated the widespread development of long-acting parenteral formulations (LAPFs) with the aim of improving drug pharmacokinetics and therapeutic efficacy. LAPFs have been proven to extend the half-life of therapeutics, as well as to improve patient adherence; consequently, this enhances the outcome of therapy positively. Over past decades, considerable progress has been made in designing effective LAPFs in both preclinical and clinical settings. Here we review the latest advances of LAPFs in preclinical and clinical stages, focusing on the strategies and underlying mechanisms for achieving long acting. Existing strategies are classified into manipulation of in vivo clearance and manipulation of drug release from delivery systems, respectively. And the current challenges and prospects of each strategy are discussed. In addition, we also briefly discuss the design principles of LAPFs and provide future perspectives of the rational design of more effective LAPFs for their further clinical translation.
Collapse
Key Words
- 2′-F, 2′-fluoro
- 2′-O-MOE, 2′-O-(2-methoxyethyl)
- 2′-OMe, 2′-O-methyl
- 3D, three-dimensional
- ART, antiretroviral therapy
- ASO, antisense oligonucleotide
- Biomimetic strategies
- Chemical modification
- DDS, drug delivery systems
- ECM, extracellular matrix
- ENA, ethylene-bridged nucleic acid
- ESC, enhanced stabilization chemistry
- EVA, ethylene vinyl acetate
- Fc/HSA fusion
- FcRn, Fc receptor
- GLP-1, glucagon like peptide-1
- GS, glycine–serine
- HA, hyaluronic acid
- HES, hydroxy-ethyl-starch
- HP, hypoparathyroidism
- HSA, human serum albumin
- Hydrogels
- ISFI, in situ forming implants
- IgG, immunoglobulin G
- Implantable systems
- LAFs, long-acting formulations
- LAPFs, long-acting parenteral formulations
- LNA, locked nucleic acid
- Long-acting
- MNs, microneedles
- Microneedles
- NDS, nanochannel delivery system
- NPs, nanoparticles
- Nanocrystal suspensions
- OA, osteoarthritis
- PCPP-SA, poly(1,3-bis(carboxyphenoxy)propane-co-sebacic-acid)
- PEG, polyethylene glycol
- PM, platelet membrane
- PMPC, poly(2-methyacryloyloxyethyl phosphorylcholine)
- PNAs, peptide nucleic acids
- PS, phase separation
- PSA, polysialic acid
- PTH, parathyroid hormone
- PVA, polyvinyl alcohol
- RBCs, red blood cells
- RES, reticuloendothelial system
- RNAi, RNA interference
- SAR, structure‒activity relationship
- SCID, severe combined immunodeficiency
- SE, solvent extraction
- STC, standard template chemistry
- TNFR2, tumor necrosis factor receptor 2
- hGH, human growth hormone
- im, intramuscular
- iv, intravenous
- mPEG, methoxypolyethylene glycol
- sc, subcutaneous
Collapse
Affiliation(s)
- Yujie Shi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - An Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiangyu Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zakia Belhadj
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiancheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
17
|
|
18
|
Albumin-Binding Fatty Acid-Modified Gapmer Antisense Oligonucleotides for Modulation of Pharmacokinetics. Methods Mol Biol 2021; 2176:163-174. [PMID: 32865790 DOI: 10.1007/978-1-0716-0771-8_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Prolonged circulation and modulation of the pharmacokinetic profile are important to improve the clinical potential of antisense oligonucleotides (ASOs). Gapmer ASOs demonstrate excellent nuclease stability and robust gene silencing activity without the requirement of transfection agents. A major challenge for in vivo applications, however, is the short blood circulatory half-life. This work describes utilization of the long circulation of serum albumin to increase the blood residence time of gapmer ASOs. The method introduces fatty acid modifications into the gapmer ASOs design to exploit the binding and transport property of serum albumin for endogenous ligands. The level of albumin-gapmer ASOs interaction, blood circulatory half-life and biodistribution was dependent on number, position, and fatty acid type (palmitic or myristic acid) within the gapmer ASO sequence and either phosphorothioate or phosphodiester backbone modifications. This work offers a strategy to optimize gapmer ASO pharmacokinetics by a proposed endogenous assembly process with serum albumin that can be tuned by gapmer ASO design modifications.
