1
|
Soerensen A, Popovic F, Olesen CH, Mendez BL, Lohse B, Chen Z, Farci P, Purcell RH, Alter HJ, Barfod LK, Bukh J, Prentoe J. Selection and characterization of a broadly neutralizing class of HCV anti-E2 VH1-69 antibodies. PLoS Pathog 2025; 21:e1012428. [PMID: 40153382 PMCID: PMC11999149 DOI: 10.1371/journal.ppat.1012428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 04/15/2025] [Accepted: 02/10/2025] [Indexed: 03/30/2025] Open
Abstract
Identification and characterization of antibody epitope targets on the hepatitis C virus (HCV) envelope proteins remain crucial for developing an effective vaccine. Building on prior research defining E1/E2 antibody epitope clustering, we screened a phage display library derived from a chronic HCV patient against detergent-extracted full-length E1/E2 from both the patient's acute-phase isolate (H77, genotype 1a) and a heterologous isolate (S52, genotype 3a). This approach yielded a panel of VH1-69 derived antibody fragments (Fabs) with similar characteristics. Interestingly, all members of the panel exhibited blocking activity against both antigenic region 2 and 3 (AR2 and AR3) in competition ELISAs, which contrasts with the behavior of most previously identified AR3-targeting antibodies. The VH1-69 derived binders had a high affinity for soluble E2 in both Fab and IgG formats, with dissociation constants in the low picomolar range. These Fab binders were broadly neutralizing against a panel of HCV cell culture viruses of genotype 1-6 with higher potency than the well-characterized reference Fab, AR3A. However, in the IgG format the antibodies had similar potency. These findings expand our understanding of potential targets for vaccine development by characterizing a panel of antibodies targeting an AR3 epitope also involving or occluding the back layer of E2. The broad neutralization and high affinity of these antibodies suggest a benefit to targeting both the back layer and the front layer of E2 in HCV vaccine designs to expand the repertoire of broadly neutralizing antibodies, thereby offering promise for the development of more effective preventive measures against this pervasive human pathogen.
Collapse
Affiliation(s)
- Andreas Soerensen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Filip Popovic
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Christina Holmboe Olesen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Blanca Lopez Mendez
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brian Lohse
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zhaochun Chen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Patrizia Farci
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert H. Purcell
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Harvey J. Alter
- Department of Transfusion Medicine, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lea Klingenberg Barfod
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Rzymski P, Jibril AT, Rahmah L, Abarikwu SO, Hashem F, Lawati AA, Morrison FMM, Marquez LP, Mohamed K, Khan A, Mushtaq S, Minakova K, Poniedziałek B, Zarębska-Michaluk D, Flisiak R. Is there still hope for the prophylactic hepatitis C vaccine? A review of different approaches. J Med Virol 2024; 96:e29900. [PMID: 39234788 DOI: 10.1002/jmv.29900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
Despite remarkable progress in the treatment of hepatitis C virus (HCV) infection, it remains a significant global health burden, necessitating the development of an effective prophylactic vaccine. This review paper presents the current landscape of HCV vaccine candidates and approaches, including more traditional, based on inactivated virus, and more modern, such as subunit protein, vectored, based on nucleic acids (DNA and mRNA) and virus-like particles. The concept of the HCV vaccine is first put in the context of viral genetic diversity and adaptive responses to HCV infection, an understanding of which is crucial in guiding the development of an effective vaccine against such a complex virus. Because ethical dimensions are also significant in vaccine research, development, and potential deployment, we also address them in this paper. The road to a safe and effective vaccine to prevent HCV infection remains bumpy due to the genetic variation of HCV and its ability to evade immune responses. The progress in cell-culture systems allowed for the production of an inactivated HCV vaccine candidate, which can induce cross-neutralizing antibodies in vitro, but whether this could prevent infection in humans is unknown. Subunit protein vaccine candidates that entered clinical trials elicited HCV-specific humoral and cellular responses, though it remains to be shown whether they translate into effective prevention of HCV infection or progression of infection to a chronic state. Such responses were also induced by a clinically tested vector-based vaccine candidate, which decreased the viral HCV load but did not prevent chronic HCV infection. These disappointments were not readily predicted from preclinical animal studies. The vaccine platforms employing virus-like particles, DNA, and mRNA provide opportunities for the HCV vaccine, but their potential in this context has yet to be shown. Ensuring the designed vaccine is based on conserved epitope(s) and elicits broadly neutralizing immune responses is also essential. Given failures in developing a prophylactic HCV vaccine, it is crucial to continue supporting national strategies, including funding for screening and treatment programs. However, these actions are likely insufficient to permanently control the HCV burden, encouraging further mobilization of significant resources for HCV vaccine research as a missing element in the elimination of viral hepatitis as a global public health.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
- Universal Scientific Education and Research Network (USERN)
| | - Aliyu Tijani Jibril
- Universal Scientific Education and Research Network (USERN)
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Laila Rahmah
- Universal Scientific Education and Research Network (USERN)
- Faculty of Medicine, Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
- Department of Digital Health, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sunny O Abarikwu
- Universal Scientific Education and Research Network (USERN)
- Department of Biochemistry, University of Port Harcourt, Choba, PMB, Port Harcourt, Rivers State, Nigeria
| | - Fareeda Hashem
- Universal Scientific Education and Research Network (USERN)
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdullah Al Lawati
- Universal Scientific Education and Research Network (USERN)
- Sultan Qaboos University Hospital, Al Khoud, Muscat, Oman
| | | | - Leander Penaso Marquez
- Universal Scientific Education and Research Network (USERN)
- University of the Philippines Diliman, Quezon City, Philippines
| | - Kawthar Mohamed
- Universal Scientific Education and Research Network (USERN)
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amjad Khan
- Universal Scientific Education and Research Network (USERN)
- Department of Pharmacy, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saima Mushtaq
- Universal Scientific Education and Research Network (USERN)
- Department of Pharmacy, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Kseniia Minakova
- Universal Scientific Education and Research Network (USERN)
- Micro- and Nanoelectronics Department, National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | | | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
3
|
Garbuglia AR, Pauciullo S, Zulian V, Del Porto P. Update on Hepatitis C Vaccine: Results and Challenges. Viruses 2024; 16:1337. [PMID: 39205311 PMCID: PMC11359353 DOI: 10.3390/v16081337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Therapy against the Hepatitis C virus (HCV) has significantly improved with the introduction of direct-acting antiviral drugs (DAAs), achieving over 95% sustained virological response (SVR). Despite this, the development of an effective anti-HCV vaccine remains a critical challenge due to the low number of patients treated with DAAs and the occurrence of HCV reinfections in high-risk groups. Current vaccine strategies aim to stimulate either B-cell or T-cell responses. Vaccines based on E1 and E2 proteins can elicit broad cross-neutralizing antibodies against all major HCV genotypes, though with varying efficiencies and without full protection against infection. In humans, the neutralizing antibodies induced by such vaccines mainly target the AR3 region, but their levels are generally insufficient for broad neutralization. Various HCV proteins expressed through different viral vectors have been utilized to elicit T cell immune responses, showing sustained expansion of HCV-specific effector memory T cells and improved proliferation and polyfunctionality of memory T cells over time. However, despite these advancements, the frequency and effectiveness of T-cell responses remain limited.
