1
|
Abu-Tahon MA, Housseiny MM, Aboelmagd HI, Daifalla N, Khalili M, Isichei AC, Ramadan A, Abu El-Saad AM, Seddek NH, Ebrahim D, Ali YH, Saeed IK, Rikabi HA, Eltaib L. A holistic perspective on the efficiency of microbial enzymes in bioremediation process: Mechanism and challenges: A review. Int J Biol Macromol 2025; 308:142278. [PMID: 40132713 DOI: 10.1016/j.ijbiomac.2025.142278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
Industrial activities, pharmaceutical contaminants, excessive agricultural inputs, and improper waste disposal have contributed to the widespread pollution of soil and water. Traditional remediation techniques, while effective, often generate secondary waste and are economically unfeasible. In contrast, microbial bioremediation offers a sustainable and cost-effective alternative by utilizing microorganisms and their enzymatic systems to degrade and detoxify pollutants. This review investigates the potential of microbial enzymes in remediation strategies for removing heavy metals and pharmaceutical contaminants from polluted environments. It analyzes the fundamental mechanisms by which microorganisms sequester and degrade these pollutants, emphasizing the enzymatic processes that facilitate their breakdown. Furthermore, it explores key microbial factors influencing bioremediation efficiency, including microbial diversity and environmental conditions. Additionally, it examines the challenges associated with scaling these bioremediation strategies for global environmental applications and provides insights for future research and implementation.
Collapse
Affiliation(s)
- Medhat A Abu-Tahon
- Department of Biological Sciences, College of Science, Northern Border University, Arar, Saudi Arabia.
| | - Manal M Housseiny
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Roxy, Heliopolis, P.C.11757, Cairo, Egypt
| | - Heba I Aboelmagd
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Nada Daifalla
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - May Khalili
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Adaugo C Isichei
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Abeer Ramadan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Ahmed M Abu El-Saad
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Nermien H Seddek
- Department of Respiratory Care, College of Applied Medical Sciences-Jubail 4030, Imam Abdulrahman Bin Faisal University, Al Jubail, Saudi Arabia
| | - Doaa Ebrahim
- Department of Respiratory Care, College of Applied Medical Sciences-Jubail 4030, Imam Abdulrahman Bin Faisal University, Al Jubail, Saudi Arabia
| | - Yahia H Ali
- Department of Biological Sciences, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Intisar K Saeed
- Department of Biological Sciences, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Hind A Rikabi
- Department of Pharmacy Practice, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Lina Eltaib
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| |
Collapse
|
2
|
Morillas-España A, López-Serna R, Rodríguez Chikri LY, Jiménez JJ, Lafarga T, Uggetti E, Acién G, González-López CV. Microalgae wastewater treatment: Pharmaceutical removal and biomass valorization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124942. [PMID: 40090095 DOI: 10.1016/j.jenvman.2025.124942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/25/2025] [Accepted: 03/09/2025] [Indexed: 03/18/2025]
Abstract
The growing global challenges of wastewater treatment, resource recovery, and environmental pollution are critical in addressing the sustainability of both urban and agricultural systems. Conventional treatment methods often fail to remove pharmaceutical pollutants effectively, which can lead to serious environmental and health concerns. As an alternative, microalgae-based systems have shown potential for addressing wastewater treatment while recovering valuable nutrients. Thus, the present study aims to investigate (i) the removal of pharmaceuticals in microalgae-related wastewater treatment systems, (ii) the variation of biomass productivity and nutrient recovery as a function of the presence of these compounds, and (iii) the feasibility of using the produced biomass in agriculture as a biostimulant. Experiments were performed in pilot-scale thin-layer reactors fed in continuous mode by spiking the inlet wastewater with up to six pharmaceuticals (sulfamethoxazole, trimethoprim, metronidazole, ofloxacin, ciprofloxacin, and diclofenac), selected by its relevance. Results demonstrated that the presence of these compounds does not influence biomass productivity or the fluorescence of chlorophylls as an indicator of the status of the cells. Either, the presence of pharmaceuticals does not reduce the recovery of nutrients, with both biomass productivity and nutrient recovery being linearly related. On average, the removal of CECs was higher in summer (90 %) than in winter (74 %), with variations depending on the pharmaceutical tested. Sulfamethoxazole was the most effectively removed (>91 %), while trimethoprim had the lowest removal rate (>44 %). Most importantly, on average less than 3 % of the pharmaceuticals remain in the biomass, trimethoprim being the contaminant most retained in the biomass (up to 6 %), thus confirming that they are mainly degraded into the mixed liquor. Bioassays performed confirmed the biostimulant capacity of the microalga acting as plant-promoting agents. These results confirm the capacity of microalgae-related wastewater treatment processes to remove pharmaceuticals and to produce safe water and biomass for its final use in agriculture.
Collapse
Affiliation(s)
- Ainoa Morillas-España
- Department of Chemical Engineering, University of Almeria, 04120, Almeria, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almeria-CIEMAT, 04120, Almeria, Spain.
| | - Rebeca López-Serna
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, 47011, Valladolid, Spain; Department of Analytical Chemistry, University of Valladolid, P° de Belén, 7, 47011, Valladolid, Spain
| | | | - Juan José Jiménez
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, 47011, Valladolid, Spain; Department of Analytical Chemistry, University of Valladolid, P° de Belén, 7, 47011, Valladolid, Spain
| | - Tomás Lafarga
- Department of Chemical Engineering, University of Almeria, 04120, Almeria, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almeria-CIEMAT, 04120, Almeria, Spain
| | - Enrica Uggetti
- Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain
| | - Gabriel Acién
- Department of Chemical Engineering, University of Almeria, 04120, Almeria, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almeria-CIEMAT, 04120, Almeria, Spain
| | - Cynthia V González-López
- Department of Chemical Engineering, University of Almeria, 04120, Almeria, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almeria-CIEMAT, 04120, Almeria, Spain
| |
Collapse
|
3
|
Srinivasan K, Hariharapura RC, Mallikarjuna SV. Pharmaceutical waste management through microbial bioremediation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:488. [PMID: 40163141 PMCID: PMC11958392 DOI: 10.1007/s10661-025-13912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Pharmaceuticals play a significant role in enhancing the quality of life. However, pharmaceutical products (PPs) manufacturing presents challenges, particularly in terms of waste generated, posing a risk to the ecosystem. Existing physical and chemical remediation methods are expensive and are not directly applicable for pharmaceutical remediation. Bioremediation using various microbial consortia has the potential to become a cost-effective solution when applied optimally. This review highlights the various pharmaceutical products, their occurrence in the environment, and their associated health risks. Further, various microorganisms employed in the bioremediation process and the techniques utilized to degrade diverse categories of pharmaceutical pollutants are discussed. Finally, the review highlights the limitations of using bioremediation for treating pharmaceutical waste and discusses alternative sustainable green pharmacy approaches to reduce the impact of pharmaceutical contaminants on the environment.
Collapse
Affiliation(s)
- Kishore Srinivasan
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghu Chandrashekar Hariharapura
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subrahmanyam Volety Mallikarjuna
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
4
|
Rodrigues DADS, da Cunha CCRF, Pereira AR, Espírito Santo DRD, Silva SDQ, Starling MCVM, Santiago ADF, Afonso RJDCF. Biodegradation of trimethoprim and sulfamethoxazole in secondary effluent by microalgae-bacteria consortium. Int J Hyg Environ Health 2025; 264:114517. [PMID: 39724811 DOI: 10.1016/j.ijheh.2024.114517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Trimethoprim (TMP) and sulfamethoxazole (SMX) are bacteriostatic agents, which are co-administered to patients during infection treatment due to their synergetic effects. Once consumed, TMP and SMX end up in wastewater and are directed to municipal wastewater treatment plants (WWTPs) which fail to remove these contaminants from municipal wastewater. The discharge of WWTP effluents containing antibiotics in the environment is a major concern for public health as it contributes to the spread of antimicrobial resistance. Improving treatment applied in WWTPs is one of the measures to tackle this issue. In this study, a natural microalgae-bacteria consortium cultivated under low intensity LED irradiation was used as a quaternary treatment to assess the removal of TMP alone (50 μg L-1) and also mixed with SMX (TMP/SMX; 50 μg L-1 of each) from real WWTP secondary effluents from anaerobic treatment systems. The removal of the sulfonamide resistance gene, sul1, was also evaluated. This is the first study assessed the removal of TMP alone and TMP associated with SMX in real effluent using microalgae-bacteria consortium without nutrient enrichment. Biodegradation experiments were conducted for 7 days, residual amount of antibiotics were assessed by low-temperature partitioning extraction (LTPE) followed by high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) and sul1 was analyzed by quantitative Polymerase Chain Reaction (qPCR). Results showed that SMX removal (48.34%) was higher than TMP (24.58%) in the mixture. The presence of both antibiotics at 50 μg L-1 did not inhibit microalgae-bacteria consortium growth. After 7 days, there was a slight increase in the absolute abundance of sul1 and 16S rRNA. The main removal mechanism for both antibiotics might be attributed to symbiotic biodegradation as bioadsorption, bioaccumulation and abiotic factors were very low or insignificant. While the application of a microalgae-bacteria consortium as a quaternary treatment seems to be a promising alternative, further research to improve degradation rate aiming at a global removal >80% as required in the Swiss and European directives is encouraged.
Collapse
Affiliation(s)
- Daniel Aparecido da Silva Rodrigues
- Multicenter Postgraduation Program in Chemistry, Minas Gerais, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil.
| | | | - Andressa Rezende Pereira
- Environmental Engineering Graduation Program, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil
| | - Daiana Rocha do Espírito Santo
- Postgraduation Program in Chemistry, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, 35450-000, Brazil
| | - Silvana de Queiroz Silva
- Department of Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, 35400-000, Minas Gerais, Brazil
| | - Maria Clara Vieira Martins Starling
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais (UFMG), Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| | - Aníbal da Fonseca Santiago
- Department of Civil Engineering, School of Mines, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil
| | - Robson José de Cássia Franco Afonso
- Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil
| |
Collapse
|
5
|
de Souza CR, Souza-Silva G, Moreira CPDS, Vasconcelos OMSR, Nunes KP, Pereira CAJ, Mol MPG, Silveira MR. Removal of the Active Pharmaceutical Substance Entecavir from Water via the Fenton Reaction or Action by the Cyanobacterium Microcystis novacekii. TOXICS 2024; 12:885. [PMID: 39771100 PMCID: PMC11679440 DOI: 10.3390/toxics12120885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Entecavir (ETV) is an antiviral used to treat chronic infection caused by the hepatitis B virus, which affects approximately 250 million people worldwide. In order to mitigate the impacts of ETV on the environment, including potential harm to human health, this study evaluated the use of the Fenton-like reaction, which uses iron complexed with ethylenediaminetetraacetic acid (EDTA) at neutral pH, and the microbiological action of Microcystis novacekii in removing ETV from the aqueous medium. Aqueous concentrations of 100 mg/L were subjected to Fenton-like degradation. Solutions ranging from 1.2 to 120 mg/L were used for biodegradation. The results evidenced consistent effectiveness in completely removing ETV by the Fenton-like reaction after 90 s. However, removal by the action of M. novacekii did not return convincing results. Although entecavir exposure did not affect cyanobacterial cell growth, a gradual reduction in drug content was observed starting on the fourth day of exposure, with maximum removal of 28.9% at the lowest exposure concentration (1.2 mg/L), without, however, showing a significant difference. Statistically significant differences in drug removal were identified only after 14 days of exposure and at specific concentrations. The ETV degradation process through the Fenton reaction was effective and promising for practical application. Removal through M. novacekii showed limited efficacy for practical application for its direct use in the remediation of ETV in aquatic environments. However, we identified a slight decrease in the initial concentrations that could achieve greater efficiency in the drug's degradation through associations with other microorganisms, physiochemical processes, or even genetic engineering.
