1
|
Teng G, Zhang M, Pan Y, Karampoor S, Mirzaei R. Modulating the tumor microenvironment: The role of traditional Chinese medicine in improving lung cancer treatment. Open Life Sci 2025; 20:20251100. [PMID: 40417000 PMCID: PMC12103189 DOI: 10.1515/biol-2025-1100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 02/02/2025] [Accepted: 03/17/2025] [Indexed: 05/27/2025] Open
Abstract
The holistic approach of traditional Chinese medicine (TCM) has been increasingly being focused on as a potential adjuvant to conventional lung cancer therapies in an attempt at modulating the tumor microenvironment (TME). Covering a diverse range of herbal medicine, acupuncture, and dietary therapy, TCM brings a unique perspective to influencing the TME. Importantly, the study has found the effects of specific TCM compounds, such as cantharidin, boehmenan, shikonin, and salidroside, on lung cancer in the TME. These compounds interact intricately with key apoptotic regulators, oxidative stress pathways, and inflammation-related mechanisms, suggesting their potential role in enhancing conventional therapies. TCM compounds could modulate a variety of cellular and molecular pathways, potentially inhibiting tumor proliferation, invasion, and metastasis. Besides, the practices of TCM alleviate the side effects of conventional treatments and enhance immune function, hence promoting the quality of life among lung cancer patients. In this regard, this review gives a contemporary account of the state of affairs on the part of TCM within the framework of the treatment of lung cancer with reference to its recent developments, and diverse roles.
Collapse
Affiliation(s)
- Geling Teng
- Department of Respiratory and Critical Care Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, 250013, China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yuling Pan
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
2
|
Alotaibi MO, Alotaibi NM, Alwaili MA, Alshammari N, Adnan M, Patel M. Natural sapogenins as potential inhibitors of aquaporins for targeted cancer therapy: computational insights into binding and inhibition mechanism. J Biomol Struct Dyn 2025; 43:3613-3634. [PMID: 38174738 DOI: 10.1080/07391102.2023.2299743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Aquaporins (AQPs) are membrane proteins that facilitate the transport of water and other small molecules across biological membranes. AQPs are involved in various physiological processes and pathological conditions, including cancer, making them as potential targets for anticancer therapy. However, the development of selective and effective inhibitors of AQPs remains a challenge. In this study, we explored the possibility of using natural sapogenins, a class of plant-derived aglycones of saponins with diverse biological activities, as potential inhibitors of AQPs. We performed molecular docking, dynamics simulation and binding energy calculation to investigate the binding and inhibition mechanism of 19 sapogenins against 13 AQPs (AQP0-AQP13) that are overexpressed in various cancers. Our results showed that out of 19 sapogenins, 8 (Diosgenin, Gitogenin, Tigogenin, Ruscogenin, Yamogenin, Hecogenin, Sarsasapogenin and Smilagenin) exhibited acceptable drug-like characteristics. These sapogenin also exhibited favourable binding affinities in the range of -7.6 to -13.4 kcal/mol, and interactions within the AQP binding sites. Furthermore, MD simulations provided insights into stability and dynamics of the sapogenin-AQP complexes. Most of the fluctuations in binding pocket were observed for AQP0-Gitogenin and AQP4-Diosgenin. However, remaining protein-ligand complex showed stable root mean square deviation (RMSD) plots, strong hydrogen bonding interactions, stable solvent-accessible surface area (SASA) values and minimum distance to the receptor. These observations suggest that natural sapogenin hold promise as novel inhibitors of AQPs, offering a basis for the development of innovative therapeutic agents for cancer treatment. However, further validation of the identified compounds through experiments is essential for translating these findings into therapeutic applications.
Collapse
Affiliation(s)
- Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nahaa M Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Maha Abdullah Alwaili
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| |
Collapse
|
3
|
Pan F, Lu Y, Yang H. Panax notoginseng saponins treat steroid-resistant lupus nephritis by inhibiting macrophage-derived exosome-induced injury in glomerular endothelial cells via the mitochondrial Autophagy-NLRP3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119475. [PMID: 39947368 DOI: 10.1016/j.jep.2025.119475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/27/2025] [Accepted: 02/08/2025] [Indexed: 02/18/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Microangiopathy represents a critical pathological characteristic of lupus nephritis (LN), with steroid resistance (SR) frequently observed among patients. Panax notoginseng saponins (PNS) has demonstrated potential in mitigating P-glycoprotein (P-gp)-mediated SR and attenuating inflammatory damage in glomerular endothelial cells (GECs) through exosomal pathways, although the precise mechanisms underlying these effects have yet to be fully elucidated. AIM OF THE STUDY This research examines the impact of PNS on microangiopathy in steroid-resistant lupus nephritis (SR LN) and explores its involvement in the mitochondrial autophagy-NLRP3 inflammasome pathway mediated by exosomes. MATERIALS AND METHODS Steroid-resistant models were developed using methylprednisolone (MPS) in murine peritoneal macrophages (Mø). Exosomes were characterized, and biochemical markers of lupus nephritis (LN) were evaluated. Renal pathological alterations were analyzed using hematoxylin and eosin (H&E), Masson's trichrome, and periodic acid-Schiff (PAS) staining. Mitochondrial autophagy was assessed through transmission electron microscopy. Apoptosis, mitochondrial membrane potential (MMP), P-glycoprotein (P-gp), Rhodamine-123 (Rh-123), and reactive oxygen species (ROS) were measured using flow cytometry. The expression of MDR1, PINK1/Parkin, and NLRP3 at the protein and gene levels was determined via immunoblotting and real-time PCR. RESULTS Exosomes derived from SR Mø increased the expression of MDR1 and P-glycoprotein (P-gp) in GECs, reduced Rhodamine 123 (Rh-123) accumulation, inhibited mitochondrial autophagy, and activated the NLRP3 inflammasome, thereby exacerbating renal inflammation and tissue damage. Conversely, PNS were found to lower the levels of pro-inflammatory cytokines, including interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), interleukin-18 (IL-18), and interleukin-1 beta (IL-1β). PNS also decreased P-gp expression and increased Rh-123 accumulation. Furthermore, PNS downregulated cleaved-Caspase1 while upregulating PINK1, Parkin, Beclin-1, and the ratio of LC3II/LC3I. This dual effect of PNS reversed SR and improved renal inflammation damage. CONCLUSION PNS demonstrated an improvement in renal function and a reduction in histopathological damage, suggesting its potential therapeutic applications for LN.
Collapse
Affiliation(s)
- Feng Pan
- Department of Nephrology and Rheumatic Immunology, Ningxia Hui Autonomous Region Hospital and Research Institute of Traditional Chinese Medicine, Ningxia, Yinchuan, 750021, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Ying Lu
- Department of Nephrology and Rheumatic Immunology, Tongde Hospital of Zhejiang Province, Zhejiang, Hangzhou, 310000, China.
| | - Hongtao Yang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Department of Nephrology and Rheumatic Immunology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
4
|
Kang HS, Lim HK, Jang WY, Cho JY. Anti-Colorectal Cancer Activity of Panax and Its Active Components, Ginsenosides: A Review. Int J Mol Sci 2025; 26:2593. [PMID: 40141242 PMCID: PMC11941759 DOI: 10.3390/ijms26062593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Colorectal cancer (CRC) poses a significant health burden worldwide and necessitates novel treatment approaches with fewer side effects than conventional chemotherapy. Many natural compounds have been tested as possible cancer treatments. Plants in the genus Panax have been widely studied due to their therapeutic potential for various diseases such as inflammatory disorders and cancers. Extracts from plants of genus Panax activate upstream signals, including those related to autophagy and the generation of reactive oxygen species, to induce intrinsic apoptosis in CRC cells. The root extract of Panax notoginseng (P. notoginseng) regulated the gut microbiota to enhance the T-cell-induced immune response against CRC. Protopanaxadiol (PPD)-type ginsenosides, especially Rh2, Rg3, Rb1, and Rb2, significantly reduced proliferation of CRC cells and tumor size in a xenograft mouse model, as well as targeting programmed death (PD)-1 to block the immune checkpoint of CRC cells. Moreover, modified nanocarriers with ginsenosides upregulated drug efficacy, showing that ginsenosides can also be utilized as drug carriers. An increasing body of studies has demonstrated the potential of the genus Panax in curing CRC. Ginsenosides are promising active compounds in the genus Panax, which can also support the activity of conventional cancer therapies.
Collapse
Affiliation(s)
| | | | | | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (H.S.K.); (H.K.L.); (W.Y.J.)
| |
Collapse
|
5
|
Tian Y, Fan J, Wang R, Ding R, Zhao C, Xu J, Zhang Q, Nan T, Li X, Ye M. Triterpenoid saponins from the roots of Panax notoginseng with protective effects against APAP-induced liver injury. Fitoterapia 2024; 178:106159. [PMID: 39127307 DOI: 10.1016/j.fitote.2024.106159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Five previously undescribed protopanaxatriol-type saponins, notoginsenosides Ta-Te (1-5), together with eighteen known triterpenoid saponins (6-23) were isolated from the roots of Panax notoginseng. The structures of new compounds were determined by HRESIMS and NMR spectroscopic analyses and chemical methods. Compounds 1 and 2 were the first examples of ginsenosides featuring a 6-deoxy-β-d-glucose moiety from Panax species. Compounds 1-4, 7, 10, 12, 21-22 showed protective effects on L02 cells against the injury of acetaminophen (APAP). Among them, notoginsenoside R1 (12), ginsenoside Rg1 (21), and ginsenoside Re (22) were the most potent ones, with cell viabilities >80%. Moreover, compounds 12 and 22 remarkably alleviated APAP-induced liver injury in mice. These saponins are potential hepatoprotective agents.
Collapse
Affiliation(s)
- Yungang Tian
- School of Pharmacy, Minzu University of China, 27 Zhongguancun South Street, Beijing 100081, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Jingjing Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Rongshen Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China; School of Pharmacy, Weifang Medical University, 7166 Baotong West Street, Weifang City, Shandong 261053, China
| | - Rui Ding
- Ningxia Institute for Drug Control, No. 163, Fengyue Road, Jinfeng District, Yinchuan 750002, China
| | - Chunxue Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Jia Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Qingyun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Tiegui Nan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijng 100700, China.
| | - Xianchan Li
- School of Pharmacy, Minzu University of China, 27 Zhongguancun South Street, Beijing 100081, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijng 100700, China; Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
6
|
Chen X, Huang L, Zhang M, Lin S, Xie J, Li H, Wang X, Lu Y, Zheng D. Comparison of nanovesicles derived from Panax notoginseng at different size: physical properties, composition, and bioactivity. Front Pharmacol 2024; 15:1423115. [PMID: 39104384 PMCID: PMC11298367 DOI: 10.3389/fphar.2024.1423115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
Aim Plant-derived nanovesicles have emerged as potential agents for combating tumors. In this study, we investigated the inhibitory effects of Panax notoginseng-derived nanovesicles (PnNVs) on the proliferation and migration of squamous cell carcinoma. Additionally, we explored the relationship between plant tuber size and the physical properties, composition and bioactivity of these nanovesicles. Methods We isolated PnNVs from Panax notoginseng tubers of varying sizes: small-sized (s_PnNVs), medium-sized (m_PnNVs) and large-sized (l_PnNVs), and evaluated for size, potential, and morphology. Cellular uptake efficiency was assessed using confocal microscopy and flow cytometry. The ability of different PnNVs to inhibit oral squamous cell carcinoma cells was evaluated using plate cloning, CCK8 assay, and scratch healing assay. Off-target metabolomics was used to compare metabolic compounds of different PnNVs. Results Our findings revealed that s_PnNVs exhibited lower potential but had the highest cellular uptake efficiency, whereas m_PnNVs were characterized by the smallest size and lowest cellular uptake efficiency. Notably, m_PnNVs demonstrated the most effective inhibition of squamous cell carcinoma growth and migration. Compositional analyses showed that PnNVs were rich in proteins and contained lower levels of RNA, with l_PnNVs having the highest protein content. Furthermore, untargeted metabolomics analysis revealed a significant increase in the expression of specific antitumour-related metabolites in m_PnNVs compared to s_PnNVs and l_PnNVs. Conclusion Overall, our results underscore the influence of plant tuber size on the bioactivity of the nanovesicles from which they are derived, emphasizing its importance for experimental design and study reproducibility.
