1
|
Chen X, Jiang J, Hu L, Su X, Zhang Z, Zhang X, Zhong T, Huang J, Wu S, Liu L, Chen J, Zheng L, Wang X. Label-Free Detection of Breast Phyllodes Tumors Based on Multiphoton Microscopy. JOURNAL OF BIOPHOTONICS 2025; 18:e202400392. [PMID: 39520220 DOI: 10.1002/jbio.202400392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Phyllodes tumors (PTs) are rare breast stroma neoplasms, and their accurate identification at various stages is essential for personalized patient treatment. In this study, multiphoton microscopy (MPM) with two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) imaging was used for label-free detection and differentiation of PTs and normal breast tissue. An automated image processing strategy was developed to quantify changes in collagen fiber morphology within the stroma and boundary of PTs, establishing optical diagnostic characteristics of PTs using MPM. The results demonstrated that MPM could be used for the detection of different stages of PTs, and the morphological alterations in collagen fibers could serve as critical indicators of PT malignancy, offering new insights for the diagnosis and grading of benign, borderline, and malignant PTs. It lays the groundwork for the future application of compact MPM for the rapid detection and diagnosis of PTs.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Junzhen Jiang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Liwen Hu
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoli Su
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zheng Zhang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Xiong Zhang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Tao Zhong
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Jianping Huang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Shulian Wu
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Lina Liu
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Liqin Zheng
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Xingfu Wang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Pathology, Jianning General Hospital, Sanming, China
| |
Collapse
|
2
|
Wang W, Wen J, Sheng Y, Wei C, Kong C, Liu Y, Wei X, Yang Z. Shot-Noise Limited Nonlinear Optical Imaging Excited With GHz Femtosecond Pulses and Denoised by Deep-Learning. JOURNAL OF BIOPHOTONICS 2024; 17:e202400186. [PMID: 39218434 DOI: 10.1002/jbio.202400186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Multiphoton fluorescence microscopy excited with femtosecond pulses at high repetition rates, particularly in the range of 100's MHz to GHz, offers an alternative solution to suppress photoinduced damage to biological samples, for example, photobleaching. Here, we demonstrate the use of a U-Net-based deep-learning algorithm for suppressing the inherent shot noise of the two-photon fluorescence images excited with GHz femtosecond pulses. With the trained denoising neural network, the image quality of the representative two-photon fluorescence images of the biological samples is shown to be significantly improved. Moreover, for input raw images with even SNR reduced to -4.76 dB, the trained denoising network can recover the main image structure from noise floor with acceptable fidelity and spatial resolution. It is anticipated that the combination of GHz femtosecond pulses and deep-learning denoising algorithm can be a promising solution for eliminating the trade-off between photoinduced damage and image quality in nonlinear optical imaging platforms.
Collapse
Affiliation(s)
- Wenlong Wang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
- State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
- Research Institute of Future Technology, South China University of Technology, Guangzhou, China
| | - Junpeng Wen
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
- State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
- Research Institute of Future Technology, South China University of Technology, Guangzhou, China
| | - Yuke Sheng
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
- State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
- Research Institute of Future Technology, South China University of Technology, Guangzhou, China
| | - Chiyi Wei
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
- State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
- Research Institute of Future Technology, South China University of Technology, Guangzhou, China
| | - Cihang Kong
- Institutes for Translational Brain Research, Fudan University, Shanghai, China
| | - Yalong Liu
- Guangzhou Yangming Laser Technology Co., Ltd, Guangzhou, China
| | - Xiaoming Wei
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
| | - Zhongmin Yang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
- Research Institute of Future Technology, South China Normal University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Kuan CH, Tai KY, Lu SC, Wu YF, Wu PS, Kwang N, Wang WH, Mai-Yi Fan S, Wang SH, Chien HF, Lai HS, Lin MH, Plikus MV, Lin SJ. Delayed Collagen Production without Myofibroblast Formation Contributes to Reduced Scarring in Adult Skin Microwounds. J Invest Dermatol 2024; 144:1124-1133.e7. [PMID: 38036291 DOI: 10.1016/j.jid.2023.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/02/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
In adult mammals, wound healing predominantly follows a fibrotic pathway, culminating in scar formation. However, cutaneous microwounds generated through fractional photothermolysis, a modality that produces a constellation of microthermal zones, exhibit a markedly different healing trajectory. Our study delineates the cellular attributes of these microthermal zones, underscoring a temporally limited, subclinical inflammatory milieu concomitant with rapid re-epithelialization within 24 hours. This wound closure is facilitated by the activation of genes associated with keratinocyte migration and differentiation. In contrast to macrothermal wounds, which predominantly heal through a robust myofibroblast-mediated collagen deposition, microthermal zones are characterized by absence of wound contraction and feature delayed collagen remodeling, initiating 5-6 weeks after injury. This distinct wound healing is characterized by a rapid re-epithelialization process and a muted inflammatory response, which collectively serve to mitigate excessive myofibroblast activation. Furthermore, we identify an initial reparative phase characterized by a heterogeneous extracellular matrix protein composition, which precedes the delayed collagen remodeling. These findings extend our understanding of cutaneous wound healing and may have significant implications for the optimization of therapeutic strategies aimed at mitigating scar formation.
Collapse
Affiliation(s)
- Chen-Hsiang Kuan
- Graduate Institute of Clinical Research, College of Medicine, National Taiwan University, Taipei, Taiwan; Division of Plastic Surgery, Department of Surgery, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Kang-Yu Tai
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Shao-Chi Lu
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Yueh-Feng Wu
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Pei-Shan Wu
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Nellie Kwang
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Wei-Hung Wang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Sabrina Mai-Yi Fan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Shiou-Han Wang
- Department of Dermatology, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
| | - Hsiung-Fei Chien
- Division of Plastic Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan; TMU Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hong-Shiee Lai
- Department of Surgery, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan; Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Miao-Hsia Lin
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, USA
| | - Sung-Jan Lin
- Graduate Institute of Clinical Research, College of Medicine, National Taiwan University, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; Center for Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
4
|
Deng L, Fan Z, Chen B, Zhai H, He H, He C, Sun Y, Wang Y, Ma H. A Dual-Modality Imaging Method Based on Polarimetry and Second Harmonic Generation for Characterization and Evaluation of Skin Tissue Structures. Int J Mol Sci 2023; 24:ijms24044206. [PMID: 36835613 PMCID: PMC9966533 DOI: 10.3390/ijms24044206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The characterization and evaluation of skin tissue structures are crucial for dermatological applications. Recently, Mueller matrix polarimetry and second harmonic generation microscopy have been widely used in skin tissue imaging due to their unique advantages. However, the features of layered skin tissue structures are too complicated to use a single imaging modality for achieving a comprehensive evaluation. In this study, we propose a dual-modality imaging method combining Mueller matrix polarimetry and second harmonic generation microscopy for quantitative characterization of skin tissue structures. It is demonstrated that the dual-modality method can well divide the mouse tail skin tissue specimens' images into three layers of stratum corneum, epidermis, and dermis. Then, to quantitatively analyze the structural features of different skin layers, the gray level co-occurrence matrix is adopted to provide various evaluating parameters after the image segmentations. Finally, to quantitatively measure the structural differences between damaged and normal skin areas, an index named Q-Health is defined based on cosine similarity and the gray-level co-occurrence matrix parameters of imaging results. The experiments confirm the effectiveness of the dual-modality imaging parameters for skin tissue structure discrimination and assessment. It shows the potential of the proposed method for dermatological practices and lays the foundation for further, in-depth evaluation of the health status of human skin.
Collapse
Affiliation(s)
- Liangyu Deng
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhipeng Fan
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Binguo Chen
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Haoyu Zhai
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Honghui He
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Correspondence: (H.H.); (C.H.)
| | - Chao He
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Correspondence: (H.H.); (C.H.)
| | - Yanan Sun
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hui Ma
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Department of Physics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Jiang S, Qian S, Zhou L, Meng J, Jiang R, Wang C, Fang X, Yang C, Ding Z, Zhuo S, Liu Z. Mapping the 3D remodeling of the extracellular matrix in human hypertrophic scar by multi-parametric multiphoton imaging using endogenous contrast. Heliyon 2023; 9:e13653. [PMID: 36873151 PMCID: PMC9975259 DOI: 10.1016/j.heliyon.2023.e13653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
The hypertrophic scar is an aberrant form of wound healing process, whose clinical efficacy is limited by a lack of understanding of its pathophysiology. Remodeling of collagen and elastin fibers in the extracellular matrix (ECM) is closely associated with scar progression. Herein, we perform label-free multiphoton microscopy (MPM) of both fiber components from human skin specimens and propose a multi-fiber metrics (MFM) analysis model for mapping the structural remodeling of the ECM in hypertrophic scars in a highly-sensitive, three-dimensional (3D) manner. We find that both fiber components become wavier and more disorganized in scar tissues, while content accumulation is observed from elastin fibers only. The 3D MFM analysis can effectively distinguish normal and scar tissues with better than 95% in accuracy and 0.999 in the area under the curve value of the receiver operating characteristic curve. Further, unique organizational features with orderly alignment of both fibers are observed in scar-normal adjacent regions, and an optimized combination of features from 3D MFM analysis enables successful identification of all the boundaries. This imaging and analysis system uncovers the 3D architecture of the ECM in hypertrophic scars and exhibits great translational potential for evaluating scars in vivo and identifying individualized treatment targets.