Collapse
Affiliation(s)
- Cléssius Ribeiro de Souza
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (G.S.-S.); (M.R.S.)
| | - Gabriel Souza-Silva
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (G.S.-S.); (M.R.S.)
| | - Carolina Paula de Souza Moreira
- Fundação Ezequiel Dias, Departamento de Pesquisa e Desenvolvimento, Belo Horizonte 30510-010, MG, Brazil; (C.P.d.S.M.); (O.M.S.R.V.)
| | - Olívia Maria S. R. Vasconcelos
- Fundação Ezequiel Dias, Departamento de Pesquisa e Desenvolvimento, Belo Horizonte 30510-010, MG, Brazil; (C.P.d.S.M.); (O.M.S.R.V.)
| | - Kenia Pedrosa Nunes
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA;
| | - Cíntia Aparecida J. Pereira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Marcos Paulo Gomes Mol
- Fundação Ezequiel Dias, Departamento de Pesquisa e Desenvolvimento, Belo Horizonte 30510-010, MG, Brazil; (C.P.d.S.M.); (O.M.S.R.V.)
| | - Micheline Rosa Silveira
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (G.S.-S.); (M.R.S.)
| |
Collapse
|
6
|
Neyrot S, Acha D, Morales-Belpaire I. The fate of sulfamethoxazole in microcosms of the macrophyte Schoenoplectus californicus and its impact on microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124947. [PMID: 39278559 DOI: 10.1016/j.envpol.2024.124947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Sulfamethoxazole is a widely used antibiotic frequently found as an environmental pollutant. It can alter microbial communities and increase antibiotic resistance, becoming a public health risk. Constructed wetlands have the potential for removing sulfamethoxazole from polluted waters, but the role of different macrophytes in this process is not well understood. We investigated the fate of sulfamethoxazole and its effect on bacterial communities in microcosms containing Schoenoplectus californicus, an altitude-tolerant macrophyte. Within the first 10 h after introducing sulfamethoxazole (initial concentration 5 mg/L) to the microcosms, the concentration in the liquid phase significantly differed between microcosms with and without S. californicus. However, over the long term (15 and 30 days post-addition), the removal percentage (around 75%) in the liquid phase was not significantly influenced by S. californicus, indicating that sediments might be primarily responsible for removing the antibiotic. The presence of S. californicus promoted algae growth in the microcosms, and we determined that algae contributed to sulfamethoxazole removal from the liquid phase, likely through adsorption. Additionally, we characterized bacterial communities in the microcosm sediments via nanopore sequencing to identify changes following sulfamethoxazole addition. The relative abundance of Proteobacteria increased from 37-46% to 48-99% with the addition of the antibiotic. Conversely, the relative abundance of cyanobacteria decreased significantly after sulfamethoxazole was added (from 17 to 35% to less than 2%), suggesting it may serve as a biological marker for sulfamethoxazole pollution. In addition, the functional profile of the community was estimated from taxonomic diversity using PICRUST.
Collapse
Affiliation(s)
- Sara Neyrot
- Instituto de Ecología, Universidad Mayor de San Andrés, Campus Universitario de Cota Cota, La Paz, Bolivia.
| | - Dario Acha
- Unidad de Ecología Acuática, Instituto de Ecología, Universidad Mayor de San Andrés, Campus Universitario de Cota Cota, La Paz, Bolivia.
| | - Isabel Morales-Belpaire
- Instituto de Biología Molecular y Biotecnología, Carrera de Biología, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, Bolivia.
| |
Collapse
|
7
|
Rafat M, Ghazy MA, Nasr M. Phycoremediation of 1,4 dioxane-laden wastewater: A Techno-economic and sustainable development approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122387. [PMID: 39243638 DOI: 10.1016/j.jenvman.2024.122387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/16/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Microalgal tolerance to emerging contaminants (ECs) such as 1,4 dioxane (DXN) and its impact on phycoremediation performance, algal growth, biomolecules generated, and recycling the produced biomass for biochar production has been rarely reported. Hence, Chlorella vulgaris was cultivated in DXN-free wastewater (WW1) and 100 mg L-1 DXN-laden wastewater (WW2) in 1-liter photobioreactors with an operating volume of 800 ml under controlled conditions: temperature (25 ± 1 °C), light intensity (351 μmol m-2s-1), and photoperiod (12 h light:12 h dark). Interestingly, this microalgal-based system achieved up to 32.79% removal efficiency of DXN in WW2. In addition, there was no significant difference in the removal of COD (90.6% and 86.8%) and NH4-N (74.5% and 76.8%) between WW1 and WW2, respectively. Moreover, the variation in C. vulgaris growth, pigments, lipid, and carbohydrate contents between the two applied wastewaters was negligible. However, there was a significant increase in the protein yield upon exposure to DXN, suggesting the ability of C. vulgaris to secrete various antioxidant and degrading enzymes to detoxify the contaminant. These results were validated by FTIR, SEM, and EDX analysis of C. vulgaris biomass with and without DXN exposure. The harvested biomass was thermally treated at 350 °C for 60 min in an oxygen-free environment. The biochars generated from both algal systems were characterized by comparable morphologies and elemental profiles with sufficient C and N contents, indicating their applicability to enhance the soil properties. The economic evaluation of the combined phycoremediation/pyrolysis system demonstrated a net profit of 596 USD⋅y-1 with a payback period of 6.2 years and fulfilled the objectives of several sustainable development goals (SDGs). This is the first study to point to C. vulgaris as a robust microalgal strain in remediating DXN-laden wastewater accompanied by the potential recyclability of the biomass produced for biochar production.
Collapse
Affiliation(s)
- May Rafat
- Biotechnology Program, Basic and Applied Science Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt; Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, 21526, Egypt
| | - Mohamed A Ghazy
- Biotechnology Program, Basic and Applied Science Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt; Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt.
| | - Mahmoud Nasr
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt; Sanitary Engineering Department, Faculty of Engineering, Alexandria University, P.O. Box 21544, Alexandria, 21526, Egypt
| |
Collapse
|
8
|
Ohoro CR, Amaku JF, Conradie J, Olisah C, Akpomie KG, Malloum A, Akpotu SO, Adegoke KA, Okeke ES, Omotola EO. Effect of physicochemical parameters on the occurrence of per- and polyfluoroalkyl substances (PFAS) in aquatic environment. MARINE POLLUTION BULLETIN 2024; 208:117040. [PMID: 39366060 DOI: 10.1016/j.marpolbul.2024.117040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 10/06/2024]
Abstract
Perfluoroalkyl substances (PFAS) and their distribution in aquatic environments have been studied extensively, but more information is needed to link these occurrences to their physicochemical characteristics. Understanding how these parameters influence PFAS can help predict their fate, mobility, and occurrences in water. This study reviewed the influence of physicochemical parameters on the occurrences of PFAS in aquatic environment using the relevant keywords to retrieve articles from databases spanning mostly between 2017 and 2024. The result suggests that high pH, turbidity, and dissolved oxygen, give high concentration of PFAS, while high electrical conductivity, temperature and salinity give low PFAS concentration in the water. Therefore, monitoring and safeguarding the aquatic bodies for human and environmental safety is imperative. Future studies should include the effects of the physicochemical properties on PFAS occurrences in the natural environment and focus on an organism's distinctive characteristics to comprehend the bioaccumulation and biomagnification of PFAS in them and environmental matrices.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom 2520, South Africa.
| | - James F Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria; Environmental Fate of Chemicals and Remediation Laboratory, Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, Gauteng, South Africa
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, P.O. Box 77000, Gqeberha 6031, South Africa; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00 Brno, Czech Republic
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Alhadji Malloum
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Physics, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Samson O Akpotu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Kayode A Adegoke
- Department of Industrial Chemistry, First Technical University, Ibadan, Nigeria
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Elizabeth O Omotola
- Department of Chemical Sciences, Tai Solarin University of Education, Ijebu Ode PMB 2118, Ogun State, Nigeria
| |
Collapse
|
9
|
Bej S, Swain S, Bishoyi AK, Mandhata CP, Sahoo CR, Padhy RN. Recent advancements on antibiotic bioremediation in wastewaters with a focus on algae: an overview. ENVIRONMENTAL TECHNOLOGY 2024; 45:4214-4229. [PMID: 37545329 DOI: 10.1080/09593330.2023.2245166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 07/13/2023] [Indexed: 08/08/2023]
Abstract
Antibiotic contamination from hospitals, animal husbandry, and municipal wastewater is graver than imagined, and it possess serious risks to the health of humans and animals, with the emergence of multidrug resistant bacteria; those affect the growth of higher plants too. Conventional wastewater treatment methods adopted today are inadequate for removing antibiotics from wastewater. Intuitively, the remediation process using mixed algae should be effective enough, for which algae-based remediation technologies have emerged as sustainable remedial methods. This review summarized the detection of antibiotics in field water in most countries; a comprehensive overview of algae-based technologies, algal adsorption, accumulation, biodegradation, photodegradation, hydrolysis, and the use of algae-bacteria consortia for the remediation of antibiotics in wastewaters in done. Green algae namely, Chlamydomonas sp., Chlorella sp., C. vulgaris, Spyrogira sp. Scenedesmus quadricauda, S. obliquus, S. dimorphus, Haematoccus pluvialis, and Nannochlopsis sp., had been reporting have 90-100% antibiotic removal efficiency. The integration of bioelectrochemical systems and genetically engineered prokaryotic algal species offer promising avenues for improving antibiotic removal in the future. Overall, this review highlights the need for tenacious research and development of algae-based technologies to reduce antibiotic contamination in aquatic environments, for holistic good.
Collapse
Affiliation(s)
- Shuvasree Bej
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha O Anusandhan Deemed to be University, Odisha, India
| | - Surendra Swain
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha O Anusandhan Deemed to be University, Odisha, India
| | - Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha O Anusandhan Deemed to be University, Odisha, India
| | - Chinmayee Priyadarsani Mandhata
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha O Anusandhan Deemed to be University, Odisha, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha O Anusandhan Deemed to be University, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha O Anusandhan Deemed to be University, Odisha, India
| |
Collapse
|
10
|
Saeed H, Padmesh S, Singh A, Nandy A, Singh SP, Deshwal RK. Impact of veterinary pharmaceuticals on environment and their mitigation through microbial bioremediation. Front Microbiol 2024; 15:1396116. [PMID: 39040911 PMCID: PMC11262132 DOI: 10.3389/fmicb.2024.1396116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/27/2024] [Indexed: 07/24/2024] Open
Abstract
Veterinary medications are constantly being used for the diagnosis, treatment, and prevention of diseases in livestock. However, untreated veterinary drug active compounds are interminably discharged into numerous water bodies and terrestrial ecosystems, during production procedures, improper disposal of empty containers, unused medication or animal feed, and treatment procedures. This exhaustive review describes the different pathways through which veterinary medications enter the environment, discussing the role of agricultural practices and improper disposal methods. The detrimental effects of veterinary drug compounds on aquatic and terrestrial ecosystems are elaborated with examples of specific veterinary drugs and their known impacts. This review also aims to detail the mechanisms by which microbes degrade veterinary drug compounds as well as highlighting successful case studies and recent advancements in microbe-based bioremediation. It also elaborates on microbial electrochemical technologies as an eco-friendly solution for removing pharmaceutical pollutants from wastewater. Lastly, we have summarized potential innovations and challenges in implementing bioremediation on a large scale under the section prospects and advancements in this field.
Collapse
Affiliation(s)
- Humaira Saeed
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Sudhakar Padmesh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Abhishek Nandy
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Sujit Pratap Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Ravi K. Deshwal
- Faculty of Biosciences, Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Barabanki, India
| |
Collapse
|
11
|
Mi R, Wang X, Dong Y, Li S, Zhao Z, Guan X, Jiang J, Gao S, Fu Z, Zhou Z. Sustainable treatment of aquaculture water employing fungi-microalgae consortium: Nutrients removal enhancement, bacterial communities optimization, emerging contaminants elimination, and mechanism analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172600. [PMID: 38653416 DOI: 10.1016/j.scitotenv.2024.172600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Fungi-microalgae consortium (FMC) has emerged as a promising system for advanced wastewater treatment due to its high biomass yield and environmental sustainability. This study aimed to investigate the nutrients removal, bacterial community shift, emerging contaminants elimination, and treatment mechanism of a FMC composed of Cordyceps militaris and Navicula seminulum for aquaculture pond water treatment. The fungi and microalgae were cultured and employed either alone or in combination to evaluate the treatment performance. The results demonstrated that the FMC could improve water quality more significantly by reducing nutrient pollutants and optimizing the bacterial community structures. Furthermore, it exhibited stronger positive correlation between the enrichment of functional bacteria for water quality improvement and pollutants removal performance than the single-species treatments. Moreover, the FMC outperformed other groups in eliminating emerging contaminants such as heavy metals, antibiotics, and pathogenic Vibrios. Superiorly, the FMC also showed excellent symbiotic interactions and cooperative mechanisms for pollutants removal. The results collectively corroborated the feasibility and sustainability of using C. militaris and N. seminulum for treating aquaculture water, and the FMC would produce more mutualistic benefits and synergistic effects than single-species treatments.
