1
|
Pennisi G, Petta S, Maggio V, Rizzo M. GLP-1 receptor agonists and MASLD in diabetes: A promising path? J Diabetes Complications 2025; 39:109041. [PMID: 40288935 DOI: 10.1016/j.jdiacomp.2025.109041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025]
Affiliation(s)
- Grazia Pennisi
- Section of Gastroenterology and Hepatology, Department of Health Promotion, Maternal and Child Health, Internal and Specialty Medicine of Excellence (PROMISE), University of Palermo, Italy.
| | - Salvatore Petta
- Section of Gastroenterology and Hepatology, Department of Health Promotion, Maternal and Child Health, Internal and Specialty Medicine of Excellence (PROMISE), University of Palermo, Italy
| | - Viviana Maggio
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Italy
| | - Manfredi Rizzo
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Italy; Ras Al Khaimah Medical and Health Sciences University (RAKMHSU), Ras Al Khaimah, United Arab Emirates; Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, United Arab Emirates
| |
Collapse
|
2
|
Ibrahim M, Ba-Essa EM, Alvarez JA, Baker J, Bruni V, Cahn A, Ceriello A, Cosentino F, Davies MJ, De Domenico F, Eckel RH, Friedman AN, Goldney J, Hamtzany O, Isaacs S, Karadeniz S, Leslie RD, Lingvay I, McLaughlin S, Mobarak O, Del Prato S, Prattichizzo F, Rizzo M, Rötzer RD, le Roux CW, Schnell O, Seferovic PM, Somers VK, Standl E, Thomas A, Tuccinardi D, Valensi P, Umpierrez GE. Obesity and its management in primary care setting. J Diabetes Complications 2025; 39:109045. [PMID: 40305970 DOI: 10.1016/j.jdiacomp.2025.109045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
Obesity is a worldwide epidemic affecting adults and children, regardless of their socioeconomic status. Significant progress has been made in understanding the genetic causes contributing to obesity, shedding light on a portion of cases worldwide. In young children with severe obesity however, recessive mutations, i.e., leptin or leptin receptor deficiency should be sought. Much more has been learned about the far-reaching impact of obesity on complications, including cardiovascular disease, liver and kidney dysfunction, diabetes, inflammation, hypertension, sleep, cancer, and the eye. Preventive strategies, particularly in children, are crucial for reducing obesity rates and mitigating its long-term complications. While dietary modifications and lifestyle changes remain the cornerstone of obesity prevention or treatment, recent advancements have introduced highly effective pharmacological options complementing weight-reduction surgery. Newer medications, like incretin-based therapies including glucagon-like peptide-1 agonists (GLP-1RA), have demonstrated remarkable efficacy in promoting weight loss, offering new insights into margining obesity-related conditions. Primary care providers, whether treating adults or children, play a pivotal role in preventing obesity, initiating treatment, and making onward referrals to specialists to assist in managing obesity and obesity-related complications.
Collapse
Affiliation(s)
| | | | - Jessica A Alvarez
- Division of Endocrinology, Lipids, and Metabolism, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Vincenzo Bruni
- Bariatric Surgery Unit, Campus Bio-Medico University, Rome, Italy
| | - Avivit Cahn
- The Diabetes Unit, Department of Endocrinology and Metabolism, Hadassah Hebrew University Hospital, Jerusalem, Israel; The faculty of Medicine, Hebrew University of Jerusalem, Israel
| | | | - Francesco Cosentino
- Unit of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Melanie J Davies
- Diabetes Research Centre, University of Leicester, Leicester, UK; NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Francesco De Domenico
- Research Unit of Endocrinology and Diabetes, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Robert H Eckel
- University of Colorado Anschutz Medical Campus and University of Colorado Hospital, Aurora, Colorado, USA
| | - Allon N Friedman
- Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Jonathan Goldney
- Diabetes Research Centre, University of Leicester, Leicester, UK; NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Omer Hamtzany
- Division of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Scott Isaacs
- Division of Endocrinology, Lipids, and Metabolism, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Richard David Leslie
- Blizard Institute, Centre of Immunobiology, Barts and the London School of Medicine, Queen Mary, University of London, London, UK
| | - Ildiko Lingvay
- Department of Internal Medicine/ Endocrinology and Peter O'Donnell Jr School of Public Health, UT Southwestern Medical Center at Dallas, USA
| | - Sue McLaughlin
- Department of Pharmacy and Nutrition Services, Nebraska Medicine, Department of Pediatric Endocrinology, Children's Nebraska, Omaha, NE, USA; Public Health Department, Winnebago Comprehensive Healthcare System, Winnebago, NE, USA
| | - Omar Mobarak
- Alfaisal University College of Medicine, Riyadh, Saudi Arabia
| | - Stefano Del Prato
- University of Pisa and Sant'Anna School of Advanced Studies, Pisa, Italy
| | | | - Manfredi Rizzo
- School of Medicine, Promise Department, University of Palermo, Italy; College of Medicine, Ras Al Khaimah Medical and Health Sciences University, United Arab Emirates
| | | | - Carel W le Roux
- Diabetes complications Research Centre, University College Dublin, Ireland
| | - Oliver Schnell
- Forschergruppe Diabetes eV at the Helmholtz Centre, Munich, Neuherberg, Germany
| | - Petar M Seferovic
- Academician, Serbian Academy of Sciences and Arts, Professor, University of Belgrade Faculty of Medicine and Belgrade University Medical Center, Serbia
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eberhard Standl
- Forschergruppe Diabetes eV at the Helmholtz Centre, Munich, Neuherberg, Germany
| | | | - Dario Tuccinardi
- Research Unit of Endocrinology and Diabetes, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Paul Valensi
- Polyclinique d'Aubervilliers, Aubervilliers and Paris Nord University, Bobigny, France
| | - Guillermo E Umpierrez
- Division of Endocrinology, Lipids, and Metabolism, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
3
|
Sanyal AJ, Newsome PN, Kliers I, Østergaard LH, Long MT, Kjær MS, Cali AMG, Bugianesi E, Rinella ME, Roden M, Ratziu V, ESSENCE Study Group. Phase 3 Trial of Semaglutide in Metabolic Dysfunction-Associated Steatohepatitis. N Engl J Med 2025; 392:2089-2099. [PMID: 40305708 DOI: 10.1056/nejmoa2413258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Collaborators] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
BACKGROUND Semaglutide, a glucagon-like peptide-1 receptor agonist, is a candidate for the treatment of metabolic dysfunction-associated steatohepatitis (MASH). METHODS In this ongoing phase 3, multicenter, randomized, double-blind, placebo-controlled trial, we assigned 1197 patients with biopsy-defined MASH and fibrosis stage 2 or 3 in a 2:1 ratio to receive once-weekly subcutaneous semaglutide at a dose of 2.4 mg or placebo for 240 weeks. The results of a planned interim analysis conducted at week 72 involving the first 800 patients are reported here (part 1). The primary end points for part 1 were the resolution of steatohepatitis without worsening of liver fibrosis and reduction in liver fibrosis without worsening of steatohepatitis. RESULTS Resolution of steatohepatitis without worsening of fibrosis occurred in 62.9% of the 534 patients in the semaglutide group and in 34.3% of the 266 patients in the placebo group (estimated difference, 28.7 percentage points; 95% confidence interval [CI], 21.1 to 36.2; P<0.001). A reduction in liver fibrosis without worsening of steatohepatitis was reported in 36.8% of the patients in the semaglutide group and in 22.4% of those in the placebo group (estimated difference, 14.4 percentage points; 95% CI, 7.5 to 21.3; P<0.001). Results for the three secondary outcomes that were included in the plan to adjust for multiple testing were as follows: combined resolution of steatohepatitis and reduction in liver fibrosis was reported in 32.7% of the patients in the semaglutide group and in 16.1% of those in the placebo group (estimated difference, 16.5 percentage points; 95% CI, 10.2 to 22.8; P<0.001). The mean change in body weight was -10.5% with semaglutide and -2.0% with placebo (estimated difference, -8.5 percentage points; 95% CI, -9.6 to -7.4; P<0.001). Mean changes in bodily pain scores did not differ significantly between the two groups. Gastrointestinal adverse events were more common in the semaglutide group. CONCLUSIONS In patients with MASH and moderate or advanced liver fibrosis, once-weekly semaglutide at a dose of 2.4 mg improved liver histologic results. (Funded by Novo Nordisk; ClinicalTrials.gov number, NCT04822181.).
Collapse
Affiliation(s)
- Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond
| | - Philip N Newsome
- Roger Williams Institute of Liver Studies, Faculty of Life Sciences and Medicine, King's College London, Foundation for Liver Research and King's College Hospital, London
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | | | | - Mary E Rinella
- Division of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago
| | - Michael Roden
- Department of Endocrinology and Diabetology, Faculty of Medicine, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Munich-Neuherberg, Germany
| | - Vlad Ratziu
- Sorbonne Université, Institute for Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, INSERM Unité Mixte de Recherche Scientifique 1138 Centre de Recherche des Cordeliers, Paris
| | | |
Collapse
Collaborators
Anurag Maheshwari, Elliot Shin, Eric Lawitz, Cyrus Desouza, Stephanie Pointer, Mohammad Siddiqui, Julio Rosenstock, Grisell Ortiz-Lasanta, Gary Reiss, Eugene Schiff, Rohit Loomba, Don Lazas, Michael Fuchs, Christopher Still, Manal Abdelmalek, Tawfik Chami, Don Rockey, Johanna Hollweg, Donald Gardner, Bhaktasharan Patel, Anita Kohli, Ann Moore, Fadi Deeb, Zeid Kayali, Reem Ghalib, Ildiko Lingvay, Douglas Denham, Amir Hassan, Christopher Bowlus, James Maher, Shekhar Challa, Meena Bansal, Steven Fern, Bradley Freilich, Sonal Kumar, Rajalakshmi Iyer, Idalia Acosta, Jatinder Pruthi, Humberto Aguilar, Adam Deising, Na Li, William Bowman, Ira Jacobson, Lenore DePagter, Aasim Sheikh, Vishweshwar Ranga, Elif Oral, Naomi Gerber, Eva-Maria Heurich, Alonzo Williams, Harish Thakkar, Liana Billings, Kenolisa Onwueme, Vishal Bhagat, Chakradhar Reddy, Glenn Freed, Tuan Pham, Joseph Lim, Shahriar Sedghi, Deepak Venkat, Scott Wilson, Brian Borg, Matthew Myers, Bilal Hameed, Yaneicy Gonzalez Rojas, Jonathan Stine, Miguel Rebollar, Miguel Rodriguez, Pankaj Patel, Michael Steinbook, Maya Balakrishnan, Ethan Weinberg, Adolfo Cueli, Sujit Janardhan, Virginia Clark, Michelle Mallitz, Mordechai Rabinovitz, Dina Halegoua-DeMarzio, Natasha Ballard, Saeid Goshtasbi, Murtaza Mussaji, Arpan Mohanty, Apurva Modi, Michael Brown, Carl Wallach, Parvez Mantry, Huy Trinh, Robert Barish, Manuel Sanchez, Mitchell Shiffman, Louis Wilson, Francisco Pasquel, Alina Allen, Steven Zacks, David Victor, Naim Alkhouri, Michael Ryan, Winston Dunn, Angel Vento, Mousab Tabbaa, Mary Rinella, Anjali Morey, Rashmee Patil, Edward Mena, Guy Neff, John Hemmersmeier, Manuel Rodriguez, Naveen Gara, Karen Simon, Jude Acloque, Adil Fatakia, Conar Fitton, Esteban Olivera, Zubair Farooqui, Rosemary Laird, Kiran Rao, Susan Neese, Broderick Eaton, Daniel Gaudet, Magdy Elkhashab, Melanie Beaton, Giada Sebastiani, Magnus McLeod, Susan Greenbloom, Mark Swain, Andre Carpentier, Yves Robitaille, Adrian Gadano, Margarita Anders, Fernando Bessone, Gabriel Soteras, Maria Puente, Luis Colombato, Diego Aizenberg, Alejandra Mabel Camino, Alma Ladrón de Guevara Cetina, Rafael Aguirre Rivero, Axel Mena Quintero, Efrain Montaño Gonzalez, Diego Barraza Ortiz, Rita da Silva, Claudia de Oliveira, Cristiane Nogueira, Roberto José Filho, Giovanni Silva, Daniela Antunes, Mario Reis Alvares-da-Silva, Rodrigo Rocco, Larissa Sargentini, Heiner Wedemeyer, Anita Pathil-Warth, Jörn Schattenberg, Ingolf Schiefke, Jens Marquardt, Johannes Wiegand, Münevver Demir, Wolf-Peter Hofmann, George Abouda, Kosh Agarwal, Guru Aithal, William Alazawi, Quentin Anstee, Matthew Armstrong, Andrew Austin, Francesca Saffioti, Ben Hudson, Thinzar Min, Pinelopi Manousou, Michael Miller, Richard Parker, Janisha Patel, Harpal Randeva, Sanjeev Sharma, David Sheridan, Emmanouil Tsochatzis, Daniel Abeles, Juan Turnes, Javier Ampuero Herrojo, Isabel Conde, Rocío Aller de la Fuente, Jose Luis Calleja, Maria Teresa Arias Loste, Juan Manuel Pericàs, Moises Diago Madrid, Vlad Ratziu, Laurent Castera, Stanislas Pol, Albert Tran, Lawrence Serfaty, Philippe Mathurin, Cyrielle Caussy, Jérôme Boursier, Juliette Foucher, Marianne Maynard-Muet, Antonio Picardi, Gaetano Serviddio, Francesco Andreozzi, Salvatore Petta, Loris Pironi, Anna Fracanzani, Elisabetta Bugianesi, Luca Miele, Alessandra Mangia, Fabio Marra, Piotr Napora, Ewa Janczewska, Pawel Rajewski, Ewa Krecipro-Nizinska, Katarzyna Wawrzyniec-Lis, Jakub Klapaczynski, Adriana Ilavska, Katarina Cerna, Jozef Lacka, Sylvia Drazilova, Peter Posypanka, Elena Topalova-Zheleva, Lyudmila Mateva, Rozalina Balabanska, Diana Petrova, Stoyan Handzhiev, Veselin Kolchakov, Dimitar Dimitrov, Ivica Grgurevic, Silvija Canecki Varzic, Radan Bruha, Karel Dvorak, Vaclav Hejda, Nebojsa Lalic, Katarina Lalic, Dusica Vrinic Kalem, Edita Stokic, Irina Brcerevic, Liliana Gheorghe, Anca Trifan, Carmen Preda, Claudia Cimpoeru, Andra Suceveanu, Bogdan Pintea, Bogdan Procopet, Olga Orasan, Magdalena Morosanu, Ciprian Constantin, George Papatheodoridis, Grigorios Kaltsas, Alexandra Alexopoulou, Emmanouil Sinakos, Ioannis Goulis, Dimitrios Christodoulou, Triantafyllos