Collapse
|
19
|
Mandrup OA, Ong SC, Lykkemark S, Dinesen A, Rudnik-Jansen I, Dagnæs-Hansen NF, Andersen JT, Alvarez-Vallina L, Howard KA. Programmable half-life and anti-tumour effects of bispecific T-cell engager-albumin fusions with tuned FcRn affinity. Commun Biol 2021; 4:310. [PMID: 33686177 PMCID: PMC7940400 DOI: 10.1038/s42003-021-01790-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/01/2021] [Indexed: 01/05/2023] Open
Abstract
Fc-less bispecific T-cell engagers have reached the immuno-oncology market but necessitate continual infusion due to rapid clearance from the circulation. This work introduces a programmable serum half-life extension platform based on fusion of human albumin sequences engineered with either null (NB), wild type (WT) or high binding (HB) FcRn affinity combined with a bispecific T-cell engager. We demonstrate in a humanised FcRn/albumin double transgenic mouse model (AlbuMus) the ability to tune half-life based on the albumin sequence fused with a BiTE-like bispecific (anti-EGFR nanobody x anti-CD3 scFv) light T-cell engager (LiTE) construct [(t½ 0.6 h (Fc-less LiTE), t½ 19 hours (Albu-LiTE-NB), t½ 26 hours (Albu-LiTE-WT), t½ 37 hours (Albu-LiTE-HB)]. We show in vitro cognate target engagement, T-cell activation and discrimination in cellular cytotoxicity dependent on EGFR expression levels. Furthermore, greater growth inhibition of EGFR-positive BRAF mutated tumours was measured following a single dose of Albu-LiTE-HB construct compared to the Fc-less LiTE format and a full-length anti-EGFR monoclonal antibody in a new AlbuMus RAG1 knockout model introduced in this work. Programmable half-life extension facilitated by this albumin platform potentially offers long-lasting effects, better patient compliance and a method to tailor pharmacokinetics to maximise therapeutic efficacy and safety of immuno-oncology targeted biologics.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Antibodies, Bispecific/metabolism
- Antibodies, Bispecific/pharmacokinetics
- Antineoplastic Agents, Immunological/metabolism
- Antineoplastic Agents, Immunological/pharmacokinetics
- CHO Cells
- Cricetulus
- Drug Compounding
- Female
- HEK293 Cells
- HT29 Cells
- Half-Life
- Histocompatibility Antigens Class I/metabolism
- Homeodomain Proteins/genetics
- Humans
- Jurkat Cells
- Lymphocyte Activation/drug effects
- MCF-7 Cells
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasms/drug therapy
- Neoplasms/immunology
- Neoplasms/pathology
- Proof of Concept Study
- Protein Binding
- Receptors, Fc/metabolism
- Recombinant Fusion Proteins/metabolism
- Recombinant Fusion Proteins/pharmacokinetics
- Serum Albumin, Human/genetics
- Serum Albumin, Human/metabolism
- Serum Albumin, Human/pharmacokinetics
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ole A Mandrup
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Sui Ching Ong
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Simon Lykkemark
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Anders Dinesen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Imke Rudnik-Jansen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | | | - Jan Terje Andersen
- Department of Immunology, University of Oslo, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo, Oslo, Norway
| | - Luis Alvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (i + mas12), Madrid, Spain
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
20
|
Yadav SPS, Sandoval RM, Zhao J, Huang Y, Wang E, Kumar S, Campos-Bilderback SB, Rhodes G, Mechref Y, Molitoris BA, Wagner MC. Mechanism of how carbamylation reduces albumin binding to FcRn contributing to increased vascular clearance. Am J Physiol Renal Physiol 2021; 320:F114-F129. [PMID: 33283642 PMCID: PMC7847050 DOI: 10.1152/ajprenal.00428.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease results in high serum urea concentrations leading to excessive protein carbamylation, primarily albumin. This is associated with increased cardiovascular disease and mortality. Multiple methods were used to address whether carbamylation alters albumin metabolism. Intravital two-photon imaging of the Munich Wistar Frömter (MWF) rat kidney and liver allowed us to characterize filtration and proximal tubule uptake and liver uptake. Microscale thermophoresis enabled quantification of cubilin (CUB7,8 domain) and FcRn binding. Finally, multiple biophysical methods including dynamic light scattering, small-angle X-ray scattering, LC-MS/MS and in silico analyses were used to identify the critical structural alterations and amino acid modifications of rat albumin. Carbamylation of albumin reduced binding to CUB7,8 and FcRn in a dose-dependent fashion. Carbamylation markedly increased vascular clearance of carbamylated rat serum albumin (cRSA) and altered distribution of cRSA in both the kidney and liver at 16 h post intravenous injection. By evaluating the time course of carbamylation and associated charge, size, shape, and binding parameters in combination with in silico analysis and mass spectrometry, the critical binding interaction impacting carbamylated albumin's reduced FcRn binding was identified as K524. Carbamylation of RSA had no effect on glomerular filtration or proximal tubule uptake. These data indicate urea-mediated time-dependent carbamylation of albumin lysine K524 resulted in reduced binding to CUB7,8 and FcRn that contribute to altered albumin transport, leading to increased vascular clearance and increased liver and endothelial tissue accumulation.
