1
|
Chen C, Zheng N, Zhu H, An Q, Li X, Peng L, Xiu Z. Polylactic acid microplastics and earthworms drive cadmium bioaccumulation and toxicity in the soil-radish health community. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138391. [PMID: 40286655 DOI: 10.1016/j.jhazmat.2025.138391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Recent studies underscored the toxicity of microplastics (MPs) as vectors for cadmium (Cd) in soil-plant systems, yet the driven potential of soil fauna in real-world environments remains overlooked. This study examined the interactive effects of earthworms and polylactic acid (PLA) MPs (0.5 % w/w) on rhizosphere biochemistry and Cd (2 mg/kg)-induced phytotoxicity in radish. The combined treatment of earthworms and PLA MPs significantly increased the soil available Cd (diethylenetriaminepentaacetic acid -extractable Cd) from 0.79 mg/kg to 1.01 mg/kg compared to the Cd treatment (p < 0.05) and enhanced the bacterial network stability. Cd accumulation in radish was significantly elevated under the combined treatment (roots: 2.04 mg/kg; leaves: 12.31 mg/kg) compared to the Cd treatment (roots: 1.59 mg/kg; leaves: 8.82 mg/kg) (p < 0.05). The combined treatment activated the radish antioxidant system. The combined treatment (roots: 6.08 g; leaves: 1.65 g) significantly reduced radish biomass compared to the Cd treatment (roots: 24.41 g; leaves: 4.45 g) (p < 0.05). Metabolic pathways involving lipid and carbohydrate metabolism, membrane transport, and secondary metabolite biosynthesis were disrupted. Structural equation modeling identified rhizosphere soil properties (pH, SOM, and CEC) as well as Cd and antioxidant systems in the leaf as major contributors to radish growth inhibition.
Collapse
Affiliation(s)
- Changcheng Chen
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China.
| | - Huicheng Zhu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Liyuan Peng
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Zhifei Xiu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| |
Collapse
|
2
|
Chen JY, Qin LJ, Long T, Wu RT, Niu SH, Liu S, Deng WK, Liao XD, Xing SC. Effortless rule: Effects of oversized microplastic management on lettuce growth and the dynamics of antibiotic resistance genes from fertilization to harvest. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138046. [PMID: 40157188 DOI: 10.1016/j.jhazmat.2025.138046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
The complexity of soil microplastic pollution has driven deeper exploration of waste management strategies to evaluate environmental impact. This study introduced oversized microplastics (OMPs, 1-5 mm) during membrane composting to produce organic fertilizers, and conducted a 2 × 2 pot experiment: exogenous OMPs were added when normal fertilizer (no OMPs intervention) was applied, while artificial removal of OMPs was implemented when contaminated fertilizer (with OMPs) was used. The study assessed the effects of these management strategies on lettuce growth, soil environments, and potential biological safety risks related to the spread and expression of high-risk antibiotic resistance genes (ARGs) in humans. Results showed that both exogenous OMPs addition and removal negatively affected plant height and harvest index, with shifts in the rhizosphere microbial community identified as a key factor rather than soil nutrients. Exogenous OMPs altered rhizosphere and endophytic microbial communities, and plant growth-promoting bacteria were transferred to the surface of OMPs from rhizosphere soil. In contrast, bacteria such as Truepera, Pseudomonas, and Streptomyces in compost-derived OMPs supported lettuce growth, and their removal negated these effects. Some endophytic bacteria may promote growth but pose public health risks when transmitted through the food chain. OMPs in composting or planting significantly enhanced the expression of target ARGs in lettuce, particularly blaTEM. However, simulated digestion results indicated that OMPs reduced the expression of six key ARGs, including blaTEM, among the ten critical target ARGs identified in this context. Notably, the removal management strategies raised five of them posing potential risks from lettuce consumption. This study highlights that both introducing and removing OMPs may pose ecological and food safety risks, emphasizing the need for optimized organic waste management strategies to mitigate potential health hazards.
Collapse
Affiliation(s)
- Jing-Yuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lin-Jie Qin
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Tiao Long
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Rui-Ting Wu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Shi-Hua Niu
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuo Liu
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wei-Kang Deng
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, Guangdong 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, Guangdong 510642, China
| | - Si-Cheng Xing
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, Guangdong 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
3
|
Liu S, Feng S, Zhang Y, Zheng Y, Jiang R, Ouyang G. Impact of microplastics on plant biogenic volatile organic compounds emission: A preliminary study. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138000. [PMID: 40157189 DOI: 10.1016/j.jhazmat.2025.138000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/03/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Plants produce biogenic volatile organic compounds (BVOCs) that are essential for interacting with the environment. As emerging pollutants, microplastics (MPs) may influence BVOCs emissions, yet their effects remain poorly underexplored. This study employed headspace solid phase microextraction coupled with gas chromatography - mass spectrum to investigate the impact of MPs on the BVOC emission profiles of lettuce (Lactuca sativa). Our results demonstrated that polystyrene (PS) MPs exposure, even at environmental concentrations (0.5-2 mg/L), significantly altered BVOC profiles, with a marked increase in aldehydes and ketones. A 7-fold increase in phenylacetaldehyde and benzaldehyde at 50 mg/L indicated stress-related metabolic changes, which also evidenced by reduced superoxide dismutase (SOD) activity and shifts in root microbial communities. The key discriminating BVOCs identified suggest that the presence of MPs impact plant survival and adaptability, with emissions originating from various metabolic pathways, including phenylpropanoid, lipoxygenase, and terpenoid synthesis pathways. Furthermore, variations in type, size, and aging treatment of MPs influenced BVOCs emission patterns. Our findings underscore the significance of BVOCs as indicators of exposure risks associated with MPs and highlight the ecological threats posed by these pollutants.
Collapse
Affiliation(s)
- Shuqin Liu
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Shengmei Feng
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Yanping Zhang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Yang Zheng
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Ruifen Jiang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
4
|
Tang S, Qian J, Zhu Y, Lu B, He Y, Liu Y, Xu K, Shen J. Polystyrene nanoplastics reshape the peatland plants (Sphagnum) bacteriome under simulated wet-deposition pathway: Insights into unequal impact of ecological niches. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138004. [PMID: 40122008 DOI: 10.1016/j.jhazmat.2025.138004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Nanoplastics (NPs) enter peatlands through atmospheric deposition, yet their effects on Sphagnum bacterial communities (SBCs) and plant-self remain unknown. We hypothesize that NPs alter the composition, structure, and co-occurrence pattern of epiphytes (Epi) and endophytes (En), thereby differentially affecting the growth and physiological performance of Sphagnum. The 30-day simulated wet deposition experiment was conducted to test this. Here, polystyrene NPs reduced the α-diversity of SBCs, unevenly reshaped the structure of Epi and En. Mfuzz clustering was used to reveal the co-abundance behavior of SBCs, and the null model found SBCs relied on stochastic assembly, formed stable Epi molecular ecological network (MEN) and connected En MEN. NPs disrupted symbiosis of SBCs, with high-abundance phyla reductions impacting MENs and low-abundance phyla affecting the inter-domain ecological network (IDEN) between Epi and En. Increasingly positive NPs (from carboxyl-modified to unmodified, and then to amino-modified NPs) further decreased SBCs abundance. Key clusters of Proteobacteria (Pro.), with α-Pro. and γ-Pro. as module hubs of MENs, and β-Pro. as a network hub in the IDEN, could reflect these changes. Additionally, NPs lowered plant spread area (P < 0.05) and chlorophyll content (P < 0.01), but the reduction in biomass was not significant. Structural equation modeling showed reduced SBCs α-diversity alleviated the NPs phytotoxicity (up to 33.31 % offset), as genetic analysis revealed that methane oxidation, carbon fixation, and trace element metabolism may upregulate plant nutrient supply. Our findings offer critical insights into NPs deposition risks in remote areas and highlight the responses of plant-bacteriome symbiosis.
Collapse
Affiliation(s)
- Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yueming Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China.
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yin Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Kailin Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Junwei Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
5
|
Wang J, Zhu Z, Sun L, Sun Y, Yang S, Qin Q, Xue Y. The bridging role of soil organic carbon in regulating bacterial community by microplastic pollution: Evidence from different microplastic additions. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137761. [PMID: 40020302 DOI: 10.1016/j.jhazmat.2025.137761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
The serious threat posed by microplastics pollution to soil ecosystems and human health has attracted worldwide attention. Microplastics of different types are present in the soil environment, whereas research about the effects of different microplastics on soil ecology are limited. This study sought to determine how three common microplastics (polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC)) affect soil physicochemical characteristics, enzyme activities, bacterial community, and their metabolic pathways at a 1 % w/w concentration. All three microplastic treatments significantly increased soil organic carbon (SOC), labile organic C fractions, and enhanced soil carbon to nitrogen ratio. PE, PS, and PVC microplastics exhibited promotion of α-glucosidase (α-GC), sucrase (SC), and alkaline phosphatase (AKP) activities. PS microplastics caused a significant increase in N-acetyl-β-D-glucosidase (NAG) and leucine aminopeptidase (LAP) activities, while PVC microplastics significantly decreased β-glucosidase (β-GC) activity. Microplastic treatments increased the bacterial community diversity while altering its composition. Proteobacteria and Chloroflexi were the dominant bacterial phyla in the soil, with microplastic treatments increasing the relative abundance of Chloroflexi and decreasing that of Proteobacteria. Functional prediction analysis indicated that microplastic treatments enriched genes involved in carbohydrate and amino acid metabolism, while reducing the abundance of genes related to signal transduction and cell motility. Correlation and pathway analyses revealed that microplastics affect bacterial community diversity and composition through direct and indirect effects (by acting on SOC or its key labile fractions), thereby influencing soil enzyme activities. In conclusion, the work emphasizes the impacts of different microplastics on soil ecosystems in terms of commonalities and dissimilarities, with the innovative finding of indirect regulation of bacterial community by SOC under microplastics contamination. This provides new perspectives for subsequent studies.
Collapse
Affiliation(s)
- Jun Wang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agri-culture and Rural Affairs, Shanghai 201403, China
| | - Zhengyi Zhu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Lijuan Sun
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agri-culture and Rural Affairs, Shanghai 201403, China
| | - Yafei Sun
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agri-culture and Rural Affairs, Shanghai 201403, China
| | - Shiyan Yang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agri-culture and Rural Affairs, Shanghai 201403, China
| | - Qin Qin
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agri-culture and Rural Affairs, Shanghai 201403, China.
| | - Yong Xue
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agri-culture and Rural Affairs, Shanghai 201403, China.
| |
Collapse
|
6
|
Li Y, Liu L, Meng X, Qiu J, Liu Y, Zhao F, Tan H. Microplastics affect the nitrogen nutrition status of soybean by altering the nitrogen cycle in the rhizosphere soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137803. [PMID: 40043389 DOI: 10.1016/j.jhazmat.2025.137803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Microplastics (MPs) are widely distributed in agricultural systems. However, studies on the comprehensive effects of MPs on nitrogen cycling in crop rhizosphere soil, and the changes this effect causes to crop growth is still limited. In this study, we investigated how three types of 5 % MPs (polystyrene, PS; polyethylene, PE; polyvinyl chloride, PVC) affect soybean growth by altering rhizosphere soil nitrogen cycling. These MPs have no direct toxic effects on soybean under hydroponic conditions. However, under soil cultivation conditions, PE and PS promoted soybean growth and increased soybean roots nitrogen content and nitrogen assimilation enzyme activity, while PVC does the opposite. Further study found that PE and PS increased the inorganic nitrogen content, and the activity of nitrogen cycle-related enzymes and the abundance of genes and microorganism in rhizosphere soil. Meanwhile, PVC significantly reduced the inorganic nitrogen contents, inhibited the activity of nitrogen cycling related enzymes, and destroyed the microbial community structure in rhizosphere soil. More importantly, PVC significantly reduced the abundance of nitrogen cycle-related genes and microorganisms, and increased the abundance of viruses. These results indicated that PE and PS promote soybean growth by activating the nitrogen cycle in the rhizosphere soil and increasing the soil nitrogen content, whereas PVC inhibits soybean growth by disrupting the nitrogen cycle in the rhizosphere soil and reducing its nitrogen content.
