1
|
Li LY, Li ZK, Shu J, Fan XB, Yu XF, Wang MQ. A DIE responsive fluorescent probe for phthalate and its application in test paper and hydrogel detection platforms. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 341:126403. [PMID: 40381237 DOI: 10.1016/j.saa.2025.126403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/05/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Phthalates, classified as priority environmental contaminants, have driven intensive methodological development for environmental monitoring due to their well-documented endocrine-disrupting effects. Despite these imperatives, the design of optical probes for phthalate detection remains challenging probably due to the lack of suitable functional groups/sensing mode. Additionally, the reported probes were applied in the form of suspensions, resulting in difficulties in separation and recovery during the practical applications. Addressing these limitations, we engineered an amphiphilic BODIPY derivative (BOD-Bea) featuring a bespoke molecular architecture that self-assembles into non-fluorescent aggregates in aqueous media. Upon dipentyl phthalate (DPP) binding, significant fluorescence and absorption enhancements were elicited through the mechanism of disaggregation-induced emission (DIE). From the titration experiments, both the fluorescence emission at 653 nm and absorption at 576 nm demonstrate linear correlations with DPP concentrations in the range of 0-26 μM. The calculated LODs were determined to be 0.11 μM for fluorescence detection and 1.24 μM for absorption measurement. Detailed binding mechanism reveals that the probe achieves specific DPP recognition through synergistic interactions: π-π stacking anchoring the benzene ring moiety and hydrophobic capturing of the alkyl chain. Finally, probe BOD-Bea has been successfully employed to quantify DPP in the real water samples with good recoveries. Meanwhile, two instrument-free solid sensors based on BOD-Bea (i.e., test paper and hydrogel) are fabricated to rapidly and sensitively monitor DPP. This strategy overcomes the disadvantages of complex and costly pre-treatment of traditional methods and provides a molecular design basis for rapid on-site detection.
Collapse
Affiliation(s)
- Lu-Yu Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Ze-Kai Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Shu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Xu-Bo Fan
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiao-Feng Yu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Ming-Qi Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
2
|
Wang M, Zhang H, Han L. A data synthesis on air-water exchange flux of plasticizers of phthalates and organophosphates in surface water. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70067. [PMID: 40195894 DOI: 10.1002/wer.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/21/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025]
Abstract
Microplastic pollution has become an emerging environmental issue in the past decades. Plasticizers are organic compounds applied during the manufacturing process and are of particular interests to researchers. Phthalate esters (PAEs) and organophosphate esters (OPEs) are two common types of plasticizers that have been found to be prevalent in water and the atmosphere. Investigating their air-water exchange process is crucial for understanding their sources and fate as pollutants. This study employs a systematic review and data synthesis to evaluate the air-water exchange and dry deposition flux of PAEs and OPEs on a global scale, aiming to identify the factors influencing their exchange process. Results showed that the air-water exchange and dry deposition flux vary among different types of plasticizers, and climatic conditions may also have impact on the air-water exchange flux. Future research is needed to explore more mechanisms related to the influencing factors. PRACTITIONER POINTS: The study presents a data synthesis of air-water exchange and dry deposition flux of plasticizers. Results indicate the sources and sinks of plasticizers on surface water, which helps to understand the consequence of plastic pollution. The air-water exchange and dry deposition flux of PAEs and OPEs vary due to different chemical properties and climatic conditions. Further research is needed to better understand the influencing factors of this process.
Collapse
Affiliation(s)
- Minhao Wang
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Chemistry, School of Physical Science, University of Liverpool, Liverpool, UK
| | - Haifei Zhang
- Department of Chemistry, School of Physical Science, University of Liverpool, Liverpool, UK
| | - Lei Han
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
3
|
Singh R, Sinha A. A critical review of recent advancements in the photocatalysis process, mechanism, and degradation pathways for the removal of phthalates from the contaminated water matrix. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124663. [PMID: 40020358 DOI: 10.1016/j.jenvman.2025.124663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/29/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Phthalates, a sort of plasticizer, are widely utilized in various consumer products and pose significant environmental and health risks due to their persistence and potential toxicity. This review explores the occurrence, sources, environmental impact, and remediation strategies for phthalates. Various remediation techniques have been investigated to address phthalate contamination. Among these, photocatalysis, an advanced oxidation process (AOP), has emerged as a viable approach due to its ability to mineralize organic contaminants into innocuous byproducts. The review discusses the recent advancements in photocatalytic processes, the underlying mechanisms, and degradation pathways for phthalate removal. The mechanism of photocatalytic degradation includes the generation of reactive oxygen species like hydroxyl radicals (OH•) and superoxide radicals (O2-•) and their role in breaking down phthalate molecules. It also highlights recent advancements in photocatalytic materials, such as metal-doped semiconductors and composite materials, which enhance the removal efficiency. The review concludes by emphasizing the need for integrated approaches to achieve effective and sustainable phthalate remediation. Future research should focus on developing efficient and cost-effective photocatalytic materials, optimizing reactor design, and scaling up photocatalytic processes for practical applications. The review also highlights the challenges and limitations of photocatalytic processes, including low quantum efficiency, catalyst deactivation, and mass transfer limitations. Potential areas of study are put forward to address these challenges and further advance the application of photocatalysis for phthalate removal. This review intends to help the development of efficient photocatalytic technologies for the remediation of phthalate-contaminated water by providing a complete overview of the present state of the art.
Collapse
Affiliation(s)
- Ravindra Singh
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India
| | - Alok Sinha
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India.
| |
Collapse
|
4
|
Kumar S, Singh S, Shiv K, Singh A, Kumar P, Prasad LB. Phytotoxic impact of di-butyl phthalate (DBP) on physiological, biochemical, and oxidative stress parameters of rice (Oryza sativa). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:4588-4602. [PMID: 39885067 DOI: 10.1007/s11356-025-35951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
Phthalates are synthetic compounds, well-known plasticizers, with numerous applications and reported to have adverse effects on all living organisms residing in terrestrial and aquatic environments. In this study, the rice (Oryza sativa) seedlings were exposed to di-butyl phthalate (DBP) exogenously for 7 days, with varying concentrations of 0, 200, 400, 800, and 1600 mg/L, to explore the toxicological, physiological, and biochemical consequences by measuring various parameters such as pigment, lipid, and H2O2 (hydrogen peroxide) contents. The biochemical analysis of seedlings showed that the pigments, lipids, and H2O2 concentrations were altered abnormally. After 7 days of exposure, the maximum amount of DBP was accumulated and translocated in both the shoot and root of the grown seedlings, and all morphological parameters (i.e., length and weight of both shoot and root) and pigment content (such as total carotenoid, chlorophyll a and b) were declined significantly. Superoxide dismutase (SOD), H2O2, and thiobarbituric acid reactive substance (TBARS) levels in seedlings increase as the stress increases due to the higher exposure dose of DBP. Cell viability was observed under a confocal microscope confirming the damage of the plasma membrane. Additionally, molecular docking studies indicated that DBP has a good binding affinity with key antioxidant enzymes of Oryza sativa, interacting via hydrogen bonds with specific amino acids. This suggests a potential mechanistic pathway for the observed biochemical changes in Oryza sativa.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shivani Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Kunal Shiv
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anupam Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pradeep Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Lal Bahadur Prasad
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
5
|
Yang Q, Wu Y, Zhang S, Xie H, Han D, Yan H. Recent advancements in the extraction and analysis of phthalate acid esters in food samples. Food Chem 2025; 463:141262. [PMID: 39298858 DOI: 10.1016/j.foodchem.2024.141262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Phthalate acid esters (PAEs) are ubiquitous environmental pollutants present in food samples, necessitating accurate detection for risk assessment and remediation efforts. This review provides an updated overview of the recent progress on the PAEs analysis regarding sample pretreatment techniques and analytical methodologies over the latest decade. Advances in sample preparation include solid-based extraction techniques replacing conventional liquid-liquid extraction, with solid sorbents emerging as promising alternatives due to their minimal solvent consumption and enhanced selectivity. Although techniques like the microextraction methods offer versatility and reduced solvent reliance, there is a need for more efficient and environmentally friendly techniques enabling on-site portable detection. High-resolution mass spectrometry is increasingly utilized for its enhanced sensitivity and reduced contamination risks. However, challenges persist in developing in situ analytical techniques for trace PAEs in complex food samples. Future research should prioritize novel analytical techniques with superior sensitivity and selectivity, addressing current limitations to meet the demand for precise PAEs detection in diverse food matrices.
Collapse
Affiliation(s)
- Qian Yang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Yangqing Wu
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Shuaihua Zhang
- Department of Chemistry, Hebei Agricultural University, Baoding 071001, China.
| | - Hongyu Xie
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Dandan Han
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
6
|
Kundu S, Das BK, Wodeyar A, Majumder P, Jana S, Biswas A, Das S, Besra R. Clearing the path: Unraveling bisphenol a removal and degradation mechanisms for a cleaner future. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123558. [PMID: 39700935 DOI: 10.1016/j.jenvman.2024.123558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/06/2024] [Accepted: 11/30/2024] [Indexed: 12/21/2024]
Abstract
Bisphenol A (BPA) is a prevalent chemical found in a range of consumer goods, which has raised worries about its possible health hazards. Comprehending the breakdown pathways of BPA is essential for evaluating its environmental consequences and addressing associated concerns. This review emphasizes the significance of studying the degradation/removal of BPA, with a specific focus on both natural and artificial routes. It explores natural processes such as photolysis, hydrolysis, and biodegradation, as well as manmade methods including advanced oxidation processes (AOPs) and enzymatic degradation. Examining the decomposition of BPA helps to understand how it behaves in the environment, providing valuable information for managing risks and addressing pollution. Furthermore, comprehending degradation mechanisms aids in the creation of more secure substitutes and regulatory actions to reduce BPA exposure and safeguard human health. This review emphasizes the need of promptly addressing this environmental and public health concern through the research of BPA degradation.
Collapse
Affiliation(s)
- Sourav Kundu
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, West Bengal, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, West Bengal, India.
| | - Abhilash Wodeyar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, West Bengal, India
| | - Poonam Majumder
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, West Bengal, India
| | - Susmita Jana
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, West Bengal, India
| | - Ayan Biswas
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, West Bengal, India
| | - Sagarika Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, West Bengal, India
| | - Rinku Besra
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, West Bengal, India
| |
Collapse
|
7
|
Cui Z, Shi C, Zha L, Liu J, Guo Y, Li X, Zhang E, Yin Z. Phthalates in the environment of China: A scoping review of distribution, anthropogenic impact, and degradation based on meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117659. [PMID: 39778321 DOI: 10.1016/j.ecoenv.2024.117659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Phthalates (PAEs) are a group of endocrine-disrupting environmental chemicals (EEDs) that pose significant risks to human health. PAEs are widespread in various environmental media, including air, dust, water, and soil, and are subject to both horizontal and vertical migration. Human activities significantly influence the distribution of PAEs, yet current research on this relationship remains limited. In this study, we first describe the hot issues of PAEs in the environment through bibliometrics, and then review published related studies. We outline the global distribution of PAEs in different media and conducted a comparative analysis of their composition. Principal component analysis (PCA) revealed PAEs differences in environmental mediums and geographic locations. Correlation analysis between PAEs composition and human activities in China further demonstrated that PAE concentrations were closely linked to agricultural and industrial activities. We also discussed the biodegradation and abiotic degradation of PAEs, finding that bacteria play a crucial role in their degradation in soil. This study aims to assess the distribution, transfer, impact, and degradation of PAEs, providing insights for the prevention and remediation of PAE pollution.
Collapse
Affiliation(s)
- Zhigang Cui
- School of Nursing, China Medical University, Shenyang 110122, PR China
| | - Ce Shi
- School of Stomatology, China Medical University, Shenyang 110002, PR China
| | - Lanting Zha
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jiaman Liu
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Yinchu Guo
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Xiaohan Li
- School of Nursing, China Medical University, Shenyang 110122, PR China.
| | - Enjiao Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, PR China.