Collapse
Affiliation(s)
- Shenyi Jiang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Shuhao Qian
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Lingxi Zhou
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jia Meng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Rushan Jiang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Chuncheng Wang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xinguo Fang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Chen Yang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhihua Ding
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Shuangmu Zhuo
- School of Science, Jimei University, Xiamen, Fujian, 361021, China
| | - Zhiyi Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang, 310027, China.,Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing, 314000, China.,Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, 314000, China
| |
Collapse
|
6
|
Pena AM, Baldeweck T, Decencière E, Koudoro S, Victorin S, Raynaud E, Ngo B, Bastien P, Brizion S, Tancrède-Bohin E. In vivo multiphoton multiparametric 3D quantification of human skin aging on forearm and face. Sci Rep 2022; 12:14863. [PMID: 36050338 PMCID: PMC9437074 DOI: 10.1038/s41598-022-18657-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Quantifying skin aging changes and characterizing its 3D structure and function in a non-invasive way is still a challenging area of research, constantly evolving with the development of imaging methods and image analysis tools. In vivo multiphoton imaging offers means to assess skin constituents in 3D, however prior skin aging studies mostly focused on 2D analyses of dermal fibers through their signals’ intensities or densities. In this work, we designed and implemented multiphoton multiparametric 3D quantification tools for in vivo human skin pigmentation and aging characterization. We first demonstrated that despite the limited field of view of the technic, investigation of 2 regions of interest (ROIs) per zone per volunteer is a good compromise in assessing 3D skin constituents in both epidermis and superficial dermis. We then characterized skin aging on different UV exposed areas—ventral and dorsal forearms, face. The three major facts of aging that are epidermal atrophy, the dermal–epidermal junction (DEJ) flattening and dermal elastosis can be non-invasively quantified and compared. Epidermal morphological changes occur late and were only objectified between extreme age groups. Melanin accumulation in suprabasal layers with age and chronic exposure on ventral and dorsal forearms is less known and appears earlier. Superficial dermal aging changes are mainly elastin density increase, with no obvious change in collagen density, reflected by SHGto2PEF ratio and SAAID index decrease and ImbrN index increase on all skin areas. Analysis of the z-dermal distribution of these parameters highlighted the 2nd 20 µm thickness normalized dermal sub-layer, that follows the DEJ shape, as exhibiting the highest aging differences. Moreover, the 3D ImbrN index allows refining the share of photoaging in global aging on face and the 3D SAAID index on forearm, which elastin or fibrillar collagens densities alone do not allow. Photoaging of the temple area evolves as a function of chronic exposure with a more pronounced increase in elastin density, also structurally modified from thin and straight elastic fibers in young volunteers to dense and compact pattern in older ones. More generally, multiphoton multiparametric 3D skin quantification offers rich spatial information of interest in assessing normal human skin condition and its pathological, external environment or product induced changes.
Collapse
Affiliation(s)
- Ana-Maria Pena
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, BP22, 93601, Aulnay-sous-Bois, France.
| | - Thérèse Baldeweck
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, BP22, 93601, Aulnay-sous-Bois, France
| | | | - Serge Koudoro
- MINES ParisTech-PSL Research University, Fontainebleau, France
| | - Steeve Victorin
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, BP22, 93601, Aulnay-sous-Bois, France
| | - Edouard Raynaud
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, BP22, 93601, Aulnay-sous-Bois, France
| | - Blandine Ngo
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, BP22, 93601, Aulnay-sous-Bois, France
| | - Philippe Bastien
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, BP22, 93601, Aulnay-sous-Bois, France
| | - Sébastien Brizion
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, BP22, 93601, Aulnay-sous-Bois, France
| | - Emmanuelle Tancrède-Bohin
- L'Oréal Research and Innovation, Campus Charles Zviak RIO, 9 rue Pierre Dreyfus, Clichy, France. .,Service de Dermatologie, Hôpital Saint-Louis, Paris, France.
| |
Collapse
|
7
|
Malciu AM, Lupu M, Voiculescu VM. Artificial Intelligence-Based Approaches to Reflectance Confocal Microscopy Image Analysis in Dermatology. J Clin Med 2022; 11:jcm11020429. [PMID: 35054123 PMCID: PMC8780225 DOI: 10.3390/jcm11020429] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/22/2022] Open
Abstract
Reflectance confocal microscopy (RCM) is a non-invasive imaging method designed to identify various skin diseases. Confocal based diagnosis may be subjective due to the learning curve of the method, the scarcity of training programs available for RCM, and the lack of clearly defined diagnostic criteria for all skin conditions. Given that in vivo RCM is becoming more widely used in dermatology, numerous deep learning technologies have been developed in recent years to provide a more objective approach to RCM image analysis. Machine learning-based algorithms are used in RCM image quality assessment to reduce the number of artifacts the operator has to view, shorten evaluation times, and decrease the number of patient visits to the clinic. However, the current visual method for identifying the dermal-epidermal junction (DEJ) in RCM images is subjective, and there is a lot of variation. The delineation of DEJ on RCM images could be automated through artificial intelligence, saving time and assisting novice RCM users in studying the key DEJ morphological structure. The purpose of this paper is to supply a current summary of machine learning and artificial intelligence’s impact on the quality control of RCM images, key morphological structures identification, and detection of different skin lesion types on static RCM images.
Collapse
Affiliation(s)
- Ana Maria Malciu
- Department of Dermatology, Elias University Emergency Hospital, 011461 Bucharest, Romania;
| | - Mihai Lupu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (M.L.); (V.M.V.)
| | - Vlad Mihai Voiculescu
- Department of Dermatology, Elias University Emergency Hospital, 011461 Bucharest, Romania;
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (M.L.); (V.M.V.)
| |
Collapse
|
8
|
Quantitative Multispectral Imaging Differentiates Melanoma from Seborrheic Keratosis. Diagnostics (Basel) 2021; 11:diagnostics11081315. [PMID: 34441250 PMCID: PMC8392390 DOI: 10.3390/diagnostics11081315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/27/2022] Open
Abstract
Melanoma is a melanocytic tumor that is responsible for the most skin cancer-related deaths. By contrast, seborrheic keratosis (SK) is a very common benign lesion with a clinical picture that may resemble melanoma. We used a multispectral imaging device to distinguish these two entities, with the use of autofluorescence imaging with 405 nm and diffuse reflectance imaging with 525 and 660 narrow-band LED illumination. We analyzed intensity descriptors of the acquired images. These included ratios of intensity values of different channels, standard deviation and minimum/maximum values of intensity of the lesions. The pattern of the lesions was also assessed with the use of particle analysis. We found significantly higher intensity values in SKs compared with melanoma, especially with the use of the autofluorescence channel. Moreover, we found a significantly higher number of particles with high fluorescence in SKs. We created a parameter, the SK index, using these values to differentiate melanoma from SK with a sensitivity of 91.9% and specificity of 57.0%. In conclusion, this imaging technique is potentially applicable to distinguish melanoma from SK based on the analysis of various quantitative parameters. For this application, multispectral imaging could be used as a screening tool by general physicians and non-experts in the everyday practice.