Collapse
Affiliation(s)
- Xiaohang Chen
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Liyu Huang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Human Anatomy and Histology, and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mengyuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Shuoqi Lin
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jing Xie
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Hengyi Li
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Mancuso C. Panax notoginseng: Pharmacological Aspects and Toxicological Issues. Nutrients 2024; 16:2120. [PMID: 38999868 PMCID: PMC11242943 DOI: 10.3390/nu16132120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/30/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Current evidence suggests a beneficial role of herbal products in free radical-induced diseases. Panax notoginseng (Burk.) F. H. Chen has long occupied a leading position in traditional Chinese medicine because of the ergogenic, nootropic, and antistress activities, although these properties are also acknowledged in the Western world. The goal of this paper is to review the pharmacological and toxicological properties of P. notoginseng and discuss its potential therapeutic effect. A literature search was carried out on Pubmed, Scopus, and the Cochrane Central Register of Controlled Trials databases. The following search terms were used: "notoginseng", "gut microbiota", "immune system", "inflammation", "cardiovascular system", "central nervous system", "metabolism", "cancer", and "toxicology". Only peer-reviewed articles written in English, with the full text available, have been included. Preclinical evidence has unraveled the P. notoginseng pharmacological effects in immune-inflammatory, cardiovascular, central nervous system, metabolic, and neoplastic diseases by acting on several molecular targets. However, few clinical studies have confirmed the therapeutic properties of P. notoginseng, mainly as an adjuvant in the conventional treatment of cardiovascular disorders. Further clinical studies, which both confirm the efficacy of P. notoginseng in free radical-related diseases and delve into its toxicological aspects, are mandatory to broaden its therapeutic potential.
Collapse
Affiliation(s)
- Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy; ; Tel.: +39-06-30154367; Fax: +39-06-3050159
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
8
|
Xia L, Liu X, Mao W, Guo Y, Huang J, Hu Y, Jin L, Liu X, Fu H, Du Y, Shou Q. Panax notoginseng saponins normalises tumour blood vessels by inhibiting EphA2 gene expression to modulate the tumour microenvironment of breast cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154787. [PMID: 37060724 DOI: 10.1016/j.phymed.2023.154787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/02/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Panax notoginseng saponins (PNS), the main active component of Panax notoginseng, can promote vascular microcirculation. PNS exhibits antitumor effects in various cancers. However, the molecular basis of the relationship between PNS and tumor blood vessels remains unclear. PURPOSE To study the relationship between PNS inhibiting the growth and metastasis of breast cancer and promoting the normalization of blood vessels. METHODS We performed laser speckle imaging of tumor microvessels and observed the effects of PNS on tumor growth and metastasis of MMTV-PyMT (FVB) spontaneous breast cancer in a transgenic mouse model. Immunohistochemical staining of Ki67 and CD31 was performed for tumors, scanning electron microscopy was used to observe tumor vascular morphology, and flow cytometry was used to detect tumor tissue immune microenvironment (TME). RNA-seq analysis was performed using the main vessels of the tumor tissues of the mice. HUVECs were cultured in tumor supernatant in vitro to simulate tumor microenvironment and verify the sequencing differential key genes. RESULTS After treatment with PNS, we observed that tumor growth was suppressed, the blood perfusion of the systemic tumor microvessels in the mice increased, and the number of lung metastases decreased. Moreover, the vascular density of the primary tumor increased, and the vascular epidermis was smoother and flatter. Moreover, the number of tumor-associated macrophages in the tumor microenvironment was reduced, and the expression levels of IL-6, IL-10, and TNF-α were reduced in the tumor tissues. PNS downregulated the expression of multiple genes associated with tumor angiogenesis, migration, and adhesion. In vitro tubule formation experiments revealed that PNS promoted the formation and connection of tumor blood vessels and normalized the vessel morphology primarily by inhibiting EphA2 expression. In addition, PNS inhibited the expression of tumor vascular marker proteins and vascular migration adhesion-related proteins in vivo. CONCLUSION In this study, we found that PNS promoted the generation and connection of tumor vascular endothelial cells, revealing the key role of EphA2 in endothelial cell adhesion and tumor blood vessel morphology. PNS can inhibit the proliferation and metastasis of breast cancer by inhibiting EphA2, improving the immune microenvironment of breast cancer and promoting the normalization of tumor blood vessels.
Collapse
Affiliation(s)
- Linying Xia
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China; School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Jinghua Academy of Zhejiang Chinese Medicine University, Jinghua 321015, PR China
| | - XianLi Liu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China; School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Jinghua Academy of Zhejiang Chinese Medicine University, Jinghua 321015, PR China
| | - Weiye Mao
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Jinghua Academy of Zhejiang Chinese Medicine University, Jinghua 321015, PR China
| | - Yingxue Guo
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jie Huang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Yingnan Hu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Lu Jin
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Zhejiang Provincial Key Laboratory of Sexual function of Integrated Traditional Chinese and Western Medicine, Hangzhou 310053, PR China
| | - Xia Liu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Zhejiang Provincial Key Laboratory of Sexual function of Integrated Traditional Chinese and Western Medicine, Hangzhou 310053, PR China
| | - Huiying Fu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Zhejiang Provincial Key Laboratory of Sexual function of Integrated Traditional Chinese and Western Medicine, Hangzhou 310053, PR China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Jinghua Academy of Zhejiang Chinese Medicine University, Jinghua 321015, PR China.
| | - Yueguang Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Qiyang Shou
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Zhejiang Provincial Key Laboratory of Sexual function of Integrated Traditional Chinese and Western Medicine, Hangzhou 310053, PR China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Jinghua Academy of Zhejiang Chinese Medicine University, Jinghua 321015, PR China.
| |
Collapse
|
9
|
Xue JY, Wu YY, Han YL, Song XY, Zhang MY, Cheng J, Lin B, Xia MY, Zhang YX. Anthraquinone metabolites isolated from the rhizosphere soil Streptomyces of Panax notoginseng (Burk.) F. H. Chen target MMP2 to inhibit cancer cell migration. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116457. [PMID: 37088235 DOI: 10.1016/j.jep.2023.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/20/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng (Burk.) F. H. Chen belongs to the Araliaceae family. It has been used by traditional Chinese people in Northeast Asia for centuries as an antidiabetic, antioxidant, antitumor agent, etc. Endophytic or rhizospheric microorganisms play key roles in plant defense mechanisms, and they are essential in the discovery of pharmaceuticals and valuable new secondary metabolites. In particular, endophytic or rhizospheric microorganisms of traditional medicinal plants. AIM OF THE STUDY To discover valuable new secondary metabolites from rhizosphere soil Streptomyces sp. SYP-A7185 of P. notoginseng, and to explore potential bioactivities and targets of metabolites protrusive function. MATERIALS AND METHODS The metabolites were obtained via column chromatography and identified by multiple spectroscopic analyses. The antitumor, antioxidant, antibacterial, and antiglycosidases effects of isolated metabolites were tested using 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyltetazolium bromide (MTT), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 96-well turbidimetric, and α-glucosidase inhibitory assays. The potential antitumor targets were predicted through network pharmacological approaches. The interactions between metabolites and target were verified by molecular docking and biolayer interferometry (BLI) assay. The effects of cancer cells migration were detected through wound healing assays in A549 and MCF-7. Other cellular validation experiments including reverse transcription-quantitative PCR (RT‒qPCR) and western blotting (WB) were used to confirm the hypothesis of network pharmacology. RESULTS Five different chemotypes of anthraquinone derivatives (1-10), including six new compounds (3, 6-10), were identified from Streptomyces sp. SYP-A7185. Compounds 1-6 and 9 displayed moderate to strong cytotoxicity on five human cancer cell lines (A549, HepG2, MCF-7, MDA-MD-231, and MGC-803). Moreover, matrix metalloproteinase-2 (MMP2) were predicted as a potential antitumor target of metabolites 1-6 and 9 by comprehensive network pharmacology analysis. Later, BLI assays revealed strong intermolecular interactions between MMP2 and antitumor metabolites, and molecular docking results showed the interaction of metabolites 1-6 and 9 with MMP2 was dependent on the crucial amino acid residues of LEU-83, ALA-84, LEU-117, HIS-131, PRO-135, GLY-136, ALA-140, PRO-141, TYR-143, and THR-144. These results implied that metabolites (1-6 and 9) might inhibit cancer cell migration besides cancer cell proliferation. After that, the cell wound healing assay showed that the cell migration processes were also inhibited after the treatments of compounds 1 and 3 in A549 and MCF-7 cells. In addition, the RT‒qPCR and WB results demonstrated that the gene expression levels of MMP2 were decreased after the treatment with compounds 1 and 3 in A549 and MCF-7 cells. Besides, compound 2 displayed moderate antioxidant activity (EC50, 27.43 μM), compounds 3 and 6 exhibited moderate antibacterial activity, and compound 3 inhibited α-glucosidase with an IC50 value of 13.10 μM. CONCLUSIONS Anthraquinone metabolites, from rhizosphere soil Streptomyces sp. of P. notoginseng, possess antitumor, antioxidant, antibacterial, and antiglycosidase activities. Moreover, metabolites 1 and 3 inhibit cancer cells migration through downregulating MMP2.
Collapse
Affiliation(s)
- Jin-Yan Xue
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying-Ying Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yu-Ling Han
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xin-Yu Song
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Juan Cheng
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ming-Yu Xia
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
10
|
Yang X, Xiong Y, Wang H, Jiang M, Xu X, Mi Y, Lou J, Li X, Sun H, Zhao Y, Li X, Yang W. Multicomponent Characterization of the Flower Bud of Panax notoginseng and Its Metabolites in Rat Plasma by Ultra-High Performance Liquid Chromatography/Ion Mobility Quadrupole Time-of-Flight Mass Spectrometry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249049. [PMID: 36558182 PMCID: PMC9786607 DOI: 10.3390/molecules27249049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The flower bud of Panax notoginseng (PNF) consumed as a tonic shows potential in the prevention and treatment of cardiovascular diseases. To identify the contained multi-components and, in particular, to clarify which components can be absorbed and what metabolites are transformed, unveiling the effective substances of PNF is of vital significance. A unique ultrahigh-performance liquid chromatography/ion mobility quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) profiling approach and efficient data processing by the UNIFITM bioinformatics platform were employed to comprehensively identify the multi-components of PNF and the related metabolites in the plasma of rats after oral administration (at a dose of 3.6 g/kg). Two MS2 data acquisition modes operating in the negative electrospray ionization mode, involving high-definition MSE (HDMSE) and data-dependent acquisition (DDA), were utilized aimed to extend the coverage and simultaneously ensure the quality of the MS2 spectra. As a result, 219 components from PNF were identified or tentatively characterized, and 40 thereof could be absorbed. Moreover, 11 metabolites were characterized from the rat plasma. The metabolic pathways mainly included the phase I (deglycosylation and oxidation). To the best of our knowledge, this is the first report that systematically studies the in vivo metabolites of PNF, which can assist in better understanding its tonifying effects and benefit its further development.
Collapse
Affiliation(s)
- Xiaonan Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Ying Xiong
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Hongda Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Meiting Jiang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiaoyan Xu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yueguang Mi
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Jia Lou
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiaohang Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - He Sun
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yuying Zhao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xue Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Correspondence: (X.L.); (W.Y.); Tel.: +86-022-5979-1833 (W.Y.)
| | - Wenzhi Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Correspondence: (X.L.); (W.Y.); Tel.: +86-022-5979-1833 (W.Y.)
| |
Collapse
|
11
|
邹 琼, 伍 晓, 王 进, 夏 谍, 邓 萌, 丁 俞, 代 玉, 赵 嵩, 陈 彤. [Therapeutic effect of Panax notoginseng saponins combined with cyclophosphamide in mice bearing hepatocellular carcinoma H 22 cell xenograft]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:538-545. [PMID: 35527489 PMCID: PMC9085587 DOI: 10.12122/j.issn.1673-4254.2022.04.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To investigate the therapeutic effects of total saponins from Panax notognseng (PNS) combined with cyclophosphamide (CTX) in mice bearing hepatocellular carcinoma H22 cell xenograft. METHODS We examined the effects of treatment with different concentrations of PNS on H22 cell proliferation for 24 to 72 h in vitro using CCK8 colorimetric assay. Annexin V/PI double fluorescence staining was used to detect the effect of PNS on apoptosis of H22 cells. Mouse models bearing H22 cell xenograft were established and treated with CTX (25 mg/kg), PNS (120, 240 or 480 mg/kg), alone or in combinations. After treatments for consecutive 10 days, the mice were euthanized for examinations of carbon clearance ability of the monocytes and macrophages, splenic lymphocyte proliferation, tumor necrosis factor (TNF-α), interleukin-2 (IL-2), serum hemolysin antibody level, blood indicators, and the tumor inhibition rate. RESULTS Treatment with PNS concentration-dependently inhibited the proliferation and significantly promoted apoptosis of cultured H22 cells (P < 0.01). In the tumor-bearing mouse models, PNS alone and its combination with CTX both resulted in obvious enhancement of phagocytosis of the monocyte-macrophages, stimulated the proliferation of splenic lymphocytes, promoted the release of TNF-α and IL-2 and the production of serum hemolysin antibody, and increased the number of white blood cells, red blood cells and lymphocytes in the peripheral blood. Treatment with 480 mg/kg PNS combined with CTX resulted in a tumor inhibition rate of 83.28% (P < 0.01) and a life prolonging rate of 131.25% in the mouse models (P < 0.05). CONCLUSION PNS alone or in combination with CTX can improve the immunity and tumor inhibition rate and prolong the survival time of H22 tumor-bearing mice.