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
8
|
Liu R, Tao Y. Occurrence, bioaccumulation, and partitioning of phthalate acid esters in the third largest freshwater lake (Lake Taihu) in China. ENVIRONMENTAL RESEARCH 2024; 263:120188. [PMID: 39427943 DOI: 10.1016/j.envres.2024.120188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Phthalate acid esters (PAEs) are a category of plasticizers that are ubiquitous in freshwater environments attributable to extensive utilization. We collected water, suspended particulate matter (SPM), surface sediments, phytoplankton, and zooplankton from 23 sampling sites to investigate and complement the occurrence, bioaccumulation, and partitioning of five PAEs including dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), butyl benzyl phthalate (BBP), and di (2-ethylhexyl) phthalate (DEHP) in the third largest freshwater lake (Lake Taihu) of China. PAEs were extracted using Soxhlet extraction and solid phase extraction, and determined by gas chromatography-mass spectrometry. The average concentrations of the five PAEs in the water column, SPM, sediments, phytoplankton, and zooplankton of Lake Taihu were 1.93 ± 1.57 μg L-1, 765 ± 766 μg g-1, 1.68 ± 1.47 μg g-1, 1358 ± 1877 μg g-1, and 72.7 ± 134 μg g-1, respectively. DBP and DEHP were the dominant PAE congeners in the five environment compartments. The logarithmic concentrations of DBP, BBP, and DEHP in the SPM were negatively correlated with the logarithmic content of the SPM. Biodilution significantly impacted the occurrence of PAEs in the plankton. Bioaccumulation of PAEs was found in the plankton with log BCF (bioconcentration factor) in the phytoplankton ranging from 1.78 ± 0.86 to 4.13 ± 1.23 and log BAF (bioaccumulation factor) in the zooplankton varying from -0.10 ± 0.26 to 3.04 ± 0.64. Biomagnification of the PAEs from phytoplankton to zooplankton was not observed. DMP, DEP, and BBP migrated from sediments to water. DBP was in dynamic equilibrium in the sediment-water system. DEHP transferred from water to sediments. Our results provide crucial complementary knowledge on bioaccumulation and transfer of PAEs in planktonic food web, and their partitioning in different compartments of waters.
Collapse
Affiliation(s)
- Ruiling Liu
- College of Oceanography, Hohai University, Nanjing 210024, China
| | - Yuqiang Tao
- College of Oceanography, Hohai University, Nanjing 210024, China.
| |
Collapse
|
9
|
Zhang L, He Y, Jiang L, Shi Y, Hao L, Huang L, Lyu M, Wang S. Plastic additives as a new threat to the global environment: Research status, remediation strategies and perspectives. ENVIRONMENTAL RESEARCH 2024; 263:120007. [PMID: 39284493 DOI: 10.1016/j.envres.2024.120007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Discharge or leaching of plastic additives, which are an essential part of the plastic production process, can lead to environmental pollution with serious impacts on human and ecosystem health. Recently, the emission of plastic additives is increasing dramatically, but its pollution condition has not received enough attention. Meanwhile, the effective treatment strategy of plastic additive pollution is lack of systematic introduction. Therefore, it is crucial to analyze the harm and pollution status of plastic additives and explore effective pollution control strategies. This paper reviews the latest research progress on additives in plastics, describes the effects of their migration into packaged products and leaching into the environment, presents the hazards of four major classes of plastic additives (i.e., plasticizers, flame retardants, stabilizers, and antimicrobials), summarizes the existing abiotic/biotic strategies for accelerated the remediation of additives, and finally provides perspectives on future research on the removal of plastic additives. To the best of our knowledge, this is the first review that systematically analyzes strategies for the treatment of plastic additives. The study of these strategies could (i) provide feasible, cost-effective abiotic method for the removal of plastic additives, (ii) further enrich the current knowledge on plastic additive bioremediation, and (iii) present application and future development of plants, invertebrates and machine learning in plastic additive remediation.
Collapse
Affiliation(s)
- Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Yuehui He
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lei Jiang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yong Shi
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lijuan Hao
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lirong Huang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
10
|
Thodhal Yoganandham S, Daeho K, Heewon J, Shen K, Jeon J. Unveiling the environmental impact of tire wear particles and the associated contaminants: A comprehensive review of environmental and health risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136155. [PMID: 39423645 DOI: 10.1016/j.jhazmat.2024.136155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
This review offers a novel perspective on the environmental fate and ecotoxicological effects of tire wear particles (TWPs), ubiquitous environmental contaminants ranging in size from micrometers to millimeters (averaging 10-100 micrometers). These particles pose a growing threat due to their complex chemical composition and potential toxicity. Human exposure primarily occurs through inhalation, ingesting contaminated food and water, and dermal contact. Our review delves into the dynamic interplay between TWP composition, transformation products (TPs), and ecological impacts, highlighting the importance of considering both individual chemical effects and potential synergistic interactions. Notably, our investigation reveals that degradation products of certain chemicals, such as diphenylguanidine (DPG) and diphenylamine (DPA), can be more toxic than the parent compounds, underscoring the need to fully understand these contaminants' environmental profile. Furthermore, we explore the potential human health implications of TWPs, emphasizing the need for further research on potential respiratory, cardiovascular, and endocrine disturbances. Addressing the challenges in characterizing TWPs, assessing their environmental fate, and understanding their potential health risks requires a multidisciplinary approach. Future research should prioritize standardized TWP characterization and leachate analysis methods, conduct field studies to enhance ecological realism, and utilize advanced analytical techniques to decipher complex mixture interactions and identify key toxicants. By addressing these challenges, we can better mitigate the environmental and health risks associated with TWPs and ensure a more sustainable future.
Collapse
Affiliation(s)
- Suman Thodhal Yoganandham
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea; Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Kang Daeho
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Jang Heewon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Kailin Shen
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea.
| |
Collapse
|
11
|
Sun X, Wang J, Kang J, Sun J, Li S, Zhang Y, Ye H, Li S, Zhang X. Highly efficient adsorption and removal of phthalate esters by polymers of intrinsic microporosity. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136218. [PMID: 39490172 DOI: 10.1016/j.jhazmat.2024.136218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
In recent years, phthalate esters (PAEs) have been found to be endocrine disruptors that pose a serious safety threat to human health. Currently, adsorption is one of the most efficient technologies to remove PAEs, and the development of adsorbent materials that combine high adsorption capacity and short equilibrium time is a challenging problem. In this study, PIM-1, a typical representative of polymers of intrinsic microporosity (PIMs), was prepared through three methods and first used as adsorbents for PAEs removal. PIM-1 prepared under high temperature (HT-PIM-1) exhibited a high capacity of 787 mg/g for dibutyl phthalate (DBP), a prevalent PAE in water, which is significantly higher than most reported adsorbents. Furthermore, more than 90.0 % of the equilibrium adsorption capacity can be reached within 30 mins. In addition, the adsorption of DBP could be inhibited by ethanol due to the enhanced interaction between DBP and ethanol, which could be revealed by molecular simulation. The adsorption mechanism of PAEs on PIM-1 mainly included hydrophobic interactions, π-π interactions, together with the size matching between PAEs and hierarchical pores of PIM-1. This study provides an idea for the application of PIMs for PAEs removal with high adsorption capacity and high efficiency.
Collapse
Affiliation(s)
- Xiaoya Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jun Wang
- Shanxi Kunming Tobacco Co., Ltd., Taiyuan 030032, China
| | - Jun Kang
- Shanxi Kunming Tobacco Co., Ltd., Taiyuan 030032, China
| | - Jingyi Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Shunying Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yingying Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Hong Ye
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Shuangyang Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
12
|
Kim Y, Lim JE, Moon HB. Legacy and alternative plasticizers in sediment from artificial lakes and coastal waters near high-tech industrial complexes in Korea: Contamination, ecological risk, mass inventory, and dilution factor. MARINE POLLUTION BULLETIN 2024; 209:117185. [PMID: 39461178 DOI: 10.1016/j.marpolbul.2024.117185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Few studies have been conducted on the occurrence and distribution of alternative plasticizers (APs) in aquatic environments. Legacy plasticizers (LPs) and APs were measured in sediments collected from four artificial lakes and a bay surrounded by high-tech industrial complexes. Bis(2-ethylhexyl) phthalate (DEHP) and bis(2-ethylhexyl) terephthalate were major plasticizers. The concentrations of LPs and APs in sediment were similar, implying rapid adoption of APs. The highest AP concentrations were observed in sediment from a lake close to semi-conductor, liquid crystal display, and automobile manufactures, suggesting a preferential shift to APs. Contamination profiles of APs differed according to industrial type. The mass inventories of plasticizers in sediment from the lakes were 25 times higher than those from the bay. Hydrophobicity was a major factor determinant of dilution factors of plasticizers in sedimentary environments. The DEHP concentrations in lake sediments exceeded threshold values, indicating potential health risks to benthic organisms.
Collapse
Affiliation(s)
- Youngju Kim
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea; West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon 22383, Republic of Korea
| | - Jae-Eun Lim
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
13
|
Patel SS, Trangadia BJ, Patel UD, Delvadiya RS, Makwana AA, Raval SH, Fefar DT. Toxic effects of dibutyl phthalate on testes of adult zebrafish: evaluation of oxidative stress parameters and histopathology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55610-55623. [PMID: 39237826 DOI: 10.1007/s11356-024-34868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Dibutyl phthalate (DBP) is a phthalic compound and is most commonly used as a plasticizer in the polymer industry. It affects the hypothalamus-pituitary-gonadal axis and produces infertility in exposed animals. A total of 366 adult male zebrafish were used to evaluate the toxicological effects of DBP in testes following continuous exposure for 28 days. To evaluate histological changes during phase I of the study, 30 zebrafish were equally divided into five groups viz., control (RO water), vehicle control (0.01% DMSO), T0 (250 µg/L of water), T1 (500 µg/L of water), and T2 group (1000 µg/L of water). The protocol for phase II of the study was decided based on the results of phase I of the study. During phase II, for evaluation of oxidative stress parameters and gene expression profile, a total of 336 fish were equally divided into four groups viz., control, vehicle control, T1 (500 µg/L of water), and T2 (1000 µg/L of water). The activity of SOD, CAT, and TAC was significantly lower in zebrafish from the T2 group; however, a significantly increased level of MDA in the T2 group was recorded as compared to control groups. mRNA expression profile of sod, cat, and nrf2 genes was significantly downregulated in the T2 group as compared to the control group. Histopathology and proliferating cell nuclear antigen immunostaining revealed a reduction in spermatozoa with increased spermatocytes and spermatogonia in testes from T1 and T2 groups. The result indicated that DBP can induce oxidative stress and affect spermatogenesis in zebrafish testes.