Collapse
Affiliation(s)
- Rui Mi
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture And Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Xuda Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture And Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Ying Dong
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture And Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Shilei Li
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture And Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zelong Zhao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture And Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Xiaoyan Guan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture And Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Jingwei Jiang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture And Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Shan Gao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture And Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zhiyu Fu
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture And Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zunchun Zhou
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture And Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
12
|
Wang P, Li D, Sun M, Yin J, Zheng T. Microalgae enhanced co-metabolism of sulfamethoxazole using aquacultural feedstuff components: Co-metabolic pathways and enzymatic mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134279. [PMID: 38613960 DOI: 10.1016/j.jhazmat.2024.134279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/28/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
The application of antibiotics in freshwater aquaculture leads to increased contamination of aquatic environments. However, limited information is available on the co-metabolic biodegradation of antibiotics by microalgae in aquaculture. Feedstuffs provide multiple organic substrates for microalgae-mediated co-metabolism. Herein, we investigated the co-metabolism of sulfamethoxazole (SMX) by Chlorella pyrenoidosa when adding main components of feedstuff (glucose and lysine). Results showed that lysine had an approximately 1.5-fold stronger enhancement on microalgae-mediated co-metabolism of SMX than glucose, with the highest removal rate (68.77% ± 0.50%) observed in the 9-mM-Lys co-metabolic system. Furthermore, we incorporated reactive sites predicted by density functional theory calculations, 14 co-metabolites identified by mass spectrometry, and the roles of 18 significantly activated enzymes to reveal the catalytic reaction mechanisms underlying the microalgae-mediated co-metabolism of SMX. In lysine- and glucose-treated groups, five similar co-metabolic pathways were proposed, including bond breaking on the nucleophilic sulfur atom, ring cleavage and hydroxylation at multiple free radical reaction sites, together with acylation and glutamyl conjugation on electrophilic nitrogen atoms. Cytochrome P450, serine hydrolase, and peroxidase play crucial roles in catalyzing hydroxylation, bond breaking, and ring cleavage of SMX. These findings provide theoretical support for better utilization of microalgae-driven co-metabolism to reduce sulfonamide antibiotic residues in aquaculture.
Collapse
Affiliation(s)
- Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Dingxin Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Min Sun
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Jinbao Yin
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Tianming Zheng
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
13
|
Zhang H, Zhou J, Wang K, Li Y, Niu L. Interaction patterns and keystone taxa of bacterial and eukaryotic communities during sulfamethoxazole mineralization in lake sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171597. [PMID: 38461980 DOI: 10.1016/j.scitotenv.2024.171597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Sulfamethoxazole (SMX) is a common antibiotic pollutant in aquatic environments, which is highly persistent under various conditions and significantly contributes to the spread of antibiotic resistance. Biodegradation is the major pathway to eliminate antibiotics in the natural environment. The roles of bacteria and eukaryotes in the biodegradation of antibiotics have received considerable attention; however, their successions and co-occurrence patterns during the biodegradation of antibiotics remain unexplored. In this study, 13C-labled SMX was amended to sediment samples from Zhushan Bay (ZS), West Shore (WS), and Gonghu Bay (GH) in Taihu Lake to explore the interplay of bacterial and eukaryotic communities during a 30-day incubation period. The cumulative SMX mineralization on day 30 ranged from 5.2 % to 19.3 %, which was the highest in WS and the lowest in GH. The bacterial community showed larger within-group interactions than between-group interactions, and the positive interactions decreased during incubation. However, the eukaryotic community displayed larger between-group interactions than within-group interactions, and the positive interactions increased during incubation. The proportion of negative interactions between bacteria and eukaryotes increased during incubation. Fifty genera (including 46 bacterial and 4 eukaryotic genera) were identified as the keystone taxa due to their dominance in the co-occurrence network and tolerance to SMX. The cumulative relative abundance of these keystone taxa significantly increased during incubation and was consistent with the SMX mineralization rate. These taxa closely cooperated and played vital roles in co-occurrence networks and microbial community interactions, signifying their crucial role in SMX mineralization. These findings broadened our understanding of the complex interactions of microorganisms under SMX exposure and their potential functions during SMX mineralization, providing valuable insights for in situ bioremediation.
Collapse
Affiliation(s)
- Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jingya Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Kerong Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
14
|
Li X, Hu X, Zhao X, Wang F, Zhao Y. Modeling and optimization of triclosan biodegradation by the newly isolated Bacillus sp. DL4: kinetics and pathway speculation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35567-35580. [PMID: 38730220 DOI: 10.1007/s11356-024-33096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/22/2024] [Indexed: 05/12/2024]
Abstract
Triclosan is a widely used antibacterial agent and disinfectant, and its overuse endangered ecological safety and human health. Therefore, reducing residual TCS concentrations in the environment is an urgent issue. Bacillus sp. DL4, an aerobic bacterium with TCS biodegradability, was isolated from pharmaceutical wastewater samples. Response surface methodology (RSM) and artificial neural network (ANN) were carried out to optimize and verify the different condition variables, and the optimal growth conditions of strain DL4 were obtained (35 °C, initial pH 7.31, and 5% v/v). After 48 h of cultivation under the optimal conditions, the removal efficiency of strain DL4 on TCS was 95.89 ± 0.68%, which was consistent with the predicted values from RSM and ANN models. In addition, higher R2 value and lower MSE and ADD values indicated that the ANN model had a stronger predictive capability than the RSM model. Whole genome sequencing results showed that many functional genes were annotated in metabolic pathways related to TCS degradation (e.g., amino acid metabolism, xenobiotics biodegradation and metabolism, carbohydrate metabolism). Main intermediate metabolites were identified during the biodegradation process by liquid chromatography-mass spectrometry (LC-MS), and a possible pathway was hypothesized based on the metabolites. Overall, this study provides a theoretical foundation for the characterization and mechanism of TCS biodegradation in the environment by Bacillus sp. DL4.
Collapse
Affiliation(s)
- Xuejie Li
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, People's Republic of China
- School of Resource & Civil Engineering, Northeastern University, No. 11, Lane 3, Wenhua Road, P.O. Box 265, Shenyang, 110819, People's Republic of China
| | - Xiaomin Hu
- School of Resource & Civil Engineering, Northeastern University, No. 11, Lane 3, Wenhua Road, P.O. Box 265, Shenyang, 110819, People's Republic of China.
| | - Xin Zhao
- School of Resource & Civil Engineering, Northeastern University, No. 11, Lane 3, Wenhua Road, P.O. Box 265, Shenyang, 110819, People's Republic of China
| | - Fan Wang
- School of Resource & Civil Engineering, Northeastern University, No. 11, Lane 3, Wenhua Road, P.O. Box 265, Shenyang, 110819, People's Republic of China
| | - Yan Zhao
- School of Resource & Civil Engineering, Northeastern University, No. 11, Lane 3, Wenhua Road, P.O. Box 265, Shenyang, 110819, People's Republic of China
| |
Collapse
|
15
|
Wang X, Li S, Mi R, Dong Y, Jiang J, Guan X, Wang X, Ye B, Liu D, Zhao Z, Gao X, Zhou Z. Performance enhancement, bacterial communities optimization and emerging pollutants elimination by microalgal-bacterial consortium for treating aquaculture pond sediments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121013. [PMID: 38723495 DOI: 10.1016/j.jenvman.2024.121013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024]
Abstract
Aquaculture pond sediments have a notable influence on the ecosystem balance and farmed animal health. In this study, microalgal-bacterial immobilization (MBI) was designed to improve aquaculture pond sediments via synergistic interactions. The physicochemical characteristics, bacterial communities, and the removal efficiencies of emerging pollutants were systematically investigated. The consortium containing diatom Navicula seminulum and Alcaligenes faecalis was cultivated and established in the free and immobilized forms for evaluating the treatment performance. The results indicated that the immobilized group exhibited superior performance in controlling nutrient pollutants, shaping and optimizing the bacterial community compositions with the enrichment of functional bacteria. Additionally, it showed a stronger positive correlation between the bacterial community shifts and nutrient pollutants removal compared to free cells. Furthermore, the immobilized system maintained the higher removal performance of emerging pollutants (heavy metals, antibiotics, and pathogenic Vibrios) than free group. These findings confirmed that the employment of immobilized N. seminulum and A. faecalis produced more synergistic benefits and exerted more improvements than free cells in ameliorating aquaculture pond sediments, suggesting the potential for engineering application of functional microalgal-bacterial consortium in aquaculture.
Collapse
Affiliation(s)
- Xuda Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Shilei Li
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Rui Mi
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Ying Dong
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Jingwei Jiang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Xiaoyan Guan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Xiaoyue Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Bo Ye
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Danni Liu
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Zhenjun Zhao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Xuewen Gao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Zunchun Zhou
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
16
|
Liu S, Ni J, Guan Y, Tao J, Wu L, Hou M, Wu S, Xu W, Zhang C, Ye J. Changes in physiology, antioxidant system, and gene expression in Microcystis aeruginosa under fenoxaprop-p-ethyl stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28754-28763. [PMID: 38558345 DOI: 10.1007/s11356-024-32927-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Fenoxaprop-p-ethyl (FE) is one of the typical aryloxyphenoxypropionate herbicides. FE has been widely applied in agriculture in recent years. Human health and aquatic ecosystems are threatened by the cyanobacteria blooms caused by Microcystis aeruginosa, which is one of the most common cyanobacteria responsible for freshwater blooming. Few studies have been reported on the physiological effects of FE on M. aeruginosa. This study analyzed the growth curves, the contents of chlorophyll a and protein, the oxidative stress, and the microcystin-LR (MC-LR) levels of M. aeruginosa exposed to various FE concentrations (i.e., 0, 0.5, 1, 2, and 5 mg/L). FE was observed to stimulate the cell density, chlorophyll a content, and protein content of M. aeruginosa at 0.5- and 1-mg/L FE concentrations but inhibit them at 2 and 5 mg/L FE concentrations. The superoxide dismutase and catalase activities were enhanced and the malondialdehyde concentration was increased by FE. The intracellular (intra-) and extracellular (extra-) MC-LR contents were also affected by FE. The expression levels of photosynthesis-related genes psbD1, psaB, and rbcL varied in response to FE exposure. Moreover, the expressions of microcystin synthase-related genes mcyA and mcyD and microcystin transportation-related gene mcyH were significantly inhibited by the treatment with 2 and 5 mg/L FE concentrations. These results might be helpful in evaluating the ecotoxicity of FE and guiding the rational application of herbicides in modern agriculture.
Collapse
Affiliation(s)
- Sijia Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jiawei Ni
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Ying Guan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jianwei Tao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Liang Wu
- Los Angeles Regional Water Quality Control Board, Los Angeles, CA, 90013, USA
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Shichao Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Wenwu Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Chu Zhang
- School of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| |
Collapse
|
17
|
Saravanan A, Thamarai P, Deivayanai VC, Karishma S, Shaji A, Yaashikaa PR. Current strategies on bioremediation of personal care products and detergents: Sustainability and life cycle assessment. CHEMOSPHERE 2024; 354:141698. [PMID: 38490608 DOI: 10.1016/j.chemosphere.2024.141698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
The increased use of personal care products and detergents in modern society has raised concerns about their potential adverse effects on the environment. These products contain various chemical compounds that can persist in water bodies, leading to water pollution and ecological disturbances. Bioremediation has emerged as a promising approach to address these challenges, utilizing the natural capabilities of microorganisms to degrade or remove these contaminants. This review examines the current strategies employed in the bioremediation of personal care products and detergents, with a specific focus on their sustainability and environmental impact. This bioremediation is essential for environmental rejuvenation, as it uses living organisms to detergents and other daily used products. Its distinctiveness stems from sustainable, nature-centric ways that provide eco-friendly solutions for pollution eradication and nurturing a healthy planet, all while avoiding copying. Explores the use of microbial consortia, enzyme-based treatments, and novel biotechnological approaches in the context of environmental remediation. Additionally, the ecological implications and long-term sustainability of these strategies are assessed. Understanding the strengths and limitations of these bioremediation techniques is essential for developing effective and environmentally friendly solutions to mitigate the impact of personal care products and detergents on ecosystems.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - V C Deivayanai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Alan Shaji
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
18
|
Zhou Y, Yue Y, Chen X, Wu F, Li W, Li P, Han J. Physiological-biochemical responses and transcriptomic analysis reveal the effects and mechanisms of sulfamethoxazole on the carbon fixation function of Chlorella pyrenoidosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170460. [PMID: 38286284 DOI: 10.1016/j.scitotenv.2024.170460] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
The occurrence of sulfamethoxazole (SMX) is characterized by low concentration and pseudo-persistence. However, the toxic effects and mechanisms of SMX, especially for low concentration and long-term exposure, are still not clear. This study investigated the effects and mechanisms of SMX on carbon fixation-related biological processes of Chlorella pyrenoidosa at population, physiological-biochemical, and transcriptional levels. Results showed that 1-1000 μg/L SMX significantly inhibited the dry weight and carbon fixation rate of C. pyrenoidosa during 21 d. The upregulation of superoxide dismutase (SOD) and catalase (CAT) activities, as well as the accumulation of malondialdehyde (MDA) demonstrated that SMX posed oxidative damage to C. pyrenoidosa. SMX inhibited the activity of carbonic anhydrase (CA), and consequently stimulated the activity of Rubisco. Principal component analysis (PCA) revealed that SMX concentration was positively correlated with Rubisco and CAT while exposure time was negatively correlated with CA. Transcriptional analysis showed that the synthesis of chlorophyll-a was stabilized by regulating the diversion of protoporphyrin IX and the chlorophyll cycle. Meanwhile, multiple CO2 compensation mechanisms, including photorespiratory, C4-like CO2 compensation and purine metabolism pathways were triggered in response to the CO2 requirements of Rubisco. This study provides a scientific basis for the comprehensive assessment of the ecological risk of SMX.