Collapse
|
9
|
Csuka EA, Ward SC, Ekelem C, Csuka DA, Ardigò M, Mesinkovska NA. Reflectance Confocal Microscopy, Optical Coherence Tomography, and Multiphoton Microscopy in Inflammatory Skin Disease Diagnosis. Lasers Surg Med 2021; 53:776-797. [PMID: 33527483 DOI: 10.1002/lsm.23386] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND OBJECTIVES Technological advances in medicine have brought about many novel skin imaging devices. This review aims to evaluate the scientific evidence supporting the use of noninvasive optical imaging techniques to aid in the diagnosis and prognosis of inflammatory skin diseases. STUDY DESIGN/MATERIALS AND METHODS PubMed and Scopus were searched in September 2020 according to PRISMA guidelines for articles using reflectance confocal microscopy (RCM), optical coherence tomography (OCT), and multiphoton microscopy (MPM) in inflammatory skin diseases, excluding studies monitoring treatment efficacy. RESULTS At the time of the study, there were 66 articles that addressed the utilization of noninvasive imaging in interface, spongiotic, psoriasiform, vesiculobullous, and fibrosing/sclerosing inflammatory skin dermatoses: RCM was utilized in 46, OCT in 16, and MPM in 5 articles. RCM was most investigated in psoriasiform dermatoses, whereas OCT and MPM were both most investigated in spongiotic dermatoses, including atopic dermatitis and allergic contact dermatitis. CONCLUSIONS There is preliminary evidence to support the diagnostic potential of noninvasive optical imaging techniques in inflammatory skin diseases. Improvements in the devices and further correlation with histology will help broaden their utility. Additional studies are needed to determine the parameters for diagnostic features, disease differentiation, and staging of inflammatory skin conditions. Lasers Surg. Med. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Ella A Csuka
- Department of Dermatology, University of California, Irvine, Irvine, California, 92697
| | - Suzanne C Ward
- Department of Dermatology, University of California, Irvine, Irvine, California, 92697
| | - Chloe Ekelem
- Department of Dermatology, University of California, Irvine, Irvine, California, 92697
| | - David A Csuka
- Department of Dermatology, University of California, Irvine, Irvine, California, 92697
| | - Marco Ardigò
- San Gallicano Dermatological Institute-IRCCS, Via Chianesi 53, Rome, 00144, Italy
| | - Natasha A Mesinkovska
- Department of Dermatology, University of California, Irvine, Irvine, California, 92697
| |
Collapse
|
10
|
Malak M, Grantham J, Ericson MB. Monitoring calcium-induced epidermal differentiation in vitro using multiphoton microscopy. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-11. [PMID: 32388932 PMCID: PMC7210787 DOI: 10.1117/1.jbo.25.7.071205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Research in tissue engineering and in vitro organ formation has recently intensified. To assess tissue morphology, the method of choice today is restricted primarily to histology. Thus novel tools are required to enable noninvasive, and preferably label-free, three-dimensional imaging that is more compatible with futuristic organ-on-a-chip models. AIM We investigate the potential for using multiphoton microscopy (MPM) as a label-free in vitro approach to monitor calcium-induced epidermal differentiation. APPROACH In vitro epidermis was cultured at the air-liquid interface in varying calcium concentrations. Morphology and tissue architecture were investigated using MPM based on visualizing cellular autofluorescence. RESULTS Distinct morphologies corresponding to epidermal differentiation were observed. In addition, Ca2 + -induced effects could be distinguished based on the architectural differences in stratification in the tissue cultures. CONCLUSIONS Our study shows that MPM based on cellular autofluorescence enables visualization of Ca2 + -induced differentiation in epidermal skin models in vitro. The technique has potential to be further adapted as a noninvasive, label-free, and real-time tool to monitor tissue regeneration and organ formation in vitro.
Collapse
Affiliation(s)
- Monika Malak
- University of Gothenburg, Biomedical Photonics Group, Department of Chemistry and Molecular Biology, Faculty of Science, Gothenburg, Sweden
| | - Julie Grantham
- University of Gothenburg, Department of Chemistry and Molecular Biology, Faculty of Science, Gothenburg, Sweden
| | - Marica B. Ericson
- University of Gothenburg, Biomedical Photonics Group, Department of Chemistry and Molecular Biology, Faculty of Science, Gothenburg, Sweden
| |
Collapse
|
11
|
Pena AM, Chen X, Pence IJ, Bornschlögl T, Jeong S, Grégoire S, Luengo GS, Hallegot P, Obeidy P, Feizpour A, Chan KF, Evans CL. Imaging and quantifying drug delivery in skin - Part 2: Fluorescence andvibrational spectroscopic imaging methods. Adv Drug Deliv Rev 2020; 153:147-168. [PMID: 32217069 PMCID: PMC7483684 DOI: 10.1016/j.addr.2020.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 01/31/2023]
Abstract
Understanding the delivery and diffusion of topically-applied drugs on human skin is of paramount importance in both pharmaceutical and cosmetics research. This information is critical in early stages of drug development and allows the identification of the most promising ingredients delivered at optimal concentrations to their target skin compartments. Different skin imaging methods, invasive and non-invasive, are available to characterize and quantify the spatiotemporal distribution of a drug within ex vivo and in vivo human skin. The first part of this review detailed invasive imaging methods (autoradiography, MALDI and SIMS). This second part reviews non-invasive imaging methods that can be applied in vivo: i) fluorescence (conventional, confocal, and multiphoton) and second harmonic generation microscopies and ii) vibrational spectroscopic imaging methods (infrared, confocal Raman, and coherent Raman scattering microscopies). Finally, a flow chart for the selection of imaging methods is presented to guide human skin ex vivo and in vivo drug delivery studies.
Collapse
Affiliation(s)
- Ana-Maria Pena
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93600 Aulnay-sous-Bois, France
| | - Xueqin Chen
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93600 Aulnay-sous-Bois, France
| | - Isaac J Pence
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, CNY149-3, 13(th) St, Charlestown, MA 02129, United States of America
| | - Thomas Bornschlögl
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93600 Aulnay-sous-Bois, France
| | - Sinyoung Jeong
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, CNY149-3, 13(th) St, Charlestown, MA 02129, United States of America
| | - Sébastien Grégoire
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93600 Aulnay-sous-Bois, France.
| | - Gustavo S Luengo
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93600 Aulnay-sous-Bois, France
| | - Philippe Hallegot
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93600 Aulnay-sous-Bois, France
| | - Peyman Obeidy
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, CNY149-3, 13(th) St, Charlestown, MA 02129, United States of America
| | - Amin Feizpour
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, CNY149-3, 13(th) St, Charlestown, MA 02129, United States of America
| | - Kin F Chan
- Simpson Interventions, Inc., Woodside, CA 94062, United States of America
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, CNY149-3, 13(th) St, Charlestown, MA 02129, United States of America.
| |
Collapse
|
12
|
Hong S, Park J, Kim JE, Park D, Kim S, Kang JY, Lee JY, Hong WJ, Jeon H, Lee H, Kim JW. Fabrication of cell membrane-adhesive soft polymeric nanovehicles for noninvasive visualization of epidermal-dermal junction-targeted drug delivery. Int J Pharm 2019; 565:233-241. [DOI: 10.1016/j.ijpharm.2019.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/08/2023]
|
13
|
Martins PP, Estrada AD, Smyth HDC. A human skin high-throughput formulation screening method using a model hydrophilic drug. Int J Pharm 2019; 565:557-568. [PMID: 31102803 DOI: 10.1016/j.ijpharm.2019.05.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/08/2023]
Abstract
Franz cell (FC) experiments in topical and transdermal drug development represent the gold standard in vitro method but require a relatively high quantity of human skin, are low-throughput, and are time-consuming to perform. To address these issues, we studied a micro-well plate-based screening method for permeability and retention that could enable the direct screening of large numbers of formulations simultaneously across human skin. Using freshly excised dermatomed human skin modified to reflect poor barrier function and a model hydrophilic compound, Sulforhodamine B (SRB), FC permeation and retention quantification was compared to the 96-well high-throughput system (HTS). The skin was analyzed using 2-photon microscopy to determine the drug distribution within the skin. A screen of 15 different formulations in triplicate in a single piece of human skin, using full factorial design was then conducted. Permeability of SRB across the skin as well as the drug distribution profile of SRB retained in the skin were similar for the FC and HTS system. The influence of different excipients on drug retention was observed in the full factorial formulation screen. The HTS method is promising for the investigation of large numbers of formulations and the influence of formulations changes in skin retention of drug.
Collapse
Affiliation(s)
- Patricia P Martins
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, United States
| | - Arnold D Estrada
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, United States
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
14
|
Intravital multiphoton microscopic imaging platform for ocular surface imaging. Exp Eye Res 2019; 182:194-201. [PMID: 30822399 DOI: 10.1016/j.exer.2019.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/08/2019] [Accepted: 02/20/2019] [Indexed: 01/19/2023]
Abstract
The purpose of this study is to provide an intravital noninvasive multiphoton microscopic platform for long-term ocular imaging in transgenic fluorescent mice with subcellular resolution. A multiphoton microscopic system with tunable laser output was employed. We designed a mouse holder incorporated with stereotaxic motorized stage for in vivo three-dimensional imaging of ocular surface in 3 transgenic mouse line with fluorescent protein (FP) expression to visualize distinct structures. With our imaging platform and the expression of FPs, we obtained the three-dimensional images across the whole cornea from epithelium to endothelium and in conjunctiva with subcellular resolution in vivo. Specified EGFP expression in corneal epithelium of K5-H2B-EGFP mice helped to identify both corneal and limbal epithelial cells while ubiquitous nuclear FP expression in R26R-GR mice allowed us to visualized nuclei of all cell types. Universal membrane-localized FP in mT/mG mice outlined all cell boundaries, nerve fibers, and capillaries. The simultaneously collected second harmonic generation signals from collagenous stroma provided architectural contrast. Time-lapsed recording enabled monitoring the mitotic activity of corneal epithelial cells and limbal epithelial cells. We developed an intravital multiphoton microscopic stereotaxic imaging platform and showed that, by incorporating FP-expressing transgenic mice, this platform enables in vivo 4-dimensional ophthalmic study at subcellular resolution.
Collapse
|
15
|
Wu YF, Tan HY, Lin SJ. Long-Term Intravital Imaging of the Cornea, Skin, and Hair Follicle by Multiphoton Microscope. Methods Mol Biol 2019; 2150:131-140. [PMID: 30969402 DOI: 10.1007/7651_2019_227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiphoton microscopy allows long-term direct visualization of cells in live animals due to its low photodamage. When coupled with fluorescence protein targeting and second harmonic generation signals from natural collagen as contrast, multiphoton microscopy enables intravital tracing of cells while providing structural information from the extracellular matrix. Compared with conventional histological analysis, it can bring new insight into the cell dynamics in stem cell research. Here, we demonstrate cell imaging and tracing at a single cell resolution in the cornea, skin, and hair follicles using multiphoton microscopy in transgenic mice of which specific cell populations are tagged with fluorescent proteins.