Didangelos, Helena Cortez-Pinto, Jose Presa Ramos, Filipe Andrade, Joana Magalhães, Tarcísio Araújo, Rosa Jorge, Cristina Fonseca, Carla Rolanda, Adriano Cardoso, Guilherme Macedo, Mariana Monteiro, Ana Silva, Luís Maia, Manuel Pereira, Lise Lotte Gluud, Henning Grønbæk, Aleksander Krag, Frank Schiødt, Anja Geerts, Sven Francque, Yves Horsmans, Christophe Moreno, Mathieu Struyve, Christophe Van Steenkiste, O Holleboom, Lars Penne, Robert Roomer, Bernhard Ludvik, Vanessa Stadlbauer-Köllner, Evelyn Fließer-Görzer, Håvard Midgard, Svein Oskar Frigstad, John Ryan, Suzanne Norris, Stefan Bilz, Annalisa Berzigotti, Nicolas Goossens, Beat Muellhaupt, Thomas Zueger, George Bee Goh, Rahul Kumar, Yock Young Dan, Yusuf Yilmaz, Kamil Ozdil, Filiz Akyuz, Murat Kiyici, Metin Basaranoglu, Hatice Balaban, Meral Akdogan Kayhan, Saadettin Hulagu, Fehmi Ates, Ulus Akarca, Ramazan Idilman, Hilmi Sumbul, Eli Zuckerman, Gadi Lalazar, Ehud Zigmond, Helena Katchman, Rifaat Safadi, Marius Braun, Assy Nimer, Zhanna Kobalava, Yulia Samoilova, Tatyana Lysenko, Marina Sergeeva-Kondrachenko, Elena Frolova, Andrey Peskov, Svetlana Zyangirova, Leylya Gaysina, Irina Dvoryashina, Lidia Belousova, Igor Bakulin, Polina Ermakova, Tatiana Sveklina, Elizaveta Antonova, Marina Mayevskaya, Natalia Voloshina, Sindeep Bhana, Nazeer Chopdat, Matthys Basson, Bilal Bobat, Naayil Rajabally, Soritha Coetzer, Jacob George, Martin Weltman, Marno Ryan, Marie Sinclair, Leon Adams, Damian Harding, Oyekoya Ayonrinde, Scott Davison, John Bate, Natalie Funakoshi, Akash Shukla, Shrikant Mukewar, Sandeep Gupta, Mukesh Kalla, Samir Shah, Shiv Sarin, Shalimar, Rajiv Mehta, Kiran Singh, Mukesh Jain, Ajay Duseja, Vandana Midha, Bailuru Tantry, Dharmesh Kapoor, Paturi Rao, Narendra Choudhary, Rakesh Sahay, Parshottam Koradia, Wah Kheong Chan, Soek Siam Tan, Yeong Yeh Lee, Won Kim, Ji Hoon Kim, Won Young Tak, Hyung Joon Kim, Byoung Kuk Jang, Moon Young Kim, SangGyune Kim, Jun Yong Park, Jung Gil Park, Kojiro Mori, Norihisa Nishimura, Atsushi Naganuma, Tsuguru Hayashi, Taku Nakamasu, Shigetoshi Fujiyama, Yoshito Itoh, Hirofumi Kogure, Kazuhito Kawata, Takuya Nagano, Teruki Miyake, Tsunamasa Watanabe, Masataka Seike, Masanori Kawaguchi, Nami Mori, Masataka Tsuge, Michihiro Nonaka, Taku Sanada, Miwa Kawanaka, Takuma Nakatsuka, Jun Arai, Keizo Anzai, Hirayuki Enomoto, Shiro Takami, Masaru Baba, Hideki Fujii, Seiichi Mawatari, Norio Akuta, Toshihide Shima, Takuya Genda, Hayato Hikita, Nobuharu Tamaki, Tomomi Kogiso, Eishiro Mizukoshi, Kenichi Ikejima, Masato Yoneda, Naoki Hiramatsu, Hideki Hayashi, Yuichi Koshiyama, Atsushi Ishino, Jidong Jia, Lai Wei, Jing Zhang, Huiying Rao, Wen Xie, Jie Xu, Qing Xie, Yuemin Nan, Junqi Niu, Xuan An, Youwen Tan, Yongjian Zhou, Yimin Mao, Hong Deng, Jinlin Hou, Tao Han, Lixian Wu, Yongning Xin, Xuebing Yan, Minghua Zheng, Liang Xu, Guojun Li, Guoxin Hu, Guan Yujuan, Hong Wang, Wenjia Liu, Bihui Zhong, Zhang Zheng, Bai Lang, Sikui Wang, Yanbo Zhen, Xiaoping Wu, Chun-Jen Liu, Yi-Hsiang Huang, Jui-Ting Hu, Chi-Yi Chen, Pin-Nan Cheng, Ming-Lung Yu, Chun-Chao Chang, Cheng-Yuan Peng, Chia-Chi Wang, Arun Sanyal, Phillip Newsome, Michael Roden, Anna M G Cali, Jørgen Calí Eskildsen, Adel Belloum, Michelle T Long,
Collapse
|
4
|
Luukkonen PK. Subtypes of MASLD confer distinct clinical trajectories. J Hepatol 2025; 82:1138-1139. [PMID: 40102074 DOI: 10.1016/j.jhep.2025.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Affiliation(s)
- Panu K Luukkonen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland; Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
5
|
Meng Z, Lin JD. Bariatric surgery meets TREM2+ macrophages to alleviate MASH independent of weight loss. Hepatology 2025; 81:1638-1640. [PMID: 39417882 DOI: 10.1097/hep.0000000000001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Affiliation(s)
- Ziyi Meng
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | | |
Collapse
|
6
|
Dodangeh S, Hasani-Ranjbar S. Old and new anti-obesity drugs. J Diabetes Metab Disord 2025; 24:16. [PMID: 39712336 PMCID: PMC11659566 DOI: 10.1007/s40200-024-01512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/24/2024] [Indexed: 12/24/2024]
Abstract
Obesity is a pandemic problem that correlates with a cluster of metabolic factors leading to poor cardiovascular outcomes, morbidity, and an increased risk of overall mortality. It is necessary to approach obesity with a comprehensive treatment plan, which may involve lifestyle modifications (diet, exercise, and behavioral therapy) and pharmacological interventions. This article provides an overview of the mechanisms of action, efficacy, and safety of available long-term anti-obesity drugs and introduces other potential agents under investigation.
Collapse
Affiliation(s)
- Salimeh Dodangeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Hasani-Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Zafer M, Tavaglione F, Romero-Gómez M, Loomba R. Review Article: GLP-1 Receptor Agonists and Glucagon/GIP/GLP-1 Receptor Dual or Triple Agonists-Mechanism of Action and Emerging Therapeutic Landscape in MASLD. Aliment Pharmacol Ther 2025; 61:1872-1888. [PMID: 40364529 DOI: 10.1111/apt.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/14/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is primarily managed through diet and lifestyle modifications. However, these behavioural interventions alone may not achieve disease regression or remission, and maintaining long-term adherence is challenging. Incretin mimetics and other gastrointestinal hormones targeting the pleiotropic pathophysiological pathways underlying MASLD have now emerged as promising disease-modifying therapies. AIMS This is a comprehensive review summarising the role of glucagon-like peptide-1 (GLP-1) receptor agonists and glucagon/glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 receptor dual or triple agonists in the treatment of metabolic dysfunction-associated steatohepatitis (MASH). METHODS Only clinical trials with endpoints assessed by liver histology were included for a robust evaluation of therapeutic efficacy. RESULTS Recent evidence from phase 2 clinical trials for MASH demonstrated that pharmacological agents based on GLP-1 receptor agonism are effective in improving disease activity. Additionally, tirzepatide and survodutide showed potential clinical benefits in reducing fibrosis. Other cardiometabolic benefits observed include weight loss and improvements in glycaemic control and lipid profile. Adherence to treatment may be limited by gastrointestinal side effects, though they were found to be generally mild to moderate in severity. An interim analysis of the semaglutide phase 3 trial confirmed its efficacy in improving steatohepatitis and demonstrated its potential to improve fibrosis. CONCLUSIONS GLP-1 receptor agonists, alone or in combination with GIP and/or glucagon receptor agonists, represent promising, effective pharmacotherapies for the treatment of MASLD/MASH. Larger and longer-duration clinical trials are needed to further evaluate the efficacy and safety of GIP receptor and glucagon receptor agonism.
Collapse
Affiliation(s)
- Maryam Zafer
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, California, USA
| | - Federica Tavaglione
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, California, USA
| | - Manuel Romero-Gómez
- UCM Digestive Diseases and Ciberehd, Virgen Del Rocío University Hospital, Institute of Biomedicine of Seville (CSIC/HUVR/US), University of Seville, Seville, Spain
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, California, USA
- School of Public Health, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
8
|
Pasta A, Facciorusso A, Plaz Torres MC, Giannini EG, Sacco R. Effects of glucagon-like PEPTIDE-1 receptor agonists on incidence of hepatocellular carcinoma and liver decompensation in patients with diabetes: A systematic review and META-analysis. Eur J Clin Invest 2025; 55:e70000. [PMID: 39937048 PMCID: PMC12066890 DOI: 10.1111/eci.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
This systematic review and meta-analysis evaluated the impact of glucagon-like peptide-1 receptor agonists (GLP-1RAs) on hepatocellular carcinoma (HCC) and liver decompensation in patients with type 2 diabetes. Analysing over 641,377 patients, GLP-1RA use was associated with a significant 58% reduction in HCC risk, particularly in patients with cirrhotis. While a trend towards reduced liver decompensation risk was observed, it was not statistically significant. These findings suggest a potential role for GLP-1RAs in HCC risk stratification and prevention strategies.
Collapse
Affiliation(s)
- Andrea Pasta
- Gastroenterology Unit, Department of Internal MedicineUniversity of GenoaGenoaItaly
| | - Antonio Facciorusso
- Gastroenterology Unit, Department of Experimental MedicineUniversità del SalentoLecceItaly
| | | | - Edoardo G. Giannini
- Gastroenterology Unit, Department of Internal MedicineUniversity of GenoaGenoaItaly
| | - Rodolfo Sacco
- Gastroenterology Unit, Department of Medical SciencesUniversity of FoggiaFoggiaItaly
| |
Collapse
|
9
|
Liu Y, He L, Han S, Ping F, Li W, Xu L, Zhang H, Li Y. Glucagon-Like Peptide-1 Receptor Agonists and Risk of Venous Thromboembolism: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc 2025; 14:e039446. [PMID: 40314346 DOI: 10.1161/jaha.124.039446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/13/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Limited data exist on the association of glucagon-like peptide 1 receptor agonists (GLP-1RAs) with the risk of venous thromboembolism. This meta-analysis aimed to investigate the association between GLP-1RAs and the risk of venous thromboembolism including deep vein thrombosis (DVT) and pulmonary embolism. METHODS AND RESULTS A systematic search of PubMed, Web of Science, EMBASE, and Cochrane library was conducted from inception until July 3, 2024, to identify randomized controlled trials comparing GLP-1RAs with placebo or other anti-iabetic drugs, with reported data on DVT and pulmonary embolism. The primary outcome was venous thromboembolism, and secondary outcomes included DVT and pulmonary embolism. Pooled odds ratios (ORs) were calculated using fixed-effects models with Mantel-Haenszel method and treatment arm continuity correction for zero-event trials. A total of 39 randomized controlled trials involving 70 499 participants were included. A nonsignificant upward trend in the risk of venous thromboembolism was observed among participants using GLP-1RAs (OR, 1.19 [95% CI, 0.94-1.50]). GLP-1RAs were significantly associated with an increased risk of DVT (OR, 1.64 [95% CI, 1.14-2.36]); risk difference 25 (5-52) more events per 10 000 person-years). Subgroup analyses revealed that increased risk of DVT was particularly prominent in randomized controlled trials with treatment duration >1.5 years (OR, 2.32 [95% CI, 1.49-3.60]) and in cardiovascular outcome trials (OR, 2.18 [95% CI, 1.36-3.49]). No significant association was observed between GLP-1RAs and risk of pulmonary embolism. CONCLUSIONS GLP-1RAs might increase the risk of DVT, especially for long-term use of GLP-1RAs. Clinicians should be aware of this potential risk when prescribing GLP-1RAs.
Collapse
Affiliation(s)
- Yiwen Liu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences Beijing China
| | - Liyun He
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences Beijing China
| | - Shumeng Han
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences Beijing China
| | - Fan Ping
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences Beijing China
| | - Wei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences Beijing China
| | - Lingling Xu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences Beijing China
| | - Huabing Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences Beijing China
| | - Yuxiu Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences Beijing China
| |
Collapse
|
10
|
Chu X, Hou Y, Peng C, Li W, Liang M, Mei J, Qian M, Wang J, Xu S, Jiang Y, Wen X, Chen Y, Yuan F, Xie J, Wang C, Zhang J. Exosome-derived miR-548ag drives hepatic lipid accumulation via upregulating FASN through inhibition of DNMT3B. J Lipid Res 2025:100818. [PMID: 40339699 DOI: 10.1016/j.jlr.2025.100818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the leading cause of chronic liver disease worldwide. This study investigates the role of serum miR-548ag in regulating lipid metabolism and its contribution to MASLD in obesity. We found that miR-548ag levels were significantly elevated in the serum of both obese and MASLD patients, and positively correlated with body mass index (BMI), fasting plasma glucose (FPG), triglycerides (TG), total cholesterol (TC), LDL, HDL, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. Additionally, miR-548ag expression was significantly higher in the liver and abdominal adipose tissue of obese individuals compared to those of normal weight. In vitro studies in HepG2 and L02 cells, along with previous findings, demonstrated that miR-548ag promotes fatty acid synthase (FASN) expression by inhibiting DNA methyltransferase 3B (DNMT3B), thereby enhancing lipid synthesis. This was confirmed in two mouse models: one with tail vein injections of miR-548ag mimic/inhibitor adeno-associated viruses, and another with tail vein injections of exosomes from serum of normal-weight and obese individuals. Both models showed that miR-548ag upregulated FASN through DNMT3B inhibition, leading to increased lipid synthesis and larger hepatic lipid droplets, effects that were reversed by miR-548ag inhibition. Taken together, elevated miR-548ag expression in obesity enhances hepatic lipid synthesis by targeting DNMT3B to upregulate FASN, contributing to the development of MASLD.