Collapse
Affiliation(s)
- Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| | - Silvia Pauciullo
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| | - Verdiana Zulian
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| | - Paola Del Porto
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00100 Rome, Italy;
| |
Collapse
|
4
|
Adhikari A, Abayasingam A, Brasher NA, Kim HN, Lord M, Agapiou D, Maher L, Rodrigo C, Lloyd AR, Bull RA, Tedla N. Characterization of antibody-dependent cellular phagocytosis in patients infected with hepatitis C virus with different clinical outcomes. J Med Virol 2024; 96:e29381. [PMID: 38235622 PMCID: PMC10953302 DOI: 10.1002/jmv.29381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/10/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
Early neutralizing antibodies against hepatitis C virus (HCV) and CD8 + T cell effector responses can lead to viral clearance. However, these functions alone are not sufficient to protect patients against HCV infection, thus undefined additional antiviral immune mechanisms are required. In recent years, Fc-receptor-dependent antibody effector functions, particularly, antibody-dependent cellular phagocytosis (ADCP) were shown to offer immune protection against several RNA viruses. However, its development and clinical role in patients with HCV infection remain unknown. In this study, we found that patients with chronic GT1a or GT3a HCV infection had significantly higher concentrations of anti-envelope 2 (E2) antibodies, predominantly IgG1 subclass, than patients that cleared the viruses while the latter had antibodies with higher affinities. 97% of the patients with HCV had measurable ADCP of whom patients with chronic disease showed significantly higher ADCP than those who naturally cleared the virus. Epitope mapping studies showed that patients with antibodies that target antigenic domains on the HCV E2 protein that are known to associate with neutralization function are also strongly associated with ADCP, suggesting antibodies with overlapping/dual functions. Correlation studies showed that ADCP significantly correlated with plasma anti-E2 antibody levels and neutralization function regardless of clinical outcome and genotype of infecting virus, while a significant correlation between ADCP and affinity was only evident in patients that cleared the virus. These results suggest ADCP was mostly driven by antibody titer in patients with chronic disease while maintained in clearers due to the quality (affinity) of their anti-E2 antibodies despite having lower antibody titers.
Collapse
Affiliation(s)
- Anurag Adhikari
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
- Department of Infection and ImmunologyKathmandu Research Institute for Biological SciencesLalitpurNepal
| | - Arunasingam Abayasingam
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
| | - Nicholas A. Brasher
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
| | - Ha Na Kim
- Molecular Surface Interaction Laboratory, Mark Wainwright Analytical CentreUNSW SydneySydneyNew South WalesAustralia
| | - Megan Lord
- Molecular Surface Interaction Laboratory, Mark Wainwright Analytical CentreUNSW SydneySydneyNew South WalesAustralia
- Graduate School of Biomedical Engineering, Faculty of EngineeringUNSW SydneySydneyNew South WalesAustralia
| | - David Agapiou
- The Kirby InstituteUNSW AustraliaSydneyNew South WalesAustralia
| | - Lisa Maher
- The Kirby InstituteUNSW AustraliaSydneyNew South WalesAustralia
| | - Chaturaka Rodrigo
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
| | - Andrew R. Lloyd
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
- The Kirby InstituteUNSW AustraliaSydneyNew South WalesAustralia
| | - Rowena A. Bull
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
- The Kirby InstituteUNSW AustraliaSydneyNew South WalesAustralia
| | - Nicodemus Tedla
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
| |
Collapse
|
5
|
Wilks SH, Mühlemann B, Shen X, Türeli S, LeGresley EB, Netzl A, Caniza MA, Chacaltana-Huarcaya JN, Corman VM, Daniell X, Datto MB, Dawood FS, Denny TN, Drosten C, Fouchier RAM, Garcia PJ, Halfmann PJ, Jassem A, Jeworowski LM, Jones TC, Kawaoka Y, Krammer F, McDanal C, Pajon R, Simon V, Stockwell MS, Tang H, van Bakel H, Veguilla V, Webby R, Montefiori DC, Smith DJ. Mapping SARS-CoV-2 antigenic relationships and serological responses. Science 2023; 382:eadj0070. [PMID: 37797027 DOI: 10.1126/science.adj0070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/23/2023] [Indexed: 10/07/2023]
Abstract
During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, multiple variants escaping preexisting immunity emerged, causing reinfections of previously exposed individuals. Here, we used antigenic cartography to analyze patterns of cross-reactivity among 21 variants and 15 groups of human sera obtained after primary infection with 10 different variants or after messenger RNA (mRNA)-1273 or mRNA-1273.351 vaccination. We found antigenic differences among pre-Omicron variants caused by substitutions at spike-protein positions 417, 452, 484, and 501. Quantifying changes in response breadth over time and with additional vaccine doses, our results show the largest increase between 4 weeks and >3 months after a second dose. We found changes in immunodominance of different spike regions, depending on the variant an individual was first exposed to, with implications for variant risk assessment and vaccine-strain selection.
