1
|
Aranda AJ, Aguilar-Tipacamú G, Perez DR, Bañuelos-Hernandez B, Girgis G, Hernandez-Velasco X, Escorcia-Martinez SM, Castellanos-Huerta I, Petrone-Garcia VM. Emergence, migration and spreading of the high pathogenicity avian influenza virus H5NX of the Gs/Gd lineage into America. J Gen Virol 2025; 106:002081. [PMID: 40279164 PMCID: PMC12032427 DOI: 10.1099/jgv.0.002081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/31/2025] [Indexed: 04/26/2025] Open
Abstract
The high pathogenicity avian influenza virus H5N1, which first emerged in the winter of 2021, has resulted in multiple outbreaks across the American continent through the summer of 2023 and they continue based on early 2025 records, presenting significant challenges for global health and food security. The viruses causing the outbreaks belong to clade 2.3.4.4b, which are descendants of the lineage A/Goose/Guangdong/1/1996 (Gs/Gd) through genetic reassortments with several low pathogenicity avian influenza viruses present in populations of Anseriformes and Charadriiformes orders. This review addresses these issues by thoroughly analysing available epidemiological databases and specialized literature reviews. This project explores the mechanisms behind the resurgence of the H5N1 virus. It provides a comprehensive overview of the origin, timeline and factors contributing to its prevalence among wild bird populations on the American continent.
Collapse
Affiliation(s)
- Alejandro J. Aranda
- Maestría en Salud y Producción Animal Sustentable, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Gabriela Aguilar-Tipacamú
- Maestría en Salud y Producción Animal Sustentable, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Licenciatura en Medicina Veterinaria y Zootecnia, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Bernardo Bañuelos-Hernandez
- Facultad de Veterinaria, Universidad De La Salle Bajío, Avenida Universidad 602, Lomas del Campestre, León, México
| | - George Girgis
- Nevysta Laboratory, Iowa State University Research Park, Ames, Lowa, USA
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Cd. de México, México
| | - Socorro M. Escorcia-Martinez
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Cd. de México, México
| | | | - Victor M. Petrone-Garcia
- Departamento de Ciencias Pecuarias, Facultad de Estudios Superiores de Cuautitlán (FESC), Universidad Nacional Autónoma de México (UNAM), Cuautitlán, Mexico
| |
Collapse
|
2
|
Murawski A, Fabrizio T, Ossiboff R, Kackos C, Jeevan T, Jones JC, Kandeil A, Walker D, Turner JCM, Patton C, Govorkova EA, Hauck H, Mickey S, Barbeau B, Bommineni YR, Torchetti M, Lantz K, Kercher L, Allison AB, Vogel P, Walsh M, Webby RJ. Highly pathogenic avian influenza A(H5N1) virus in a common bottlenose dolphin (Tursiops truncatus) in Florida. Commun Biol 2024; 7:476. [PMID: 38637646 PMCID: PMC11026403 DOI: 10.1038/s42003-024-06173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Since late 2021, highly pathogenic avian influenza (HPAI) viruses of A/goose/Guangdong/1/1996 (H5N1) lineage have caused widespread mortality in wild birds and poultry in the United States. Concomitant with the spread of HPAI viruses in birds are increasing numbers of mammalian infections, including wild and captive mesocarnivores and carnivores with central nervous system involvement. Here we report HPAI, A(H5N1) of clade 2.3.4.4b, in a common bottlenose dolphin (Tursiops truncatus) from Florida, United States. Pathological findings include neuronal necrosis and inflammation of the brain and meninges, and quantitative real time RT-PCR reveal the brain carried the highest viral load. Virus isolated from the brain contains a S246N neuraminidase substitution which leads to reduced inhibition by neuraminidase inhibitor oseltamivir. The increased prevalence of A(H5N1) viruses in atypical avian hosts and its cross-species transmission into mammalian species highlights the public health importance of continued disease surveillance and biosecurity protocols.
Collapse
Affiliation(s)
- Allison Murawski
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA
| | - Thomas Fabrizio
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Robert Ossiboff
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA
| | - Christina Kackos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Trushar Jeevan
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jeremy C Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ahmed Kandeil
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David Walker
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jasmine C M Turner
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Christopher Patton
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38105, USA
| | - Elena A Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Helena Hauck
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA
| | - Suzanna Mickey
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA
| | - Brittany Barbeau
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA
| | - Y Reddy Bommineni
- Bronson Animal Disease Diagnostic Laboratory, 2700 N John Young Parkway, Kissimmee, FL, 34745-8006, USA
| | - Mia Torchetti
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service (APHIS), U.S. Department of Agriculture (USDA), Ames, IA, 50011, USA
| | - Kristina Lantz
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service (APHIS), U.S. Department of Agriculture (USDA), Ames, IA, 50011, USA
| | - Lisa Kercher
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Andrew B Allison
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA
| | - Peter Vogel
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael Walsh
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
3
|
Plaza PI, Gamarra-Toledo V, Euguí JR, Lambertucci SA. Recent Changes in Patterns of Mammal Infection with Highly Pathogenic Avian Influenza A(H5N1) Virus Worldwide. Emerg Infect Dis 2024; 30:444-452. [PMID: 38407173 PMCID: PMC10902543 DOI: 10.3201/eid3003.231098] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
We reviewed information about mammals naturally infected by highly pathogenic avian influenza A virus subtype H5N1 during 2 periods: the current panzootic (2020-2023) and previous waves of infection (2003-2019). In the current panzootic, 26 countries have reported >48 mammal species infected by H5N1 virus; in some cases, the virus has affected thousands of individual animals. The geographic area and the number of species affected by the current event are considerably larger than in previous waves of infection. The most plausible source of mammal infection in both periods appears to be close contact with infected birds, including their ingestion. Some studies, especially in the current panzootic, suggest that mammal-to-mammal transmission might be responsible for some infections; some mutations found could help this avian pathogen replicate in mammals. H5N1 virus may be changing and adapting to infect mammals. Continuous surveillance is essential to mitigate the risk for a global pandemic.
Collapse
|
4
|
Elsmo EJ, Wünschmann A, Beckmen KB, Broughton-Neiswanger LE, Buckles EL, Ellis J, Fitzgerald SD, Gerlach R, Hawkins S, Ip HS, Lankton JS, Lemley EM, Lenoch JB, Killian ML, Lantz K, Long L, Maes R, Mainenti M, Melotti J, Moriarty ME, Nakagun S, Ruden RM, Shearn-Bochsler V, Thompson D, Torchetti MK, Van Wettere AJ, Wise AG, Lim AL. Highly Pathogenic Avian Influenza A(H5N1) Virus Clade 2.3.4.4b Infections in Wild Terrestrial Mammals, United States, 2022. Emerg Infect Dis 2023; 29:2451-2460. [PMID: 37987580 PMCID: PMC10683806 DOI: 10.3201/eid2912.230464] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023] Open
Abstract
We describe the pathology of natural infection with highly pathogenic avian influenza A(H5N1) virus of Eurasian lineage Goose/Guangdong clade 2.3.4.4b in 67 wild terrestrial mammals throughout the United States during April 1‒July 21, 2022. Affected mammals include 50 red foxes (Vulpes vulpes), 6 striped skunks (Mephitis mephitis), 4 raccoons (Procyon lotor), 2 bobcats (Lynx rufus), 2 Virginia opossums (Didelphis virginiana), 1 coyote (Canis latrans), 1 fisher (Pekania pennanti), and 1 gray fox (Urocyon cinereoargenteus). Infected mammals showed primarily neurologic signs. Necrotizing meningoencephalitis, interstitial pneumonia, and myocardial necrosis were the most common lesions; however, species variations in lesion distribution were observed. Genotype analysis of sequences from 48 animals indicates that these cases represent spillover infections from wild birds.
Collapse
|
5
|
Bauer L, Benavides FFW, Veldhuis Kroeze EJB, de Wit E, van Riel D. The neuropathogenesis of highly pathogenic avian influenza H5Nx viruses in mammalian species including humans. Trends Neurosci 2023; 46:953-970. [PMID: 37684136 PMCID: PMC10591965 DOI: 10.1016/j.tins.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/04/2023] [Indexed: 09/10/2023]
Abstract
Circulation of highly pathogenic avian influenza (HPAI) H5Nx viruses of the A/Goose/Guangdong/1/96 lineage in birds regularly causes infections of mammals, including humans. In many mammalian species, infections are associated with severe neurological disease, a unique feature of HPAI H5Nx viruses compared with other influenza A viruses. Here, we provide an overview of the neuropathogenesis of HPAI H5Nx virus infection in mammals, centered on three aspects: neuroinvasion, neurotropism, and neurovirulence. We focus on in vitro studies, as well as studies on naturally or experimentally infected mammals. Additionally, we discuss the contribution of viral factors to the neuropathogenesis of HPAI H5Nx virus infections and the efficacy of intervention strategies to prevent neuroinvasion or the development of neurological disease.
Collapse
Affiliation(s)
- Lisa Bauer
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Emmie de Wit
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Debby van Riel
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
Verma AK, Kumar M, Murugkar HV, Nagarajan S, Tosh C, Namdeo P, Singh R, Mishra S, Senthilkumar D, Singh VP, Sanyal A. Highly pathogenic avian influenza (H5N1) infection in crows through ingestion of infected crow carcasses. Microb Pathog 2023; 183:106330. [PMID: 37661072 DOI: 10.1016/j.micpath.2023.106330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
The present study was aimed to investigate the role of cannibalism in transmission of H5N1 avian influenza virus to house crows (Corvus splendens). Four crows were intranasally inoculated with 108.0 EID50 (A/crow/India/01CA249/2021) H5N1 highly pathogenic avian influenza (HPAI) virus and were observed for 14 days for any overt signs of illness. Two of the infected crows showed signs of wing paralysis, incoordination, and torticollis. For cannibalism experiment, two crows showing clinical signs were euthanized on 14th day post-infection (dpi) and were kept in the isolator and four naïve healthy crows were introduced along with the euthanized crows. The viscera from the infected carcasses were eaten by all the four crows. Oropharyngeal and cloacal swabs were collected up to 14 days to assess virus excretion. All four crows showed clinical signs viz., dullness, reluctance to move with ruffled feathers on 6th day post cannibalism along with neurological signs including incoordination and paralysis of the wings. All the crows gradually recovered after showing clinical signs and were euthanized on 21st day of observation period. Virus excretion was observed from 3rd to 11th day post cannibalism through both oropharyngeal and cloacal routes with maximum shedding through oropharyngeal route. The virus was isolated from lungs and trachea of one the infected crows at 21st day after euthanasia. All the four crows seroconverted against H5N1 virus infection at 14th day post cannibalism. Our study confirms the transmission of H5N1 virus in crows through cannibalism and highlights how H5N1 virus might circulate in a crow colony once they become infected.