Collapse
Affiliation(s)
- Yuhao Zhou
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, Jiangsu 213032, China
| | - Yujiao Yue
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Xinyang Chen
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Feifan Wu
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Wei Li
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| | - Pingping Li
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Jiangang Han
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, Jiangsu 213032, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| |
Collapse
|
19
|
López-Serna R, Franco B, Bolado S, Jiménez JJ. Removal of contaminants of emerging concern from pig manure in different operation stages of a thin-layer cascade photobioreactor. Relationship with concentrations in microalgae and manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120340. [PMID: 38368805 DOI: 10.1016/j.jenvman.2024.120340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
The performance of a pilot-scale thin-layer cascade photobioreactor, operated in semicontinuous mode, for the removal of veterinary drug residues and other contaminants of emerging concern (CECs) from pig manure has been assessed in six operation stages. Chlorella sp. (70-90%), Scenedesmus sp. (10-25%) and Diatomea (<5%) comprise the microalgae species present during the stages. The global performance to remove the total CEC content in the photobioreactor effluent varied from 62 to 86% on each stage, while an CEC mean amount close to 8% was accumulated in the photobioreactor biomass. A relation with weather conditions was not observed. Elimination ratio was not related to the concentration in the influent which reached up to 8000 ng L-1 for some CECs. As expected, the concentrations of veterinary drugs were higher than those of non-veterinary CECs. The concentrations accumulated in the grown biomass were relative low, lower than 10 ng per fresh g excepting for a few cases. However, statistical data suggested that the linkage of CECs to microalgae biomass boosted their removal from the influent. Furthermore, it was observed that the manure liquid phase contained higher amounts of CECs than the solid phase.
Collapse
Affiliation(s)
- Rebeca López-Serna
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Belén Franco
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Silvia Bolado
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Juan José Jiménez
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| |
Collapse
|
20
|
Fayaz T, Renuka N, Ratha SK. Antibiotic occurrence, environmental risks, and their removal from aquatic environments using microalgae: Advances and future perspectives. CHEMOSPHERE 2024; 349:140822. [PMID: 38042426 DOI: 10.1016/j.chemosphere.2023.140822] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/14/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Antibiotic pollution has caused a continuous increase in the development of antibiotic-resistant bacteria and antibiotic-resistant genes (ARGs) in aquatic environments worldwide. Algae-based bioremediation technology is a promising eco-friendly means to remove antibiotics and highly resistant ARGs, and the generated biomass can be utilized to produce value-added products of industrial significance. This review discussed the prevalence of antibiotics and ARGs in aquatic environments and their environmental risks to non-target organisms. The potential of various microalgal species for antibiotic and ARG removal, their mechanisms, strategies for enhanced removal, and future directions were reviewed. Antibiotics can be degraded into non-toxic compounds in microalgal cells through the action of extracellular polymeric substances, glutathione-S-transferase, and cytochrome P450; however, antibiotic stress can alter microalgal gene expression and growth. This review also deciphered the effect of antibiotic stress on microalgal physiology, biomass production, and biochemical composition that can impact their commercial applications.
Collapse
Affiliation(s)
- Tufail Fayaz
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India
| | - Nirmal Renuka
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India.
| | - Sachitra Kumar Ratha
- Algology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| |
Collapse
|
21
|
Ricky R, Shanthakumar S. A pilot-scale study on the removal of binary mixture (ciprofloxacin and norfloxacin) by Scenedesmus obliquus: Optimization, biotransformation, and biofuel profile. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118388. [PMID: 37354597 DOI: 10.1016/j.jenvman.2023.118388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/26/2023]
Abstract
Ciprofloxacin (CIP) and norfloxacin (NOR) belong to the organic contaminants of emerging concern (OCECs) that are frequently detected in wastewater matrices at ng/L to mg/L concentrations. This study investigates the potential of Scenedesmus obliquus in the treatment of CIP and NOR as a binary mixture from raw wastewater. Optimization of inoculum was done to find the required cell density concentration that has less inhibition and high removal. The optimum inoculum (cell density: 200 × 105 cells/mL and OD680: 1.0) has shown 75% removal with no inhibition of growth. A pilot scale study was conducted in controlled environment using high-rate algal pond to investigate the contribution of abiotic and biotic removal. Abiotic removal is negligible in comparison with the biotic contribution of removal. The order of removal efficiency is observed as COD (88%) > NOR (84.8%) > CIP (84.6%) > NH4+ (71.7%) with biodegradation as the major removal mechanism. Biotransformed products of CIP + NOR were identified inside the Scenedesmus obliquus. During the pilot-scale study, Biomass (3.70 ± 0.07 g/L) was harvested with carbohydrates (17.85 ± 0.1%), lipids (38.36 ± 0.13%), and proteins (28.18 ± 1.63%). Lipid productivity in binary mixture was 2.6 times higher than the lipid production in control condition. Transesterification of these lipids yielded good biofuel composition of 32.72% of saturated fatty acids and 21.7% of unsaturated fatty acids.
Collapse
Affiliation(s)
- R Ricky
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - S Shanthakumar
- Centre for Clean Environment, Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
22
|
Mou Y, Liu N, Lu T, Jia C, Xu C, Song M. The effects of carbon nitrogen ratio and salinity on the treatment of swine digestion effluent simultaneously producing bioenergy by microalgae biofilm. CHEMOSPHERE 2023; 339:139694. [PMID: 37536538 DOI: 10.1016/j.chemosphere.2023.139694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
In order to remove high concentrations of ammonia nitrogen (NH4+-N) and refractory sulfamethazine (SM2) from swine digestion effluent, different carbon/nitrogen (C/N) ratios and salinity were used to determine the effects of pollutants removal in the microalgae biofilm system. Microalgae biofilm treatment under optimal environmental conditions in synthetic swine digestion effluent were C/N ratio of 20 and salinity of 140 mM. In order to make the actual swine digestion effluent discharge up to the standard, three different two-cycle treatments (suspended microalgae, microalgae biofilm, microalgae biofilm under the optimal conditions) were studied. The results showed that after two-cycle treatment with microalgae biofilm under the optimal conditions, the actual swine digestion effluent levels of total nitrogen (TN), NH4+-N, total phosphorus (TP), chemical oxygen demand (COD), SM2 were 22.65, 9.32, 4.11, 367.28, and 0.99 mg L-1, respectively, which could satisfy the discharge standards for livestock and poultry wastewater in China. At the same time, first-order kinetic simulation equations suggested a degradation half-life of 4.85 d for SM2 under optimal conditions in microalgae biofilm, and microbial community analysis indicated that the dominant genus was Halomonas. Furthermore, 35.66% of lipid, 32.56% of protein and 18.44% of polysaccharides were harvested after two-cycle in microalgae biofilm treatment under optimal environmental conditions. These results indicated that the regulation of C/N and salinity in microalgae biofilm for the treatment of swine digestion effluent was a high-efficiency strategy to simultaneously achieve wastewater treatment and bioenergy production.
Collapse
Affiliation(s)
- Yiwen Mou
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Na Liu
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Tianxiang Lu
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Cong Jia
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Chongqing Xu
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China; Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250013, PR China
| | - Mingming Song
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China.
| |
Collapse
|
23
|
Jabłońska-Trypuć A. A review on triclosan in wastewater: Mechanism of action, resistance phenomenon, environmental risks, and sustainable removal techniques. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10920. [PMID: 37610032 DOI: 10.1002/wer.10920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 08/24/2023]
Abstract
Triclosan, belonging to the bisphenols, is a known antiseptic broad-spectrum biocide. It has a very wide range of applications, both in health care and in the household. Triclosan enters the environment, both water bodies and soil, because of its high prevalence and the ability to accumulation. Excessive use of antimicrobial formulations may cause the generation of resistance among microorganisms. Reduced susceptibility to triclosan is observed more frequently and in an expanded group of microorganisms and is conditioned by a number of different mechanisms occurring on the molecular level. Conventional wastewater treatment processes are not always able to provide a reliable barrier to triclosan. Therefore, additional advanced treatment technologies are being considered in areas, where a triclosan contamination problem has been identified. Removal of triclosan from wastewater is carried out using different biological and chemical techniques; however, it should be pointed out that physico-chemical methods often generate toxic by-products. Toxicity of triclosan and its degradation products, bacterial resistance to this compound, and evident problems with triclosan elimination from wastewater are currently the main problems faced by companies creating products containing triclosan. PRACTITIONER POINTS: Triclosan is an emerging pollutant in the environment because of its ability to accumulation and high prevalence. Reduced susceptibility to triclosan is being observed more frequently. Conventional wastewater treatment processes are not always able to provide a reliable barrier to triclosan. Additional advanced treatment technologies should be implemented to remove triclosan from wastewater.
Collapse
Affiliation(s)
- Agata Jabłońska-Trypuć
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Białystok, Poland
| |
Collapse
|
24
|
Ricky R, Shanthakumar S. An investigation on removal of ciprofloxacin and norfloxacin by phycoremediation with an emphasis on acute toxicity and biochemical composition. Sci Rep 2023; 13:13911. [PMID: 37626153 PMCID: PMC10457305 DOI: 10.1038/s41598-023-41144-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/22/2023] [Indexed: 08/27/2023] Open
Abstract
Ciprofloxacin (CIP) and norfloxacin (NOR) belong to the class of emerging contaminants that are frequently detected in the aquatic environment as a binary mixture, responsible for the development of antibiotic-resistant genes and antibiotic-resistant bacteria. This study aims to investigate five different algal species Chlorella vulgaris (Cv), Chlorella pyrenoidosa (Cp), Scenedesmus obliquus (So), Tetradesmus sp (T) and Monoraphidium sp (M) for their tolerance and removal of binary mixture. The effects on biochemical composition in the algal species concerning the binary mixture and its removal efficiency are first reported in this study. The acute toxicity (96 h EC50) values are in the order of So > Cp > T > M > Cv, Chlorella vulgaris is the most sensitive algal species with 17.73 ± 0.24 mg/L and Scenedesmus obliquus is the least sensitive algal species with 39.19 ± 0.79 mg/L. The removal efficiency of the binary mixture was found to be in the order of So > Cp > T > M > Cv, Scenedesmus obliquus removed CIP (52.4%) and NOR (87.5%) with biodegradation as the major contributing removal mechanism. Furthermore, less toxic biotransformed products were detected in Scenedesmus obliquus and the biochemical characterization revealed that the growth-stimulating effect is higher with lipid (35%), carbohydrate (18%), and protein (33%) providing an advantage in the production of valuable biomass.
Collapse
Affiliation(s)
- R Ricky
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - S Shanthakumar
- Centre for Clean Environment, Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
25
|
Chang X, He Y, Song L, Ding J, Ren S, Lv M, Chen L. Methylparaben toxicity and its removal by microalgae Chlorella vulgaris and Phaeodactylum tricornutum. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131528. [PMID: 37121041 DOI: 10.1016/j.jhazmat.2023.131528] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023]
Abstract
The widespread occurrence of methylparaben (MPB) has aroused great concern due to its weak estrogenic endocrine-disrupting property and potential toxic effects. However, the degradation potential and pathway of MPB by microalgae have rarely been reported. Here, microalgae Chlorella vulgaris and Phaeodactylum tricornutum were used to investigate their responses, degradation potential and mechanisms towards MPB. MPB showed low-dose stimulation (by 86.02 ± 0.07% at 1 mg/L) and high-dose inhibition (by 60.17 ± 0.05% at 80 mg/L) towards the growth of C. vulgaris, while showed inhibition for P. tricornutum (by 6.99 ± 0.05%-20.14 ± 0.19%). The degradation efficiencies and rates of MPB were higher in C. vulgaris (100%, 1.66 ± 0.54-5.60 ± 0.86 day-1) than in P. tricornutum (4.3-34.2%, 0.04 ± 0.01-0.08 ± 0.00 day-1), which could be explained by the significantly higher extracellular enzyme activity and more fluctuation of the protein ratio for C. vulgaris, indicating a higher ability of C. vulgaris to adapt to pollutant stress. Biodegradation was the main removal mechanism of MPB for both the two microalgae. Furthermore, two different degradation pathways of MPB by the two microalgae were proposed. MPB could be mineralized and completely detoxified by C. vulgaris. Overall, this study provides novel insights into MPB degradation by microalgae and strategies for simultaneous biodegradation and detoxification of MPB in the environment.