Collapse
Affiliation(s)
- 琼 邹
- 昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明 650500School of Pharmaceutical Science and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - 晓萍 伍
- 昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明 650500School of Pharmaceutical Science and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - 进吉 王
- 昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明 650500School of Pharmaceutical Science and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - 谍 夏
- 昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明 650500School of Pharmaceutical Science and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - 萌玥 邓
- 昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明 650500School of Pharmaceutical Science and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - 俞珍 丁
- 昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明 650500School of Pharmaceutical Science and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - 玉玲 代
- 昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明 650500School of Pharmaceutical Science and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - 嵩月 赵
- 云南省食品药品审核查验中 心,云南 昆明 650228Yunnan Food and Drug Inspection Center, Kunming 650228, China
| | - 彤 陈
- 昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明 650500School of Pharmaceutical Science and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
12
|
Li YB, Zhang ZP, Yuan Y, Huang HC, Mei XY, Du F, Yang M, Liu YX, Zhu SS. Appropriate Soil Heat Treatment Promotes Growth and Disease Suppression of Panax notoginseng by Interfering with the Bacterial Community. J Microbiol Biotechnol 2022; 32:294-301. [PMID: 35283430 PMCID: PMC9628859 DOI: 10.4014/jmb.2112.12005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022]
Abstract
In our greenhouse experiment, soil heat treatment groups (50, 80, and 121°C) significantly promoted growth and disease suppression of Panax notoginseng in consecutively cultivated soil (CCS) samples (p < 0.01), and 80°C worked better than 50°C and 121°C (p < 0.01). Furthermore, we found that heat treatment at 80°C changes the microbial diversity in CCS, and the inhibition ratios of culturable microorganisms, such as fungi and actinomycetes, were nearly 100%. However, the heat-tolerant bacterial community was preserved. The 16S rRNA gene and internal transcribed spacer (ITS) sequencing analyses indicated that the soil heat treatment had a greater effect on the Chao1 index and Shannon's diversity index of bacteria than fungi, and the relative abundances of Firmicutes and Proteobacteria were significantly higher than without heating (80 and 121°C, p < 0.05). Soil probiotic bacteria, such as Bacillus (67%), Sporosarcina (9%), Paenibacillus (6%), Paenisporosarcina (6%), and Cohnella (4%), remained in the soil after the 80°C and 121°C heat treatments. Although steam increased the relative abundances of most of the heat-tolerant microbes before sowing, richness and diversity gradually recovered to the level of CCS, regardless of fungi or bacteria, after replanting. Thus, we added heat-tolerant microbes (such as Bacillus) after steaming, which reduced the relative abundance of pathogens, recruited antagonistic bacteria, and provided a long-term protective effect compared to the steaming and Bacillus alone (p < 0.05). Taken together, the current study provides novel insight into sustainable agriculture in a consecutively cultivated system.
Collapse
Affiliation(s)
- Ying-Bin Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, P.R. China,Key Laboratory for Agro-Biodiversity and Pest Control (Ministry of Education), College of Plant Protection, Yunnan Agricultural University, Kunming 650201, P.R. China
| | - Zhi-Ping Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, P.R. China,Key Laboratory for Agro-Biodiversity and Pest Control (Ministry of Education), College of Plant Protection, Yunnan Agricultural University, Kunming 650201, P.R. China
| | - Ye Yuan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, P.R. China,Key Laboratory for Agro-Biodiversity and Pest Control (Ministry of Education), College of Plant Protection, Yunnan Agricultural University, Kunming 650201, P.R. China
| | - Hui-Chuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, P.R. China,Key Laboratory for Agro-Biodiversity and Pest Control (Ministry of Education), College of Plant Protection, Yunnan Agricultural University, Kunming 650201, P.R. China
| | - Xin-Yue Mei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, P.R. China,Key Laboratory for Agro-Biodiversity and Pest Control (Ministry of Education), College of Plant Protection, Yunnan Agricultural University, Kunming 650201, P.R. China
| | - Fen Du
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, P.R. China,Key Laboratory for Agro-Biodiversity and Pest Control (Ministry of Education), College of Plant Protection, Yunnan Agricultural University, Kunming 650201, P.R. China
| | - Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, P.R. China,Key Laboratory for Agro-Biodiversity and Pest Control (Ministry of Education), College of Plant Protection, Yunnan Agricultural University, Kunming 650201, P.R. China
| | - Yi-Xiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, P.R. China,Key Laboratory for Agro-Biodiversity and Pest Control (Ministry of Education), College of Plant Protection, Yunnan Agricultural University, Kunming 650201, P.R. China,Corresponding authors Y.X. Liu E-mail:
| | - Shu-Sheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, P.R. China,Key Laboratory for Agro-Biodiversity and Pest Control (Ministry of Education), College of Plant Protection, Yunnan Agricultural University, Kunming 650201, P.R. China,
S.S. Zhu E-mail:
| |
Collapse
|
13
|
Wei H, Guo C, Zhu R, Zhang C, Han N, Liu R, Hua B, Li Y, Lin H, Yu J. Shuangshen granules attenuate lung metastasis by modulating bone marrow differentiation through mTOR signalling inhibition. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:113305. [PMID: 32890710 DOI: 10.1016/j.jep.2020.113305] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/31/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine Shuangshen granules (SSG) have been used to treat lung cancer patients with Qi deficiency and blood stasis for decades. According to clinical experience, SSG indeed improve the quality of life and prolong the survival time of patients with lung cancer after surgery. Each of the components herbs was proved to be effective in anti-cancer therapy. Both the American ginseng and notoginseng belong to genus Panax of the family Araliaceae. Preclinical and clinical studies demonstrated that ginsenosides of them have anti- or preventive activities to various tumors, including cancers of gastric, breast, liver, lung, ovarian, colon, melanoma and leukemia. PDS, such as ginsenoside Rb1, and PTS, such as ginsenoside Rg1 are the main anticancer compositions. Cordyceps sinensis had also been found effective in inhibiting tumour growth and metastasis, especially on tumour associated immune cells, such as macrophages. However, limited information is available regarding potential mechanisms of SSG. Myeloid-derived suppressor cell (MDSC)-mediated immunosuppression, which is closely associated with poor clinical outcomes in cancer patients, may be the target of SSG, which regulate immune function. AIM OF THE STUDY The present study aimed to explore whether SSG attenuate the differentiation of bone marrow cells (BMCs) into MDSCs by blocking the mTOR signalling, leading to the suppression of lung metastasis. MATERIALS AND METHODS First, we observed the differentiation of BMCs into MDSCs in vitro and in vivo. BMCs were cultured alone or co-cultured with Lewis lung carcinoma (LLC) cell supernatant in vitro. The effects of different concentrations of SSG, or LLC cell supernatant as a control, on BMC differentiation were detected by flow cytometry and western blotting. Male C57BL/6J mice were subcutaneously implanted with LLC cells, and SSG were administered by gavage twice daily before and after implantation for 7 or 14 days, respectively. The tumour weight, proportion of MDSCs, presence of CD11b+Ly6C+Ly6G- and CD11b+Ly6C+Ly6G+ cells in the bone marrow, blood, and lungs, as well as the expression levels of differentiation-related proteins in the bone marrow and lungs were evaluated. RESULTS SSG attenuated the differentiation of BMCs into MDSCs, and reduced the fraction of CD11b+Ly6C+Ly6G+ cells by inhibiting the mTOR/S6K1/Myc signalling pathway. In vivo, SSG attenuated differentiation-associated protein markers and reduced the fractions of MDSCs and CD11b+Ly6C+Ly6G+ cells in the bone marrow, blood, and lungs. In addition, SSG administration reduced the tumour weight and inhibited lung metastasis. CONCLUSIONS SSG may reduce lung metastasis by attenuating BMC differentiation into CD11b+Ly6C+Ly6G+ cells by inhibiting mTOR signalling in vitro and in vivo.
Collapse
Affiliation(s)
- Huamin Wei
- Beijing Friendship Hospital, Capital Medical University, No. 95 Yong an Road, Xi Cheng District, Beijing, 100053, China.
| | - Chunxiu Guo
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange St., Xicheng District, Beijing, China.
| | - Ruili Zhu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange St., Xicheng District, Beijing, China.
| | - Congen Zhang
- Beijing Friendship Hospital, Capital Medical University, No. 95 Yong an Road, Xi Cheng District, Beijing, 100053, China.
| | - Nina Han
- Beijing Tcmages Pharmaceutical Co., Ltd, Beijing, 101301, China.
| | - Rui Liu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange St., Xicheng District, Beijing, China.
| | - Baojin Hua
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange St., Xicheng District, Beijing, China.
| | - Yangfan Li
- Beijing Friendship Hospital, Capital Medical University, No. 95 Yong an Road, Xi Cheng District, Beijing, 100053, China.
| | - Hai Lin
- Beijing Friendship Hospital, Capital Medical University, No. 95 Yong an Road, Xi Cheng District, Beijing, 100053, China.
| | - Jing Yu
- Beijing Friendship Hospital, Capital Medical University, No. 95 Yong an Road, Xi Cheng District, Beijing, 100053, China.
| |
Collapse
|
14
|
Song SY, Chang HJ, Kim SD, Kwag EB, Park SJ, Yoo HS. Acute and sub-chronic toxicological evaluation of the herbal product HAD-B1 in Beagle dogs. Toxicol Rep 2021; 8:1819-1829. [PMID: 34804809 PMCID: PMC8590039 DOI: 10.1016/j.toxrep.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 11/25/2022] Open
Abstract
HAD-B1 is used in Korean medicine to treat lung cancer patients. The acute and Sub-chronic toxicity of HAD-B1 was evaluated in Beagle dogs. No toxicologically significant effects were found. The NOAEL was ≥2000 mg/kg/day for both genders, with no target organ effect.
HAD-B1 is a herbal formula originated from Korean Traditional Medicine that used to treat lung cancer patients. Herein we assessed acute and sub-chronic toxicity of HAD-B1 in beagle dogs. Acute study, 4 weeks dose rate finding (DRF) study and sub chronic toxicity study for 13 weeks were done by oral administration at doses of 0, 500, 1000, and 2000 mg/kg. Neither oral acute toxicity study nor DRF study showed any significant clinical signs, death, or weight changes. Based on that, a sub-chronic study for 13-weeks was performed. As a result, HAD-B1 caused a decrease of mean daily feed consumption in females, infiltration of intestinal inflammatory cells in both sexes, a significant decrease in total cholesterol (TCHO) in females, Kupffer cell hypertrophy/hyperplasia in the liver as well as dilation of the sinusoid. However, there were no significant toxic effects in the treated group compared to the control group. Therefore, the No Observed Adverse Effect Level (NOAEL) of the HAD-B1 is at least 2000 mg/kg/day when administrated orally for 13 consecutive weeks. These results demonstrate that HAD-B1 consumption is relatively non-toxic and safe for clinical usage.