Collapse
Affiliation(s)
- Asha Kumari Verma
- ICAR- National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - Manoj Kumar
- ICAR- National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India.
| | - Harshad V Murugkar
- ICAR- National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | | | - Chakradhar Tosh
- ICAR- National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - Pushpendra Namdeo
- ICAR- National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - Rupal Singh
- ICAR- National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - Suman Mishra
- ICAR- National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - D Senthilkumar
- ICAR- National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - Vijendra Pal Singh
- ICAR- National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - Aniket Sanyal
- ICAR- National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| |
Collapse
|
7
|
Briggs K, Kapczynski DR. Comparative analysis of PB2 residue 627E/K/V in H5 subtypes of avian influenza viruses isolated from birds and mammals. Front Vet Sci 2023; 10:1250952. [PMID: 37720472 PMCID: PMC10502342 DOI: 10.3389/fvets.2023.1250952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023] Open
Abstract
Avian influenza viruses (AIVs) are naturally found in wild birds, primarily in migratory waterfowl. Although species barriers exist, many AIVs have demonstrated the ability to jump from bird species to mammalian species. A key contributor to this jump is the adaption of the viral RNA polymerase complex to a new host for efficient replication of its RNA genome. The AIV PB2 gene appears to be essential in this conversion, as key residues have been discovered at amino acid position 627 that interact with the host cellular protein, acidic nuclear phosphoprotein 32 family member A (ANP32A). In particular, the conversion of glutamic acid (E) to lysine (K) is frequently observed at this position following isolation in mammals. The focus of this report was to compare the distribution of PB2 627 residues from different lineages and origins of H5 AIV, determine the prevalence between historical and contemporary sequences, and investigate the ratio of amino acids in avian vs. mammalian AIV sequences. Results demonstrate a low prevalence of E627K in H5 non-Goose/Guangdong/1996-lineage (Gs/GD) AIV samples, with a low number of mammalian sequences in general. In contrast, the H5-Gs/GD lineage sequences had an increased prevalence of the E627K mutation and contained more mammalian sequences. An approximate 40% conversion of E to K was observed in human sequences of H5 AIV, suggesting a non-exclusive requirement. Taken together, these results expand our understanding of the distribution of these residues within different subtypes of AIV and aid in our knowledge of PB2 mutations in different species.
Collapse
Affiliation(s)
| | - Darrell R. Kapczynski
- Exotic and Emerging Avian Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, Athens, GA, United States
| |
Collapse
|
8
|
Foret-Lucas C, Figueroa T, Coggon A, Houffschmitt A, Dupré G, Fusade-Boyer M, Guérin JL, Delverdier M, Bessière P, Volmer R. In Vitro and In Vivo Characterization of H5N8 High-Pathogenicity Avian Influenza Virus Neurotropism in Ducks and Chickens. Microbiol Spectr 2023; 11:e0422922. [PMID: 36625654 PMCID: PMC9927090 DOI: 10.1128/spectrum.04229-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023] Open
Abstract
H5N8 high-pathogenicity avian influenza virus (HPAIV) of clade 2.3.4.4B, which circulated during the 2016 epizootics in Europe, was notable for causing different clinical signs in ducks and chickens. The clinical signs preceding death were predominantly neurological in ducks versus respiratory in chickens. To investigate the determinants for the predominant neurological signs observed in ducks, we infected duck and chicken primary cortical neurons. Viral replication was identical in neuronal cultures from both species. In addition, we did not detect any major difference in the immune and inflammatory responses. These results suggest that the predominant neurological involvement of H5N8 HPAIV infection in ducks could not be recapitulated in primary neuronal cultures. In vivo, H5N8 HPAIV replication in ducks peaked soon after infection and led to an early colonization of the central nervous system. In contrast, viral replication was delayed in chickens but ultimately burst in the lungs of chickens, and the chickens died of respiratory distress before brain damage became significant. Consequently, the immune and inflammatory responses in the brain were significantly higher in duck brains than those in chickens. Our study thus suggests that early colonization of the central nervous system associated with prolonged survival after the onset of virus replication is the likely primary cause of the sustained inflammatory response and subsequent neurological disorders observed in H5N8 HPAIV-infected ducks. IMPORTANCE The severity of high-pathogenicity avian influenza virus (HPAIV) infection has been linked to its ability to replicate systemically and cause lesions in a variety of tissues. However, the symptomatology depends on the host species. The H5N8 virus of clade 2.3.4.4B had a pronounced neurotropism in ducks, leading to severe neurological disorders. In contrast, neurological signs were rarely observed in chickens, which suffered mostly from respiratory distress. Here, we investigated the determinants of H5N8 HPAIV neurotropism. We provide evidence that the difference in clinical signs was not due to a difference in neurotropism. Our results rather indicate that chickens died of respiratory distress due to intense viral replication in the lungs before viral replication in the brain could produce significant lesions. In contrast, ducks better controlled virus replication in the lungs, thus allowing the virus to replicate for a sufficient duration in the brain, to reach high levels, and to cause significant lesions.
Collapse
Affiliation(s)
- Charlotte Foret-Lucas
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Thomas Figueroa
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Amelia Coggon
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Alexandre Houffschmitt
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Gabriel Dupré
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Maxime Fusade-Boyer
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Jean-Luc Guérin
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Maxence Delverdier
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Pierre Bessière
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Romain Volmer
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| |
Collapse
|
9
|
Root JJ, Shriner SA. Avian Influenza A Virus Associations in Wild, Terrestrial Mammals: A Review of Potential Synanthropic Vectors to Poultry Facilities. Viruses 2020; 12:E1352. [PMID: 33256041 PMCID: PMC7761170 DOI: 10.3390/v12121352] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
The potential role of wild mammals in the epidemiology of influenza A viruses (IAVs) at the farm-side level has gained increasing consideration over the past two decades. In some instances, select mammals may be more likely to visit riparian areas (both close and distant to farms) as well as poultry farms, as compared to traditional reservoir hosts, such as waterfowl. Of significance, many mammalian species can successfully replicate and shed multiple avian IAVs to high titers without prior virus adaptation and often can shed virus in greater quantities than synanthropic avian species. Within this review, we summarize and discuss the potential risks that synanthropic mammals could pose by trafficking IAVs to poultry operations based on current and historic literature.
Collapse
Affiliation(s)
- J. Jeffrey Root
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO 80521, USA;
| | | |
Collapse
|
10
|
Soilemetzidou ES, De Bruin E, Franz M, Aschenborn OHK, Rimmelzwaan GF, van Beek R, Koopmans M, Greenwood AD, Czirják GÁ. Diet May Drive Influenza A Virus Exposure in African Mammals. J Infect Dis 2020; 221:175-182. [PMID: 30838397 DOI: 10.1093/infdis/jiz032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/24/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Influenza A viruses (IAVs) represent repeatedly emerging pathogens with near worldwide distribution and an unclear nonavian-host spectrum. While the natural hosts for IAV are among waterfowl species, certain mammals can be productively infected. Southern Africa is home to diverse avian and mammalian fauna for which almost no information exists on IAV dynamics. METHODS We evaluated 111 serum samples from 14 mammalian species from Namibia for the presence of IAV-specific antibodies and tested whether host phylogeny, sociality, or diet influence viral prevalence and diversity. RESULTS Free-ranging African mammals are exposed to diverse IAV subtypes. Herbivores developed antibodies against 3 different hemagglutinin (HA) subtypes, at low prevalence, while carnivores showed a higher prevalence and diversity of HA-specific antibody responses against 11 different subtypes. Host phylogeny and sociality were not significantly associated with HA antibody prevalence or subtype diversity. Both seroprevalence and HA diversity were significantly increased in carnivores regularly feeding on birds. CONCLUSIONS The risk of infection and transmission may be driven by diet and ecological factors that increase contact with migratory and resident waterfowl. Consequently, wild mammals, particularly those that specialize on hunting and scavenging birds, could play an important but overlooked role in influenza epizootics.
Collapse
Affiliation(s)
| | | | - Mathias Franz
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin
| | - Ortwin H K Aschenborn
- Bwabwata Ecological Institute, Ministry of Environment and Tourism, Zambezi, Namibia
| | - Guus F Rimmelzwaan
- Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany.,Erasmus Medical Center, Rotterdam, the Netherlands
| | | | | | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin.,Department of Veterinary Medicine, Free University of Berlin, Berlin
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin
| |
Collapse
|
11
|
Root JJ. What Are the Transmission Mechanisms of Influenza A Viruses in Wild Mammals? J Infect Dis 2020; 221:169-171. [PMID: 30838414 DOI: 10.1093/infdis/jiz033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/28/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- J Jeffrey Root
- US Department of Agriculture, National Wildlife Research Center, Fort Collins, Colorado
| |
Collapse
|
12
|
Elbers ARW, Gonzales JL. Quantification of visits of wild fauna to a commercial free-range layer farm in the Netherlands located in an avian influenza hot-spot area assessed by video-camera monitoring. Transbound Emerg Dis 2020; 67:661-677. [PMID: 31587498 PMCID: PMC7079184 DOI: 10.1111/tbed.13382] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 01/19/2023]
Abstract
Free-range poultry farms have a high risk of introduction of avian influenza viruses (AIV), and it is presumed that wild (water) birds are the source of introduction. There is very scarce quantitative data on wild fauna visiting free-range poultry farms. We quantified visits of wild fauna to a free-range area of a layer farm, situated in an AIV hot-spot area, assessed by video-camera monitoring. A total of 5,016 hr (209 days) of video recordings, covering all 12 months of a year, were analysed. A total of 16 families of wild birds and five families of mammals visited the free-range area of the layer farm. Wild birds, except for the dabbling ducks, visited the free-range area almost exclusively in the period between sunrise and the moment the chickens entered the free-range area. Known carriers of AIV visited the outdoor facility regularly: species of gulls almost daily in the period January-August; dabbling ducks only in the night in the period November-May, with a distinct peak in the period December-February. Only a small fraction of visits of wild fauna had overlap with the presence of chickens at the same time in the free-range area. No direct contact between chickens and wild birds was observed. It is hypothesized that AIV transmission to poultry on free-range poultry farms will predominantly take place via indirect contact: taking up AIV by chickens via wild-bird-faeces-contaminated water or soil in the free-range area. The free-range poultry farmer has several possibilities to potentially lower the attractiveness of the free-range area for wild (bird) fauna: daily inspection of the free-range area and removal of carcasses and eggs; prevention of forming of water pools in the free-range facility. Furthermore, there are ways to scare-off wild birds, for example use of laser equipment or trained dogs.