Collapse
Affiliation(s)
- Yueh-Feng Wu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yuan Tan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Sung-Jan Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan. .,Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan. .,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
16
|
Kochueva M, Dudenkova V, Kuznetsov S, Varlamova A, Sergeeva E, Kiseleva E, Maslennikova A. Quantitative assessment of radiation-induced changes of bladder and rectum collagen structure using optical methods. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-8. [PMID: 30136470 DOI: 10.1117/1.jbo.23.9.091417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
The objective of the study is the quantitative analysis of the dose-time dependences of changes occurring in collagen of bladder and rectum after gamma-irradiation using optical methods [nonlinear microscopy in a second harmonic generation (SHG) detection regime and cross-polarization optical coherence tomography (CP OCT)]. For quantitative assessment of the collagen structure, regions of interest on the SHG-images of two-dimensional (2-D) distribution of SHG signal intensity of collagen were chosen in the submucosa. The mean SHG signal intensity and its standard deviation were calculated by ImageJ 1.39p (NIH). For quantitative analysis of CP OCT data, an integral depolarization factor (IDF) was calculated. Quantitative calculation of the SHG signal intensity and the IDF can provide additional information about the processes of the collagen radiation-induced degradation and subsequent remodeling. High positive correlation between the mean SHG signal intensity and the mean IDF of bladder and rectum demonstrates that CP OCT can be used as an "optical biopsy" in the grading of collagen radiation damage.
Collapse
Affiliation(s)
- Marina Kochueva
- Nizhny Novgorod State Medical Academy (NNSMA), Department of Oncology, Radiation Therapy, Radiation, Russia
| | - Varvara Dudenkova
- NNSMA, Institute of Biomedical Technologies, Laboratory of Studying Optical Structure of Biotissues,, Russia
| | - Sergey Kuznetsov
- NNSMA, Department of Pathological Anatomy, Nizhny Novgorod, Russia
| | - Angelina Varlamova
- Lobachevsky State University, Institute of Biology and Biomedicine, Department of Biophysics, Gagari, Russia
| | - Ekaterina Sergeeva
- Institute of Applied Physics RAS, Laboratory for Optical Techniques, Department for Radiophysics Met, Russia
| | - Elena Kiseleva
- NNSMA, Institute of Biomedical Technologies, Laboratory of Studying Optical Structure of Biotissues,, Russia
| | - Anna Maslennikova
- Nizhny Novgorod State Medical Academy (NNSMA), Department of Oncology, Radiation Therapy, Radiation, Russia
- Lobachevsky State University, Institute of Biology and Biomedicine, Department of Biophysics, Gagari, Russia
| |
Collapse
|
17
|
|
18
|
Pal R, Edward K, Ma L, Qiu S, Vargas G. Spectroscopic characterization of oral epithelial dysplasia and squamous cell carcinoma using multiphoton autofluorescence micro-spectroscopy. Lasers Surg Med 2017; 49:866-873. [PMID: 28677822 DOI: 10.1002/lsm.22697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Multiphoton autofluorescence microscopy (MPAM) has shown potential in identifying features that are directly related to tissue microstructural and biochemical changes throughout epithelial neoplasia. In this study, we evaluate the autofluorescence spectral characteristics of neoplastic epithelium in dysplasia and oral squamous cell carcinoma (OSCC) using multiphoton autofluorescence spectroscopy (MPAS) in an in vivo hamster model of oral neoplasia in order to identify unique signatures that could be used to delineate normal oral mucosa from neoplasia. MATERIALS/METHODS A 9,10-dimethyl-1,2-benzanthracene (DMBA) hamster model of oral precancer and OSCC was used for in vivo MPAM and MPAS. Multiphoton Imaging and spectroscopy were performed with 780 nm excitation while a bandpass emission 450-650 nm was used for MPAM. Autofluorescence spectra was collected in the spectral window of 400-650 nm. RESULTS MPAS with fluorescence excitation at 780 nm revealed an overall red shift of a primary blue-green peak (480-520 nm) that is attributed to NADH and FAD. In the case of oral squamous cell carcinoma (OSCC) and some high-grade dysplasia an additional prominent peak at 635 nm, attributed to PpIX was observed. The fluorescence intensity at 635 nm and an intensity ratio of the primary blue-green peak versus 635 nm peak, showed statistically significant difference between control and neoplastic tissue. DISCUSSION Neoplastic transformation in the epithelium is known to alter the intracellular homeostasis of important tissue metabolites such as NADH, FAD, and PpIX, which was observed by MPAS in their native environment. A combination of deep tissue microscopy owing to higher penetration depth of multiphoton excitation and depth resolved spectroscopy could prove to be invaluable in identification of cytologic as well as biomolecular spectral characteristic of oral epithelial neoplasia. Lasers Surg. Med. 49:866-873, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rahul Pal
- Center for Biomedical Engineering, The University of Texas Medical Branch, Galveston, Texas, 77555.,Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, 77555
| | - Kert Edward
- Department of Physics, University of the West Indies, UWI Mona, Kingston 7, Mona, Jamaica
| | - Liang Ma
- Center for Biomedical Engineering, The University of Texas Medical Branch, Galveston, Texas, 77555
| | - Suimin Qiu
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, 77555
| | - Gracie Vargas
- Center for Biomedical Engineering, The University of Texas Medical Branch, Galveston, Texas, 77555.,Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, Texas, 77555
| |
Collapse
|
19
|
Mizukoshi K, Hirayama K. Age-related changes in dermal fiber-like structures in facial cheeks. Skin Res Technol 2016; 23:312-320. [PMID: 27868233 DOI: 10.1111/srt.12337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2016] [Indexed: 12/01/2022]
Abstract
BACKGROUND/PURPOSE Despite recent progress in non-invasive measurement methods, such as in vivo laser confocal microscopy (CLSM), it is difficult to quantitatively measure age-related changes in dermal fibrous structures in the face using these methods and qualitative characteristics. We used characteristics extracted from the analysis of CLSM images to quantitatively investigate the effects of aging on dermal fibrous structures in the face. METHODS CLSM images of dermal fibrous structures were obtained from 90 Japanese females, ranging in age from 20 to 60 years. The feature values of CLSM images were extracted using image analysis methods, such as short-line segment-matching processing and spatial frequency analysis. The qualitative characteristics of the dermal fibrous structures in the CLSM images were obtained by principal component analysis (PCA) of these feature values. The fibrous structures were scored on the basis of qualitative characteristics and then age-related changes in the scores among the subjects were quantitatively evaluated. RESULTS AND CONCLUSION The PCA results showed that there were two characteristics in the images of fibrous structures: clearness and directionality. The clearness of fibrous structures decreased and directionality isotropy increased with age.
Collapse
Affiliation(s)
- K Mizukoshi
- Pola Chemical Industries Inc, Yokohama, Japan
| | - K Hirayama
- Pola Chemical Industries Inc, Yokohama, Japan
| |
Collapse
|
20
|
Qin W, Li Y, Wang J, Qi X, Wang RK. In Vivo Monitoring of Microcirculation in Burn Healing Process with Optical Microangiography. Adv Wound Care (New Rochelle) 2016; 5:332-337. [PMID: 27602252 DOI: 10.1089/wound.2015.0669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/01/2015] [Indexed: 12/14/2022] Open
Abstract
Objective: Optical microangiography (OMAG)-based optical coherence tomography is a noninvasive technique capable of imaging functional microvasculature innervating scanned tissue volume. In this study, we utilize OMAG to investigate dynamic changes of microcirculation during the healing process of a burn. Approach: A soft-contact superficial burn injury was induced on a mouse ear with 1 μL 70°C hot water. Microangiograms were generated by using OMAG before and after the burn. Results: Vessel recruitment and remodeling were observed in the healing process. Burn injury reached to the worst extent within the first 24 h and had no expansion thereafter. The interrupted microcirculation in the mouse ear was progressively recovered in the consequent postburn days and completely healed on postburn day 7. Innovation: OMAG provides a novel way for noninvasive visualization and quantification of vasculature changes over time after burn injuries. The high resolution achieved by the imaging system reveals microvascular details down to capillary level. Conclusion: Our results demonstrated that OMAG has great potential to improve the understanding of microcirculatory responses to burns and thus benefit the development of effective therapeutics.
Collapse
Affiliation(s)
- Wan Qin
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Yuandong Li
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Jingang Wang
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Xiaoli Qi
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, Washington
| |
Collapse
|
21
|
Development of in vivo imaging. Allergol Int 2016; 65:223-4. [PMID: 27392609 DOI: 10.1016/j.alit.2016.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Indexed: 11/22/2022] Open
|
22
|
Wang T, Jang WH, Lee S, Yoon CJ, Lee JH, Kim B, Hwang S, Hong CP, Yoon Y, Lee G, Le VH, Bok S, Ahn GO, Lee J, Gho YS, Chung E, Kim S, Jang MH, Myung SJ, Kim MJ, So PTC, Kim KH. Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging. Sci Rep 2016; 6:27142. [PMID: 27283889 PMCID: PMC4901393 DOI: 10.1038/srep27142] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/16/2016] [Indexed: 12/11/2022] Open
Abstract
Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.