Collapse
Affiliation(s)
- Xiaolong Chu
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Department of Medical Genetics , Medical College of Tarim University, 296 Tarim Avenue, Alar, Xinjiang, 843300, China
| | - Yanting Hou
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Chaoling Peng
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Wei Li
- First Affiliated Hospital of Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Maodi Liang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Jin Mei
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Meiyu Qian
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Juan Wang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Shibo Xu
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yidan Jiang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Xin Wen
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yao Chen
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Fangyuan Yuan
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Jianxin Xie
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Department of Medical Genetics , Medical College of Tarim University, 296 Tarim Avenue, Alar, Xinjiang, 843300, China.
| | - Cuizhe Wang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China.
| | - Jun Zhang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
11
|
Kaya E, Yilmaz Y, Alkhouri N. Clinical Insights on Resmetirom: Clinical Indications, Patient Selection, and Monitoring Response to Therapy. J Clin Gastroenterol 2025; 59:412-419. [PMID: 40193288 DOI: 10.1097/mcg.0000000000002150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The recent conditional approval by the Food and Drug Administration of resmetirom for treating metabolic dysfunction-associated steatohepatitis (MASH) with significant or advanced fibrosis represents a pivotal milestone in the history of metabolic dysfunction-associated steatotic liver disease (MASLD) treatment. As the first liver-directed pharmacological therapy option for MASLD, resmetirom offers a novel approach that specifically targets liver pathology, marking a transformative step forward in managing this widespread and challenging condition. For initiating therapy with resmetirom, a liver biopsy is not required. Consequently, accurately excluding patients with less severe liver histology or cirrhosis using noninvasive tests (NITs) is essential. In addition, monitoring the therapy response should be conducted using NITs. Given the recent approval, our current clinical understanding of resmetirom is primarily informed by phase 3 clinical trials. The long-term effects of the drug should be evaluated in further studies by encouraging the use of the drug in eligible patients. This review highlights key aspects of clinical resmetirom use, including identifying the target population, monitoring therapeutic response, determining appropriate discontinuation criteria, and strategies to prevent unnecessary treatment interruptions.
Collapse
Affiliation(s)
- Eda Kaya
- Department of Medicine, Knappschaftskrankenhaus Bochum, Ruhr University, Bochum, Germany
- The Global NASH Council, Washington, DC
| | - Yusuf Yilmaz
- The Global NASH Council, Washington, DC
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
| | | |
Collapse
|
12
|
Wong SW, Yang YY, Chen H, Xie L, Shen XZ, Zhang NP, Wu J. New advances in novel pharmacotherapeutic candidates for the treatment of metabolic dysfunction-associated steatohepatitis (MASH) between 2022 and 2024. Acta Pharmacol Sin 2025; 46:1145-1155. [PMID: 39870846 PMCID: PMC12032127 DOI: 10.1038/s41401-024-01466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) covers a broad spectrum of profile from simple fatty liver, evolving to metabolic dysfunction-associated steatohepatitis (MASH), to hepatic fibrosis, further progressing to cirrhosis and hepatocellular carcinoma (HCC). MASLD has become a prevalent disease with 25% in average over the world. MASH is an active stage, and requires pharmacological intervention when there is necroptotic damage with fibrotic progression. Although there is an increased understanding of MASH pathogenesis and newly approved resmetirom, given its complexity and heterogeneous pathophysiology, there is a strong necessity to develop more drug candidates with better therapeutic efficacy and well-tolerated safety profile. With an increased list of pharmaceutical candidates in the pipeline, it is anticipated to witness successful approval of more potential candidates in this fast-evolving field, thereby offering different categories of medications for selective patient populations. In this review, we update the advances in MASH pharmacotherapeutics that have completed phase II or III clinical trials with potential application in clinical practice during the latest 2 years, focusing on effectiveness and safety issues. The overview of fast-evolving status of pharmacotherapeutic candidates for MASH treatment confers deep insights into the key issues, such as molecular targets, endpoint selection and validation, clinical trial design and execution, interaction with drug administration authority, real-world data feedback and further adjustment in clinical application.
Collapse
Affiliation(s)
- Shu Wei Wong
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Yong-Yu Yang
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Hui Chen
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Li Xie
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Xi-Zhong Shen
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Ning-Ping Zhang
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| | - Jian Wu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China.
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| |
Collapse
|
13
|
Boeckmans J, Hagström H, Cryer DR, Schattenberg JM. The importance of patient engagement in the multimodal treatment of MASLD. COMMUNICATIONS MEDICINE 2025; 5:148. [PMID: 40312453 PMCID: PMC12046057 DOI: 10.1038/s43856-025-00871-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 04/16/2025] [Indexed: 05/03/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is often regarded in society as a disease caused by personal lifestyle and dietary choices. Healthcare providers who have empathy and are able to explain the disease trajectory can better engage with people with MASLD and actively work with them to improve their metabolic health on a sustainable basis. Non-invasive tests can assist in this process, but healthcare providers must ensure they explain their advantages and limitations. Discussing and setting lifestyle goals are priorities before initiating specific pharmacological treatment, since living a healthy lifestyle will remain the backbone of the multimodal management of MASLD. In this review, we discuss challenges and opportunities to actively engage with people living with MASLD in a multimodal treatment framework as a healthcare provider.
Collapse
Affiliation(s)
- Joost Boeckmans
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
- In Vitro Liver Disease Modelling Team, Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hannes Hagström
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
- Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden
| | | | - Jörn M Schattenberg
- Department of Medicine II, University Medical Center Homburg, Homburg and Saarland University, Saarbrücken, Germany.
- PharmaScienceHub (PSH) Saarland University, Saarbrücken, Germany.
- Centrum für geschlechtsspezifische Biologie und Medizin (CGBM), Saarland University, Saarbrücken, Germany.
| |
Collapse
|
14
|
Liu WH, Liu C, Xue Y, Sun XR, Chen XY, Chen L. Activation of GLP-1R modulates the spontaneous discharge of nigral dopaminergic neurons and motor behavior in mice with chronic MPTP Parkinson's disease. Front Aging Neurosci 2025; 17:1529919. [PMID: 40353061 PMCID: PMC12062123 DOI: 10.3389/fnagi.2025.1529919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Abstract
The gradual decline of nigral dopaminergic neurons is the main cause of Parkinson's disease (PD), yet as of now, there exists no conclusive therapeutic intervention. Glucagon-like peptide-1 (GLP-1) is an incretin, which is also a key substance regulating neuronal activity and synaptic transmission. GLP-1 receptors (GLP-1Rs) are widely expressed in the central nervous system. Chronic administration of low doses of 1-methyl-4-phenyl, 1,2,3,6-tetrahydropiridine (MPTP) mitigates mortality in mice during the modeling phase, thereby more closely mirroring the progression of PD. This study aims to observe the effects of GLP-1 receptor agonists (GLP-1RAs) on the firing activity of nigral dopaminergic neurons and motor behaviors in MPTP-induced chronic PD mice. Our findings revealed that peripheral administration of GLP-1RAs exendin-4 significantly alleviated motor impairments in MPTP-induced chronic PD mice. Concurrently, peripheral administration of exendin-4 increased the number of active dopaminergic neurons, improved the spontaneous firing activity, as well as alleviated MPTP-induced dopaminergic neuron loss in MPTP-induced PD mice. Furthermore, local administration of exendin-4 directly increased the firing rate of nigral dopaminergic neurons via GLP-1Rs, suggesting that peripheral administration of exendin-4 may exert neuroprotection through its mild excitation on dopaminergic neurons. These findings collectively imply that peripheral administration of GLP-1RAs may hold potential in the treatment of PD.
Collapse
Affiliation(s)
- Wen-Hong Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Cui Liu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical, Jinan, China
| | - Yan Xue
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiang-Rong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xin-Yi Chen
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Wang W, Gao X, Niu W, Yin J, He K. Targeting Metabolism: Innovative Therapies for MASLD Unveiled. Int J Mol Sci 2025; 26:4077. [PMID: 40362316 PMCID: PMC12071536 DOI: 10.3390/ijms26094077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/01/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The recent introduction of the term metabolic-dysfunction-associated steatotic liver disease (MASLD) has highlighted the critical role of metabolism in the disease's pathophysiology. This innovative nomenclature signifies a shift from the previous designation of non-alcoholic fatty liver disease (NAFLD), emphasizing the condition's progressive nature. Simultaneously, MASLD has become one of the most prevalent liver diseases worldwide, highlighting the urgent need for research to elucidate its etiology and develop effective treatment strategies. This review examines and delineates the revised definition of MASLD, exploring its epidemiology and the pathological changes occurring at various stages of the disease. Additionally, it identifies metabolically relevant targets within MASLD and provides a summary of the latest metabolically targeted drugs under development, including those in clinical and some preclinical stages. The review finishes with a look ahead to the future of targeted therapy for MASLD, with the goal of summarizing and providing fresh ideas and insights.
Collapse
Affiliation(s)
- Weixin Wang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| | - Xin Gao
- School of Public Health, Jilin University, Changchun 130021, China;
| | - Wentong Niu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| | - Jinping Yin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130041, China;
| | - Kan He
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| |
Collapse
|
16
|
Iakovleva V, de Jong YP. Gene-based therapies for steatotic liver disease. Mol Ther 2025:S1525-0016(25)00298-9. [PMID: 40254880 DOI: 10.1016/j.ymthe.2025.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/26/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025] Open
Abstract
Advances in nucleic acid delivery have positioned the liver as a key target for gene therapy, with adeno-associated virus vectors showing long-term effectiveness in treating hemophilia. Steatotic liver disease (SLD), the most common liver condition globally, primarily results from metabolic dysfunction-associated and alcohol-associated liver diseases. In some individuals, SLD progresses from simple steatosis to steatohepatitis, cirrhosis, and eventually hepatocellular carcinoma, driven by a complex interplay of genetic, metabolic, and environmental factors. Genetic variations in various lipid metabolism-related genes, such as patatin-like phospholipase domain-containing protein 3 (PNPLA3), 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13), and mitochondrial amidoxime-reducing component 1 (MTARC1), impact the progression of SLD and offer promising therapeutic targets. This review largely focuses on genes identified through clinical association studies, as they are more likely to be effective and safe for therapeutic intervention. While preclinical research continues to deepen our understanding of genetic factors, early-stage clinical trials involving gene-based SLD therapies, including transient antisense and small-molecule approaches, are helping prioritize therapeutic targets. Meanwhile, hepatocyte gene editing technologies are advancing rapidly, offering alternatives to transient methods. As such, gene-based therapies show significant potential for preventing the progression of SLD and enhancing long-term liver health.
Collapse
Affiliation(s)
- Viktoriia Iakovleva
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
17
|
Anastasiou IΑ, Argyrakopoulou G, Dalamaga M, Kokkinos A. Dual and Triple Gut Peptide Agonists on the Horizon for the Treatment of Type 2 Diabetes and Obesity. An Overview of Preclinical and Clinical Data. Curr Obes Rep 2025; 14:34. [PMID: 40210807 PMCID: PMC11985575 DOI: 10.1007/s13679-025-00623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 04/12/2025]
Abstract
PURPOSE OF REVIEW The development of long-acting incretin receptor agonists represents a significant advance in the fight against the concurrent epidemics of type 2 diabetes mellitus (T2DM) and obesity. The aim of the present review is to examine the cellular processes underlying the actions of these new, highly significant classes of peptide receptor agonists. We further explore the potential actions of multi-agonist drugs as well as the mechanisms through which gut-brain communication can be used to achieve long-term weight loss without negative side effects. RECENT FINDINGS Several unimolecular dual-receptor agonists have shown promising clinical efficacy studies when used alone or in conjunction with approved glucose-lowering medications. We also describe the development of incretin-based pharmacotherapy, starting with exendin- 4 and ending with the identification of multi-incretin hormone receptor agonists, which appear to be the next major step in the fight against T2DM and obesity. We discuss the multi-agonists currently in clinical trials and how each new generation of these drugs improves their effectiveness. Since most glucose-dependent insulinotropic polypeptide (GIP) receptor: glucagon-like peptide- 1 receptor (GLP- 1) receptor: glucagon receptor triagonists compete in efficacy with bariatric surgery, the success of these agents in preclinical models and clinical trials suggests a bright future for multi-agonists in the treatment of metabolic diseases. To fully understand how these treatments affect body weight, further research is needed.
Collapse
Affiliation(s)
- Ioanna Α Anastasiou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | | | - Maria Dalamaga
- Department of Biological Chemistry, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Alexander Kokkinos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| |
Collapse
|
18
|
Medenica S, Bogdanovic J, Vekic J, Vojinovic T, Babic I, Bogdanović L, Maggio V, Tanani ME, Rizzo M. Incretin-Based Therapies and Cancer: What's New? MEDICINA (KAUNAS, LITHUANIA) 2025; 61:678. [PMID: 40282969 PMCID: PMC12028497 DOI: 10.3390/medicina61040678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025]
Abstract
Growing interest in incretin-based therapies for diabetes mellitus has led to an increased evaluation of their potential effects on cancer development. This review aims to synthesize recent evidence regarding the relationship between incretin-based therapies and cancer risk. We conducted a comprehensive literature review focusing on studies investigating dipeptidyl peptidase-4 (DPP-4) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, and dual GLP-1/glucose-dependent insulinotropic polypeptide (GIP) receptor agonists in relation to various malignancies. Current findings suggest that while these therapies demonstrate potential benefits, including weight reduction and metabolic regulation, concerns remain regarding their long-term safety profile. Notably, some studies indicate an increased risk of thyroid and pancreatic cancers, while others report protective effects against prostate, colorectal, and breast cancers. Given the complexity of their effects, further long-term studies and post-marketing surveillance are warranted. This review highlights the need for careful clinical assessment when prescribing incretin-based therapies to patients who may be at increased risk of cancer.
Collapse
Affiliation(s)
- Sanja Medenica
- Department of Endocrinology, Internal Medicine Clinic, Clinical Centre of Montenegro, 81000 Podgorica, Montenegro
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
| | - Jelena Bogdanovic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Jelena Vekic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Tanja Vojinovic
- Study Program Pharmacy, Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro;
| | - Ivana Babic
- Emergency Center, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Ljiljana Bogdanović
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Viviana Maggio
- School of Medicine, PROMISE Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medicinal Specialties, University of Palermo, 90133 Palermo, Italy; (V.M.); (M.R.)
| | - Mohamed El Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11127, United Arab Emirates;
| | - Manfredi Rizzo
- School of Medicine, PROMISE Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medicinal Specialties, University of Palermo, 90133 Palermo, Italy; (V.M.); (M.R.)