Collapse
Affiliation(s)
- Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sina Türeli
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Eric B LeGresley
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Miguela A Caniza
- Department of Global Pediatric Medicine, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Victor M Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Xiaoju Daniell
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Michael B Datto
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | | | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | | | - Patricia J Garcia
- School of Public Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Science, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Agatha Jassem
- BC Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Lara M Jeworowski
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Terry C Jones
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Science, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charlene McDanal
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Melissa S Stockwell
- Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, and Department of Population and Family Health, Mailman School of Public Health, New York, NY, USA
| | - Haili Tang
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vic Veguilla
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
6
|
Metcalf MC, Janus BM, Yin R, Wang R, Guest JD, Pozharski E, Law M, Mariuzza RA, Toth EA, Pierce BG, Fuerst TR, Ofek G. Structure of engineered hepatitis C virus E1E2 ectodomain in complex with neutralizing antibodies. Nat Commun 2023; 14:3980. [PMID: 37407593 PMCID: PMC10322937 DOI: 10.1038/s41467-023-39659-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Hepatitis C virus (HCV) is a major global health burden as the leading causative agent of chronic liver disease and hepatocellular carcinoma. While the main antigenic target for HCV-neutralizing antibodies is the membrane-associated E1E2 surface glycoprotein, the development of effective vaccines has been hindered by complications in the biochemical preparation of soluble E1E2 ectodomains. Here, we present a cryo-EM structure of an engineered, secreted E1E2 ectodomain of genotype 1b in complex with neutralizing antibodies AR4A, HEPC74, and IGH520. Structural characterization of the E1 subunit and C-terminal regions of E2 reveal an overall architecture of E1E2 that concurs with that observed for non-engineered full-length E1E2. Analysis of the AR4A epitope within a region of E2 that bridges between the E2 core and E1 defines the structural basis for its broad neutralization. Our study presents the structure of an E1E2 complex liberated from membrane via a designed scaffold, one that maintains all essential structural features of native E1E2. The study advances the understanding of the E1E2 heterodimer structure, crucial for the rational design of secreted E1E2 antigens in vaccine development.
Collapse
Affiliation(s)
- Matthew C Metcalf
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Benjamin M Janus
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Rui Yin
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Ruixue Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Johnathan D Guest
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Edwin Pozharski
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Roy A Mariuzza
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Eric A Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Brian G Pierce
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Thomas R Fuerst
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Gilad Ofek
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| |
Collapse
|
7
|
Osmani Z, Boonstra A. Recent Insights into the Role of B Cells in Chronic Hepatitis B and C Infections. Pathogens 2023; 12:815. [PMID: 37375505 DOI: 10.3390/pathogens12060815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic viral hepatitis infections, caused by the hepatitis B or C virus, are a major global health problem causing an estimated one million deaths each year. Immunological studies have classically focused on T cells, while B cells have largely been neglected. Emerging evidence, however, highlights a role for B cells in the immunopathogenesis of chronic hepatitis B and C infections. B cell responses appear to be altered across different clinical phases of chronic HBV infection and across stages of disease in chronic HCV infection. These B cell responses show signs of a more activated state with a simultaneous enrichment of phenotypically exhausted atypical memory B cells. Despite the fact that studies show an activating B cell signature in chronic viral hepatitis infection, antibody responses to HBsAg remain impaired in chronic HBV infection, and glycoprotein E2-specific neutralizing antibody responses remain delayed in the acute phase of HCV infection. At the same time, studies have reported that a subset of HBV- and HCV-specific B cells exhibit an exhausted phenotype. This may, at least in part, explain why antibody responses in chronic HBV and HCV patients are suboptimal. Here, we summarize recent findings and discuss upcoming research questions while looking forward to how new single-cell technologies could provide novel insights into the role of B cells in chronic viral hepatitis infections.
Collapse
Affiliation(s)
- Zgjim Osmani
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
8
|
Gomez-Escobar E, Roingeard P, Beaumont E. Current Hepatitis C Vaccine Candidates Based on the Induction of Neutralizing Antibodies. Viruses 2023; 15:1151. [PMID: 37243237 PMCID: PMC10220683 DOI: 10.3390/v15051151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The introduction of direct-acting antivirals (DAAs) has revolutionized hepatitis C treatment. Short courses of treatment with these drugs are highly beneficial to patients, eliminating hepatitis C virus (HCV) without adverse effects. However, this outstanding success is tempered by the continuing difficulty of eradicating the virus worldwide. Thus, access to an effective vaccine against HCV is strongly needed to reduce the burden of the disease and contribute to the elimination of viral hepatitis. The recent failure of a T-cell vaccine based on the use of viral vectors expressing the HCV non-structural protein sequences to prevent chronic hepatitis C in drug users has pointed out that the induction of neutralizing antibodies (NAbs) will be essential in future vaccine candidates. To induce NAbs, vaccines must contain the main target of this type of antibody, the HCV envelope glycoproteins (E1 and E2). In this review, we summarize the structural regions in E1 and E2 proteins that are targeted by NAbs and how these proteins are presented in the vaccine candidates currently under development.
Collapse
Affiliation(s)
| | - Philippe Roingeard
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, 37000 Tours, France;
| | - Elodie Beaumont
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, 37000 Tours, France;
| |
Collapse
|
9
|
Abstract
Recent advances aid the development of vaccines to prevent chronic liver diseases.
Collapse
Affiliation(s)
- Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Tohma K, Ushijima H. [Molecular epidemiology and evolution of human noroviruses]. Uirusu 2023; 73:17-32. [PMID: 39343517 DOI: 10.2222/jsv.73.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Noroviruses are the most common viral cause of acute gastroenteritis after the introduction of rotavirus vaccines. Norovirus infection can cause severe symptoms in vulnerable populations including young children and the elderly. Thus, it is still a leading cause of death from diarrhea in children in developing countries. Recent advancement of genomics platforms facilitated understanding of the epidemiology of norovirus, while the whole picture of norovirus diversity is still undetermined. Currently, there are no approved vaccines for norovirus, but state-of-the-art norovirus cultivation systems could elucidate the antigenic diversity of this fast-evolving virus. In this review, we will summarize the historical and latest findings of norovirus epidemiology, diversity, and evolution.