Collapse
Affiliation(s)
- Yuanfu Li
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Li Liu
- Guangxi Subtropical Crops Research Institute, Nanning, Guangxi 530004, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Nanning, Guangxi 530004, China
| | - Xiaoou Meng
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Jingsi Qiu
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Yanmei Liu
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Feng Zhao
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Huihua Tan
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
7
|
He Z, Wang Y, Fu Y, Qin X, Lan W, Shi D, Tang Y, Yu F, Li Y. Potential impacts of polyethylene microplastics and heavy metals on Bidens pilosa L. growth: Shifts in root-associated endophyte microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137698. [PMID: 40020290 DOI: 10.1016/j.jhazmat.2025.137698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/30/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
This study investigates the impact of polyethylene (PE) microplastics of varying particle sizes and concentrations on the growth of Bidens pilosa L. and its root-associated microbial communities in cadmium (Cd) and lead (Pb) co-contaminated soil. PE microplastics had a significant impact on plant growth. Notably, at the P05-10 level, root length, root weight, and total biomass exhibited the greatest reductions by 48.9 %, 44.1 %, and 45.2 %, respectively. Furthermore, PE microplastics reduced photosynthetic pigment levels and promoted the accumulation of reactive oxygen species, as indicated by a 264.8 % and 57.2 % increase in H2O2 content in roots and leaves. High-throughput sequencing revealed substantial alterations in the composition of bacterial and fungal communities, with stress-resilient taxa such as Actinobacteria, Verrucomicrobiota, and Rhizophagus exhibiting increased relative abundance. Correlation analyses indicated that variations in soil pH and enzymatic activity influenced microbial community structure, which in turn affected plant physiological responses. Functional predictions using PICRUSt2 and BugBase suggested enhanced oxidative stress tolerance, increased secondary metabolite biosynthesis, and a higher prevalence of stress-resistant phenotypes under conditions of elevated PE concentrations and smaller particle sizes. Overall, this study provides novel insights into the potential effects of microplastics on Bidens pilosa L., particularly in its role as a hyperaccumulator, highlighting its capacity for heavy metal uptake under microplastic exposure.
Collapse
Affiliation(s)
- Ziang He
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Yanxue Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Yiyun Fu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Xiaoxiao Qin
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Wei Lan
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Dongyi Shi
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Yingxuan Tang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China.
| | - Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China.
| |
Collapse
|
8
|
Rokni M, Ebrahimpour K. Phytoremediation of polyethylene terephthalate (PET) and polypropylene (PP) microplastics by alfalfa ( Medicago sativa L.). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025:1-12. [PMID: 40492642 DOI: 10.1080/15226514.2025.2516249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2025]
Abstract
Phytoremediation is a plant-based approach for effective biodegradation of environmental pollutants but its efficacy for MPs mainly remains unknown. In this context, in the present study, the biodegradation of polyethylene terephthalate (PET) and polypropylene (PP) microplastics by alfalfa (Medicago sativa L.) was investigated for one year. Treatment with different types and concentrations of MPs showed no significant effects on alfalfa germination rate and growth. Bacterial communities in the rhizosphere of alfalfa with MPs treatment increased significantly compared to untreated controls. Types of MPs showed no effects on bacterial counts. Dehydrogenase (DHO) enzyme activity in the rhizosphere of plants with MPs treatment was significantly higher than plants without MPs treatment but the concentration and types of MPs showed no significant effects on rhizosphere DHO activity. The mean degradation rate for PET-MPs and PP-MPs was 0.29% and 0.44%, respectively. The increase of MPs concentration in the soil from 2 to 10 g/kg elevated the mean degradation rate from 0.26% to 0.48%. Rhizodegradation of MPs is a consequence of complex interactions between MPs, root exudates and microbial activities in the rhizosphere. Therefore, phytoremediation using alfalfa could be considered as a potential method for in situ removal of MPs from the soil.
Collapse
Affiliation(s)
- Mojgan Rokni
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Ebrahimpour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Shi R, Lian Y, Zeb A, Liu J, Yu M, Wang Q, Wang J, Fu X, Liu W. Foliar exposure to microplastics disrupts lettuce metabolism and negatively interferes with symbiotic microbial communities. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109823. [PMID: 40147322 DOI: 10.1016/j.plaphy.2025.109823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/07/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Plant leaves are considered an important sink for atmospheric microplastics (MPs) because they serve as a vital interface between the atmosphere and terrestrial ecosystems. However, there is still a dearth of information regarding how plant-symbiotic microbe-soil systems are affected by foliar exposure to MPs. In this study, MPs (polystyrene (PS), polyethylene (PE), and polypropylene (PP)) were sprayed over soil-cultivated lettuce (Lactuca sativa L.) four occasions, with final sprays containing 0.4 and 4 μg of MPs per plant. MPs had no discernible impact on lettuce growth as compared to the control group. However, MPs led to reductions in relative chlorophyll content from 16.91 to 30.64 % and net photosynthetic rate from 6.64 to 81.41 %. These results validate the phytotoxicity linked to MP exposure through foliar application. The presence of MPs triggered interspecific competition among phyllosphere microbial species and reduced microbial network complexity by forming ecological niches and regulating carbon- and nitrogen-related metabolic pathways. Furthermore, MPs inhibited the growth of beneficial bacteria in the rhizosphere soil, including a variety of plant growth-promoting bacteria (PGPR) such as Rhizobiales, Pseudomonadales, and Bacillales. This study identifies the ecological health risks associated with atmospheric MPs, which may have a detrimental impact on crop production and further compromise soil ecosystem security.
Collapse
Affiliation(s)
- Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuhang Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiuping Fu
- Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China.
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
10
|
Bai F, Fan J, Zhang X, Wang X, Liu S. Biodegradation of polyethylene with polyethylene-group-degrading enzyme delivered by the engineered Bacillus velezensis. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137330. [PMID: 39862780 DOI: 10.1016/j.jhazmat.2025.137330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/30/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Microplastics (MPs) pose an emerging threat to vegetable growing soils in Harbin, which have a relatively high abundance (11,065 n/kg) with 17.26 of potential ecological risk of single polymer hazard (EI) and 33.92 of potential ecological risk index (PERI). Polyethylene (PE) is the main type of microplastic pollution in vegetable growing soils in Harbin. In this study, the engineered Bacillus velezensis with polyethylene-group-degrading enzyme pathway (BCAv-PEase) was constructed to enhance the degradation of MPs of PE (PE-MPs). BCAv-PEase increased the biodegradation of PE-MPs, promoted weight loss of PE films, elevated surface tension, and decreased the surface hydrophobicity of PE through upregulating activities of depolymerases, dehydrogenase, and catalase. Mechanism analysis showed that BCAv-PEase degraded PE-MPs by promoting the secretion of PEase, thereby leading to the generation of new oxygenated functional groups within the PE-MPs substrate, which further accelerated the metabolic pathway of PE-MPs. The analysis of the microbial community during the PE-MPs degradation processes revealed that BCAv-PEase emerged as the principal bacterial player and stimulated the abundance of microbes and functional genes associated with the biodegradation of PE. In conclusion, this study provides a potential mechanism for biodegradation of PE-MPs mediated by BCAv-PEase via modulating substrate selectivity and optimizing biocatalytic pathways.
Collapse
Affiliation(s)
- Fuliang Bai
- School of Geographical Science, Harbin Normal University, Harbin 150025, China.
| | - Jie Fan
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Xiangyu Zhang
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Xuemeng Wang
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Shuo Liu
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
11
|
Lin Z, Xu D, Zhao Y, Sheng B, Wu Z, Wen X, Zhou J, Chen G, Lv J, Wang J, Liu G. Micro/Nanoplastics in plantation agricultural products: behavior process, phytotoxicity under biotic and abiotic stresses, and controlling strategies. J Nanobiotechnology 2025; 23:231. [PMID: 40114145 PMCID: PMC11927206 DOI: 10.1186/s12951-025-03314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
With the extensive utilization of plastic products, microplastics/nanoplastics (MPs/NPs) contamination not only poses a global hazard to the environment, but also induces a new threat to the growth development and nutritional quality of plantation agricultural products. This study thoroughly examines the behavior of MPs/NPs, including their sources, entry routes into plants, phytotoxicity under various biotic and abiotic stresses (e.g., salinity, polycyclic aromatic hydrocarbons, heavy metals, antibiotics, plasticizers, nano oxide, naturally occurring organic macromolecular compounds, invasive plants, Botrytis cinerea mycorrhizal fungi.) and controlling strategies. MPs/NPs in agricultural systems mainly originate from mulch, sewage, compost fertilizer, municipal solid waste, pesticide packaging materials, etc. They enter plants through endocytosis, apoplast pathways, crack-entry modes, and leaf stomata, affecting phenotypic, metabolic, enzymatic, and genetic processes such as seed germination, growth metabolism, photosynthesis, oxidative stress and antioxidant defenses, fruit yield and nutrient quality, cytotoxicity and genotoxicity. MPs/NPs can also interact with other environmental stressors, resulting in synergistic, antagonistic, or neutral effects on phytotoxicity. To address these challenges, this review highlights strategies to mitigate MPs/NPs toxicity, including the development of novel green biodegradable plastics, plant extraction and immobilization, exogenous plant growth regulator interventions, porous nanomaterial modulation, biocatalysis and enzymatic degradation. Finally, the study identifies current limitations and future research directions in this critical field.
Collapse
Affiliation(s)
- Zhihao Lin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Donghui Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China.
| | - Yiming Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Bin Sheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhijian Wu
- College of Horticulture, Hunan Agricultural University, Hunan, 410125, China
| | - Xiaobin Wen
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jie Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Ge Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Jun Lv
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Jing Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Guangyang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China.
| |
Collapse
|
12
|
Li C, Cao W, Wu W, Xin X, Jia H. Transcription-metabolism analysis of various signal transduction pathways in Brassica chinensis L. exposed to PLA-MPs. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136968. [PMID: 39731891 DOI: 10.1016/j.jhazmat.2024.136968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/06/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024]
Abstract
Biodegradable plastics, regarded as an ideal substitute for traditional plastics, are increasingly utilized across various industries. However, due to their unique degradation properties, they can generate microplastics (MPs) at a faster rate, potentially posing a threat to plant development. This study employed transcriptomics and metabolomics to investigate the effects of polylactic acid microplastics (PLA-MPs) on the physiological and biochemical characteristics of Brassica chinensis L. over different periods. The findings indicated that exposure to varying concentrations of PLA-MPs had distinct influences on the growth and development of Brassica chinensis L. Transcriptomic analysis showed different concentrations of PLA-MPs directly influenced the expression of genes associated with plant hormones, such as SnRK2 and BnaA01g27170D. In addition, it was observed that these PLA-MPs also impacted plant growth and development by modulating the expression of other genes, eg. related to sulfur metabolism and glycerophosphate metabolism. Metabolomic analysis demonstrated alterations levels of metabolites such as L-glutamine, and arginine in response to PLA-MPs, which influenced pathways related to vitamin B6 metabolism, the one-carbon folate pool, glycerophospholipid metabolism, and cysteine. This study offers new insights into the potential impacts of biodegradable microplastics (BMPs) on plants and underscores the need for further investigation into the potentially more significant effects of BMPs on terrestrial ecosystems.
Collapse
Affiliation(s)
- Chengtao Li
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wen Cao
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wanqing Wu
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xiwei Xin
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Honglei Jia
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|
13
|
Iqbal S, Li Y, Xu J, Worthy FR, Gui H, Faraj TK, Jones DL, Bu D. Smallest microplastics intensify maize yield decline, soil processes and consequent global warming potential. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136993. [PMID: 39754884 DOI: 10.1016/j.jhazmat.2024.136993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/07/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
Microplastic pollution seriously affects global agroecosystems, strongly influencing soil processes and crop growth. Microplastics impact could be size-dependent, yet relevant field experiments are scarce. We conducted a field experiment in a soil-maize agroecosystem to assess interactions between microplastic types and sizes. Microplastics were added to soils used for maize cultivation: either polyethylene or polystyrene, of 75, 150, or 300 µm size. Overall, we found that microplastic contamination led to increased soil carbon, nitrogen and biogeochemical cycling. Polyethylene contamination was generally more detrimental than polystyrene. Smallest polyethylene microplastics (75 µm) were associated with two-fold raised CO2 and N2O emissions - hypothetically via raised microbial metabolic rates. Increased net greenhouse gases emissions were calculated to raise soil global warming potential of soils. We infer that MPs-associated emissions arose from altered soil processes. Polyethylene of 75 µm size caused the greatest reduction in soil carbon and nitrogen pools (1-1.5 %), with lesser impacts of larger microplastics. These smallest polyethylene microplastics caused the greatest declines in maize productivity (∼ 2-fold), but had no significant impact on harvest index. Scanning electron microscopy indicated that microplastics were taken up by the roots of maize plants, then also translocated to stems and leaves. These results raise serious concerns for the impact of microplastics pollution on future soil bio-geochemical cycling, food security and climate change. As microplastics will progressively degrade to smaller sizes, the environmental and agricultural impacts of current microplastics contamination of soils could increase over time; exacerbating potential planetary boundary threats.
Collapse
Affiliation(s)
- Shahid Iqbal
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, Yunnan 654400, China.
| | - Yunju Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, Yunnan 654400, China.
| | - Jianchu Xu
- Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, Yunnan 654400, China; CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, Yunnan 650201, China
| | - Fiona Ruth Worthy
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Heng Gui
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, Yunnan 654400, China.
| | - Turki Kh Faraj
- Department of Soil Science, College of Food and Agricultural Sciences, King Saud University, Saudi Arabia
| | - Davey L Jones
- School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor, Gwynedd LL572UW, UK; Soils West, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch WA6105, Australia
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
14
|
Ritz-Meuret ME, Lippert AR, Ritz T. An economical fluorescent method for microplastic detection in soil samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2389-2397. [PMID: 39963049 DOI: 10.1039/d4ay01893a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Microplastics from urban and industrial waste are threatening ecosystems worldwide. Quantification methods for soil samples have been proposed but typically require complex and expensive laboratory procedures, which are not accessible to the public. Therefore, we developed a simplified Nile Red fluorescent dye method with low-budget materials that can be readily used as a stand-alone demonstration or implemented in environmental education modules. The method was validated on commercial coarse-grain sand spiked with microplastics (1-5 mm). Following incubation with Nile Red dye, the analytes were visually inspected using blue light and orange filter glasses and counted by two independent blinded assessors. Detection of particles was close to 100 percent. Four different types of environmental analytes were subsequently tested with this method: urban lake shore sediment, agricultural soil, gardening soil, and soil from a state park. Urban lake shore and garden soil samples showed the highest density of microplastic particles. Large numbers of smaller particles (<1 mm) were also identified and counted in these analytes, with very good reproducibility by the same assessor and replication of the rank order of analytes between two assessors. Visualizing microplastic pollution with this low-cost, scalable method can reach broad sections of educational settings and the broader public and thus raise awareness of the problem of microplastic pollution.
