1
|
Baskar S, Peng H, Gaglione EM, Carstens EJ, Lindorfer MA, Ahn IE, Herman SEM, Skarzynski M, Chang J, Keyvanfar K, Butera V, Blackburn A, Vire B, Maric I, Stetler-Stevenson M, Yuan CM, Eckhaus MA, Soto S, Farooqui MZH, Taylor RP, Rader C, Wiestner A. Potentiating CD20 monoclonal antibody therapy by targeting complement C3 fragments covalently deposited on lymphoma cells. Blood 2025; 145:1309-1320. [PMID: 39774793 DOI: 10.1182/blood.2024024846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
ABSTRACT Monoclonal antibodies (mAbs) improve survival of patients with mature B-cell malignancies. Fcγ receptor-dependent effector mechanisms kill tumor cells but can promote antigen loss through trogocytosis, contributing to treatment failures. Cell-bound mAbs trigger the complement cascade to deposit C3 activation fragments and lyse cells. Within 24 hours after ofatumumab administration to patients with chronic lymphocytic leukemia (CLL), circulating tumor cells had lost CD20 and were opsonized with C3d, the terminal covalently bound form of complement protein C3. We hypothesized that C3d provides a target to eliminate residual CD20- tumor cells. To test this hypothesis, we generated C8xi, a mouse/human chimeric immunoglobulin G1 (IgG1) that reacts with human but not mouse C3d. C8xi was effective in a patient-derived xenograft model against CD20-, C3d opsonized CLL cells from patients treated with ofatumumab. We also generated rabbit mAbs, 2 of which were chosen because they bound mouse and human C3d with low nanomolar affinity but were minimally cross-reactive with full-length C3. Anti-C3d rabbit/human chimeric IgG1 in combination with ofatumumab or rituximab prolonged survival of xenografted mice that model 3 different types of non-Hodgkin lymphoma (NHL). For example, in a diffuse large B-cell lymphoma model (SU-DHL-6), median survival with single-agent CD20 mAb was 114 days but was not reached for mAb combination treatment (P = .008). In another NHL model (SU-DHL-4), single-agent and combination mAb therapy eradicated lymphoma in most mice. In long-term survivors from both cohorts, there was no evidence of adverse effects. We propose that C3d mAbs combined with complement-fixing CD20 mAbs can overcome antigen-loss escape and increase efficacy of mAb-based therapy.
Collapse
MESH Headings
- Humans
- Animals
- Mice
- Antigens, CD20/immunology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Xenograft Model Antitumor Assays
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal/pharmacology
- Complement C3d/immunology
- Complement C3d/antagonists & inhibitors
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Rabbits
- Female
- Rituximab
Collapse
Affiliation(s)
- Sivasubramanian Baskar
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Haiyong Peng
- Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL
| | - Erika M Gaglione
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA
| | - Elizabeth J Carstens
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Margaret A Lindorfer
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA
| | - Inhye E Ahn
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Sarah E M Herman
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Martin Skarzynski
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jing Chang
- Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL
| | - Keyvan Keyvanfar
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Vicent Butera
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Amy Blackburn
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Bérengère Vire
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Irina Maric
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Maryalice Stetler-Stevenson
- Flow Cytometry Unit, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Constance M Yuan
- Flow Cytometry Unit, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Michael A Eckhaus
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD
| | - Susan Soto
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Mohammed Z H Farooqui
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Ronald P Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
2
|
Leng F, Huang J, Wu L, Zhang J, Lin X, Deng R, Zhu J, Li Z, Li Z, Wang Y, Zhang H, Lu D, Kipps TJ, Zhang S. Targeting ROR2 homooligomerization disrupts ROR2-dependent signaling and suppresses stem-like cell properties of human breast adenocarcinoma. iScience 2025; 28:111589. [PMID: 39829682 PMCID: PMC11742321 DOI: 10.1016/j.isci.2024.111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 01/22/2025] Open
Abstract
Breast cancer stem-like cells (CSCs) are enriched following treatment with chemotherapy, and posited as having a high level of plasticity and enhanced tumor-initiation capacity, which can enable cancer relapse. Here, we show that such features are shared by breast cancer (BCA) cells that express receptor tyrosine kinase-like orphan receptor (ROR2), which is expressed primarily during embryogenesis and by various cancers. We find that Wnt5a can induce ROR2 homooligomerization to activate noncanonical Wnt signaling and enhance tumor-initiation capacity of BCA cells. Molecular analysis reveals that the cysteine-rich domain and transmembrane domain are required for ROR2 homooligomerization to activate ROR2. Treatment with a newly generated monoclonal antibody (mAb) specific for ROR2 can block Wnt5a-induced ROR2 homooligomerization, ROR2-dependent noncanonical Wnt signaling, and impair the capacity of BCA patient-derived xenografts to initiate tumor in immune-deficient mice. Collectively, these results indicate that targeting ROR2 (e.g., using mAb) suppresses BCA stemness and, thereby, may prevent BCA relapse.