Collapse
Affiliation(s)
- Kentaro Tohma
- Division of Viral Products, US Food and Drug Administration, Maryland, Unites States
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Zhang L, Wang X, Ming A, Tan W. Pseudotyped Virus for Flaviviridae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:313-327. [PMID: 36920705 DOI: 10.1007/978-981-99-0113-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Members of Flaviviridae are enveloped single positive-stranded RNA viruses including hepacivirus, pestivirus, pegivirus, and mosquito-transmitted flavivirus, which are important pathogens of infectious diseases and pose serious threats to human health. Pseudotyped virus is an artificially constructed virus-like particle, which could infect host cells similar to a live virus but cannot produce infectious progeny virus. Therefore, pseudotyped virus has the advantages of a wide host range, high transfection efficiency, low biosafety risk, and accurate and objective quantification. It has been widely used in biological characteristics, drug screening, detection methods, and vaccine evaluation of Flaviviridae viruses like hepatitis C virus, Japanese encephalitis virus, dengue virus, and Zika virus.
Collapse
Affiliation(s)
- Leiliang Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiao Wang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Annan Ming
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
12
|
Identification of human progenitors of exhausted CD8 + T cells associated with elevated IFN-γ response in early phase of viral infection. Nat Commun 2022; 13:7543. [PMID: 36477661 PMCID: PMC9729230 DOI: 10.1038/s41467-022-35281-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
T cell exhaustion is a hallmark of hepatitis C virus (HCV) infection and limits protective immunity in chronic viral infections and cancer. Limited knowledge exists of the initial viral and immune dynamics that characterise exhaustion in humans. We studied longitudinal blood samples from a unique cohort of individuals with primary infection using single-cell multi-omics to identify the functions and phenotypes of HCV-specific CD8+ T cells. Early elevated IFN-γ response against the transmitted virus is associated with the rate of immune escape, larger clonal expansion, and early onset of exhaustion. Irrespective of disease outcome, we find heterogeneous subsets of progenitors of exhaustion, based on the level of PD-1 expression and loss of AP-1 transcription factors. Intra-clonal analysis shows distinct trajectories with multiple fates and evolutionary plasticity of precursor cells. These findings challenge the current paradigm on the contribution of CD8+ T cells to HCV disease outcome and provide data for future studies on T cell differentiation in human infections.
Collapse
|
13
|
Sliepen K, Radić L, Capella-Pujol J, Watanabe Y, Zon I, Chumbe A, Lee WH, de Gast M, Koopsen J, Koekkoek S, Del Moral-Sánchez I, Brouwer PJM, Ravichandran R, Ozorowski G, King NP, Ward AB, van Gils MJ, Crispin M, Schinkel J, Sanders RW. Induction of cross-neutralizing antibodies by a permuted hepatitis C virus glycoprotein nanoparticle vaccine candidate. Nat Commun 2022; 13:7271. [PMID: 36434005 PMCID: PMC9700739 DOI: 10.1038/s41467-022-34961-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Hepatitis C virus (HCV) infection affects approximately 58 million people and causes ~300,000 deaths yearly. The only target for HCV neutralizing antibodies is the highly sequence diverse E1E2 glycoprotein. Eliciting broadly neutralizing antibodies that recognize conserved cross-neutralizing epitopes is important for an effective HCV vaccine. However, most recombinant HCV glycoprotein vaccines, which usually include only E2, induce only weak neutralizing antibody responses. Here, we describe recombinant soluble E1E2 immunogens that were generated by permutation of the E1 and E2 subunits. We displayed the E2E1 immunogens on two-component nanoparticles and these nanoparticles induce significantly more potent neutralizing antibody responses than E2. Next, we generated mosaic nanoparticles co-displaying six different E2E1 immunogens. These mosaic E2E1 nanoparticles elicit significantly improved neutralization compared to monovalent E2E1 nanoparticles. These results provide a roadmap for the generation of an HCV vaccine that induces potent and broad neutralization.
Collapse
Affiliation(s)
- Kwinten Sliepen
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands.
| | - Laura Radić
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Joan Capella-Pujol
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Ian Zon
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Ana Chumbe
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Wen-Hsin Lee
- Department of Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marlon de Gast
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Jelle Koopsen
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Sylvie Koekkoek
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Iván Del Moral-Sánchez
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Philip J M Brouwer
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, USA
- Institute for Protein Design, University of Washington, Seattle, USA
| | - Gabriel Ozorowski
- Department of Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, USA
- Institute for Protein Design, University of Washington, Seattle, USA
| | - Andrew B Ward
- Department of Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marit J van Gils
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Janke Schinkel
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Rogier W Sanders
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, USA.