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11127, United Arab Emirates;
| |
Collapse
|
19
|
Celsa C, Pennisi G, Tulone A, Ciancimino G, Vaccaro M, Infantino G, Di Maria G, Pinato DJ, Cabibbo G, Enea M, Mantovani A, Tilg H, Targher G, Cammà C, Petta S. Glucagon-like peptide-1 receptor agonist use is associated with a lower risk of major adverse liver-related outcomes: a meta-analysis of observational cohort studies. Gut 2025; 74:815-824. [PMID: 40015951 DOI: 10.1136/gutjnl-2024-334591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/16/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have shown promising effects on liver histology in phase 2 trials enrolling patients with metabolic dysfunction-associated steatotic liver disease. However, the impact of GLP-1RAs on the long-term risk of major adverse liver-related outcomes (MALOs) remains uncertain. OBJECTIVE We performed a meta-analysis of observational cohort studies to quantify the magnitude and direction of the association between GLP-1RA use and MALOs in people with type 2 diabetes (T2D). DESIGN We systematically searched eligible cohort studies comparing GLP-1RA new users versus users of other glucose-lowering medications. The primary outcome was the cumulative incidence rates of MALOs. Secondary outcomes included hepatic decompensation events, hepatocellular carcinoma (HCC) and liver-related mortality. Random-effects models were used to calculate incidence rate ratios (IRRs). RESULTS 11 retrospective cohort studies with aggregate data on 1 467 220 patients with T2D (647 903 GLP-1RA new users, 819 317 non-users) were included. GLP-1RA use was significantly associated with a lower risk of MALOs (IRR 0.71, 95% CI 0.57 to 0.88) and hepatic decompensation (IRR 0.70, 95% CI 0.52 to 0.94). Association with reduced risk of HCC was also observed (IRR 0.82, 95% CI 0.61 to 1.11). Compared with other antidiabetic medications, GLP-1RAs showed superior effectiveness versus SGLT2 inhibitors in preventing MALOs (IRR 0.93, 95% CI 0.87 to 0.99), versus DPP-4 inhibitors in preventing hepatic decompensation (IRR 0.74, 95% CI 0.66 to 0.83) and versus insulin therapy in preventing HCC (IRR 0.32, 95% CI 0.13 to 0.80). CONCLUSIONS GLP-1RA use is associated with a lower risk of liver-related complications and hepatic decompensation in people with T2D. These findings suggest a role of GLP-1RAs in preventing liver-related complications beyond their beneficial cardiometabolic effects.
Collapse
Affiliation(s)
- Ciro Celsa
- Gastroenterology and Hepatology Unit, Department of Health Promotion, Mother & Child Care, Internal Medicine & Medical Specialties, University of Palermo, Palermo, Italy
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Grazia Pennisi
- Gastroenterology and Hepatology Unit, Department of Health Promotion, Mother & Child Care, Internal Medicine & Medical Specialties, University of Palermo, Palermo, Italy
| | - Adele Tulone
- Gastroenterology and Hepatology Unit, Department of Health Promotion, Mother & Child Care, Internal Medicine & Medical Specialties, University of Palermo, Palermo, Italy
| | - Giacinta Ciancimino
- Gastroenterology and Hepatology Unit, Department of Health Promotion, Mother & Child Care, Internal Medicine & Medical Specialties, University of Palermo, Palermo, Italy
| | | | - Giuseppe Infantino
- Gastroenterology and Hepatology Unit, Department of Health Promotion, Mother & Child Care, Internal Medicine & Medical Specialties, University of Palermo, Palermo, Italy
| | - Gabriele Di Maria
- Department of Health Promotion, Mother & Child Care, Internal Medicine & Medical Specialties, University of Palermo, Palermo, Italy
| | - David J Pinato
- Department of Surgery & Cancer, Imperial College London, London, UK
- Department of Translational Medicine, Division of Oncology, University of Piemonte Orientale, Novara, Italy
| | - Giuseppe Cabibbo
- Gastroenterology and Hepatology Unit, Department of Health Promotion, Mother & Child Care, Internal Medicine & Medical Specialties, University of Palermo, Palermo, Italy
| | - Marco Enea
- Department of Health Promotion, Mother & Child Care, Internal Medicine & Medical Specialties, University of Palermo, Palermo, Italy
| | - Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella (VR), Italy
| | - Calogero Cammà
- Gastroenterology and Hepatology Unit, Department of Health Promotion, Mother & Child Care, Internal Medicine & Medical Specialties, University of Palermo, Palermo, Italy
| | - Salvatore Petta
- Gastroenterology and Hepatology Unit, Department of Health Promotion, Mother & Child Care, Internal Medicine & Medical Specialties, University of Palermo, Palermo, Italy
| |
Collapse
|
20
|
Milani I, Chinucci M, Leonetti F, Capoccia D. MASLD: Prevalence, Mechanisms, and Sex-Based Therapies in Postmenopausal Women. Biomedicines 2025; 13:855. [PMID: 40299427 PMCID: PMC12024897 DOI: 10.3390/biomedicines13040855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease influenced by genetic, lifestyle, and environmental factors. While MASLD is more prevalent in men, women are at increased risk after menopause, highlighting the critical pathogenetic role of sex hormones. The complex interplay between estrogen deficiency, visceral fat accumulation, metabolic syndrome (MetS), and inflammation accelerates disease progression, increases cardiovascular (CV) risk, and triggers a cycle of worsening adiposity, metabolic dysfunction, and psychological problems, including eating disorders. Weight loss in postmenopausal women can significantly improve both metabolic and psychological outcomes, helping to prevent MASLD and related conditions. This review examines the prevalence of MASLD, its comorbidities (type 2 diabetes T2D, CV, mental disorders), pathogenetic mechanisms, and pharmacological treatment with GLP-1 receptor agonists (GLP1-RAs), with a focus on postmenopausal women. Given the use of GLP1-RAs in the treatment of obesity and T2D in MASLD patients, and the increase in MetS and MASLD after menopause, this review analyzes the potential of a stable GLP-1-estrogen conjugate as a therapeutic approach in this subgroup. By combining the synergistic effects of both hormones, this dual agonist has been shown to increase food intake and food reward suppression, resulting in greater weight loss and improved insulin sensitivity, glucose, and lipid metabolism. Therefore, we hypothesize that this pharmacotherapy may provide more targeted therapeutic benefits than either hormone alone by protecting the liver, β-cells, and overall metabolic health. As these effects are only supported by preclinical data, this review highlights the critical need for future research to evaluate and confirm the mechanisms and efficacy in clinical settings, particularly in postmenopausal women.
Collapse
Affiliation(s)
- Ilaria Milani
- Department of Medico-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome La Sapienza, 04100 Latina, Italy; (M.C.); (F.L.); (D.C.)
| | | | | | | |
Collapse
|
21
|
Eslam M, Fan JG, Yu ML, Wong VWS, Cua IH, Liu CJ, Tanwandee T, Gani R, Seto WK, Alam S, Young DY, Hamid S, Zheng MH, Kawaguchi T, Chan WK, Payawal D, Tan SS, Goh GBB, Strasser SI, Viet HD, Kao JH, Kim W, Kim SU, Keating SE, Yilmaz Y, Kamani L, Wang CC, Fouad Y, Abbas Z, Treeprasertsuk S, Thanapirom K, Al Mahtab M, Lkhagvaa U, Baatarkhuu O, Choudhury AK, Stedman CAM, Chowdhury A, Dokmeci AK, Wang FS, Lin HC, Huang JF, Howell J, Jia J, Alboraie M, Roberts SK, Yoneda M, Ghazinian H, Mirijanyan A, Nan Y, Lesmana CRA, Adams LA, Shiha G, Kumar M, Örmeci N, Wei L, Lau G, Omata M, Sarin SK, George J. The Asian Pacific association for the study of the liver clinical practice guidelines for the diagnosis and management of metabolic dysfunction-associated fatty liver disease. Hepatol Int 2025; 19:261-301. [PMID: 40016576 DOI: 10.1007/s12072-024-10774-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/28/2024] [Indexed: 03/01/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) affects over one-fourth of the global adult population and is the leading cause of liver disease worldwide. To address this, the Asian Pacific Association for the Study of the Liver (APASL) has created clinical practice guidelines focused on MAFLD. The guidelines cover various aspects of the disease, such as its epidemiology, diagnosis, screening, assessment, and treatment. The guidelines aim to advance clinical practice, knowledge, and research on MAFLD, particularly in special groups. The guidelines are designed to advance clinical practice, to provide evidence-based recommendations to assist healthcare stakeholders in decision-making and to improve patient care and disease awareness. The guidelines take into account the burden of clinical management for the healthcare sector.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, 2145, Australia.
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal MedicineCollege of Medicine and Center for Liquid Biopsy and Cohort ResearchFaculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of MedicineSchool of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, Kaohsiung Medical University, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Vincent Wai-Sun Wong
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong, China
| | - Ian Homer Cua
- Institute of Digestive and Liver Diseases, St. Luke's Medical Center, Global City, Philippines
| | - Chun-Jen Liu
- Division of Gastroenterology and Hepatology, Department of Internal MedicineHepatitis Research CenterGraduate Institute of Clinical Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tawesak Tanwandee
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rino Gani
- Department of Internal Medicine, Hepatobiliary Division, Dr. Cipto Mangunkusumo National General Hospital, Universitas Indonesia, Pangeran Diponegoro Road No. 71St, Central Jakarta, 10430, Indonesia
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Shahinul Alam
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Dan Yock Young
- Department of Medicine, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Saeed Hamid
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Diana Payawal
- Department of Medicine, Cardinal Santos Medical Center, Mandaluyong, Philippines
| | - Soek-Siam Tan
- Department of Hepatology, Selayang Hospital, Batu Caves, Malaysia
| | - George Boon-Bee Goh
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore, Singapore
- Medicine Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Simone I Strasser
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Hang Dao Viet
- Internal Medicine Faculty, Hanoi Medical University, Hanoi, Vietnam
| | - Jia-Horng Kao
- Graduate Institute of Clinical MedicineDepartment of Internal MedicineHepatitis Research CenterDepartment of Medical Research, National Taiwan University College of Medicine, National Taiwan University, National Taiwan University Hospital, 1 Chang-Te Street, 10002, Taipei, Taiwan
| | - Won Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, 50-1, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Shelley E Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | | | - Chia-Chi Wang
- Buddhist Tzu Chi Medical Foundation and School of Medicine, Taipei Tzu Chi Hospital, Tzu Chi University, Taipei, Taiwan
| | - Yasser Fouad
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Minia University, Cairo, Egypt
| | - Zaigham Abbas
- Department of Hepatogastroenterology, Dr.Ziauddin University Hospital, Clifton, Karachi, Pakistan
| | | | | | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Undram Lkhagvaa
- Department of Health Policy, School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Oidov Baatarkhuu
- Department of Infectious Diseases, School of Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Ashok Kumar Choudhury
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | | | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - A Kadir Dokmeci
- Department of Medicine, Ankara University School of Medicine, Ankara, Turkey
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, 100039, China
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Institute of Clinical Medicine, School of Medicine, Taipei Veterans General Hospital, National Yang-Ming Chiao Tung University, No. 201, Section 2, Shipai RdNo. 155, Section 2, Linong St, Beitou District, Taipei City, 112, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal MedicineCollege of Medicine and Center for Liquid Biopsy and Cohort ResearchFaculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jess Howell
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Clayton, VIC, 3008, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, 3050, Australia
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Melbourne, VIC, 3165, Australia
| | - Jidong Jia
- Liver Research Center, Beijing Key Laboratory of Translational Medicine On Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Mohamed Alboraie
- Department of Internal Medicine, Al-Azhar University, Cairo, 11884, Egypt
| | - Stuart K Roberts
- Department of Gastroenterology and Hepatology, Central Clinical School, The Alfred, Monash University, Melbourne, Australia
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Hasmik Ghazinian
- Gastroenterology and Hepatology Department, Yerevan Medical Scientific Center, Yerevan, Armenia
| | - Aram Mirijanyan
- Gastroenterology and Hepatology Department, Yerevan Medical Scientific Center, Yerevan, Armenia
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | | | - Leon A Adams
- Medical School, Faculty of Medicine and Health Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Gamal Shiha
- Hepatology and Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Egyptian Liver Research Institute and Hospital (ELRIAH), Sherbin, El Mansoura, Egypt
| | - Manoj Kumar
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Necati Örmeci
- Department of Gastroenterohepatology, Istanbul Health and Technology University, Istanbul, Turkey
| | - Lai Wei
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - George Lau
- Humanity and Health Medical Group, Humanity and Health Clinical Trial Center, Hong Kong SAR, China
- The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, 100039, China
| | - Masao Omata
- Department of Gastroenterology, Yamanashi Central Hospital, Yamanashi, Japan
- University of Tokyo, Tokyo, Japan
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, 2145, Australia
| |
Collapse
|
22
|
Villanueva C, Tripathi D, Bosch J. Preventing the progression of cirrhosis to decompensation and death. Nat Rev Gastroenterol Hepatol 2025; 22:265-280. [PMID: 39870944 DOI: 10.1038/s41575-024-01031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/29/2025]
Abstract
Two main stages are differentiated in patients with advanced chronic liver disease (ACLD), one compensated (cACLD) with an excellent prognosis, and the other decompensated (dACLD), defined by the appearance of complications (ascites, variceal bleeding and hepatic encephalopathy) and associated with high mortality. Preventing the progression to dACLD might dramatically improve prognosis and reduce the burden of care associated with ACLD. Portal hypertension is a major driver of the transition from cACLD to dACLD, and a portal pressure of ≥10 mmHg defines clinically significant portal hypertension (CSPH) as the threshold from which decompensating events may occur. In recent years, innovative studies have provided evidence supporting new strategies to prevent decompensation in cACLD. These studies have yielded major advances, including the development of noninvasive tests (NITs) to identify patients with CSPH with reasonable confidence, the demonstration that aetiological therapies can prevent disease progression and even achieve regression of cirrhosis, and the finding that non-selective β-blockers can effectively prevent decompensation in patients with cACLD and CSPH, mainly by reducing the risk of ascites, the most frequent decompensating event. Here, we review the evidence supporting new strategies to manage cACLD to prevent decompensation and the caveats for their implementation, from patient selection using NITs to ancillary therapies.
Collapse
Affiliation(s)
- Càndid Villanueva
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Ministerio de Sanidad, Madrid, Spain.
| | - Dhiraj Tripathi
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham Health Partners, Birmingham, UK
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jaume Bosch
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Ministerio de Sanidad, Madrid, Spain
- Department of Visceral Surgery and Medicine (Hepatology), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Daniels S, Karlsson C, Schrauwen P, Parker VER. Glucagon-like peptide-1 receptor agonism and end-organ protection. Trends Endocrinol Metab 2025; 36:301-315. [PMID: 39934020 DOI: 10.1016/j.tem.2025.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/13/2025]
Abstract
Identification of exendin-4 (a glucagon-like peptide-1 receptor agonist, GLP-1RA) in Gila monster venom may be regarded as one of the most serendipitous discoveries of recent times. GLP-1RAs are now an established therapeutic approach in type 2 diabetes (T2D), body weight management, and cardiovascular (CV) risk protection. Furthermore, there is a growing platform of evidence that GLP-1RA has extended benefit in renal, hepatic, respiratory, and neurological diseases. One can speculate on the biological advantage of exendin-4 to the Gila monster, but for humankind GLP-1RAs are peptides with significant potential to improve disease-related outcomes. We report on the latest evidence and mechanisms for GLP-1RA-mediated end-organ protection that uniquely highlight its future development potential across multiple disease areas.