Collapse
Affiliation(s)
- Swati S Patel
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362001, Gujarat, India
| | - Bhavesh J Trangadia
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362001, Gujarat, India.
| | - Urvesh D Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362001, Gujarat, India
| | - Rajkumar S Delvadiya
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362001, Gujarat, India
| | - Abdulkadir A Makwana
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362001, Gujarat, India
| | - Samir H Raval
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Sardarkrushinagar, 385506, Gujarat, India
| | - Dhaval T Fefar
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362001, Gujarat, India
| |
Collapse
|
14
|
Zhang Q, Wang L, Wu Q. Occurrence and combined exposure of phthalate esters in urban soil, surface dust, atmospheric dustfall, and commercial food in the semi-arid industrial city of Lanzhou, Northwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 354:124170. [PMID: 38759748 DOI: 10.1016/j.envpol.2024.124170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
A total of 138 samples including urban soil, surface dust, atmospheric dustfall, and commercial food were collected from the semi-arid industrial city of Lanzhou in Northwest China, and 22 phthalate esters (PAEs) were analyzed in these samples by gas chromatography-mass spectrometry for the pollution characteristics, potential sources, and combined exposure risks of PAEs. The results showed that the total concentration of 22 PAEs (Ʃ22PAEs) presented surface dust (4.94 × 104 ng/g) ≫ dustfall (1.56 × 104 ng/g) ≫ food (2.14 × 103 ng/g) ≫ urban soil (533 ng/g). Di-n-butyl phthalate (DNBP), di-isobutyl phthalate, di(2-ethylhexyl) phthalate (DEHP), and di-isononyl phthalate/di-isodecyl phthalate were predominant in the environmental media and commercial food, being controlled by priority (52.1%-65.5%) and non-priority (62.1%) PAEs, respectively. Elevated Ʃ22PAEs in the urban soil and surface dust was found in the west, middle, and east of Lanzhou. Principal component analysis indicated that PAEs the urban soil and surface dust were related with the emissions of products containing PAEs, atmosphere depositions, and traffic and industrial emissions. PAEs in the foods were associated with the growth and processing environment. The health risk assessment of United States Environmental Protection Agency based on the Chinese population exposure parameters indicated that the total exposure dose of 22 PAEs was from 0.111 to 0.226 mg/kg/day, which were above the reference dose (0.02 mg/kg/day) and tolerable daily intake (TDI, 0.05 mg/kg/day) for DEHP (0.0333-0.0631 mg/kg/day), and TDI (0.01 mg/kg/day) for DNBP (0.0213-0.0405 mg/kg/day), implying that the exposure of PAEs via multi-media should not be ignored; the total non-carcinogenic risk of six priority PAEs was below 1 for the three environmental media (1.21 × 10-5-2.90 × 10-3), while close to 1 for food (4.74 × 10-1-8.76 × 10-1), suggesting a potential non-carcinogenic risk of human exposure to PAEs in food; the total carcinogenic risk of BBP and DEHP was below 1 × 10-6 for the three environmental media (9.13 × 10-10-5.72 × 10-7), while above 1 × 10-4 for DEHP in food (1.02 × 10-4), suggesting a significantly carcinogenic risk of human exposure to DEHP in food. The current research results can provide certain supports for pollution and risk prevention of PAEs.
Collapse
Affiliation(s)
- Qian Zhang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Lijun Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China.
| | - Qianlan Wu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
15
|
Guiloski IC, Vicari T, Vicentini M, Oya-Silva LF, Carvalho LÂSJ, Deda B, Marcondes FR, Simeoni RD, de Oliveira Guaita G, Stern CAJ, Martino-Andrade AJ, Leme DM, Silva de Assis HC, Cestari MM. Alterations in neurotransmitters, steroid hormones, vitellogenin, and antioxidant system induced by di-n-butyl phthalate and di-isopentyl phthalate on catfish Rhamdia quelen. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51954-51970. [PMID: 39136918 DOI: 10.1007/s11356-024-34392-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/10/2024] [Indexed: 09/06/2024]
Abstract
Phthalates, such as di-n-butyl phthalate (DBP) and di-isopentyl phthalate (DiPeP), are pollutants with a high potential for endocrine disruption. This study aimed to evaluate parameters of endocrine disruption in specimens of the Neotropical fish Rhamdia quelen exposed to DBP and DiPeP through their food. After 30 days of exposure, the fish were anesthetized and then euthanized, and blood, hypothalamus, liver, and gonads were collected. DBP caused statistically significant alterations in the serotoninergic system of males (5 and 25 ng/g) and females (5 ng/g) of R. quelen and it increased testosterone levels in females (25 ng/g). DiPeP significantly altered the dopaminergic system in females, reduced plasma estradiol levels (125 ng/g) and hepatic vitellogenin expression (25 ng/g), and changed the antioxidant system in gonads (125 ng/g). The results suggest that DBP and DiPeP may have different response patterns in females, with the former being androgenic and the latter being anti-estrogenic. These findings provide additional evidence regarding the molecular events involving DBP and DiPeP in the endocrine disruption potential in juvenile specimens of Rhamdia quelen.
Collapse
Affiliation(s)
- Izonete Cristina Guiloski
- Genetic Department, Federal University of Paraná, Curitiba-PR, Brazil.
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Munhoz da Rocha, 490, Cabral, 80.035-000, Curitiba-PR, Brazil.
- Faculdades Pequeno Príncipe, Curitiba-PR, Brazil.
| | - Taynah Vicari
- Genetic Department, Federal University of Paraná, Curitiba-PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba-PR, Brazil
| | - Maiara Vicentini
- Pharmacology Department, Federal University of Paraná, Curitiba-PR, Brazil
| | | | | | - Bruna Deda
- Genetic Department, Federal University of Paraná, Curitiba-PR, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Huang C, Gong X, Qin Y, Zhang L, Cai Y, Feng S, Zhang Y, Zhao Z. Risk assessment of China's Eastern Route of the South-to-north Water Diversion Project from the perspective of Phthalate Esters occurrence in the impounded lakes. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134511. [PMID: 38772103 DOI: 10.1016/j.jhazmat.2024.134511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
Phthalate esters (PAEs) are widely utilized and can accumulate in lacustrine ecosystems, posing significant ecological and human health hazards. Most studies on PAEs focus on individual lakes, lacking a comprehensive and systematic perspective. In response, we have focused our investigation on characteristic lakes situated along the Eastern Route of the South-to-north Water Diversion Project (SNWDP-ER) in China. We have detected 16 PAE compounds in the impounded lakes of the SNWDP-ER by collecting surface water samples using solid-phase extraction followed by gas chromatography analysis. The concentration of PAEs were found to between 0.80 to 12.92 μg L-1. Among them, Bis (2-ethylhexyl) phthalate (DEHP) was the most prevalent, with mean concentration of 1.56 ± 0.62 μg L-1 (48.44%), followed by Diisobutyl phthalate (DIBP), 0.64 ± 1.40 μg L-1 (19.87%). Spatial distribution showed an increasing trend in the direction of water flow. Retention of DEHP and DIBP has led to increased environmental risks. DEHP, Dimethyl phthalate (DMP) etc. determined by agriculture and human activities. Additionally, Dibutyl phthalate (DBP) and DIBP mainly related to the use of agricultural products. To mitigate the PAEs risk, focusing on integrated management of the lakes, along with the implementation of stringent regulations to control the use of plasticizes in products.
Collapse
Affiliation(s)
- Chenyu Huang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xionghu Gong
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yu Qin
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lu Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Yongjiu Cai
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shaoyuan Feng
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Youliang Zhang
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Zhonghua Zhao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
17
|
Esmaeili Nasrabadi A, Ramavandi B, Bonyadi Z, Farjadfard S, Fattahi M. Landfill leachates as a significant source for emerging pollutants of phthalic acid esters: Identification, occurrence, characteristics, fate, and transport. CHEMOSPHERE 2024; 356:141873. [PMID: 38593958 DOI: 10.1016/j.chemosphere.2024.141873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/09/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024]
Abstract
Phthalic acid esters (PAEs) are byproducts released from various sources, including microplastics, cosmetics, personal care products, pharmaceuticals, waxes, inks, detergents, and insecticides. This review article provides an overview of the literature on PAEs in landfill leachates, exploring their identification, occurrence, characteristics, fate, and transport in landfills across different countries. The study emphasizes the influence of these substances on the environment, especially on water and soil. Various analytical techniques, such as GC-MS, GC-FID, and HPLC, are commonly employed to quantify concentrations of PAEs. Studies show significant variations in levels of PAEs among different countries, with the highest concentration observed in landfill leachates in Brazil, followed by Iran. Among the different types of PAE, the survey highlights DEHP as the most concentrated PAE in the leachate, with a concentration of 89.6 μg/L. The review also discusses the levels of other types of PAEs. The data shows that DBP has the highest concentration at 6.8 mg/kg, while DOP has the lowest concentration (0.04 mg/kg). The concentration of PAEs typically decreases as the depth in the soil profile increases. In older landfills, concentrations of PAE decrease significantly, possibly due to long-term degradation and conversion of PAE into other chemical compounds. Future research should prioritize evaluating the effectiveness of landfill liners and waste management practices in preventing the release of PAE and other pollutants into the environment. It is also possible to focus on developing efficient physical, biological, and chemical methods for removing PAEs from landfill leachates. Additionally, the effectiveness of existing treatment processes in removing PAEs from landfill leachates and the necessity for new treatment processes can be considered.
Collapse
Affiliation(s)
- Afsaneh Esmaeili Nasrabadi
- Student Research Committee, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Ziaeddin Bonyadi
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sima Farjadfard
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
18
|
Gholaminejad A, Mehdizadeh G, Dolatimehr A, Arfaeinia H, Farjadfard S, Dobaradaran S, Bonyadi Z, Ramavandi B. Phthalate esters pollution in the leachate, soil, and water around a landfill near the sea, Iran. ENVIRONMENTAL RESEARCH 2024; 248:118234. [PMID: 38272296 DOI: 10.1016/j.envres.2024.118234] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/09/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
This investigation aimed to scrutinize the level of phthalate esters (PEs) in the landfill leachate of a coastal city in the north of the Persian Gulf and the sensitive ecosystem (soil and water) around it. Soil (two depths) and water samples were prepared from 5 stations in wet and dry seasons. The studied landfill leachate contained 114-303 μg/L of phthalates. The highest concentration of phthalates was related to bis (2-ethylhexyl) phthalate (3257 ng/g) in the wet season at surface soil (0-5 cm) in the landfill site, while the lowest one (6 ng/g) belonged to dimethyl phthalate at sub-surface soil at 700 m from the landfill in the dry season. A significant change in the level of Σ6PEs in the dry (303 μg/L) and wet (114 μg/L) seasons (P ≤ 0.05) was observed for water samples. The PE concentrations in wet times were higher in all soil depths than in dry times. With increasing depth, the content of phthalates decreased in all studied environments. A direct relationship was observed between the phthalates concentration and the pH value of leachate/water and soil. The PEs concentration was linked to electrical conductivity (leachate: R2 = 0.65, P < 0.01 and surface soil: R2 = 0.77, P < 0.05) and the soil organic content. The ecological risk of di-n-butyl phthalate, benzyl butyl phthalate, bis (2-ethylhexyl) phthalate, and di-n-octyl phthalate in the wet season was greater than one. The results showed that significant levels of phthalate esters are released from landfills to the surrounding environment, which requires adequate measures to maintain the health of the ecosystem and nearby residents.
Collapse
Affiliation(s)
- Ali Gholaminejad
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ghazal Mehdizadeh
- Division of Atmospheric Science, University of Nevada, Reno, United States
| | - Armin Dolatimehr
- Civil and Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Hosein Arfaeinia
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sima Farjadfard
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ziaeddin Bonyadi
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
19
|
Sun J, Yang S, Zhang Y, Xiang W, Jiang X. Relationship between phthalates exposures and metabolic dysfunction-associated fatty liver disease in United States adults. PLoS One 2024; 19:e0301097. [PMID: 38640138 PMCID: PMC11029636 DOI: 10.1371/journal.pone.0301097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/11/2024] [Indexed: 04/21/2024] Open
Abstract
As a new definition for the evidence of hepatic steatosis and metabolic dysfunctions, the relationship between phthalates (PAEs) and metabolic dysfunction-associated fatty liver disease (MAFLD) remains virtually unexplored. This study included 3,137 adults from the National Health and Nutrition Examination Survey spanning 2007-2018. The diagnosis of MAFLD depended on the US Fatty Liver Index (US FLI) and evidence of metabolic dysregulation. Eleven metabolites of PAEs were included in the study. Poisson regression, restricted cubic spline (RCS), and weighted quantile sum (WQS) regression were used to assess the associations between phthalate metabolites and MAFLD. After adjusting for potential confounders, Poisson regression analysis showed that mono-2-ethyl-5-carboxypentyl phthalate (MECPP), mono-n-butyl phthalate, mono-(3-carboxypropyl) phthalate, mono-ethyl phthalate (MEP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono-(2-ethyl-5-oxohexyl) phthalate were generally significant positively associated with MAFLD (P<0.05). Furthermore, the WQS index constructed for the eleven phthalates was significantly related to MAFLD (OR:1.43; 95%CI: 1.20, 1.70), MEHHP (33.30%), MEP (20.84%), MECPP (15.43%), and mono-isobutyl phthalate (11.78%) contributing the most. This study suggests that exposure to phthalates, individually or in combination, may be associated with an increased risk of MAFLD.