| |
Collapse
|
14
|
Zhao Y, He W, Wang C, Cui N, Yang C, You Z, Shi B, Xia L, Chen X. Characterization of intrahepatic B cells in acute-on-chronic liver failure. Front Immunol 2022; 13:1041176. [PMID: 36505417 PMCID: PMC9732531 DOI: 10.3389/fimmu.2022.1041176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
Background and objectives Acute on chronic liver failure (ACLF) is characterized by the immunologic dissonance during the prolonged pathogenic development. Both abnormal innate immune response and adaptive T-cell response have been reported in patients with ACLF; however, less is known regarding B cells in ACLF pathogenesis. Previous reports were only based on immunophenotyping of peripheral blood samples. Here, we aim to dissect liver-infiltrating B-cell subpopulation in ACLF. Methods Paired liver perfusate and peripheral blood were freshly collected from healthy living donors and recipients during liver transplantation. Liver tissues were obtained from patients with ACLF, cirrhosis, and healthy controls. Flow cytometry was used to characterize the phenotypic and functional alterations in intrahepatic and circulating B-cell populations from ACLF, cirrhosis, and healthy controls. The expression of CD19+ and CD138+ on liver tissues was examined by immunohistochemistry staining. Results In this study, we first deciphered the intrahepatic B cells subsets of patients with ACLF. We found that the ACLF liver harbored reduced fraction of naïve B cells and elevated percentage of CD27+CD21- activated memory B cells (AM), CD27-CD21- atypical memory B cells (atMBC), CD27+IgD-IgM+(IgM+ memory B cells), and CD27+CD38++ plasma cells than cirrhosis and healthy controls. Moreover, these B subpopulations demonstrated enhanced activation and altered effector functions. Specifically, the ACLF liver was abundant in atMBC expressing higher CD11c and lower CD80 molecule, which was significantly correlated to alanine aminotransferase and aspartate aminotransferase. In addition, we found that intrahepatic CD27+CD38++plasma cells were preferentially accumulated in ACLF, which expressed more CD273 (PD-L2) and secreted higher granzyme B and IL-10. Finally, the enriched hepatic plasma B cells were in positive association with disease severity indices including alkaline phosphatase and gamma-glutamyl transferase. Conclusions In this pilot study, we showed an intrahepatic B-cell landscape shaped by the ACLF liver environment, which was distinct from paired circulating B-cell subsets. The phenotypic and functional perturbation in atMBC and plasma cells highlighted the unique properties of infiltrating B cells during ACLF progression, thereby denoting the potential of B-cell intervention in ACLF therapy.
Collapse
Affiliation(s)
- Yudong Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei He
- Division of Gastroenterology and Hepatology , Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, National Health Council (NHC) Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Chenchen Wang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nana Cui
- Division of Gastroenterology and Hepatology , Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, National Health Council (NHC) Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Changjie Yang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengrui You
- Division of Gastroenterology and Hepatology , Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, National Health Council (NHC) Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Bisheng Shi
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao tong University, Shanghai, China,*Correspondence: Xiaosong Chen, ; Lei Xia, ; Bisheng Shi,
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Xiaosong Chen, ; Lei Xia, ; Bisheng Shi,
| | - Xiaosong Chen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Xiaosong Chen, ; Lei Xia, ; Bisheng Shi,
| |
Collapse
|
15
|
Nishio A, Hasan S, Park H, Park N, Salas JH, Salinas E, Kardava L, Juneau P, Frumento N, Massaccesi G, Moir S, Bailey JR, Grakoui A, Ghany MG, Rehermann B. Serum neutralization activity declines but memory B cells persist after cure of chronic hepatitis C. Nat Commun 2022; 13:5446. [PMID: 36114169 PMCID: PMC9481596 DOI: 10.1038/s41467-022-33035-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/30/2022] [Indexed: 11/09/2022] Open
Abstract
The increasing incidence of hepatitis C virus (HCV) infections underscores the need for an effective vaccine. Successful vaccines to other viruses generally depend on a long-lasting humoral response. However, data on the half-life of HCV-specific responses are lacking. Here we study archived sera and mononuclear cells that were prospectively collected up to 18 years after cure of chronic HCV infection to determine the role of HCV antigen in maintaining neutralizing antibody and B cell responses. We show that HCV-neutralizing activity decreases rapidly in potency and breadth after curative treatment. In contrast, HCV-specific memory B cells persist, and display a restored resting phenotype, normalized chemokine receptor expression and preserved ability to differentiate into antibody-secreting cells. The short half-life of HCV-neutralizing activity is consistent with a lack of long-lived plasma cells. The persistence of HCV-specific memory B cells and the reduced inflammation after cure provide an opportunity for vaccination to induce protective immunity against re-infection.
Collapse
Affiliation(s)
- Akira Nishio
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA
| | - Sharika Hasan
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA
| | - Heiyoung Park
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA
| | - Nana Park
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA
| | - Jordan H Salas
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Eduardo Salinas
- Division of Infectious Diseases, Emory Vaccine Center, Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, 30329, USA
| | - Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA
| | - Paul Juneau
- Division of Data Services, NIH Library, Office of Research Services, National Institutes of Health, Bethesda, MD, USA
- Contractor- Zimmerman Associates, Inc, Fairfax, VA, USA
| | - Nicole Frumento
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Guido Massaccesi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Arash Grakoui
- Division of Infectious Diseases, Emory Vaccine Center, Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, 30329, USA
| | - Marc G Ghany
- Clinical Research Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Tohma K, Ford-Siltz LA, Kendra JA, Parra GI. Dynamic immunodominance hierarchy of neutralizing antibody responses to evolving GII.4 noroviruses. Cell Rep 2022; 39:110689. [PMID: 35417705 DOI: 10.1016/j.celrep.2022.110689] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/20/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
A paradigm of RNA viruses is their ability to mutate and escape from herd immunity. Because antibody responses are a major effector for viral immunity, antigenic sites are usually under strong diversifying pressure. Here, we use norovirus as a model to study mechanisms of antigenic diversification of non-enveloped, fast-evolving RNA viruses. We comprehensively characterize all variable antigenic sites involved in virus neutralization and find that single neutralizing monoclonal antibodies (mAbs) map to multiple antigenic sites of GII.4 norovirus. Interactions of multiple epitopes on the viral capsid surface provide a broad mAb-binding repertoire with a remarkable difference in the mAb-binding profiles and immunodominance hierarchy for two distantly related GII.4 variants. Time-ordered mutant viruses confirm a progressive change of antibody immunodominance along with point mutations during the process of norovirus evolution. Thus, in addition to point mutations, switches in immunodominance that redirect immune responses could facilitate immune escape in RNA viruses.