Collapse
Affiliation(s)
- Samuel Daniels
- Early-stage Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Cecilia Karlsson
- Late-stage Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Patrick Schrauwen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Victoria E R Parker
- Late-stage Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
24
|
Potter KJ, Phinney J, Kulai T, Munro V. Effects of GLP-1 receptor agonist therapy on resolution of steatohepatitis in non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Can Assoc Gastroenterol 2025; 8:47-57. [PMID: 40224572 PMCID: PMC11991874 DOI: 10.1093/jcag/gwae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is common, can progress to cirrhosis and hepatic decompensation, and has no approved medical therapy in Canada. Objective We conducted a systematic review on whether glucagon-like peptide-1 receptor agonists (GLP-1RA) improve non-alcoholic steatohepatitis (NASH) compared to standard care in NAFLD. Methods We searched Medline Ovid, EMBASE(Elsevier), Cochrane CENTRAL, Clinical Trials.gov, and the World Health Organization International Clinical Trials Registry Platform in November 2023 for randomized controlled trials. Inclusion criteria included patients ≥13 years with NAFLD receiving GLP-1RA for ≥6 months compared to standard care/placebo. Cochrane risk-of-bias 2.0 tool was used for each outcome. After screening results in duplicate, we performed meta-analysis and reported odds ratios (OR) for dichotomous and mean difference of change score for continuous outcomes. Results Six studies with 478 patients met inclusion criteria; 3 studies reported on the primary endpoint resolution of NASH. GLP-1RA likely leads to resolution of NASH (OR 4.45 (95% CI 1.92, 10.3)) and reduction in liver steatosis on imaging (-5.09% (95% CI -7.49, -2.69), but little to no reduction in liver stiffness on imaging (mean difference -0.17 kPa (95% CI -0.34, 0)). Interpretation Treatment with GLP-1RA in NAFLD patients for ≥6 months can probably lead to improvement in NASH on liver biopsy and reduce liver steatosis on imaging. Whether improvements in steatosis on biopsy or imaging results in clinically significant outcomes need to be elucidated as the effects of GLP-1RA on liver fibrosis are unclear; larger ongoing trials may provide more definitive answers. Protocol Registration: PROSPERO-CRD42023472186.
Collapse
Affiliation(s)
- Kathryn J Potter
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z5, Canada
| | - Jackie Phinney
- Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, E2L 4L5, Canada
| | - Tasha Kulai
- Division of Digestive Care and Endoscopy, Dalhousie University, Halifax, NS, B3H 2Y9, Canada
| | - Vicki Munro
- Division of Endocrinology, Dalhousie University, Halifax, NS, B3H 2Y9, Canada
| |
Collapse
|
25
|
Yan R, Liu L, Tzoulaki I, Fan J, Targher G, Yuan Z, Zhao J. Genetic Evidence for GLP-1 and GIP Receptors as Targets for Treatment and Prevention of MASLD/MASH. Liver Int 2025; 45:e16150. [PMID: 39487684 DOI: 10.1111/liv.16150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND AND AIMS Glucagon-like peptide-1 receptor (GLP1R) agonists and glucose-dependent insulinotropic polypeptide receptor (GIPR) agonists may help treat metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). However, their definitive effects are still unclear. Our study aims to clarify this uncertainty. METHODS We utilised conventional Mendelian randomisation (MR) analysis to explore potential causal links between plasma GLP-1/GIP concentrations and MASLD and its related traits. Next, we conducted drug-target MR analysis using highly expressed tissue data to assess the effects of corresponding drug perturbation on these traits. Finally, mediation analysis was performed to ascertain whether the potential causal effect is direct or mediated by other MASLD-related traits. RESULTS Circulating 2-h GLP-1 and GIP concentrations measured during an oral glucose tolerance test showed hepatoprotective effects on MASLD risk (ORGLP-1 = 0.168 [95% CI 0.033-0.839], p = 0.030; ORGIP = 0.331 [95% CI 0.222-0.494], p = 6.31 × 10-8). GLP1R expression in the blood had a minimal causal effect on MASLD risk, whereas GIPR expression significantly affected MASLD risk (OR = 0.671 [95% CI 0.531-0.849], p = 9.07 × 10-4). Expression levels of GLP1R or GIPR in the blood significantly influenced MASLD-related clinical traits. Mediation analysis revealed that GIPR expression protected against MASLD, even after adjusting for type 2 diabetes or body mass index. CONCLUSIONS GLP-1/GIP receptor agonists offer promise in lowering MASLD/MASH risk. GIP receptor agonists can exert direct and indirect effects on MASLD mediated by weight reduction or glycemic control improvement.
Collapse
Affiliation(s)
- Ran Yan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Shandong University, Jinan, Shandong, China
| | - Lu Liu
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ioanna Tzoulaki
- Centre for Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore-Don Calabria, Negrar di Valpolicella, Verona, Italy
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Shandong University, Jinan, Shandong, China
| | - Jian Zhao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| |
Collapse
|
26
|
De Rosa L, Ricco G, Brunetto MR, Bonino F, Faita F. Sustainability of General Population Screening for Steatotic Liver Disease: A Proof-of-Concept Study. Healthcare (Basel) 2025; 13:759. [PMID: 40218056 PMCID: PMC11989194 DOI: 10.3390/healthcare13070759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Steatotic liver disease (SLD) is a growing global health concern and may progress to more advanced liver diseases (i.e., fibrosis, cirrhosis, and hepatocellular carcinoma). Early identification of individuals at risk through effective screening strategies is crucial for timely intervention and management. The aim of this population-based study was to evaluate the feasibility of mean/large-scale screening and its importance by analyzing key risk factors, such as metabolic and lifestyle-related determinants. METHODS This cross-sectional study involved 387 subjects aged 18 to 89 years in a remote rural area that stretches among the valleys at the foot of the Apennines and the Apuan Alps. Anthropometric and demographic data were recorded, together with the measurement of blood pressure and cardiac rhythm. Furthermore, US-based liver stiffness (LS) and the ultrasound attenuation parameter (UAP) using the ILivTouch (Hisky Medical, Wuxi, China) device were performed. All data were analyzed with SPSS version 28. Univariate and multivariate analyses were conducted to identify significant predictors of both LS and UAP. RESULTS Significant associations are observed between elevated LS and UAP values and risk factors, such as BMI and waist circumference (BMI and waist with R = 0.45 and R = 0.34, R = 0.29 and R = 0.28; respectively, for UAP and LS; all with p < 0.001). The presence of hypertension is associated with a high value of LS (p < 0.05), and high UAP with alcohol consumption and sugary coffee intake habit (p < 0.001 and, p < 0.05, respectively). CONCLUSIONS General population screening for SLD is feasible, sustainable, and useful to identify both individuals at risk and patients with progressive liver disease.
Collapse
Affiliation(s)
- Laura De Rosa
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | - Gabriele Ricco
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Reference Centre of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa (AOUP), 56124 Pisa, Italy; (G.R.); (M.R.B.)
| | - Maurizia Rossana Brunetto
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Reference Centre of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa (AOUP), 56124 Pisa, Italy; (G.R.); (M.R.B.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Ferruccio Bonino
- Institute of Biostructure and Bioimaging, National Research Council, Via De Amicis 95, 80145 Naples, Italy;
| | - Francesco Faita
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| |
Collapse
|
27
|
Kan C, Zhang K, Wang Y, Zhang X, Liu C, Ma Y, Hou N, Huang N, Han F, Sun X. Global burden and future trends of metabolic dysfunction-associated Steatotic liver disease: 1990-2021 to 2045. Ann Hepatol 2025; 30:101898. [PMID: 40057034 DOI: 10.1016/j.aohep.2025.101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
INTRODUCTION AND OBJECTIVES Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly non-alcoholic fatty liver disease, is a growing global health challenge. This study examines the global burden of MASLD from 1990 to 2021 and projects data for 2045. MATERIALS AND METHODS Using data from the Global Burden of Disease (GBD) Study 2021, the study analyzed MASLD across 204 countries from 1990 to 2021, focusing on prevalence, incidence, deaths, and disability-adjusted life years (DALYs). Linear and Joinpoint regression assessed trends, an age-period-cohort model evaluated health outcomes, and a Bayesian model forecasted future cases. RESULTS In 2021, approximately 1.27 billion people globally had MASLD, with a higher prevalence in males (51.41 %). There were 48.35 million new cases, primarily in males (52.24 %). The age-standardized prevalence rate (ASPR) increased from 12,085.09 in 1990 to 15,018.07 per 100,000 in 2021 (AAPC 0.71). The age-standardized incidence rate (ASIR) rose from 475.54 to 593.28 per 100,000 (AAPC 0.71). MASLD caused 138,328 deaths, with females experiencing higher mortality (52.18 %). East Asia, South Asia, and North Africa/Middle East had the highest prevalence and incidence rates, while Western Europe showed the fastest growth. By 2045, ASIR is projected to reach 928.10 per 100,000, resulting in 667.58 million new cases, predominantly affecting males. CONCLUSIONS MASLD poses a significant burden with notable gender and regional disparities. The projected increase by 2045 underscores the need for urgent public health interventions and targeted strategies to mitigate this growing epidemic.
Collapse
Affiliation(s)
- Chengxia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China
| | - Yuqun Wang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China
| | - Xiaofei Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China
| | - Chang Liu
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China
| | - Yanhui Ma
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China; Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China
| | - Na Huang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China.
| |
Collapse
|
28
|
Huang DQ, Wong VWS, Rinella ME, Boursier J, Lazarus JV, Yki-Järvinen H, Loomba R. Metabolic dysfunction-associated steatotic liver disease in adults. Nat Rev Dis Primers 2025; 11:14. [PMID: 40050362 DOI: 10.1038/s41572-025-00599-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 03/09/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the umbrella term that comprises metabolic dysfunction-associated steatotic liver, or isolated hepatic steatosis, through to metabolic dysfunction-associated steatohepatitis, the progressive necroinflammatory disease form that can progress to fibrosis, cirrhosis and hepatocellular carcinoma. MASLD is estimated to affect more than one-third of adults worldwide. MASLD is closely associated with insulin resistance, obesity, gut microbial dysbiosis and genetic risk factors. The obesity epidemic and the growing prevalence of type 2 diabetes mellitus greatly contribute to the increasing burden of MASLD. The treatment and prevention of major metabolic comorbidities such as type 2 diabetes mellitus and obesity will probably slow the growth of MASLD. In 2023, the field decided on a new nomenclature and agreed on a set of research and action priorities, and in 2024, the US FDA approved the first drug, resmetirom, for the treatment of non-cirrhotic metabolic dysfunction-associated steatohepatitis with moderate to advanced fibrosis. Reliable, validated biomarkers that can replace histology for patient selection and primary end points in MASH trials will greatly accelerate the drug development process. Additionally, noninvasive tests that can reliably determine treatment response or predict response to therapy are warranted. Sustained efforts are required to combat the burden of MASLD by tackling metabolic risk factors, improving risk stratification and linkage to care, and increasing access to therapeutic agents and non-pharmaceutical interventions.
Collapse
Affiliation(s)
- Daniel Q Huang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore
| | - Vincent W S Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Mary E Rinella
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Jerome Boursier
- Service d'Hépato-Gastroentérologie et Oncologie Digestive, Centre Hospitalier Universitaire d'Angers, Angers, France
- Laboratoire HIFIH, SFR ICAT 4208, Université d'Angers, Angers, France
| | - Jeffrey V Lazarus
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, San Diego, CA, USA.
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, San Diego, CA, USA.
| |
Collapse
|
29
|
Do A, Zahrawi F, Mehal WZ. Therapeutic landscape of metabolic dysfunction-associated steatohepatitis (MASH). Nat Rev Drug Discov 2025; 24:171-189. [PMID: 39609545 DOI: 10.1038/s41573-024-01084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/30/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and its severe subgroup metabolic dysfunction-associated steatohepatitis (MASH) have become a global epidemic and are driven by chronic overnutrition and multiple genetic susceptibility factors. The physiological outcomes include hepatocyte death, liver inflammation and cirrhosis. The first therapeutic for MASLD and MASH, resmetirom, has recently been approved for clinical use and has energized this therapeutic space. However, there is still much to learn in clinical studies of MASH, such as the scale of placebo responses, optimal trial end points, the time required for fibrosis reversal and side effect profiles. This Review introduces aspects of disease pathogenesis related to drug development and discusses two main therapeutic approaches. Thyroid hormone receptor-β agonists, such as resmetirom, as well as fatty acid synthase inhibitors, target the liver and enable it to function within a toxic metabolic environment. In parallel, incretin analogues such as semaglutide improve metabolism, allowing the liver to self-regulate and reversing many aspects of MASH. We also discuss how combinations of therapeutics could potentially be used to treat patients.
Collapse
Affiliation(s)
- Albert Do
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Division of Gastroenterology, University of California, Davis, Davis, USA
| | - Frhaan Zahrawi
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Wajahat Z Mehal
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
- West Haven Veterans Hospital, West Haven, CT, USA.
| |
Collapse
|
30
|
Pradhan R, Yin H, Lu S, Sebastiani G, Yu O, Suissa S, Azoulay L. Glucagon-Like Peptide 1 Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors and the Prevention of Cirrhosis Among Patients With Type 2 Diabetes. Diabetes Care 2025; 48:444-454. [PMID: 39774820 DOI: 10.2337/dc24-1903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
OBJECTIVE To determine whether glucagon-like peptide 1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter 2 (SGLT-2) inhibitors, separately, compared with dipeptidyl peptidase 4 (DPP-4) inhibitors are associated with a reduced risk of cirrhosis and other adverse liver outcomes among patients with type 2 diabetes. RESEARCH DESIGN AND METHODS With an active comparator, new-user approach, we conducted a cohort study using the U.K. Clinical Practice Research Datalink linked with hospital and national statistics databases. Cox proportional hazards models using propensity score fine stratification weighting were used to calculate hazard ratios (HRs) and 95% CIs for cirrhosis (primary outcome) and decompensated cirrhosis, hepatocellular carcinoma, and liver-related mortality (secondary outcomes). RESULTS In the first cohort comparing 25,516 patients starting GLP-1RAs and 186,752 starting DPP-4 inhibitors, GLP-1RAs were not associated with the incidence of cirrhosis (HR 0.90, 95% CI 0.68-1.19) or the secondary outcomes. In a separate cohort comparing 33,161 patients starting SGLT-2 inhibitors and 124,431 starting DPP-4 inhibitors, SGLT-2 inhibitors were associated with a reduced incidence of cirrhosis (HR 0.64, 95% CI 0.46-0.90), as also decompensated cirrhosis (HR 0.74, 95% CI 0.54-1.00), but not with a lower risk of hepatocellular carcinoma or liver-related mortality. CONCLUSIONS In patients with type 2 diabetes in the U.K., GLP-1RAs were not associated with a lower risk of cirrhosis compared with DPP-4 inhibitors in patients with type 2 diabetes. However, SGLT-2 inhibitors were associated with a lower risk of cirrhosis compared with DPP-4 inhibitors.