Collapse
Affiliation(s)
- Feng Leng
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jiajia Huang
- State Key Laboratory of Oncology in South China, Department of Medical Oncology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Liufeng Wu
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jianchao Zhang
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xinxin Lin
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Ruhuan Deng
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jinhang Zhu
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Zhen Li
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Zhenghao Li
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yimeng Wang
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Han Zhang
- Xenta Biomedical Science Co., Ltd, Guangzhou 510060, China
| | - Desheng Lu
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Thomas J. Kipps
- Moores Cancer Center, University of California, San Diego, San Diego, CA 92037, USA
| | - Suping Zhang
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Moores Cancer Center, University of California, San Diego, San Diego, CA 92037, USA
| |
Collapse
|
3
|
Abstract
A phagemid is a plasmid that contains the origin of replication and packaging signal of a filamentous phage. Following bacterial transformation, a phagemid can be replicated and amplified as a plasmid, using a double-stranded DNA origin of replication, or it can be replicated as single-stranded DNA for packaging into filamentous phage particles. The use of phagemids enables phage display of large proteins, such as antibody fragments. Phagemid pComb3 was among the first phage display vectors used for the generation and selection of antibody libraries in the 50-kDa Fab format, a monovalent proxy of natural antibodies. Affording a robust and versatile tool for more than three decades, phage display vectors of the pComb3 phagemid family have been widely used for the discovery, affinity maturation, and humanization of antibodies in Fab, scFv, and single-domain formats from naive, immune, and synthetic antibody repertoires. In addition, they have been used for broadening phage display to the mining of nonimmunoglobulin repertoires. This review examines conceptual, functional, and molecular features of the first-generation phage display vector pComb3 and its successors, pComb3H, pComb3X, and pC3C.
Collapse
Affiliation(s)
- Christoph Rader
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida 33458, USA
| |
Collapse
|
4
|
Nagy GN, Zhao XF, Karlsson R, Wang K, Duman R, Harlos K, El Omari K, Wagner A, Clausen H, Miller RL, Giger RJ, Jones EY. Structure and function of Semaphorin-5A glycosaminoglycan interactions. Nat Commun 2024; 15:2723. [PMID: 38548715 PMCID: PMC10978931 DOI: 10.1038/s41467-024-46725-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Integration of extracellular signals by neurons is pivotal for brain development, plasticity, and repair. Axon guidance relies on receptor-ligand interactions crosstalking with extracellular matrix components. Semaphorin-5A (Sema5A) is a bifunctional guidance cue exerting attractive and inhibitory effects on neuronal growth through the interaction with heparan sulfate (HS) and chondroitin sulfate (CS) glycosaminoglycans (GAGs), respectively. Sema5A harbors seven thrombospondin type-1 repeats (TSR1-7) important for GAG binding, however the underlying molecular basis and functions in vivo remain enigmatic. Here we dissect the structural basis for Sema5A:GAG specificity and demonstrate the functional significance of this interaction in vivo. Using x-ray crystallography, we reveal a dimeric fold variation for TSR4 that accommodates GAG interactions. TSR4 co-crystal structures identify binding residues validated by site-directed mutagenesis. In vitro and cell-based assays uncover specific GAG epitopes necessary for TSR association. We demonstrate that HS-GAG binding is preferred over CS-GAG and mediates Sema5A oligomerization. In vivo, Sema5A:GAG interactions are necessary for Sema5A function and regulate Plexin-A2 dependent dentate progenitor cell migration. Our study rationalizes Sema5A associated developmental and neurological disorders and provides mechanistic insights into how multifaceted guidance functions of a single transmembrane cue are regulated by proteoglycans.
Collapse
Affiliation(s)
- Gergely N Nagy
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary.
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| | - Xiao-Feng Zhao
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Richard Karlsson
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen-N, Denmark
| | - Karen Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ramona Duman
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Armin Wagner
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen-N, Denmark
| | - Rebecca L Miller
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen-N, Denmark.
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Neurology, Ann Arbor, MI, USA.