Collapse
Affiliation(s)
- Kentaro Tohma
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72, Room 1309, Silver Spring, MD 20993, USA
| | - Lauren A Ford-Siltz
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72, Room 1309, Silver Spring, MD 20993, USA
| | - Joseph A Kendra
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72, Room 1309, Silver Spring, MD 20993, USA
| | - Gabriel I Parra
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72, Room 1309, Silver Spring, MD 20993, USA.
| |
Collapse
|
17
|
Wang R, Suzuki S, Guest JD, Heller B, Almeda M, Andrianov AK, Marin A, Mariuzza RA, Keck ZY, Foung SKH, Yunus AS, Pierce BG, Toth EA, Ploss A, Fuerst TR. Induction of broadly neutralizing antibodies using a secreted form of the hepatitis C virus E1E2 heterodimer as a vaccine candidate. Proc Natl Acad Sci U S A 2022; 119:e2112008119. [PMID: 35263223 PMCID: PMC8931252 DOI: 10.1073/pnas.2112008119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022] Open
Abstract
SignificanceHepatitis C virus chronically infects approximately 1% of the world's population, making an effective vaccine for hepatitis C virus a major unmet public health need. The membrane-associated E1E2 envelope glycoprotein has been used in clinical studies as a vaccine candidate. However, limited neutralization breadth and difficulty in producing large amounts of homogeneous membrane-associated E1E2 have hampered efforts to develop an E1E2-based vaccine. Our previous work described the design and biochemical validation of a native-like soluble secreted form of E1E2 (sE1E2). Here, we describe the immunogenic characterization of the sE1E2 complex. sE1E2 elicited broadly neutralizing antibodies in immunized mice, with increased neutralization breadth relative to the membrane-associated E1E2, thereby validating this platform as a promising model system for vaccine development.
Collapse
Affiliation(s)
- Ruixue Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Saori Suzuki
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Johnathan D. Guest
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Brigitte Heller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Maricar Almeda
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Roy A. Mariuzza
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Steven K. H. Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Abdul S. Yunus
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Brian G. Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Eric A. Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Thomas R. Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| |
Collapse
|
18
|
Bankwitz D, Krey T, Pietschmann T. [Development approaches for vaccines against hepatitis C virus infections]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2022; 65:183-191. [PMID: 35015104 PMCID: PMC8749110 DOI: 10.1007/s00103-021-03477-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/07/2021] [Indexed: 11/04/2022]
Abstract
Mehr als 10 Jahre nach der Zulassung der ersten direkt wirkenden antiviralen Wirkstoffe zur Behandlung der Hepatitis C bleibt die Inzidenz der Hepatitis-C-Virus-(HCV-)Infektion ungebrochen hoch. In manchen Ländern stecken sich mehr Menschen neu mit dem Virus an, als Patienten durch eine erfolgreiche Therapie geheilt werden. Die Entwicklung eines prophylaktischen Impfstoffes könnte die Transmission des Virus unterbinden und dadurch einen wesentlichen Beitrag zur Kontrolle dieser weltweit verbreiteten Infektion leisten. In diesem Artikel werden die besonderen Herausforderungen und die aktuellen Ansätze der HCV-Impfstoffentwicklung dargestellt. HCV ist ein hochgradig diverses und wandlungsfähiges Virus, das zumeist dem Immunsystem entkommt und chronische Infektionen etabliert. Andererseits heilt die HCV-Infektion bei bis zu einem Drittel der exponierten Individuen aus, sodass eine schützende Immunität erreichbar ist. Zahlreiche Untersuchungen zu den Determinanten einer schützenden Immunität gegen HCV zeichnen ein immer kompletteres Bild davon, welche Ziele ein Impfstoff erreichen muss. Sehr wahrscheinlich werden sowohl starke neutralisierende Antikörper als auch wirkungsvolle zytotoxische T‑Zellen gebraucht, um sicher vor einer chronischen Infektion zu schützen. Die Schlüsselfrage ist, welche Ansätze besonders breit wirksame Antikörper und T‑Zellen heranreifen lassen. Dies wird erforderlich sein, um vor der großen Fülle unterschiedlicher HCV-Varianten zu schützen. Die jüngsten Erfolge von mRNA-Impfstoffen öffnen neue Türen auch für die HCV-Impfstoffforschung. Kombiniert mit einem tieferen Verständnis der Struktur und Funktion der viralen Hüllproteine, der Identifizierung kreuzprotektiver Antikörper- und T‑Zellepitope sowie der Nutzung standardisierter Verfahren zur Quantifizierung der Wirksamkeit von Impfkandidaten ergeben sich neue Perspektiven für die Entwicklung eines Impfstoffes.
Collapse
Affiliation(s)
- Dorothea Bankwitz
- Twincore Zentrum für Experimentelle und Klinische Infektionsforschung, Institut für Experimentelle Virologie, Feodor-Lynen-Str. 7, 30625, Hannover, Deutschland
| | - Thomas Krey
- Medizinische Hochschule Hannover, RESIST Exzellenzcluster EXC2155, Hannover, Deutschland.,Zentrum für Strukturbiologie und Zellbiologie in der Medizin, Institut für Biochemie, Universität Lübeck, Lübeck, Deutschland.,Deutsches Zentrum für Infektionsforschung (DZIF), Partnerstandort Hamburg-Lübeck-Borstel-Riems, Braunschweig, Deutschland.,Institut für Virologie, Medizinische Hochschule Hannover, Hannover, Deutschland
| | - Thomas Pietschmann
- Twincore Zentrum für Experimentelle und Klinische Infektionsforschung, Institut für Experimentelle Virologie, Feodor-Lynen-Str. 7, 30625, Hannover, Deutschland. .,Medizinische Hochschule Hannover, RESIST Exzellenzcluster EXC2155, Hannover, Deutschland. .,Deutsches Zentrum für Infektionsforschung (DZIF), Partnerstandort Hannover-Braunschweig, Braunschweig, Deutschland.