Collapse
Affiliation(s)
- Si-Yeon Song
- East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University, 75, 176 Bun-Gil, Daedeok-daero, Seo-gu, Daejeon City, 35-235, Republic of Korea
| | - Hyeok-Joon Chang
- East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University, 75, 176 Bun-Gil, Daedeok-daero, Seo-gu, Daejeon City, 35-235, Republic of Korea
| | - Soo-Dam Kim
- East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University, 75, 176 Bun-Gil, Daedeok-daero, Seo-gu, Daejeon City, 35-235, Republic of Korea
| | - Eun-Bin Kwag
- East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University, 75, 176 Bun-Gil, Daedeok-daero, Seo-gu, Daejeon City, 35-235, Republic of Korea
| | - So-Jung Park
- East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University, 75, 176 Bun-Gil, Daedeok-daero, Seo-gu, Daejeon City, 35-235, Republic of Korea
| | - Hwa-Seung Yoo
- East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University, 75, 176 Bun-Gil, Daedeok-daero, Seo-gu, Daejeon City, 35-235, Republic of Korea
| |
Collapse
|
15
|
Tan MM, Chen MH, Han F, Wang JW, Tu YX. Role of Bioactive Constituents of Panax notoginseng in the Modulation of Tumorigenesis: A Potential Review for the Treatment of Cancer. Front Pharmacol 2021; 12:738914. [PMID: 34776959 PMCID: PMC8578715 DOI: 10.3389/fphar.2021.738914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a leading cause of death, affecting people in both developed and developing countries. It is a challenging disease due to its complicated pathophysiological mechanism. Many anti-cancer drugs are used to treat cancer and reduce mortality rates, but their toxicity limits their administration. Drugs made from natural products, which act as multi-targeted therapy, have the ability to target critical signaling proteins in different pathways. Natural compounds possess pharmacological activities such as anti-cancer activity, low toxicity, and minimum side effects. Panax notoginseng is a medicinal plant whose extracts and phytochemicals are used to treat cancer, cardiovascular disorders, blood stasis, easing inflammation, edema, and pain. P. notoginseng's secondary metabolites target cancer's dysregulated pathways, causing cancer cell death. In this review, we focused on several ginsenosides extracted from P. notoginseng that have been evaluated against various cancer cell lines, with the aim of cancer treatment. Furthermore, an in vivo investigation of these ginsenosides should be conducted to gain insight into the dysregulation of several pathways, followed by clinical trials for the potential and effective treatment of cancer.
Collapse
Affiliation(s)
- Ming-Ming Tan
- Department of Emergency Medicine, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
| | - Min-Hua Chen
- Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Fang Han
- Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jun-Wei Wang
- Department of Emergency Medicine, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
| | - Yue-Xing Tu
- Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
16
|
Feng XY, Zhao W, Yao Z, Wei NY, Shi AH, Chen WH. Downregulation of ATP1A1 Expression by Panax notoginseng (Burk.) F.H. Chen Saponins: A Potential Mechanism of Antitumor Effects in HepG2 Cells and In Vivo. Front Pharmacol 2021; 12:720368. [PMID: 34690763 PMCID: PMC8529207 DOI: 10.3389/fphar.2021.720368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
The Na+/K+-ATPase α1 subunit (ATP1A1) is a potential target for hepatic carcinoma (HCC) treatment, which plays a key role in Na+/K+ exchange, metabolism, signal transduction, etc. In vivo, we found that Panax notoginseng saponins (PNS) could inhibit tumor growth and significantly downregulate the expression and phosphorylation of ATP1A1/AKT/ERK in tumor-bearing mice. Our study aims to explore the potential effects of PNS on the regulation of ATP1A1 and the possible mechanisms of antitumor activity. The effects of PNS on HepG2 cell viability, migration, and apoptosis were examined in vitro. Fluorescence, Western blot, and RT-PCR analyses were used to examine the protein and gene expression. Further analysis was assessed with a Na+/K+-ATPase inhibitor (digitonin) and sorafenib in vitro. We found that the ATP1A1 expression was markedly higher in HepG2 cells than in L02 cells and PNS exhibited a dose-dependent effect on the expression of ATP1A and the regulation of AKT/ERK signaling pathways. Digitonin did not affect the expression of ATP1A1 but attenuated the effects of PNS on the regulation of ATP1A1/AKT/ERK signaling pathways and enhanced the antitumor effect of PNS by promoting nuclear fragmentation. Taken together, PNS inhibited the proliferation of HepG2 cells via downregulation of ATP1A1 and signal transduction. Our findings will aid a data basis for the clinical use of PNS.
Collapse
Affiliation(s)
- Xiao-Yi Feng
- Faculty of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Wei Zhao
- Faculty of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zheng Yao
- Faculty of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Ning-Yi Wei
- Faculty of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - An-Hua Shi
- Faculty of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Wen-Hui Chen
- Faculty of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
17
|
Han G, Zhang Y, Liu T, Li J, Li H. The anti-osteosarcoma effect from panax notoginseng saponins by inhibiting the G 0 / G 1 phase in the cell cycle and affecting p53-mediated autophagy and mitochondrial apoptosis. J Cancer 2021; 12:6383-6392. [PMID: 34659528 PMCID: PMC8489146 DOI: 10.7150/jca.54602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/04/2021] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma is the most common primary bone malignancy, and current chemotherapy sessions against it often induce severe complications in patients. Thus, it is necessary to develop new and effective antineoplastic agents with fewer side effects. Panax notoginseng saponins (PNS) are the active components in panax notoginseng and were reported to be capable of inhibiting the growth of several tumors both in vitro and in vivo. However, its effects on osteosarcoma have not been studied yet, which is addressed in this study for the first time. Our results indicated that PNS can inhibit proliferation, invasion and migration of the osteosarcoma cells, while promoting their apoptosis simultaneously. Specifically, PNS caused an increase in mitochondrial membrane potential and the amount of reactive oxygen species. The cell cycle in osteosarcoma cells was arrested in the G0 / G1 phase after PNS treatment. The expression of p53 and other apoptosis-related mitochondrial proteins were promoted. Nevertheless, it was observed that autophagy became less active in osteosarcoma cells when PNS was administered. In a word, PNS were of potential therapeutic significance for osteosarcoma.
Collapse
Affiliation(s)
- Guangtao Han
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yubiao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ting Liu
- Department of Orthopedics, Hospital of Shenmu, Shenmu, Shaanxi, 719300, P.R. China
| | - Jianping Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Haohuan Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
18
|
Jurek I, Szuplewska A, Chudy M, Wojciechowski K. Soapwort ( Saponaria officinalis L.) Extract vs. Synthetic Surfactants-Effect on Skin-Mimetic Models. Molecules 2021; 26:molecules26185628. [PMID: 34577098 PMCID: PMC8467643 DOI: 10.3390/molecules26185628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Our skin is continuously exposed to different amphiphilic substances capable of interaction with its lipids and proteins. We describe the effect of a saponin-rich soapwort extract and of four commonly employed synthetic surfactants: sodium lauryl sulfate (SLS), sodium laureth sulfate (SLES), ammonium lauryl sulfate (ALS), cocamidopropyl betaine (CAPB) on different human skin models. Two human skin cell lines were employed: normal keratinocytes (HaCaT) and human melanoma cells (A375). The liposomes consisting of a dipalmitoylphosphatidylcholine/cholesterol mixture in a molar ratio of 7:3, mimicking the cell membrane of keratinocytes and melanoma cells were employed as the second model. Using dynamic light scattering (DLS), the particle size distribution of liposomes was analyzed before and after contact with the tested (bio)surfactants. The results, supplemented by the protein solubilization tests (albumin denaturation test, zein test) and oil emulsification capacity (using olive oil and engine oil), showed that the soapwort extract affects the skin models to a clearly different extent than any of the tested synthetic surfactants. Its protein and lipid solubilizing potential are much smaller than for the three anionic surfactants (SLS, ALS, SLES). In terms of protein solubilization potential, the soapwort extract is comparable to CAPB, which, however, is much harsher to lipids.
Collapse
Affiliation(s)
- Ilona Jurek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (I.J.); (A.S.); (M.C.)
| | - Aleksandra Szuplewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (I.J.); (A.S.); (M.C.)
| | - Michał Chudy
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (I.J.); (A.S.); (M.C.)
| | - Kamil Wojciechowski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (I.J.); (A.S.); (M.C.)
- SaponLabs Ltd., Noakowskiego 3, 00-664 Warsaw, Poland
- Correspondence:
| |
Collapse
|
19
|
The RIG-I Signal Pathway Mediated Panax notoginseng Saponin Anti-Inflammatory Effect in Ischemia Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8878428. [PMID: 34462642 PMCID: PMC8403041 DOI: 10.1155/2021/8878428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/09/2021] [Accepted: 08/07/2021] [Indexed: 01/10/2023]
Abstract
Panax notoginseng saponins (PNS), the main bioactive constituents of a traditional Chinese herb Panax notoginseng, were commonly used for ischemic stroke in China. However, the associated cellular and molecular mechanisms of PNS have not been well examined. This study aimed to decipher the underlying molecular target of PNS in the treatment of cerebral ischemia. The oxygen-glucose-deprived (OGD) model of rat brain microvascular endothelial cells (BMECs) was used in this study. The alteration of gene expression in rat BMECs after PNS treatment was measured by microarray and indicated that there were 38 signaling pathways regulated by PNS. Among them, RIG-I receptor and related signaling molecules TNF receptor-associated factor 2 (Traf2) and nuclear factor-kappa B (NF-κB) were significantly suppressed by PNS, which was verified again in OGD-induced BMECs measured by FQ-PCR and western blotting and in middle cerebral artery occlusion (MCAO) rats measured by immunohistochemistry. The levels of TNF-α, IL-8, and the downstream cytokines regulated by RIG-I receptor pathway were also decreased by PNS. Meanwhile, the neurological evaluation, hematoxylin and eosin (HE) staining, and Evans blue staining were conducted to evaluate the effect of PNS in MCAO rats. Results showed PNS significantly improved functional outcome and cerebral vascular leakage. Flow cytometry showed the number of the inflammatory cells infiltrated in brain tissue was decreased in PNS treatment. Our results identified that RIG-I signaling pathway mediated anti-inflammatory properties of PNS in cerebral ischemia, which provided the novel insights of PNS application in clinics.
Collapse
|
20
|
Liu XW, Lu MK, Zhong HT, Liu JJ, Fu YP. Panax Notoginseng Saponins Protect H9c2 Cells From Hypoxia-reoxygenation Injury Through the Forkhead Box O3a Hypoxia-inducible Factor-1 Alpha Cell Signaling Pathway. J Cardiovasc Pharmacol 2021; 78:e681-e689. [PMID: 34354001 PMCID: PMC8584197 DOI: 10.1097/fjc.0000000000001120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/14/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Panax notoginseng saponins (PNS) are commonly used in the treatment of cardiovascular diseases. Whether PNS can protect myocardial ischemia-reperfusion injury by regulating the forkhead box O3a hypoxia-inducible factor-1 alpha (FOXO3a/HIF-1α) cell signaling pathway remains unclear. The purpose of this study was to investigate the protective effect of PNS on H9c2 cardiomyocytes through the FOXO3a/HIF-1α cell signaling pathway. Hypoxia and reoxygenation of H9C2 cells were used to mimic MIRI in vitro, and the cells were treated with PNS, 2-methoxyestradiol (2ME2), and LY294002." Cell proliferation, lactate dehydrogenase, and malonaldehyde were used to evaluate the degree of cell injury. The level of reactive oxygen species was detected with a fluorescence microscope. The apoptosis rate was detected by flow cytometry. The expression of autophagy-related proteins and apoptosis-related proteins was detected by western blot assay. PNS could reduce H9c2 hypoxia-reoxygenation injury by promoting autophagy and inhibiting apoptosis through the HIF-1α/FOXO3a cell signaling pathway. Furthermore, the protective effects of PNS were abolished by HIF-1α inhibitor 2ME2 and PI3K/Akt inhibitor LY294002. PNS could reduce H9c2 hypoxia-reoxygenation injury by promoting autophagy and inhibiting apoptosis through the HIF-1α/FOXO3a cell signaling pathway.
Collapse
Affiliation(s)
- Xin-Wen Liu
- Department of Pharmacy, Affiliated Hospital of Shaoxing University, Shaoxing, PR China;
| | - Meng-Kai Lu
- Department of Pharmacy, Affiliated Hospital of Shaoxing University, Shaoxing, PR China;
| | - Hui-Ting Zhong
- Department of Research, Affiliated Hospital of Shaoxing University, Shaoxing, PR China; and
| | - Jing-Jing Liu
- Department of Cardiovascular Medicine, Affiliated Hospital of Shaoxing University, Shaoxing, PR China.
| | - Yong-Ping Fu
- Department of Cardiovascular Medicine, Affiliated Hospital of Shaoxing University, Shaoxing, PR China.
| |
Collapse
|
21
|
Elekofehinti OO, Iwaloye O, Olawale F, Ariyo EO. Saponins in Cancer Treatment: Current Progress and Future Prospects. PATHOPHYSIOLOGY 2021; 28:250-272. [PMID: 35366261 PMCID: PMC8830467 DOI: 10.3390/pathophysiology28020017] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Saponins are steroidal or triterpenoid glycoside that is distinguished by the soap-forming nature. Different saponins have been characterized and purified and are gaining attention in cancer chemotherapy. Saponins possess high structural diversity, which is linked to the anticancer activities. Several studies have reported the role of saponins in cancer and the mechanism of actions, including cell-cycle arrest, antioxidant activity, cellular invasion inhibition, induction of apoptosis and autophagy. Despite the extensive research and significant anticancer effects of saponins, there are currently no known FDA-approved saponin-based anticancer drugs. This can be attributed to a number of limitations, including toxicities and drug-likeness properties. Recent studies have explored options such as combination therapy and drug delivery systems to ensure increased efficacy and decreased toxicity in saponin. This review discusses the current knowledge on different saponins, their anticancer activity and mechanisms of action, as well as promising research within the last two decades and recommendations for future studies.