Collapse
Affiliation(s)
- Armin R. W. Elbers
- Department of Bacteriology and EpidemiologyWageningen Bioveterinary ResearchLelystadThe Netherlands
| | - José L. Gonzales
- Department of Bacteriology and EpidemiologyWageningen Bioveterinary ResearchLelystadThe Netherlands
| |
Collapse
|
13
|
Fujimoto Y, Inoue H, Ozawa M, Matsuu A. Serological survey of influenza A virus infection in Japanese wild boars (Sus scrofa leucomystax). Microbiol Immunol 2019; 63:517-522. [PMID: 31595535 DOI: 10.1111/1348-0421.12750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 11/29/2022]
Abstract
We conducted a serological survey to detect antibodies against influenza A virus (IAV) in Japanese wild boars in Kagoshima prefecture, Japan, between 2014 and 2017. Seroprevalence against a pandemic-like swine H1N1 (H1N1pdm) virus was identified in 27.1% of specimens, and 1.7% were positive for both swine H1N2 and H3N2 viruses, indicating that wild boars could play an important role in the dynamics of H1N1pdm viral dispersion in the wild. The high frequency of positive results for sera against the H1N1pdm virus suggests that cross-species IAV transmission between wild boars, livestock, and humans is a threat to veterinary and public health.
Collapse
Affiliation(s)
- Yoshikazu Fujimoto
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Hideya Inoue
- Shiga Prefectural Institute of Public Health, Shiga, Japan
| | - Makoto Ozawa
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Aya Matsuu
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
14
|
Viral Factors Important for Efficient Replication of Influenza A Viruses in Cells of the Central Nervous System. J Virol 2019; 93:JVI.02273-18. [PMID: 30867311 PMCID: PMC6532103 DOI: 10.1128/jvi.02273-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/05/2019] [Indexed: 11/20/2022] Open
Abstract
Central nervous system (CNS) disease is one of the most common extrarespiratory tract complications of influenza A virus infections, and the frequency and severity differ between seasonal, pandemic, and zoonotic influenza viruses. However, little is known about the interaction of these viruses with cells of the CNS. Differences among seasonal, pandemic, and zoonotic influenza viruses in replication efficacy in CNS cells, in vitro, suggest that the presence of an alternative HA cleavage mechanism and ability to attach are important viral factors. Identifying these viral factors and detailed knowledge of the interaction between influenza virus and CNS cells are important to prevent and treat this potentially lethal CNS disease. Central nervous system (CNS) disease is one of the most common extrarespiratory tract complications of influenza A virus infections. Remarkably, zoonotic H5N1 virus infections are more frequently associated with CNS disease than seasonal or pandemic influenza viruses. Little is known about the interaction between influenza A viruses and cells of the CNS; therefore, it is currently unknown which viral factors are important for efficient replication. Here, we determined the replication kinetics of a seasonal, pandemic, zoonotic, and lab-adapted influenza A virus in human neuron-like (SK-N-SH) and astrocyte-like (U87-MG) cells and primary mouse cortex neurons. In general, highly pathogenic avian influenza (HPAI) H5N1 virus replicated most efficiently in all cells, which was associated with efficient attachment and infection. Seasonal H3N2 and to a lesser extent pandemic H1N1 virus replicated in a trypsin-dependent manner in SK-N-SH but not in U87-MG cells. In the absence of trypsin, only HPAI H5N1 and WSN viruses replicated. Removal of the multibasic cleavage site (MBCS) from HPAI H5N1 virus attenuated, but did not abrogate, replication. Taken together, our results showed that the MBCS and, to a lesser extent, the ability to attach are important determinants for efficient replication of HPAI H5N1 virus in cells of the CNS. This suggests that both an alternative hemagglutinin (HA) cleavage mechanism and preference for α-2,3-linked sialic acids allowing efficient attachment contribute to the ability of influenza A viruses to replicate efficiently in cells of the CNS. This study further improves our knowledge on potential viral factors important for the neurotropic potential of influenza A viruses. IMPORTANCE Central nervous system (CNS) disease is one of the most common extrarespiratory tract complications of influenza A virus infections, and the frequency and severity differ between seasonal, pandemic, and zoonotic influenza viruses. However, little is known about the interaction of these viruses with cells of the CNS. Differences among seasonal, pandemic, and zoonotic influenza viruses in replication efficacy in CNS cells, in vitro, suggest that the presence of an alternative HA cleavage mechanism and ability to attach are important viral factors. Identifying these viral factors and detailed knowledge of the interaction between influenza virus and CNS cells are important to prevent and treat this potentially lethal CNS disease.
Collapse
|
15
|
|
16
|
Harris KA, Freidl GS, Munoz OS, von Dobschuetz S, De Nardi M, Wieland B, Koopmans MPG, Stärk KDC, van Reeth K, Dauphin G, Meijer A, de Bruin E, Capua I, Hill AA, Kosmider R, Banks J, Stevens K, van der Werf S, Enouf V, van der Meulen K, Brown IH, Alexander DJ, Breed AC. Epidemiological Risk Factors for Animal Influenza A Viruses Overcoming Species Barriers. ECOHEALTH 2017; 14:342-360. [PMID: 28523412 DOI: 10.1007/s10393-017-1244-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/30/2017] [Accepted: 04/10/2017] [Indexed: 05/21/2023]
Abstract
Drivers and risk factors for Influenza A virus transmission across species barriers are poorly understood, despite the ever present threat to human and animal health potentially on a pandemic scale. Here we review the published evidence for epidemiological risk factors associated with influenza viruses transmitting between animal species and from animals to humans. A total of 39 papers were found with evidence of epidemiological risk factors for influenza virus transmission from animals to humans; 18 of which had some statistical measure associated with the transmission of a virus. Circumstantial or observational evidence of risk factors for transmission between animal species was found in 21 papers, including proximity to infected animals, ingestion of infected material and potential association with a species known to carry influenza virus. Only three publications were found which presented a statistical measure of an epidemiological risk factor for the transmission of influenza between animal species. This review has identified a significant gap in knowledge regarding epidemiological risk factors for the transmission of influenza viruses between animal species.
Collapse
Affiliation(s)
- Kate A Harris
- Animal and Plant Health Agency-Weybridge (APHA), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Gudrun S Freidl
- Centre for Infectious Disease Research, Diagnostics and Screening (IDS), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Olga S Munoz
- OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Padua, Italy
- One Health Center of Excellence, Emerging Pathogens Institute and Institute of Food and Agricultural Sciences-Department of Animal Sciences, University of Florida, 32611, Gainesville, FL, USA
| | - Sophie von Dobschuetz
- Royal Veterinary College (RVC), London, UK
- Food and Agricultural Organization of the United Nations (FAO), Rome, Italy
| | - Marco De Nardi
- OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Padua, Italy
- SAFOSO AG, Liebefeld, Switzerland
| | - Barbara Wieland
- International Livestock Research Institute ILRI, Box 5689, Addis Ababa, Ethiopia
| | - Marion P G Koopmans
- Centre for Infectious Disease Research, Diagnostics and Screening (IDS), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Kristien van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Gwen Dauphin
- Food and Agricultural Organization of the United Nations (FAO), Rome, Italy
| | - Adam Meijer
- Centre for Infectious Disease Research, Diagnostics and Screening (IDS), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Erwin de Bruin
- Centre for Infectious Disease Research, Diagnostics and Screening (IDS), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ilaria Capua
- OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Padua, Italy
- One Health Center of Excellence, Emerging Pathogens Institute and Institute of Food and Agricultural Sciences-Department of Animal Sciences, University of Florida, 32611, Gainesville, FL, USA
| | - Andy A Hill
- Animal and Plant Health Agency-Weybridge (APHA), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
- Royal Veterinary College (RVC), London, UK
- BAE Systems, Farnborough, UK
| | - Rowena Kosmider
- Animal and Plant Health Agency-Weybridge (APHA), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Jill Banks
- Animal and Plant Health Agency-Weybridge (APHA), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | | | | | | | - Karen van der Meulen
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Ian H Brown
- Animal and Plant Health Agency-Weybridge (APHA), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Dennis J Alexander
- Animal and Plant Health Agency-Weybridge (APHA), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Andrew C Breed
- Animal and Plant Health Agency-Weybridge (APHA), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK.
- Epidemiology and One Health Section, Department of Water Resources, Canberra, Australia.
| |
Collapse
|
17
|
Velkers FC, Blokhuis SJ, Veldhuis Kroeze EJB, Burt SA. The role of rodents in avian influenza outbreaks in poultry farms: a review. Vet Q 2017; 37:182-194. [DOI: 10.1080/01652176.2017.1325537] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Francisca C. Velkers
- Department of Farm Animal Health – Epidemiology, Infectiology and Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Simon J. Blokhuis
- Department of Farm Animal Health – Epidemiology, Infectiology and Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Sara A. Burt
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
18
|
Lempp C, Jungwirth N, Grilo ML, Reckendorf A, Ulrich A, van Neer A, Bodewes R, Pfankuche VM, Bauer C, Osterhaus ADME, Baumgärtner W, Siebert U. Pathological findings in the red fox (Vulpes vulpes), stone marten (Martes foina) and raccoon dog (Nyctereutes procyonoides), with special emphasis on infectious and zoonotic agents in Northern Germany. PLoS One 2017; 12:e0175469. [PMID: 28399176 PMCID: PMC5388480 DOI: 10.1371/journal.pone.0175469] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/27/2017] [Indexed: 11/18/2022] Open
Abstract
Anthropogenic landscape changes contributed to the reduction of availability of habitats to wild animals. Hence, the presence of wild terrestrial carnivores in urban and peri-urban sites has increased considerably over the years implying an increased risk of interspecies spillover of infectious diseases and the transmission of zoonoses. The present study provides a detailed characterisation of the health status of the red fox (Vulpes vulpes), stone marten (Martes foina) and raccoon dog (Nyctereutes procyonoides) in their natural rural and peri-urban habitats in Schleswig-Holstein, Germany between November 2013 and January 2016 with focus on zoonoses and infectious diseases that are potentially threatening to other wildlife or domestic animal species. 79 red foxes, 17 stone martens and 10 raccoon dogs were collected from traps or hunts. In order to detect morphological changes and potential infectious diseases, necropsy and pathohistological work-up was performed. Additionally, in selected animals immunohistochemistry (influenza A virus, parvovirus, feline leukemia virus, Borna disease virus, tick-borne encephalitis, canine adenovirus, Neospora caninum, Toxoplasma gondii and Listeria monocytogenes), next-generation sequencing, polymerase chain reaction (fox circovirus) and serum-neutralisation analysis (canine distemper virus) were performed. Furthermore, all animals were screened for fox rabies virus (immunofluorescence), canine distemper virus (immunohistochemistry) and Aujeszky's disease (virus cultivation). The most important findings included encephalitis (n = 16) and pneumonia (n = 20). None of the investigations revealed a specific cause for the observed morphological alterations except for one animal with an elevated serum titer of 1:160 for canine distemper. Animals displayed macroscopically and/or histopathologically detectable infections with parasites, including Taenia sp., Toxocara sp. and Alaria alata. In summary, wildlife predators carry zoonotic parasitic disease and suffer from inflammatory diseases of yet unknown etiology, possibly bearing infectious potential for other animal species and humans. This study highlights the value of monitoring terrestrial wildlife following the "One Health" notion, to estimate the incidence and the possible spread of zoonotic pathogens and to avoid animal to animal spillover as well as transmission to humans.