Collapse
Affiliation(s)
- Taejun Wang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Rep. of Korea
| | - Won Hyuk Jang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Rep. of Korea
| | - Seunghun Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Rep. of Korea
| | - Calvin J Yoon
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Rep. of Korea
| | - Jun Ho Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Rep. of Korea
| | - Bumju Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Rep. of Korea
| | - Sekyu Hwang
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Rep. of Korea
| | - Chun-Pyo Hong
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Rep. of Korea
| | - Yeoreum Yoon
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Rep. of Korea
| | - Gilgu Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Rep. of Korea
| | - Viet-Hoan Le
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Rep. of Korea
| | - Seoyeon Bok
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Rep. of Korea
| | - G-One Ahn
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Rep. of Korea
| | - Jaewook Lee
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Rep. of Korea
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Rep. of Korea
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, and School of Mechanical Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Rep. of Korea
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Rep. of Korea
| | - Myoung Ho Jang
- Academy of Immunology and Microbiology, Institute for Basic Science, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Rep. of Korea
| | - Seung-Jae Myung
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul 05505, Rep. of Korea
| | - Myoung Joon Kim
- Department of Ophthalmology, Asan University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul 05505, Rep. of Korea
| | - Peter T C So
- Department of Mechanical Engineering and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ki Hean Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Rep. of Korea.,Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Rep. of Korea
| |
Collapse
|
23
|
Boone M, Draye JP, Verween G, Pirnay JP, Verbeken G, De Vos D, Rose T, Jennes S, Jemec GBE, Del Marmol V. Real-time three-dimensional imaging of epidermal splitting and removal by high-definition optical coherence tomography. Exp Dermatol 2016; 23:725-30. [PMID: 25047067 DOI: 10.1111/exd.12516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2014] [Indexed: 01/06/2023]
Abstract
While real-time 3-D evaluation of human skin constructs is needed, only 2-D non-invasive imaging techniques are available. The aim of this paper is to evaluate the potential of high-definition optical coherence tomography (HD-OCT) for real-time 3-D assessment of the epidermal splitting and decellularization. Human skin samples were incubated with four different agents: Dispase II, NaCl 1 M, sodium dodecyl sulphate (SDS) and Triton X-100. Epidermal splitting, dermo-epidermal junction, acellularity and 3-D architecture of dermal matrices were evaluated by High-definition optical coherence tomography before and after incubation. Real-time 3-D HD-OCT assessment was compared with 2-D en face assessment by reflectance confocal microscopy (RCM). (Immuno) histopathology was used as control. HD-OCT imaging allowed real-time 3-D visualization of the impact of selected agents on epidermal splitting, dermo-epidermal junction, dermal architecture, vascular spaces and cellularity. RCM has a better resolution (1 μm) than HD-OCT (3 μm), permitting differentiation of different collagen fibres, but HD-OCT imaging has deeper penetration (570 μm) than RCM imaging (200 μm). Dispase II and NaCl treatments were found to be equally efficient in the removal of the epidermis from human split-thickness skin allografts. However, a different epidermal splitting level at the dermo-epidermal junction could be observed and confirmed by immunolabelling of collagen type IV and type VII. Epidermal splitting occurred at the level of the lamina densa with dispase II and above the lamina densa (in the lamina lucida) with NaCl. The 3-D architecture of dermal papillae and dermis was more affected by Dispase II on HD-OCT which corresponded with histopathologic (orcein staining) fragmentation of elastic fibres. With SDS treatment, the epidermal removal was incomplete as remnants of the epidermal basal cell layer remained attached to the basement membrane on the dermis. With Triton X-100 treatment, the epidermis was not removed. In conclusion, HD-OCT imaging permits real-time 3-D visualization of the impact of selected agents on human skin allografts.
Collapse
Affiliation(s)
- Marc Boone
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Abstract
The study of a drug's dermal penetration profile provides important pharmaceutical data for the rational development of topical and transdermal delivery systems because the skin is a broadly used delivery route for local and systemic drugs and a potential route for gene therapy and vaccines. Monitoring drug penetration across the skin and quantifying its levels in different skin layers have been constant challenges due to the detection limitations of the available techniques, as well as the inherent interference in this tissue. This review explores and discusses several bionalytical methods that are indispensable tools to study drugs across the skin. In addressing the main topic, we structure the review highlighting the skin as an important route of drug administration and its structure, skin membrane models most used and its properties, in vitro and in vivo assays most used in the study of drug delivery to the skin, the techniques for processing the skin for subsequent analysis by bioanalytical methods that have a theoretical and practical approach showing its applicability, limitations and also including examples of its use. This review has a comprehensive approach in order to help researchers design their experiments and update the applicability and advances in this area of expertise.
Collapse
|
26
|
Chen G, Lui H, Zeng H. Image segmentation for integrated multiphoton microscopy and reflectance confocal microscopy imaging of human skin in vivo. Quant Imaging Med Surg 2015; 5:17-22. [PMID: 25694949 DOI: 10.3978/j.issn.2223-4292.2014.11.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 11/14/2022]
Abstract
BACKGROUND Non-invasive cellular imaging of the skin in vivo can be achieved in reflectance confocal microscopy (RCM) and multiphoton microscopy (MPM) modalities to yield complementary images of the skin based on different optical properties. One of the challenges of in vivo microscopy is the delineation (i.e., segmentation) of cellular and subcellular architectural features. METHODS In this work we present a method for combining watershed and level-set models for segmentation of multimodality images obtained by an integrated MPM and RCM imaging system from human skin in vivo. RESULTS Firstly, a segmentation model based on watershed is introduced for obtaining the accurate structure of cell borders from the RCM image. Secondly,, a global region based energy level-set model is constructed for extracting the nucleus of each cell from the MPM image. Thirdly, a local region-based Lagrange Continuous level-set approach is used for segmenting cytoplasm from the MPM image. CONCLUSIONS Experimental results demonstrated that cell borders from RCM image and boundaries of cytoplasm and nucleus from MPM image can be obtained by our segmentation method with better accuracy and effectiveness. We are planning to use this method to perform quantitative analysis of MPM and RCM images of in vivo human skin to study the variations of cellular parameters such as cell size, nucleus size and other mophormetric features with skin pathologies.
Collapse
Affiliation(s)
- Guannan Chen
- 1 Imaging Unit-Integrative Oncology Department, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada ; 2 Photomedicine Institute-Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Harvey Lui
- 1 Imaging Unit-Integrative Oncology Department, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada ; 2 Photomedicine Institute-Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Haishan Zeng
- 1 Imaging Unit-Integrative Oncology Department, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada ; 2 Photomedicine Institute-Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| |
Collapse
|
27
|
Majdzadeh A, Lee AMD, Wang H, Lui H, McLean DI, Crawford RI, Zloty D, Zeng H. Real-time visualization of melanin granules in normal human skin using combined multiphoton and reflectance confocal microscopy. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2015; 31:141-8. [PMID: 25650100 DOI: 10.1111/phpp.12161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Recent advances in biomedical optics have enabled dermal and epidermal components to be visualized at subcellular resolution and assessed noninvasively. Multiphoton microscopy (MPM) and reflectance confocal microscopy (RCM) are noninvasive imaging modalities that have demonstrated promising results in imaging skin micromorphology, and which provide complementary information regarding skin components. This study assesses whether combined MPM/RCM can visualize intracellular and extracellular melanin granules in the epidermis and dermis of normal human skin. METHODS We perform MPM and RCM imaging of in vivo and ex vivo skin in the infrared domain. The inherent three-dimensional optical sectioning capability of MPM/RCM is used to image high-contrast granular features across skin depths ranging from 50 to 90 μm. The optical images thus obtained were correlated with conventional histologic examination including melanin-specific staining of ex vivo specimens. RESULTS MPM revealed highly fluorescent granular structures below the dermal-epidermal junction (DEJ) region. Histochemical staining also demonstrated melanin-containing granules that correlate well in size and location with the granular fluorescent structures observed in MPM. Furthermore, the MPM fluorescence excitation wavelength and RCM reflectance of cell culture-derived melanin were equivalent to those of the granules. CONCLUSION This study suggests that MPM can noninvasively visualize and quantify subepidermal melanin in situ.