Collapse
Affiliation(s)
- Olusola Olalekan Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, PMB 704, Nigeria; (O.I.); (E.O.A.)
| | - Opeyemi Iwaloye
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, PMB 704, Nigeria; (O.I.); (E.O.A.)
| | - Femi Olawale
- Nanogene and Drug Delivery Group, Department of Biochemistry, University of Kwa-Zulu Natal, Durban 4000, South Africa;
- Department of Biochemistry, College of Medicine, University of Lagos, Lagos 101017, Nigeria
| | - Esther Opeyemi Ariyo
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, PMB 704, Nigeria; (O.I.); (E.O.A.)
| |
Collapse
|
22
|
Qu J, Xu N, Zhang J, Geng X, Zhang R. Panax notoginseng saponins and their applications in nervous system disorders: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1525. [PMID: 33313270 PMCID: PMC7729308 DOI: 10.21037/atm-20-6909] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Panax notoginseng saponins (PNS), also called "sanqi" in Chinese, are the main active ingredients which are extracted from the root of Panax notoginseng (Burk.) F. H. Chen., and they have been traditionally used as a medicine in China for hundreds of years with magical medicinal value. PNS have varied biological functions, such as anti-inflammatory effects, anti-cancer effects, anti-neurotoxicity, and the prevention of diabetes. Nervous system disorders, a spectrum of diseases originating from the nervous system, have a significant impact on all aspects of patients' lives. Due to the dramatic gains in global life expectancy, the prevalence of nervous system disorders is growing gradually. Even if the mechanism of these diseases is still not clear, they are mainly characterized by neuronal dysfunction and neuronal death. Consequently, it is essential to find measures to slow down or prevent the onset of these diseases. At present, traditional Chinese medicines, as well as their active components, have gained widespread popularity in preventing and treating these diseases because of their merits, especially PNS. In this review, we predominantly address the recent advances in PNS researches and their biological functions, and highlight their applications in nervous system disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and stroke.
Collapse
Affiliation(s)
- Jing Qu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Na Xu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jianliang Zhang
- Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repairing, Beijing Key Laboratory of Brain Major Disorders-State Key Lab Incubation Base, Beijing Neuroscience Disciplines, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ruihua Zhang
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Xue K, Ruan L, Hu J, Fu Z, Tian D, Zou W. Panax notoginseng saponin R1 modulates TNF-α/NF-κB signaling and attenuates allergic airway inflammation in asthma. Int Immunopharmacol 2020; 88:106860. [PMID: 32771949 DOI: 10.1016/j.intimp.2020.106860] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUD Panax notoginseng saponin R1 (PNS-R1) is one of the most important chemical monomers derived from the panax notoginseng, and our previous study found that PNS-R1 reduced glucocorticoid-induced apoptosis in asthmatic airway epithelial cells. Thus, in this study, we explored the effects of the PNS-R1 on inflammation of allergic asthma. METHODS The asthmatic mice were administered 15 mg/kg PNS-R1 by intraperitoneal injection three days before sensitized to OVA. The effects of PNS-R1 on asthmatic mice were detected by airway hyperresponsiveness, inflammation, mucus hypersecretion and inflammatory cytokines such as interleukin (IL)-13, IL-4, IL-5, IL-8 and tumor necrosis factor (TNF)-α were studied. We also treated human bronchial epithelial cells (16HBE) with house dust mites (HDM) and then detected the secretion of cellular inflammatory factors (IL-13 and TNF-α). Western blot and immunofluorescence were used to examine the effect of PNS-R1 on TNF-α/NF-κB pathway. TNF-α/NF-κB/IKK signal pathway activator was used in PNS-R1-treated asthmatic mice. RESULTS PNS-R1 significantly reduced the airway inflammatory, mucus secretion and hyperresponsiveness in asthma model. It also reduced the levels of IL-13, IL-4, IL-5 and IL-8 in bronchoalveolar lavage fluid (BALF) and IgE and OVA-specific IgE in serum for asthma mice. PNS-R1 reduced IL-13 and TNF-α secretion in HDM-treated 16HBE cells. In addition, PNS-R1 suppressed TNF-α/NF-κB pathway in both asthmatic mice and 16HBE. Activation of NF-kB pathway reversed the therapeutic effect of PNS-R1 on asthmatic mice. CONCLUSION The results indicated that PNS-R1 effectively suppresses allergic airway inflammation of asthma partly through TNF-α/NF-κB pathway. PNS-R1 may play a potential role in allergic asthma treatment in the future.
Collapse
Affiliation(s)
- Kunjiao Xue
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, PR China
| | - Lingying Ruan
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, PR China
| | - Jie Hu
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, PR China
| | - Zhou Fu
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Daiyin Tian
- Chongqing Key Laboratory of Pediatrics, Chongqing, PR China.
| | - Wenjing Zou
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, PR China.
| |
Collapse
|
24
|
Askari B, Rudbari HA, Valente A, Bruno G, Micale N, Shivalingegowda N, Krishnappagowda LN. Synthesis, Characterization and Anticancer Studies of Rh(I), Rh(III), Pd(II) and Pt(II) Complexes Bearing A Dithiooxamide Ligand. ChemistrySelect 2020. [DOI: 10.1002/slct.201903939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Banafshe Askari
- Department of Chemistry University of Isfahan Isfahan 81746-73441 Iran
| | | | - Andreia Valente
- Centro de Química Estrutural Faculdade de Ciências da Universidade de Lisboa, Campo Grande 1749-016 Lisboa Portugal
| | - Giuseppe Bruno
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina, Viale Ferdinando Stagno D'Alcontres 31 I-98166 Messina Italy
| | - Nicola Micale
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina, Viale Ferdinando Stagno D'Alcontres 31 I-98166 Messina Italy
| | - Naveen Shivalingegowda
- Department of Physics, School of Engineering & Technology Jain University Bangalore 562 112 India
| | | |
Collapse
|
25
|
20(S)-Protopanaxdiol Suppresses the Abnormal Granule-Monocyte Differentiation of Hematopoietic Stem Cells in 4T1 Breast Cancer-Bearing Mouse. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8747023. [PMID: 32015754 PMCID: PMC6982358 DOI: 10.1155/2020/8747023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/30/2019] [Indexed: 12/14/2022]
Abstract
Panax notoginseng (PN) has been used as a qi- and blood-activating (Huoxue) drug for thousands of years in China. It has also been widely used as an anticancer drug at present. As a Huoxue drug, the effect of PN on hematopoietic differentiation in tumor-bearing body has been paid more and more attention. Our research found that panax notoginseng saponins (PNS), especially panaxadiol saponins (PDS) and its aglucon 20(S)-Protopanaxdiol (PPD), could improve the immunosuppressive state by regulating the abnormal hematopoietic differentiation in a tumor-bearing body by multiple ways. An interesting phenomenon is that PDS reduced the neutrophil-lymphocyte ratio (NLR) via its inhibition effect on the granule-monocyte differentiation of spleen cells, which is associated with a decrease in the secretion of tumor MPO, G-CSF, PU.1, and C/EBPα. Otherwise, PDS increased the proportion of both hematopoietic stem cells and erythroid progenitor cells in the bone marrow, but inhibited spleen erythroid differentiation via inhibiting secretion of tumor EPO, GATA-1, and GATA-2. This study suggests that PNS regulated the tumor-induced abnormal granule-monocyte differentiation of hematopoietic stem cells, affecting the distribution and function of haemocytes in tumor-bearing mice.
Collapse
|
26
|
Chen X, Lv Z, Zhang C, Wang X, Zhao Y, Wang X, Zheng Y. Retracted Article: Panax notoginseng saponins regulate VEGF to suppress esophageal squamous cell carcinoma progression via DVL3-mediated Wnt/β-catenin signaling. RSC Adv 2020; 10:3256-3265. [PMID: 35497711 PMCID: PMC9048998 DOI: 10.1039/c9ra07830d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
PNS regulate VEGF expression to suppress ESCC progression via the DVL3-mediated Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiaoqi Chen
- Department of Gastroenterology
- The First Affiliated Hospital of Henan University of CM
- Zhengzhou
- China
| | - Zhuan Lv
- Medical Administration
- The First Affiliated Hospital of Henan University of CM
- China
| | - Chuanlei Zhang
- Department of Gastroenterology
- The First Affiliated Hospital of Henan University of CM
- Zhengzhou
- China
| | - Xinting Wang
- Department of Gastroenterology
- The First Affiliated Hospital of Henan University of CM
- Zhengzhou
- China
| | | | - Xiao Wang
- Department of Gastroenterology
- The First Affiliated Hospital of Henan University of CM
- Zhengzhou
- China
| | - Yuling Zheng
- Guoyitang
- The First Affiliated Hospital of Henan University of CM
- Zhengzhou
- China
| |
Collapse
|
27
|
Xu C, Liu T, Liu H, Chen G, Guo Y. Panax notoginseng saponins radiosensitize colorectal cancer cells by regulating the SNHG6/miR-137 axis. RSC Adv 2019; 9:38558-38567. [PMID: 35540209 PMCID: PMC9075843 DOI: 10.1039/c9ra07622k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/11/2019] [Indexed: 01/14/2023] Open
Abstract
Panax notoginseng saponins (PNS) have recently attracted great attention for their anti-cancer activity in colorectal cancer (CRC). The aim of this study was to explore the functional role and underlying mechanisms of PNS on CRC radiosensitivity. Cell viability was assessed by a Cell Counting kit-8 assay. Cell survival and apoptosis were determined using colony formation assay and flow cytometry, respectively. Quantitative real-time PCR was used to quantify the levels of SNHG6 and miR-137. The targeted correlation between SNHG6 and miR-137 was validated by dual-luciferase reporter and RNA immunoprecipitation assays. Our data supported that PNS weakened the viability of CRC cells. Moreover, PNS promoted the radiosensitivity of CRC cells. Mechanistically, PNS enhanced CRC cell radiosensitivity by upregulating SNHG6. SNHG6 directly targeted miR-137 and inhibited miR-137 expression. MiR-137 was involved in the regulatory effect of SNHG6 on CRC cell radiosensitivity. Furthermore, PNS increased miR-137 expression through SNHG6 in CRC cells. Our study suggested that PNS promoted radiosensitivity in CRC cells at least partly through regulating the SNHG6/miR-137 axis, providing a novel understanding of the anti-cancer mechanism of PNS in CRC.
Collapse
Affiliation(s)
- Caihui Xu
- Department of Oncology, Shangqiu First People's Hospital No. 292, South Kaixuan Road, Suiyang District Shangqiu 476100 Henan China +86-0370-3255630
| | - Teng Liu
- Xinxiang Medical University Hongqi District Xinxiang Henan China
| | - Haiyan Liu
- Department of Oncology, Shangqiu First People's Hospital No. 292, South Kaixuan Road, Suiyang District Shangqiu 476100 Henan China +86-0370-3255630
| | - Gongbin Chen
- Department of Oncology, Shangqiu First People's Hospital No. 292, South Kaixuan Road, Suiyang District Shangqiu 476100 Henan China +86-0370-3255630
| | - Yinmou Guo
- Department of Oncology, Shangqiu First People's Hospital No. 292, South Kaixuan Road, Suiyang District Shangqiu 476100 Henan China +86-0370-3255630
| |
Collapse
|
28
|
Li W, Zhang X, Ding M, Xin Y, Xuan Y, Zhao Y. Genotoxicity and subchronic toxicological study of a novel ginsenoside derivative 25-OCH 3-PPD in beagle dogs. J Ginseng Res 2019; 43:562-571. [PMID: 31700258 PMCID: PMC6823799 DOI: 10.1016/j.jgr.2018.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 08/30/2017] [Accepted: 05/25/2018] [Indexed: 11/17/2022] Open
Abstract
Background Ginsenosides have been widely used clinically for many years and were regarded as very safe. However, a few researches on the toxicities of these kinds of agents showed that some ginsenosides may have side-effect on the rats or dogs. So it is extremely necessary to further clarify the potential toxicity of ginsenosides. This study was carried out to investigate long-term toxicity and genotoxicity of 25-methoxydammarane-3, 12, 20-triol (25-OCH3-PPD), a new derivative of ginsenoside, in beagle dogs. Methods Twenty-four beagle dogs were divided randomly into four treatment groups and repeatedly orally administered with 25-OCH3-PPD capsule at 60, 120, and 240 mg/kg/day for 91 consecutive days. Ames, micronucleus, and chromosomal aberration tests were established to analyze the possible genotoxicity of 25-OCH3-PPD. Results There was no 25-OCH3-PPD–induced systemic toxicity in beagle dogs at any doses. The level of 25-OCH3-PPD at which no adverse effects were observed was found to be 240 mg/kg/day. The result of Ames test showed that there was no significant increase in the number of revertant colonies of 25-OCH3-PPD administrated groups compared to the vehicle control group. There were also no significant differences between 25-OCH3-PPD administrated groups at all dose levels and negative group in the micronucleus test and chromosomal aberration assay. Conclusion The highest dose level of 25-OCH3-PPD at which no adverse effects were observed was found to be 240 mg/kg per day, and it is not a genotoxic agent either in somatic cells or germs cells. 25-OCH3-PPD is an extremely safe candidate compound for antitumor treatment.