Collapse
Affiliation(s)
- Charlotte Lempp
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
| | - Nicole Jungwirth
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Miguel L. Grilo
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Büsum, Schleswig-Holstein, Germany
| | - Anja Reckendorf
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Büsum, Schleswig-Holstein, Germany
| | - Arlena Ulrich
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Büsum, Schleswig-Holstein, Germany
| | - Abbo van Neer
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Büsum, Schleswig-Holstein, Germany
| | - Rogier Bodewes
- Department of Viroscience, The Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Vanessa M. Pfankuche
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Christian Bauer
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Büsum, Schleswig-Holstein, Germany
| |
Collapse
|
19
|
Gholipour H, Busquets N, Fernández-Aguilar X, Sánchez A, Ribas MP, De Pedro G, Lizarraga P, Alarcia-Alejos O, Temiño C, Cabezón O. Influenza A Virus Surveillance in the Invasive American Mink (Neovison vison) from Freshwater Ecosystems, Northern Spain. Zoonoses Public Health 2016; 64:363-369. [PMID: 27918148 DOI: 10.1111/zph.12316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Indexed: 12/22/2022]
Abstract
Influenza A viruses (IAVs) are negative-sense, single-stranded and segmented RNA viruses of the Orthomyxoviridae family that may cause acute respiratory disease in a wide range of birds and mammals. Susceptibility of several species within the family Mustelidae to IAVs has been reported as a result of natural or experimental infections. The objectives of this study were to assess whether free-ranging American mink populations from Northern Spain were infected with IAV and try to define the role of this species in the epidemiology of IAV. Sera from 689 American mink from Northern Spain captured between 2011 and 2014 were tested for the presence of antibodies against IAVs using a commercial competition cELISA. Positive sera were further analysed with haemagglutination inhibition (HI) assay. Fifteen of the 689 (2.2%, 1.3-3.6 CI95% ) of the American minks analysed were ELISA positive. No significant differences were observed between years of capture, provinces, river basins, sexes or ages of the animals. All seropositive sera resulted negative to the panel strains used in the HI assay, showing that the most relevant strains circulating in swine, the most relevant avian subtypes (H5 and H7) and the H10N4 subtype isolated in minks have not been circulating in this free-ranging exotic carnivore from Spain. In the light of these results, the free-range American mink from Northern Spain do not seem to have an important role in the epidemiology of IAVs.
Collapse
Affiliation(s)
- H Gholipour
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.,Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - N Busquets
- IRTA, Centre de Recerca en Sanitat Animal (CReSA-IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - X Fernández-Aguilar
- Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain.,UAB, Centre de Recerca en Sanitat Animal (CReSA-IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - A Sánchez
- Servicio de Virología, Laboratorio Central de Veterinaria, Ministerio de Agricultura, Alimentación y Medio Ambiente, Gobierno de España, Algete, Madrid, Spain
| | - M P Ribas
- Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - G De Pedro
- Centro de Recuperación de Animales Silvestres de Valladolid, Valladolid, Spain
| | - P Lizarraga
- Martioda Wildlife Rehabilitation Center, Martioda, Álava, Spain
| | - O Alarcia-Alejos
- Dirección General del Medio Natural, Consejería de Fomento y Medio Ambiente, Junta de Castilla y León, Valladolid, Spain
| | - C Temiño
- Servicio Territorial de Medio Ambiente, Consejería de Fomento y Medio Ambiente, Junta de Castilla y León, Burgos, Spain
| | - O Cabezón
- Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain.,UAB, Centre de Recerca en Sanitat Animal (CReSA-IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
20
|
Siegers JY, van den Brand JM, Leijten LM, van de Bildt MMW, van Run PR, van Amerongen G, Stittelaar KJ, Koopmans MP, Osterhaus ADME, Kuiken T, van Riel D. Vaccination Is More Effective Than Prophylactic Oseltamivir in Preventing CNS Invasion by H5N1 Virus via the Olfactory Nerve. J Infect Dis 2016; 214:516-24. [PMID: 27448390 DOI: 10.1093/infdis/jiw123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/25/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Influenza A viruses can replicate in the olfactory mucosa and subsequently use the olfactory nerve to enter the central nervous system (CNS). It is currently unknown whether intervention strategies are able to reduce or prevent influenza virus replication within the olfactory mucosa and subsequent spread to the CNS. Therefore, we tested the efficacy of homologous vaccination and prophylactic oseltamivir to prevent H5N1 virus CNS invasion via the olfactory nerve in our ferret model. METHODS Ferrets were vaccinated intramuscularly or received oseltamivir (5 mg/kg twice daily) prophylactically before intranasal inoculation of highly pathogenic H5N1 virus (A/Indonesia/05/2005) and were examined using virology and pathology. RESULTS Homologous vaccination reduced H5N1 virus replication in the olfactory mucosa and prevented subsequent virus spread to the CNS. However, prophylactic oseltamivir did not prevent H5N1 virus replication in the olfactory mucosa sufficiently, resulting in CNS invasion via the olfactory nerve causing a severe meningoencephalitis. CONCLUSIONS Within our ferret model, vaccination is more effective than prophylactic oseltamivir in preventing CNS invasion by H5N1 virus via the olfactory nerve. This study highlights the importance of including the olfactory mucosa, olfactory nerve, and CNS tissues in future vaccine and antiviral studies, especially for viruses with a known neurotropic potential.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Albert D M E Osterhaus
- Viroclinics Biosciences BV, Rotterdam Artemis One Health, Utrecht, The Netherlands Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | | | | |
Collapse
|
21
|
Harder TC, Buda S, Hengel H, Beer M, Mettenleiter TC. Poultry food products--a source of avian influenza virus transmission to humans? Clin Microbiol Infect 2015; 22:141-146. [PMID: 26686812 DOI: 10.1016/j.cmi.2015.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/29/2015] [Accepted: 11/29/2015] [Indexed: 11/19/2022]
Abstract
Global human mobility and intercontinental connectivity, expansion of livestock production and encroachment of wildlife habitats by invasive agricultural land use contribute to shape the complexity of influenza epidemiology. The OneHealth approach integrates these and further elements into considerations to improve disease control and prevention. Food of animal origin for human consumption is another integral aspect; if produced from infected livestock such items may act as vehicles of spread of animal pathogens, and, in case of zoonotic agents, as a potential human health hazard. Notifiable zoonotic avian influenza viruses (AIV) have become entrenched in poultry populations in several Asian and northern African countries since 2003. Highly pathogenic (HP) AIV (e.g. H5N1) cause extensive poultry mortality and severe economic losses. HPAIV and low pathogenic AIV (e.g. H7N9) with zoonotic propensities pose risks for human health. More than 1500 human cases of AIV infection have been reported, mainly from regions with endemically infected poultry. Intense human exposure to AIV-infected poultry, e.g. during rearing, slaughtering or processing of poultry, is a major risk factor for acquiring AIV infection. In contrast, human infections through consumption of AIV-contaminated food have not been substantiated. Heating poultry products according to kitchen standards (core temperatures ≥70°C, ≥10 s) rapidly inactivates AIV infectivity and renders fully cooked products safe. Nevertheless, concerted efforts must ensure that poultry products potentially contaminated with zoonotic AIV do not reach the food chain. Stringent and sustained OneHealth measures are required to better control and eventually eradicate, HPAIV from endemic regions.
Collapse
Affiliation(s)
- T C Harder
- The Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Greifswald Insel-Riems, Germany.
| | - S Buda
- Robert-Koch-Institut, Berlin, Germany
| | - H Hengel
- Institute of Virology, Department of Medical Microbiology and Hygiene, University Medical Centre, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - M Beer
- The Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Greifswald Insel-Riems, Germany
| | - T C Mettenleiter
- The Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Greifswald Insel-Riems, Germany
| |
Collapse
|
22
|
Short KR, Richard M, Verhagen JH, van Riel D, Schrauwen EJA, van den Brand JMA, Mänz B, Bodewes R, Herfst S. One health, multiple challenges: The inter-species transmission of influenza A virus. One Health 2015; 1:1-13. [PMID: 26309905 PMCID: PMC4542011 DOI: 10.1016/j.onehlt.2015.03.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Influenza A viruses are amongst the most challenging viruses that threaten both human and animal health. Influenza A viruses are unique in many ways. Firstly, they are unique in the diversity of host species that they infect. This includes waterfowl (the original reservoir), terrestrial and aquatic poultry, swine, humans, horses, dog, cats, whales, seals and several other mammalian species. Secondly, they are unique in their capacity to evolve and adapt, following crossing the species barrier, in order to replicate and spread to other individuals within the new species. Finally, they are unique in the frequency of inter-species transmission events that occur. Indeed, the consequences of novel influenza virus strain in an immunologically naïve population can be devastating. The problems that influenza A viruses present for human and animal health are numerous. For example, influenza A viruses in humans represent a major economic and disease burden, whilst the poultry industry has suffered colossal damage due to repeated outbreaks of highly pathogenic avian influenza viruses. This review aims to provide a comprehensive overview of influenza A viruses by shedding light on interspecies virus transmission and summarising the current knowledge regarding how influenza viruses can adapt to a new host.