Collapse
Affiliation(s)
- Richeek Pradhan
- Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Hui Yin
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada
| | - Sally Lu
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, Canada
- Division of Endocrinology, Jewish General Hospital, Montreal, Canada
| | - Oriana Yu
- Division of Endocrinology, Jewish General Hospital, Montreal, Canada
| | - Samy Suissa
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Laurent Azoulay
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
| |
Collapse
|
31
|
Knezović E, Hefer M, Blažanović S, Petrović A, Tomičić V, Srb N, Kirner D, Smolić R, Smolić M. Drug Pipeline for MASLD: What Can Be Learned from the Successful Story of Resmetirom. Curr Issues Mol Biol 2025; 47:154. [PMID: 40136408 PMCID: PMC11941580 DOI: 10.3390/cimb47030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and its progressive form, metabolic dysfunction-associated steatohepatitis (MASH), represent a growing global health problem linked to obesity, insulin resistance, and dyslipidemia. MASLD often leads to fibrosis, cirrhosis, and hepatocellular carcinoma. Currently, therapeutic options are limited, emphasizing the need for novel, targeted pharmacological interventions. Resmetirom, a selective thyroid hormone receptor beta (THR-β) agonist, offers a promising approach by specifically enhancing hepatic metabolism while minimizing systemic effects. Clinical trials have demonstrated its capacity to reduce hepatic triglyceride accumulation and improve lipid profiles. Early- and advanced-phase studies, including the MAESTRO program, highlight significant reductions in hepatic fat content and favorable impacts on noninvasive biomarkers of fibrosis with minimal side effects. This review highlights evidence from pivotal studies, explores resmetirom's mechanism of action, and compares its efficacy and safety with other emerging therapeutic agents. While resmetirom marks a breakthrough in non-cirrhotic MASH management, further long-term studies are essential to fully evaluate its clinical benefits and potential regulatory approval for broader use in MASLD and MASH.
Collapse
Affiliation(s)
- Elizabeta Knezović
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
- Clinical Institute of Translational Medicine, University Hospital Osijek, 31000 Osijek, Croatia
| | - Marija Hefer
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Suzana Blažanović
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Ana Petrović
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Vice Tomičić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Nika Srb
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Damir Kirner
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Robert Smolić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Martina Smolić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| |
Collapse
|
32
|
Jiao Q, Huang Y, He J, Xu Y. Advances in Oral Biomacromolecule Therapies for Metabolic Diseases. Pharmaceutics 2025; 17:238. [PMID: 40006605 PMCID: PMC11859201 DOI: 10.3390/pharmaceutics17020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Metabolic diseases like obesity and diabetes are on the rise, and therapies with biomacromolecules (such as proteins, peptides, antibodies, and oligonucleotides) play a crucial role in their treatment. However, these drugs are traditionally injected. For patients with chronic diseases (e.g., metabolic diseases), long-term injections are accompanied by inconvenience and low compliance. Oral administration is preferred, but the delivery of biomacromolecules is challenging due to gastrointestinal barriers. In this article, we introduce the available biomacromolecule drugs for the treatment of metabolic diseases. The gastrointestinal barriers to oral drug delivery and strategies to overcome these barriers are also explored. We then discuss strategies for alleviating metabolic defects, including glucose metabolism, lipid metabolism, and energy metabolism, with oral biomacromolecules such as insulin, glucagon-like peptide-1 receptor agonists, proprotein convertase subtilisin/kexin type 9 inhibitors, fibroblast growth factor 21 analogues, and peptide YY analogues.
Collapse
Affiliation(s)
- Qiuxia Jiao
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yining Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
33
|
Singh A, Shadangi S, Gupta PK, Rana S. Type 2 Diabetes Mellitus: A Comprehensive Review of Pathophysiology, Comorbidities, and Emerging Therapies. Compr Physiol 2025; 15:e70003. [PMID: 39980164 DOI: 10.1002/cph4.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Humans are perhaps evolutionarily engineered to get deeply addicted to sugar, as it not only provides energy but also helps in storing fats, which helps in survival during starvation. Additionally, sugars (glucose and fructose) stimulate the feel-good factor, as they trigger the secretion of serotonin and dopamine in the brain, associated with the reward sensation, uplifting the mood in general. However, when consumed in excess, it contributes to energy imbalance, weight gain, and obesity, leading to the onset of a complex metabolic disorder, generally referred to as diabetes. Type 2 diabetes mellitus (T2DM) is one of the most prevalent forms of diabetes, nearly affecting all age groups. T2DM is clinically diagnosed with a cardinal sign of chronic hyperglycemia (excessive sugar in the blood). Chronic hyperglycemia, coupled with dysfunctions of pancreatic β-cells, insulin resistance, and immune inflammation, further exacerbate the pathology of T2DM. Uncontrolled T2DM, a major public health concern, also contributes significantly toward the onset and progression of several micro- and macrovascular diseases, such as diabetic retinopathy, nephropathy, neuropathy, atherosclerosis, and cardiovascular diseases, including cancer. The current review discusses the epidemiology, causative factors, pathophysiology, and associated comorbidities, including the existing and emerging therapies related to T2DM. It also provides a future roadmap for alternative drug discovery for the management of T2DM.
Collapse
Affiliation(s)
- Aditi Singh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Sucharita Shadangi
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Pulkit Kr Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| |
Collapse
|
34
|
Zhang T, Wang W, Li J, Ye X, Wang Z, Cui S, Shen S, Liang X, Chen YQ, Zhu S. Free fatty acid receptor 4 modulates dietary sugar preference via the gut microbiota. Nat Microbiol 2025; 10:348-361. [PMID: 39805952 DOI: 10.1038/s41564-024-01902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025]
Abstract
Sugar preference is a key contributor to the overconsumption of sugar and the concomitant increase in the incidence of diabetes. However, the exact mechanism of its development remains ambiguous. Here we show that the expression of free fatty acid receptor Ffar4, a receptor for long-chain fatty acids, is decreased in patients and mouse models with diabetes, which is associated with high sugar intake. Deletion of intestinal Ffar4 in mice resulted in reduced gut Bacteroides vulgatus and its metabolite pantothenate, leading to dietary sugar preference. Pantothenate promoted the secretion of GLP-1 which inhibited sugar preference by stimulating hepatic FGF21 release, which in turn regulates energy metabolism. These findings uncover a previously unappreciated role of Ffar4 in negatively regulating sugar preference and suggest B. vulgatus-derived pantothenate as a potential therapeutic target for diabetes.
Collapse
Affiliation(s)
- Tingting Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Ministry of Education, Wuxi, China
| | - Wei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- The Second Clinical Medical School, Xuzhou Medical University, Xuzhou, China
| | - Jiayu Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Ministry of Education, Wuxi, China
| | - Xianlong Ye
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Zhe Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Siyuan Cui
- Wuxi No.2 People's Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Shiwei Shen
- Wuxi No.2 People's Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Xinmiao Liang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian, China.
| | - Yong Q Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China.
- Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Ministry of Education, Wuxi, China.
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
35
|
Younossi ZM, Kalligeros M, Henry L. Epidemiology of metabolic dysfunction-associated steatotic liver disease. Clin Mol Hepatol 2025; 31:S32-S50. [PMID: 39159948 PMCID: PMC11925440 DOI: 10.3350/cmh.2024.0431] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024] Open
Abstract
As the rates of obesity and type 2 diabetes (T2D) continue to increase globally, so does the prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD). Currently, 38% of all adults and 7-14% of children and adolescents have MASLD. By 2040, the MASLD prevalence rate for adults is projected to increase to more than 55%. Although MASLD does not always develop into progressive liver disease, it has become the top indication for liver transplant in the United States for women and those with hepatocellular carcinoma (HCC). Nonetheless, the most common cause of mortality among patients with MASLD remains cardiovascular disease. In addition to liver outcomes (cirrhosis and HCC), MASLD is associated with an increased risk of developing de novo T2D, chronic kidney disease, sarcopenia, and extrahepatic cancers. Furthermore, MASLD is associated with decreased health-related quality of life, decreased work productivity, fatigue, increased healthcare resource utilization, and a substantial economic burden. Similar to other metabolic diseases, lifestyle interventions such as a heathy diet and increased physical activity remain the cornerstone of managing these patients. Although several obesity and T2D drugs are available to treat co-morbid disease, resmetirom is the only MASH-targeted medication for patients with stage 2-3 fibrosis that has approved by the Food and Drug Administration for use in the United States. This review discusses MASLD epidemiology and its related risk factors and outcomes and demonstrates that without further global initiatives, MASLD incidence could continue to increase.
Collapse
Affiliation(s)
- Zobair M. Younossi
- The Global NASH Council, Washington DC, USA
- Beatty Liver and Obesity Program, Inova Health System, Falls Church, VA, USA
- Center for Outcomes Research in Liver Disease, Washington DC, USA
| | - Markos Kalligeros
- Beth Israel Deaconess Medical Center, Harvard University, Cambridge, MA, USA
| | - Linda Henry
- The Global NASH Council, Washington DC, USA
- Beatty Liver and Obesity Program, Inova Health System, Falls Church, VA, USA
- Center for Outcomes Research in Liver Disease, Washington DC, USA
| |
Collapse
|
36
|
Wang MW, Lu LG. Current Status of Glucagon-like Peptide-1 Receptor Agonists in Metabolic Dysfunction-associated Steatotic Liver Disease: A Clinical Perspective. J Clin Transl Hepatol 2025; 13:47-61. [PMID: 39801787 PMCID: PMC11712088 DOI: 10.14218/jcth.2024.00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/13/2024] [Accepted: 10/24/2024] [Indexed: 01/16/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is currently a pressing public health issue associated with adverse outcomes such as cirrhosis, malignancy, transplantation, and mortality. Lifestyle modifications constitute the most effective and fundamental management approach, but they often pose challenges in sustaining long-term clinical benefits. Hence, there is a critical need to enhance our understanding through pharmacological management, which unfortunately remains limited. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have emerged as a leading treatment in the fields of diabetes and obesity, with recent preclinical and clinical studies indicating significant benefits in the management and treatment of MASLD. Our article begins by reviewing the beneficial therapeutic components of GLP-1RAs in MASLD. Subsequently, from a clinical research perspective, we concluded with the liver outcomes of current primary GLP-1RAs and co-agonists. Finally, we presented our insights on clinical concerns such as appropriate trial endpoints, management of comorbidities, and future developments. In conclusion, the benefits of GLP-1RAs in MASLD are promising, and background therapy involving metabolic modulation may represent one of the future therapeutic paradigms.
Collapse
Affiliation(s)
- Ming-Wang Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lun-Gen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Karagiannakis DS, Stefanaki K, Paschou SA, Papatheodoridi M, Tsiodras S, Papanas N. Addressing the essentials of the recent guidelines for managing patients with metabolic dysfunction-associated steatotic liver disease. Hormones (Athens) 2024:10.1007/s42000-024-00625-z. [PMID: 39695010 DOI: 10.1007/s42000-024-00625-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the leading cause of end-stage liver disease and liver transplantation in the Western world, with an approximate prevalence of 30% worldwide which is continuously rising. It is characterized by intrahepatic fat deposition along with at least one cardiometabolic risk factor, such as diabetes mellitus, obesity, hypertriglyceridemia, and hypertension. MASLD consists of a spectrum of liver diseases ranging from simple liver steatosis to steatohepatitis, liver fibrosis, and cirrhosis. Recently, the European Association for the Study of the Liver (EASL), the European Association for the Study of Diabetes (EASD), and the European Association for the Study of Obesity (EASO) released the latest guidelines regarding the management of patients with MASLD. This article highlights the critical points of these guidelines and emphasizes problematic issues that need further evaluation.
Collapse
Affiliation(s)
- Dimitrios S Karagiannakis
- Academic Department of Gastroenterology, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Katerina Stefanaki
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, School of Medicine, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula A Paschou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, School of Medicine, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Margarita Papatheodoridi
- Academic Department of Gastroenterology, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Papanas
- Diabetes Centre-Diabetic Foot Clinic, Second Department of Internal Medicine, Democritus University of Thrace, Thrace, Alexandroupolis, Greece
| |
Collapse
|
38
|
Mu C, Wang S, Wang Z, Tan J, Yin H, Wang Y, Dai Z, Ding D, Yang F. Mechanisms and therapeutic targets of mitochondria in the progression of metabolic dysfunction-associated steatotic liver disease. Ann Hepatol 2024; 30:101774. [PMID: 39701281 DOI: 10.1016/j.aohep.2024.101774] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) includes liver disease processes from simple fatty liver to nonalcoholic steatohepatitis, which may progress to liver fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). As the incidence of HCC derived from viral hepatitis decreases, MASLD has emerged as a significant health threat, driven by lifestyle changes and rising obesity rates among patients. The pathogenesis of MASLD is complex, involving factors such as insulin resistance, gut microbiota imbalance, and genetic and epigenetic factors. In recent years, the role of mitochondrial dysfunction in MASLD has gained significant attention, involving β-oxidation imbalance, oxidative stress increase, mitophagy defects, and mitochondrial DNA (mtDNA) mutations. This article reviews the pathophysiological mechanisms of mitochondrial dysfunction in MASLD, diagnostic methods, and potential therapeutic strategies. By synthesizing current research findings, the review aims to highlight the critical role of mitochondrial dysfunction as a target for future diagnostic and therapeutic interventions. This focus could pave the way for innovative clinical strategies, ultimately improving treatment options and patient prognosis in MASLD.
Collapse
Affiliation(s)
- Chenyang Mu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Sijie Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Zenghan Wang
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Jian Tan
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Haozan Yin
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Yuefan Wang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Zhihui Dai
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Dongyang Ding
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Fu Yang
- Department of Medical Genetics, Naval Medical University, Shanghai, China; Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China; Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China.
| |
Collapse
|
39
|
Zhang KX, Kan CX, Wang YQ, Hou NN, Sun XD. Intestinal glucagon-like peptide-1 in hypoglycemic counterregulation for type 1 diabetes management. World J Diabetes 2024; 15:2380-2383. [PMID: 39676807 PMCID: PMC11580587 DOI: 10.4239/wjd.v15.i12.2380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/13/2024] [Accepted: 10/12/2024] [Indexed: 11/18/2024] Open
Abstract
Type 1 diabetes (T1D) is characterized by the autoimmune destruction of pancreatic beta cells, leading to absolute insulin deficiency and the need for exogenous insulin. A significant concern in T1D management is hypoglycemia, which is worsened by impaired counterregulatory mechanisms. Effective counterregulation involves hormones such as glucagon and adrenaline, which work to restore normal blood glucose levels. However, in T1D, these mechanisms often fail, particularly after recurrent hypoglycemia, resulting in hypoglycemia-associated autonomic failure. Recent research indicates that elevated levels of intestinal glucagon-like peptide-1 (GLP-1) impair counterregulatory responses by reducing the secretion of glucagon and adrenaline. This editorial underscores GLP-1's role beyond its incretin effects, contributing to impaired hypoglycemic counterregulation. This understanding necessitates a nuanced approach to GLP-1-based therapies in T1D, balancing the benefits of glycemic control with potential risks. Future research should delve into the mechanisms behind GLP-1's effects and explore potential interventions to improve hypoglycemic counterregulation. The goal is to enhance the safety and quality of life for T1D patients.