Collapse
MESH Headings
- Animals
- Chromatography, Liquid
- Disease Models, Animal
- Glomerular Filtration Rate
- Histocompatibility Antigens Class I/metabolism
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/physiopathology
- Liver/metabolism
- Lysine
- Male
- Microscopy, Fluorescence, Multiphoton
- Protein Binding
- Protein Carbamylation
- Rats, Inbred Strains
- Rats, Sprague-Dawley
- Receptors, Cell Surface/metabolism
- Receptors, Fc/metabolism
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/physiopathology
- Scattering, Small Angle
- Serum Albumin/metabolism
- Tandem Mass Spectrometry
- Time Factors
- X-Ray Diffraction
- Rats
Collapse
Affiliation(s)
- Shiv Pratap S Yadav
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ruben M Sandoval
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Exing Wang
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Sudhanshu Kumar
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Silvia B Campos-Bilderback
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - George Rhodes
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Bruce A Molitoris
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark C Wagner
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
21
|
Decuzzi P, Peer D, Di Mascolo D, Palange AL, Manghnani PN, Moghimi SM, Farhangrazi ZS, Howard KA, Rosenblum D, Liang T, Chen Z, Wang Z, Zhu JJ, Gu Z, Korin N, Letourneur D, Chauvierre C, van der Meel R, Kiessling F, Lammers T. Roadmap on nanomedicine. NANOTECHNOLOGY 2021; 32:012001. [PMID: 33043901 PMCID: PMC7612035 DOI: 10.1088/1361-6528/abaadb] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Since the launch of the Alliance for Nanotechnology in Cancer by the National Cancer Institute in late 2004, several similar initiatives have been promoted all over the globe with the intention of advancing the diagnosis, treatment and prevention of cancer in the wake of nanoscience and nanotechnology. All this has encouraged scientists with diverse backgrounds to team up with one another, learn from each other, and generate new knowledge at the interface between engineering, physics, chemistry and biomedical sciences. Importantly, this new knowledge has been wisely channeled towards the development of novel diagnostic, imaging and therapeutic nanosystems, many of which are currently at different stages of clinical development. This roadmap collects eight brief articles elaborating on the interaction of nanomedicines with human biology; the biomedical and clinical applications of nanomedicines; and the importance of patient stratification in the development of future nanomedicines. The first article reports on the role of geometry and mechanical properties in nanomedicine rational design; the second articulates on the interaction of nanomedicines with cells of the immune system; and the third deals with exploiting endogenous molecules, such as albumin, to carry therapeutic agents. The second group of articles highlights the successful application of nanomedicines in the treatment of cancer with the optimal delivery of nucleic acids, diabetes with the sustained and controlled release of insulin, stroke by using thrombolytic particles, and atherosclerosis with the development of targeted nanoparticles. Finally, the last contribution comments on how nanomedicine and theranostics could play a pivotal role in the development of personalized medicines. As this roadmap cannot cover the massive extent of development of nanomedicine over the past 15 years, only a few major achievements are highlighted as the field progressively matures from the initial hype to the consolidation phase.