Collapse
Affiliation(s)
- Ali Majdzadeh
- Imaging Unit, Integrative Oncology Department, British Columbia Cancer Agency Research Centre, Vancouver, British Columbia, Canada; Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada; Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Murata T, Honda T, Egawa G, Miyachi Y, Kabashima K. Epicutaneous detection of transepidermally eliminated collagen by multiphoton microscopy: A possible non-invasive diagnosis method for acquired reactive perforating dermatosis. J Dermatol Sci 2014; 76:158-60. [DOI: 10.1016/j.jdermsci.2014.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/30/2014] [Accepted: 08/12/2014] [Indexed: 11/25/2022]
|
29
|
Intravital Multiphoton Imaging of Cutaneous Immune Responses. J Invest Dermatol 2014; 134:2680-2684. [DOI: 10.1038/jid.2014.225] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
|
30
|
Fereidouni F, Bader AN, Colonna A, Gerritsen HC. Phasor analysis of multiphoton spectral images distinguishes autofluorescence components of in vivo human skin. JOURNAL OF BIOPHOTONICS 2014; 7:589-96. [PMID: 23576407 DOI: 10.1002/jbio.201200244] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/27/2013] [Accepted: 03/16/2013] [Indexed: 05/25/2023]
Abstract
Skin contains many autofluorescent components that can be studied using spectral imaging. We employed a spectral phasor method to analyse two photon excited autofluorescence and second harmonic generation images of in vivo human skin. This method allows segmentation of images based on spectral features. Various structures in the skin could be distinguished, including Stratum Corneum, epidermal cells and dermis. The spectral phasor analysis allowed investigation of their fluorescence composition and identification of signals from NADH, keratin, FAD, melanin, collagen and elastin. Interestingly, two populations of epidermal cells could be distinguished with different melanin content.
Collapse
Affiliation(s)
- Farzad Fereidouni
- Utrecht University, Department of Molecular Biophysics, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
31
|
Adur J, Carvalho HF, Cesar CL, Casco VH. Nonlinear optical microscopy signal processing strategies in cancer. Cancer Inform 2014; 13:67-76. [PMID: 24737930 PMCID: PMC3981479 DOI: 10.4137/cin.s12419] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/02/2014] [Accepted: 03/03/2014] [Indexed: 02/06/2023] Open
Abstract
This work reviews the most relevant present-day processing methods used to improve the accuracy of multimodal nonlinear images in the detection of epithelial cancer and the supporting stroma. Special emphasis has been placed on methods of non linear optical (NLO) microscopy image processing such as: second harmonic to autofluorescence ageing index of dermis (SAAID), tumor-associated collagen signatures (TACS), fast Fourier transform (FFT) analysis, and gray level co-occurrence matrix (GLCM)-based methods. These strategies are presented as a set of potential valuable diagnostic tools for early cancer detection. It may be proposed that the combination of NLO microscopy and informatics based image analysis approaches described in this review (all carried out on free software) may represent a powerful tool to investigate collagen organization and remodeling of extracellular matrix in carcinogenesis processes.
Collapse
Affiliation(s)
- Javier Adur
- Microscopy Laboratory Applied to Molecular and Cellular Studies, Bioengineering School, National University of Entre Rios, Oro Verde, Entre Rios, Argentina. ; INFABiC-National Institute of Science and Technology on Photonics Applied to Cell Biology, Campinas, São Paulo, Brazil
| | - Hernandes F Carvalho
- INFABiC-National Institute of Science and Technology on Photonics Applied to Cell Biology, Campinas, São Paulo, Brazil
| | - Carlos L Cesar
- INFABiC-National Institute of Science and Technology on Photonics Applied to Cell Biology, Campinas, São Paulo, Brazil
| | - Víctor H Casco
- Microscopy Laboratory Applied to Molecular and Cellular Studies, Bioengineering School, National University of Entre Rios, Oro Verde, Entre Rios, Argentina
| |
Collapse
|
32
|
Leite-Silva VR, de Almeida MM, Fradin A, Grice JE, Roberts MS. Delivery of drugs applied topically to the skin. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.12.32] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Murata T, Honda T, Miyachi Y, Kabashima K. Morphological character of pseudoxanthoma elasticum observed by multiphoton microscopy. J Dermatol Sci 2013; 72:199-201. [DOI: 10.1016/j.jdermsci.2013.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/18/2013] [Accepted: 06/22/2013] [Indexed: 10/26/2022]
|
34
|
Detection and Discrimination of Non-Melanoma Skin Cancer by Multimodal Imaging. Healthcare (Basel) 2013; 1:64-83. [PMID: 27429131 PMCID: PMC4934506 DOI: 10.3390/healthcare1010064] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/30/2013] [Accepted: 09/30/2013] [Indexed: 01/18/2023] Open
Abstract
Non-melanoma skin cancer (NMSC) belongs to the most frequent human neoplasms. Its exposed location facilitates a fast ambulant treatment. However, in the clinical practice far more lesions are removed than necessary, due to the lack of an efficient pre-operational examination procedure: Standard imaging methods often do not provide a sufficient spatial resolution. The demand for an efficient in vivo imaging technique might be met in the near future by non-linear microscopy. As a first step towards this goal, the appearance of NMSC in various microspectroscopic modalities has to be defined and approaches have to be derived to distinguish healthy skin from NMSC using non-linear optical microscopy. Therefore, in this contribution the appearance of ex vivo NMSC in a combination of coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG) and two photon excited fluorescence (TPEF) imaging—referred as multimodal imaging—is described. Analogous to H&E staining, an overview of the distinct appearances and features of basal cell and squamous cell carcinoma in the complementary modalities is derived, and is expected to boost in vivo studies of this promising technological approach.
Collapse
|
35
|
Miron-Mendoza M, Koppaka V, Zhou C, Petroll WM. Techniques for assessing 3-D cell-matrix mechanical interactions in vitro and in vivo. Exp Cell Res 2013; 319:2470-80. [PMID: 23819988 PMCID: PMC3826791 DOI: 10.1016/j.yexcr.2013.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/22/2013] [Accepted: 06/24/2013] [Indexed: 12/19/2022]
Abstract
Cellular interactions with extracellular matrices (ECM) through the application of mechanical forces mediate numerous biological processes including developmental morphogenesis, wound healing and cancer metastasis. They also play a key role in the cellular repopulation and/or remodeling of engineered tissues and organs. While 2-D studies can provide important insights into many aspects of cellular mechanobiology, cells reside within 3-D ECMs in vivo, and matrix structure and dimensionality have been shown to impact cell morphology, protein organization and mechanical behavior. Global measurements of cell-induced compaction of 3-D collagen matrices can provide important insights into the regulation of overall cell contractility by various cytokines and signaling pathways. However, to understand how the mechanics of cell spreading, migration, contraction and matrix remodeling are regulated at the molecular level, these processes must also be studied in individual cells. Here we review the evolution and application of techniques for imaging and assessing local cell-matrix mechanical interactions in 3-D culture models, tissue explants and living animals.
Collapse
Affiliation(s)
- Miguel Miron-Mendoza
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Vindhya Koppaka
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Chengxin Zhou
- Graduate Program in Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX
| | - W. Matthew Petroll
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX
- Graduate Program in Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
36
|
Seidenari S, Arginelli F, Dunsby C, French PMW, König K, Magnoni C, Talbot C, Ponti G. Multiphoton laser tomography and fluorescence lifetime imaging of melanoma: morphologic features and quantitative data for sensitive and specific non-invasive diagnostics. PLoS One 2013; 8:e70682. [PMID: 23923016 PMCID: PMC3724798 DOI: 10.1371/journal.pone.0070682] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/21/2013] [Indexed: 11/19/2022] Open
Abstract
Multiphoton laser tomography (MPT) combined with fluorescence lifetime imaging (FLIM) is a non-invasive imaging technique, based on the study of fluorescence decay times of naturally occurring fluorescent molecules, enabling a non-invasive investigation of the skin with subcellular resolution. The aim of this retrospective observational ex vivo study, was to characterize melanoma both from a morphologic and a quantitative point of view, attaining an improvement in the diagnostic accuracy with respect to dermoscopy. In the training phase, thirty parameters, comprising both cytological descriptors and architectural aspects, were identified. The training set included 6 melanomas with a mean Breslow thickness±S.D. of 0.89±0.48 mm. In the test phase, these parameters were blindly evaluated on a test data set consisting of 25 melanomas, 50 nevi and 50 basal cell carcinomas. Melanomas in the test phase comprised 8 in situ lesions and had a mean thickness±S.D. of 0.77±1.2 mm. Moreover, quantitative FLIM data were calculated for special areas of interest. Melanoma was characterized by the presence of atypical short lifetime cells and architectural disorder, in contrast to nevi presenting typical cells and a regular histoarchitecture. Sensitivity and specificity values for melanoma diagnosis were 100% and 98%, respectively, whereas dermoscopy achieved the same sensitivity, but a lower specificity (82%). Mean fluorescence lifetime values of melanocytic cells did not vary between melanomas and nevi, but significantly differed from those referring to basal cell carcinoma enabling a differential diagnosis based on quantitative data. Data from prospective preoperative trials are needed to confirm if MPT/FLIM could increase diagnostic specificity and thus reduce unnecessary surgical excisions.