Collapse
Key Words
- 25-OCH3-PPD, 25-methoxydammarane-3, 12, 20-triol
- Beagle dog
- Erythrocyte count, RBC
- Ginsenoside
- SPSS, statistical package for social sciences
- Subchronic toxicity
- alanine aminotransferase, ALT
- albumin, ALB
- alkaline phosphatase, ALP
- aspartate aminotransferase, AST
- basophils, BASO
- chloride, Cl
- creatine phosphokinase, CK
- creatinine, Crea
- eosinophils, EOS
- gamma-glutamyl transferase, γ-GT
- glucose, GLU
- hematocrit, HCT
- hemoglobin concentration distribution width, HDW
- hemoglobin concentration, HGB
- lymphocytes, LYMPH
- mean corpuscular hemoglobin concentration, MCHC
- mean corpuscular hemoglobin, MCH
- mean corpuscular volume, MCV
- mean platelet volume, MPV
- micronucleated polychromatic erythrocytes, MNPCE
- monocytes, MONO
- neutrophil cell, NEUT
- normochromatic erythrocytes, NCE
- platelets, PLT
- polychromatic erythrocytes, PCE
- potassium, K
- prothrombin time, PT
- red cell distribution width, RDW%
- reticulocyte count, RETIC
- sodium, Na
- total bilirubin, T.BIL
- total calcium, TCa
- total cholesterol, T.CHO
- total protein, T.P
- total triglyceride, TG
- urea nitrogen, BUN
- white blood cells count, WBC
Collapse
Affiliation(s)
- Wei Li
- Department of Functional Food and Wine, Shenyang pharmaceutical University, Shenyang, China
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang, China
| | - Xiangrong Zhang
- Department of Functional Food and Wine, Shenyang pharmaceutical University, Shenyang, China
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang, China
| | - Meng Ding
- Department of Functional Food and Wine, Shenyang pharmaceutical University, Shenyang, China
| | - Yanfei Xin
- Center of Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Yaoxian Xuan
- Center of Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Yuqing Zhao
- Department of Functional Food and Wine, Shenyang pharmaceutical University, Shenyang, China
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang, China
- Corresponding author. Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
29
|
Therapeutic Effects of Ten Commonly Used Chinese Herbs and Their Bioactive Compounds on Cancers. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6057837. [PMID: 31636686 PMCID: PMC6766161 DOI: 10.1155/2019/6057837] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/28/2019] [Accepted: 08/27/2019] [Indexed: 01/26/2023]
Abstract
Effective cancer therapy is one of the biggest global challenges. Conventional cancer therapies have been at the forefront of combating cancers, but more evidence showed considerable side effects, limiting their use. There are various new therapies in development, but combined approaches for treating cancer are much expected. Natural herbs had been traditionally in use for cancer therapy in most parts of the world. In this review, we have examined ten commonly used Chinese herbs that have, for centuries, shown effectiveness in treating cancers. They demonstrated the abilities to promote the apoptosis of cancer cells, inhibit their metastasis, activate the patient's anticancer immunity, and synergistically increase the efficacy of conventional chemotherapy and radiation therapy when used in combination. Clinical experiences had proved that these herbs and their bioactive compounds were effective against a plethora of cancers through a variety of mechanisms, effectively improving patients' quality of life without significant side effects. These advantages indicate that there are huge potentials in the development of Chinese herbs into cancer medicine as part of a promising, holistic cancer treatment modality.
Collapse
|
30
|
Shang JH, Xu GW, Zhu HT, Wang D, Yang CR, Zhang YJ. Anti-inflammatory and Cytotoxic Triterpenes from the Rot Roots of Panax notoginseng. NATURAL PRODUCTS AND BIOPROSPECTING 2019; 9:287-295. [PMID: 31124011 PMCID: PMC6646631 DOI: 10.1007/s13659-019-0211-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Four new protopanaxatriol-type triterpenes (1-2) and glucosides (3-4), were isolated from the rot roots of Panax notoginseng (Burk.) Chen, along with four known ones (5-8). Their structures were elucidated on the basis of extensive spectroscopic analysis (HRESIMS, NMR, UV, IR, and OR) and acidic hydrolysis. The possible transformation pathway of these compounds were also speculated from ginsenoside Rg1. Compound 1, with a unique α,β-unsaturated ketene in its side chain, showed significant inhibitory effects against NO production on Murine macrophage cells (IC50 = 4.12 ± 0.20 μM) and comparable cytotoxicities against five human cancer cell lines (myeloid leukemia HL-60, lung cancer A-549 cells, hepatocellular carcinoma SMMC7721, breast cancer MCF-7, and colon cancer SW480) to positive control, cisplatin (DDP).
Collapse
Affiliation(s)
- Jia-Huan Shang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guo-Wei Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Hong-Tao Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Chong-Ren Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Ying-Jun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| |
Collapse
|
31
|
He Y, Li H, Zheng X, Yuan M, Yang R, Yuan M, Yang C. Preparation, In Vivo and In Vitro Release of Polyethylene Glycol Monomethyl Ether-Polymandelic Acid Microspheres Loaded Panax Notoginseng Saponins. Molecules 2019; 24:E2024. [PMID: 31137874 PMCID: PMC6572365 DOI: 10.3390/molecules24102024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 11/16/2022] Open
Abstract
In order to enrich the types of Panax notoginseng saponins (PNS) sustained-release preparations and provide a new research idea for the research and development of traditional Chinese medicine sustained-release formulations, a series of Panax notoginseng saponins microspheres was prepared by a double emulsion method using a series of degradable amphiphilic macromolecule materials polyethylene glycol monomethyl ether-polymandelic acid (mPEG-PMA) as carrier. The structure and molecular weight of the series of mPEG-PMA were determined by nuclear magnetic resonance spectroscopy (1 HNMR) and gel chromatography (GPC). The results of the appearance, particle size, drug loading and encapsulation efficiency of the drug-loaded microspheres show that the mPEG10000-PMA (1:9) material is more suitable as a carrier for loading the total saponins of Panax notoginseng. The particle size was 2.51 ± 0.21 μm, the drug loading and encapsulation efficiency were 8.54 ± 0.16% and 47.25 ± 1.64%, respectively. The drug-loaded microspheres were used for in vitro release and degradation experiments to investigate the degradation and sustained release behaviour of the drug-loaded microspheres. The biocompatibility of the microspheres was studied by haemolytic, anticoagulant and cytotoxicity experiments. The pharmacological activity of the microspheres was studied by anti-inflammatory and anti-tumour experiments. The results showed that the drug-loaded microspheres could be released stably for about 12 days and degraded within 60 days. At the same time, the microspheres had good biocompatibility, anti-inflammatory and anti-tumour activities.
Collapse
Affiliation(s)
- Yi He
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China.
| | - Hongli Li
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China.
| | - Xiangyu Zheng
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China.
| | - Mingwei Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China.
| | - Renyu Yang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China.
| | - Minglong Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China.
| | - Cui Yang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China.
| |
Collapse
|
32
|
Lv H, Zhang Y, Sun Y, Duan Y. Elemental characteristics of Sanqi (Panax notoginseng) in Yunnan province of China: Multielement determination by ICP-AES and ICP-MS and statistical analysis. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Geng Y, Jiang L, Jiang H, Wang L, Peng Y, Wang C, Shi X, Gu J, Wang Y, Zhu J, Dai L, Xu Y, Liu X. Assessment of heavy metals, fungicide quintozene and its hazardous impurity residues in medicalPanax notoginseng(Burk) F.H.Chen root. Biomed Chromatogr 2018; 33:e4378. [DOI: 10.1002/bmc.4378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Yue Geng
- Agro-Environmental Protection Institute; Ministry of Agriculture; Tianjin China
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety; Ministry of Agriculture; Tianjin China
- National Reference Laboratory for Agricultural Testing; Tianjin China
| | - Linjie Jiang
- Agro-Environmental Protection Institute; Ministry of Agriculture; Tianjin China
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety; Ministry of Agriculture; Tianjin China
- National Reference Laboratory for Agricultural Testing; Tianjin China
| | - Hongxin Jiang
- Agro-Environmental Protection Institute; Ministry of Agriculture; Tianjin China
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety; Ministry of Agriculture; Tianjin China
- National Reference Laboratory for Agricultural Testing; Tianjin China
| | - Lu Wang
- Agro-Environmental Protection Institute; Ministry of Agriculture; Tianjin China
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety; Ministry of Agriculture; Tianjin China
- National Reference Laboratory for Agricultural Testing; Tianjin China
| | - Yi Peng
- Agro-Environmental Protection Institute; Ministry of Agriculture; Tianjin China
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety; Ministry of Agriculture; Tianjin China
- National Reference Laboratory for Agricultural Testing; Tianjin China
| | - Ce Wang
- Agro-Environmental Protection Institute; Ministry of Agriculture; Tianjin China
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety; Ministry of Agriculture; Tianjin China
- National Reference Laboratory for Agricultural Testing; Tianjin China
| | - Xiaomeng Shi
- Agro-Environmental Protection Institute; Ministry of Agriculture; Tianjin China
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety; Ministry of Agriculture; Tianjin China
- National Reference Laboratory for Agricultural Testing; Tianjin China
| | - Jing Gu
- Agro-Environmental Protection Institute; Ministry of Agriculture; Tianjin China
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety; Ministry of Agriculture; Tianjin China
- National Reference Laboratory for Agricultural Testing; Tianjin China
| | - Yuehua Wang
- Agro-Environmental Protection Institute; Ministry of Agriculture; Tianjin China
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety; Ministry of Agriculture; Tianjin China
- National Reference Laboratory for Agricultural Testing; Tianjin China
| | - Jiachao Zhu
- Agro-Environmental Protection Institute; Ministry of Agriculture; Tianjin China
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety; Ministry of Agriculture; Tianjin China
- National Reference Laboratory for Agricultural Testing; Tianjin China
| | - Lihong Dai
- Agro-Environmental Protection Institute; Ministry of Agriculture; Tianjin China
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety; Ministry of Agriculture; Tianjin China
- National Reference Laboratory for Agricultural Testing; Tianjin China
| | - Yaping Xu
- Agro-Environmental Protection Institute; Ministry of Agriculture; Tianjin China
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety; Ministry of Agriculture; Tianjin China
- National Reference Laboratory for Agricultural Testing; Tianjin China
| | - Xiaowei Liu
- Agro-Environmental Protection Institute; Ministry of Agriculture; Tianjin China
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety; Ministry of Agriculture; Tianjin China
- National Reference Laboratory for Agricultural Testing; Tianjin China
| |
Collapse
|
34
|
Yang J, Dong LL, Wei GF, Hu HY, Zhu GW, Zhang J, Chen SL. Identification and quality analysis of Panax notoginseng and Panax vietnamensis var. fuscidicus through integrated DNA barcoding and HPLC. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
35
|
Jiang K, Song X, Yang L, Li L, Wan Z, Sun X, Gong T, Lin Q, Zhang Z. Enhanced antitumor and anti-metastasis efficacy against aggressive breast cancer with a fibronectin-targeting liposomal doxorubicin. J Control Release 2018; 271:21-30. [PMID: 29277681 DOI: 10.1016/j.jconrel.2017.12.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/24/2017] [Accepted: 12/22/2017] [Indexed: 11/30/2022]
Abstract
The chemotherapy of aggressive breast tumor is usually accompanied by a poor prognosis because of the metastasis of tumor cells. Thus, it is important to simultaneously enhance antitumor and anti-metastasis efficacy. Fibronectin and its complexes are expressed on the walls of tumor vessels and in tumor stroma. Moreover, the expression of fibronectin in metastatic sites is even higher than that in primary tumors. Herein, we designed a fibronectin-targeting CREKA-modified liposomal doxorubicin (CREKA-Lipo-Dox) for the therapy of metastatic breast tumor. CREKA-Lipo was uniformly formed with high entrapment efficiency. It exhibited longer blood circulation time compared with free Dox, and there was no significant change compared with PEG-Lipo-Dox. Immunofluorescence results revealed that the CREKA-Lipo-Dox could specifically bind to fibronectin in the tumor vessels and tumor stroma. The antitumor and anti-metastasis efficacy of CREKA-loaded liposome was more obvious than that of free Dox or unmodified Dox-Lipo. Taken together, binding fibronectin by CREKA could be an attractive therapeutic strategy for metastatic breast cancer in the future.