Collapse
Affiliation(s)
- Kirsty R Short
- Department of Viroscience, Erasmus Medical Centre, the Netherlands ; School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Centre, the Netherlands
| | | | - Debby van Riel
- Department of Viroscience, Erasmus Medical Centre, the Netherlands
| | | | | | - Benjamin Mänz
- Department of Viroscience, Erasmus Medical Centre, the Netherlands
| | - Rogier Bodewes
- Department of Viroscience, Erasmus Medical Centre, the Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Centre, the Netherlands
| |
Collapse
|
23
|
Root JJ, Bosco-Lauth AM, Bielefeldt-Ohmann H, Bowen RA. Experimental infection of peridomestic mammals with emergent H7N9 (A/Anhui/1/2013) influenza A virus: Implications for biosecurity and wet markets. Virology 2015; 487:242-8. [PMID: 26550948 PMCID: PMC7127772 DOI: 10.1016/j.virol.2015.10.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/10/2015] [Accepted: 10/19/2015] [Indexed: 11/26/2022]
Abstract
During 2013, a novel avian-origin H7N9 influenza A virus (IAV) emerged in China and subsequently caused large economic and public health burdens. We experimentally infected three common peridomestic wild mammals with H7N9 (A/Anhui/1/2013) IAV. Striped skunks exhibited the highest burden of disease followed by raccoons and cottontail rabbits. Striped skunks also produced the highest levels of viral shedding (up to 10(6.4)PFU/mL nasal flush) followed by cottontail rabbits (up to 10(5.8)PFU/mL nasal flush) and raccoons (up to 10(5.2)PFU/mL nasal flush). Thus, various mammalian species, especially those that are peridomestic, could play a role in the epidemiology of emergent H7N9 IAV. Mammals should be accounted for in biosecurity plans associated with H7N9 and their presence in wet markets, dependent on species, could lead to increased transmission among interspecific species aggregations and may also pose an elevated zoonotic disease risk to visitors and workers of such markets.
Collapse
Affiliation(s)
- J Jeffrey Root
- United States Department of Agriculture, Fort Collins, CO 80521, USA.
| | | | | | | |
Collapse
|
24
|
Romero Tejeda A, Aiello R, Salomoni A, Berton V, Vascellari M, Cattoli G. Susceptibility to and transmission of H5N1 and H7N1 highly pathogenic avian influenza viruses in bank voles (Myodes glareolus). Vet Res 2015; 46:51. [PMID: 25963535 PMCID: PMC4427987 DOI: 10.1186/s13567-015-0184-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/13/2015] [Indexed: 02/08/2023] Open
Abstract
The study of influenza type A (IA) infections in wild mammals populations is a critical gap in our knowledge of how IA viruses evolve in novel hosts that could be in close contact with avian reservoir species and other wild animals. The aim of this study was to evaluate the susceptibility to infection, the nasal shedding and the transmissibility of the H7N1 and H5N1 highly pathogenic avian influenza (HPAI) viruses in the bank vole (Myodes glareolus), a wild rodent common throughout Europe and Asia. Two out of 24 H5N1-infected voles displayed evident respiratory distress, while H7N1-infected voles remained asymptomatic. Viable virus was isolated from nasal washes collected from animals infected with both HPAI viruses, and extra-pulmonary infection was confirmed in both experimental groups. Histopathological lesions were evident in the respiratory tract of infected animals, although immunohistochemistry positivity was only detected in lungs and trachea of two H7N1-infected voles. Both HPAI viruses were transmitted by direct contact, and seroconversion was confirmed in 50% and 12.5% of the asymptomatic sentinels in the H7N1 and H5N1 groups, respectively. Interestingly, viable virus was isolated from lungs and nasal washes collected from contact sentinels of both groups. The present study demonstrated that two non-rodent adapted HPAI viruses caused asymptomatic infection in bank voles, which shed high amounts of the viruses and were able to infect contact voles. Further investigations are needed to determine whether bank voles could be involved as silent hosts in the transmission of HPAI viruses to other mammals and domestic poultry.
Collapse
Affiliation(s)
- Aurora Romero Tejeda
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Infectious Diseases at the Human-Animal Interface, Viale dell'Università 10, Legnaro, 35020, Padova, Italy.
| | - Roberta Aiello
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Infectious Diseases at the Human-Animal Interface, Viale dell'Università 10, Legnaro, 35020, Padova, Italy.
| | - Angela Salomoni
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Infectious Diseases at the Human-Animal Interface, Viale dell'Università 10, Legnaro, 35020, Padova, Italy.
| | - Valeria Berton
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Infectious Diseases at the Human-Animal Interface, Viale dell'Università 10, Legnaro, 35020, Padova, Italy.
| | - Marta Vascellari
- Histopathology Laboratory, IZSVe, Viale dell'Università 10, Legnaro, 35020, Padova, Italy.
| | - Giovanni Cattoli
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Infectious Diseases at the Human-Animal Interface, Viale dell'Università 10, Legnaro, 35020, Padova, Italy.
| |
Collapse
|
25
|
Bui C, Bethmont A, Chughtai AA, Gardner L, Sarkar S, Hassan S, Seale H, MacIntyre CR. A Systematic Review of the Comparative Epidemiology of Avian and Human Influenza A H5N1 and H7N9 - Lessons and Unanswered Questions. Transbound Emerg Dis 2015; 63:602-620. [DOI: 10.1111/tbed.12327] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Indexed: 11/29/2022]
Affiliation(s)
- C. Bui
- School of Public Health and Community Medicine; University of New South Wales; Sydney NSW Australia
| | - A. Bethmont
- School of Public Health and Community Medicine; University of New South Wales; Sydney NSW Australia
| | - A. A. Chughtai
- School of Public Health and Community Medicine; University of New South Wales; Sydney NSW Australia
| | - L. Gardner
- School of Civil and Environmental Engineering; University of New South Wales; Sydney NSW Australia
| | - S. Sarkar
- Section of Integrative Biology; University of Texas at Austin; Austin TX USA
| | - S. Hassan
- School of Public Health and Community Medicine; University of New South Wales; Sydney NSW Australia
| | - H. Seale
- School of Public Health and Community Medicine; University of New South Wales; Sydney NSW Australia
| | - C. R. MacIntyre
- School of Public Health and Community Medicine; University of New South Wales; Sydney NSW Australia
| |
Collapse
|
26
|
Abstract
In this chapter, we describe 73 zoonotic viruses that were isolated in Northern Eurasia and that belong to the different families of viruses with a single-stranded RNA (ssRNA) genome. The family includes viruses with a segmented negative-sense ssRNA genome (families Bunyaviridae and Orthomyxoviridae) and viruses with a positive-sense ssRNA genome (families Togaviridae and Flaviviridae). Among them are viruses associated with sporadic cases or outbreaks of human disease, such as hemorrhagic fever with renal syndrome (viruses of the genus Hantavirus), Crimean–Congo hemorrhagic fever (CCHFV, Nairovirus), California encephalitis (INKV, TAHV, and KHATV; Orthobunyavirus), sandfly fever (SFCV and SFNV, Phlebovirus), Tick-borne encephalitis (TBEV, Flavivirus), Omsk hemorrhagic fever (OHFV, Flavivirus), West Nile fever (WNV, Flavivirus), Sindbis fever (SINV, Alphavirus) Chikungunya fever (CHIKV, Alphavirus) and others. Other viruses described in the chapter can cause epizootics in wild or domestic animals: Geta virus (GETV, Alphavirus), Influenza A virus (Influenzavirus A), Bhanja virus (BHAV, Phlebovirus) and more. The chapter also discusses both ecological peculiarities that promote the circulation of these viruses in natural foci and factors influencing the occurrence of epidemic and epizootic outbreaks
Collapse
|
27
|
Kim HM, Park EH, Yum J, Kim HS, Seo SH. Greater virulence of highly pathogenic H5N1 influenza virus in cats than in dogs. Arch Virol 2014; 160:305-13. [PMID: 25416494 DOI: 10.1007/s00705-014-2284-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/10/2014] [Indexed: 11/29/2022]
Abstract
Highly pathogenic H5N1 influenza virus continues to infect animals and humans. We compared the infectivity and pathogenesis of H5N1 virus in domestic cats and dogs to find out which animal is more susceptible to H5N1 influenza virus. When cats and dogs were infected with the H5N1 virus, cats suffered from severe outcomes including death, whereas dogs did not show any mortality. Viruses were shed in the nose and rectum of cats and in the nose of dogs. Viruses were detected in brain, lung, kidney, intestine, liver, and serum in the infected cats, but only in the lung in the infected dogs. Genes encoding inflammatory cytokines and chemokines, Toll-like receptors, and apoptotic factors were more highly expressed in the lungs of cats than in those of dogs. Our results suggest that the intensive monitoring of dogs is necessary to prevent human infection by H5N1 influenza virus, since infected dogs may not show clear clinical signs, in contrast to infected cats.
Collapse
Affiliation(s)
- Heui Man Kim
- Laboratory of Influenza Research, College of Veterinary Medicine, Chungnam National University, 220 Gung Dong, Yuseong Gu, Daejeon, 305-764, Republic of Korea
| | | | | | | | | |
Collapse
|
28
|
Yamaguchi E, Sashika M, Fujii K, Kobayashi K, Bui VN, Ogawa H, Imai K. Prevalence of multiple subtypes of influenza A virus in Japanese wild raccoons. Virus Res 2014; 189:8-13. [DOI: 10.1016/j.virusres.2014.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/08/2014] [Accepted: 05/01/2014] [Indexed: 10/25/2022]
|
29
|
Bertran K, Swayne DE. High doses of highly pathogenic avian influenza virus in chicken meat are required to infect ferrets. Vet Res 2014; 45:60. [PMID: 24894438 PMCID: PMC4077040 DOI: 10.1186/1297-9716-45-60] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/20/2014] [Indexed: 11/23/2022] Open
Abstract
High pathogenicity avian influenza viruses (HPAIV) have caused fatal infections in mammals through consumption of infected bird carcasses or meat, but scarce information exists on the dose of virus required and the diversity of HPAIV subtypes involved. Ferrets were exposed to different HPAIV (H5 and H7 subtypes) through consumption of infected chicken meat. The dose of virus needed to infect ferrets through consumption was much higher than via respiratory exposure and varied with the virus strain. In addition, H5N1 HPAIV produced higher titers in the meat of infected chickens and more easily infected ferrets than the H7N3 or H7N7 HPAIV.