Collapse
Affiliation(s)
- Stefania Seidenari
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Arginelli
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Christopher Dunsby
- Department of Physics, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Paul M. W. French
- Department of Physics, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Karsten König
- Department of Biophotonics and Lasertechnology, Saarland University, Saarbrücken, Germany
- JenLab GmbH, Jena, Germany
| | - Cristina Magnoni
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Clifford Talbot
- Department of Physics, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Giovanni Ponti
- Department of Clinical and Diagnostic Medicine and Public Health, University Hospital of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
37
|
Stefania S, Simona S, Paola A, Luisa B, Stefania B, Jennifer C, Chiara F, Paul F, Stefania G, Karsten K, Cristina M, Clifford T, Christopher D. High-resolution multiphoton tomography and fluorescence lifetime imaging of UVB-induced cellular damage on cultured fibroblasts producing fibres. Skin Res Technol 2013; 19:251-7. [PMID: 23590582 DOI: 10.1111/srt.12034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Multiphoton tomography (MPT) is suitable to perform both ex vivo and in vivo investigations of living skin and cell cultures with submicron resolution. Fluorescence lifetime imaging (FLIM) generates image contrast between different states of tissue characterized by various fluorescence decay rates. Our purpose was to combine MPT and FLIM to evaluate fibroblasts and collagen fibres produced in vitro. METHODS Fibroblast cultures, 2-4 days old, at a subconfluent stage, were evaluated before and after irradiation with a single UVB dose. One month old cultures stimulated with ascorbic acid were also assessed. RESULTS After UVB radiation, fibroblasts appear irregular in size, lose their alignment and show a decrease in fluorescence lifetime. One month-old fibroblasts, producing collagen fibres after stimulation with ascorbic acid, appear as small roundish structures intermingled by filaments showing a granular arrangement. CONCLUSION The combination of MPT and FLIM may be useful for the in vitro study of cell modifications induced by injurious or protective agents and drugs.
Collapse
Affiliation(s)
- Seidenari Stefania
- Department of Dermatology, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Alex A, Weingast J, Weinigel M, Kellner-Höfer M, Nemecek R, Binder M, Pehamberger H, König K, Drexler W. Three-dimensional multiphoton/optical coherence tomography for diagnostic applications in dermatology. JOURNAL OF BIOPHOTONICS 2013; 6:352-362. [PMID: 22711418 DOI: 10.1002/jbio.201200085] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 05/25/2012] [Accepted: 05/29/2012] [Indexed: 05/28/2023]
Abstract
A preliminary clinical trial using state-of-the-art multiphoton tomography (MPT) and optical coherence tomography (OCT) for three-dimensional (3D) multimodal in vivo imaging of normal skin, nevi, scars and pathologic skin lesions has been conducted. MPT enabled visualization of sub-cellular details with axial and transverse resolutions of <2 μm and <0.5 μm, respectively, from a volume of 0.35 × 0.35 × 0.2 mm(3) at a frame rate of 0.14 Hz (512 × 512 pixels). State-of-the-art OCT, operating at a center wavelength of 1300 nm, was capable of acquiring 3D images depicting the layered architecture of skin with axial and transverse resolutions ~8 μm and ~20 μm, respectively, from a volume of 7 × 3.5 × 1.5 mm(3) at a frame rate of 46 Hz (1024 × 1024 pixels). This study demonstrates the clinical diagnostic potential of MPT/OCT for pre-screening relatively large areas of skin using 3D OCT to identify suspicious regions at microscopic level and subsequently using high resolution MPT to obtain zoomed in, sub-cellular level information of the respective regions.
Collapse
Affiliation(s)
- Aneesh Alex
- Centre for Medical Physics and Biomedical Engineering, Medical University Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang H, Lee AMD, Frehlick Z, Lui H, McLean DI, Tang S, Zeng H. Perfectly registered multiphoton and reflectance confocal video rate imaging of in vivo human skin. JOURNAL OF BIOPHOTONICS 2013; 6:305-309. [PMID: 23418008 DOI: 10.1002/jbio.201200067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/01/2012] [Accepted: 06/17/2012] [Indexed: 06/01/2023]
Abstract
We present a multimodal in vivo skin imaging instrument that is capable of simultaneously acquiring multiphoton and reflectance confocal images at up to 27 frames per second with 256 × 256 pixel resolution without the use of exogenous contrast agents. A single femtosecond laser excitation source is used for all channels ensuring perfect image registration between the two-photon fluorescence (TPF), second harmonic generation (SHG), and reflectance confocal microscopy (RCM) images. Images and videos acquired with the system show that the three imaging channels provide complementary information in in vivo human skin measurements. In the epidermis, cell boundaries are clearly seen in the RCM channel, while cytoplasm is better seen in the TPF imaging channel, whereas in the dermis, SHG and TPF channels show collagen bundles and elastin fibers, respectively. The demonstrated fast imaging speed and multimodal imaging capabilities of this MPM/RCM instrument are essential features for future clinical application of this technique.
Collapse
Affiliation(s)
- Hequn Wang
- Imaging Unit - Integrative Oncology Department, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Jung Y, Dziennis S, Zhi Z, Reif R, Zheng Y, Wang RK. Tracking dynamic microvascular changes during healing after complete biopsy punch on the mouse pinna using optical microangiography. PLoS One 2013; 8:e57976. [PMID: 23469122 PMCID: PMC3585416 DOI: 10.1371/journal.pone.0057976] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/29/2013] [Indexed: 12/29/2022] Open
Abstract
Optical microangiography (OMAG) and Doppler optical microangiography (DOMAG) are two non-invasive techniques capable of determining the tissue microstructural content, microvasculature angiography, and blood flow velocity and direction. These techniques were used to visualize the acute and chronic microvascular and tissue responses upon an injury in vivo. A tissue wound was induced using a 0.5 mm biopsy punch on a mouse pinna. The changes in the microangiography, blood flow velocity and direction were quantified for the acute (<30 min) wound response and the changes in the tissue structure and microangiography were determined for the chronic wound response (30 min–60 days). The initial wound triggered recruitment of peripheral capillaries, as well as redirection of main arterial and venous blood flow within 3 min. The complex vascular networks and new vessel formation were quantified during the chronic response using fractal dimension. The highest rate of wound closure occurred between days 8 and 22. The vessel tortuosity increased during this time suggesting angiogenesis. Taken together, these data signify that OMAG has the capability to track acute and chronic changes in blood flow, microangiography and structure during wound healing. The use of OMAG has great potential to improve our understanding of vascular and tissue responses to injury in order to develop more effective therapeutics.
Collapse
Affiliation(s)
- Yeongri Jung
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Suzan Dziennis
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Zhongwei Zhi
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Roberto Reif
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
41
|
Labouta HI, Schaefer UF, Schneider M. Laser scanning microscopy approach for semiquantitation of in vitro dermal particle penetration. Methods Mol Biol 2013; 961:151-164. [PMID: 23325641 DOI: 10.1007/978-1-62703-227-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Skin penetration of nanoparticles is a recent research area in focus for the aim of development of topical nanoparticulate delivery systems as well as for health risk analysis. So far, monitoring skin penetration of nanoparticles is mostly based on qualitative microscopical examination. Here, we describe an experimental approach for extracting semiquantitative data from multiphoton images of skin specimens treated with gold nanoparticles. This will aid in depicting the factors responsible for enhancing or limiting nanoparticle penetration through the skin barrier.
Collapse
Affiliation(s)
- Hagar I Labouta
- Helmholtz Institute for Pharmaceutical Research-Saarland, Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | | | | |
Collapse
|
42
|
Arginelli F, Manfredini M, Bassoli S, Dunsby C, French P, König K, Magnoni C, Ponti G, Talbot C, Seidenari S. High resolution diagnosis of common nevi by multiphoton laser tomography and fluorescence lifetime imaging. Skin Res Technol 2012; 19:194-204. [DOI: 10.1111/srt.12035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Federica Arginelli
- Department of Dermatology; University of Modena and Reggio Emilia; Modena Italy
| | - Marco Manfredini
- Department of Dermatology; University of Modena and Reggio Emilia; Modena Italy
| | - Sara Bassoli
- Department of Dermatology; University of Modena and Reggio Emilia; Modena Italy
| | - Christopher Dunsby
- Department of Physics; South Kensington Campus; Imperial College London London UK
| | - Paul French
- Department of Physics; South Kensington Campus; Imperial College London London UK
| | - Karsten König
- Department of Biophotonics and Lasertechnology; Saarland University; Saarbrücken Germany
- JenLab GmbH; Jena Germany
| | - Cristina Magnoni
- Department of Dermatology; University of Modena and Reggio Emilia; Modena Italy
| | - Giovanni Ponti
- Department of Dermatology; University of Modena and Reggio Emilia; Modena Italy
- Department of Clinical and Diagnostic Medicine and Public Health; University Hospital of Modena and Reggio Emilia; Italy
| | - Clifford Talbot
- Department of Physics; South Kensington Campus; Imperial College London London UK
| | - Stefania Seidenari
- Department of Dermatology; University of Modena and Reggio Emilia; Modena Italy
| |
Collapse
|
43
|
Perry SW, Burke RM, Brown EB. Two-photon and second harmonic microscopy in clinical and translational cancer research. Ann Biomed Eng 2012; 40:277-91. [PMID: 22258888 DOI: 10.1007/s10439-012-0512-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 01/09/2012] [Indexed: 11/30/2022]
Abstract
Application of two-photon microscopy (TPM) to translational and clinical cancer research has burgeoned over the last several years, as several avenues of pre-clinical research have come to fruition. In this review, we focus on two forms of TPM-two-photon excitation fluorescence microscopy, and second harmonic generation microscopy-as they have been used for investigating cancer pathology in ex vivo and in vivo human tissue. We begin with discussion of two-photon theory and instrumentation particularly as applicable to cancer research, followed by an overview of some of the relevant cancer research literature in areas that include two-photon imaging of human tissue biopsies, human skin in vivo, and the rapidly developing technology of two-photon microendoscopy. We believe these and other evolving two-photon methodologies will continue to help translate cancer research from the bench to the bedside, and ultimately bring minimally invasive methods for cancer diagnosis and treatment to therapeutic reality.