Collapse
Affiliation(s)
- Xianbo Chang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Yuanyuan He
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Lehui Song
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai 264003, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Suyu Ren
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai 264003, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai 264003, China.
| |
Collapse
|
26
|
Huang R, Liu W, Su J, Li S, Wang L, Jeppesen E, Zhang W. Keystone microalgae species determine the removal efficiency of sulfamethoxazole: a case study of Chlorella pyrenoidosa and microalgae consortia. FRONTIERS IN PLANT SCIENCE 2023; 14:1193668. [PMID: 37476166 PMCID: PMC10354436 DOI: 10.3389/fpls.2023.1193668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023]
Abstract
In recent years, antibiotics pollution has caused serious harm to the aquatic environment, and microalgae mediated degradation of antibiotics has attracted increasing attention. However, the potential toxicity of antibiotics to keystone microalgae species or their microalgae consortia, and the impact of microalgal diversity on antibiotic removal need to be further studied. In this study, we investigated the removal efficiency and tolerance of five freshwater microalgae (Chlorella pyrenoidosa, Scenedesmus quadricauda, Dictyosphaerium sp., Haematoccocus pluvialis, and Botryococcus braunii) and their microalgae consortia to sulfamethoxazole (SMX). We found that the removal efficiency of SMX by C. pyrenoidosa reached 49%, while the other four microalgae ranged between 9% and 16%. In addition, C. pyrenoidosa, S. quadricauda, and Dictyosphaerium sp. had better tolerance to SMX than H. pluvialis, and their growth and photosynthesis were less affected. At 10 and 50 mg/L SMX, the removal capacity of SMX by mixed microalgae consortia was lower than that of C. pyrenoidos except for the consortium with C. pyrenoidos and S. quadricauda. The consortia generally showed higher sensitivity towards SMX than the individual species, and the biochemical characteristics (photosynthetic pigment, chlorophyll fluorescence parameters, superoxide anion (O2 -), superoxide dismutase activity (SOD), malondialdehyde (MDA) and extracellular enzymes) were significantly influenced by SMX stress. Therefore, the removal of antibiotics by microalgae consortia did not increase with the number of microalgae species. Our study provides a new perspective for the selection of microalgal consortia to degrade antibiotics.
Collapse
Affiliation(s)
- Ruohan Huang
- Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
| | - Wan Liu
- Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
| | - Jinghua Su
- Research Institute of Natural Ecology Conservation, Shanghai Academy of Environmental Sciences, Shanghai, China
| | - Shihao Li
- Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Technology Co., Ltd, Shanghai, China
| | - Liqing Wang
- Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
- Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, China
- Limnology Laboratory and EKOSAM, Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
- Institute of Marine Sciences, Middle East Technical University, Mersin, Türkiye
| | - Wei Zhang
- Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
27
|
Du Y, Cheng Q, Qian M, Liu Y, Wang F, Ma J, Zhang X, Lin H. Biodegradation of sulfametoxydiazine by Alcaligenes aquatillis FA: Performance, degradation pathways, and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131186. [PMID: 36948117 DOI: 10.1016/j.jhazmat.2023.131186] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 05/03/2023]
Abstract
This study reports the isolation and characterization of a novel bacterial strain Alcaligenes aquatillis FA with the ability to degrade sulfametoxydiazine (SMD), a commonly used sulfonamide antibiotic (SA) in livestock and poultry production. The biodegradation kinetics, pathways, and genomic background of SMD by FA were investigated. The results showed that strain FA had high specificity to degrade SMD, and was unable to effectively degrade its isomer, sulfamonomethoxine. The SMD biodegradation followed a first-order kinetic model with a rate constant of 27.39 mg·L-1·day-1 and a half-life of 5.98 days. The biodegradation pathways and detoxification processes of SMD were proposed based on the identification of its biodegradation byproducts and the biotoxicity assessment using both the ecological structure-activity relationship (ECOSAR) model and biological indicator. The involvement of novel degrading enzymes, such as dimethyllsulfone monooxygenase, 4-carboxymuconolactone decarboxylase, and 1,4-benzoquinone reductase, was inferred in the SMD biodegradation process. The presence of sul2 and dfrA genes in strain FA, which were constitutively expressed in its cells, suggests that multiple mechanisms were employed by the strain to resist SMD. This study provides new insights into the biodegradation of sulfonamide antibiotics (SAs) as it is the first to describe an SMD-degrading bacterium and its genetic information.
Collapse
Affiliation(s)
- Yuqian Du
- College of Forest and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qilu Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yangzhi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Feng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Junwei Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xin Zhang
- College of Forest and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China.
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
28
|
Sun C, Zhang T, Zhou Y, Liu ZF, Zhang Y, Bian Y, Feng XS. Triclosan and related compounds in the environment: Recent updates on sources, fates, distribution, analytical extraction, analysis, and removal techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161885. [PMID: 36731573 DOI: 10.1016/j.scitotenv.2023.161885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Triclosan (TCS) has been widely used in daily life because of its broad-spectrum antibacterial activities. The residue of TCS and related compounds in the environment is one of the critical environmental safety problems, and the pandemic of COVID-19 aggravates the accumulation of TCS and related compounds in the environment. Therefore, detecting TCS and related compound residues in the environment is of great significance to human health and environmental safety. The distribution of TCS and related compounds are slightly different worldwide, and the removal methods also have advantages and disadvantages. This paper summarized the research progress on the source, distribution, degradation, analytical extraction, detection, and removal techniques of TCS and related compounds in different environmental samples. The commonly used analytical extraction methods for TCS and related compounds include solid-phase extraction, liquid-liquid extraction, solid-phase microextraction, liquid-phase microextraction, and so on. The determination methods include liquid chromatography coupled with different detectors, gas chromatography and related methods, sensors, electrochemical method, capillary electrophoresis. The removal techniques in various environmental samples mainly include biodegradation, advanced oxidation, and adsorption methods. Besides, both the pros and cons of different techniques have been compared and summarized, and the development and prospect of each technique have been given.
Collapse
Affiliation(s)
- Chen Sun
- School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Pharmaceutics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ting Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
29
|
Ghaffar I, Hussain A, Hasan A, Deepanraj B. Microalgal-induced remediation of wastewaters loaded with organic and inorganic pollutants: An overview. CHEMOSPHERE 2023; 320:137921. [PMID: 36682632 DOI: 10.1016/j.chemosphere.2023.137921] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/26/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
The recent surge in industrialization has intensified the accumulation of various types of organic and inorganic pollutants due to the illegal dumping of partially and/or untreated wastewater effluents in the environment. The pollutants emitted by several industries pose serious risk to the environment, animals and human beings. Management and diminution of these hazardous organic pollutants have become an incipient research interest. Traditional physiochemical methods are energy intensive and produce secondary pollutants. So, bioremediation via microalgae has appeared to be an eco-friendly and sustainable technique to curb the adverse effects of organic and inorganic contaminants because microalgae can degrade complex organic compounds and convert them into simpler and non-toxic substances without the release of secondary pollutants. Even some of the organic pollutants can be exploited by microalgae as a source of carbon in mixotrophic cultivation. Literature survey has revealed that use of the latest modification techniques for microalgae such as immobilization (on alginate, carrageena and agar), pigment-extraction, and pretreatment (with acids) have enhaced their bioremedial potential. Moreover, microalgal components i.e., biopolymers and extracellular polymeric substances (EPS) can potentially be exploited in the biosorption of pollutants. Though bioremediation of wastewaters by microalgae is quite well-studied realm but some aspects like structural and functional responses of microalgae toward pollutant derivatives/by-products (formed during biodegradation), use of genetic engineering to improve the tolerance of microalgae against higher concentrations of polluatans, and harvesting cost reduction, and monitoring of parameters at large-scale still need more focus. This review discusses the accumulation of different types of pollutants into the environment through various sources and the mechanisms used by microalgae to degrade commonly occurring organic and inorganic pollutants.
Collapse
Affiliation(s)
- Imania Ghaffar
- Applied and Environmental Microbiology Laboratory, Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ali Hussain
- Applied and Environmental Microbiology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| | - Ali Hasan
- Applied and Environmental Microbiology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Balakrishnan Deepanraj
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia.
| |
Collapse
|
30
|
Gao F, Zhou JL, Zhang YR, Vadiveloo A, Chen QG, Liu JZ, Yang Q, Ge YM. Efficient coupling of sulfadiazine removal with microalgae lipid production in a membrane photobioreactor. CHEMOSPHERE 2023; 316:137880. [PMID: 36649892 DOI: 10.1016/j.chemosphere.2023.137880] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
This study explored the feasibility of a coupled system for antibiotic removal and biofuel production through microalgae cultivation. Initial, batch culture experiments demonstrated that sulfadiazine (SDZ) had an inhibitory effect on Chlorella sp. G-9, and 100.0 mg L-1 SDZ completely inhibited its growth. In order to improve SDZ removal efficiency by microalgae, three membrane photobioreactors (MPBRs) with different hydraulic retention times (HRTs) were established for continuous microalgae cultivation. The efficient coupling of SDZ removal and microalgal lipid production was achieved through the gradual increment of influent SDZ concentration from 0 to 100.0 mg L-1. The reduction in SDZ ranged between 57.8 and 89.7%, 54.7-91.7%, and 54.6-93.5% for the MPBRs with HRT of 4 d, 2 d, and 1 d, respectively. Chlorella sp. Was found to tolerate higher concentrations of SDZ in the MPBR system, and the resulting stress from high concentrations of SDZ effectively increased the lipid content of microalgae for potential biodiesel production. With the increase of influent SDZ concentration from 0 to 100.0 mg L-1, the lipid content of microalgae increased by 43.5%. Chlorophyll content, superoxide dismutase activity, and malondialdehyde content of microalgae were also evaluated to explore the mechanism of microalgae tolerance to SDZ stress in MPBR.
Collapse
Affiliation(s)
- Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Yu-Ru Zhang
- Zhejiang Zhouhuan Environmental Engineering Design Co. LTD, Zhoushan, 316000, China
| | - Ashiwin Vadiveloo
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, 6150, Australia
| | - Qing-Guo Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Jun-Zhi Liu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Qiao Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Ya-Ming Ge
- National Engineering Research Center for Marine Aquaculture, Zhoushan, 316000, China.
| |
Collapse
|
31
|
Shi K, Wang J, Yin L, Xu Y, Kong D, Li H, Zhang Y, He H, Yang S, Ni L, Li S, Zhu F. Photocatalysis Combined with Microalgae to Promote the Degradation and Detoxification of Tetracycline Hydrochloride. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:43. [PMID: 36652010 DOI: 10.1007/s00128-023-03688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
The continuous discharge of antibiotics into the environment poses a serious threat to the ecological environment and human health. In this study, photocatalysis and microalgae were combined to study the removal of tetracycline hydrochloride (TCH) and its photodegradation intermediates in water. The results showed that after photocatalytic treatment, the removal rate of TCH reached 80%, but the mineralization rate was only 17.7%. While Chlorella sp. alone had poor tolerance to high concentrations of TCH, the combined treatment of photocatalysis and microalgae completely removed TCH and increased the mineralization efficiency to 35.0%. Increased cell density was observed, indicating that TCH and the intermediates produced in the photocatalysis process could be utilized by algae for growth. Meanwhile, TCH degradation pathways were proposed based on Liquid Chromatograph Mass Spectrometer analysis, and the toxicity of intermediates detected was predicted using ECOSAR software, which showed that the type and quantity of highly toxic intermediates decreased significantly after subsequent algal treatment. The results demonstrate that photocatalysis and microalgae combined treatment is an efficient and eco-friendly method for the removal of antibiotics in water.
Collapse
Affiliation(s)
- Kaipian Shi
- School of Environment, Nanjing Normal University, 210023, Nanjing, China
| | - Juan Wang
- School of Environment, Nanjing Normal University, 210023, Nanjing, China
| | - Li Yin
- School of Environment, Nanjing Normal University, 210023, Nanjing, China
| | - Ying Xu
- School of Environment, Nanjing Normal University, 210023, Nanjing, China
| | - Desheng Kong
- School of Environment, Nanjing Normal University, 210023, Nanjing, China
| | - Hongxiang Li
- School of Environment, Nanjing Normal University, 210023, Nanjing, China
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, 35487, Tuscaloosa, AL, USA
| | - Huan He
- School of Environment, Nanjing Normal University, 210023, Nanjing, China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, 210023, Nanjing, China
| | - Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, School of Environment, Hohai University, 210098, Nanjing, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, 210023, Nanjing, China.