Collapse
Affiliation(s)
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, USDA-ARS, 934 College Station Rd, 30605 Athens, GA, USA.
| |
Collapse
|
30
|
Kaplan BS, Webby RJ. The avian and mammalian host range of highly pathogenic avian H5N1 influenza. Virus Res 2013; 178:3-11. [PMID: 24025480 DOI: 10.1016/j.virusres.2013.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 09/02/2013] [Indexed: 12/19/2022]
Abstract
Highly pathogenic H5N1 influenza viruses have been isolated from a number of avian and mammalian species. Despite intensive control measures the number of human and animal cases continues to increase. A more complete understanding of susceptible species and of contributing environmental and molecular factors is crucial if we are to slow the rate of new cases. H5N1 is currently endemic in domestic poultry in only a handful of countries with sporadic and unpredictable spread to other countries. Close contact of terrestrial bird or mammalian species with infected poultry/waterfowl or their biological products is the major route for interspecies transmission. Intra-species transmission of H5N1 in mammals, including humans, has taken place on a limited scale though it remains to be seen if this will change; recent laboratory studies suggest that it is indeed possible. Here we review the avian and mammalian species that are naturally susceptible to H5N1 infection and the molecular factors associated with its expanded host range.
Collapse
Affiliation(s)
- Bryan S Kaplan
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | | |
Collapse
|
31
|
Jeoung HY, Lim SI, Shin BH, Lim JA, Song JY, Song DS, Kang BK, Moon HJ, An DJ. A novel canine influenza H3N2 virus isolated from cats in an animal shelter. Vet Microbiol 2013; 165:281-6. [PMID: 23618838 DOI: 10.1016/j.vetmic.2013.03.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 03/12/2013] [Accepted: 03/19/2013] [Indexed: 10/27/2022]
Abstract
The interspecies transmission of avian-origin H3N2 canine influenza virus (CIV) to dogs was first reported in 2007. The present study characterized a novel CIV H3N2 isolated from cats in an animal shelter. A comparative analysis of the deduced amino acid sequences of the A/Canine/Korea/CY009/2010(H3N2) (CY009) and A/Feline/Korea/FY028/2010 (H3N2) (FY028) strains isolated from dogs and cats, respectively, in the animal shelter identified point mutations in 18 amino acid positions within eight viral genes. Interestingly, CY009 and FY028 replicated well in specific pathogen-free embryonated chicken eggs and in mice, respectively. Mice infected with the FY028 strain exhibited significant over expression of IL-10, TNF-α, and IFN-γ (p<0.001) at 3 days postinfection. Thus, an emergency monitoring system should be developed to identify influenza mutations that occur during interspecies transmission in companion animals and for continuous public health surveillance.
Collapse
Affiliation(s)
- Hye-Young Jeoung
- Animal, Plant and Fisheries Quarantine and Inspection Agency, Anyang, Gyeonggi do 430-824, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Influenza A viruses grow in human pancreatic cells and cause pancreatitis and diabetes in an animal model. J Virol 2012; 87:597-610. [PMID: 23097451 DOI: 10.1128/jvi.00714-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Influenza A viruses commonly cause pancreatitis in naturally and experimentally infected animals. In this study, we report the results of in vivo investigations carried out to establish whether influenza virus infection could cause metabolic disorders linked to pancreatic infection. In addition, in vitro tests in human pancreatic islets and in human pancreatic cell lines were performed to evaluate viral growth and cell damage. Infection of an avian model with two low-pathogenicity avian influenza isolates caused pancreatic damage resulting in hyperlipasemia in over 50% of subjects, which evolved into hyperglycemia and subsequently diabetes. Histopathology of the pancreas showed signs of an acute infection resulting in severe fibrosis and disruption of the structure of the organ. Influenza virus nucleoprotein was detected by immunohistochemistry (IHC) in the acinar tissue. Human seasonal H1N1 and H3N2 viruses and avian H7N1 and H7N3 influenza virus isolates were able to infect a selection of human pancreatic cell lines. Human viruses were also shown to be able to infect human pancreatic islets. In situ hybridization assays indicated that viral nucleoprotein could be detected in beta cells. The cytokine activation profile indicated a significant increase of MIG/CXCL9, IP-10/CXCL10, RANTES/CCL5, MIP1b/CCL4, Groa/CXCL1, interleukin 8 (IL-8)/CXCL8, tumor necrosis factor alpha (TNF-α), and IL-6. Our findings indicate that influenza virus infection may play a role as a causative agent of pancreatitis and diabetes in humans and other mammals.
Collapse
|
33
|
Shriner SA, VanDalen KK, Mooers NL, Ellis JW, Sullivan HJ, Root JJ, Pelzel AM, Franklin AB. Low-pathogenic avian influenza viruses in wild house mice. PLoS One 2012; 7:e39206. [PMID: 22720076 PMCID: PMC3376105 DOI: 10.1371/journal.pone.0039206] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 05/21/2012] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Avian influenza viruses are known to productively infect a number of mammal species, several of which are commonly found on or near poultry and gamebird farms. While control of rodent species is often used to limit avian influenza virus transmission within and among outbreak sites, few studies have investigated the potential role of these species in outbreak dynamics. METHODOLOGY/PRINCIPAL FINDINGS We trapped and sampled synanthropic mammals on a gamebird farm in Idaho, USA that had recently experienced a low pathogenic avian influenza outbreak. Six of six house mice (Mus musculus) caught on the outbreak farm were presumptively positive for antibodies to type A influenza. Consequently, we experimentally infected groups of naïve wild-caught house mice with five different low pathogenic avian influenza viruses that included three viruses derived from wild birds and two viruses derived from chickens. Virus replication was efficient in house mice inoculated with viruses derived from wild birds and more moderate for chicken-derived viruses. Mean titers (EID(50) equivalents/mL) across all lung samples from seven days of sampling (three mice/day) ranged from 10(3.89) (H3N6) to 10(5.06) (H4N6) for the wild bird viruses and 10(2.08) (H6N2) to 10(2.85) (H4N8) for the chicken-derived viruses. Interestingly, multiple regression models indicated differential replication between sexes, with significantly (p<0.05) higher concentrations of avian influenza RNA found in females compared with males. CONCLUSIONS/SIGNIFICANCE Avian influenza viruses replicated efficiently in wild-caught house mice without adaptation, indicating mice may be a risk pathway for movement of avian influenza viruses on poultry and gamebird farms. Differential virus replication between males and females warrants further investigation to determine the generality of this result in avian influenza disease dynamics.
Collapse
Affiliation(s)
- Susan A Shriner
- National Wildlife Research Center, United States Department of Agriculture Animal and Plant Health Inspection Service, Fort Collins, Colorado, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Su JY, Tan LR, Lai P, Liang HC, Qin Z, Ye MR, Lai XP, Su ZR. Experimental study on anti-inflammatory activity of a TCM recipe consisting of the supercritical fluid CO2 extract of Chrysanthemum indicum, Patchouli Oil and Zedoary Turmeric Oil in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2012; 141:608-614. [PMID: 21920423 DOI: 10.1016/j.jep.2011.08.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 08/23/2011] [Accepted: 08/25/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chrysanthemum indicum (Compositae) Linné, Pogostemon cablin (Blanco) Benth and Curcuma wenyujin (Zingiberaceae) Y. H. Chen et C. Ling are three of the extensively used herbal remedies among traditional Chinese medicines for the purpose of anti-inflammation. A traditional Chinese medicine (TCM) recipe named CPZ consisting extracts of the above three herbs, has shown noteworthy anti-influenza activity, which is closely related to its anti-inflammatory feature. AIM OF THIS STUDY To investigated the anti-inflammtory activity of CPZ in vivo for a further exploration of the recipe's anti-inflammatory properties. MATERIALS AND METHODS The anti-inflammatory property of CPZ on acute inflammation was evaluated by inflammatory models of dimethylbenzene (DMB)-induced ear vasodilatation and acetic acid-induced capillary permeability enhancement in mice, as well as the carrageenan-induced paw edema rat model, in which inflammation-related cytokine including prostaglandin E(2) (PGE(2)), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and nitric oxide (NO) in the edematous paw tissue were determined by enzyme linked immunosorbent assay (ELISA). Moreover, effect of CPZ on chronic inflammation was observed through granuloma formation in rats subjected to cotton pellet implantation. RESULTS CPZ (340, 170, and 85 mg/kg for mice, p.o.) not only decreased the DMB-induced ear vasodilatation but also attenuated capillary permeability under acetic acid challenge in mice. And the significant inhibition on carrageenan-induced paw edema was observed. Further more, the ELISA results showed that CPZ (170, 85, and 42.5 mg/kg for rats, p.o.) could up-regulate the level of IL-1β in the edema paw tissue of rats significantly while down-regulate that of PGE(2), but no apparent effect on TNF-α or NO was observed in the test. Besides, CPZ had a certain degree of restraining effect on the cotton pellet-induced granuloma formation in rats and the highest dose of 170 mg/kg even showed a significant suppression on it. CONCLUSION The above results indicated that CPZ possessed a potent anti-inflammatory activity, which is indicated to be closely associated with its regulation on IL-1β and PGE(2) thereby mediating the inflammatory response acting at an appropriate level.
Collapse
Affiliation(s)
- Ji-Yan Su
- Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan 523808, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Peng BH, Yun N, Chumakova O, Zacks M, Campbell G, Smith J, Smith J, Linde S, Linde J, Paessler S. Neuropathology of H5N1 virus infection in ferrets. Vet Microbiol 2012; 156:294-304. [DOI: 10.1016/j.vetmic.2011.11.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 07/05/2011] [Accepted: 11/25/2011] [Indexed: 10/14/2022]
|
36
|
Bröjer C, Ågren EO, Uhlhorn H, Bernodt K, Jansson DS, Gavier-Widén D. Characterization of Encephalitis in Wild Birds Naturally Infected by Highly Pathogenic Avian Influenza H5N1. Avian Dis 2012; 56:144-52. [DOI: 10.1637/9826-060111-reg.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Shoham D. The modes of evolutionary emergence of primal and late pandemic influenza virus strains from viral reservoir in animals: an interdisciplinary analysis. INFLUENZA RESEARCH AND TREATMENT 2011; 2011:861792. [PMID: 23074663 PMCID: PMC3447294 DOI: 10.1155/2011/861792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/30/2011] [Indexed: 11/17/2022]
Abstract
Based on a wealth of recent findings, in conjunction with earliest chronologies pertaining to evolutionary emergences of ancestral RNA viruses, ducks, Influenzavirus A (assumingly within ducks), and hominids, as well as to the initial domestication of mallard duck (Anas platyrhynchos), jungle fowl (Gallus gallus), wild turkey (Meleagris gallopavo), wild boar (Sus scrofa), and wild horse (Equus ferus), presumed genesis modes of primordial pandemic influenza strains have multidisciplinarily been configured. The virological fundamentality of domestication and farming of those various avian and mammalian species has thereby been demonstrated and broadly elucidated, within distinctive coevolutionary paradigms. The mentioned viral genesis modes were then analyzed, compatibly with common denominators and flexibility that mark the geographic profile of the last 18 pandemic strains, which reputedly emerged since 1510, the antigenic profile of the last 10 pandemic strains since 1847, and the genomic profile of the last 5 pandemic strains since 1918, until present. Related ecophylogenetic and biogeographic aspects have been enlightened, alongside with the crucial role of spatial virus gene dissemination by avian hosts. A fairly coherent picture of primary and late evolutionary and genomic courses of pandemic strains has thus been attained, tentatively. Specific patterns underlying complexes prone to generate past and future pandemic strains from viral reservoir in animals are consequentially derived.