Collapse
Affiliation(s)
- Kejun Jiang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Xu Song
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Liuqing Yang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Lin Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zhuoya Wan
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Qing Lin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
36
|
Zhao H, Han Z, Li G, Zhang S, Luo Y. Therapeutic Potential and Cellular Mechanisms of Panax Notoginseng on Prevention of Aging and Cell Senescence-Associated Diseases. Aging Dis 2017; 8:721-739. [PMID: 29344413 PMCID: PMC5758348 DOI: 10.14336/ad.2017.0724] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
Owing to a dramatic increase in average life expectancy, most countries in the world are rapidly entering an aging society. Therefore, extending health span with pharmacological agents targeting aging-related pathological changes, are now in the spotlight of gerosciences. Panax notoginseng (Burk.) F. H. Chen, a species of the genus Panax, has been called the "Miracle Root for the Preservation of Life," and has long been used as a Chinese herb with magical medicinal value. Panax notoginseng has been extensively employed in China to treat microcirculatory disturbances, inflammation, trauma, internal and external bleeding due to injury, and as a tonic. In recent years, with the deepening of the research pharmacologically, many new functions have been discovered. This review will introduce its pharmacological function on lifespan extension, anti-vascular aging, anti-brain aging, and anti-cancer properties, aiming to lay the ground for fully elucidating the potential mechanisms of Panax notoginseng's anti-aging effect to promote its clinical application.
Collapse
Affiliation(s)
- Haiping Zhao
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ziping Han
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Guangwen Li
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Sijia Zhang
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
37
|
Shen Q, Li J, Zhang C, Wang P, Mohammed A, Ni S, Tang Z. Panax notoginseng saponins reduce high-risk factors for thrombosis through peroxisome proliferator-activated receptor -γ pathway. Biomed Pharmacother 2017; 96:1163-1169. [PMID: 29174034 DOI: 10.1016/j.biopha.2017.11.106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/01/2017] [Accepted: 11/20/2017] [Indexed: 12/09/2022] Open
Abstract
The classic Virchow theory suggests that blood stasis, hypercoagulability and endothelial dysfunction are three major factors that cause venous thrombosis (VT). It is a complicated biological process involved multi-factors. Platelet plays a central role and participates in multiple links of this process. Panax notoginseng saponins (PNS), the principal constituents derived from panax notoginseng, has been widely described for its anti-platelet activity. However, its potential mechanism against platelet aggregation has not been clarified. In this present study, we evaluated the anti-platelet effects of PNS on thrombin-induced platelet activation and its possible molecular mechanism of action, and further explored the therapeutic action of PNS on thrombin induced hypercoagulability in rat. Our results showed that PNS treatment inhibited platelet aggregation induced by thrombin, which was accompanied with over-expression of Peroxisome proliferator-activated receptor γ (PPAR-γ) protein, mRNA and upregulation of phosphatidylinositol 3 kinase (PI3K)/ protein kinase B (Akt)/ endothelial nitric oxide synthase (eNOS) pathway in platelet, and this effect could be reversed by PPAR-γ inhibitor T0070907. In vivo, PNS significantly reversed thrombin-induced hypercoagulable state in rat which was accompanied by PPAR-γ protein and mRNA upregulation in rat lung. In conclusion, these data suggested that PNS could suppress thrombin-induced platelet aggregation in vitro and effectively improve hypercoagulable state in vivo and PNS-induced activation of PPAR-γ and its downstream PI3K/Akt/eNOS pathway played the central role.
Collapse
Affiliation(s)
- Qin Shen
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jun Li
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Caixin Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Pengbo Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Anaz Mohammed
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Songshi Ni
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Zhiyuan Tang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
38
|
Immunopotentiating significance of conventionally used plant adaptogens as modulators in biochemical and molecular signalling pathways in cell mediated processes. Biomed Pharmacother 2017; 95:1815-1829. [DOI: 10.1016/j.biopha.2017.09.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/09/2017] [Accepted: 09/18/2017] [Indexed: 12/24/2022] Open
|
39
|
Bian M, Du X, Wang P, Cui J, Xu J, Gu J, Zhang T, Chen Y. Combination of ginsenoside Rb1 and Rd protects the retina against bright light-induced degeneration. Sci Rep 2017; 7:6015. [PMID: 28729651 PMCID: PMC5519667 DOI: 10.1038/s41598-017-06471-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/14/2017] [Indexed: 01/17/2023] Open
Abstract
Photoreceptor degeneration is a central pathology of various retinal degenerative diseases which currently lack effective therapies. Antioxidant and anti-inflammatory activities are noted for Panax notoginsenoside saponins (PNS) and related saponin compound(s). However, the photoreceptor protective potentials of PNS or related saponin compound(s) remain unknown. The current study revealed that PNS protected against photoreceptor loss in bright light-exposed BALB/c mice. Combination of ginsenoside Rb1 and Rd, two major saponin compounds of PNS, recapitulated the retinal protection of PNS and attenuated retinal oxidative stress and inflammatory changes. Rb1 or Rd partially alleviated all-trans-Retinal-induced oxidative stress in ARPE19 cells. Rb1 or Rd suppressed lipopolysaccharides (LPS)-induced proinflammatory gene expression in ARPE19 and RAW264.7 cells. Rb1 or Rd also modulated the expression of proinflammatory microRNA, miR-155 and its direct target, anti-inflammatory SHIP1, in LPS-stimulated RAW264.7 cells. The retinal expression of miR-155 and SHIP1 was altered preceding extensive retinal damage, which was maintained at normal level by Rb1 and Rd combination. This work shows for the first time that altered expression of miR-155 and SHIP1 are involved in photoreceptor degeneration. Most importantly, novel retinal protective activities of combination of Rb1 and Rd justify further evaluation for the treatment of related retinal degenerative disorders.
Collapse
Affiliation(s)
- Minjuan Bian
- Yueyang Hospital and Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiaoye Du
- Yueyang Hospital and Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Peiwei Wang
- Yueyang Hospital and Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jingang Cui
- Yueyang Hospital and Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jing Xu
- Department of Pharmacy, East China University of Science and Technology, Shanghai, 201203, China
| | - Jiangping Gu
- Department of Pharmacy, East China University of Science and Technology, Shanghai, 201203, China
| | - Teng Zhang
- Yueyang Hospital and Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Yu Chen
- Yueyang Hospital and Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
40
|
Enhancement of triterpenoid saponins biosynthesis in Panax notoginseng cells by co-overexpressions of 3-hydroxy-3-methylglutaryl CoA reductase and squalene synthase genes. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
41
|
Ahuja A, Kim JH, Kim JH, Yi YS, Cho JY. Functional role of ginseng-derived compounds in cancer. J Ginseng Res 2017; 42:248-254. [PMID: 29983605 PMCID: PMC6026353 DOI: 10.1016/j.jgr.2017.04.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/18/2017] [Indexed: 12/19/2022] Open
Abstract
Ginseng is a natural product best known for its curative properties in diverse physiological processes such as cancer, neurodegenerative disorders, hypertension, and maintenance of hemostasis in the immune system. In previous decades, there have been some promising studies into the pharmacology and chemistry of ginseng components and the relationship between their structure and function. The emerging use of modified ginseng and development of new compounds from ginseng for clinical studies have been topics of study for many researchers. The present review deals with the anticancer, anti-inflammatory, antioxidant, and chemopreventive effects, and recent advances in microRNA technology related to red ginseng. The review also summarizes the current knowledge on the effect of ginsenosides in the treatment of cancer.
Collapse
Affiliation(s)
- Akash Ahuja
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ji Hye Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong-Hoon Kim
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Young-Su Yi
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
42
|
Shi X, Yu W, Liu L, Liu W, Zhang X, Yang T, Chai L, Lou L, Gao Y, Zhu L. Panax notoginseng saponins administration modulates pro- /anti-inflammatory factor expression and improves neurologic outcome following permanent MCAO in rats. Metab Brain Dis 2017; 32:221-233. [PMID: 27585466 DOI: 10.1007/s11011-016-9901-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 08/22/2016] [Indexed: 12/21/2022]
Abstract
Ischemic stroke, particularly permanent occlusion, accounts for the overwhelming majority of all strokes. In addition to the occlusion of arteries, the inflammatory response plays a pivotal role in the severity of the cerebral injury and its clinical prognosis. Here, panax notoginseng saponins (PNS) extracted from a traditional Chinese herbal medicine was administered following permanent middle cerebral artery occlusion (MCAO) in rats to explore the neuroprotective mechanisms against ischemic injury. The results showed that MCAO surgery was successful in producing an infarct and that PNS and nimodipine could ameliorate the neurological deficits. The expression levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β1) were increased, while the level of interleukin-10 (IL-10) was reduced in the infarct cortex 7 days after MCAO, as assessed by immunohistochemistry, western blotting and quantitative real-time PCR (qRT-PCR). PNS was able to markedly reduce the overexpression of IL-1β and TNF-α while significantly promoting the expression of IL-10, but did not affect the elevated expression of TGF-β1. Meanwhile, nimodipine was able to significantly reduce the expression of IL-1β and TNF-α, but had no obvious effect on IL-10 or TGF-β1. In addition, the serum levels of TNF-α, IL-10 and TGF-β1 were basically consistent with cerebral tissue results; however, the IL-1β levels did not differ. We conclude that PNS can directly down-regulate the overexpression of proinflammatory factors IL-1β and TNF-α while up-regulating the expression of anti-inflammatory factor IL-10 in the core region of the cerebral infarct, thereby preventing neurological damage in rats after permanent MCAO.
Collapse
Affiliation(s)
- Xiaowei Shi
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjing Yu
- Department of pediatrics, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lixing Liu
- Department of Integrated Traditional and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Liu
- Department of Rehabilitation, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaomeng Zhang
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tiantian Yang
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lixia Lou
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lingqun Zhu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
43
|
Xie J, Wu YY, Zhang TY, Zhang MY, Zhu WW, Gullen EA, Wang ZJ, Cheng YC, Zhang YX. New and bioactive natural products from an endophyte of Panax notoginseng. RSC Adv 2017. [DOI: 10.1039/c7ra07060h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Secondary metabolites with cytotoxic activity, antiviral activity and antimicrobial activity from the endophytic fungi of Panax notoginseng.
Collapse
Affiliation(s)
- Jun Xie
- School of Life Science and Biopharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- People's Republic of China
| | - Ying-Ying Wu
- School of Life Science and Biopharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- People's Republic of China
| | - Tian-Yuan Zhang
- School of Life Science and Biopharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- People's Republic of China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- People's Republic of China
| | - Wei-Wei Zhu
- School of Life Science and Biopharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- People's Republic of China
| | | | - Zhao-Jie Wang
- Yunnan Provincial Academy of Science and Technology
- Kunming
- People's Republic of China
| | - Yung-Chi Cheng
- Department of Pharmacology
- Yale University School of Medicine
- New Haven
- USA
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- People's Republic of China
| |
Collapse
|
44
|
Wang CZ, Anderson S, Yuan CS. Phytochemistry and Anticancer Potential of Notoginseng. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:23-34. [PMID: 26916912 DOI: 10.1142/s0192415x16500026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Asian ginseng, American ginseng, and notoginseng are three major species in the ginseng family. Notoginseng is a Chinese herbal medicine with a long history of use in many Oriental countries. This botanical has a distinct ginsenoside profile compared to other ginseng herbs. As a saponin-rich plant, notoginseng could be a good candidate for cancer chemoprevention. However, to date, only relatively limited anticancer studies have been conducted on notoginseng. In this paper, after reviewing its anticancer data, phytochemical isolation and analysis of notoginseng is presented in comparison with Asian ginseng and American ginseng. Over 80 dammarane saponins have been isolated and elucidated from different plant parts of notoginseng, most of them belonging to protopanaxadiol or protopanaxatriol groups. The role of the enteric microbiome in mediating notoginseng metabolism, bioavailability, and pharmacological actions are discussed. Emphasis has been placed on the identification and isolation of enteric microbiome-generated notoginseng metabolites. Future investigations should provide key insights into notoginseng's bioactive metabolites as clinically valuable anticancer compounds.