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Passino R, Finneran MC, Hafner H, Feng Q, Huffman LD, Zhao XF, Johnson CN, Kawaguchi R, Oses-Prieto JA, Burlingame AL, Geschwind DH, Benowitz LI, Giger RJ. Neutrophil-inflicted vasculature damage suppresses immune-mediated optic nerve regeneration. Cell Rep 2024; 43:113931. [PMID: 38492223 DOI: 10.1016/j.celrep.2024.113931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/03/2024] [Accepted: 02/21/2024] [Indexed: 03/18/2024] Open
Abstract
In adult mammals, injured retinal ganglion cells (RGCs) fail to spontaneously regrow severed axons, resulting in permanent visual deficits. Robust axon growth, however, is observed after intra-ocular injection of particulate β-glucan isolated from yeast. Blood-borne myeloid cells rapidly respond to β-glucan, releasing numerous pro-regenerative factors. Unfortunately, the pro-regenerative effects are undermined by retinal damage inflicted by an overactive immune system. Here, we demonstrate that protection of the inflamed vasculature promotes immune-mediated RGC regeneration. In the absence of microglia, leakiness of the blood-retina barrier increases, pro-inflammatory neutrophils are elevated, and RGC regeneration is reduced. Functional ablation of the complement receptor 3 (CD11b/integrin-αM), but not the complement components C1q-/- or C3-/-, reduces ocular inflammation, protects the blood-retina barrier, and enhances RGC regeneration. Selective targeting of neutrophils with anti-Ly6G does not increase axogenic neutrophils but protects the blood-retina barrier and enhances RGC regeneration. Together, these findings reveal that protection of the inflamed vasculature promotes neuronal regeneration.
Collapse
Affiliation(s)
- Ryan Passino
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Matthew C Finneran
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hannah Hafner
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Qian Feng
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lucas D Huffman
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Xiao-Feng Zhao
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Craig N Johnson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Riki Kawaguchi
- Departments of Psychiatry and Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Program in Neurogenetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Juan A Oses-Prieto
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA
| | - Alma L Burlingame
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA
| | - Daniel H Geschwind
- Departments of Psychiatry and Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Program in Neurogenetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Larry I Benowitz
- Departments of Neurosurgery and Ophthalmology, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Boston Children's Hospital, Boston MA 02115, USA; Departmant of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Chang J, Rader C, Peng H. A mammalian cell display platform based on scFab transposition. Antib Ther 2023; 6:157-169. [PMID: 37492588 PMCID: PMC10365156 DOI: 10.1093/abt/tbad009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 07/27/2023] Open
Abstract
In vitro display technologies have been successfully utilized for the discovery and evolution of monoclonal antibodies (mAbs) for diagnostic and therapeutic applications, with phage display and yeast display being the most commonly used platforms due to their simplicity and high efficiency. As their prokaryotic or lower eukaryotic host organisms typically have no or different post-translational modifications, several mammalian cell-based display and screening technologies for isolation and optimization of mAbs have emerged and are being developed. We report here a novel and useful mammalian cell display platform based on the PiggyBac transposon system to display mAbs in a single-chain Fab (scFab) format on the surface of HEK293F cells. Immune rabbit antibody libraries encompassing ~7 × 107 independent clones were generated in an all-in-one transposon vector, stably delivered into HEK293F cells and displayed as an scFab with rabbit variable and human constant domains. After one round of magnetic activated cell sorting and two rounds of fluorescence activated cell sorting, mAbs with high affinity in the subnanomolar range and cross-reactivity to the corresponding human and mouse antigens were identified, demonstrating the power of this platform for antibody discovery. We developed a highly efficient mammalian cell display platform based on the PiggyBac transposon system for antibody discovery, which could be further utilized for humanization as well as affinity and specificity maturation.
Collapse
Affiliation(s)
- Jing Chang
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Haiyong Peng
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| |
Collapse
|
7
|
Wilson HD, Li X, Peng H, Rader C. A Sortase A Programmable Phage Display Format for Improved Panning of Fab Antibody Libraries. J Mol Biol 2018; 430:4387-4400. [PMID: 30213726 DOI: 10.1016/j.jmb.2018.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/01/2018] [Accepted: 09/05/2018] [Indexed: 11/26/2022]
Abstract
Phage display of combinatorial antibody libraries is a versatile tool in the field of antibody engineering, with diverse applications including monoclonal antibody (mAb) discovery, affinity maturation, and humanization. To improve the selection efficiency of antibody libraries, we developed a new phagemid display system that addresses the complication of bald phage propagation. The phagemid facilitates the biotinylation of fragment of antigen binding (Fab) antibody fragments displayed on phage via Sortase A catalysis and the subsequent enrichment of Fab-displaying phage during selections. In multiple contexts, this selection approach improved the enrichment of target-reactive mAbs by depleting background phage. Panels of cancer cell line-reactive mAbs with high diversity and specificity were isolated from a naïve chimeric rabbit/human Fab library using this approach, highlighting its potential to accelerate antibody engineering efforts and to empower concerted antibody drug and target discovery.