Collapse
Affiliation(s)
- Madalena E Ritz-Meuret
- Hockaday School, Dallas, TX, USA
- Department of Chemistry, Southern Methodist University, Dallas, TX, USA.
| | | | - Thomas Ritz
- Department of Psychology, Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
15
|
Xie R, Li M, Feng Z, Xie J, Joseph A, Uchimiya M, Wang Y. Changes in the spectroscopic response of soil organic matters by PBAT microplastics regulated the Cd adsorption behaviors in different soils. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:103. [PMID: 40042677 DOI: 10.1007/s10653-025-02417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/23/2025] [Indexed: 04/02/2025]
Abstract
Contamination of microplastics (MPs) and heavy metals occurs frequently in terrestrial ecosystems, but their interactions remain unclear. A 60-day incubation experiment was conducted to study the behaviors of cadmium (Cd) in polybutylene adipate terephthalate (PBAT) MPs-contaminated soils, with different doses (1, 10%) and sizes (150-300 and 75-150 μm). Soil chemical properties, including the three-dimensional fluorescence of dissolved organic matter (DOM) and microbial diversity in both farmland and woodland soils were analyzed. Results showed that soil properties, especially the components and fluorescence characteristics of DOM varied with soil types and PBAT properties. Higher soil chemical properties and microbial diversity were found in woodland soils. The soluble microbial by-product substances and humic acid-like substance were dominated in soil DOM, while the proportions of fulvic/humic-acid like substances and soil humification decreased with the addition of 10% PBAT. Soil microbial diversity increased with doses of PBAT, but not sensitive to the sizes of PBAT. The adsorption capacity of Cd decreased with the addition of PBAT, especially in the 10% and 75-150 μm PBAT treatments. Both Langmuir and Freundlich models fitted well with the adsorption isotherms of Cd. Multiple correlation analyses showed that low molecular weight fractions, humus index of DOM and soil microbial diversity such as Shannon, Simpson, and Pielou all positively correlated with the adsorption behaviors of Cd in PBAT-contaminated soils. Biodegradable MPs can change soil quality and promote the release of soil Cd, which deserves further research attention.
Collapse
Affiliation(s)
- Rongxin Xie
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Ming Li
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, 210042, People's Republic of China
| | - Zhiwang Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jiayi Xie
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Akaninyene Joseph
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
- Department of Biosciences and Biotechnology, Faculty of Science, University of Medical Sciences, Ondo City, 351101, Nigeria
| | - Minori Uchimiya
- USDA-ARS Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA, 70124, USA
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| |
Collapse
|
16
|
Arshad M, Ma Y, Gao W, Zhang S, Shoaib M, Liu X, Fan Y, Li G, Chuai H, Jiang Y, Jiao J, Zhang H, Wu J, Hu F, Li H. Polypropylene microplastic exposure modulates multiple metabolic pathways in tobacco leaves, impacting lignin biosynthesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:118005. [PMID: 40043503 DOI: 10.1016/j.ecoenv.2025.118005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
The adverse effects of microplastics (MPs) and nanoplastics (NPs) on plant growth have gained significant attention. However, the response of tobacco plants to polypropylene microplastics (PP-MPs) remains poorly understood. To address this, a microcosm experiment was conducted in which tobacco seedlings were exposed to PP-MPs at varying concentrations (100 and 1000 mg/kg) and particle sizes (20 nm and 100 µm) for 48 days in red soil. The physicochemical, transcriptomic, and metabolic responses of tobacco plants to PP-MP treatments were assessed. Our findings indicate that the effect of PP-MP exposure on tobacco growth was dose-dependent, with the higher doses (1000 mg/kg) inducing significantly stronger responses. Further, a significant accumulation of key metabolites in the phenylpropanoid and flavonoid biosynthesis pathways such as quercetin, phloretin, kaempferol, liquiritigenin, naringin, myricetin, ferulic acid, formaldehyde, and methyl eugenol was observed in response to PP-MPs. Additionally, the transcriptomic analysis revealed that higher doses enriched more DEGs than lower. KEGG pathway analysis identified significant enrichment in phenylpropanoid biosynthesis, flavonoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, and plant hormone signal transduction. The notable variation in the expression of key enzyme-related genes such as PAL, CHI, CSE, C4H, 4CL, COMT, and CYP indicates the substantial impact on lignin synthesis. Lastly, large-sized PPMPs alter the activity of key lignin-degrading enzymes, affecting the lignin content. This study offers valuable insights into the responses of tobacco plants to varying concentrations and sizes of PP-MPs, integrating both physicochemical and molecular perspectives.
Collapse
Affiliation(s)
- Muhammad Arshad
- The sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China; Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yaowu Ma
- College of Resources and Environmental Science, Henan Agricultural University, Zhengzhou, China
| | - Weichang Gao
- Guizhou Academy of Tobacco Science, Guiyang, China
| | - Shixiang Zhang
- Zhengzhou Tobacco Research Institute of CNTN, Zhengzhou, China
| | - Muhammad Shoaib
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xinru Liu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yingkai Fan
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Gen Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Huiyu Chuai
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ying Jiang
- College of Resources and Environmental Science, Henan Agricultural University, Zhengzhou, China
| | - Jiaguo Jiao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Huijuan Zhang
- The sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China; Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China; Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Nanjing Agricultural University, Nanjing, China.
| | - Jun Wu
- The sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China; Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China; Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Nanjing Agricultural University, Nanjing, China.
| | - Feng Hu
- The sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China; Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Huixin Li
- The sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China; Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
17
|
Liu L, Hua Y, Sun J, Ahmad S, He X, Zhuo Y, Tang J. Carbon Cycling in Wetlands Under the Shadow of Microplastics: Challenges and Prospects. TOXICS 2025; 13:143. [PMID: 40137470 PMCID: PMC11946319 DOI: 10.3390/toxics13030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025]
Abstract
Wetlands are one of the most crucial ecosystems for regulating carbon sequestration and mitigating global climate change. However, the disturbance to carbon dynamics caused by microplastics (MPs) in wetlands cannot be overlooked. This review explores the impacts of MPs on the carbon cycles within wetland ecosystems, focusing on the underlying physicochemical and microbial mechanisms. The accumulation of MPs in wetland sediments can severely destabilize plant root functions, disrupting water, nutrient, and oxygen transport, thereby reducing plant biomass development. Although MPs may temporarily enhance carbon storage, they ultimately accelerate the mineralization of organic carbon, leading to increased atmospheric carbon dioxide emissions and undermining long-term carbon sequestration. A critical aspect of this process involves shifts in microbial community structures driven by selective microbial colonization on MPs, which affect organic carbon decomposition and methane production, thus posing a threat to greenhouse gas emissions. Notably, dissolved organic matter derived from biodegradable MPs can promote the photoaging of coexisting MPs, enhancing the release of harmful substances from aged MPs and further impacting microbial-associated carbon dynamics due to disrupted metabolic activity. Therefore, it is imperative to deepen our understanding of the adverse effects and mechanisms of MPs on wetland health and carbon cycles. Future strategies should incorporate microbial regulation and ecological engineering techniques to develop effective methodologies aimed at maintaining the sustainable carbon sequestration capacity of wetlands affected by MP contamination.
Collapse
Affiliation(s)
- Linan Liu
- Hebei Provincial Key Laboratory of Agroecological Safety, Hebei Engineering Research Center for Ecological Restoration of Seaward Rivers and Coastal Waters, Hebei University of Environmental Engineering, Qinhuangdao 066102, China; (L.L.); (J.S.); (X.H.); (Y.Z.)
| | - Yizi Hua
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China;
| | - Jingmin Sun
- Hebei Provincial Key Laboratory of Agroecological Safety, Hebei Engineering Research Center for Ecological Restoration of Seaward Rivers and Coastal Waters, Hebei University of Environmental Engineering, Qinhuangdao 066102, China; (L.L.); (J.S.); (X.H.); (Y.Z.)
| | - Shakeel Ahmad
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China;
| | - Xin He
- Hebei Provincial Key Laboratory of Agroecological Safety, Hebei Engineering Research Center for Ecological Restoration of Seaward Rivers and Coastal Waters, Hebei University of Environmental Engineering, Qinhuangdao 066102, China; (L.L.); (J.S.); (X.H.); (Y.Z.)
| | - Yuguo Zhuo
- Hebei Provincial Key Laboratory of Agroecological Safety, Hebei Engineering Research Center for Ecological Restoration of Seaward Rivers and Coastal Waters, Hebei University of Environmental Engineering, Qinhuangdao 066102, China; (L.L.); (J.S.); (X.H.); (Y.Z.)
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China;
| |
Collapse
|
18
|
Qiu G, Han Z, Wang T, Sun Z, Deng B, Wu M, Duan Z, Zhang S, Yang X, Zhu G, Wang Q, Yu H. In-Depth Analysis of Soil Microbial Community Succession Model Construction under Microplastics Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3363-3372. [PMID: 39878456 DOI: 10.1021/acs.jafc.4c09059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Although microplastics (MPs) toxicity to soil microorganisms has been preliminarily explored, the underlying reasons affecting the direction of microbial community succession are unclear. This study aimed to investigate the impacts of MPs infer community assembly mechanisms through phylogenetic bin-based null model analysis, network models, and protein function prediction in five typical Northeast China five typical soils. The results show that microbial communities in soils with high organic matter exhibit a stronger response to MPs, with enhanced protein functionality, network regulation, and assembly processes. The presence of MPs increased the drift process in the soil microbial community assembly by 2%, a deterministic process influenced by MPs, and enhanced the complexity and stability of the community assembly. Overall, MPs altered microbial protein function and regulatory networks by affecting diversity and community assembly processes, leading to shifts in microbial community succession. This study provided a theoretical basis for further study of the ecotoxicological effects of MPs in soil.
Collapse
Affiliation(s)
- Guankai Qiu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongmin Han
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Tianye Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Zhenghao Sun
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boling Deng
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meixuan Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongxu Duan
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoqing Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xiutao Yang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Guopeng Zhu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Quanying Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hongwen Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
19
|
Zhang L, Hoagland L, Yang Y, Becchi PP, Sobolev AP, Scioli G, La Nasa J, Biale G, Modugno F, Lucini L. The combination of hyperspectral imaging, untargeted metabolomics and lipidomics highlights a coordinated stress-related biochemical reprogramming triggered by polyethylene nanoparticles in lettuce. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178604. [PMID: 39862496 DOI: 10.1016/j.scitotenv.2025.178604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Polyethylene nanoplastics (NPs) are widely diffused in terrestrial environments, including soil ecosystems, but the stress mechanisms in plants are not well understood. This study aimed to investigate the effects of two increasing concentrations of NPs (20 and 200 mg kg-1 of soil) in lettuce. To this aim, high-throughput hyperspectral imaging was combined with metabolomics, covering both primary (using NMR) and secondary metabolism (using LC-HRMS), along with lipidomics profiling (using ion-mobility-LC-HRMS) and plant performance. Hyperspectral imaging highlighted a reduced plant growth pattern. Several vegetative indexes indicated plant toxicity, with 20 mg kg-1 NPs significantly decreasing lettuce density and vegetation health (as indicated by NDVI and plant senescence reflectance indexes). Consistently, photosynthetic activity also decreased. At the biochemical level, metabolomics and lipidomics pointed out a multi-layered broad biochemical reprogramming of primary and secondary metabolism involving a decrease in sterols, sphingolipids, glycolipids, and glycerophospholipids in response to NPs. The reduction in phosphatidylinositol coincided with an accumulation of diacylglycerols (DAG), suggesting the activation of the phospholipase C lipid signaling pathway. Moreover, nanoplastic treatments down-modulated different biosynthetic pathways, particularly those involved in N-containing compounds and phenylpropanoids. Our mechanistic basis of NPs stress in plants will contribute to a better understanding of their environmental impact.