Collapse
Affiliation(s)
- Chong-Zhi Wang
- * Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Samantha Anderson
- * Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Chun-Su Yuan
- * Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA.,† Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
45
|
Yang Q, Wang P, Cui J, Wang W, Chen Y, Zhang T. Panax notoginseng saponins attenuate lung cancer growth in part through modulating the level of Met/miR-222 axis. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:255-265. [PMID: 27566197 DOI: 10.1016/j.jep.2016.08.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng saponins (PNS) are the major chemical constituents of Panax notoginseng (Burkill) F.H. Chen (Araliaceae), a medicinal herb extensively used in China for the treatment of various diseases including cancer. PNS have been reported to contribute to the therapeutic effects of Panax notoginseng in disease conditions including lung cancer. AIM OF THE STUDY The current study aims to further understand the molecular mechanisms implicated in the pharmacological activities of PNS in attenuating lung cancer growth. MATERIALS AND METHODS Lewis lung carcinoma (LLC) cell line was employed and the impact of PNS treatment on the viability of LLC cells was first examined in vitro. The tumor-suppressive effect of PNS was further validated in vivo by assessing the tumor growth in BALB/c mice inoculated with LLC cells. Whole genome microarray and real-time PCR analyses were performed to examine and verify altered expression of genes associated with PNS treatment. Real-time PCR and western blotting analyses were also carried out to investigate the implication of microRNA (miRNA)-mediated gene expression regulation in the anti-tumor activity of PNS. RESULTS PNS treatment resulted in selective impairment of the survival of LLC cells. Furthermore, PNS treatment led to attenuated growth of tumors derived from inoculated LLC cells in mice. Bioinformatic analyses of gene expression profiles revealed that multiple pathways associated with tumorigenesis were significantly modulated by PNS treatment in vivo. The expression of an array of genes promoting tumorigenesis and progression including Hgf, Met, Notch3, Scd1, Epas1, Col1a1, Raf1, Braf1 and CDK6 was significantly decreased by PNS treatment, whereas the expression of tumor suppressive Rxrg was significantly increased as a result of PNS treatment. The level of miR-222, a miRNA regulated by Met, was significantly decreased by PNS treatment. The expression of tumor suppressor p27 and PTEN, miR-222 target genes, was significantly increased by PNS treatment. CONCLUSION Out work here presented novel evidence demonstrating that multiple mechanisms were implicated in the anti-tumor effects of PNS in lung cancer models. Particularly, PNS treatment significantly modulated the level of Met/miR-222 axis in LLC cells. Increased understanding of the anti-tumor mechanisms of PNS may provide further experimental evidence to help optimize the therapeutic modalities for the treatment of lung cancer and other types of cancer.
Collapse
Affiliation(s)
- Qinbo Yang
- Clinical Research Institute of Integrative Medicine and Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Peiwei Wang
- Clinical Research Institute of Integrative Medicine and Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jingang Cui
- Clinical Research Institute of Integrative Medicine and Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Wenjian Wang
- Clinical Research Institute of Integrative Medicine and Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yu Chen
- Clinical Research Institute of Integrative Medicine and Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Teng Zhang
- Clinical Research Institute of Integrative Medicine and Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
46
|
Jiang D, Rong Q, Chen Y, Yuan Q, Shen Y, Guo J, Yang Y, Zha L, Wu H, Huang L, Liu C. Molecular cloning and functional analysis of squalene synthase (SS) in Panax notoginseng. Int J Biol Macromol 2016; 95:658-666. [PMID: 27884675 DOI: 10.1016/j.ijbiomac.2016.11.070] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/17/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022]
Abstract
Panax notoginseng (Burk.) F. H. Chen, which is a used traditional Chinese medicine known as Sanqi or Tianqi in China, is widely studied for its ability to accumulate the triterpene saponins. Squalene synthase (SS: EC 2.5.1.21) catalyzes the first enzymatic step from the central isoprenoid pathway toward sterol and triterpenoid biosynthesis. In this study, SS from P. notoginseng was cloned and investigated followed by its recombinant expression and preliminary enzyme activity. The nucleotide sequence of the ORF contains 1 248 nucleotides and encodes 415 amino acid residues with molecular weight of 47.16kDa and pI of 6.50. Bioinformatics analysis revealed that the deduced PnSS protein had a high similarity with other plant squalene synthases. To obtain soluble recombinant enzymes, 29 hydrophobic amino acids were deleted from the carboxy terminus and expressed as GST-Tag fusion protein in Escherichia coli BL21 (DE3). Approximately 66.46kDa recombinant protein was checked on SDS-PAGE and Western Blot analysis. Preliminary activity of the resultant bacterial crude extract was analyzed by gas chromatograph-mass spectrometer (GC-MS). The identification and function of PnSS is important for further studies of the triterpene saponins biosynthesis in P. notoginseng.
Collapse
Affiliation(s)
- Dan Jiang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China; State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qixian Rong
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yijun Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Jiangxi University of Traditional Chinese Medicine, Jiangxi, 330004, China
| | - Qingjun Yuan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ye Shen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Juan Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yirui Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liangping Zha
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huixiao Wu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chunsheng Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
47
|
Wang P, Du X, Xiong M, Cui J, Yang Q, Wang W, Chen Y, Zhang T. Ginsenoside Rd attenuates breast cancer metastasis implicating derepressing microRNA-18a-regulated Smad2 expression. Sci Rep 2016; 6:33709. [PMID: 27641158 PMCID: PMC5027393 DOI: 10.1038/srep33709] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/01/2016] [Indexed: 12/25/2022] Open
Abstract
Metastasis remains a major cause of mortality and poor prognosis in breast cancer patients. Anti-metastatic therapies are in great need to achieve optimal clinical outcome in breast cancer patients. Panax Notoginseng Saponins (PNS) has previously been shown to inhibit breast cancer metastasis in mouse. Here the potential anti-metastatic effect of one of the chemical compounds of PNS, ginsenoside Rd (Rd), was further evaluated in mouse mammary carcinoma 4T1 cells. The results revealed that Rd treatment dose-dependently suppressed cell migration and invasion in cultured 4T1 cells. In 4T1 cell-inoculated mice, Rd treatment led to decreased number of tumor lesions in lungs in both spontaneous and experimental metastasis models. Rd treatment resulted in increased expression of Smad2 in cultured 4T1 cells and in tumors grown from inoculated 4T1 cells. Rd treatment decreased the expression of microRNA (miR)-18a in cultured 4T1 cells and in tumors derived from inoculated 4T1 cells. Smad2 was further verified to be a direct target of miR-18a in 4T1 cells. The significant impact of Rd on counteracting miR-18a-medidated downregulation of Smad2 expression was also demonstrated. Together, the current work shows for the first time that Rd treatment attenuates breast cancer metastasis in part through derepressing miR-18a-mediated Smad2 expression regulation.
Collapse
Affiliation(s)
- Peiwei Wang
- Yueyang Hospital &Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiaoye Du
- Yueyang Hospital &Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Minqi Xiong
- Yueyang Hospital &Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jingang Cui
- Yueyang Hospital &Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Qinbo Yang
- Yueyang Hospital &Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Wenjian Wang
- Yueyang Hospital &Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yu Chen
- Yueyang Hospital &Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Teng Zhang
- Yueyang Hospital &Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
48
|
Wang T, Guo R, Zhou G, Zhou X, Kou Z, Sui F, Li C, Tang L, Wang Z. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: A review. JOURNAL OF ETHNOPHARMACOLOGY 2016; 188:234-58. [PMID: 27154405 DOI: 10.1016/j.jep.2016.05.005] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng (Burk.) F.H. Chen is a widely used traditional Chinese medicine known as Sanqi or Tianqi in China. This plant, which is distributed primarily in the southwest of China, has wide-ranging pharmacological effects and can be used to treat cardiovascular diseases, pain, inflammation and trauma as well as internal and external bleeding due to injury. AIMS OF THE REVIEW This paper provides up-to-date information on investigations of this plant, including its botany, ethnopharmacology, phytochemistry, pharmacology and toxicology. The possible uses and perspectives for future investigation of this plant are also discussed. MATERIALS AND METHODS The relevant information on Panax notoginseng (Burk.) F.H. Chen was collected from numerous resources, including classic books about Chinese herbal medicine, and scientific databases, including Pubmed, SciFinder, ACS, Ebsco, Elsevier, Taylor, Wiley and CNKI. RESULTS More than 200 chemical compounds have been isolated from Panax notoginseng (Burk.) F.H. Chen, including saponins, flavonoids and cyclopeptides. The plant has pharmacological effects on the cardiovascular system, immune system as well as anti-inflammatory, anti-atherosclerotic, haemostatic and anti-tumour activities, etc. CONCLUSIONS Panax notoginseng is a valuable traditional Chinese medical herb with multiple pharmacological effects. This review summarizes the botany, ethnopharmacology, phytochemistry, pharmacology and toxicology of P. notoginseng, and presents the constituents and their corresponding chemical structures found in P. notoginseng comprehensively for the first time. Future research into its phytochemistry of bio-active components should be performed by using bioactivity-guided isolation strategies. Further work on elucidation of the structure-function relationship among saponins, understanding of multi-target network pharmacology of P. notoginseng, as well as developing its new clinical usage and comprehensive utilize will enhance the therapeutic potentials of P. notoginseng.
Collapse
Affiliation(s)
- Ting Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China
| | - Rixin Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China
| | - Guohong Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China
| | - Xidan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China
| | - Zhenzhen Kou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China.
| | - Zhuju Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China.
| |
Collapse
|
49
|
Zheng YK, Miao CP, Chen HH, Huang FF, Xia YM, Chen YW, Zhao LX. Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease. J Ginseng Res 2016; 41:353-360. [PMID: 28701877 PMCID: PMC5489767 DOI: 10.1016/j.jgr.2016.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 05/31/2016] [Accepted: 07/09/2016] [Indexed: 12/28/2022] Open
Abstract
Background Endophytic fungi play an important role in balancing the ecosystem and boosting host growth. In the present study, we investigated the endophytic fungal diversity of healthy Panax notoginseng and evaluated its potential antimicrobial activity against five major phytopathogens causing root-rot of P. notoginseng. Methods A culture-dependent technique, combining morphological and molecular methods, was used to analyze endophytic fungal diversity. A double-layer agar technique was used to challenge the phytopathogens of P. notoginseng. Results A total of 89 fungi were obtained from the roots, stems, leaves, and seeds of P. notoginseng, and 41 isolates representing different morphotypes were selected for taxonomic characterization. The fungal isolates belonged to Ascomycota (96.6%) and Zygomycota (3.4%). All isolates were classified to 23 genera and an unknown taxon belonging to Sordariomycetes. The number of isolates obtained from different tissues ranged from 12 to 42 for leaves and roots, respectively. The selected endophytic fungal isolates were challenged by the root-rot pathogens Alternaria panax, Fusarium oxysporum, Fusarium solani, Phoma herbarum, and Mycocentrospora acerina. Twenty-six of the 41 isolates (63.4%) exhibited activity against at least one of the pathogens tested. Conclusion Our results suggested that P. notoginseng harbors diversified endophytic fungi that would provide a basis for the identification of new bioactive compounds, and for effective biocontrol of notoginseng root rot.
Collapse
Affiliation(s)
- You-Kun Zheng
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Cui-Ping Miao
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Hua-Hong Chen
- Department of Chemistry and Life Science, Chuxiong Normal University, Chuxiong, China
| | - Fang-Fang Huang
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Yu-Mei Xia
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - You-Wei Chen
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Li-Xing Zhao
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| |
Collapse
|
50
|
Liu Y, Lin Z, Guo J, Xu G, Li Y, Xu T, Lv H, Chen J, Wu G. Notoginsenoside R1 significantly promotes in vitro osteoblastogenesis. Int J Mol Med 2016; 38:537-44. [DOI: 10.3892/ijmm.2016.2652] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 06/09/2016] [Indexed: 11/06/2022] Open
|