Collapse
Affiliation(s)
- Junhao Sun
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao, China
| | - Siqi Yang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao, China
| | - Yue Zhang
- Qingdao Maternal & Child Health and Family Planning Service Center, Qingdao, China
| | - Wenzhi Xiang
- Huangdao District Center for Disease Control and Prevention, Qingdao, China
| | - Xiubo Jiang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Guo W, Zhang Z, Zhu R, Li Z, Liu C, Xiao H, Xiao H. Pollution characteristics, sources, and health risks of phthalate esters in ambient air: A daily continuous monitoring study in the central Chinese city of Nanchang. CHEMOSPHERE 2024; 353:141564. [PMID: 38417490 DOI: 10.1016/j.chemosphere.2024.141564] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/07/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
In recent years, the atmospheric pollution caused by phthalate esters (PAEs) has been increasing due to the widespread use of PAE-containing materials. Existing research on atmospheric PAEs lacks long-term continuous observation and samples from cities in central China. To investigate the pollution characteristics, sources, and health risks of PAEs in the ambient air of a typical city in central China, daily PM2.5 samples were collected in Nanchang from November 2020 to October 2021. In this study, the detection and quantification of six significant PAE contaminants, namely diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), diisobutyl phthalate (DIBP), Di-2-ethylhexyl phthalate (DEHP), di-n-octyl phthalate (DnOP), and diisodecyl phthalate (DIDP), were accomplished using gas chromatography and mass spectrometry. The results revealed that the concentrations of DEP, DnBP, DEHP, and DnOP were relatively high. Higher temperatures promote the volatilization of PAEs, leading to an increase in the gaseous and particulate PAE concentrations in warm seasons and winter pollution scenarios. The results of principal component analysis show that PAEs mainly come from volatile products and polyvinylchloride plastics. Using positive matrix factorization analysis, it is shown that these two sources contribute 67.0% and 33.0% in atmosphere PAEs, respectively. Seasonally, the contribution of volatile products to both gaseous and particulate PAEs substantially increases during warm seasons. The residents in Nanchang exposed to PAEs have a negligible non-cancer risk and a potential low cancer risk. During the warm seasons, more PAEs are emitted into the air, which will increase the toxicity of PAEs and their impact on human health.
Collapse
Affiliation(s)
- Wei Guo
- School of Water Resources and environmental Engineering, East China University of Technology, Nanchang, 330013, China; Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Ziyue Zhang
- School of Water Resources and environmental Engineering, East China University of Technology, Nanchang, 330013, China; Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Renguo Zhu
- School of Water Resources and environmental Engineering, East China University of Technology, Nanchang, 330013, China; Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Zicong Li
- School of Water Resources and environmental Engineering, East China University of Technology, Nanchang, 330013, China; Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Cheng Liu
- School of Water Resources and environmental Engineering, East China University of Technology, Nanchang, 330013, China; Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Hongwei Xiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huayun Xiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
21
|
Tuli A, Suresh G, Halder N, Velpandian T. Analysis and remediation of phthalates in aquatic matrices: current perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23408-23434. [PMID: 38456985 DOI: 10.1007/s11356-024-32670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Phthalic acid esters (PAEs) are high production volume chemicals used extensively as plasticizers, to increase the flexibility of the main polymer. They are reported to leach into their surroundings from plastic products and are now a ubiquitous environmental contaminant. Phthalate levels have been determined in several environmental matrices, especially in water. These levels serve as an indicator of plasticizer abuse and plastic pollution, and also serve as a route of exposure to different species including humans. Reports published on effects of different PAEs on experimental models demonstrate their carcinogenic, teratogenic, reproductive, and endocrine disruptive effects. Therefore, regular monitoring and remediation of environmental water samples is essential to ascertain their hazard quotient and daily exposure levels. This review summarises the extraction and detection techniques available for phthalate analysis in water samples such as chromatography, biosensors, immunoassays, and spectroscopy. Current remediation strategies for phthalate removal such as adsorption, advanced oxidation, and microbial degradation have also been highlighted.
Collapse
Affiliation(s)
- Anannya Tuli
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Gayatri Suresh
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Nabanita Halder
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Thirumurthy Velpandian
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
22
|
Chen Z, Dou S, Zhao C, Xiao L, Lu Z, Qiu Y. Machine learning-assisted assessment of key meteorological and crop factors affecting historical mulch pollution in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133281. [PMID: 38134688 DOI: 10.1016/j.jhazmat.2023.133281] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Degraded mulch pollution is of a great concern for agricultural soils. Although numerous studies have examined this issue from an environmental perspective, there is a lack of research focusing on crop-specific factors such as crop type. This study aimed to explore the correlation between meteorological and crop factors and mulch contamination. The first step was to estimate the amounts of mulch-derived microplastics (MPs) and phthalic acid esters (PAEs) during the rapid expansion period (1993-2012) of mulch usage in China. Subsequently, the Elastic Net (EN) and Random Forest (RF) models were employed to process a dataset that included meteorological, crop, and estimation data. At the national level, the RF model suggested that coldness in fall was crucial for MPs generation, while vegetables acted as a key factor for PAEs release. On a regional scale, the EN results showed that crops like vegetables, cotton, and peanuts remained significantly involved in PAEs contamination. As for MPs generation, coldness prevailed over all regions. Aridity became more critical for southern regions compared to northern regions due to solar radiation. Lastly, each region possessed specific crop types that could potentially influence its MPs contamination levels and provide guidance for developing sustainable ways to manage mulch contamination.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, China
| | - Shuguang Dou
- Department of Computer Science, College of Electronic and Information Engineering, Tongji University, China
| | - Cairong Zhao
- Department of Computer Science, College of Electronic and Information Engineering, Tongji University, China
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Zhibo Lu
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, China
| | - Yuping Qiu
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, China.
| |
Collapse
|
23
|
Liu K, Liang C, Lv H, Yao X, Li X, Ding J, Chen N, Wang S, Liu W, Hu X, Wang J, Yin H. Photocatalytic degradation of butyl benzyl phthalate by S-scheme Bi/Bi 2O 2CO 3/Bi 2S 3 under simulated sunlight irradiation. CHEMOSPHERE 2024; 350:141046. [PMID: 38154674 DOI: 10.1016/j.chemosphere.2023.141046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/13/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
As a kind of plasticizer, butyl benzyl phthalate (BBP) presents a serious hazard to the ecosystem. Therefore, there is a strong need for an effective technique to eliminate the risk of BBP. In this work, a new photocatalyst of Bi/Bi2O2CO3/Bi2S3 with an S-scheme heterojunction was synthesized using Bi(NO3)3 as the Bi source, Na2S as the S source, and DMF as the carbon source and reductant. Numerous techniques have been used to characterize Bi/Bi2O2CO3/Bi2S3, such as scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The improved photoactivity of Bi/Bi2O2CO3/Bi2S3 was evaluated by photoelectrochemical response, electrochemical impedance spectroscopy, photoluminescence, UV-Vis diffuse reflectance spectroscopy, and electrochemical Mott Schottky spectroscopy. The enhanced photocatalytic activity of this composite for BBP degradation under simulated sunlight irradiation could be attributed to the surface plasmon resonance effect of Bi metal and the heterojunction structure of Bi2O2CO3 and Bi2S3. The degradation rate of Bi/Bi2O2CO3/Bi2S3 was 85%, which was 4.52 and 1.52 times that of Bi2O2CO3 and Bi2S3, respectively. The prepared photocatalyst possessed good stability and reproducibility in eliminating BBP. The improved photocatalytic activity of Bi/Bi2O2CO3/Bi2S3 was demonstrated with the formation of an S-scheme heterojunction, and the degradation mechanism was discussed with a liquid chromatograph mass spectrometer.
Collapse
Affiliation(s)
- Kexue Liu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Chunliu Liang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Huijuan Lv
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xianxu Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Jia Ding
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Na Chen
- Ningyang Environmental Monitoring Centre, 271400, Ningyang, Tai'an, Shandong, PR China
| | - Suo Wang
- College of Chemistry and Material Science, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Wenrong Liu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xue Hu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Huanshun Yin
- College of Chemistry and Material Science, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China.
| |
Collapse
|
24
|
An J, Roh HH, Jeong H, Lee KY, Rhim T. Rapid Assessment of Di(2-ethylhexyl) Phthalate Migration from Consumer PVC Products. TOXICS 2023; 12:7. [PMID: 38276720 PMCID: PMC10818930 DOI: 10.3390/toxics12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
Poly(vinyl chloride) (PVC) is widely used to produce various consumer goods, including food packaging, toys for children, building materials, and cosmetic products. However, despite their widespread use, phthalate plasticizers have been identified as endocrine disruptors, which cause adverse health effects, thus leading to increasing concerns regarding their migration from PVC products to the environment. This study proposed a method for rapidly measuring the migration of phthalates, particularly di(2-ethylhexyl) phthalate (DEHP), from PVC products to commonly encountered liquids. The release of DEHP under various conditions, including exposure to aqueous and organic solvents, different temperatures, and household microwaves, was investigated. The amount of DEHP released from both laboratory-produced PVC films and commercially available PVC products was measured to elucidate the potential risks associated with its real-world applications. Furthermore, tests were performed to evaluate cytotoxicity using estrogen-dependent and -independent cancer cell lines. The results revealed a dose-dependent impact on estrogen-dependent cells, thus emphasizing the potential health implications of phthalate release. This comprehensive study provides valuable insights into the migration patterns of DEHP from PVC products and forms a basis for further research on the safety of PVC and plasticizers.
Collapse
Affiliation(s)
- Jiwon An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyun-Ho Roh
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Haeyoon Jeong
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Kuen-Yong Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul 04763, Republic of Korea
| | - Taiyoun Rhim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
25
|
Kanaujiya DK, Purnima M, Pugazhenthi G, Dutta TK, Pakshirajan K. An indigenous tubular ceramic membrane integrated bioreactor system for biodegradation of phthalates mixture from contaminated wastewater. Biodegradation 2023; 34:533-548. [PMID: 37354273 DOI: 10.1007/s10532-023-10040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/30/2023] [Indexed: 06/26/2023]
Abstract
Endocrine-disrupting phthalates (EDPs) are widely used as plasticizers for the manufacture of different plastics and polyvinyl chloride by providing flexibility and mechanical strength. On the other hand, they are categorized under priority pollutants list due to their threat to human health and the environment. This study examined biodegradation of a mixture of dimethyl, diethyl, dibutyl, benzyl butyl, di-2-ethylhexyl, and di-n-octyl phthalates using a CSTB (continuous stirred tank bioreactor) operated under batch, fed-batch, continuous, and continuous with biomass recycle operation modes. For operating the CSTB under biomass recycle mode, microfiltration using an indigenous tubular ceramic membrane was employed. Ecotoxicity assessment of the treated water was carried out to evaluate the toxicity removal efficiency by the integrated bioreactor system. From the batch experiments, the EDPs cumulative degradation values were 90 and 75% at 1250 and 1500 mg/L total initial concentration of the mixture, respectively, whereas complete degradation was achieved at 750 mg/L. In the fed-batch study, 93% degradation was achieved at 1500 mg/L total initial concentration of the mixture. In continuous operation mode, 94 and 85% degradation efficiency values were achieved at 43.72 and 52.08 mg/L⋅h inlet loading rate of phthalate mixture. However, continuous feeding with 100% biomass recycle revealed complete degradation at 41.67 mg/L⋅h inlet loading rate within the 84 h operation period. High seed germination index and low mortality percentage of brine shrimps observed with phthalate degraded water from the integrated bioreactor system revealed its excellent potential in the treatment and toxicity removal of phthalates contaminated environment.