Collapse
Affiliation(s)
- Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Lori Hoagland
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Yang Yang
- Institute for Plant Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Pier Paolo Becchi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Anatoly P Sobolev
- Institute for Biological Systems, National Research Council (CNR), 00015 Monterotondo, Rome, Italy
| | - Giuseppe Scioli
- Institute for Biological Systems, National Research Council (CNR), 00015 Monterotondo, Rome, Italy
| | - Jacopo La Nasa
- Department of Chemistry and Industrial Chemistry, University of Pisa, 52125 Pisa, Italy
| | - Greta Biale
- Department of Chemistry and Industrial Chemistry, University of Pisa, 52125 Pisa, Italy
| | - Francesca Modugno
- Department of Chemistry and Industrial Chemistry, University of Pisa, 52125 Pisa, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| |
Collapse
|
20
|
Lian J, Cai K, Yin A, Yuan Y, Zhang X, Xu C. Both light and soil moisture affect the rhizosphere microecology in two oak species. Front Microbiol 2025; 16:1506558. [PMID: 39963499 PMCID: PMC11830677 DOI: 10.3389/fmicb.2025.1506558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Understanding the mechanisms by which seedlings respond to light and water regulation, as well as studying the response of rhizosphere microecology to drought stress, are crucial for forest ecosystem management and ecological restoration. To elucidate the response of the rhizosphere microecology of Quercus dentata and Quercus variabilis seedlings to water and light conditions, and to clarify how plants modulate the structure and function of rhizosphere microbial communities under drought stress, we conducted 12 water-light gradient control experiments. These experiments aimed to offer scientific theoretical support for the dynamic changes in rhizosphere soil enzyme activities and microbial community compositions of these two oak species under varying light and moisture conditions, and subsequently assist in the future breeding and cultivation efforts. The results are summarized as follows: (1) The activities of cellulase, urease, and chitinase in the rhizosphere soil of Q. dentata and Q. variabilis were significantly influenced by water and light treatments (p < 0.05). Urease was particularly sensitive to light, while sucrase exhibited sensitivity to light in Q. dentata and no significant difference in Q. variabilis. (2) Compared to Q. dentata, the rhizosphere bacteria of Q. variabilis demonstrated greater adaptability to drought conditions. Significant differences were observed in the composition of microorganisms and types of fungi in the rhizosphere soil of the two Quercus seedlings. The fungal community is significantly influenced by light and moisture, and appropriate shading treatment can increase the species diversity of fungi; (3) Under different water and light treatments, the rhizosphere soil microbial composition and dominant species differed significantly between the two Quercus seedlings. For instance, Streptomyces, Mesorhizobium, and Paecilomyces exhibited significant variations under different treatment conditions. Specifically, under L3W0 (25% light, 75-85% moisture) conditions, Hyphomonadaceae and SWB02 dominated in the Q. dentata rhizosphere, whereas Burkholderiales and Nitrosomonadaceae were prevalent in the Q. variabilis rhizosphere. Overall, the rhizosphere microecology of Q. dentata and Q. variabilis exhibited markedly distinct responses to varying light and water regimen conditions. Under identical conditions, however, the enzyme activity and microbial community composition in the rhizosphere soil of these two oak seedlings were found to be similar.
Collapse
Affiliation(s)
- Jinshuo Lian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Research Center for Urban Forestry, Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, China
| | - Keke Cai
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Research Center for Urban Forestry, Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, China
| | - Aijing Yin
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Research Center for Urban Forestry, Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, China
| | - Yuan Yuan
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xinna Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Research Center for Urban Forestry, Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, China
| | - Chengyang Xu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Research Center for Urban Forestry, Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, China
| |
Collapse
|
21
|
Liu M, Du X, Wang M, Huo Y, Zeng Y, Wu J, Ying X, Wei F, Liu L, Tang J. The Hormesis effect of cadmium on Panax notoginseng and corresponding impact on the rhizosphere microorganism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117839. [PMID: 39914078 DOI: 10.1016/j.ecoenv.2025.117839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 03/03/2025]
Abstract
Panax notoginseng is a famous Chinese traditional medicinal. However, soil cadmium pollution seriously affected the yield and quality of notoginseng. This study systematically investigated the effects of soil Cd stress at different concentrations on the growth of one-year-old notoginseng. The results indicate that Cd exhibits a typical low-dose stimulation and high-dose inhibition effect on the development of notoginseng. At low concentrations (1 mg/kg), Cd promotes the growth of plants, including increased biomass (∼40 % of root dry weight) and higher saponin contents (∼30 % of total saponins). At high concentrations, Cd inhibits the overall growth and metabolism of notoginseng. Meanwhile, the impact of Cd on the rhizospheric micro-environment shows dose dependency. In a low Cd stress environment, the total and unique microbial populations increase, including Rhizobiaceae, Streptomycetaceae, and Mesorhizobium. Conversely, under strong Cd stress, the richness and diversity of the rhizospheric microbial community decrease, while the abundance of cadmium-tolerant species increases, such as Deinococcus and Rhodanobacter.
Collapse
Affiliation(s)
- Mingpeng Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China
| | - Xuanxiang Du
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China
| | - Mulan Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China
| | - Yuewen Huo
- College of Resources and Environment, China Agricultural University, Beijing 100193, China
| | - Yanbo Zeng
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China
| | - Jingheng Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China
| | - Xin Ying
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China
| | - Fugang Wei
- Miaoxiang Notoginseng Company with Limited Liability, Wenshan, Yunnan 66300, China
| | - Li Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China.
| | - Jianguo Tang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China.
| |
Collapse
|
22
|
Miranda GM, Pivato AF, de Fraga FS, Machado VP, Lovato BP, Fricks AT, Santarém E, Prichula J, Trentin DS, de Lima JEA, Ligabue RA. LPDE biodegradation promoted by a novel additive based on silica nanoparticles: Structural, microbial and ecotoxicological characterization. CHEMOSPHERE 2025; 370:143943. [PMID: 39675584 DOI: 10.1016/j.chemosphere.2024.143943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
This study developed a biodegrading additive based on nanosilica and modified by cellulase enzyme in the presence of citric acid and sodium citrate. The additive was tested as a facilitator for biodegradation of the commercial low-density polyethylene (LDPE) in soil. Enzyme immobilization was confirmed by enzymatic assays. Moreover, additive and nanocomposites were characterized by spectroscopic and microscopic techniques. To assess the role of additive in biodegradation, CO2 production in soil was measured at 30 °C for 83 days. Biodegraded nanocomposites were cultivated to isolate possible LDPE-biodegrading microorganisms. Ecotoxicity of the studied materials was evaluated on cucumber (Cucumis sativus L.). CO2 production from LDPE/additive sample was similar to the starch (1055 ± 14 mg and 1078 ± 28 mg, respectively), and higher than pure LDPE (882 ± 34 mg) and LDPE/nanosilica (992 ± 30 mg). Although the presence of LDPE/nanosilica and LDPE/additive led to root length reduction of 24.3 ± 2.3% compared to the control (soil), the accumulation of root biomass was not affected. Furthermore, the nanocomposites did not cause harmful effects on seedling growth. Nine microbial isolates were recovered from biodegraded samples and identified by molecular techniques. It was demonstrated for the first time the LDPE biodegradation potential by four bacterial isolates (Bacillus safensis FO-36b, Lysinibacillus capsici, Bacillus albus N35-10-2 and Bacillus paranthracis Mn5) and two fungal isolates (Cladosporium halotolerans clone EF_526 and Cladosporium sp. MV-2018B isolate MLT-27). Our study sheds light on the biodegradation of commercial LDPE by soil microorganisms using a novel LDPE-biodegrading additive nanocomposite.
Collapse
Affiliation(s)
- Gabriela M Miranda
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola Politécnica, Laboratório de Organometálicos e Resinas, Porto Alegre, RS, Brazil
| | - Andressa F Pivato
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Departamento de Ciências Básicas da Saúde, Laboratório de Bacteriologia & Modelos Experimentais Alternativos, Porto Alegre, RS, Brazil
| | - Flávia S de Fraga
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola Politécnica, Laboratório de Organometálicos e Resinas, Porto Alegre, RS, Brazil
| | - Vinícius P Machado
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola Politécnica, Laboratório de Organometálicos e Resinas, Porto Alegre, RS, Brazil
| | - Bruna P Lovato
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Departamento de Ciências Básicas da Saúde, Laboratório de Bacteriologia & Modelos Experimentais Alternativos, Porto Alegre, RS, Brazil
| | - Alini T Fricks
- Universidade Federal da Bahia (UFBA), Faculdade de Farmácia, Departamento de Análises Bromatológicas, Programa de Pós-Graduação em Ciência de Alimentos, Laboratório de Análises Aplicadas e de Biomateriais e Inovação, Salvador, BA, Brazil
| | - Eliane Santarém
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola de Ciências da Saúde e da Vida, Laboratório de Biotecnologia Vegetal, Porto Alegre, Rio Grande do Sul, Brazil
| | - Janira Prichula
- Harvard Medical School and Mass Eye and Ear, Departments of Microbiology and Ophthalmology, Boston, MA, 02115, USA
| | - Danielle S Trentin
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Departamento de Ciências Básicas da Saúde, Laboratório de Bacteriologia & Modelos Experimentais Alternativos, Porto Alegre, RS, Brazil
| | - Jeane E A de Lima
- Universidade de Brasília (UnB), Instituto de Química, Brasília, DF, Brazil
| | - Rosane A Ligabue
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola Politécnica, Laboratório de Organometálicos e Resinas, Porto Alegre, RS, Brazil.
| |
Collapse
|
23
|
Liu S, Chen B, Wang K, Wang J, Wang K, Suo Y, Yang X, Zhu Y, Zhang J, Lu M, Liu Y. Unveiling the impact of biodegradable polylactic acid microplastics on meadow soil health. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:45. [PMID: 39776269 DOI: 10.1007/s10653-025-02358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
Soil microplastics (MPs) pollution has garnered considerable attention in recent years. The use of biodegradable plastics for mulching has led to significant quantities of plastic entering agro-ecosystems. However, the effects of biodegradable polylactic acid (PLA) plastics on meadow soils remain underexplored. This study investigates the impacts of PLA-MPs of varying particle sizes and concentrations on soil physicochemical properties, enzyme activities, and microbial communities through a 60-day incubation experiment. PLA-MPs increased the pH, soil organic matter, total nitrogen (TN) and available potassium (AK) content, as well as enhanced the activities of superoxide dismutase (S-SOD), peroxidase (S-POD), soil catalase (S-CAT), β-glucosidase (S-β-GC) and urease (S-UE) activities. Conversely, a decrease in alkaline phosphatase (S-ALP) activity was observed. The influence of PLA-MPs on soil physicochemical properties was more pronounced with larger particle sizes, whereas smaller particles had a greater effect on enzyme activities. Additionally, PLA-MPs led to an increase in the abundance of Acidobacteriota, Chloroflexi, and Gemmatimonadota, while the abundance of Proteobacteria, Actinobacteriota, and Patescibacteria declined. Mantel test analysis showed that changes in microbial community composition affected soil properties such as pH, AK, S-UE and S-β-GC. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) analysis demonstrated that PLA-MPs modify bacterial metabolic pathways. Our results suggest that particle size and concentration of PLA-MPs differentially affect soil nutrients and microbial community structure and function, with more significant effects observed at larger particle sizes and higher concentrations.
Collapse
Affiliation(s)
- Shuming Liu
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
- Institute of Resources and Ecology, Yili Normal University, Yining, 835000, China
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yining, 835000, China
| | - Binglin Chen
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Kaili Wang
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Jinghuizi Wang
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Kaili Wang
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Yan Suo
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Xiaoyu Yang
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Yaokun Zhu
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Jiaxing Zhang
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Mengchu Lu
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
- Institute of Resources and Ecology, Yili Normal University, Yining, 835000, China
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yining, 835000, China
| | - Yunqing Liu
- School of Resources and Environment, Yili Normal University, Yining, 835000, China.
- Institute of Resources and Ecology, Yili Normal University, Yining, 835000, China.
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yining, 835000, China.
| |
Collapse
|
24
|
Wang F, Sun J, Han L, Liu W, Ding Y. Microplastics regulate soil microbial activities: Evidence from catalase, dehydrogenase, and fluorescein diacetate hydrolase. ENVIRONMENTAL RESEARCH 2024; 263:120064. [PMID: 39332793 DOI: 10.1016/j.envres.2024.120064] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Soil microbiomes drive many soil processes and maintain the ecological functions of terrestrial ecosystems. Microplastics (MPs, size <5 mm) are pervasive emerging contaminants worldwide. However, how MPs affect soil microbial activity has not been well elucidated. This review article first highlights the effects of MPs on overall soil microbial activities represented by three soil enzymes, i.e., catalase, dehydrogenase, and fluorescein diacetate hydrolase (FDAse), and explores the underlying mechanisms and influencing factors. Abundant evidence confirms that MPs can change soil microbial activities. However, existing results vary greatly from inhibition to promotion and non-significance, depending on polymer type, degradability, dose, size, shape, additive, and aging degree of the target MPs, soil physicochemical and biological properties, and exposure conditions, such as exposure time, temperature, and agricultural practices (e.g., planting, fertilization, soil amendment, and pesticide application). MPs can directly affect microbial activities by acting as carbon sources, releasing additives and pollutants, and shaping microbial communities via plastisphere effects. Smaller MPs (e.g., nanoplastics, 1 to <1000 nm) can also damage microbial cells through penetration. Indirectly, MPs can change soil attributes, fertility, the toxicity of co-existing pollutants, and the performance of soil fauna and plants, thus regulating soil microbiomes and their activities. In conclusion, MPs can regulate soil microbial activities and consequently pose cascading consequences for ecosystem functioning.