| |
Collapse
|
19
|
Tornesello AL, Reimer U, Holenya P, Knaute T, Pezzuto F, Izzo F, Buonaguro L, Megna AS, Buonaguro FM, Tornesello ML. Profiling the HCV Immune Response in Patients with Chronic Liver Diseases and Hepatocellular Carcinoma by Peptide Microarray Analysis. Curr Med Chem 2022; 29:2736-2747. [PMID: 34736375 DOI: 10.2174/0929867328666211104093718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chronic infection with hepatitis C virus (HCV) is among the major causes of hepatic fibrosis, cirrhosis, as well as hepatocellular carcinoma (HCC), and it is associated with a significant risk of developing lymphoproliferative disorders. The rate of clinical disease progression is variable depending on multiple host and viral factors, including immune response. METHODS To perform a comprehensive epitope mapping of anti-HCV antibodies in patients suffering from HCV-related liver or lymphoproliferative diseases, we analyzed clinical samples on a peptide microarray platform made of 5952 overlapping 15-mer synthetic peptides derived from the whole HCV proteome. We evaluated the antibody profile of 71 HCV-positive patients diagnosed with HCC, mixed cryoglobulinemia (MC), and HCV chronic infection. Antibody reactivity against virus peptides was detected in all HCVpositive patients. Importantly, the signal amplitude varied significantly within and between diverse patient groups. RESULTS Antibody reactivity against C peptides were found generally low in HCV chronically infected asymptomatic subjects and increasingly high in HCC and MC patients. Moreover, we found a statistically significant higher IgG response in HCC and MC patients against specific domains of HCV C, E2, NS3, NS4A, NS4B, NS5A, and p7 compared to HCV-positive subjects. CONCLUSION In conclusion, our data suggest that immune response against specific HCV protein domains may represent useful biomarkers of disease progression among HCVpositive patients and suggest that peptide microarrays are good tools for the screening of immunotherapy targets in preclinical HCV research.
Collapse
Affiliation(s)
- Anna Lucia Tornesello
- Department of Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS \'Fondazione G. Pascale\', 80131 Napoli, Italy
| | - Ulf Reimer
- JPT Peptide Technologies GmbH, Berlin,Germany
| | | | | | - Francesca Pezzuto
- Department of Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS \'Fondazione G. Pascale\', 80131 Napoli, Italy
| | - Francesco Izzo
- Hepatobiliary Surgery Unit, Istituto Nazionale Tumori IRCCS \'Fondazione G. Pascale\', 80131 Napoli, Italy
| | - Luigi Buonaguro
- Innovative Immunological Models, Istituto Nazionale Tumori IRCCS \'Fondazione G. Pascale, 80131 Napoli, Italy
| | | | - Franco Maria Buonaguro
- Department of Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS \'Fondazione G. Pascale\', 80131 Napoli, Italy
| | - Maria Lina Tornesello
- Department of Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS \'Fondazione G. Pascale\', 80131 Napoli, Italy
| |
Collapse
|
20
|
Adhikari A, Eltahla A, Lloyd AR, Rodrigo C, Agapiou D, Bull RA, Tedla N. Optimisation and validation of a new method for antibody dependent cellular phagocytosis in hepatitis C virus infection. J Immunol Methods 2021; 495:113087. [PMID: 34147479 DOI: 10.1016/j.jim.2021.113087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022]
Abstract
Lack of a simple, high throughput antibody-dependent cellular phagocytosis (ADCP) assay has limited our understanding of its potential role of in hepatitis C (HCV) infection. Here, we optimised a flow-cytometry based ADCP assay using HCV envelope (E2)-protein coated microbeads that were opsonised with anti-E2 monoclonal IgG antibody (αE2 mAb) and the THP-1 monocyte cell line as effector cells. We found 1.5 × 109/ml microbeads opsonised with 5 μg/ml αE2 mAb and 1.6 × 106/ml THP-1 cells were optimal conditions to distinguish between healthy controls and patients with HCV. This optimised assay was then used to investigate ADCP in plasma obtained from 72 patients with chronic HCV infection and 15 healthy controls. We found that 75% of patients with genotype 1 and 87% of patients with genotype 3 HCV infection had significantly higher levels of ADCP compared to healthy controls. In patients, there was a significant correlation between increase in ADCP and higher concentrations of anti-E2 IgG antibodies in the plasma. Taken together, we established a simple, quick and high throughput ADCP assay for HCV infection that can readily be used for screening of large cohorts of patients and investigation of the role of ADCP in the pathogenesis or protection from this disease.
Collapse
Affiliation(s)
- Anurag Adhikari
- School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia; Viral Immunology Systems Program, The Kirby Institute, The University of New South Wales, Sydney, NSW 2052, Australia; Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences, Lalitpur 44700, Nepal
| | - Auda Eltahla
- School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia; Viral Immunology Systems Program, The Kirby Institute, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Andrew R Lloyd
- Viral Immunology Systems Program, The Kirby Institute, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Chaturaka Rodrigo
- School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia; Viral Immunology Systems Program, The Kirby Institute, The University of New South Wales, Sydney, NSW 2052, Australia
| | - David Agapiou
- Viral Immunology Systems Program, The Kirby Institute, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Rowena A Bull
- School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia; Viral Immunology Systems Program, The Kirby Institute, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Nicodemus Tedla
- School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
21
|
Brasher NA, Adhikari A, Lloyd AR, Tedla N, Bull RA. Hepatitis C Virus Epitope Immunodominance and B Cell Repertoire Diversity. Viruses 2021; 13:v13060983. [PMID: 34070572 PMCID: PMC8229270 DOI: 10.3390/v13060983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/02/2022] Open
Abstract
Despite the advent of effective, curative treatments for hepatitis C virus (HCV), a preventative vaccine remains essential for the global elimination of HCV. It is now clear that the induction of broadly neutralising antibodies (bNAbs) is essential for the rational design of such a vaccine. This review details the current understanding of epitopes on the HCV envelope, characterising the potency, breadth and immunodominance of antibodies induced against these epitopes, as well as describing the interactions between B-cell receptors and HCV infection, with a particular focus on bNAb heavy and light chain variable gene usage. Additionally, we consider the importance of a public repertoire for antibodies against HCV, compiling current knowledge and suggesting that further research in this area may be critical to the rational design of an effective HCV vaccine.
Collapse
Affiliation(s)
- Nicholas A. Brasher
- Faculty of Medicine, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (N.A.B.); (A.A.); (N.T.)