Collapse
Affiliation(s)
- Dipak Kumar Kanaujiya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Madu Purnima
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - G Pugazhenthi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Tapan Kumar Dutta
- Department of Microbiology, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
26
|
Chen Y, Kong H, Giesy JP, Liu H. Isomers are more likely to cause collapse of Daphnia magna populations than Di-(2-ethylhexyl) phthalate (DEHP). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106757. [PMID: 37979496 DOI: 10.1016/j.aquatox.2023.106757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/12/2023] [Accepted: 11/04/2023] [Indexed: 11/20/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is the most commonly used phthalate and is ubiquitous in surface water. Based on its well-established toxicological profile, many countries and regions have adopted specific environmental quality standard (EQS) for DEHP. In China, the EQS value for DEHP is 8 μg/L. However, information on isomers structurally similar to DEHP is limited. Among the isomers of DEHP, di-isooctyl phthalate (DIOP) and di-n-octyl phthalate (DnOP) have received limited attention. The goal of this paper was to study effects and toxic potencies of DEHP, DIOP, and DnOP to individuals and predict effects on populations of female Daphnia magna (cladoceran crustacea) in media containing environmentally relevant concentrations of single PAEs for three consecutive generations (21 days for every generation). Exposure to all three PAEs resulted in reduced survival and reproduction and cause collapse of populations at the highest concentrations. DnOP was the most potent for causing adverse effects followed by DIOP, while DEHP was the least potent. 8 μg DnOP/L were found to reduce the population size by 37 % in the F2 generation. These findings demonstrate that PAE isomers other than DEHP can cause adverse effects.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Haoyue Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, United States; Department of Environmental Sciences, Baylor University, Waco, TX 76706, United States
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
27
|
Zhang Y, Gao Y, Xi B, Yuan Y, Tan W. Influence of leachate microenvironment on the occurrence of phthalate esters in landfills. CHEMOSPHERE 2023; 343:140278. [PMID: 37758088 DOI: 10.1016/j.chemosphere.2023.140278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Phthalate esters (PAEs) are added to various products as plasticizers. Plastic waste containing PAEs enters landfills as they age with use. However, the influence of microenvironmental changes on the occurrence of PAEs during landfill stabilization is still unknown. In this study, we evaluated the relationship between the physical and chemical properties of leachate, the structure of bacterial communities and the chemical structure of dissolved organic matter (DOM), and the occurrence of PAEs and the mechanism underlying their responses to changes. Landfill leachate in different stabilization states had high Cl- and NH4+ contents and its metal element (Cr, Pb, and Zn) contents generally decreased with the increase in landfill ages. Proteobacteria, Bacteroidetes, and Firmicutes were important phyla and had an average relative abundance of 68.63%. The lignin/carboxylate-rich alicyclic molecule structure was the main component of DOM (56%-64%). Of the 6-priority controlled PAEs in leachate, di-n-butyl phthalate was the most abundant (1046 μg L-1), while butyl phthalate was not detected. The results showed that pH, the relative abundance of Chloroflexi, and the value of SUVA254 can directly influence the occurrence of PAEs in leachate. The positive and negative effects vary depending on the PAE content and molecular weight. DBP and DEHP have higher environmental risks in the aquatic system. These results are intended to provide a scientific basis for the evolutionary characterization of the microenvironment in complex environmental systems and the control of novel contaminants, such as PAEs.
Collapse
Affiliation(s)
- Yifan Zhang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yiman Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Beidou Xi
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
28
|
Liu T, Ning L, Mei C, Li S, Zheng L, Qiao P, Wang H, Hu T, Zhong W. Synthetic bacterial consortia enhanced the degradation of mixed priority phthalate ester pollutants. ENVIRONMENTAL RESEARCH 2023; 235:116666. [PMID: 37453507 DOI: 10.1016/j.envres.2023.116666] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), butyl benzyl phthalate (BBP), bis(2-ethylhexyl) phthalate (DEHP), and di-n-octyl phthalate (DOP) are hazardous chemicals listed as priority pollutants that disrupt endocrine systems. According to available reports, these six priority phthalate esters (PAEs) are considered the most polluting; however, no studies have been conducted on the efficient remediation of these PAEs. We therefore designed and constructed a synthetic bacterial consortium capable of the simultaneous and efficient degradation of six priority PAEs in minimal inorganic salt medium (MSM) and soil. The consortium comprised Glutamicibacter sp. ZJUTW, which demonstrates priority for degrading short-chain PAEs; Cupriavidus sp. LH1, which degrades phthalic acid (PA) and protocatechuic acid (PCA), intermediates of the PAE biodegradation process; and Gordonia sp. GZ-YC7, which efficiently degrades long-chain priority PAEs, including DEHP and DOP. In MSM containing the six mixed PAEs (250 mg/L each), the ZJUTW + YC + LH1 consortium completely degraded the four short-chain PAEs within 48 h, and DEHP (100%) and DOP (62.5%) within 72 h. In soil containing the six mixed PAEs (DMP, DEP, BBP, and DOP, 400 mg/kg each; DBP and DEHP, 500 mg/kg, each), the ZJUTW + YC + LH1 consortium completely degraded DMP, DEP, BBP, and DBP within 6 days, and 70.84% of DEHP and 66.24% of DOP within 2 weeks. The consortium efficiently degraded the six mixed PAEs in both MSM and soil. We thus believe that this synthetic microbial consortium is a strong candidate for the bioremediation of environments contaminated with mixed PAE pollutants.
Collapse
Affiliation(s)
- Tengfei Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Lixiao Ning
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Chengyu Mei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Shuang Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Lianbao Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Pei Qiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Haixia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Tong Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China.
| |
Collapse
|
29
|
Zhang Y, Gao Y, Xi B, Li Y, Ge X, Gong Y, Chen H, Chen J, Tan W, Yuan Y. Full life cycle and sustainability transitions of phthalates in landfill: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:215-229. [PMID: 37717503 DOI: 10.1016/j.wasman.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/26/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Phthalates (PAEs) are added to various products as a plasticizer. As these products age and are disposed of, plastic waste containing PAEs enters the landfill. The landfill environment is complicated and can be regarded as a "black box". Also, PAEs do not bind with the polymer matrix. Therefore, when a series of physical chemistry and biological reactions occur during the stabilization of landfills, PAEs leach from waste and migrate to the surrounding environmental media, thereby contaminating the surrounding soil, water ecosystems, and atmosphere. Although research on PAEs has achieved progress over the years, they are mainly concentrated on a particular aspect of PAEs in the landfill; there are fewer inquiries on the life cycle of PAEs. In this study, we review the presence of PAEs in the landfill in the following aspects: (1) the main source of PAEs in landfills; (2) the impact of the landfill environment on PAE migration and conversion; (3) distribution and transmedia migration of PAEs in aquatic ecosystems, soils, and atmosphere; and (4) PAE management and control in the landfill and future research direction. The purpose is to track the life cycle of PAEs in landfills, provide scientific basis for in-depth understanding of the migration and transformation of PAEs and environmental pollution control in landfills, and new ideas for the sustainable utilization of landfills.
Collapse
Affiliation(s)
- Yifan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yiman Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanjiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoyuan Ge
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Lan Zhou Jiao Tong University, Lanzhou 730070, China
| | - Yi Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Beijing University of Chemical Technology, Beijing 100029, China
| | - Huiru Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; North China University of Water Resources and Electric Power, Zheng Zhou 450046, China
| | - Jiabao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
30
|
Li Y, Cheng S, Fang H, Yang Y, Guo Y, Zhou Y, Shi F. Composition, distribution, health risks, and drivers of phthalates in typical red paddy soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94814-94826. [PMID: 37537413 DOI: 10.1007/s11356-023-28815-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023]
Abstract
The accelerated accumulation of phthalate esters (PAEs) in paddy soils poses a serious threat to human health. However, related studies mainly focus on facility vegetable fields, drylands, and orchards, and little is known about paddy soils. In this study, 125 samples were collected from typical red paddy fields to investigate the pollution characteristics, sources, health risks, and main drivers of PAEs. Soil physicochemical properties, enzyme activity, and bacterial community composition were also measured simultaneously. The results showed that eight PAE congeners were detected ranging from 0.17 to 1.97 mg kg-1. Di-n-butyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP), and di-isobutyl phthalate (DIBP) were the most abundant PAE congeners, accounting for 81% of the total PAEs. DEHP exhibited a potential carcinogenic risk to humans through the intake route. The main PAEs were positively correlated with soil organic matter (SOM) and soil water content (SWC) contents. Low levels of PAEs increased bacterial abundance. Furthermore, most PAE congeners were positively correlated with hydrolase activity. Soil acidity and nutrient dynamics played a dominant role in the bacterial community composition, with PAE congeners playing a secondary role. These findings suggest that there may be a threshold response between PAEs and organic matter and nutrient transformation in red paddy soils, and that microbial community should be the key driver. Overall, this study deepens the understanding of ecological risks and microbial mechanisms of PAEs in red paddy soils.
Collapse
Affiliation(s)
- Yuna Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shulan Cheng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huajun Fang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China.
- The Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, 343000, China.
| | - Yan Yang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yifan Guo
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Zhou
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangying Shi
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
31
|
Arrigo F, Impellitteri F, Piccione G, Faggio C. Phthalates and their effects on human health: Focus on erythrocytes and the reproductive system. Comp Biochem Physiol C Toxicol Pharmacol 2023; 270:109645. [PMID: 37149015 DOI: 10.1016/j.cbpc.2023.109645] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
Plastics, long-chain artificial polymers, are used worldwide with a global production of 350 million tonnes per year. Various degradation processes transform plastics into smaller fragments divided into micro, meso and macroplastics. In various industries, such as construction, certain plastic additives are used to improve flexibility and enhance performance. Plastic additives include phthalates (PAE), dibutyl phthalate (DPB) and diethyl phthalate (DEP). Due to the use of plastics and plastic additives, these small fragments of different shapes and colours are present in all environmental compartments. For their characteristics, PAEs can be introduced particularly by ingestion, inhalation and dermal absorption. They can accumulate in the human body, where they have already been identified in blood, amniotic fluid and urine. The purpose of this review is to gather the effects that these plastic additives have on various systems in the human body. Being endocrine disruptors, the effects they have on erythrocytes and how they can be considered targets for xenobiotics have been analysed. The influence on the reproductive system was also examined. Phthalates are therefore often overused. Due to their properties, they can reach human tissues and have a negative impact on health. The aim of this review is to give an overview of the presence of phthalates and their hazards. Therefore, the use of these plastic additives should be reduced, replaced and their disposal improved.
Collapse
Affiliation(s)
- Federica Arrigo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Federica Impellitteri
- Department of Veterinary Sciences, Viale Giovanni Palatucci snc, University of Messina, 98168 Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, Viale Giovanni Palatucci snc, University of Messina, 98168 Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| |
Collapse
|
32
|
Sharma P, Garai P, Banerjee P, Saha S, Chukwuka AV, Chatterjee S, Saha NC, Faggio C. Behavioral toxicity, histopathological alterations and oxidative stress in Tubifex tubifex exposed to aromatic carboxylic acids- acetic acid and benzoic acid: A comparative time-dependent toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162739. [PMID: 36906024 DOI: 10.1016/j.scitotenv.2023.162739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/23/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
This study evaluated Acetic acid (AA) and Benzoic acid's (BA) acute and sublethal toxicity by observing mortality, behavioral responses, and changes in the levels of oxidative stress enzymes in Tubifex tubifex. Exposure-induced changes in antioxidant activity (Catalase, Superoxide dismutase), oxidative stress (Malondialdehyde concentrations), and histopathological alterations in the tubificid worms were also noted across exposure intervals. The 96 h LC50 values of AA and BA to T. tubifex were 74.99 and 37.15 mg/l, respectively. Severity in behavioral alterations (including increased mucus production, wrinkling, and reduction in clumping) and autotomy showed concentration-dependent trends for both toxicants. Although histopathological effects also showed marked degeneration in the alimentary and integumentary systems in highest exposure groups (worms exposed to 14.99 mg/l for AA and 7.42 mg/l for BA) for both toxicants. Antioxidant enzymes (catalase and superoxide dismutase) also showed a marked increase of up to 8-fold and 10-fold for the highest exposure group of AA and BA respectively. While species sensitivity distribution analysis revealed T. tubifex as most sensitive to AA and BA compared to other freshwater vertebrates and invertebrates, General Unified Threshold model of Survival (GUTS) predicted individual tolerance effects (GUTS-IT), with slower potential for toxicodynamic recovery, as a more likely pathway for population mortality. Study findings demonstrate BA with greater potential for ecological effects compared to AA within 24 h of exposure. Furthermore, ecological risks to critical detritus feeders like T. tubifex may have severe implications for ecosystem services and nutrient availability within freshwater habitats.