Collapse
Affiliation(s)
- Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
- Corresponding authors: and
| | - Dan Peer
- Laboratory of Precision NanoMedicine, School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering
- Center for Nanoscience and Nanotechnology
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 6997801, Israel
- Corresponding authors: and
| | - Daniele Di Mascolo
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Anna Lisa Palange
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Purnima Naresh Manghnani
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - S. Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | | - Kenneth A. Howard
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Daniel Rosenblum
- Laboratory of Precision NanoMedicine, School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering
- Center for Nanoscience and Nanotechnology
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Tingxizi Liang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- State Key Laboratory of Analytical Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhaowei Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zejun Wang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Netanel Korin
- Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Didier Letourneur
- Université de Paris, Université Paris 13, INSERM 1148, LVTS, Hôpital Bichat, F-75018 Paris, France
| | - Cédric Chauvierre
- Université de Paris, Université Paris 13, INSERM 1148, LVTS, Hôpital Bichat, F-75018 Paris, France
| | - Roy van der Meel
- Laboratory of Chemical Biology, Dept. of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
- Dept. of Targeted Therapeutics, University of Twente, Enschede, The Netherlands
- Dept. of Pharmaceutics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
22
|
Human Serum Albumin Binds Native Insulin and Aggregable Insulin Fragments and Inhibits Their Aggregation. Biomolecules 2020; 10:biom10101366. [PMID: 32992893 PMCID: PMC7601681 DOI: 10.3390/biom10101366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 01/04/2023] Open
Abstract
The purpose of this study was to investigate whether Human Serum Albumin (HSA) can bind native human insulin and its A13–A19 and B12–B17 fragments, which are responsible for the aggregation of the whole hormone. To label the hormone and both hot spots, so that their binding positions within the HSA could be identified, 4-(1-pyrenyl)butyric acid was used as a fluorophore. Triazine coupling reagent was used to attach the 4-(1-pyrenyl)butyric acid to the N-terminus of the peptides. When attached to the peptides, the fluorophore showed extended fluorescence lifetimes in the excited state in the presence of HSA, compared to the samples in buffer solution. We also analyzed the interactions of unlabeled native insulin and its hot spots with HSA, using circular dichroism (CD), the microscale thermophoresis technique (MST), and three independent methods recommended for aggregating peptides. The CD spectra indicated increased amounts of the α-helical secondary structure in all analyzed samples after incubation. Moreover, for each of the two unlabeled hot spots, it was possible to determine the dissociation constant in the presence of HSA, as 14.4 µM (A13–A19) and 246 nM (B12–B17). Congo Red, Thioflavin T, and microscopy assays revealed significant differences between typical amyloids formed by the native hormone or its hot-spots and the secondary structures formed by the complexes of HSA with insulin and A13–A19 and B12–B17 fragments. All results show that the tested peptide-probe conjugates and their unlabeled analogues interact with HSA, which inhibits their aggregation.
Collapse
|
23
|
|
24
|
Pilati D, Howard KA. Albumin-based drug designs for pharmacokinetic modulation. Expert Opin Drug Metab Toxicol 2020; 16:783-795. [DOI: 10.1080/17425255.2020.1801633] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Diego Pilati
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C Denmark
| | - Kenneth A. Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C Denmark
| |
Collapse
|
25
|
Kim TY, Nam YR, Park JH, Lee DE, Kim HS. Site-Specific Lipidation of a Small-Sized Protein Binder Enhances the Antitumor Activity through Extended Blood Half-Life. ACS OMEGA 2020; 5:19778-19784. [PMID: 32803073 PMCID: PMC7424708 DOI: 10.1021/acsomega.0c02555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/16/2020] [Indexed: 05/10/2023]
Abstract
Protein and peptide therapeutics tend to have a short blood circulation time mainly caused by rapid clearance in kidney, leading to a low therapeutic efficacy. Here, we demonstrate that the antitumor activity of a small-sized protein binder can be significantly enhanced by prolonged blood half-life through site-specific lipidation. An unnatural amino acid was genetically incorporated into a specific site with the highest accessibility in a human interleukin-6 (IL-6)-targeting protein binder with a size of 30.8 kDa, followed by conjugation with palmitic acid using cooper-free click chemistry. The resulting protein binder was shown to have a binding capacity for serum albumin, maintaining a comparable binding affinity for human IL-6 to the native protein binder. The terminal half-life of the lipidated protein binder was estimated to be 10.7 h, whereas the native one had a half-life of 20 min, resulting in a significantly enhanced tumor suppression effect. The present approach can be generally applied to small-sized therapeutic proteins for the elongation of circulation time and increase of bioavailability in blood, consequently enhancing their therapeutic efficacy.