Collapse
Affiliation(s)
- Dany Shoham
- The Begin-Sadat Center for Strategic Studies, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
38
|
Lei F, Shi W. Prospective of Genomics in Revealing Transmission, Reassortment and Evolution of Wildlife-Borne Avian Influenza A (H5N1) Viruses. Curr Genomics 2011; 12:466-74. [PMID: 22547954 PMCID: PMC3219842 DOI: 10.2174/138920211797904052] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 07/27/2011] [Accepted: 08/10/2011] [Indexed: 12/24/2022] Open
Abstract
The outbreak of highly pathogenic avian influenza (HPAI) H5N1 disease has led to significant loss of poultry and wild life and case fatality rates in humans of 60%. Wild birds are natural hosts for all avian influenza virus subtypes and over120 bird species have been reported with evidence of H5N1 infection. Influenza A viruses possess a segmented RNA genome and are characterized by frequently occurring genetic reassortment events, which play a very important role in virus evolution and the spread of novel gene constellations in immunologically naïve human and animal populations. Phylogenetic analysis of whole genome or sub-genomic sequences is a standard means for delineating genetic variation, novel reassortment events, and surveillance to trace the global transmission pathways. In this paper, special emphasis is given to the transmission and circulation of H5N1 among wild life populations, and to the reassortment events that are associated with inter-host transmission of the H5N1 viruses when they infect different hosts, such as birds, pigs and humans. In addition, we review the inter-subtype reassortment of the viral segments encoding inner proteins between the H5N1 viruses and viruses of other subtypes, such as H9N2 and H6N1. Finally, we highlight the usefulness of genomic sequences in molecular epidemiological analysis of HPAI H5N1 and the technical limitations in existing analytical methods that hinder them from playing a greater role in virological research.
Collapse
Affiliation(s)
- Fumin Lei
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weifeng Shi
- The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
39
|
Reversion of PB2-627E to -627K during replication of an H5N1 Clade 2.2 virus in mammalian hosts depends on the origin of the nucleoprotein. J Virol 2011; 85:10691-8. [PMID: 21849466 DOI: 10.1128/jvi.00786-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
H5N1 highly pathogenic avian influenza viruses (HPAIV) of clade 2.2 spread from Southeast Asia to Europe. Intriguingly, in contrast to all common avian strains specifying glutamic acid at position 627 of the PB2 protein (PB2-627E), they carry a lysine at this position (PB2-627K), which is normally found only in human strains. To analyze the impact of this mutation on the host range of HPAIV H5N1, we altered PB2-627K to PB2-627E in the European isolate A/Swan/Germany/R65/2006 (R65). In contrast to the parental R65, multicycle growth and polymerase activity of the resulting mutant R65-PB2(K627E) were considerably impaired in mammalian but not in avian cells. Correspondingly, the 50% lethal dose (LD₅₀) in mice was increased by three orders of magnitude, whereas virulence in chicken remained unchanged, resulting in 100% lethality, as was found for the parental R65. Strikingly, R65-PB2(K627E) reverted to PB2-627K after only one passage in mice but did not revert in chickens. To investigate whether additional R65 genes influence reversion, we passaged R65-PB2(K627E) reassortants containing genes from A/Hong Kong/156/97 (H5N1) (carrying PB2-627E), in avian and mammalian cells. Reversion to PB2-627K in mammalian cells required the presence of the R65 nucleoprotein (NP). This finding corresponds to results of others that during replication of avian strains in mammalian cells, PB2-627K restores an impaired PB2-NP association. Since this mutation is apparently not detrimental for virus prevalence in birds, it has not been eliminated. However, the prompt reversion to PB2-627K in MDCK cells and mice suggests that the clade 2.2 H5N1 HPAIV may have had a history of intermediate mammalian hosts.
Collapse
|
40
|
Martell-Moran NK, Mauer WA, Kaneene JB. Assessment of avian influenza surveillance and reporting needs of stakeholders in Michigan, 2007. J Am Vet Med Assoc 2011; 238:1570-83. [PMID: 21671811 DOI: 10.2460/javma.238.12.1570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To identify stakeholders who should be included in a Michigan-based avian influenza surveillance system (AISS) and to describe their avian influenza (AI) surveillance and reporting needs. DESIGN Cross-sectional survey involving a convenience sample of respondents. SAMPLE 272 federal, state, and local governmental and regulatory agency professionals; veterinarians and laboratory professionals in academia; private practice veterinarians; and poultry industry members. PROCEDURES A needs assessment survey that focused on stakeholder identification, current surveillance methods, information sharing, and desired AISS enhancements was administered by mail, and responses were summarized. RESULTS Various AISS stakeholders were identified, among whom the requirements for surveillance information and methods of reporting (including via a World Wide Web-based database, e-mail, and a website) differed. Although 90% of all respondent types indicated that poultry industry representatives were key stakeholders, < 33% of poultry industry respondents indicated that private practice veterinarians and personnel in laboratories or public agencies should be considered stakeholders. The predominant concern (55.4% of respondents) regarding the current AISS was the effectiveness of communication among agencies, industry, and the public. The primary challenge identified by respondents was confidentiality (30.2% of respondents). CONCLUSIONS AND CLINICAL RELEVANCE In Michigan-and potentially in other regions of the United States-integration of Internet-related data systems and stakeholder communication is likely to promote earlier identification of AI, achieve more effective responses to outbreaks, reduce morbidity among humans and other animals, and decrease outbreak-associated financial losses. Stakeholder education and technological safeguard assurances will be essential in AISS enhancement.
Collapse
Affiliation(s)
- Nicole K Martell-Moran
- Center for Comparative Epidemiology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
41
|
The virulence of 1997 H5N1 influenza viruses in the mouse model is increased by correcting a defect in their NS1 proteins. J Virol 2011; 85:7048-58. [PMID: 21593152 DOI: 10.1128/jvi.00417-11] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The NS1 protein of human influenza A viruses binds the 30-kDa subunit of the cleavage and polyadenylation specificity factor (CPSF30), a protein required for 3' end processing of cellular pre-mRNAs, thereby inhibiting production of beta interferon (IFN-β) mRNA. The NS1 proteins of pathogenic 1997 H5N1 viruses contain the CPSF30-binding site but lack the consensus amino acids at positions 103 and 106, F and M, respectively, that are required for the stabilization of CPSF30 binding, resulting in nonoptimal CPSF30 binding in infected cells. Here we have demonstrated that strengthening CPSF30 binding, by changing positions 103 and 106 in the 1997 H5N1 NS1 protein to the consensus amino acids, results in a remarkable 300-fold increase in the lethality of the virus in mice. Unexpectedly, this increase in virulence is not associated with increased lung pathology but rather is characterized by faster systemic spread of the virus, particularly to the brain, where increased replication and severe pathology occur. This increased spread is associated with increased cytokine and chemokine levels in extrapulmonary tissues. We conclude that strengthening CPSF30 binding by the NS1 protein of 1997 H5N1 viruses enhances virulence in mice by increasing the systemic spread of the virus from the lungs, particularly to the brain.
Collapse
|
42
|
van Riel D, Rimmelzwaan GF, van Amerongen G, Osterhaus ADME, Kuiken T. Highly pathogenic avian influenza virus H7N7 isolated from a fatal human case causes respiratory disease in cats but does not spread systemically. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2185-90. [PMID: 20847292 DOI: 10.2353/ajpath.2010.100401] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Highly pathogenic avian influenza viruses (HPAIV) of the H5 and H7 subtypes primarily infect poultry but are occasionally transmitted to humans and other mammalian species, often causing severe disease. Previously we have shown that HPAIV H5N1 causes severe systemic disease in cats. In this study, we investigated whether HPAIV H7N7 isolated from a fatal human case is also able to cause disease in cats. Additionally, we compared the cell tropism of both viruses by immunohistochemistry and virus histochemistry. Three domestic cats were inoculated intratracheally with HPAIV H7N7. Virus excretion was restricted to the pharynx. At necropsy, 7 days post inoculation, lesions were restricted to the respiratory tract in all cats. Lesions consisted of diffuse alveolar damage and colocalized with virus antigen expression in type II pneumocytes and nonciliated bronchiolar cells. The attachment patterns of HPAIV H7N7 and H5N1 were similar: both viruses attached to nonciliated bronchiolar epithelial cells, type II pneumocytes, as well as alveolar macrophages. These data show for the first time that a non-H5 HPAIV is able to infect and cause respiratory disease in cats. The failure of HPAIV H7N7 to spread beyond the respiratory tract was not explained by differences in cell tropism compared to HPAIV H5N1. These findings suggest that HPAIV H5N1 possesses other characteristics that allow it to cause systemic disease in both humans and cats.
Collapse
Affiliation(s)
- Debby van Riel
- Department of Virology, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
43
|
Abdel-Moneim AS, Abdel-Ghany AE, Shany SAS. Isolation and characterization of highly pathogenic avian influenza virus subtype H5N1 from donkeys. J Biomed Sci 2010; 17:25. [PMID: 20398268 PMCID: PMC2867947 DOI: 10.1186/1423-0127-17-25] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 04/14/2010] [Indexed: 11/29/2022] Open
Abstract
Background The highly pathogenic H5N1 is a major avian pathogen that crosses species barriers and seriously affects humans as well as some mammals. It mutates in an intensified manner and is considered a potential candidate for the possible next pandemic with all the catastrophic consequences. Methods Nasal swabs were collected from donkeys suffered from respiratory distress. The virus was isolated from the pooled nasal swabs in specific pathogen free embryonated chicken eggs (SPF-ECE). Reverse transcriptase polymerase chain reaction (RT-PCR) and sequencing of both haemagglutingin and neuraminidase were performed. H5 seroconversion was screened using haemagglutination inhibition (HI) assay on 105 donkey serum samples. Results We demonstrated that H5N1 jumped from poultry to another mammalian host; donkeys. Phylogenetic analysis showed that the virus clustered within the lineage of H5N1 from Egypt, closely related to 2009 isolates. It harboured few genetic changes compared to the closely related viruses from avian and humans. The neuraminidase lacks oseltamivir resistant mutations. Interestingly, HI screening for antibodies to H5 haemagglutinins in donkeys revealed high exposure rate. Conclusions These findings extend the host range of the H5N1 influenza virus, possess implications for influenza virus epidemiology and highlight the need for the systematic surveillance of H5N1 in animals in the vicinity of backyard poultry units especially in endemic areas.