Collapse
Affiliation(s)
- Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China.
| | - Jiao Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China
| | - Lanfang Han
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Yuanhong Ding
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China.
| |
Collapse
|
25
|
Irshad MK, Aqeel M, Saleem S, Javed W, Noman A, Kang MW, Khalid N, Lee SS. Mechanistic insight into interactive effect of microplastics and arsenic on growth of rice (Oryza sativa L.) and soil health indicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176875. [PMID: 39395497 DOI: 10.1016/j.scitotenv.2024.176875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Microplastics (MPs) pollution has recently become a major concern for agroecosystems. The interplay between MPs, and heavy metal(loid)s in the soil can intensify the risks to plant growth and human health. The current study investigated the interactive effects of arsenic (As) and biodegradable and petroleum-based conventional MPs on rice growth, As bioavailability, soil bacterial communities, and soil enzyme activities. As-contaminated soil (5 mg kg-1) was treated with conventional MPs i.e., polystyrene (PS) and polyethylene (PE) and biodegradable MPs i.e., polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT) at 0.1 % and 1 % rates. In a pot experiment, rice plants were cultivated in soil co-contaminated with As and MPs. PLA-MPs exhibited significant interactions with As, increasing its bioavailability and impairing rice plant growth by enhancing plant oxidative stress. The results illustrated that T2 treatment (PLA-MPs @ 1 % + As 5 mg kg-1) significantly decreased the root and shoot lengths, root and shoot dry weights as well as the rates of photosynthesis, transpiration, intercellular CO2, and stomatal conductance in rice plants. Biodegradable PLA-MPs @ 1 % resulted in increased uptake of As in rice roots, stems, and leaves by 13.4 %, 38.9 %, and 20.6 %, respectively. In contrast, conventional PE-MPs @ 1 % showed contradictory results with As uptake declined by 2.2 %, 5.1 %, and 9.9 % in rice roots, stem and leaves. Soil enzyme kinetics showed that biodegradable MPs increased the activities of soil catalase, dehydrogenase, and phytase enzymes, whereas both conventional PS and PE-MPs decreased their activities. Moreover, As and PLA-MPs combined stress altered soil bacterial communities by increasing the relative abundance of Protobacteria, Acidobacteria, Chloroflexi, and Firmicutes phyla by 49 %, 29 %, 82 %, and 57 %, respectively. This study provides new insights into MPs-As interactions in soil-plant system and ecological risks associated with their coexistence.
Collapse
Affiliation(s)
- Muhammad Kashif Irshad
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea; Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Muhammad Aqeel
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Saba Saleem
- Department of Statistics, Government Graduate College, 122 JB, Sargodha Road, Faisalabad, Pakistan
| | - Wasim Javed
- Water Management Research Centre (WMRC), University of Agriculture Faisalabad, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Min Woo Kang
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Noreen Khalid
- Department of Botany, Government College Women University Sialkot, Pakistan
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| |
Collapse
|
26
|
Kandaiah R, Ravindran A, Panneerselvan L, Manivannan AC, Kulanthaisamy M, Sobhani Z, Bhagwat-Russell G, Palanisami T. A comprehensive analysis and risk evaluation of microplastics contamination in Australian commercial plant growth substrates: Unveiling the invisible threat. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136310. [PMID: 39486335 DOI: 10.1016/j.jhazmat.2024.136310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
In Australia, quality standards for composts and potting mixes are defined by AS4454-2012 and AS3743-2012. These standards outline key parameters, including physicochemical properties, nutrient content, and plant toxicity. However, they do not address emerging pollutants like microplastics (< 1 mm). This study investigates the prevalence and characteristics of MPs in commercial plant growth substrates (PGS), including nineteen potting mixes and five composts, revealing a significant occurrence of MPs, with concentrations ranging from 233 to 7367 particles Kg-1 and an average of 1869 ± 109 particles Kg-1. MPs categorized by shape, size, and color, with fragments (491 ± 34 particles Kg-1), white colour (3700 ± 917 particles Kg-1), and size 500 µm being predominant. The polymer composition was diverse, with polyethylene being the most prevalent, followed by polypropylene and others. Polyterpene, Polyalkene, Pentaerythritol, and Propylene glycol were identified in PGS for the first time. The structural equation model showed that physicochemical properties like pH, EC, TOC, and heavy metals influence MPs abundance and characteristics. The Polymer Risk Index and Pollution Load Index indicated varying risk levels among the samples. These findings highlight the need to address MPs contamination in PGS to ensure ecosystem safety and human health.
Collapse
Affiliation(s)
- Raji Kandaiah
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Akila Ravindran
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Logeshwaran Panneerselvan
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Arun Chandra Manivannan
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Mohanrasu Kulanthaisamy
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Zahra Sobhani
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Geetika Bhagwat-Russell
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Thava Palanisami
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia.
| |
Collapse
|
27
|
Lo Porto A, Amato G, Gargano G, Giambalvo D, Ingraffia R, Torta L, Frenda AS. Polypropylene microfibers negatively affect soybean growth and nitrogen fixation regardless of soil type and mycorrhizae presence. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135781. [PMID: 39260000 DOI: 10.1016/j.jhazmat.2024.135781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Recent studies have indicated that soil contamination with microplastics (MPs) can negatively affect agricultural productivity, although these effects vary greatly depending on the context. Furthermore, the mechanisms behind these effects remain largely unknown. In this study, we examined the impact of two concentrations of polypropylene (PP) fibers in the soil (0.4 % and 0.8 % w/w) on soybean growth, nitrogen uptake, biological nitrogen fixation (BNF), and water use efficiency by growing plants in two soil types, with and without arbuscular mycorrhizal fungi (AMF). PP contamination consistently reduced vegetative growth (-12 %, on average compared to the control), with the severity of this effect varying significantly by soil type (more pronounced in Alfisol than in Vertisol). The extent of BNF progressively reduced with the increase in PP contamination level in both soils (on average, -17.1 % in PP0.4 and -27.5 % in PP0.8 compared to the control), which poses clear agro-environmental concerns. Water use efficiency was also reduced due to PP contamination but only in the Alfisol (-9 %, on average). Mycorrhizal symbiosis did not seem to help plants manage the stress caused by PP contamination, although it did lessen the negative impact on BNF. These findings are the first to demonstrate the effect of PP on BNF in soybean plants, underscoring the need to develop strategies to reduce PP pollution in the soil and to mitigate the impact of PP on the functionality and sustainability of agroecosystems.
Collapse
Affiliation(s)
- Antonella Lo Porto
- University of Palermo - Department of Agricultural, Food and Forestry Sciences, Italy
| | - Gaetano Amato
- University of Palermo - Department of Agricultural, Food and Forestry Sciences, Italy
| | - Giacomo Gargano
- University of Palermo - Department of Agricultural, Food and Forestry Sciences, Italy
| | - Dario Giambalvo
- University of Palermo - Department of Agricultural, Food and Forestry Sciences, Italy
| | - Rosolino Ingraffia
- University of Palermo - Department of Agricultural, Food and Forestry Sciences, Italy.
| | - Livio Torta
- University of Palermo - Department of Agricultural, Food and Forestry Sciences, Italy
| | | |
Collapse
|
28
|
Chen G, Huang X, Chen P, Gong X, Wang X, Liu S, Huang Z, Fang Q, Pan Q, Tan X. Polystyrene influence on Pb bioavailability and rhizosphere toxicity: Challenges for ramie (Boehmeria nivea L.) in soil phytoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176322. [PMID: 39299333 DOI: 10.1016/j.scitotenv.2024.176322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Microplastics (MPs) and heavy metals often coexist in soil, however their interactions and effects on the soil-plant system remain largely unclear. In this study, ramie (Boehmeria nivea L.) was exposed to soil contaminated with lead (Pb) and polystyrene (PS) of different sizes, dosages, and surface-charged functional groups. This design aimed to simulate the effects of MPs on phytoremediation. The experimental results revealed that PS exacerbated the damaging effects of Pb on ramie. Compared to the effect of Pb alone, PS-COOH had a greater influence on root vigor, leading to a 15.6 % reduction in the active absorption ratio. Laser scanning confocal microscope showed PS entered the roots. Adsorption/desorption experiments demonstrated that PS had a weaker adsorption capacity for Pb than soil but a greater desorption rate than soil when simulating rhizosphere secretion. Moreover, PS reduced soil pH and increased the reducible state of Pb by 6-12 %. After 100 days of phytoremediation, Pb content in the soil with PS-5 μm was 150 μg g-1 less than that in the soil without PS. These results demonstrated that PS improved Pb bioavailability and enhanced the efficiency of Pb uptake by ramie. The redundancy analysis demonstrated that PS mitigated the toxicity of Pb to rhizosphere microorganisms, potentially via its effects on metal chemical fractions, dehydrogenase activity (S-DHA), cation exchange capacity (CEC), and soil organic matter (SOM). This study indicates that the presence of PS could potentially enhance the phytoremediation efficiency of ramie in Pb-contaminated land by influencing soil microenvironmental properties. This study provides insights into the complex interactions of MPs with soil-plant-microbial systems during metal remediation, thereby enhancing our understanding of their environmental impacts.
Collapse
Affiliation(s)
- Gaobin Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xinyi Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, Hunan Province, PR China
| | - Xiaomin Gong
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Xin Wang
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Shaobo Liu
- School of Architecture and Art, Central South University, Changsha 410083, PR China
| | - Zhenhong Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qianzhen Fang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qiuqi Pan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
29
|
de Sousa AKA, Pires KSN, Cavalcante IH, Cavalcante ICL, Santos JD, Queiroz MIC, Leite ACR, Crispim AC, da Rocha Junior ER, Aquino TM, Weingrill RB, Urschitz J, Ospina-Prieto S, Borbely AU. Polystyrene microplastics exposition on human placental explants induces time-dependent cytotoxicity, oxidative stress and metabolic alterations. Front Endocrinol (Lausanne) 2024; 15:1481014. [PMID: 39634179 PMCID: PMC11614646 DOI: 10.3389/fendo.2024.1481014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Microplastics (MPs) are environmental pollutants that pose potential risks to living organisms. MPs have been shown to accumulate in human organs, including the placenta. In this study, we investigated the biochemical impact of 5 μm polystyrene microplastics (PS-MPs) on term placental chorionic villi explants, focusing on cytotoxicity, oxidative stress, metabolic changes, and the potential for MPs to cross the placental barrier. Methods Term placental chorionic explants were cultured for 24 hours with varying concentrations of PS-MPs, with MTT assays used to determine the appropriate concentration for further analysis. Cytotoxicity was assessed using the lactate dehydrogenase (LDH) release assay over a period of up to 72 hours. Reactive oxygen species formation and antioxidant activity were evaluated using biochemical assays. Metabolomic profiling was performed using proton nuclear magnetic resonance (1H NMR). Results Placental explants exposed to 100 μg/mL of PS-MPs showed a significant increase in cytotoxicity over time (p < 0.01). Levels of mitochondrial and total superoxide anion (p < 0.01 and p < 0.05, respectively) and hydrogen peroxide (p < 0.001) were significantly elevated. PS-MP exposure resulted in a reduction in total sulfhydryl content (p < 0.05) and the activities of antioxidant enzymes superoxide dismutase (p < 0.01) and catalase (p < 0.05), while glutathione peroxidase activity increased (p < 0.05), and the oxidized/reduced glutathione ratio decreased (p < 0.05). Markers of oxidative damage, such as malondialdehyde and carbonylated proteins, also increased significantly (p < 0.001 and p < 0.01, respectively), confirming oxidative stress. Metabolomic analysis revealed significant differences between control and PS-MP-exposed groups, with reduced levels of alanine, formate, glutaric acid, and maltotriose after PS-MP exposure. Discussion This study demonstrates that high concentrations of PS-MPs induce time-dependent cytotoxicity, oxidative stress, and alterations in the TCA cycle, as well as in folate, amino acid, and energy metabolism. These findings highlight the need for further research to clarify the full impact of MP contamination on pregnancy and its implications for future generations.