Collapse
Affiliation(s)
- Tae Yoon Kim
- Department
of Biological Sciences, Korea Advanced Institute
of Science and Technology (KAIST), Daejeon 34141, Korea
| | - You Ree Nam
- Advanced
Radiation Technology Institute, Korea Atomic
Energy Research Institute (KAERI), Jeongeup, Jeonbuk 56212, Korea
| | - Jin Ho Park
- Department
of Biological Sciences, Korea Advanced Institute
of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Dong-Eun Lee
- Advanced
Radiation Technology Institute, Korea Atomic
Energy Research Institute (KAERI), Jeongeup, Jeonbuk 56212, Korea
| | - Hak-Sung Kim
- Department
of Biological Sciences, Korea Advanced Institute
of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
26
|
FcRn overexpression in human cancer drives albumin recycling and cell growth; a mechanistic basis for exploitation in targeted albumin-drug designs. J Control Release 2020; 322:53-63. [PMID: 32145268 DOI: 10.1016/j.jconrel.2020.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/11/2020] [Accepted: 03/03/2020] [Indexed: 11/21/2022]
Abstract
Albumin accumulation in tumours could reflect a role of albumin in transport of endogenous nutrient cargos required for cellular growth and not just a suggested source of amino acids; a role driven by albumin engagement with its cognate cellular recycling neonatal Fc receptor. We investigate the hypothesis that albumin cellular recruitment is increased by higher human FcRn (hFcRn) expression in human cancer tissue that provides the mechanistic basis for exploitation in albumin-based drug designs engineered to optimise this process. Eight out of ten different human cancer tissue types screened for hFcRn expression by immunohistochemistry (310 samples) exhibited significantly higher hFcRn expression compared to healthy tissues. Accelerated tumour growth over 28 days in mice inoculated with hFcRn-expressing HT-29 human colorectal cancer cell xenografts, compared to CRISPR/Cas9 hFcRn-knockout HT-29, suggests a hFcRn-mediated tumour growth effect. Direct correlation between hFcRn expression and albumin recycling supports hFcRn-mediated diversion of albumin from lysosomal degradation. Two-fold increase in accumulation of fluorescent labelled high-binding hFcRn albumin, compared to wild type albumin, in luciferase MDA-MB-231-Luc-D3H2LN breast cancer xenografts was shown. This work identifies overexpression of hFcRn in several human cancer types with mechanistic data suggesting hFcRn-driven albumin recruitment for increased cellular growth that has the potential to be exploited with high hFcRn-binding albumin variants for targeted therapies.
Collapse
|
27
|
Sohrabi MJ, Dehpour AR, Attar F, Hasan A, Mohammad-Sadeghi N, Meratan AA, Aziz FM, Salihi A, Shekha MS, Akhtari K, Shahpasand K, Hojjati SMM, Sharifi M, Saboury AA, Rezayat SM, Mousavi SE, Falahati M. Silymarin-albumin nanoplex: Preparation and its potential application as an antioxidant in nervous system in vitro and in vivo. Int J Pharm 2019; 572:118824. [PMID: 31715345 DOI: 10.1016/j.ijpharm.2019.118824] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/05/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023]
Abstract
In this study, we formulated silymarin-HSA nanoplex and assayed its ability to reduce LPS-induced toxicity in vitro and in vivo. Silymarin molecules were encapsulated into HSA nanoplex and the loading efficiency and characterization of fabricated nanoplex were performed by using HPLC, TEM, SEM, DLS, FTIR analysis, and theoretical studies. Afterwards, their protective effect against LPS (20 µg/ml) -induced toxicity in SH-SY5Y cells was investigated by MTT, ROS, and apoptosis assays. For in vivo experiments, rats were pre-treated with either silymarin or silymarin -HSA nanoplex (200 mg/kg) orally for 3 days and at third day received LPS by IP at a dose of 0.5 mg/kg, 150 min before scarification followed by SOD and CAT activity assay. The formulation of silymarin-HSA nanoplex showed a spherical shape with an average diameter between 50 nm and 150 nm, hydrodynamic radius of 188.3 nm, zeta potential of -26.6 mV, and a drug loading of 97.3%. In LPS-treated cells, pretreatments with silymarin-HSA noncomplex recovered the cell viability and decreased the ROS level and corresponding apoptosis more significantly than free silymarin. In rats, it was also depicted that, silymarin-HSA noncomplex can increase the SOD and CAT activity in brain tissue at LPS-triggered oxidative stress model more significantly than the free counterpart. Therefore, nanoformulation of silymarin improved its capability to reduce LPS-induced oxidative stress by restoring cell viability and elevation of SOD and CAT activity in vitro and in vivo, respectively. In conclusion, formulation of silymarin may hold a great promise in the development of antioxidant agents.