Collapse
Affiliation(s)
- Seth W Perry
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA.
| | | | | |
Collapse
|
44
|
Labouta HI, Hampel M, Thude S, Reutlinger K, Kostka KH, Schneider M. Depth profiling of gold nanoparticles and characterization of point spread functions in reconstructed and human skin using multiphoton microscopy. JOURNAL OF BIOPHOTONICS 2012; 5:85-96. [PMID: 22147676 DOI: 10.1002/jbio.201100069] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Multiphoton microscopy has become popular in studying dermal nanoparticle penetration. This necessitates studying the imaging parameters of multiphoton microscopy in skin as an imaging medium, in terms of achievable detection depths and the resolution limit. This would simulate real-case scenarios rather than depending on theoretical values determined under ideal conditions. This study has focused on depth profiling of sub-resolution gold nanoparticles (AuNP) in reconstructed (fixed and unfixed) and human skin using multiphoton microscopy. Point spread functions (PSF) were determined for the used water-immersion objective of 63×/NA = 1.2. Factors such as skin-tissue compactness and the presence of wrinkles were found to deteriorate the accuracy of depth profiling. A broad range of AuNP detectable depths (20-100 μm) in reconstructed skin was observed. AuNP could only be detected up to ∼14 μm depth in human skin. Lateral (0.5 ± 0.1 μm) and axial (1.0 ± 0.3 μm) PSF in reconstructed and human specimens were determined. Skin cells and intercellular components didn't degrade the PSF with depth. In summary, the imaging parameters of multiphoton microscopy in skin and practical limitations encountered in tracking nanoparticle penetration using this approach were investigated.
Collapse
Affiliation(s)
- Hagar I Labouta
- Department of Pharmaceutical Nanotechnology, Saarland University, Campus A4 1, 66123 Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Multiphoton laser microscopy and fluorescence lifetime imaging for the evaluation of the skin. Dermatol Res Pract 2011; 2012:810749. [PMID: 22203841 PMCID: PMC3235701 DOI: 10.1155/2012/810749] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 08/30/2011] [Indexed: 12/02/2022] Open
Abstract
Multiphoton laser microscopy is a new, non-invasive technique providing access to the skin at a cellular and subcellular level, which is based both on autofluorescence and fluorescence lifetime imaging. Whereas the former considers fluorescence intensity emitted by epidermal and dermal fluorophores and by the extra-cellular matrix, fluorescence lifetime imaging (FLIM), is generated by the fluorescence decay rate. This innovative technique can be applied to the study of living skin, cell cultures and ex vivo samples. Although still limited to the clinical research field, the development of multiphoton laser microscopy is thought to become suitable for a practical application in the next few years: in this paper, we performed an accurate review of the studies published so far, considering the possible fields of application of this imaging method and providing high quality images acquired in the Department of Dermatology of the University of Modena.
Collapse
|
46
|
Strachan CJ, Windbergs M, Offerhaus HL. Pharmaceutical applications of non-linear imaging. Int J Pharm 2011; 417:163-72. [DOI: 10.1016/j.ijpharm.2010.12.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 11/15/2022]
|
47
|
Lee AMD, Wang H, Yu Y, Tang S, Zhao J, Lui H, McLean DI, Zeng H. In vivo video rate multiphoton microscopy imaging of human skin. OPTICS LETTERS 2011; 36:2865-7. [PMID: 21808340 DOI: 10.1364/ol.36.002865] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We present a multiphoton microscopy instrument specially designed for in vivo dermatological use that is capable of imaging human skin at 27 frames per second with 256 pixels × 256 pixels resolution without the use of exogenous contrast agents. Imaging at fast frame rates is critical to reducing image blurring due to patient motion and to providing practically short clinical measurement times. Second harmonic generation and two-photon fluorescence images and videos acquired at optimized wavelengths are presented showing cellular and tissue structures from the skin surface down to the reticular dermis.
Collapse
Affiliation(s)
- Anthony M D Lee
- Integrative Oncology Department-Imaging Unit, British Columbia Cancer Agency Research Centre, Vancouver, British Columbia V5Z 1L3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Matthews TE, Piletic IR, Selim MA, Simpson MJ, Warren WS. Pump-probe imaging differentiates melanoma from melanocytic nevi. Sci Transl Med 2011; 3:71ra15. [PMID: 21346168 DOI: 10.1126/scitranslmed.3001604] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Melanoma diagnosis is clinically challenging: the accuracy of visual inspection by dermatologists is highly variable and heavily weighted toward false positives. Even the current gold standard of biopsy results in varying diagnoses among pathologists. We have developed a multiphoton technique (based on pump-probe spectroscopy) that directly determines the microscopic distribution of eumelanin and pheomelanin in pigmented lesions of human skin. Our initial results showed a marked difference in the chemical variety of melanin between nonmalignant nevi and melanoma, as well as a number of substantial architectural differences. We examined slices from 42 pigmented lesions and found that melanomas had an increased eumelanin content compared to nonmalignant nevi. When used as a diagnostic criterion, the ratio of eumelanin to pheomelanin captured all investigated melanomas but excluded three-quarters of dysplastic nevi and all benign dermal nevi. Additional evaluation of architectural and cytological features revealed by multiphoton imaging, including the maturation of melanocytes, presence of pigmented melanocytes in the dermis, number and location of melanocytic nests, and confluency of pigmented cells in the epidermis, further increased specificity, allowing rejection of more than half of the remaining false-positive results. We then adapted this multiphoton imaging technique to hematoxylin and eosin (H&E)-stained slides. By adding melanin chemical contrast to H&E-stained slides, pathologists will gain complementary information to increase the ease and accuracy of melanoma diagnosis.
Collapse
|
49
|
Matthews TE, Wilson JW, Degan S, Simpson MJ, Jin JY, Zhang JY, Warren WS. In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature. BIOMEDICAL OPTICS EXPRESS 2011; 2:1576-83. [PMID: 21698020 PMCID: PMC3114225 DOI: 10.1364/boe.2.001576] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 05/13/2011] [Accepted: 05/13/2011] [Indexed: 05/18/2023]
Abstract
We performed epi-mode pump-probe imaging of melanin in excised human pigmented lesions and both hemoglobin and melanin in live xenograft mouse melanoma models to depths greater than 100 µm. Eumelanin and pheomelanin images, which have been previously demonstrated to differentiate melanoma from benign lesions, were acquired at the dermal-epidermal junction with cellular resolution and modest optical powers (down to 15 mW). We imaged dermal microvasculature with the same wavelengths, allowing simultaneous acquisition of melanin, hemoglobin and multiphoton autofluorescence images. Molecular pump-probe imaging of melanocytes, skin structure and microvessels allows comprehensive, non-invasive characterization of pigmented lesions.
Collapse
Affiliation(s)
| | - Jesse W. Wilson
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Simone Degan
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | | - Jane Y. Jin
- Department of Dermatology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jennifer Y. Zhang
- Department of Dermatology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Warren S. Warren
- Department of Chemistry, Duke University, Durham, NC 27708, USA
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
50
|
Benati E, Bellini V, Borsari S, Dunsby C, Ferrari C, French P, Guanti M, Guardoli D, Koenig K, Pellacani G, Ponti G, Schianchi S, Talbot C, Seidenari S. Quantitative evaluation of healthy epidermis by means of multiphoton microscopy and fluorescence lifetime imaging microscopy. Skin Res Technol 2011; 17:295-303. [PMID: 21518012 DOI: 10.1111/j.1600-0846.2011.00496.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND/PURPOSE Multiphoton microscopy (MPM) enables the assessment of unstained living biological tissue with submicron resolution, whereas fluorescence lifetime imaging microscopy (FLIM) generates image contrast between different states of tissue characterized by various fluorescence decay rates. The aim of this study was to compare the healthy skin of young individuals with that of older subjects, as well as to assess the skin at different body sites, by means of MPM and FLIM. METHODS Nineteen elderly patients were examined on the outer side of the forearm, whereas 30 young individuals were assessed on the dorsal and volar sides of the forearm and on the thigh. RESULTS Cell and nucleus diameters, cell density and FLIM vary according to the epidermal cell depth and the skin site. In elderly subjects, epidermal cells show morphologic alterations in shape and size, with smaller cell and nucleus diameters; the number of basal cells is decreased, whereas the mean fluorescence lifetimes at both the upper and the lower layers increase. CONCLUSION This study provides quantitative and qualitative data on normal epidermis at different skin sites at different ages and represents a reference for the clinician attempting to understand the effectiveness of MPM and FLIM in discriminating diseased states of the skin from normal ones.
Collapse
Affiliation(s)
- Elisa Benati
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|