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, 210023, Nanjing, China.
| | - Fengxiao Zhu
- School of Environment, Nanjing Normal University, 210023, Nanjing, China.
| |
Collapse
|
32
|
Dubey S, Chen CW, Haldar D, Tambat VS, Kumar P, Tiwari A, Singhania RR, Dong CD, Patel AK. Advancement in algal bioremediation for organic, inorganic, and emerging pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120840. [PMID: 36496067 DOI: 10.1016/j.envpol.2022.120840] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Rapidly changing bioremediation prospects are key drive to develop sustainable options that can offer extra benefits rather than only environmental remediation. Algal remediating is gaining utmost attention due to its mesmerising sustainable features, removing odour and toxicity, co-remediating numerous common and emerging inorganic and organic pollutants from gaseous and aqueous environments, and yielding biomass for a range of valuable products refining. Moreover, it also improves carbon footprint via carbon-capturing offers a better option than any other non-algal process for several high CO2-emitting industries. Bio-uptake, bioadsorption, photodegradation, and biodegradation are the main mechanisms to remediate a range of common and emerging pollutants by various algae species. Bioadsorption was a dominant remediation mechanism among others implicating surface properties of pollutants and algal cell walls. Photodegradable pollutants were photodegraded by microalgae by adsorbing photons on the surface and intracellularly via stepwise photodissociation and breakdown. Biodegradation involves the transportation of selective pollutants intracellularly, and enzymes help to convert them into simpler non-toxic forms. Robust models are from the green microalgae group and are dominated by Chlorella species. This article compiles the advancements in microalgae-assisted pollutants remediation and value-addition under sustainable biorefinery prospects. Moreover, filling the knowledge gaps, and recommendations for developing an effective platform for emerging pollutants remediation and realization of commercial-scale algal bioremediation.
Collapse
Affiliation(s)
- Siddhant Dubey
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Sustainable Environment Research Centre, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Vaibhav Sunil Tambat
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Prashant Kumar
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Ashutosh Tiwari
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Reeta Rani Singhania
- Sustainable Environment Research Centre, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Sustainable Environment Research Centre, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India.
| |
Collapse
|
33
|
de Jesus Oliveira Santos M, de Oliveira Souza C, Marcelino HR. Blue technology for a sustainable pharmaceutical industry: Microalgae for bioremediation and pharmaceutical production. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Sharma J, Joshi M, Bhatnagar A, Chaurasia AK, Nigam S. Pharmaceutical residues: One of the significant problems in achieving 'clean water for all' and its solution. ENVIRONMENTAL RESEARCH 2022; 215:114219. [PMID: 36057333 DOI: 10.1016/j.envres.2022.114219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
With the rapid emergence of various metabolic and multiple-drug-resistant infectious diseases, new pharmaceuticals are continuously being introduced in the market. The excess production and use of pharmaceuticals and their untreated/unmetabolized release in the environment cause the contamination of aquatic ecosystem, and thus, compromise the environment and human-health. The present review provides insights into the classification, sources, occurrence, harmful impacts, and existing technologies to curb these problems. A comprehensive detail of various biological and nanotechnological strategies for the removal of pharmaceutical residues from water is critically discussed focusing on their efficiencies, and current limitations to design improved-technologies for their lab-to-field applications. Furthermore, the review highlights and suggests the scope of integrated bionanotechnological methods for enhanced removal of pharmaceutical residues from water to fulfill the United Nations Sustainable Development Goal (UN-SDG) for providing clean potable water for all.
Collapse
Affiliation(s)
- Jyoti Sharma
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Monika Joshi
- Amity Institute of Nanotechnology, Amity University, Noida, 201313, Uttar Pradesh, India.
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Akhilesh K Chaurasia
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea.
| | - Subhasha Nigam
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India.
| |
Collapse
|
35
|
Gayosso-Morales MA, Rivas-Castillo AM, Lucas-Gómez I, López-Fernández A, Calderón AV, Fernández-Martínez E, Bernal JO, González-Pérez BK. Microalgae, a current option for the bioremediation of pharmaceuticals: a review. Folia Microbiol (Praha) 2022; 68:167-179. [PMID: 36367638 DOI: 10.1007/s12223-022-01013-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
Abstract
In this review, research on the use of microalgae as an option for bioremediation purposes of pharmaceutical compounds is reported and discussed thoroughly. Pharmaceuticals have been detected in water bodies around the world, attracting attention towards the increasing potential risks to humans and aquatic biota. Unfortunately, pharmaceuticals have no regulatory standards for safe disposal in many countries. Despite the advances in new analytical techniques, the current wastewater treatment facilities in many countries are ineffective to remove the whole presence of pharmaceutical compounds and their metabolites. Though new methods are substantially effective, removal rates of drugs from wastewater make the cost-effectiveness ratio a not viable option. Therefore, the necessity for investigating and developing more adequate removal treatments with a higher efficiency rate and at a lower cost is mandatory. The present review highlights the algae-based removal strategies for bioremediation purposes, considering their pathway as well as the removal rate and efficiency of the microalgae species used in assays. We have critically reviewed both application of living and non-living microalgae biomass for bioremediation purposes considering the most commonly used microalgae species. In addition, the use of modified and immobilized microalgae biomass for the removal of pharmaceutical compounds from water was discussed. Furthermore, research considering various microalgal species and their potential use to detoxify organic and inorganic toxic compounds were well evaluated in the review. Further research is required to exploit the potential use of microalgae species as an option for the bioremediation of pharmaceuticals in water.
Collapse
Affiliation(s)
- Manuel Aaaron Gayosso-Morales
- Universidad Tecnológica de La Zona Metropolitana del Valle de México, Blvd. Miguel Hidalgo Y Costilla 5, Los Heroes, C.P. 43816, Tizayuca, Hidalgo, México
| | - Andrea M Rivas-Castillo
- Universidad Tecnológica de La Zona Metropolitana del Valle de México, Blvd. Miguel Hidalgo Y Costilla 5, Los Heroes, C.P. 43816, Tizayuca, Hidalgo, México
| | - Isaac Lucas-Gómez
- Universidad Tecnológica de La Zona Metropolitana del Valle de México, Blvd. Miguel Hidalgo Y Costilla 5, Los Heroes, C.P. 43816, Tizayuca, Hidalgo, México
- Doctorado en Nanociencias Y Nanotecnología, Centro de Investigación Y de Estudios Avanzados, Instituto Politécnico Nacional, Av, Instituto Politécnico Nacional C. P, 07360, Ciudad de Mexico, México
| | - Abelardo López-Fernández
- Universidad Tecnológica de La Zona Metropolitana del Valle de México, Blvd. Miguel Hidalgo Y Costilla 5, Los Heroes, C.P. 43816, Tizayuca, Hidalgo, México
| | - Alejandro Valdez Calderón
- Universidad Tecnológica de La Zona Metropolitana del Valle de México, Blvd. Miguel Hidalgo Y Costilla 5, Los Heroes, C.P. 43816, Tizayuca, Hidalgo, México
| | - Eduardo Fernández-Martínez
- Laboratory of Medicinal Chemistry and Pharmacology, Center for Research in Biology of Reproduction, Medicine Department, Institute of Health Sciences, Universidad Autónoma del Estado de Hidalgo, Calle Dr. Eliseo Ramírez Ulloa No 400, Col. Doctores, Pachuca, Hidalgo, México
| | | | - Brenda Karen González-Pérez
- Universidad Tecnológica de La Zona Metropolitana del Valle de México, Blvd. Miguel Hidalgo Y Costilla 5, Los Heroes, C.P. 43816, Tizayuca, Hidalgo, México.
| |
Collapse
|
36
|
Zeng S, Kan E. FeCl 3-activated biochar catalyst for heterogeneous Fenton oxidation of antibiotic sulfamethoxazole in water. CHEMOSPHERE 2022; 306:135554. [PMID: 35780988 DOI: 10.1016/j.chemosphere.2022.135554] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
One-step FeCl3-mediated pyrolysis/activation was developed for preparation of bermudagrass (BG)-derived FeCl3-activated biochars (FA-BCs) from bermudagrass (BG) as a heterogenous Fenton catalyst for heterogeneous Fenton oxidation of sulfamethoxazole (SMX) in water. The FA-BC prepared at the FeCl3 to BG mass ratio of 2 (FA-BC) exhibited higher adsorption and Fenton oxidation of SMX than other mass ratios of the FeCl3 to BG. FA-BC presented the great surface area (835 m2/g) and high SMX adsorption capacity (195 mg SMX/g BC), which was higher than various BCs in the previous studies. Additionally, the surface of FA-BC was attached with Fe2O3, Fe0, and Fe3O4 after the FeCl3 activation. Under the optimal conditions for Fenton reaction (SMX concentration, 100 mg/L; loading of FA-BC, 0.1 g/L; dose of H2O2, 200 mg/L; temperature, 20 °C; pH 3; reaction time, 12 h), SMX and COD removal efficiencies reached 99.94% and 65.19%, respectively. Increasing reaction temperature from 20 to 50 °C significantly improved the SMX oxidation rate from 0.46 to 1.04 h-1. The HO· radicals were proved to play a major role during the Fenton oxidation of SMX. In addition, the SMX solution treated by Fenton oxidation showed much less toxicity than the initial SMX solution. Additionally, the reusability tests of FA-BC indicated that 89.58% removal efficiency for SMX was still achieved after 3 cycles of Fenton oxidation under the optimal conditions. Furthermore, FA-BC can also efficiently remove SMX from the dairy wastewater. Therefore, FA-BC showed a high potential to eliminate aqueous SMX through adsorption and heterogeneous Fenton oxidation.
Collapse
Affiliation(s)
- Shengquan Zeng
- Department of Biological and Agricultural Engineering & Texas A&M AgriLife Research Center, Texas A&M University, TX 77843, USA
| | - Eunsung Kan
- Department of Biological and Agricultural Engineering & Texas A&M AgriLife Research Center, Texas A&M University, TX 77843, USA; Department of Wildlife, and Natural Resources, Tarleton State University, TX 76401, USA.
| |
Collapse
|
37
|
Bhatt P, Bhandari G, Bhatt K, Simsek H. Microalgae-based removal of pollutants from wastewaters: Occurrence, toxicity and circular economy. CHEMOSPHERE 2022; 306:135576. [PMID: 35803375 DOI: 10.1016/j.chemosphere.2022.135576] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The natural and anthropogenic sources of water bodies are contaminated with diverse categories of pollutants such as antibiotics, pharmaceuticals, pesticides, heavy metals, organic compounds, and other industrial chemicals. Depending on the type and the origin of the pollutants, the degree of contamination can be categorized into lower to higher concentrations. Therefore, the removal of hazardous chemicals from the environment is an important aspect. The physical, chemical and biological approaches have been developed and implemented to treat wastewaters. The microbial and algal treatment methods have emerged as a growing field due to their eco-friendly and sustainable approach. Particularly, microalgae emerged as a potential organism for the treatment of contaminated water bodies. The microalgae of the genera Chlorella, Anabaena, Ankistrodesmus, Aphanizomenon, Arthrospira, Botryococcus, Chlamydomonas, Chlorogloeopsis, Dunaliella, Haematococcus, Isochrysis, Nannochloropsis, Porphyridium, Synechococcus, Scenedesmus, and Spirulina reported for the wastewater treatment and biomass production. Microalgae have the potential for adsorption, bioaccumulation, and biodegradation. The microalgal strains can mitigate the hazardous chemicals via their diverse cellular mechanisms. Applications of the microalgae strains were found to be effective for sustainable developments and circular economy due to the production of biomass with the utilization of pollutants.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| | - Geeta Bhandari
- Department of Biosciences, Swami Rama Himalayan University, Dehradun, 248016, India
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
38
|
Lam KY, Yu ZH, Flick R, Noble AJ, Passeport E. Triclosan uptake and transformation by the green algae Euglena gracilis strain Z. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155232. [PMID: 35427625 DOI: 10.1016/j.scitotenv.2022.155232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Triclosan is an antimicrobial chemical present in consumer products that is frequently detected in aquatic environments. In this research, we investigated the role of a common freshwater microalgae species, Euglena gracilis for triclosan uptake and transformation in open-water treatment wetlands. Lab-scale wetland bioreactors were created under various conditions of light (i.e., continuous (white) light, red light, and in the dark), media (i.e., wetland, autoclaved wetland, Milli-Q, and growth media water), and presence or absence of algae. Triclosan and its potential transformation products were identified in the water and algae phases. Triclosan transformation occurred most rapidly with reactors that received continuous (white) light, with pseudo first-order rate constants, k, ranging from 0.035 to 0.292 day-1. This indicates that phototransformation played a major role in triclosan transformation during the day, despite light screening by algae. Algae contributed to the uptake and transformation of triclosan in all reactors, and algae and bacteria both contributed to triclosan biotransformation under dark conditions, representative of nighttime conditions. Some transformation products were formed and further transformed, e.g., triclosan-O-sulfate, methoxy and diglucosyl conjugate of hydroxylated triclosan, and dimethoxy and glucosyl conjugate of 2,4-dichlorophenol, suggesting their minimal accumulation over the 25 days of the experiments. This study shows that the combined action of light, microbes, and algae allows the safe transfer and transformation of triclosan in open-water treatment wetlands.