- The Kirby Institute, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Anurag Adhikari
- Faculty of Medicine, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (N.A.B.); (A.A.); (N.T.)
- The Kirby Institute, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia;
- Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences, Lalitpur 44700, Nepal
| | - Andrew R. Lloyd
- The Kirby Institute, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Nicodemus Tedla
- Faculty of Medicine, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (N.A.B.); (A.A.); (N.T.)
| | - Rowena A. Bull
- Faculty of Medicine, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (N.A.B.); (A.A.); (N.T.)
- The Kirby Institute, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia;
- Correspondence:
| |
Collapse
|
22
|
Guest JD, Wang R, Elkholy KH, Chagas A, Chao KL, Cleveland TE, Kim YC, Keck ZY, Marin A, Yunus AS, Mariuzza RA, Andrianov AK, Toth EA, Foung SKH, Pierce BG, Fuerst TR. Design of a native-like secreted form of the hepatitis C virus E1E2 heterodimer. Proc Natl Acad Sci U S A 2021; 118:e2015149118. [PMID: 33431677 PMCID: PMC7826332 DOI: 10.1073/pnas.2015149118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C virus (HCV) is a major worldwide health burden, and a preventive vaccine is needed for global control or eradication of this virus. A substantial hurdle to an effective HCV vaccine is the high variability of the virus, leading to immune escape. The E1E2 glycoprotein complex contains conserved epitopes and elicits neutralizing antibody responses, making it a primary target for HCV vaccine development. However, the E1E2 transmembrane domains that are critical for native assembly make it challenging to produce this complex in a homogenous soluble form that is reflective of its state on the viral envelope. To enable rational design of an E1E2 vaccine, as well as structural characterization efforts, we have designed a soluble, secreted form of E1E2 (sE1E2). As with soluble glycoprotein designs for other viruses, it incorporates a scaffold to enforce assembly in the absence of the transmembrane domains, along with a furin cleavage site to permit native-like heterodimerization. This sE1E2 was found to assemble into a form closer to its expected size than full-length E1E2. Preservation of native structural elements was confirmed by high-affinity binding to a panel of conformationally specific monoclonal antibodies, including two neutralizing antibodies specific to native E1E2 and to its primary receptor, CD81. Finally, sE1E2 was found to elicit robust neutralizing antibodies in vivo. This designed sE1E2 can both provide insights into the determinants of native E1E2 assembly and serve as a platform for production of E1E2 for future structural and vaccine studies, enabling rational optimization of an E1E2-based antigen.
Collapse
Affiliation(s)
- Johnathan D Guest
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Ruixue Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Khadija H Elkholy
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Cairo 12622, Egypt
| | - Andrezza Chagas
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Kinlin L Chao
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Thomas E Cleveland
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Young Chang Kim
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Abdul S Yunus
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Roy A Mariuzza
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Eric A Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Brian G Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850;
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850;
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| |
Collapse
|
23
|
Kemming J, Thimme R, Neumann-Haefelin C. Adaptive Immune Response against Hepatitis C Virus. Int J Mol Sci 2020; 21:ijms21165644. [PMID: 32781731 PMCID: PMC7460648 DOI: 10.3390/ijms21165644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
A functional adaptive immune response is the major determinant for clearance of hepatitis C virus (HCV) infection. However, in the majority of patients, this response fails and persistent infection evolves. Here, we dissect the HCV-specific key players of adaptive immunity, namely B cells and T cells, and describe factors that affect infection outcome. Once chronic infection is established, continuous exposure to HCV antigens affects functionality, phenotype, transcriptional program, metabolism, and the epigenetics of the adaptive immune cells. In addition, viral escape mutations contribute to the failure of adaptive antiviral immunity. Direct-acting antivirals (DAA) can mediate HCV clearance in almost all patients with chronic HCV infection, however, defects in adaptive immune cell populations remain, only limited functional memory is obtained and reinfection of cured individuals is possible. Thus, to avoid potential reinfection and achieve global elimination of HCV infections, a prophylactic vaccine is needed. Recent vaccine trials could induce HCV-specific immunity but failed to protect from persistent infection. Thus, lessons from natural protection from persistent infection, DAA-mediated cure, and non-protective vaccination trials might lead the way to successful vaccination strategies in the future.
Collapse
Affiliation(s)
- Janine Kemming
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg im Breisgau, Germany
| | - Robert Thimme
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Correspondence: ; Tel.: +49-761-270-32800
| |
Collapse
|
24
|
Hepatitis C virus vaccine design: focus on the humoral immune response. J Biomed Sci 2020; 27:78. [PMID: 32631318 PMCID: PMC7338099 DOI: 10.1186/s12929-020-00669-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the recent development of safe and highly effective direct-acting antivirals, hepatitis C virus (HCV) infection remains a significant health problem. In 2016, the World Health Organization set out to reduce the rate of new HCV infections by 90% by 2030. Still, global control of the virus does not seem to be achievable in the absence of an effective vaccine. Current approaches to the development of a vaccine against HCV include the production of recombinant proteins, synthetic peptides, DNA vaccines, virus-like particles, and viral vectors expressing various antigens. In this review, we focus on the development of vaccines targeting the humoral immune response against HCV based on the cumulative evidence supporting the important role of neutralizing antibodies in protection against HCV infection. The main targets of HCV-specific neutralizing antibodies are the glycoproteins E1 and E2. Recent advances in the knowledge of HCV glycoprotein structure and their epitopes, as well as the possibility of getting detailed information on the human antibody repertoire generated by the infection, will allow rational structure-based antigen design to target specific germline antibodies. Although obtaining a vaccine capable of inducing sterilizing immunity will be a difficult task, a vaccine that prevents chronic hepatitis C infections, a more realistic goal in the short term, would have a considerable health impact.
Collapse
|
25
|
Skinner NE, Bailey JR. Broadly neutralizing antibodies against hepatitis C virus: location, location, location. J Hepatol 2020; 72:604-606. [PMID: 32019681 DOI: 10.1016/j.jhep.2020.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Nicole E Skinner
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A..
| |
Collapse
|