Collapse
Affiliation(s)
| | - Keyla Silva Nobre Pires
- Cell Biology Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Brazil
| | - Isadora Hart Cavalcante
- Cell Biology Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Brazil
| | | | - Julia Domingues Santos
- Cell Biology Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Brazil
| | | | - Ana Catarina Rezende Leite
- Laboratory of Bioenergetics, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio, Brazil
| | - Alessandre Carmo Crispim
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio, Brazil
| | - Edmilson Rodrigues da Rocha Junior
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio, Brazil
| | - Thiago Mendonça Aquino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio, Brazil
| | - Rodrigo Barbano Weingrill
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Johann Urschitz
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Stephanie Ospina-Prieto
- Cell Biology Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Brazil
| | - Alexandre Urban Borbely
- Cell Biology Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Brazil
| |
Collapse
|
30
|
Zeb A, Liu W, Ali N, Shi R, Zhao Y, Wang J, Wang Q, Khan S, Baig AM, Liu J, Khan AA, Ge Y, Li X, Yin C. Impact of Pristine and Aged Tire Wear Particles on Ipomoea aquatica and Rhizospheric Microbial Communities: Insights from a Long-Term Exposure Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39561015 DOI: 10.1021/acs.est.4c07188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Tire wear particles (TWPs), generated from tire abrasion, contribute significantly to environmental contamination. The toxicity of TWPs to organisms has raised significant concerns, yet their effects on terrestrial plants remain unclear. Here, we investigated the long-term impact of pristine and naturally aged TWPs on water spinach (Ipomoea aquatica) and its rhizospheric soil. The results indicated that natural aging reduced the toxicity of TWPs, as evidenced by decreased levels of polycyclic aromatic hydrocarbons (PAHs) in soil and TWPs themselves. Consequently, aged TWPs were found to enhance the plant growth and chlorophyll content, whereas pristine TWPs increased the plant stress. Furthermore, aged TWPs improved soil organic matter (SOM) and total organic carbon (TOC), thereby boosting the microbial enzymes involved in nitrogen cycling. Metabolomic analysis revealed that aged TWPs upregulated key pathways related to carbon and nitrogen metabolism, enhancing plant growth and stress responses. Additionally, rhizosphere bacterial diversity was higher under aged TWPs, favoring nutrient-cycling taxa such as Acidobacteriota and Nitrospirota. Pristine TWPs may lead to overproliferation of certain dominant species, thereby reducing microbial diversity in soil, which could ultimately compromise the soil health. These findings contribute to a deeper understanding of the mechanisms underlying TWP toxicity in plants and highlight the necessity for further research on the impact of aged TWPs across various plant species over different exposure durations for comprehensive risk assessment.
Collapse
Affiliation(s)
- Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Nouman Ali
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yuexing Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Sheharyar Khan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Abdul Mateen Baig
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Amir Abdullah Khan
- School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China
| | - Yichen Ge
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Xiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Chuan Yin
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
31
|
Wang Q, Liu W, Zhou Q, Wang S, Mo F, Wu X, Wang J, Shi R, Li X, Yin C, Sun Y. Planting Enhances Soil Resistance to Microplastics: Evidence from Carbon Emissions and Dissolved Organic Matter Stability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39561382 DOI: 10.1021/acs.est.4c07189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Microplastics (MPs) have become a global hotspot due to their widespread distribution in recent years. MPs frequently interact with dissolved organic matter (DOM) and microbes, thereby influencing the carbon fate of soils. However, the role of plant presence in regulating MPs-mediated changes in the DOM and microbial structure remains unclear. Here, we compared the mechanisms of soil response to 3 common nonbiodegradable MPs in the absence or presence of radish (Raphanus sativus L. var. radculus Pers) plants. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) analysis revealed that MPs reduced the chemodiversity and biodiversity of dissolved organic matter (DOM). MPs enhanced the degradation of lignin-like compounds and reduced the DOM stability. Comparative analysis showed that MPs caused less disturbance to the microbial composition and metabolism in planted soil than in unplanted soil. In unplanted soil, MPs stimulated fermentation while upregulating photoautotrophic activity in planted soil, thereby enhancing system stability. The rhizosphere effect mitigated MPs-induced CO2 emissions. Overall, our study highlights the crucial role of rhizosphere effects in maintaining ecosystem stability under soil microbe-DOM-pollutant interactions, which provides a theoretical basis for predicting the resistance, resilience, and transitions of the ecosystem upon exposure to the anthropogenic carbon source.
Collapse
Affiliation(s)
- Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuting Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fan Mo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinyi Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chuan Yin
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| |
Collapse
|
32
|
Yang J, Li J, Guo Z, Dong Y, Wu X, Zhang W. Effects of microplastics on 3,5-dichloroaniline adsorption, degradation, bioaccumulation and phytotoxicity in soil-chive systems. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:519. [PMID: 39560819 DOI: 10.1007/s10653-024-02305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
Microplastics (MPs) and pesticides are two pollutants of concern in agricultural soils. 3,5-dichloroaniline (3,5-DCA), a highly toxic metabolite of dicarboximide fungicides, commonly co-exists with MPs and poses a risk to the environment and food safety. Batch adsorption and soil incubation experiments were employed to investigate the effects of polyethylene (PE) and polylactic acid (PLA) MPs on the environmental behavior of 3,5-DCA in soil. Chive (Allium ascalonicum) was used as the experimental plant, a pot experiment was conducted to examine the effects of individual or combined exposure to MPs and 3,5-DCA on plant 3,5-DCA bioaccumulation, growth characteristics, and phytotoxicity. The results showed that PE- and PLA-MPs increased the adsorption capacity of soil to 3,5-DCA and prolonged the degradation half-life of 3,5-DCA by 6.24 and 16.07 d, respectively. Two MPs partially alleviated the negative effects of 3,5-DCA on the root length and fresh weight of chives, while PE-MPs had a positive and dose-dependent impact on the contents of photosynthetic pigment in chive leaves. Co-exposure to 3,5-DCA and MPs increased residues of 3,5-DCA in soil and chive roots but had no significant effect on 3,5-DCA residues in chive stems or leaves. Moreover, 3,5-DCA residues in PLA-MP soil were consistently higher than those in PE-MP soil. Conclusively, MPs altered the 3,5-DCA adsorption and degradation behavior in soil, as well as its bioaccumulation in chives. Co-exposure to MPs and 3,5-DCA had dose-dependent and MP-specific effects on chive plant development and phytotoxicity.
Collapse
Affiliation(s)
- Jing Yang
- Institute of Crop Protection, College of Agriculture, Guizhou University, West Side of Jiaxiu South Road, Huaxi District, Guiyang, 550025, Guizhou, China
- Key Laboratory for Agricultural Pest Management of Guizhou Mountainous Region of Guizhou Province, Guiyang, 550025, Guizhou, China
| | - Jiaohong Li
- Institute of Crop Protection, College of Agriculture, Guizhou University, West Side of Jiaxiu South Road, Huaxi District, Guiyang, 550025, Guizhou, China
- Key Laboratory for Agricultural Pest Management of Guizhou Mountainous Region of Guizhou Province, Guiyang, 550025, Guizhou, China
| | - Zhenxiang Guo
- Institute of Crop Protection, College of Agriculture, Guizhou University, West Side of Jiaxiu South Road, Huaxi District, Guiyang, 550025, Guizhou, China
- Key Laboratory for Agricultural Pest Management of Guizhou Mountainous Region of Guizhou Province, Guiyang, 550025, Guizhou, China
| | - Yibo Dong
- Institute of Crop Protection, College of Agriculture, Guizhou University, West Side of Jiaxiu South Road, Huaxi District, Guiyang, 550025, Guizhou, China
- Key Laboratory for Agricultural Pest Management of Guizhou Mountainous Region of Guizhou Province, Guiyang, 550025, Guizhou, China
| | - Xiaomao Wu
- Institute of Crop Protection, College of Agriculture, Guizhou University, West Side of Jiaxiu South Road, Huaxi District, Guiyang, 550025, Guizhou, China.
- Key Laboratory for Agricultural Pest Management of Guizhou Mountainous Region of Guizhou Province, Guiyang, 550025, Guizhou, China.
- Institute of Vegetable Research, Guizhou University, Guiyang, 550025, People's Republic of China.
| | - Wanping Zhang
- Institute of Vegetable Research, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
33
|
Chang N, Chen L, Wang N, Cui Q, Qiu T, Zhao S, He H, Zeng Y, Dai W, Duan C, Fang L. Unveiling the impacts of microplastic pollution on soil health: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175643. [PMID: 39173746 DOI: 10.1016/j.scitotenv.2024.175643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/11/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Soil contamination by microplastics (MPs) has emerged as a significant global concern. Although traditionally associated with crop production, contemporary understanding of soil health has expanded to include a broader range of factors, including animal safety, microbial diversity, ecological functions, and human health protection. This paradigm shifts underscores the imperative need for a comprehensive assessment of the effects of MPs on soil health. Through an investigation of various soil health indicators, this review endeavors to fill existing knowledge gaps, drawing insights from recent studies conducted between 2021 and 2024, to elucidate how MPs may disrupt soil ecosystems and compromise their crucial functions. This review provides a thorough analysis of the processes leading to MP contamination in soil environments and highlights film residues as major contributors to agricultural soils. MPs entering the soil detrimentally affect crop productivity by hindering growth and other physiological processes. Moreover, MPs hinder the survival, growth, and reproductive rates of the soil fauna, posing potential health risks. Additionally, a systematic evaluation of the impact of MPs on soil microbes and nutrient cycling highlights the diverse repercussions of MP contamination. Moreover, within soil-plant systems, MPs interact with other pollutants, resulting in combined pollution. For example, MPs contain oxygen-containing functional groups on their surfaces that form high-affinity hydrogen bonds with other pollutants, leading to prolonged persistence in the soil environment thereby increasing the risk to soil health. In conclusion, we succinctly summarize the current research challenges related to the mediating effects of MPs on soil health and suggest promising directions for future studies. Addressing these challenges and adopting interdisciplinary approaches will advance our understanding of the intricate interplay between MPs and soil ecosystems, thereby providing evidence-based strategies for mitigating their adverse effects.
Collapse
Affiliation(s)
- Nan Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Na Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yi Zeng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Wei Dai
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Chengjiao Duan
- College of Resources and Environment, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
34
|
Liu J, Yu M, Shi R, Ge Y, Li J, Zeb A, Cheng Z, Liu W. Comparative toxic effect of tire wear particle-derived compounds 6PPD and 6PPD-quinone to Chlorella vulgaris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175592. [PMID: 39154997 DOI: 10.1016/j.scitotenv.2024.175592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/04/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a widely used antioxidant in rubber products, and its corresponding ozone photolysis product N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), have raised public concerns due to their environmental toxicity. However, there is an existing knowledge gap on the toxicity of 6PPD and 6PPD-Q to aquatic plants. A model aquatic plant, Chlorella vulgaris (C. vulgaris), was subjected to 6PPD and 6PPD-Q at concentrations of 50, 100, 200, and 400 μg/L to investigate their effects on plant growth, photosynthetic, antioxidant system, and metabolic behavior. The results showed that 6PPD-Q enhanced the photosynthetic efficiency of C. vulgaris, promoting growth of C. vulgaris at low concentrations (50, 100, and 200 μg/L) while inhibiting growth at high concentration (400 μg/L). 6PPD-Q induced more oxidative stress than 6PPD, disrupting cell permeability and mitochondrial membrane potential stability. C. vulgaris responded to contaminant-induced oxidative stress by altering antioxidant enzyme activities and active substance levels. Metabolomics further identified fatty acids as the most significantly altered metabolites following exposure to both contaminants. In conclusion, this study compares the toxicity of 6PPD and 6PPD-Q to C. vulgaris, with 6PPD-Q demonstrating higher toxicity. This study provides valuable insight into the risk assessment of tire wear particles (TWPs) derived chemicals in aquatic habitats and plants.
Collapse
Affiliation(s)
- Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Yichen Ge
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
35
|
Jamil A, Ahmad A, Irfan M, Hou X, Wang Y, Chen Z, Liu X. Global microplastics pollution: a bibliometric analysis and review on research trends and hotspots in agroecosystems. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:486. [PMID: 39509054 DOI: 10.1007/s10653-024-02274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
The prevalence of microplastics (MPs) in agricultural ecosystems poses a notable threat to dynamics of soil ecosystems, crop productivity, and global food security. MPs enter agricultural ecosystems from various sources and have considerable impacts on the physiochemical properties soil, soil organisms and microbial communities, and plants. However, the intensity of these impacts can vary with the size, shape, types, and the concentrations of MPs in the soil. Besides, MPs can enter food chain through consummation of crops grown on MPs polluted soils. In this study, we conducted a bibliometric analysis of 1636 publications on the effects of MPs on agricultural ecosystems from 2012 to May 2024. The results revealed a substantial increase in publications over the years, and China, the USA, Germany, and India have emerged as leading countries in this field of research. Social network analysis identified emerging trends and research hotspots. The latest burst keywords were contaminants, biochar, polyethylene microplastics, biodegradable microplastics, antibiotic resistance genes, and quantification. Furthermore, we have summarized the effects of MPs on various components of agricultural ecosystems. By integrating findings from diverse disciplinary perspectives, this study provides a valuable insight into the current knowledge landscape, identifies research gaps, and proposes future research directions to effectively tackle the intricate challenges associated with MPs pollution in agricultural environments.