Collapse
Affiliation(s)
- Ke-Xin Zhang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Shandong Second Medical University, Weifang 261031, Shandong Province, China
| | - Cheng-Xia Kan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Shandong Second Medical University, Weifang 261031, Shandong Province, China
| | - Yu-Qun Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Shandong Second Medical University, Weifang 261031, Shandong Province, China
| | - Ning-Ning Hou
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Shandong Second Medical University, Weifang 261031, Shandong Province, China
| | - Xiao-Dong Sun
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Shandong Second Medical University, Weifang 261031, Shandong Province, China
| |
Collapse
|
40
|
Au K, Zheng MH, Lee WJ, Ghanem OM, Mahawar K, Shabbir A, le Roux CW, Targher G, Byrne CD, Yilmaz Y, Valenti L, Sebastiani G, Treeprasertsuk S, Hui HX, Sakran N, Neto MG, Kermansaravi M, Kow L, Seki Y, Tham KW, Dang J, Cohen RV, Stier C, AlSabah S, Oviedo RJ, Chiappetta S, Parmar C, Yang W. Resmetirom and Metabolic Dysfunction-Associated Steatohepatitis: Perspectives on Multidisciplinary Management from Global Healthcare Professionals. Curr Obes Rep 2024; 13:818-830. [PMID: 39110384 DOI: 10.1007/s13679-024-00582-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/25/2024]
Abstract
PURPOSE OF REVIEW The approval of resmetirom brings great hope to patients with metabolic dysfunction-associated steatohepatitis (MASH). The purpose of this review is to explore its impact on the global health environment. The implementation of multidisciplinary management MASH is proposed. RECENT FINDINGS Resmetirom has benefits in the treatment of MASH, and its safety and effectiveness have been studied. The adverse events (AEs) need to be noticed. To improve patient outcomes, a multimodal approach with medication such as resmetirom, combined with metabolic and bariatric surgery (MBS) and lifestyle interventions can be conducted. MASH, a liver disease linked with obesity, is a challenging global healthcare burden compounded by the absence of any approved pharmacotherapy. The recent conditional approval by the Food and Drug Administration (FDA) in the United States of resmetirom, an oral, liver-directed, thyroid hormone receptor beta-selective agonist, marks a significant milestone, offering a treatment option for adults with non-cirrhotic MASH and who have moderate to advanced liver fibrosis. This narrative review discusses the efficacy and safety of resmetirom and its role in the therapeutic landscape of MASH treatment. Despite the promising hepatoprotective effect of resmetirom on histological liver endpoints, its use need further research, particularly regarding ethnic differences, effectiveness and cost-effectiveness, production scalability, social acceptance and accessibility. In addition, integrating resmetirom with other multidisciplinary therapeutic approaches, including lifestyle changes and MBS, might further improve clinical liver-related and cardiometabolic outcomes of individuals with MASH. This review highlights the importance of a comprehensive treatment strategy, supporting continued innovation and collaborative research to refine treatment guidelines and consensus for managing MASH, thereby improving clinical patient outcomes in the growing global epidemic of MASH. Studies done to date have been relatively short and ongoing, the course of the disease is highly variable, the conditions of various patients vary, and given this complex clinical phenotype, it may take many years of clinical trials to show long-term benefits.
Collapse
Affiliation(s)
- Kahei Au
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, No. 613 Huangpu Avenue West, Guangzhou, China
| | - Ming-Hua Zheng
- Department of Hepatology, MAFLD Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Wei-Jei Lee
- Medical Weight Loss Center, China Medical University Shinchu Hospital, Zhubei City, Taiwan
| | - Omar M Ghanem
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Kamal Mahawar
- Department of Upper Gastrointestinal Surgery, South Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK
| | - Asim Shabbir
- National University of Singapore, Singapore, Singapore
| | - Carel W le Roux
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton, and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milan, Italy
- Precision Medicine, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology, Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital, Montreal, Canada
| | | | - Hannah Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nasser Sakran
- Department of General Surgery, Holy Family Hospital, Nazareth, Israel
- The Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Manoel Galvao Neto
- Orlando Health Weight Loss and Bariatric Surgery Institute, Orlando, USA
- Mohak Bariatric and Robotic Center, Indore, India
| | - Mohammad Kermansaravi
- Department of Surgery, Division of Minimally Invasive and Bariatric Surgery, School of Medicine, Hazrat-E Fatemeh Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Lilian Kow
- Department GI Surgery, Flinders University South Australia, Adelaide, Australia
| | - Yosuke Seki
- Weight Loss and Metabolic Surgery Centre, Yotsuya Medical Cube, Tokyo, Japan
| | | | - Jerry Dang
- Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ricardo V Cohen
- The Center for Obesity and Diabetes, Hospital Alemao Oswaldo Cruz, Sao Paulo, Brazil
| | - Christine Stier
- Department of MBS and Bariatric Endoscopy, University Hospital Mannheim, Heidelberg University, Mannheim, Baden-Wuerttenberg, Germany
| | - Salman AlSabah
- Department of Surgery, Kuwait University, Kuwait, Kuwait
| | - Rodolfo J Oviedo
- Nacogdoches Medical Center, Nacogdoches, TX, USA
- University of Houston Tilman J. Fertitta Family College of Medicine, Houston, TX, USA
- Sam Houston State University College of Osteopathic Medicine, Conroe, TX, USA
| | - Sonja Chiappetta
- Bariatric and Metabolic Surgery Unit, Department for General and Laparoscopic Surgery, Ospedale Evangelico Betania, Naples, Italy
| | - Chetan Parmar
- Department of Surgery, Whittington Hospital,, University College London, London, UK
| | - Wah Yang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, No. 613 Huangpu Avenue West, Guangzhou, China.
| |
Collapse
|
41
|
Marek GW, Malhi H. MetALD: Does it require a different therapeutic option? Hepatology 2024; 80:1424-1440. [PMID: 38820071 DOI: 10.1097/hep.0000000000000935] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/03/2024] [Indexed: 06/02/2024]
Abstract
New guidelines for the definitions of steatotic liver disease have named the entity of metabolic dysfunction and alcohol-associated liver disease (MetALD) as an overlap condition of metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-associated liver disease. There is a broad range of therapeutics in all stages of development for MASLD, but these therapeutics, in general, have not been studied in patients with significant ongoing alcohol use. In this review, we discuss the current understanding of the endogenous and exogenous risks for MASLD and MetALD. Rational strategies for therapeutic intervention in MetALD include biopsychosocial interventions, alcohol use cessation strategies, including the use of medications for alcohol use disorder, and judicious use of therapeutics for steatotic liver disease. Therapeutics with promise for MetALD include incretin-based therapies, FGF21 agonists, thyroid hormone receptor beta agonists, sodium-glucose co-transporter 2 inhibitors, and agents to modify de novo lipogenesis. Currently, glucagon-like peptide 1 receptor agonists and peroxisome proliferator-activated receptor γ agonists have the largest body of literature supporting their use in MASLD, and there is a paucity of agents in trials for alcohol-associated liver disease. From existing studies, it is not clear if unique therapeutics or a combinatorial approach are needed for MetALD. Further elucidation of the safety and benefits of MASLD-related therapies is of paramount importance for advancing therapeutics for MetALD in carefully designed inclusive clinical trials.
Collapse
Affiliation(s)
- George W Marek
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
42
|
Newsome PN, Sanyal AJ, Engebretsen KA, Kliers I, Østergaard L, Vanni D, Bugianesi E, Rinella ME, Roden M, Ratziu V. Semaglutide 2.4 mg in Participants With Metabolic Dysfunction-Associated Steatohepatitis: Baseline Characteristics and Design of the Phase 3 ESSENCE Trial. Aliment Pharmacol Ther 2024; 60:1525-1533. [PMID: 39412509 PMCID: PMC11599791 DOI: 10.1111/apt.18331] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/18/2024] [Accepted: 09/26/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Semaglutide, a glucagon-like peptide-1 receptor agonist, has demonstrated potential beneficial effects in metabolic dysfunction-associated steatohepatitis (MASH). AIMS To describe the trial design and baseline characteristics of the 'Effect of Semaglutide in Subjects with Non-cirrhotic Non-alcoholic Steatohepatitis' (ESSENCE) trial (NCT04822181). METHODS ESSENCE is a two-part, phase 3, randomised, multicentre trial evaluating the effect of subcutaneous semaglutide 2.4 mg in participants with biopsy-proven MASH and fibrosis stage 2 or 3. The primary objective of Part 1 is to demonstrate that semaglutide improves liver histology compared with placebo. The two primary endpoints are: resolution of steatohepatitis and no worsening of liver fibrosis, and improvement in liver fibrosis and no worsening of steatohepatitis. The Part 2 objective is based on clinical outcomes. The current work reports baseline characteristics of the first 800 randomised participants which includes demographics, laboratory parameters, liver histology, non-invasive tests and presence of metabolic dysfunction-associated steatotic liver disease (MASLD) cardiometabolic criteria. RESULTS Of 800 participants, 250 (31.3%) had fibrosis stage 2 and 550 (68.8%) had fibrosis stage 3. In the overall population, mean (standard deviation [SD]) age was 56 (11.6) years, 57.1% were female, mean (SD) body mass index was 34.6 (7.2) kg/m2, 55.5% had type 2 diabetes and > 99% had at least one MASLD cardiometabolic criterion according to the published definition. CONCLUSION The ESSENCE baseline population includes participants with clinically significant fibrosis stages 2 and 3. Although MASLD cardiometabolic criteria were not a requirement for study enrolment, almost all participants (> 99%) had at least one MASLD cardiometabolic criterion. TRIAL REGISTRATION NCT04822181.
Collapse
Affiliation(s)
- Philip N. Newsome
- Roger Williams Institute of Liver Studies, Faculty of Life Sciences and MedicineKing's College London and King's College HospitalLondonUK
- College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Arun J. Sanyal
- VCU School of MedicineStravitz‐Sanyal Institute for Liver Disease and Metabolic HealthRichmondVirginiaUSA
| | | | | | | | | | | | - Mary E. Rinella
- Division of Gastroenterology, Hepatology and NutritionUniversity of ChicagoChicagoIllinoisUSA
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute for Clinical Diabetology, German Diabetes CenterLeibniz Center for Diabetes Research at Heinrich Heine University DüsseldorfDüsseldorfGermany
- German Center for Diabetes Research, Partner DüsseldorfMünchen‐NeuherbergGermany
| | - Vlad Ratziu
- Sorbonne Université, Institute for Cardiometabolism and NutritionHospital Pitié‐Salpêtrière, INSERM UMRS 1138 CRCParisFrance
| |
Collapse
|
43
|
Model JFA, Normann RS, Vogt ÉL, Dentz MV, de Amaral M, Xu R, Bachvaroff T, Spritzer PM, Chung JS, Vinagre AS. Interactions between glucagon like peptide 1 (GLP-1) and estrogens regulates lipid metabolism. Biochem Pharmacol 2024; 230:116623. [PMID: 39542180 DOI: 10.1016/j.bcp.2024.116623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Obesity, characterized by excessive fat accumulation in white adipose tissue (WAT), is linked to numerous health issues, including insulin resistance (IR), and type 2 diabetes mellitus (DM2). The distribution of adipose tissue differs by sex, with men typically exhibiting android adiposity and pre-menopausal women displaying gynecoid adiposity. After menopause, women have an increased risk of developing android-type obesity, IR, and DM2. Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1RAs) are important in treating obesity and DM2 by regulating insulin secretion, impacting glucose and lipid metabolism. GLP-1Rs are found in various tissues including the pancreas, brain, and adipose tissue. Studies suggest GLP-1RAs and estrogen replacement therapies have similar effects on tissues like the liver, central nervous system, and WAT, probably by converging pathways involving protein kinases. To investigate these interactions, female rats underwent ovariectomy (OVR) to promote a state of estrogen deficiency. After 20 days, the rats were euthanized and the tissues were incubated with 10 μM of liraglutide, a GLP-1RA. Results showed significant changes in metabolic parameters: OVR increased lipid catabolism in perirenal WAT and basal lipolysis in subcutaneous WAT, while liraglutide treatment enhanced stimulated lipolysis in subcutaneous WAT. Liver responses included increased stimulated lipolysis with liraglutide. Transcriptome analysis revealed distinct gene expression patterns in WAT of OVR rats and those treated with GLP-1RA, highlighting pathways related to lipid and glucose metabolism. Functional enrichment analysis showed estrogen's pivotal role in these pathways, influencing genes involved in lipid metabolism regulation. Overall, the study underscores GLP-1RA acting directly on adipose tissues and highlights the complex interactions between GLP-1 and estrogen in regulating metabolism, suggesting potential synergistic therapeutic effects in treating metabolic disorders like obesity and DM2.
Collapse
Affiliation(s)
- Jorge F A Model
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rafaella S Normann
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Éverton L Vogt
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maiza Von Dentz
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marjoriane de Amaral
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rui Xu
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Tsvetan Bachvaroff
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Poli Mara Spritzer
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - J Sook Chung
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Anapaula S Vinagre
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
44
|
Aldroubi BG, Najjar JA, Youssef TS, Rizk CE, Abuamreh BA, Aramouni K, Ghadieh HE, Najjar SM. Cell-specific regulation of insulin action and hepatic fibrosis by CEACAM1. METABOLISM AND TARGET ORGAN DAMAGE 2024; 4:34. [PMID: 39640841 PMCID: PMC11619085 DOI: 10.20517/mtod.2024.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) has reached an epidemic rise worldwide. The disease is a constellation of a broad range of metabolic and histopathologic abnormalities. It begins with hepatic steatosis and progresses to metabolic dysfunction-associated steatohepatitis (MASH), including hepatic fibrosis, apoptosis, and cell injury. Despite ample research effort, the pathogenesis of the disease has not been fully delineated. Whereas insulin resistance is implicated in the early stages of the disease, its role in hepatic fibrosis remains controversial. We have focused our studies on the role of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in hepatocytes and endothelial cells in the metabolic and histopathological dysregulation in MASH. Patients with MASH exhibit lower hepatic CEACAM1 with a progressive decline in hepatocytes and endothelial cells as the fibrosis stage advances. In mice, conditional deletion of CEACAM1 in hepatocytes impairs insulin clearance to cause hyperinsulinemia-driven insulin resistance with steatohepatitis and hepatic fibrosis even when mice are fed a regular chow diet. In contrast, its conditional deletion in endothelial cells causes inflammation-driven hepatic fibrosis without adversely affecting metabolism (mice remain insulin-sensitive and do not develop hepatic steatosis). Thus, this review provides in vivo evidence that supports or discards the role of insulin resistance in liver injury and hepatic fibrosis.