Collapse
Affiliation(s)
- Ka Yee Lam
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Zhu Hao Yu
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Robert Flick
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Adam J Noble
- Noblegen Inc., 2140 East Bank Dr., Peterborough, Ontario K9L 1Z8, Canada
| | - Elodie Passeport
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada; Department of Civil & Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada.
| |
Collapse
|
39
|
Zhou Y, Li WB, Kumar V, Necibi MC, Mu YJ, Shi CZ, Chaurasia D, Chauhan S, Chaturvedi P, Sillanpää M, Zhang Z, Awasthi MK, Sirohi R. Synthetic organic antibiotics residues as emerging contaminants waste-to-resources processing for a circular economy in China: Challenges and perspective. ENVIRONMENTAL RESEARCH 2022; 211:113075. [PMID: 35271831 DOI: 10.1016/j.envres.2022.113075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Synthetic antibiotics have been known for years to combat bacterial antibiotics. But their overuse and resistance have become a concern recently. The antibiotics reach the environment, including soil from the manufacturing process and undigested excretion by cattle and humans. It leads to overburden and contamination of the environment. These organic antibiotics remain in the environment for a very long period. During this period, antibiotics come in contact with various flora and fauna. The ill manufacturing practices and inadequate wastewater treatment cause a severe problem to the water bodies. After pretreatment from pharmaceutical industries, the effluents are released to the water bodies such as rivers. Even after pretreatment, effluents contain a significant number of antibiotic residues, which affect the living organisms living in the water bodies. Ultimately, river contaminated water reaches the ocean, spreading the contamination to a vast environment. This review paper discusses the impact of synthetic organic contamination on the environment and its hazardous effect on health. In addition, it analyzes and suggests the biotechnological strategies to tackle organic antibiotic residue proliferation. Moreover, the degradation of organic antibiotic residues by biocatalyst and biochar is analyzed. The circular economy approach for waste-to-resource technology for organic antibiotic residue in China is analyzed for a sustainable solution. Overall, the significant challenges related to synthetic antibiotic residues and future aspects are analyzed in this review paper.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Wen-Bing Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Mohamed Chaker Necibi
- International Water Research Institute, Mohammed VI Polytechnic University, 43150, Ben-Guerir, Morocco
| | - Yin-Jun Mu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chang-Ze Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Shraddha Chauhan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136713, Republic of Korea.
| |
Collapse
|
40
|
Li S, Li Z, Liu D, Yin Z, Hu D, Yu Y, Li Z, Zhu L. Response of fungi-microalgae pellets to copper regulation in the removal of sulfonamides and release of dissolved organic matters. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128932. [PMID: 35460998 DOI: 10.1016/j.jhazmat.2022.128932] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Both sulfonamides (SAs) and copper (Cu(II)) were frequently detected together in swine wastewater. In this study, the regulation of Cu(II) on SAs adsorption and release of dissolved organic matters (DOMs) by fungi-microalgae pellets (FM-pellets) were investigated. Aspergillus oryzae pellets were prepared for combination with Chlorella vulgaris and the optimal conditions were at agitation speed of 130 rpm, fungi to microalgae ratio of 10:1 and the combined time of 3 h with the highest combination efficiency of 98.65%. The results showed that adsorption was the main mechanism for SAs removal. FM-pellets exhibited a high SAs adsorption potential within 6 h, and the adsorption capacity of sulfamethazine (SMZ), sulfamonomethoxine (SMM) and sulfamethoxazole (SMX) was 1.07, 0.94 and 1.67 mg/g, respectively. Furthermore, the removal of SMX, SMZ and SMM was greatly promoted from 62.31% to 85.21%, 58.71-67.91% and 64.17-80.31%, respectively, under the presence of 2 mg/L Cu(II) through ion exchange and adsorption bridging. DOMs were analyzed by the parallel factor (PARAFAC) to demonstrate the response mechanism of FM-pellets to Cu(II). Protein-like substances and NADH in DOMs released by FM-pellets formed complexes with Cu(II) to alleviate the damage on the organism. These findings provide new insights into the mechanism and response of Cu(II) in the removal of SAs by FM-pellets.
Collapse
Affiliation(s)
- Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Zhuo Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Dongyang Liu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Zhihong Yin
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Dan Hu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Zhaohua Li
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
41
|
Gao Z, Yu H, Li M, Li X, Lei J, He D, Wu G, Fu Y, Chen Q, Shi H. A battery of baseline toxicity bioassays directed evaluation of plastic leachates-Towards the establishment of bioanalytical monitoring tools for plastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154387. [PMID: 35276177 DOI: 10.1016/j.scitotenv.2022.154387] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
There are increasing concerns regarding the ecological risks of plastics to the natural environment, especially the potential effects of plastic leachates on organisms, which contain various toxic components. However, appropriate methods to assess the overall environmental risks of plastics are limited. In this study, five different plastic products (three conventional and two biodegradable plastics) were immersed in simulated freshwater, and their toxicity was assessed using a battery of bioassays. We evaluated the effects of plastic leachates effects on organisms from four trophic levels of species (nematodes, Caenorhabditis elegans; algae, Scenedesmus obliquus; daphnids, Daphnia magna; and fish, Danio rerio) by measuring their acute and chronic toxicity. Our results indicated that all plastic leachates exhibited poor acute and chronic toxicity to the organisms. The acute toxicity of conventional plastic leachates with EC20 values <1.6 g plastic/L was higher than that of the biodegradable polydioxanone (PPDO) leachate (EC20: 16.2-796.1 g plastic/L); however, the toxicity of PPDO-octane (EC20: 0.04-1.9 g plastic/L) was similar to that of polyethylene or polystyrene (excluding toxicity in D. magna). Similarly, the leachates of the three conventional plastics and PPDO-octane had obvious inhibitory effects on the growth of C. elegans at exposure concentrations higher than 0.01 g plastic/L; however, the toxicity of the PPDO leachates was at least an order of magnitude lower. Therefore, the environmental related concentration of the plastic leachates did not have significant toxic effects. Considering that a single bioassay does not provide comprehensive information on biological implications, this study provided a new integrated and efficient method for the environmental risk assessment (ERA) of plastic leachates. Moreover, the toxicity sensitivity of different organisms varied following exposure to different plastics, thus demonstrating that multiple organisms from different trophic levels should be included in the ERA for plastics.
Collapse
Affiliation(s)
- Zhuo Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Hairui Yu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Mingyuan Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xinyu Li
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Jin Lei
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Defu He
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Gang Wu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ye Fu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100037, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| |
Collapse
|
42
|
Ruas G, López-Serna R, Scarcelli PG, Serejo ML, Boncz MÁ, Muñoz R. Influence of the hydraulic retention time on the removal of emerging contaminants in an anoxic-aerobic algal-bacterial photobioreactor coupled with anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154262. [PMID: 35271930 DOI: 10.1016/j.scitotenv.2022.154262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/06/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
This work evaluated, for the first time, the performance of an integral microalgae-based domestic wastewater treatment system composed of an anoxic reactor and an aerobic photobioreactor, coupled with an anaerobic digester for converting the produced algal-bacterial biomass into biogas, with regards to the removal of 16 contaminants of emerging concern (CECs): penicillin G, tetracycline, enrofloxacin, ciprofloxacin, sulfamethoxazole, tylosin, trimethoprim, dexamethasone, ibuprofen, naproxen, acetaminophen, diclofenac, progesterone, carbamazepine, triclosan and propylparaben. The influence of the hydraulic retention time (HRT) in the anoxic-aerobic bioreactors (4 and 2.5 days) and in the anaerobic digester (30 and 10 days) on the fate of these CECs was investigated. The most biodegradable contaminants (removal efficiency >80% regardless of HRT) were tetracycline, ciprofloxacin, sulfamethoxazole, tylosin, trimethoprim, dexamethasone, ibuprofen, naproxen, acetaminophen and propylparaben (degraded predominantly in the anoxic-aerobic bioreactors), and tetracycline, sulfamethoxazole, tylosin, trimethoprim and naproxen (degraded predominantly in the anaerobic reactor). The anoxic-aerobic bioreactors provided removal of at least 48% for all CECs tested. The most recalcitrant contaminants in the anaerobic reactor, which were not removed at any of the HRT tested, were enrofloxacin, ciprofloxacin, progesterone and propylparaben.
Collapse
Affiliation(s)
- Graziele Ruas
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Federal University of Mato Grosso do Sul, Faculty of Engineering, Architecture and Urbanism and Geography, Post-graduate Programme of Environmental Technology, 79070-900 Campo Grande, MS, Brazil; Federal Institute of Education, Science and Technology of Mato Grosso do Sul (IFMS), Campus Jardim, 79240-000 Jardim, MS, Brazil
| | - Rebeca López-Serna
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Priscila Guenka Scarcelli
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Federal University of Mato Grosso do Sul, Faculty of Engineering, Architecture and Urbanism and Geography, Post-graduate Programme of Environmental Technology, 79070-900 Campo Grande, MS, Brazil
| | - Mayara Leite Serejo
- Federal Institute of Education, Science and Technology of Mato Grosso do Sul (IFMS), Campus Aquidauana, 79200-000 Aquidauana, MS, Brazil
| | - Marc Árpàd Boncz
- Federal University of Mato Grosso do Sul, Faculty of Engineering, Architecture and Urbanism and Geography, Post-graduate Programme of Environmental Technology, 79070-900 Campo Grande, MS, Brazil
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
43
|
Wang Y, Li J, Lei Y, Li X, Nagarajan D, Lee DJ, Chang JS. Bioremediation of sulfonamides by a microalgae-bacteria consortium - Analysis of pollutants removal efficiency, cellular composition, and bacterial community. BIORESOURCE TECHNOLOGY 2022; 351:126964. [PMID: 35272036 DOI: 10.1016/j.biortech.2022.126964] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics in wastewaters (e.g., sulfonamides (SAs)) are not effectively removed by the conventional bacterial processes. In this study, a microalgae (Scenedesmus obliquus)-based process was evaluated for the removal of SAs. The maximum removal efficiency of sulfadiazine (SDZ) and sulfamethoxazole (SMX) by the consortium was 5.85% and 40.84%, respectively. The lower SDZ biodegradation efficiency could be due to the difference in the lipophilic degree related to cell binding. The presence of SAs did not significantly inhibit the biomass production of the consortium (1311-1952 mg/L biomass) but led to a 36-51% decrease in total polysaccharide content and an increase in microalgae's protein content, which caused granule formation. The presence of SMX and SDZ resulted in an increase in lipid peroxidation activity with a 6.2 and 23.5-fold increase in malondialdehyde content, respectively. Rhodobacter and Phreatobacter were abundant in the consortium with SAs' presence, while alinarimonas, Catalinimonas and Cecembia were seen in their absence.
Collapse
Affiliation(s)
- Yue Wang
- School of Materials and Environmental Engineering, Yantai University, Yantai 264005, China
| | - Jinghua Li
- School of Materials and Environmental Engineering, Yantai University, Yantai 264005, China
| | - Yao Lei
- School of Materials and Environmental Engineering, Yantai University, Yantai 264005, China
| | - Xiaoqiang Li
- School of Materials and Environmental Engineering, Yantai University, Yantai 264005, China
| | - Dillirani Nagarajan
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan.
| |
Collapse
|
44
|
Azizi D, Arif A, Blair D, Dionne J, Filion Y, Ouarda Y, Pazmino AG, Pulicharla R, Rilstone V, Tiwari B, Vignale L, Brar SK, Champagne P, Drogui P, Langlois VS, Blais JF. A comprehensive review on current technologies for removal of endocrine disrupting chemicals from wastewaters. ENVIRONMENTAL RESEARCH 2022; 207:112196. [PMID: 34634314 DOI: 10.1016/j.envres.2021.112196] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 05/25/2023]
Abstract
In the recent years, endocrine disrupting compounds (EDCs) has received increasing attention due to their significant toxic effects on human beings and wildlife by affecting their endocrine systems. As an important group of emerging pollutant, EDCs have been detected in various aquatic environments, including surface waters, groundwater, wastewater, runoff, and landfill leachates. Their removal from water resources has also been an emerging concern considering growing population as well as reducing access to fresh water resources. EDC removal from wastewaters is highly dependent on physicochemical properties of the given EDCs present in each wastewater types as well as various aquatic environments. Due to chemical, physical and physicochemical diversities in these parameters, variety of technologies consisting of physical, biological, electrochemical, and chemical processes have been developed for their removal. This review highlights that the effectiveness of EDC removal is highly dependent of selecting the appropriate technology; which decision is made upon a full wastewater chemical characterization. This review aims to provide a comprehensive perspective about all the current technologies used for EDCs removal from various aquatic matrices along with rising challenges such as the antimicrobial resistance gene transfer during EDC treatment.