Collapse
Affiliation(s)
- Ahmed S Abdel-Moneim
- Department of Virology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt.
| | | | | |
Collapse
|
44
|
Driskell EA, Jones CA, Stallknecht DE, Howerth EW, Tompkins SM. Avian influenza virus isolates from wild birds replicate and cause disease in a mouse model of infection. Virology 2010; 399:280-9. [PMID: 20123144 DOI: 10.1016/j.virol.2010.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/09/2009] [Accepted: 01/05/2010] [Indexed: 12/09/2022]
Abstract
The direct transmission of highly pathogenic avian influenza (HPAI) viruses to humans in Eurasia and subsequent disease has sparked research efforts leading to better understanding of HPAI virus transmission and pathogenicity in mammals. There has been minimal focus on examining the capacity of circulating low pathogenic wild bird avian influenza viruses to infect mammals. We have utilized a mouse model for influenza virus infection to examine 28 North American wild bird avian influenza virus isolates that include the hemagglutinin subtypes H2, H3, H4, H6, H7, and H11. We demonstrate that many wild bird avian influenza viruses of several different hemagglutinin types replicate in this mouse model without adaptation and induce histopathologic lesions similar to other influenza virus infections but cause minimal morbidity. These findings demonstrate the potential of wild avian influenza viruses to directly infect mice without prior adaptation and support their potential role in emergence of pandemic influenza.
Collapse
|
45
|
(Highly pathogenic) avian influenza as a zoonotic agent. Vet Microbiol 2010; 140:237-45. [DOI: 10.1016/j.vetmic.2009.08.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 07/03/2009] [Accepted: 08/21/2009] [Indexed: 11/24/2022]
|
46
|
Abstract
During the last decade reports of influenza A virus infections in dogs and cats draw considerable attention to veterinary practitioners and scientists in the fields of virology and epidemiology. Earlier experimental studies showed that dogs and cats are susceptible to influenza A virus infection, but animals did not develop clinical signs. In recent years transmission of influenza virus of subtype H3N8 from horses to dogs, however, was accompanied by severe clinical signs and the infection was shown to be transmitted to other pet dog populations in the US. In Asia respiratory disease caused by influenza virus H3N2 was documented in dogs and also a fatal infection with the highly pathogenic avian influenza virus (HPAIV) H5N1 was reported. Transmission of HPAIV H5N1 from infected poultry or wild birds to large felids and domestic cats has been reported from eight countries in Asia and Europe which caused considerable problems and concerns for both veterinary and public health in recent years. Experimentally the infection could also be transmitted from diseased to naive cats. Due to the heterogeneity of influenza viruses in their natural reservoirs of water fowl and the recent clinical natural infections in carnivores with influenza viruses of the subtypes H3 and H5, influenza virus infections should also be considered in dogs and cats with lower respiratory disease. The transmission of influenza A virus to carnivores from different mammalian and avian species may allow viral adaptation and therefore the epidemiological role of infected dogs and cats needs close attention.
Collapse
Affiliation(s)
- Timm C Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | | |
Collapse
|
47
|
De Vleeschauwer A, Atanasova K, Van Borm S, van den Berg T, Rasmussen TB, Uttenthal Å, Van Reeth K. Comparative pathogenesis of an avian H5N2 and a swine H1N1 influenza virus in pigs. PLoS One 2009; 4:e6662. [PMID: 19684857 PMCID: PMC2722722 DOI: 10.1371/journal.pone.0006662] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 07/15/2009] [Indexed: 12/21/2022] Open
Abstract
Pigs are considered intermediate hosts for the transmission of avian influenza viruses (AIVs) to humans but the basic organ pathogenesis of AIVs in pigs has been barely studied. We have used 42 four-week-old influenza naive pigs and two different inoculation routes (intranasal and intratracheal) to compare the pathogenesis of a low pathogenic (LP) H5N2 AIV with that of an H1N1 swine influenza virus. The respiratory tract and selected extra-respiratory tissues were examined for virus replication by titration, immunofluorescence and RT-PCR throughout the course of infection. Both viruses caused a productive infection of the entire respiratory tract and epithelial cells in the lungs were the major target. Compared to the swine virus, the AIV produced lower virus titers and fewer antigen positive cells at all levels of the respiratory tract. The respiratory part of the nasal mucosa in particular showed only rare AIV positive cells and this was associated with reduced nasal shedding of the avian compared to the swine virus. The titers and distribution of the AIV varied extremely between individual pigs and were strongly affected by the route of inoculation. Gross lung lesions and clinical signs were milder with the avian than with the swine virus, corresponding with lower viral loads in the lungs. The brainstem was the single extra-respiratory tissue found positive for virus and viral RNA with both viruses. Our data do not reject the theory of the pig as an intermediate host for AIVs, but they suggest that AIVs need to undergo genetic changes to establish full replication potential in pigs. From a biomedical perspective, experimental LP H5 AIV infection of pigs may be useful to examine heterologous protection provided by H5 vaccines or other immunization strategies, as well as for further studies on the molecular pathogenesis and neurotropism of AIVs in mammals.
Collapse
Affiliation(s)
| | - Kalina Atanasova
- Laboratory of Virology, Faculty of Veterinary Medicine Ghent University, Merelbeke, Belgium
| | - Steven Van Borm
- Avian Virology & Immunology, Veterinary & Agrochemical Research Centre, Brussels, Belgium
| | - Thierry van den Berg
- Avian Virology & Immunology, Veterinary & Agrochemical Research Centre, Brussels, Belgium
| | | | - Åse Uttenthal
- National Veterinary Institute, Technical University of Denmark, Kalvehave, Denmark
| | - Kristien Van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine Ghent University, Merelbeke, Belgium
- * E-mail:
| |
Collapse
|
48
|
Characterization of the H5N1 highly pathogenic avian influenza virus derived from wild pikas in China. J Virol 2009; 83:8957-64. [PMID: 19553321 DOI: 10.1128/jvi.00793-09] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The highly pathogenic H5N1 avian influenza virus emerged from China in 1996 and has spread across Eurasia and Africa, with a continuous stream of new cases of human infection appearing since the first large-scale outbreak among migratory birds at Qinghai Lake. The role of wild birds, which are the natural reservoirs for the virus, in the epidemiology of the H5N1 virus has raised great public health concern, but their role in the spread of the virus within the natural ecosystem of free-ranging terrestrial wild mammals remains unclear. In this study, we investigated H5N1 virus infection in wild pikas in an attempt to trace the circulation of the virus. Seroepidemiological surveys confirmed a natural H5N1 virus infection of wild pikas in their native environment. The hemagglutination gene of the H5N1 virus isolated from pikas reveals two distinct evolutionary clades, a mixed/Vietnam H5N1 virus sublineage (MV-like pika virus) and a wild bird Qinghai (QH)-like H5N1 virus sublineage (QH-like pika virus). The amino acid residue (glutamic acid) at position 627 encoded by the PB2 gene of the MV-like pika virus was different from that of the QH-like pika virus; the residue of the MV-like pika virus was the same as that of the goose H5N1 virus (A/GS/Guangdong [GD]/1/96). Further, we discovered that in contrast to the MV-like pika virus, which is nonpathogenic to mice, the QH-like pika virus is highly pathogenic. To mimic the virus infection of pikas, we intranasally inoculated rabbits, a species closely related to pikas, with the H5N1 virus of pika origin. Our findings first demonstrate that wild pikas are mammalian hosts exposed to H5N1 subtype avian influenza viruses in the natural ecosystem and also imply a potential transmission of highly pathogenic avian influenza virus from wild mammals into domestic mammalian hosts and humans.
Collapse
|
49
|
Liu D, Liu X, Yan J, Liu WJ, Gao GF. Interspecies transmission and host restriction of avian H5N1 influenza virus. ACTA ACUST UNITED AC 2009; 52:428-38. [PMID: 19471865 PMCID: PMC7089370 DOI: 10.1007/s11427-009-0062-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 04/18/2009] [Indexed: 12/15/2022]
Abstract
Long-term endemicity of avian H5N1 influenza virus in poultry and continuous sporadic human infections in several countries has raised the concern of another potential pandemic influenza. Suspicion of the avian origin of the previous pandemics results in the close investigation of the mechanism of interspecies transmission. Entry and fusion is the first step for the H5N1 influenza virus to get into the host cells affecting the host ranges. Therefore receptor usage study has been a major focus for the last few years. We now know the difference of the sialic acid structures and distributions in different species, even in the different parts of the same host. Many host factors interacting with the influenza virus component proteins have been identified and their role in the host range expansion and interspecies transmission is under detailed scrutiny. Here we review current progress in the receptor usage and host factors.
Collapse
Affiliation(s)
- Di Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology (CASPMI), Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | | | | | | | | |
Collapse
|
50
|
de Wit E, Kawaoka Y, de Jong MD, Fouchier RAM. Pathogenicity of highly pathogenic avian influenza virus in mammals. Vaccine 2009; 26 Suppl 4:D54-8. [PMID: 19230161 DOI: 10.1016/j.vaccine.2008.07.072] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In recent years, there has been an increase in outbreaks of highly pathogenic avian influenza (HPAI) in poultry. Occasionally, these outbreaks have resulted in transmission of influenza viruses to humans and other mammals, with symptoms ranging from conjunctivitis to pneumonia and death. Here, the current knowledge of the determinants of pathogenicity of HPAI viruses in mammals is summarized. It is becoming apparent that common mechanisms exist across influenza A virus strains and subtypes, through which influenza viruses adapt to mammals and gain or loose pathogenicity.
Collapse
Affiliation(s)
- Emmie de Wit
- Department of Virology and National Influenza Center, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | | | | | | |
Collapse
|