Collapse
Affiliation(s)
- Pramita Sharma
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Pramita Garai
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Priyajit Banerjee
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Shubhajit Saha
- Department of Zoology, Sundarban Hazi Desarat College, Pathankhali, South 24, Parganas 743611, West Bengal, India
| | - Azubuike V Chukwuka
- National Environmental Standards and Regulations Enforcement Agency, Osogbo, Osun State, Nigeria
| | - Soumendranath Chatterjee
- Parasitology & Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal 713 104, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
33
|
Lin L, Zhang S, Dong L, Cao Y, Zhang W, Pan X, Li Y, Zhang C, Tao J, Jia D, Crittenden J. Photodegradation behavior and mechanism of dibutyl phthalate in water under flood discharge atomization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161822. [PMID: 36708834 DOI: 10.1016/j.scitotenv.2023.161822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Flood discharge atomization is a prevalent hydraulics phenomenon in reservoir scheduling operations, however, its effect on the migration and transformation behavior of pollutants has not been examined. In this study, the behaviors and mechanisms of the direct photodegradation of dibutyl phthalate (DBP) in atomized water and the indirect photodegradation of DBP in the presence of ferric ions and nitrate were investigated. The results showed that the photodegradation rate of DBP was accelerated under atomization conditions by sunlight irradiation. The photodegradation efficiency of DBP in the presence of ferric ions and nitrate under atomization conditions was increased by 2.20 times and 1.82 times compared with no-atomization conditions, respectively. The quencher experiments indicated that the main active species for DBP photodegradation in the presence of ferric ions were hydroxyl radicals (·OH) and superoxide radicals (·O2-) with atomization, while the main active species in the presence of nitrate were ·OH, ·O2- and electrons (e-). In addition, the differences were found in the photodegradation products and pathways of DBP between with and without atomization treatment. In the presence of ferric ions, the benzene ring of DBP was opened to produce fumaric acid, while phthalic acid bis(4-hydroxybutyl) ester was produced in the presence of nitrate under atomization conditions. The results of this study provide a scientific basis for assessing the effect of water conservancy projects on the migration and transformation behaviors of pollutants, which is of great theoretical significance and scientific value.
Collapse
Affiliation(s)
- Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, Hubei 430010, PR China.
| | - Sheng Zhang
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, Hubei 430010, PR China
| | - Lei Dong
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, Hubei 430010, PR China
| | - Yueqi Cao
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, Hubei 430010, PR China
| | - Wei Zhang
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, Hubei 430010, PR China
| | - Xiong Pan
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, Hubei 430010, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiansu 210098, PR China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Nanjing, Jiansu, 210098, PR China
| | - Jingxiang Tao
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, Hubei 430010, PR China
| | - Di Jia
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, Hubei 430010, PR China
| | - John Crittenden
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| |
Collapse
|
34
|
Raheem SA, Adewuyi GO, Oke EA, Oluyinka OA. Study of Using Starch-Modified Chitosan for Removal of Phthalates from Aqueous Solution. J WATER CHEM TECHNO+ 2023. [DOI: 10.3103/s1063455x23010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
35
|
Fan Y, Zeng Y, Huang YQ, Guan YF, Sun YX, Chen SJ, Mai BX. Accumulation and translocation of traditional and novel organophosphate esters and phthalic acid esters in plants during the whole life cycle. CHEMOSPHERE 2022; 307:135670. [PMID: 35839992 DOI: 10.1016/j.chemosphere.2022.135670] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Organophosphate esters (OPEs) and phthalic acid esters (PAEs) are widespread contaminants in the environment. The variations of these chemicals in plants throughout their life cycle is little known. In this study, OPEs, OPE metabolites, and PAEs in peanut and corn grown under field conditions, soil, and air were measured to understand the uptake and translocation, distributions in the plant compartments, and metabolism in the plants. The soil concentrations showed an enrichment effect of OPEs onto the rhizosphere soil but a depletion effect of PAEs on rhizosphere soils. The PAE concentrations between peanut (with a mean of 1295 ng/g dw) and corn (3339 ng/g dw) were significantly different, but the OPE concentrations were not significantly different (with means of 15.6 and 19.2 ng/g dw, respectively). OPE metabolites were also detected in the plants, with lower concentrations and detection rates. Similarities and differences in the temporal variations of the concentrations of traditional OPEs, novel OPEs, and PAEs in plants during their growth were observed. The variations were dependent on both plant species and particular tissues. The leaf compartment is the most important reservoir of OPEs and PAEs (but not OPE metabolites) for both species, highlighting the importance of an aerial uptake pathway. The chemicals have a low potential to be translocated into peanut and corn kernels, reducing their risks via food consumption. Less hydrophobic compounds have higher root concentration factors in this study. These observations differ from those of previous hydroponic experiments.
Collapse
Affiliation(s)
- Yun Fan
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Yuan Zeng
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Yu-Qi Huang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Yu-Feng Guan
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Yu-Xin Sun
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - She-Jun Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China.
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
36
|
Mondal T, Mondal S, Ghosh SK, Pal P, Soren T, Pandey S, Maiti TK. Phthalates - A family of plasticizers, their health risks, phytotoxic effects, and microbial bioaugmentation approaches. ENVIRONMENTAL RESEARCH 2022; 214:114059. [PMID: 35961545 DOI: 10.1016/j.envres.2022.114059] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Phthalates are a family of reprotoxicant compounds, predominantly used as a plasticizer to improve the flexibility and longevity of consumable plastic goods. After their use these plastic products find their way to the waste disposal sites where they leach out the hazardous phthalates present within them, into the surrounding environment, contaminating soil, groundwater resources, and the nearby water bodies. Subsequently, phthalates move into the living system through the food chain and exhibit the well-known phenomenon of biological magnification. Phthalates as a primary pollutant have been classified as 1B reprotoxicants and teratogens by different government authorities and they have thus imposed restrictions on their use. Nevertheless, the release of these compounds in the environment is unabated. Bioremediation has been suggested as one of the ways of mitigating this menace, but studies regarding the field applications of phthalate utilizing microbes for this purpose are limited. Through this review, we endeavor to make a deeper understanding of the cause and concern of the problem and to find out a possible solution to it. The review critically emphasizes the various aspects of phthalates toxicity, including their chemical nature, human health risks, phytoaccumulation and entry into the food chain, microbial role in phthalate degradation processes, and future challenges.
Collapse
Affiliation(s)
- Tanushree Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Sayanta Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Priyanka Pal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Tithi Soren
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Sanjeev Pandey
- Department of Botany, Banwarilal Bhalotia College, Asansol, 713303, West Bengal, India.
| | - Tushar Kanti Maiti
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| |
Collapse
|
37
|
Tran HT, Nguyen MK, Hoang HG, Hutchison JM, Vu CT. Composting and green technologies for remediation of phthalate (PAE)-contaminated soil: Current status and future perspectives. CHEMOSPHERE 2022; 307:135989. [PMID: 35988768 PMCID: PMC10052775 DOI: 10.1016/j.chemosphere.2022.135989] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 05/29/2023]
Abstract
Phthalate esters (PAEs) are hazardous organic compounds that are widely added to plastics to enhance their flexibility, temperature, and acidic tolerance. The increase in global consumption and the corresponding environmental pollution of PAEs has caused broad public concerns. As most PAEs accumulate in soil due to their high hydrophobicity, composting is a robust remediation technology for PAE-contaminated soil (efficiency 25%-100%), where microbial activity plays an important role. This review summarized the roles of the microbial community, biodegradation pathways, and specific enzymes involved in the PAE degradation. Also, other green technologies, including biochar adsorption, bioaugmentation, and phytoremediation, for PAE degradation were also presented, compared, and discussed. Composting combined with these technologies significantly enhanced removal efficiency; yet, the properties and roles of each bacterial strain in the degradation, upscaling, and economic feasibility should be clarified in future research.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- Civil, Environmental, and Architectural Engineering Department, University of Kansas, Lawrence, KS, 66045, USA.
| | - Minh-Ky Nguyen
- Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City 700000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Medicine, Dong Nai Technology University, Bien Hoa, Dong Nai 76100, Viet Nam
| | - Justin M Hutchison
- Civil, Environmental, and Architectural Engineering Department, University of Kansas, Lawrence, KS, 66045, USA
| | - Chi Thanh Vu
- Civil and Environmental Engineering Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| |
Collapse
|
38
|
Liang S, Wu XL, Zong MH, Lou WY. Construction of Zn-heptapeptide bionanozymes with intrinsic hydrolase-like activity for degradation of di(2-ethylhexyl) phthalate. J Colloid Interface Sci 2022; 622:860-870. [PMID: 35561606 DOI: 10.1016/j.jcis.2022.04.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022]
Abstract
Nanozyme with intrinsic enzyme-like activity has emerged as favorite artificial catalyst during recent years. However, current nanozymes are mainly limited to inorganic-derived nanomaterials, while biomolecule-sourced nanozyme (bionanozyme) are rarely reported. Herein, inspired by the basic structure of natural hydrolase family, we constructed 3 oligopeptide-based bionanozymes with intrinsic hydrolase-like activity by implementing zinc induced self-assembly of histidine-rich heptapeptides. Under mild condition, divalent zinc (Zn2+) impelled the spontaneous assembly of short peptides (i.e. Ac-IHIHIQI-CONH2, Ac-IHIHIYI-CONH2, and Ac-IHVHLQI-CONH2), forming hydrolase-mimicking bionanozymes with β-sheet secondary conformation and nanofibrous architecture. As expected, the resultant bionanozymes were able to hydrolyze a serious of p-nitrophenyl esters, including not only the simple substrate with short side-chain (p-NPA), but also more complicated ones (p-NPB, p-NPH, p-NPO, and p-NPS). Moreover, the self-assembled Zn-heptapeptide bionanozymes were also proven to be capable of degrading di(2-ethylhexyl) phthalate (DEHP), a typical plasticizer, showing great potential for environmental remediation. Based on this study, we aim to provide theoretical references and exemplify a specific case for directing the construction and application of bionanozyme.