Collapse
Affiliation(s)
- Mohammad Javad Sohrabi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad-Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Nahid Mohammad-Sadeghi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Falah Mohammad Aziz
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq; Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq
| | - Mudhir Sabir Shekha
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq; Department of Pathological Analysis, College of Science, Knowledge University, Erbil 074016, Kurdistan Region, Iraq
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Koorosh Shahpasand
- Royan Institute for Stem Cell Biology and Technology (RI-SCBT), Tehran, Iran
| | | | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyyedeh Elaheh Mousavi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
28
|
Humphreys SC, Thayer MB, Lade JM, Wu B, Sham K, Basiri B, Hao Y, Huang X, Smith R, Rock BM. Plasma and Liver Protein Binding of N-Acetylgalactosamine-Conjugated Small Interfering RNA. Drug Metab Dispos 2019; 47:1174-1182. [PMID: 31097425 DOI: 10.1124/dmd.119.086967] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/06/2019] [Indexed: 02/13/2025] Open
Abstract
Understanding small interfering RNA (siRNA) fraction unbound (f u) in relevant physiologic compartments is critical for establishing pharmacokinetic-pharmacodynamic relationships for this emerging modality. In our attempts to isolate the equilibrium free fraction of N-acetylgalactosamine-conjugated siRNA using classic small-molecule in vitro techniques, we found that the hydrodynamic radius was critical in determining the size exclusion limit requirements for f u isolation, largely validating the siRNA "rigid rod" hypothesis. With this knowledge, we developed an orthogonally validated 50 kDa molecular-mass cutoff ultrafiltration assay to quantify f u in biologic matrices including human, nonhuman primate, rat, and mouse plasma, and human liver homogenate. To enhance understanding of the siRNA-plasma interaction landscape, we examined the effects of various common oligonucleotide therapeutic modifications to the ribose and helix backbone on siRNA f u in plasma (f u,plasma) and found that chemical modifications can alter plasma protein binding by at least 20%. Finally, to gain insight into which specific plasma proteins bind to siRNA, we developed a qualitative screen to identify binding "hits" across a panel of select purified human plasma proteins.
Collapse
Affiliation(s)
- Sara C Humphreys
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, California (S.C.H., M.B.T., J.M.L., B.B., R.S., B.M.R.); Hybrid Modality Engineering Department, Amgen Research, Thousand Oaks, California (B.W., K.S.); and Molecular Engineering Department, Amgen Research, Cambridge, Massachusetts (Y.H., X.H.)
| | - Mai B Thayer
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, California (S.C.H., M.B.T., J.M.L., B.B., R.S., B.M.R.); Hybrid Modality Engineering Department, Amgen Research, Thousand Oaks, California (B.W., K.S.); and Molecular Engineering Department, Amgen Research, Cambridge, Massachusetts (Y.H., X.H.)
| | - Julie M Lade
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, California (S.C.H., M.B.T., J.M.L., B.B., R.S., B.M.R.); Hybrid Modality Engineering Department, Amgen Research, Thousand Oaks, California (B.W., K.S.); and Molecular Engineering Department, Amgen Research, Cambridge, Massachusetts (Y.H., X.H.)
| | - Bin Wu
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, California (S.C.H., M.B.T., J.M.L., B.B., R.S., B.M.R.); Hybrid Modality Engineering Department, Amgen Research, Thousand Oaks, California (B.W., K.S.); and Molecular Engineering Department, Amgen Research, Cambridge, Massachusetts (Y.H., X.H.)
| | - Kelvin Sham
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, California (S.C.H., M.B.T., J.M.L., B.B., R.S., B.M.R.); Hybrid Modality Engineering Department, Amgen Research, Thousand Oaks, California (B.W., K.S.); and Molecular Engineering Department, Amgen Research, Cambridge, Massachusetts (Y.H., X.H.)