Collapse
Affiliation(s)
- Basel G. Aldroubi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - John A. Najjar
- Department of Pathology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Tya S. Youssef
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al-Koura PO box 100 Tripoli, Kalhat, Lebanon
| | - Carl E. Rizk
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al-Koura PO box 100 Tripoli, Kalhat, Lebanon
| | - Basil A.M. Abuamreh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Karl Aramouni
- Department of Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hilda E. Ghadieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al-Koura PO box 100 Tripoli, Kalhat, Lebanon
| | - Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 43614, USA
| |
Collapse
|
45
|
da Silva Lima N, Cabaleiro A, Novoa E, Riobello C, Knerr PJ, He Y, Esquinas-Román EM, González-García I, Prevot V, Schwaninger M, Dieguez C, López M, Müller TD, Varela-Rey M, Douros JD, Nogueiras R. GLP-1 and GIP agonism has no direct actions in human hepatocytes or hepatic stellate cells. Cell Mol Life Sci 2024; 81:468. [PMID: 39607493 PMCID: PMC11604888 DOI: 10.1007/s00018-024-05507-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
The use of incretin agonists for managing metabolic dysfunction-associated steatohepatitis (MASH) is currently experiencing considerable interest. However, whether these compounds have a direct action on MASH is still under debate. This study aims to investigate whether GLP-1R/GIPR agonists act directly in hepatocytes and hepatic stellate cells (HSCs). For this, human hepatocyte and HSCs lines, as well as primary human hepatocytes and HSCs treated with Liraglutide, Acyl-GIP or the GLP-1/GIP dual agonist (MAR709) were used. We show that the concentrations of each compound, which were effective in insulin release, did not induce discernible alterations in either hepatocytes or HSCs. In hepatocytes displaying elevated fatty acid content after the treatment with oleic acid and palmitic acid, none of the three compounds reduced lipid concentration. Similarly, in HSCs activated with transforming growth factor-β (TGFb), Liraglutide, Acyl-GIP and MAR709 failed to ameliorate the elevated expression of fibrotic markers. The three compounds were also ineffective in phosphorylating CREB, which mediates insulinotropic actions, in both hepatocytes and HSCs. These findings indicate that incretin agonists have no direct actions in human hepatocytes or hepatic stellate cells, suggesting that their beneficial effects in patients with MASH are likely mediated indirectly, potentially through improvements in body weight, insulin resistance and glycemic control.
Collapse
Affiliation(s)
- Natália da Silva Lima
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Alba Cabaleiro
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Eva Novoa
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Cristina Riobello
- Department of Biochemistry and Molecular Biology, CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Patrick J Knerr
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Yantao He
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Eva M Esquinas-Román
- Department of Biochemistry and Molecular Biology, CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Ismael González-García
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Vincent Prevot
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, Univ. Lille, Inserm, CHU Lille, European Genomic Institute for Diabetes (EGID), 59000, Lille, France
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Carlos Dieguez
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Marta Varela-Rey
- Department of Biochemistry and Molecular Biology, CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | | | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain.
- Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain.
| |
Collapse
|
46
|
Zhang Z, He Y, Zhao M, He X, Zhou Z, Yue Y, Shen T, Liu J, Zhang G, Zhang Y. Qinlian Hongqu Decoction Modulates FXR/TGR5/GLP-1 Pathway to Improve Insulin Resistance in NAFLD Mice: Bioinformatics and Experimental Study. ACS OMEGA 2024; 9:45447-45466. [PMID: 39554433 PMCID: PMC11561767 DOI: 10.1021/acsomega.4c07463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
Background: Qinglian Hongqu decoction (QLHQD), a traditional Chinese herbal remedy, shows potential in alleviating metabolic issues related to nonalcoholic fatty liver disease (NAFLD). However, its precise mode of action remains uncertain. Objective: This study aims to evaluate the efficacy and mechanisms of QLHQD in treating NAFLD. Methods: This study utilized a NAFLD mouse model to assess the effects of QLHQD on lipid metabolism, including blood lipids and hepatic steatosis, as well as glucose metabolism, including blood glucose levels, OGTT results, and serum insulin. Network pharmacology, bioinformatics, and molecular docking were used to explore how QLHQD may improve NAFLD treatment. Key proteins involved in these mechanisms were validated via WB and immunohistochemistry. Additionally, the expression of downstream pathway targets was examined to further validate the insulin resistance mechanism by which QLHQD improves NAFLD. Results: Animal studies demonstrated that QLHQD alleviated lipid abnormalities, hepatic steatosis, blood glucose levels, the insulin resistance index, and the OGTT results in NAFLD mice (P < 0.05 or 0.01). Network pharmacology and bioinformatics analyses indicated that the effects of QLHQD on NAFLD might involve bile acid secretion pathways. Subsequent validation through Western blotting, immunohistochemistry, and qPCR demonstrated that QLHQD may influence fat metabolism and insulin sensitivity in NAFLD mice via the FXR/TGR5/GLP-1 signaling pathway. Conclusion: QLHQD significantly alleviates glucose and lipid metabolism disorders in a high-fat diet-induced NAFLD mouse model. Its mechanism of action may involve the activation of the FXR/TGR5/GLP-1 signaling pathway in the gut, which reduces lipid accumulation and insulin resistance.
Collapse
Affiliation(s)
- Zhongyi Zhang
- Institute
of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine
Sciences, Chengdu 610041, China
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunliang He
- Institute
of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine
Sciences, Chengdu 610041, China
| | - Mei Zhao
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin He
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
- Department
of Traditional Chinese Medicine, Chengdu
Integrated TCM&Western Medicine Hospital, Chengdu 610041, China
| | - Zubing Zhou
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuanyuan Yue
- Department
of Traditional Chinese Medicine, Chengdu
Integrated TCM&Western Medicine Hospital, Chengdu 610041, China
| | - Tao Shen
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Juncheng Liu
- Department
of Traditional Chinese Medicine, Pengzhou
Hospital of Traditional Chinese Medicine, Pengzhou 611900, China
| | - Gan Zhang
- Institute
of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine
Sciences, Chengdu 610041, China
| | - Yong Zhang
- Institute
of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine
Sciences, Chengdu 610041, China
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
47
|
Jensen EL, Israelsen M, Krag A. Transforming steatotic liver disease management: The emerging role of GLP-1 receptor agonists. Hepatol Commun 2024; 8:e0561. [PMID: 39392766 PMCID: PMC11469819 DOI: 10.1097/hc9.0000000000000561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/10/2024] [Indexed: 10/13/2024] Open
Abstract
Chronic liver disease is a major cause of mortality, with approximately 2 million deaths worldwide each year, and it poses a significant economic burden. The most common cause of chronic liver disease in the United States and Europe is steatotic liver disease (SLD), which includes metabolic dysfunction-associated SLD, metabolic dysfunction and alcohol-associated SLD, and alcohol-associated liver disease (ALD). Effective treatment of these conditions is essential to reduce the liver disease burden, with promising approaches including treating cardiometabolic risk factors and excessive alcohol intake. Glucagon-like peptide 1 receptor agonists, both as monotherapy and in combination with other drugs, are gaining attention for their beneficial impact on cardiometabolic risk factors and excessive alcohol intake. In this review, we examine the molecular and clinical effects of glucagon-like peptide 1 receptor agonists, focusing on their direct hepatic steatohepatitis and liver fibrosis but also the indirect influence on cardiometabolic risk factors and excessive alcohol intake as key features of SLD. We also explore the future implications of glucagon-like peptide 1 receptor agonists for treating metabolic dysfunction-associated SLD, metabolic dysfunction and alcohol-associated SLD, alcohol-associated liver disease, and the potential challenges.
Collapse
Affiliation(s)
- Ellen L. Jensen
- Department of Gastroenterology and Hepatology, Odense C, Denmark
- Institute of Clinical Research, Faculty of Health Sciences, Odense University Hospital, University of Southern Denmark, Winsløvsparken, Odense C, Denmark
| | - Mads Israelsen
- Department of Gastroenterology and Hepatology, Odense C, Denmark
- Institute of Clinical Research, Faculty of Health Sciences, Odense University Hospital, University of Southern Denmark, Winsløvsparken, Odense C, Denmark
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense C, Denmark
- Institute of Clinical Research, Faculty of Health Sciences, Odense University Hospital, University of Southern Denmark, Winsløvsparken, Odense C, Denmark
| |
Collapse
|
48
|
Cline H, Wei Z, Groeneveld DJ, Hix JML, Xu X, Flick MJ, Palumbo JS, Poole LG, Dockendorff C, Griffin JH, Luyendyk JP. Hepatocyte-independent PAR1-biased signaling controls liver pathology in experimental obesity. J Thromb Haemost 2024; 22:3191-3198. [PMID: 39122189 PMCID: PMC11513232 DOI: 10.1016/j.jtha.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Protease-activated receptor-1 (PAR1) has emerged as an important link between coagulation and the complications of obesity including metabolic dysfunction-associated steatotic liver disease (MASLD). PAR1 is expressed by various cells and cleaved by different proteases to generate unique tethered agonists that activate distinct signaling pathways. Mice expressing PAR1 with an R41Q mutation have disabled canonical thrombin-mediated signaling, whereas R46Q mice express PAR1 resistant to noncanonical signaling by activated protein C. METHODS Mice with whole body and hepatocyte-selective PAR1 deficiency as well as PAR1 R41Q and R46Q mice were fed a high-fat diet (HFD) to induce MASLD. RESULTS HFD-fed R41Q mice displayed reduced hepatic steatosis and liver/body weight ratio. In contrast, HFD-fed R46Q mice displayed increased relative liver weight and hepatic steatosis alongside increased serum alanine aminotransferase activity. Surprisingly, despite the distinct impact of PAR1 mutations on steatosis, selective deletion of PAR1 in hepatocytes had no impact. To evaluate a viable PAR1-targeted approach, mice with HFD-induced obesity were treated with the allosteric PAR1 modulator NRD-21, which inhibits canonical PAR1 inflammatory signaling but promotes PAR1 protective, noncanonical anti-inflammatory signaling. NRD-21 treatment reduced plasma tumor necrosis factor-alpha, serum alanine aminotransferase activity, hepatic steatosis, and insulin resistance (Homeostatic Model Assessment for Insulin Resistance) but increased plasma active glucagon-like peptide-1. CONCLUSION The results suggest that nonhepatocellular canonical PAR1 cleavage drives MASLD in obese mice and provide translational proof-of-concept that selective pharmacologic modulation of PAR1 yields multiple metabolic benefits in experimental obesity.
Collapse
Affiliation(s)
- Holly Cline
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Zimu Wei
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Dafna J Groeneveld
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Jeremy M L Hix
- Department of Radiology and Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, Michigan, USA
| | - Xiao Xu
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California, USA
| | - Matthew J Flick
- Department of Pathology and Laboratory Medicine, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joseph S Palumbo
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lauren G Poole
- Department of Pharmacology, Rutgers University, Piscataway, New Jersey, USA
| | | | - John H Griffin
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California, USA
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
49
|
Lawitz EJ, Fraessdorf M, Neff GW, Schattenberg JM, Noureddin M, Alkhouri N, Schmid B, Andrews CP, Takács I, Hussain SA, Fenske WK, Gane EJ, Hosseini-Tabatabaei A, Sanyal AJ, Mazo DF, Younes R. Efficacy, tolerability and pharmacokinetics of survodutide, a glucagon/glucagon-like peptide-1 receptor dual agonist, in cirrhosis. J Hepatol 2024; 81:837-846. [PMID: 38857788 DOI: 10.1016/j.jhep.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND & AIMS Survodutide is a glucagon/glucagon-like peptide-1 receptor dual agonist in development for the treatment of metabolic dysfunction-associated steatohepatitis (MASH). We investigated the pharmacokinetic and safety profile of survodutide in people with cirrhosis. METHODS This multinational, non-randomized, open-label, phase I clinical trial initially evaluated a single subcutaneous dose of survodutide 0.3 mg in people with Child-Pugh class A, B or C cirrhosis and healthy individuals with or without overweight/obesity matched for age, sex, and weight; the primary endpoints were the area under the plasma concentration-time curve from 0 to infinity (AUC0-∞) and maximal plasma concentration (Cmax). Subsequently, people with overweight/obesity with or without cirrhosis (Child-Pugh class A or B) received once-weekly subcutaneous doses escalated from 0.3 mg to 6.0 mg over 24 weeks then maintained for 4 weeks; the primary endpoint was drug-related treatment-emergent adverse events, with MASH/cirrhosis-related endpoints explored. RESULTS In the single-dose cohorts (n = 41), mean AUC0-∞ and Cmax were similar in those with cirrhosis compared with healthy individuals (90% CIs for adjusted geometric mean ratios spanned 1). Drug-related adverse events occurred in 25.0% of healthy individuals and ≤25.0% of those with cirrhosis after single doses, and 82.4% and 87.5%, respectively, of the multiple-dose cohorts (n = 41) over 28 weeks. Liver fat content, liver stiffness, liver volume, body weight, and other hepatic and metabolic disease markers were generally reduced after 28 weeks of survodutide treatment. CONCLUSIONS Survodutide is generally tolerable in people with compensated or decompensated cirrhosis, does not require pharmacokinetic-related dose adjustment, and may improve liver-related non-invasive tests, supporting its investigation for MASH-related cirrhosis. IMPACT AND IMPLICATIONS Survodutide is a glucagon receptor/glucagon-like peptide-1 receptor dual agonist in development for treatment of metabolic dysfunction-associated steatohepatitis (MASH), which causes cirrhosis in ∼20% of cases. This trial delineates the pharmacokinetic and safety profile of survodutide in people with compensated or decompensated cirrhosis, and revealed associated reductions in liver fat content, markers of liver fibrosis and body weight. These findings have potential relevance for people with MASH-including those with decompensated cirrhosis, who are usually excluded from clinical trials of investigational drugs. Based on this study, further investigation of survodutide for MASH-related cirrhosis is warranted. CLINICALTRIALS GOV IDENTIFIER NCT05296733.
Collapse
Affiliation(s)
- Eric J Lawitz
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, TX, USA.
| | | | - Guy W Neff
- Covenant Metabolic Specialists, Sarasota and Fort Myers, FL, USA
| | - Jörn M Schattenberg
- Department of Internal Medicine II, University Medical Center Homburg, Homburg and Saarland University, Saarbrücken, Germany
| | - Mazen Noureddin
- Houston Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Naim Alkhouri
- Hepatology Division, Arizona Liver Health, Phoenix, AZ, USA
| | | | | | - István Takács
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | | - Wiebke K Fenske
- Department of Internal Medicine I, Endocrinology, Diabetes and Metabolism, Bergmannsheil University Hospital Bochum, Bochum, Germany
| | - Edward J Gane
- New Zealand Liver Transplant Unit, Auckland City Hospital and University of Auckland, Auckland, New Zealand
| | | | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | | |
Collapse
|
50
|
Goldney J, Davies MJ. GLP1 agonists: current and future landscape of clinical trials for patients with metabolic dysfunction. Nat Rev Gastroenterol Hepatol 2024; 21:664-666. [PMID: 39242961 DOI: 10.1038/s41575-024-00977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Affiliation(s)
- Jonathan Goldney
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Melanie J Davies
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Leicester, UK.
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK.
| |
Collapse
|