Collapse
Affiliation(s)
- Shan Liang
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiao-Ling Wu
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Min-Hua Zong
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wen-Yong Lou
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
39
|
Ma J, Lu Y, Teng Y, Tan C, Ren W, Cao X. Occurrence and health risk assessment of phthalate esters in tobacco and soils in tobacco-producing areas of Guizhou province, southwest China. CHEMOSPHERE 2022; 303:135193. [PMID: 35679984 DOI: 10.1016/j.chemosphere.2022.135193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Flue-cured tobacco is one of the important sources of national economy in China. However, Phthalic acid esters (PAEs) are ubiquitous contaminants in the cultivation and growth management of flue-cured tobacco, and attracting more and more attention. Here, six priority PAEs were detected in tobacco and soils and their residue characteristics, pollution sources were analyzed, and their exposure risks to the health of farmers were assessed. The concentration of six total PAEs ranged from 0.78 to 4.79 mg/kg in tobacco with the average of 1.75 mg/kg, and 0.84-25.68 mg/kg in soils with the average of 5.40 mg/kg. Di-(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) had the highest detection frequency (DF = 100%) both in soil and tobacco samples. DEHP was the most abundant of the total PAEs in soil and tobacco samples, with the mean contribution values of 71.0% and 58.8%, respectively. Principal component analysis (PCA) indicates that the major sources of PAEs in the tobacco-soil system were plastic films, fertilizers and pesticides. Health risk assessment suggests that the non-cancer hazard indexes (NCHI) of dimethyl phthalate (DMP), diethyl phthalate (DEP), DBP and di-n-octyl phthalate (DnOP) in all samples for farmers were at acceptable levels (NCHI < 1), and the average carcinogenic hazard indexes (CHI) of butyl benzyl phthalate (BBP) and DEHP for farmers were 3.79 × 10-13 and 8.54 × 10-11 in soils, respectively, 8.23 × 10-13 and 1.95 × 10-11 in tobacco, respectively, which were considered to be very low level (CHI < 10-6). This study provides data on PAEs in tobacco and soils and their health risks which may provide valuable information to aid the management of tobacco cultivation and risk avoidance.
Collapse
Affiliation(s)
- Jun Ma
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, China; College of Materials and Chemistry, Tongren University, Tongren, 554300, China.
| | - Yingang Lu
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Changyin Tan
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xueying Cao
- Rural Vitalization Research Institute, Changsha University, Changsha, 410022, China
| |
Collapse
|
40
|
Aimuzi R, Huang S, Luo K, Ma S, Huo X, Li G, Tian Y, Zhang J, Yu Y. Levels and health risks of urinary phthalate metabolites and the association between phthalate exposure and unexplained recurrent spontaneous abortion: a large case-control study from China. ENVIRONMENTAL RESEARCH 2022; 212:113393. [PMID: 35504341 DOI: 10.1016/j.envres.2022.113393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Phthalate acid esters (PAEs) are environmental endocrine disruptors that can interfere with endocrine processes and cause adverse reproductive outcomes. The link between PAE exposure and unexplained recurrent spontaneous abortion (URSA) remains unknown. In this study, nine urinary metabolites of PAEs (mPAEs) were measured in 594 URSA cases and 569 healthy controls. The measured mPAEs were ubiquitously detected and present at higher levels (median: 203 ng/mL) in the URSA cases than in the controls (median: 161 ng/mL). Multiple logistic regression analysis showed that URSA was associated with higher concentrations of mono (2-ethyl-5-hydroxyhexyl) phthalate (mEHHP), mono (2-ethylhexyl) phthalate (mEHP), and mono-ethyl phthalate (mEP) and lower concentrations of mono-isobutyl phthalate (miBP). Moreover, a quantile-based g-computation (QGC) model revealed a positive association between mPAEs mixture and URSA. The URSA cases showed significantly higher concentrations of di-(2-ethylhexyl) phthalate (DEHP) than the controls. This was consistent with the health risk assessment, which suggested that DEHP is the main contributors to potential non-carcinogenic risk. DEHP accounted for over 80% of total risk. The large case-control study results suggest that PAE exposure may increase the risk of URSA, and that policy-makers and public health experts should pay more attention to DEHP exposure.
Collapse
Affiliation(s)
- Ruxianguli Aimuzi
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Senyuan Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Kai Luo
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaona Huo
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Tian
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jun Zhang
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
41
|
Gurudatt NG, Lee K, Heo W, Jung HI. Simple ultrasensitive electrochemical detection of the DBP plasticizer for the risk assessment of South Korean river waters. Analyst 2022; 147:3525-3533. [PMID: 35789346 DOI: 10.2139/ssrn.4069170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Rapid detection of contaminants for the purpose of sensitive and quantitative monitoring of environmental hazards is an essential first step in realizing the avoidance of human health risks. In this regard, we present a fast and simple electrochemical method of detecting di-n-butyl phthalate (DBP) from river water samples using a phthalic acid group specific aptamer modified on a gold nanoparticle (AuNP) functionalized graphene oxide nano-platelet (GO) and ionic liquid (IL) nanocomposite. Here, the IL/GO nanocomposite allows an enhanced interaction with phthalate esters, thereby increasing the sensitivity of the sensor surface. The proposed sensor showed a wide linear dynamic range from 0.14 pg mL-1 to 0.35 ng mL-1 and from 0.35 ng mL-1 to 7 ng mL-1 with a detection limit of ≤0.042 pg mL-1, which were evaluated using standard, analytical grade DBP; the limit of quantification was determined using different concentrations of DBP in DI water in comparison with gas chromatography-mass spectroscopy (GC/MS) values. The proposed sensor was used to monitor the DBP concentrations in river water samples collected from various locations across South Korea. The quantitative data from the measurements in comparison with standard GC/MS values were then used to ascertain the human health risk posed by the daily consumption of these river waters.
Collapse
Affiliation(s)
- N G Gurudatt
- School of Mechanical Engineering, Yonsei University, Seoul, South Korea.
| | - Kyungyeon Lee
- School of Mechanical Engineering, Yonsei University, Seoul, South Korea.
| | - Woong Heo
- School of Mechanical Engineering, Yonsei University, Seoul, South Korea.
| | - Hyo-Il Jung
- School of Mechanical Engineering, Yonsei University, Seoul, South Korea.
| |
Collapse
|
42
|
Zhang C, Zhou J, Ma T, Guo W, Wei D, Tan Y, Deng Y. Advances in application of sensors for determination of phthalate esters. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Le TM, Thi Pham CL, Nu Nguyen HM, Duong TT, Quynh Le TP, Nguyen DT, Vu ND, Minh TB, Tran TM. Distribution and ecological risk assessment of phthalic acid esters in surface sediments of three rivers in Northern Vietnam. ENVIRONMENTAL RESEARCH 2022; 209:112843. [PMID: 35101399 DOI: 10.1016/j.envres.2022.112843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Pollution status and distribution characteristics of ten typical phthalic acid esters (PAEs) were investigated in 36 sediment samples collected from three rivers in Northern Vietnam from June to October 2020. The total concentrations of PAEs in sediment samples collected from the To Lich River (n = 9), the Nhue River (n = 12), and the Day River (n = 15) were in ranges of 11,000-125,000 ng/g-dwt (mean/median: 50,000/42,200 ng/g-dwt), 2140-89,900 ng/g-dwt (mean/median: 29,300/20,700 ng/g-dwt), and 1140-43,100 ng/g-dwt (mean/median: 13,800/10,400 ng/g-dwt), respectively. Among ten PAEs studied, di-(2-ethylhexyl) phthalate (DEHP) was found at the highest levels in all samples meanwhile dimethyl phthalate (DMP), diethyl phthalate (DEP), and dipropyl phthalate (DPP) were detected at low frequency and concentration. Significant correlations have existed between the median-chain (C4-C7) PAE pairs in sediment samples. Due to the high accumulation in the sediments, the median-chain PAEs had a higher ecological risk than the short-chain (C1-C3) PAEs. These contaminants may present a longstanding influence on organisms and ecosystems.
Collapse
Affiliation(s)
- Thuy Minh Le
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam; Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Chi Linh Thi Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Ha My Nu Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam; Ha Tinh University, Cam Vinh commune, Cam Xuyen District, Ha Tinh, Viet Nam
| | - Thi Thuy Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam.
| | - Thi Phuong Quynh Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Dong Thanh Nguyen
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Nam Duc Vu
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Tu Binh Minh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Tri Manh Tran
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam.
| |
Collapse
|
44
|
Ma G, Ma B, Wang L, Tao W. Occurrence and dietary exposure risks of phthalate esters in food in the typical valley city Xi'an, Northwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31426-31440. [PMID: 35006560 DOI: 10.1007/s11356-022-18592-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Diet is an important exposure pathway of phthalate esters (PAEs) for humans. A total of 174 food samples covering 11 food groups were collected from Xi'an, a typical valley city in Northwest China, and analyzed to assess the occurrence and exposure risks for PAEs in the food. Twenty-two PAEs were detected. The sum of the 22 PAEs (∑22PAEs) varied between 0.0340 and 56.8 µg/g, with a mean of 3.94 µg/g. The major PAEs were di-iso-butyl phthalate (DiBP), di-n-butyl phthalate (DnBP), bis(2-ethylhexyl) phthalate (DEHP), di-iso-nonyl phthalate (DiNP), and di-iso-decyl phthalate (DiDP), which were associated mainly with the usage of plasticizers. Bio-availability of the PAEs in the combined gastro-intestinal fluid simulant of digestion was higher than that in the single gastric or intestinal fluid simulant. Bis(2-methoxyethyl) phthalate exhibited the highest bio-availability in each of the three simulants. Bio-availability of the PAEs was negatively correlated with the molecular weight and octanol-water partition coefficient of the PAEs and positively correlated with the solubility and vapor pressure of the PAEs. The estimated daily intake (EDI) of PAEs based on national and municipal food consumption data was lower than the reference dose (RfD) of the United States Environmental Protection Agency and the tolerable dairy intake (TDI) of European Food Safety Authority (EFSA), except for the EDI of DnBP and DiBP being higher than the TDI of EFSA. Grains and vegetables were the major sources of human dietary exposure to PAEs. The hazardous quotient for human dietary exposure to PAEs was less than the critical value of 1 and the cancer risk of butyl benzyl phthalate and DEHP was in the range of 10-11-10-6, suggesting relatively low health risks. The results indicated that human exposure to DnBP, DiBP, DEHP, DiNP, and DiDP in food is considerable and a health concern.
Collapse
Affiliation(s)
- Ge Ma
- Department of Environmental Science and Engineering, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Bianbian Ma
- Department of Environmental Science and Engineering, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Lijun Wang
- Department of Environmental Science and Engineering, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, People's Republic of China.
| | - Wendong Tao
- College of Environmental Science and Forestry, State University of New York, 1 Forestry Dr., Syracuse, NY, 13210, USA
| |
Collapse
|
45
|
Azizi D, Arif A, Blair D, Dionne J, Filion Y, Ouarda Y, Pazmino AG, Pulicharla R, Rilstone V, Tiwari B, Vignale L, Brar SK, Champagne P, Drogui P, Langlois VS, Blais JF. A comprehensive review on current technologies for removal of endocrine disrupting chemicals from wastewaters. ENVIRONMENTAL RESEARCH 2022; 207:112196. [PMID: 34634314 DOI: 10.1016/j.envres.2021.112196] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 05/25/2023]
Abstract
In the recent years, endocrine disrupting compounds (EDCs) has received increasing attention due to their significant toxic effects on human beings and wildlife by affecting their endocrine systems. As an important group of emerging pollutant, EDCs have been detected in various aquatic environments, including surface waters, groundwater, wastewater, runoff, and landfill leachates. Their removal from water resources has also been an emerging concern considering growing population as well as reducing access to fresh water resources. EDC removal from wastewaters is highly dependent on physicochemical properties of the given EDCs present in each wastewater types as well as various aquatic environments. Due to chemical, physical and physicochemical diversities in these parameters, variety of technologies consisting of physical, biological, electrochemical, and chemical processes have been developed for their removal. This review highlights that the effectiveness of EDC removal is highly dependent of selecting the appropriate technology; which decision is made upon a full wastewater chemical characterization. This review aims to provide a comprehensive perspective about all the current technologies used for EDCs removal from various aquatic matrices along with rising challenges such as the antimicrobial resistance gene transfer during EDC treatment.