Collapse
Affiliation(s)
- Asad Jamil
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Ambreen Ahmad
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Muhammad Irfan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Xin Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Yi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Ziwei Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China.
| |
Collapse
|
36
|
Hou X, Li C, Zhao Y, He Y, Li W, Wang X, Liu X. Distinct impacts of microplastics on the carbon sequestration capacity of coastal blue carbon ecosystems: A case of seagrass beds. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106793. [PMID: 39437480 DOI: 10.1016/j.marenvres.2024.106793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Seagrass beds, as an important coastal blue carbon ecosystem, are excellent at storing organic carbon and mitigating the impacts of global climate change. However, seagrass beds are under threat due to increased human activities and ubiquitous presence of microplastics (MPs) in marine environments. Bibliometric analysis shows that the distribution and accumulation of microplastics in seagrass beds has been widely documented worldwide, but their impacts on seagrass beds, particularly on carbon sequestration capacity, have not been given sufficient attention. This review aims to outline the potential impacts of MPs on the carbon sequestration capacity of seagrass ecosystems across five key aspects: (1) MPs act as sources of organic carbon, contributing to direct pollution in seagrass ecosystems; (2) Impacts of MPs on seagrasses and their epiphytic algae, affecting plant growth and net primary productivity; (3) Impacts of MPs on microorganisms, influencing production of recalcitrant dissolved organic carbon and greenhouse gas; (4) Impacts of MPs on seagrass sediments, altering the quality, structure, properties and decomposition processes of plant litters; (5) Other complex impacts on the seagrass ecosystems, depending on different behaviors of MPs. Latest progress in these fields are summarized and recommendations for future work are discussed. This review can provide valuable insights to facilitate future multidisciplinary investigations and encourage society-wide implementation of effective conservation measures to enhance the carbon sequestration capacity of seagrass beds.
Collapse
Affiliation(s)
- Xin Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Changjun Li
- School of Oceanography, Yantai University, Yantai, 265500, China
| | - Yong Zhao
- 3rd Construction Co., Ltd of China Construction 5th Engineering Bureau, Changsha, 410021, China
| | - Yike He
- Marine Geological Resources Survey Center of Hebei Province, Qinhuangdao, 066000, China
| | - Wentao Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266000, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, 264000, China.
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China.
| |
Collapse
|
37
|
Liu Z, Wang W, Geng Y, Zhang Y, Gao X, Xu J, Liu X. Integrating automated machine learning and metabolic reprogramming for the identification of microplastic in soil: A case study on soybean. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135555. [PMID: 39186842 DOI: 10.1016/j.jhazmat.2024.135555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
The accumulation of polyethylene microplastic (PE-MPs) in soil can significantly impact plant quality and yield, as well as affect human health and food chain cycles. Therefore, developing rapid and effective detection methods is crucial. In this study, traditional machine learning (ML) and H2O automated machine learning (H2O AutoML) were utilized to offer a powerful framework for detecting PE-MPs (0.1 %, 1 %, and 2 % by dry soil weight) and the co-contamination of PE-MPs and fomesafen (a common herbicide) in soil. The development of the framework was based on the results of the metabolic reprogramming of soybean plants. Our study stated that traditional ML exhibits lower accuracy due to the challenges associated with optimizing complex parameters. H2O AutoML can accurately distinguish between clean soil and contaminated soil. Notably, H2O AutoML can detect PE-MPs as low as 0.1 % (with 100 % accuracy) and co-contamination of PE-MPs and fomesafen (with 90 % accuracy) in soil. The VIP and SHAP analyses of the H2O AutoML showed that PE-MPs and the co-contamination of PE-MPs and fomesafen significantly interfered with the antioxidant system and energy regulation of soybean. We hope this study can provide a reliable scientific basis for sustainable development of the environment.
Collapse
Affiliation(s)
- Zhimin Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Weijun Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yibo Geng
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yuting Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Xuan Gao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaolu Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
38
|
Shi R, Liu W, Liu J, Li X, Zeb A, Wang Q, Wang J, Sun Y. Earthworms Enhance Crop Resistance to Insects Under Microplastic Stress by Mobilizing Physical and Chemical Defenses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16282-16290. [PMID: 39236339 DOI: 10.1021/acs.est.4c04379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
To assess the ecological risk of microplastics (MPs) in agricultural systems, it is critical to simultaneously focus on MP-mediated single-organism response and different trophic-level organism interaction. Herein, we placed earthworms in soils contaminated with different concentrations (0.02% and 0.2% w/w) of polyethylene (PE) and polypropylene (PP) MPs to investigate the effect of earthworms on tomato against Helicoverpa armigera (H. armigera) under MPs stress. We found that earthworms alleviated the inhibitory effects of MPs stress on tomato growth and disrupted H. armigera growth. Compared to individual MPs exposure, earthworm incorporation significantly increased the silicon and lignin content in herbivore-damaged tomato leaves by 19.1% and 57.6%, respectively. Metabolites involved in chemical defense (chlorogenic acid) and phytohormones (jasmonic acid) were also activated by earthworm incorporation. Furthermore, earthworms effectively reduced oxidative damage induced by H. armigera via promoting antioxidant metabolism. Overall, our results suggest that utilizing earthworms to regulate above- and below-ground interactions could be a promising strategy for promoting green agriculture.
Collapse
Affiliation(s)
- Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, Tianjin, MARA 300191, China
| |
Collapse
|
39
|
Liu Z, Wu Z, Zhang Y, Wen J, Su Z, Wei H, Zhang J. Impacts of conventional and biodegradable microplastics in maize-soil ecosystems: Above and below ground. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135129. [PMID: 39053066 DOI: 10.1016/j.jhazmat.2024.135129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
The increasing accumulation of microplastics (MPs) in agroecosystems has raised significant environmental and public health concerns, facilitating the application of biodegradable plastics. However, the comparative effects of conventional and biodegradable MPs in agroecosystem are still far from fully understood. Here we developed microcosm experiments to reveal the ecological effects of conventional (polyethylene [PE] and polypropylene [PP]) and biodegradable (polyadipate/butylene terephthalate [PBAT] and polycaprolactone [PCL]) MPs (0, 1%, 5%; w/w) in the maize-soil ecosystem. We found that PCL MPs reduced plant production by 73.6-75.2%, while PE, PP and PBAT MPs elicited almost negligible change. The addition of PCL MPs decreased specific enzyme activities critical for soil nutrients cycling by 71.5-95.3%. Biodegradable MPs tended to reduce bacterial α-diversity. The 1% treatments of PE and PBAT, and PCL enhanced bacterial networks complexity, whereas 5% of PE and PBAT, and PP had adverse effect. Moreover, biodegradable MPs appeared to reduce the α-diversity and networks complexity of fungal community. Overall, PCL reduced the ecosystem multifunctionality, mainly by inhibiting the microbial metabolic activity. This study offers evidence that biodegradable MPs can impair agroecosystem multifunctionality, and highlights the potential risks to replace the conventional plastics by biodegradable ones in agricultural practices.
Collapse
Affiliation(s)
- Ziqiang Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhenzhen Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yirui Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhijun Su
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hui Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Jiaen Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
40
|
Zhao Y, Xie Z, Hu B, Li Y, Teng A, Zhong F. The effects of polypropylene microplastics on the removal of nitrogen and phosphorus from water by Acorus calamus, Iris tectorum and functional microorganisms. CHEMOSPHERE 2024; 364:143153. [PMID: 39197682 DOI: 10.1016/j.chemosphere.2024.143153] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Polypropylene microplastics (PP-MPs), an emerging pollutant, adversely affect the ability of aquatic plants to restore water bodies, thereby compromising the functionality and integrity of wetland ecosystems. This study examines the effects of microplastic stress on the nitrogen and phosphorus removal capacities of Acorus calamus and Iris tectorum, as well as on functional microorganisms within the aquatic system. The findings indicate that under PP-MP stress, the nitrogen and phosphorus absorption capabilities of both plants were diminished. Additionally, there was a significant reduction in the metabolic enzyme activities related to nitrogen and phosphorus in the plants, alongside a notable decrease in leaf nitrogen content. PP-MPs hinder the nutrient uptake of plants, affecting their growth and indirectly reducing their ability to utilize nitrogen and phosphorus. Specifically, in the 10 mg L-1 treatment group, A. calamus and I. tectorum showed reductions in leaf nitrogen content by 23.1% and 31.0%, respectively, and by 14.8% and 27.7% in the 200 mg L-1 treatment group. Furthermore, I. tectorum had higher leaf nitrogen levels than A. calamus. Using fluorescent tagging, the distribution of PP-MPs was traced in the roots, stems, and leaves of the plants, revealing significant growth impairment in both species. This included a considerable decline in photosynthetic pigment synthesis, enhanced oxidative stress responses, and increased lipid peroxidation in cell membranes. PP-MP exposure also significantly reduced the abundance of functional microorganisms involved in denitrification and phosphorus removal at the genus level in aquatic systems. Ecological function predictions revealed a notable decrease in nitrogen cycling functions such as nitrogen respiration and nitrite denitrification among water microorganisms in both treatment groups, with a higher ecological risk potential in the A. calamus treatment group. This study provides new insights into the potential stress mechanisms of PP-MPs on aquatic plants involved in water body remediation and their impacts on wetland ecosystems.
Collapse
Affiliation(s)
- Yilin Zhao
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China.
| | - Zuoming Xie
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China.
| | - Baoming Hu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China.
| | - Yuanle Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China.
| | - Aiting Teng
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China.
| | - Feng Zhong
- Safecleen Technology Co.,Ltd., Wuhan, 430062, PR China.
| |
Collapse
|
41
|
Yan Y, Yang H, Du Y, Li X, Li X. Effects and molecular mechanisms of polyethylene microplastic oxidation on wheat grain quality. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134816. [PMID: 38850928 DOI: 10.1016/j.jhazmat.2024.134816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Polyethylene microplastics (PE MPs) are the main MPs in agricultural soils and undergo oxidation upon environmental exposure. However, the influence of MP oxidation on phytotoxicity (especially for crop fruit) is still limited. This study aimed to explore the effect of PE MP oxidation on crop toxicity. Herein, a combination of plant phenotyping, metabolomic, and transcriptomic approaches was used to evaluate the effects of low-oxidation PE (LOPE) and high-oxidation PE (HOPE) on wheat growth, grain quality, and related molecular mechanisms using pot experiments. The results showed that HOPE induced a stronger inhibition of wheat growth and reduction in protein content and mineral elements than LOPE. This was accompanied by root ultrastructural damage and downregulation of carbohydrate metabolism, translation, nutrient reservoir activity, and metal ion binding gene expression. Compared with HOPE, LOPE activated a stronger plant defense response by reducing the starch content by 22.87 %, increasing soluble sugar content by 44.93 %, and upregulating antioxidant enzyme genes and crucial metabolic pathways (e.g., starch and sucrose, linoleic acid, and phenylalanine metabolism). The presence of PE MPs in the environment exacerbates crop growth inhibition and fruit quality deterioration, highlighting the need to consider the environmental and food safety implications of MPs in agricultural soils.
Collapse
Affiliation(s)
- Yan Yan
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Huijie Yang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Yuan Du
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xiaoqiang Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China.
| |
Collapse
|
42
|
Chen L, Qiu T, Huang F, Zeng Y, Cui Y, Chen J, White JC, Fang L. Micro/nanoplastics pollution poses a potential threat to soil health. GLOBAL CHANGE BIOLOGY 2024; 30:e17470. [PMID: 39149882 DOI: 10.1111/gcb.17470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/29/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
Micro/nanoplastic (MNP) pollution in soil ecosystems has become a growing environmental concern globally. However, the comprehensive impacts of MNPs on soil health have not yet been explored. We conducted a hierarchical meta-analysis of over 5000 observations from 228 articles to assess the broad impacts of MNPs on soil health parameters (represented by 20 indicators relevant to crop growth, animal health, greenhouse gas emissions, microbial diversity, and pollutant transfer) and whether the impacts depended on MNP properties. We found that MNP exposure significantly inhibited crop biomass and germination, and reduced earthworm growth and survival rate. Under MNP exposure, the emissions of soil greenhouse gases (CO2, N2O, and CH4) were significantly increased. MNP exposure caused a decrease in soil bacteria diversity. Importantly, the magnitude of impact of the soil-based parameters was dependent on MNP dose and size; however, there is no significant difference in MNP type (biodegradable and conventional MNPs). Moreover, MNPs significantly reduced As uptake by plants, but promoted plant Cd accumulation. Using an analytical hierarchy process, we quantified the negative impacts of MNP exposure on soil health as a mean value of -10.2% (-17.5% to -2.57%). Overall, this analysis provides new insights for assessing potential risks of MNP pollution to soil ecosystem functions.
Collapse
Affiliation(s)
- Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Fengyu Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Yongxing Cui
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
43
|
Wang J, Liu W, Zeb A, Wang Q, Mo F, Shi R, Sun Y, Wang F. Biodegradable Microplastic-Driven Change in Soil pH Affects Soybean Rhizosphere Microbial N Transformation Processes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16674-16686. [PMID: 39021203 DOI: 10.1021/acs.jafc.4c04206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The potential impacts of biodegradable and nonbiodegradable microplastics (MPs) on rhizosphere microbial nitrogen (N) transformation processes remain ambiguous. Here, we systematically investigated how biodegradable (polybutylene succinate, PBS) MPs and nonbiodegradable (polyethylene, PE) MPs affect microbial N processes by determining rhizosphere soil indicators of typical Glycine max (soybean)-soil (i.e., red and brown soils) systems. Our results show that MPs altered soil pH and dissolved organic carbon in MP/soil type-dependent manners. Notably, soybean growth displayed greater sensitivity to 1% (w/w) PBS MP exposure in red soil than that in brown soil since 1% PBS acidified the red soil and impeded nutrient uptake by plants. In the rhizosphere, 1% PBS negatively impacted microbial community composition and diversity, weakened microbial N processes (mainly denitrification and ammonification), and disrupted rhizosphere metabolism. Overall, it is suggested that biodegradable MPs, compared to nonbiodegradable MPs, can more significantly influence the ecological function of the plant-soil system.