Collapse
Affiliation(s)
- Dariush Azizi
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Ayman Arif
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - David Blair
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Justine Dionne
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Yves Filion
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Yassine Ouarda
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Ana Gisell Pazmino
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Rama Pulicharla
- Department of Civil Engineering, Lassonde School of Engineering, York University, Canada
| | - Victoria Rilstone
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Bhagyashree Tiwari
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Leah Vignale
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, Canada
| | - Pascale Champagne
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada; Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Patrick Drogui
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Valerie S Langlois
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Jean-François Blais
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada.
| |
Collapse
|
45
|
Wu P, Zhang Z, Luo Y, Bai Y, Fan J. Bioremediation of phenolic pollutants by algae - current status and challenges. BIORESOURCE TECHNOLOGY 2022; 350:126930. [PMID: 35247559 DOI: 10.1016/j.biortech.2022.126930] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Industrial production processes, especially petroleum processing, will produce high concentration phenolic wastewater. Traditional wastewater treatment technology is costly and may lead to secondary pollution. In order to avoid the adverse effects of incompletely treated phenolics, more advanced methods are required. Algae bioremediate phenolics through green pathways such as adsorption, bioaccumulation, biodegradation, and photodegradation. At the same time, the natural carbon fixation capacity of algae and its potential to produce high-value products make algal wastewater treatment technology economically feasible. This paper reviews the environmental impact of several types of phenolic pollutants in wastewater and different strategies to improve bioremediation efficiency. This paper focuses on the progress of algae removing phenols by different mechanisms and the potential of algae biomass for further biofuel production. This technology holds great promise, but more research on practical wastewater treatment at an industrial scale is needed in the future.
Collapse
Affiliation(s)
- Ping Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zhaofei Zhang
- Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yeling Luo
- Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yunpeng Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
46
|
Tang X, Steinman AD, Xue Q, Xu Y, Xie L. Simultaneous electrochemical removal of Microcystis aeruginosa and sulfamethoxazole and its ecologic impacts on Vallisneria spiralis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152769. [PMID: 34990666 DOI: 10.1016/j.scitotenv.2021.152769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/04/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
In this study, the simultaneous removal effects of electrochemical oxidation with boron-doped diamond anodes at different current densities were tested on Microcystis aeruginosa and sulfamethoxazole. Flow cytometry and non-invasive micro-test technology were applied to study the physiological states of M. aeruginosa and Vallisneria spiralis leaf cells. As the current density increased, the degradation effect of electrochemical oxidation on sulfamethoxazole and microcystin-LR increased and exceeded 60% within 6 h. In addition, population density of M. aeruginosa, fluorescence response of chlorophyll a, and cytoplasmic membrane integrity decreased, whereas the proportion of cells with excessive accumulation of intracellular reactive oxygen species (ROS) increased. The effect of electrochemical oxidation on the cell population of M. aeruginosa continued after the power was turned off. The physiological state of V. spiralis leaf cells was not severely affected at 10 mA/cm2 for 24 h. Higher current intensity and longer electrolysis time would induce apoptosis or necrosis. In order to achieve a higher target pollutant removal effect and simultaneously avoid damage to the lake ecosystem, the current intensity of the electrochemical oxidation device should not exceed 10 mA/cm2, and a single electrolysis treatment should range from 6 h to 24 h.
Collapse
Affiliation(s)
- Xiaonan Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China; Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Alan D Steinman
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive, Muskegon, MI 49441, USA
| | - Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
| | - Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China.
| |
Collapse
|
47
|
Kiki C, Rashid A, Zhang Y, Li X, Chen TY, Eloise Adéoye AB, Peter PO, Sun Q. Microalgal mediated antibiotic co-metabolism: Kinetics, transformation products and pathways. CHEMOSPHERE 2022; 292:133438. [PMID: 34968512 DOI: 10.1016/j.chemosphere.2021.133438] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/06/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
The mutual interaction of a microalga Chlorella vulgaris with four antibiotics viz. sulfamethoxazole (SMX), trimethoprim (TMP), azithromycin (AZI), and levofloxacin (LEV) individually and in mixture was studied in batch culture. SMX, TMP, and LEV stimulated algal growth, while AZI inhibited its growth. The Combination Index (CI)-isobologram indicated antagonism of the antibiotic mixture on the growth of C. vulgaris. Higher removal efficiency was observed in the mixed antibiotic than in the single antibiotic batch cultures. Biodegradation was the main antibiotic removal mechanism with a similar antibiotic biosorption pattern in single and mix antibiotic cultures. Scanning electron microscopy and Fourier transform infrared spectrophotometry showed minor biochemical alterations on algal cells surface and a stable algal population. Monod kinetics model was successfully applied to understand the growth with respect to the removal efficiency of C. vulgaris in single and mix antibiotic batch cultures. Results indicated relatively higher specific growth rate in the mix antibiotic batch culture with removal efficiency in the order of SMX > LEV > TMP > AZI. In total, 46 metabolites with 18 novel ones of the four antibiotics were identified by using high-resolution mass spectrometry based on the suspect screening approach to propose the potential transformation pathways. Most of the transformation products demonstrated lower toxicity than their respective parents. These findings implied that C. vulgaris could be an outstanding candidate for advanced treatment of antibiotic removal in wastewater.
Collapse
Affiliation(s)
- Claude Kiki
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100043, China; National Institute of Water, University of Abomey-Calavi, 01 BP: 526, Cotonou, Benin
| | - Azhar Rashid
- Department of Environmental Sciences, The University of Haripur, Haripur, 22620, Pakistan
| | - Yiqing Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100043, China
| | - Xi Li
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Tian-Yuan Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100043, China
| | - Adénike Bernice Eloise Adéoye
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100043, China
| | - Philomina Onyedikachi Peter
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100043, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
48
|
Li S, Chu Y, Xie P, Xie Y, Chang H, Ho SH. Insights into the microalgae-bacteria consortia treating swine wastewater: Symbiotic mechanism and resistance genes analysis. BIORESOURCE TECHNOLOGY 2022; 349:126892. [PMID: 35217162 DOI: 10.1016/j.biortech.2022.126892] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the effects of microalgae-bacteria consortia (MBC) (Chlorella pyrenoidosa-activated sludge (AS)) treating swine wastewater with low C/N ratios. After co-culture, the removal rates of NH4+-N and PO43--P increased by 53.84% and 43.52%. Furthermore, the sulfamethoxazole (SMX) degradation rates in MBC were slightly higher than in the activated sludge process. Interestingly, the absolute abundance of antibiotic resistance genes (ARGs) in effluent from MBC is relatively less than in the AS process. C. pyrenoidosa has a negative zeta potential that allows bacteria to adhere to its surface. The concentrations of carbohydrates and proteins in extracellular polymeric substance (EPS) of MBC dramatically increased compared with the AS process. At the phylum level, Proteobacteria, Bacteroidota, and Cyanobacteria were the main bacteria, while Ascomycota and Basidiomycota were the primary fungi in MBC. Overall, those findings lead to a better understanding of the swine wastewater containing antibiotic treatment by MBC.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yuhao Chu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Youping Xie
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Haixing Chang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
49
|
Ricky R, Chiampo F, Shanthakumar S. Efficacy of Ciprofloxacin and Amoxicillin Removal and the Effect on the Biochemical Composition of Chlorella vulgaris. Bioengineering (Basel) 2022; 9:134. [PMID: 35447694 PMCID: PMC9032391 DOI: 10.3390/bioengineering9040134] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Antibiotics are frequently detected in the aquatic environment due to their excessive usage and low-efficiency removal in wastewater treatment plants. This can provide the origin to the development of antibiotic-resistant genes in the microbial community, with considerable ecotoxicity to the environment. Among the antibiotics, the occurrence of ciprofloxacin (CIP) and amoxicillin (AMX) has been detected in various water matrices at different concentrations around the Earth. They are designated as emerging contaminants (ECs). Microalga Chlorella vulgaris (C. vulgaris) has been extensively employed in phycoremediation studies for its acclimatization property, non-target organisms for antibiotics, and the production of value-added bioproducts utilizing the nutrients from the wastewater. In this study, C. vulgaris medium was spiked with 5 mg/L of CIP and AMX, and investigated for its growth-stimulating effects, antibiotic removal capabilities, and its effects on the biochemical composition of algal cells compared to the control medium for 7 days. The results demonstrated that C. vulgaris adapted the antibiotic spiked medium and removed CIP (37 ± 2%) and AMX (25 ± 3%), respectively. The operating mechanisms were bioadsorption, followed by bioaccumulation, and biodegradation, with an increase in cell density up to 46 ± 3% (CIP) and 36 ± 4% (AMX), compared to the control medium. Further investigations revealed that, in the CIP stress-induced algal medium, an increase in major photosynthetic pigment chlorophyll-a (30%) and biochemical composition (lipids (50%), carbohydrates (32%), and proteins (65%)) was observed, respectively, compared to the control medium. In the AMX stress-induced algal medium, increases in chlorophyll-a (22%), lipids (46%), carbohydrates (45%), and proteins (49%) production were observed compared to the control medium. Comparing the two different stress conditions and considering that CIP is more toxic than AMX, this study provided insights on the photosynthetic activity and biochemical composition of C. vulgaris during the stress conditions and the response of algae towards the specific antibiotic stress. The current study confirmed the ability of C. vulgaris to adapt, bioadsorb, bioaccumulate, and biodegrade emerging contaminants. Moreover, the results showed that C. vulgaris is not only able to remove CIP and AMX from the medium but also can increase the production of valuable biomass usable in the production of various bioproducts.
Collapse
Affiliation(s)
- Rajamanickam Ricky
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India; (R.R.); (S.S.)
| | - Fulvia Chiampo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Subramaniam Shanthakumar
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India; (R.R.); (S.S.)
| |
Collapse
|
50
|
Yu C, Pang H, Wang JH, Chi ZY, Zhang Q, Kong FT, Xu YP, Li SY, Che J. Occurrence of antibiotics in waters, removal by microalgae-based systems, and their toxicological effects: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151891. [PMID: 34826467 DOI: 10.1016/j.scitotenv.2021.151891] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 05/27/2023]
Abstract
Global antibiotics consumption has been on the rise, leading to increased antibiotics release into the environment, which threatens public health by selecting for antibiotic resistant bacteria and resistance genes, and may endanger the entire ecosystem by impairing primary production. Conventional bacteria-based treatment methods are only moderately effective in antibiotics removal, while abiotic approaches such as advanced oxidation and adsorption are costly and energy/chemical intensive, and may cause secondary pollution. Considered as a promising alternative, microalgae-based technology requires no extra chemical addition, and can realize tremendous CO2 mitigation accompanying growth related pollutants removal. Previous studies on microalgae-based antibiotics removal, however, focused more on the removal performances than on the removal mechanisms, and few studies have concerned the toxicity of antibiotics to microalgae during the treatment process. Yet understanding the removal mechanisms can be of great help for targeted microalgae-based antibiotics removal performances improvement. Moreover, most of the removal and toxicity studies were carried out using environment-irrelevant high concentrations of antibiotics, leading to reduced guidance for real-world situations. Integrating the two research fields can be helpful for both improving antibiotics removal and avoiding toxicological effects to primary producers by the residual pollutants. This study, therefore, aims to build a link connecting the occurrence of antibiotics in the aquatic environment, the removal of antibiotics by microalgae-based processes, and the toxicity of antibiotics to microalgae. Distribution of various categories of antibiotics in different water environments were summarized, together with the antibiotics removal mechanisms and performances in microalgae-based systems, and the toxicological mechanisms and toxicity of antibiotics to microalgae after either short-term or long-term exposure. Current research gaps and future prospects were also analyzed. The review could provide much valuable information to the related fields, and provoke interesting thoughts on integrating microalgae-based antibiotics removal research and toxicity research on the basis of environmentally relevant concentrations.
Collapse
Affiliation(s)
- Chong Yu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Hao Pang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Dalian SEM Bioengineer and Biotech Co. Ltd., Dalian 116620, PR China.
| | - Zhan-You Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Qian Zhang
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China
| | - Fan-Tao Kong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Yong-Ping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Dalian SEM Bioengineer and Biotech Co. Ltd., Dalian 116620, PR China
| | - Shu-Ying Li
- Dalian SEM Bioengineer and Biotech Co. Ltd., Dalian 116620, PR China
| | - Jian Che
- Dalian Xinyulong Marine Biological Seed Technology Co. Ltd., Dalian 116222, PR China
| |
Collapse
|