Collapse
Affiliation(s)
- Dariush Azizi
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Ayman Arif
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - David Blair
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Justine Dionne
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Yves Filion
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Yassine Ouarda
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Ana Gisell Pazmino
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Rama Pulicharla
- Department of Civil Engineering, Lassonde School of Engineering, York University, Canada
| | - Victoria Rilstone
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Bhagyashree Tiwari
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Leah Vignale
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, Canada
| | - Pascale Champagne
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada; Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Patrick Drogui
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Valerie S Langlois
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Jean-François Blais
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada.
| |
Collapse
|
46
|
Li J, Nina MRH, Zhang X, Bai Y. Engineering Transcription Factor XylS for Sensing Phthalic Acid and Terephthalic Acid: An Application for Enzyme Evolution. ACS Synth Biol 2022; 11:1106-1113. [PMID: 35192317 DOI: 10.1021/acssynbio.1c00275] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Poly(ethylene terephthalate) (PET) and phthalate esters (PAEs) are used extensively as plastics and plasticizers. Enzymatic degradation of PET and PAEs has drawn great attention in recent years; however, evolution of PET- and PAE-degrading enzymes is still a big challenge, partly because of the lack of an effective screening method to detect phthalic acid (PA) and terephthalic acid (TPA), which are the main hydrolysis products of PAEs and PET. Here, by directed evolution of a promiscuous transcription factor, XylS from Pseudomonas putida, we created two novel variants, XylS-K38R-L224Q and XylS-W88C-L224Q, that are able to bind PA and TPA and activate the downstream expression of a fluorescent reporter protein. Based on these elements, whole-cell biosensors were constructed, which enabled the fluorimetric detection of as little as 10 μM PA or TPA. A PAE hydrolase, GoEst15, was preliminarily engineered using this new biosensor, yielding a mutant GoEst15-V3 whose activity toward dibutyl phthalate (DBP) and p-nitrophenyl butyrate was enhanced 2.0- and 2.5-fold, respectively. It was shown that 96.5% DBP (5 mM) was degraded by GoEst15-V3 in 60 min, while the wild-type enzyme degraded only 55% DBP. This study provides an effective screening tool for directed evolution of PAE-/PET-degrading enzymes.
Collapse
Affiliation(s)
- Jiawei Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mario Roque Huanca Nina
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaoyan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yunpeng Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
47
|
Vingiani GM, Leone S, De Luca D, Borra M, Dobson ADW, Ianora A, De Luca P, Lauritano C. First identification and characterization of detoxifying plastic-degrading DBP hydrolases in the marine diatom Cylindrotheca closterium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152535. [PMID: 34942245 DOI: 10.1016/j.scitotenv.2021.152535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Diatoms are photosynthetic organisms with potential biotechnological applications in the bioremediation sector, having shown the capacity to reduce environmental concentrations of different pollutants. The diatom Cylindrotheca closterium is known to degrade di-n-butyl phthalate (DBP), one of the most abundant phthalate esters in aquatic environments and a known endocrine-disrupting chemical. In this study, we present for the first time the in silico identification of two putative DBP hydrolases (provisionally called DBPH1 and DBPH2) in the transcriptome of C. closterium. We modeled the structure of both DBPH1-2 and their proposed interactions with the substrate to gain insights into their mechanism of action. Finally, we analyzed the expression levels of the two putative hydrolases upon exposure of C. closterium to different concentrations of DBP (5 and 10 mg/l) for 24 and 48 h. The data showed a DBP concentration-dependent increase in expression levels of both dbph1 and 2 genes, further highlighting their potential involvement in phthalates degradation. This is the first identification of phthalate-degrading enzymes in microalgae, providing new insights into the possible use of diatoms in bioremediation strategies targeting phthalates.
Collapse
Affiliation(s)
- Giorgio Maria Vingiani
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Serena Leone
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Daniele De Luca
- Department of Biology, University of Naples Federico II, Botanic Garden of Naples, Via Foria 223, 80139 Naples, Italy
| | - Marco Borra
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, CAP80121, NA, Italy
| | - Alan D W Dobson
- School of Microbiology, University College Cork, College Road, T12 YN60 Cork, Ireland; Environmental Research Institute, University College Cork, Lee Road, T23XE10 Cork, Ireland
| | - Adrianna Ianora
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Pasquale De Luca
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, CAP80121, NA, Italy
| | - Chiara Lauritano
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
48
|
Tang Z, Gong Z, Jia W, Shen W, Han Q, Fang F, Peng C. Occurrence and exposure risk assessment of phthalate esters in edible plant oils with a high-frequency import rate in west China. RSC Adv 2022; 12:7383-7390. [PMID: 35424693 PMCID: PMC8982168 DOI: 10.1039/d2ra00578f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/12/2022] [Indexed: 11/21/2022] Open
Abstract
Phthalate esters (PAEs) are ubiquitous pollutants in the environment with toxicological and epidemiological effects for humans. As one of the daily necessities, edible plant oil is an important exposure source of PAEs, due to the inevitable contact with PAE-containing materials and the intrinsic lipid solubility of PAEs. However, limited information is currently available on the exposure risk of PAEs in commercial plant oil. This study was aimed at investigating the occurrence and risk assessment of PAEs in plant oils with a high-frequency import rate in west China. The analysis method was referenced to the Chinese national standard for the determination of PAEs in food. Results indicated that PAEs (mainly including DBP and DEHP) were ubiquitous contaminants in imported plant oils with the detectable rate being up to 56.83% in 366 samples. The detected concentrations were in the range of 0.10-3.20 mg kg-1 (median 0.28 mg kg-1) for dibutyl phthalate (DBP) and 0.25-1.95 mg kg-1 (median 0.44 mg kg-1) for bis(2-ethylhexyl)phthalate (DEHP). Based on an integrated probabilistic analysis method, the values of non-carcinogenic risk were lower than 1 in all cases, indicating that there would be an unlikely incremental non-carcinogenic risk to humans. Generally, the carcinogenic risk of DEHP was lower than the upper acceptable carcinogenic risk level (<10-4), while 50.40% of the carcinogenic risk exceeded the lower acceptable carcinogenic risk level (>10-6). Besides, diverse health risks were obviously shown and discussed for different categories of plant oils. The obtained results in this study could provide valuable information to understand the contamination status and health risk of PAEs in plant oil and improve the relative supervision and regulation. And the proposed strategy suggests a potential application for health risk assessment of other contaminants in food or even environments.
Collapse
Affiliation(s)
- Zhentao Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Zhiguo Gong
- Urumqi Customs District P. R. China Urumqi China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology Shaanxi China
| | - Wenxuan Shen
- Urumqi Customs District P. R. China Urumqi China
| | - Qingrong Han
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Fang Fang
- Urumqi Customs District P. R. China Urumqi China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
49
|
Okpara KE, Phoungthong K, Agbozu I, Edwin-Isotu E, Techato K. Phthalate Esters in Tap Water, Southern Thailand: Daily Exposure and Cumulative Health Risk in Infants, Lactating Mothers, Pregnant and Nonpregnant Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2187. [PMID: 35206375 PMCID: PMC8871872 DOI: 10.3390/ijerph19042187] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023]
Abstract
Human exposure to phthalate esters (PAEs) via drinking water has generated public health concerns due to their endocrine disruptive abilities. This study reports on the occurrence and fate of six PAEs in raw and tap water samples collected from provincial waterworks located in Songkhla Province, Southern Thailand. In addition, the daily exposure and cumulative health risk of susceptible populations due to drinking tap water were evaluated by using four different reference dose (RfDs) sources. The maximum concentrations of PAEs in raw water were between 1.68 and 4.84 and 0.52 and 1.24 µg/L in tap water. Moreover, the levels of PAEs in the tap water samples indicated the poor PAEs removal efficiency of the conventional treatment process (59.9-69.1%). The contribution of water to the daily intake of PAEs did not exceed 0.37% in all the groups. Furthermore, both the individual and cumulative risk assessment showed negligible noncarcinogenic and antiandrogenic risk for all the groups. Nevertheless, the cumulative risk showed an increasing trend in the order of infants > lactating mothers > pregnant women > nonpregnant women, suggesting that infants are more vulnerable. In additional, the newly proposed RfDAA yielded higher hazard quotient and hazard index estimates, which indicates it is a more sensitive tool than other RfDs for the assessment of the individual and mixture risk of pollutants. The carcinogenic risk of DEHP was acceptable in every group. However, we recommend a future cumulative risk assessment of vulnerable groups considering their simultaneous exposure to all chemicals that have antiandrogenic effects via tap water.
Collapse
Affiliation(s)
- Kingsley Ezechukwu Okpara
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla 90112, Thailand; (K.E.O.); (K.T.)
| | - Khamphe Phoungthong
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla 90112, Thailand; (K.E.O.); (K.T.)
| | - Iwekumo Agbozu
- Department of Chemistry, University of Africa, Toru-Orua 561101, Nigeria;
| | - Edeh Edwin-Isotu
- Centre for Environmental Management and Control, University of Nigeria, Enugu 400001, Nigeria;
| | - Kuaanan Techato
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla 90112, Thailand; (K.E.O.); (K.T.)
| |
Collapse
|
50
|
Sambolino A, Ortega-Zamora C, González-Sálamo J, Dinis A, Cordeiro N, Canning-Clode J, Hernández-Borges J. Determination of phthalic acid esters and di(2-ethylhexyl) adipate in fish and squid using the ammonium formate version of the QuEChERS method combined with gas chromatography mass spectrometry. Food Chem 2022; 380:132174. [PMID: 35086018 DOI: 10.1016/j.foodchem.2022.132174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 11/04/2022]
Abstract
In the present study, the ammonium formate version of the QuEChERS method, considered highly advantageous in relation to instrument maintenance and other issues, was applied for the first time to extract a group of twelve phthalic acid esters (PAEs, i.e. dipropyl phthalate, DPP; diisobutyl phthalate, DIBP; dibutyl phthalate, DBP; diisopentyl phthalate, DIPP; di-n-pentyl phthalate, DNPP; dihexyl phthalate, DHP; butyl benzyl phthalate, BBP; dicyclohexyl phthalate, DCHP; di(2-ethylhexyl) phthalate, DEHP; di-n-octyl phthalate, DNOP; diisononyl phthalate, DINP; and diisodecyl phthalate, DIDP) and one adipate (di(2-ethylhexyl) adipate, DEHA) from two species of fish (Scomber colias and Katsuwonus pelamis) and one of squid (Loligo gahi). The method was validated in terms of linearity, trueness and matrix effects. Determination coefficients (R2) for matrix-matched calibration curves were higher than 0.99 in all cases, being the lowest calibration levels in the range 0.5-10 ng/g. Mean recovery values were between 70 and 117% with relative standard deviation values ≤20%. Matrix effects were soft (between -20 and +20%) for most analytes and matrices, except in squid samples, which was mostly medium with a moderate ion suppression. The analysis of 10 samples of each type showed the presence of DIBP, DBP and DEHP at concentrations up to 44.2 ± 2.1 ng/g of wet weight in some of the samples and species, still not representing concerning values when considering the daily intake of such species of seafood in the human diet (tolerable daily intake -TDI- values were not exceeded). Results demonstrated that the ammonium formate version of the QuEChERS method can be applied with success for the extraction and determination of the selected PAEs and DEHA in fish and squid samples.
Collapse
Affiliation(s)
- Annalisa Sambolino
- LB3, Faculty of Exact Science and Engineering, University of Madeira, 9020-105 Funchal, Madeira, Portugal; MARE - Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), 9020-105 Funchal, Madeira, Portugal; Faculty of Life Sciences, University of Madeira, 9020-105 Funchal, Madeira, Portugal
| | - Cecilia Ortega-Zamora
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España; Department of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Ana Dinis
- MARE - Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), 9020-105 Funchal, Madeira, Portugal; OOM - Oceanic Observatory of Madeira, 9020-105 Funchal, Madeira, Portugal
| | - Nereida Cordeiro
- LB3, Faculty of Exact Science and Engineering, University of Madeira, 9020-105 Funchal, Madeira, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - João Canning-Clode
- MARE - Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), 9020-105 Funchal, Madeira, Portugal; Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, USA
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España.
| |
Collapse
|