Collapse
Affiliation(s)
- Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fan Mo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuebin Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, China
| |
Collapse
|
44
|
Lu S, Wei S, Li M, Chadwick DR, Xie M, Wu D, Jones DL. Earthworms alleviate microplastics stress on soil microbial and protist communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174945. [PMID: 39043297 DOI: 10.1016/j.scitotenv.2024.174945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
Microplastic (MP) pollution can exert significant pressure on soil ecosystems, however, the interactive effects of MPs on soil bacterial, fungal and protist communities remains poorly understood. Soil macrofauna, such as earthworms, can be directly affected by MPs, potentially leading to a range of feedbacks on the soil microbial community. To address this, we conducted a microcosm experiment to examine the effects of conventional (i.e., polyethylene, polystyrene) and biodegradable MPs (i.e. PBAT, polylactic acid) on the structure of the soil bacterial, fungal, and protist communities in the presence or absence of earthworms. We found that MP contamination negatively affected the diversity and composition of soil microbial and protist communities, with smaller-sized conventional MPs having the most pronounced effects. For example, compared with the unamended control, small-sized polyethylene MPs both significantly reduced the Shannon diversity of soil bacteria, fungi, and protist by 4.3 %, 37.0 %, and 9.1 %, respectively. Biodegradable MPs increased negative correlations among bacteria, fungi, and protists. However, earthworms mitigated these effects, enhancing the diversity and altering the composition of these communities. They also increased the niche width and stability of the soil microbial food web network. Our study indicated that earthworms help attenuate the response of soil microorganisms to MPs stress by influencing the diversity and composition of soil microorganisms and soil physicochemical properties and underscores the importance of considering macrofauna in MPs research.
Collapse
Affiliation(s)
- Siyuan Lu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Shitong Wei
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Meiyan Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - David R Chadwick
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Mengmeng Xie
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| | - Donghui Wu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China; Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China.
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| |
Collapse
|
45
|
Drago G, Aloi N, Ruggieri S, Longo A, Contrino ML, Contarino FM, Cibella F, Colombo P, Longo V. Guardians under Siege: Exploring Pollution's Effects on Human Immunity. Int J Mol Sci 2024; 25:7788. [PMID: 39063030 PMCID: PMC11277414 DOI: 10.3390/ijms25147788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chemical pollution poses a significant threat to human health, with detrimental effects on various physiological systems, including the respiratory, cardiovascular, mental, and perinatal domains. While the impact of pollution on these systems has been extensively studied, the intricate relationship between chemical pollution and immunity remains a critical area of investigation. The focus of this study is to elucidate the relationship between chemical pollution and human immunity. To accomplish this task, this study presents a comprehensive review that encompasses in vitro, ex vivo, and in vivo studies, shedding light on the ways in which chemical pollution can modulate human immunity. Our aim is to unveil the complex mechanisms by which environmental contaminants compromise the delicate balance of the body's defense systems going beyond the well-established associations with defense systems and delving into the less-explored link between chemical exposure and various immune disorders, adding urgency to our understanding of the underlying mechanisms and their implications for public health.
Collapse
Affiliation(s)
- Gaspare Drago
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Noemi Aloi
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Silvia Ruggieri
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Alessandra Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Maria Lia Contrino
- Azienda Sanitaria Provinciale di Siracusa, Corso Gelone 17, 96100 Siracusa, Italy; (M.L.C.); (F.M.C.)
| | - Fabio Massimo Contarino
- Azienda Sanitaria Provinciale di Siracusa, Corso Gelone 17, 96100 Siracusa, Italy; (M.L.C.); (F.M.C.)
| | - Fabio Cibella
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Valeria Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| |
Collapse
|
46
|
Liu J, Han S, Wang P, Zhang X, Zhang J, Hou L, Zhang Y, Wang Y, Li L, Lin Y. Soil microorganisms play an important role in the detrimental impact of biodegradable microplastics on plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172933. [PMID: 38703855 DOI: 10.1016/j.scitotenv.2024.172933] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Biodegradable plastics were developed to mitigate environmental pollution caused by conventional plastics. Research indicates that biodegradable microplastics still have effects on plants and microorganisms as their non-biodegradable counterparts, yet the effects on vegetable crops are not well-documented. Additionally, the function of soil microorganisms affected by biodegradable microplastics on the fate of microplastics remains unverified. In this study, Brassica chinensis was cultivated in soil previously incubated for one year with low-density polyethylene (LDPE-MPs) and poly (butylene adipate-co-terephthalate) microplastics (PBAT-MPs) at 0.05 % and 2 % concentrations. High concentrations of PBAT-MPs significantly reduced the biomass to 5.83 % of the control. The abundance of Methyloversatilis, IS-44, and UTCFX1 in the rhizosphere bacterial community increased significantly in the presence of PBAT-MPs. Moreover, these microplastics significantly enhanced soil enzyme activity. Incubation tests were performed with three PBAT plastic sheets to assess the function of the altered bacterial community in the soil of control (Control-soil) and soil treated with high concentrations of PBAT-MPs (PBAT-MPs-soil). Scanning Electron Microscopy and Atomic Transfer Microscopy (SEM/ATM) results confirmed enhanced PBAT degradation in the PBAT-MPs-soil. PICRUST2 analysis revealed that pathways related to substance degradation were upregulated in the PBAT-MPs-soil. Furthermore, a higher percentage of strains with PBAT-MPs-degrading ability was found in PBAT-MPs-soil. Our results confirm that PBAT-MPs significantly inhibit the growth of vegetable crops and that soil bacterial communities affected by PBAT-MPs are instrumental in degrading them.
Collapse
Affiliation(s)
- Jiaxi Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siqi Han
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peiyuan Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaofeng Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiuyu Zhang
- Institute of Metabolism & Integrative Biology, Fudan University, Shanghai 200438, China
| | - Lijun Hou
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Yiqiong Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yufan Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yanbing Lin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
47
|
Xu S, Zhao R, Sun J, Sun Y, Xu G, Wang F. Microplastics change soil properties, plant performance, and bacterial communities in salt-affected soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134333. [PMID: 38643581 DOI: 10.1016/j.jhazmat.2024.134333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Microplastics (MPs) are emerging contaminants found globally. However, their effects on soil-plant systems in salt-affected habitats remain unknown. Here, we examined the effects of polyethylene (PE) and polylactic acid (PLA) on soil properties, maize performance, and bacterial communities in soils with different salinity levels. Overall, MPs decreased soil electrical conductivity and increased NH4+-N and NO3--N contents. Adding NaCl alone had promoting and inhibitive effects on plant growth in a concentration-dependent manner. Overall, the addition of 0.2% PLA increased shoot biomass, while 2% PLA decreased it. Salinity increased Na content and decreased K/Na ratio in plant tissues (particularly roots), which were further modified by MPs. NaCl and MPs singly and jointly regulated the expression of functional genes related to salt tolerance in leaves, including ZMSOS1, ZMHKT1, and ZMHAK1. Exposure to NaCl alone had a slight effect on soil bacterial α-diversity, but in most cases, MPs increased ACE, Chao1, and Shannon indexes. Both MPs and NaCl altered bacterial community composition, although the specific effects varied depending on the type and concentration of MPs and the salinity level. Overall, PLA had more pronounced effects on soil-plant systems compared to PE. These findings bridge knowledge gaps in the risks of MPs in salt-affected habitats.
Collapse
Affiliation(s)
- Shuang Xu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Rong Zhao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Jiao Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China; Shandong Vocational College of Science and Technology, Weifang, Shandong 261000, PR China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Guangjian Xu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China.
| |
Collapse
|
48
|
Xu L, Xie W, Dai H, Wei S, Skuza L, Li J, Shi C, Zhang L. Effects of combined microplastics and heavy metals pollution on terrestrial plants and rhizosphere environment: A review. CHEMOSPHERE 2024; 358:142107. [PMID: 38657695 DOI: 10.1016/j.chemosphere.2024.142107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/08/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Microplastics (MPs) can enter the soil environment through industry, agricultural production and daily life sources. Their interaction with heavy metals (HMs) poses a significant threat to a variety of terrestrial ecosystems, including agricultural ones, thereby affecting crop quality and threatening human health. This review initially addresses the impact of single and combined contamination with MPs and HMs on soil environment, including changes in soil physicochemical properties, microbial community structure and diversity, fertility, enzyme activity and resistance genes, as well as alterations in heavy metal speciation. The article further explores the effects of this pollution on the growth characteristics of terrestrial plants, such as plant biomass, antioxidant systems, metabolites and photosynthesis. In general, the combined contaminants tend to significantly affect soil environment and terrestrial plant growth, i.e., the impact of combined contaminants on plants weight ranged from -87.5% to 4.55%. Similarities and differences in contamination impact levels stem from the variations in contaminant types, sizes and doses of contaminants and the specific plant growth environments. In addition, MPs can not only infiltrate plants directly, but also significantly affect the accumulation of HMs in terrestrial plants. The heavy metals concentration in plants under the treatment of MPs were 70.26%-36.80%. The co-occurrence of these two pollution types can pose a serious threat to crop productivity and safety. Finally, this study proposes suggestions for future research aiming to address current gaps in knowledge, raises awareness about the impact of combined MPs + HMs pollution on plant growth and eco-environmental security.
Collapse
Affiliation(s)
- Lei Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Wenjun Xie
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Lidia Skuza
- Institute of Biology, Centre for Molecular Biology and Biotechnology, University of Szczecin, Szczecin, 71-415, Poland
| | - Jianan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Cailing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Lichang Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| |
Collapse
|
49
|
Zhang Y, Xu Y, Wu J, Zhou Y, Xu S, Feng Z. Better estimation of evapotranspiration and transpiration using an improved modified Priestly-Taylor model based on a new parameter of leaf senescence in a rice field. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171842. [PMID: 38513864 DOI: 10.1016/j.scitotenv.2024.171842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Evapotranspiration (ET) is at the heart of the global water, energy, and carbon cycles. As ET is difficult and expensive to measure, it is crucial to develop estimation models that can be widely applied. Currently, an improved Priestley-Taylor (PT) model considers soil moisture stress, temperature constraints, and leaf senescence; however, its parameter (fs) for simulating crop senescence is based on empirical values, making it difficult to apply to different varieties and complex external conditions and thus challenging to generalize. We improved the parameters fs in the original model based on the chlorophyll decomposition that accompanies crop senescence through easily observable SPAD values (Soil-Plant Analysis Development readings) in the field. We validated the improved model by obtaining ET of different rice varieties in 2022 and 2023 using the energy balance residual method at the Free Air Concentration Enrichment Experimental (FACE) Facility located in Yangzhou City, China. The results showed that the simulation of leaf senescence using SPAD values was feasible and could be extended to different varieties. The new model using improved leaf senescence parameter for estimating ET and transpiration (T) in three plots (2022 and 2023) exhibited slightly enhanced accuracy, particularly at the later stages of crop growth. Moreover, the higher the T/ET ratio of the cropland, the more significant the improvement. This new development enhances the ability of PT models to estimate ET and T using readily available field observations and provides some suggestions for wider application in the field for other crop species.
Collapse
Affiliation(s)
- Yujie Zhang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
| | - Yansen Xu
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
| | - Jianghua Wu
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China; Environment and Sustainability, School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada
| | - Yuqing Zhou
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
| | - Shiyun Xu
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
| | - Zhaozhong Feng
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China.
| |
Collapse
|
50
|
Li X, Qin H, Tang N, Li X, Xing W. Microplastics enhance the invasion of exotic submerged macrophytes by mediating plant functional traits, sediment properties, and microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134032. [PMID: 38492389 DOI: 10.1016/j.jhazmat.2024.134032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/25/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Plant invasions and microplastics (MPs) have significantly altered the structure and function of aquatic habitats worldwide, resulting in severe damage to aquatic ecosystem health. However, the effects of MPs on plant invasion and the underlying mechanisms remain largely unknown. In this study, we conducted mesocosm experiments over a 90-day period to assess the effects of polystyrene microplastics on the invasion of exotic submerged macrophytes, sediment physicochemical properties, and sediment bacterial communities. Our results showed that PS-MPs significantly promoted the performance of functional traits and the invasive ability of exotic submerged macrophytes, while native plants remained unaffected. Moreover, PS-MPs addition significantly decreased sediment pH while increasing sediment carbon and nitrogen content. Additionally, MPs increased the diversity of sediment bacterial community but inhibited its structural stability, thereby impacting sediment bacterial multifunctionality to varying degrees. Importantly, we identified sediment properties, bacterial composition, and bacterial multifunctionality as key mediators that greatly enhance the invasion of exotic submerged macrophytes. These findings provide compelling evidence that the increase in MPs may exacerbate the invasion risk of exotic submerged macrophytes through multiple pathways. Overall, this study enhances our understanding of the ecological impacts of MPs on aquatic plant invasion and the health of aquatic ecosystems.
Collapse
Affiliation(s)
- Xiaowei Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hongjie Qin
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Na Tang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaolu Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Wei Xing
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|