| | - Babak Basiri
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, California (S.C.H., M.B.T., J.M.L., B.B., R.S., B.M.R.); Hybrid Modality Engineering Department, Amgen Research, Thousand Oaks, California (B.W., K.S.); and Molecular Engineering Department, Amgen Research, Cambridge, Massachusetts (Y.H., X.H.)
| | - Yue Hao
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, California (S.C.H., M.B.T., J.M.L., B.B., R.S., B.M.R.); Hybrid Modality Engineering Department, Amgen Research, Thousand Oaks, California (B.W., K.S.); and Molecular Engineering Department, Amgen Research, Cambridge, Massachusetts (Y.H., X.H.)
| | - Xin Huang
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, California (S.C.H., M.B.T., J.M.L., B.B., R.S., B.M.R.); Hybrid Modality Engineering Department, Amgen Research, Thousand Oaks, California (B.W., K.S.); and Molecular Engineering Department, Amgen Research, Cambridge, Massachusetts (Y.H., X.H.)
| | - Richard Smith
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, California (S.C.H., M.B.T., J.M.L., B.B., R.S., B.M.R.); Hybrid Modality Engineering Department, Amgen Research, Thousand Oaks, California (B.W., K.S.); and Molecular Engineering Department, Amgen Research, Cambridge, Massachusetts (Y.H., X.H.)
| | - Brooke M Rock
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, California (S.C.H., M.B.T., J.M.L., B.B., R.S., B.M.R.); Hybrid Modality Engineering Department, Amgen Research, Thousand Oaks, California (B.W., K.S.); and Molecular Engineering Department, Amgen Research, Cambridge, Massachusetts (Y.H., X.H.)
| |
Collapse
|
29
|
Iyengar ARS, Gupta S, Jawalekar S, Pande AH. Protein Chimerization: A New Frontier for Engineering Protein Therapeutics with Improved Pharmacokinetics. J Pharmacol Exp Ther 2019; 370:703-714. [PMID: 31010843 DOI: 10.1124/jpet.119.257063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/16/2019] [Indexed: 03/08/2025] Open
Abstract
With the advancement of medicine, the utility of protein therapeutics is increasing exponentially. However, a significant number of protein therapeutics suffer from grave limitations, which include their subpar pharmacokinetics. In this study, we have reviewed the emerging field of protein chimerization for improving the short circulatory half-life of protein therapeutics. We have discussed various aspects of protein therapeutics aiming at their mechanism of clearance and various approaches used to increase their short circulatory half-life with principal focus on the concept of chimerization. Furthermore, we have comprehensively reviewed various components of chimera, such as half-life extension partners and linkers, their shortcomings, and prospective work to be undertaken for developing effective chimeric protein therapeutics.
Collapse
Affiliation(s)
- A R Satvik Iyengar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - Shreya Gupta
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - Snehal Jawalekar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| |
Collapse
|
30
|
Pyzik M, Sand KMK, Hubbard JJ, Andersen JT, Sandlie I, Blumberg RS. The Neonatal Fc Receptor (FcRn): A Misnomer? Front Immunol 2019; 10:1540. [PMID: 31354709 PMCID: PMC6636548 DOI: 10.3389/fimmu.2019.01540] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
Antibodies are essential components of an adaptive immune response. Immunoglobulin G (IgG) is the most common type of antibody found in circulation and extracellular fluids. Although IgG alone can directly protect the body from infection through the activities of its antigen binding region, the majority of IgG immune functions are mediated via proteins and receptors expressed by specialized cell subsets that bind to the fragment crystallizable (Fc) region of IgG. Fc gamma (γ) receptors (FcγR) belong to a broad family of proteins that presently include classical membrane-bound surface receptors as well as atypical intracellular receptors and cytoplasmic glycoproteins. Among the atypical FcγRs, the neonatal Fc receptor (FcRn) has increasingly gained notoriety given its intimate influence on IgG biology and its ability to also bind to albumin. FcRn functions as a recycling or transcytosis receptor that is responsible for maintaining IgG and albumin in the circulation, and bidirectionally transporting these two ligands across polarized cellular barriers. More recently, it has been appreciated that FcRn acts as an immune receptor by interacting with and facilitating antigen presentation of peptides derived from IgG immune complexes (IC). Here we review FcRn biology and focus on newer advances including how emerging FcRn-targeted therapies may affect the immune responses to IgG and IgG IC.
Collapse
Affiliation(s)
- Michal Pyzik
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Kine M K Sand
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jonathan J Hubbard
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Inger Sandlie
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Harvard Digestive Diseases Center, Boston, MA, United States
| |
Collapse
|
31
|
Schelde KK, Nicholls K, Dagnæs-Hansen F, Bunting K, Rawsthorne H, Andersen B, Finnis CJA, Williamson M, Cameron J, Howard KA. A new class of recombinant human albumin with multiple surface thiols exhibits stable conjugation and enhanced FcRn binding and blood circulation. J Biol Chem 2019; 294:3735-3743. [PMID: 30602565 DOI: 10.1074/jbc.ra118.005870] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/12/2018] [Indexed: 11/06/2022] Open
Abstract
Human serum albumin is an endogenous ligand transport protein whose long circulatory half-life is facilitated by engagement with the human cellular recycling neonatal Fc receptor (hFcRn). The single free thiol located at Cys-34 in domain I of albumin has been exploited for monoconjugation of drugs. In this work, we increased the drug-to-albumin ratio potential by engineering recombinant human albumin (rHSA) variants with varying hFcRn affinity to contain three free, conjugation-competent cysteines. Structural analysis was used to identify positions for cysteine introduction to maximize rHSA stability and formation of the conjugated product without affecting hFcRn binding. The thiol rHSA variants exhibited up to 95% monomeric stability over 24 months and retained hFcRn engagement compared with a WT unconjugated control demonstrated by Biolayer Interferometry. The additional cysteines were further introduced into a panel of rHSA variants engineered with different affinities for hFcRn. After conjugation with three Alexa Fluor 680 (AF680) fluorophores, hFcRn binding was similar to that of the original triple-thiol nonconjugated rHSA variants (0.88 and 0.25 μm for WT albumin with or without 3xAF680 respectively, and 0.04 and 0.02 μm for a high hFcRn-binding variant with or without 3xAF680, respectively). We also observed a 1.3-fold increase in the blood circulatory half-life of a high hFcRn-binding triple-thiol variant conjugated with AF680 (t ½ = 22.4 h) compared with its WT counterpart (t ½ = 17.3 h) in mice. Potential high drug-to-albumin ratios combined with high hFcRn engagement are attractive features of this new class of albumins that offer a paradigm shift for albumin-based drug delivery.
Collapse
Affiliation(s)
- Karen Kræmmer Schelde
- From the Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, and
| | - Karl Nicholls
- Albumedix Ltd., Nottingham NG7 1FD, United Kingdom, and
| | | | - Karen Bunting
- Albumedix Ltd., Nottingham NG7 1FD, United Kingdom, and
| | | | | | | | | | - Jason Cameron
- Albumedix Ltd., Nottingham NG7 1FD, United Kingdom, and
| | - Kenneth A Howard
- From the Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, and
| |
Collapse
|
32
|
Yang J, Li L, Kopeček J. Biorecognition: A key to drug-free macromolecular therapeutics. Biomaterials 2018; 190-191:11-23. [PMID: 30391799 DOI: 10.1016/j.biomaterials.2018.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 12/13/2022]
Abstract
This review highlights a new paradigm in macromolecular nanomedicine - drug-free macromolecular therapeutics (DFMT). The effectiveness of the new system is based on biorecognition events without the participation of low molecular weight drugs. Apoptosis of cells can be initiated by the biorecognition of complementary peptide/oligonucleotide motifs at the cell surface resulting in the crosslinking of slowly internalizing receptors. B-cell CD20 receptors and Non-Hodgkin lymphoma (NHL) were chosen as the first target. Exposing cells to a conjugate of one motif with a targeting ligand decorates the cells with this motif. Further exposure of decorated cells to a macromolecule (synthetic polymer or human serum albumin) containing multiple copies of the complementary motif as grafts results in receptor crosslinking and apoptosis induction in vitro and in vivo. The review focuses on recent developments and explores the mechanism of action of DFMT. The altered molecular signaling pathways demonstrated the great potential of DFMT to overcome rituximab resistance resulting from either down-regulation of CD20 or endocytosis and trogocytosis of rituximab/CD20 complexes. The suitability of this approach for the treatment of blood borne cancers is confirmed. In addition, the widespread applicability of DFMT as a new concept in macromolecular therapeutics for numerous diseases is exposed.
Collapse
Affiliation(s)
- Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA.
| | - Lian Li
- Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|