Collapse
Affiliation(s)
- Henry D Wilson
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Xiuling Li
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Haiyong Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
8
|
Chang J, Peng H, Shaffer BC, Baskar S, Wecken IC, Cyr MG, Martinez GJ, Soden J, Freeth J, Wiestner A, Rader C. Siglec-6 on Chronic Lymphocytic Leukemia Cells Is a Target for Post-Allogeneic Hematopoietic Stem Cell Transplantation Antibodies. Cancer Immunol Res 2018; 6:1008-1013. [PMID: 29980538 DOI: 10.1158/2326-6066.cir-18-0102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/27/2018] [Accepted: 06/28/2018] [Indexed: 11/16/2022]
Abstract
Although the 5-year survival rate of chronic lymphocytic leukemia (CLL) patients has risen to >80%, the only potentially curative treatment is allogeneic hematopoietic stem cell transplantation (alloHSCT). To identify possible new monoclonal antibody (mAb) drugs and targets for CLL, we previously developed a phage display-based human mAb platform to mine the antibody repertoire of patients who responded to alloHSCT. We had selected a group of highly homologous post-alloHSCT mAbs that bound to an unknown CLL cell surface antigen. Here, we show through next-generation sequencing of cDNAs encoding variable heavy-chain domains that these mAbs had a relative abundance of ∼0.1% in the post-alloHSCT antibody repertoire and were enriched ∼1,000-fold after three rounds of selection on primary CLL cells. Based on differential RNA-seq and a cell microarray screening technology for discovering human cell surface antigens, we now identify their antigen as Siglec-6. We verified this finding by flow cytometry, ELISA, siRNA knockdown, and surface plasmon resonance. Siglec-6 was broadly expressed in CLL and could be a potential target for antibody-based therapeutic interventions. Our study reaffirms the utility of post-alloHSCT antibody drug and target discovery. Cancer Immunol Res; 6(9); 1008-13. ©2018 AACR.
Collapse
Affiliation(s)
- Jing Chang
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida
| | - Haiyong Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida
| | - Brian C Shaffer
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Sivasubramanian Baskar
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ina C Wecken
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida
| | - Matthew G Cyr
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida
| | | | - Jo Soden
- Retrogenix Ltd, High Peak, United Kingdom
| | - Jim Freeth
- Retrogenix Ltd, High Peak, United Kingdom
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida. .,Experimental Transplantation and Immunology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| |
Collapse
|
9
|
Mechaly A, Alcalay R, Noy-Porat T, Epstein E, Gal Y, Mazor O. Novel Phage Display-Derived Anti-Abrin Antibodies Confer Post-Exposure Protection against Abrin Intoxication. Toxins (Basel) 2018; 10:toxins10020080. [PMID: 29438273 PMCID: PMC5848181 DOI: 10.3390/toxins10020080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 11/20/2022] Open
Abstract
Abrin toxin is a type 2 ribosome inactivating glycoprotein isolated from the seeds of Abrus precatorius (jequirity pea). Owing to its high toxicity, relative ease of purification and accessibility, it is considered a biological threat agent. To date, there is no effective post-exposure treatment for abrin poisoning and passive immunization remains the most effective therapy. However, the effectiveness of anti-abrin monoclonal antibodies for post-exposure therapy following abrin intoxication has not been demonstrated. The aim of this study was to isolate high affinity anti-abrin antibodies that possess potent toxin-neutralization capabilities. An immune scFv phage-display library was constructed from an abrin-immunized rabbit and a panel of antibodies (six directed against the A subunit of abrin and four against the B subunit) was isolated and expressed as scFv-Fc antibodies. By pair-wise analysis, we found that these antibodies target five distinct epitopes on the surface of abrin and that antibodies against all these sites can bind the toxin simultaneously. Several of these antibodies (namely, RB9, RB10, RB28 and RB30) conferred high protection against pulmonary intoxication of mice, when administered six hours post exposure to a lethal dose of abrin. The data presented in this study demonstrate for the first time the efficacy of monoclonal antibodies in treatment of mice after pulmonary intoxication with abrin and promote the use of these antibodies, one or several, for post-exposure treatment of abrin intoxication.
Collapse
Affiliation(s)
- Adva Mechaly
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona 76100, Israel;
| | - Ron Alcalay
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (R.A.); (T.N.-P.); (Y.G.)
| | - Tal Noy-Porat
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (R.A.); (T.N.-P.); (Y.G.)
| | - Eyal Epstein
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 76100, Israel;
| | - Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (R.A.); (T.N.-P.); (Y.G.)
| | - Ohad Mazor
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona 76100, Israel;
- Correspondence: ; Tel.: +972-8-938-5862; Fax: +972-8-938-1544
| |
Collapse
|
10
|
Zhuang X, Watts NR, Palmer IW, Kaufman JD, Dearborn AD, Trenbeath JL, Eren E, Steven AC, Rader C, Wingfield PT. Chimeric rabbit/human Fab antibodies against the hepatitis Be-antigen and their potential applications in assays, characterization, and therapy. J Biol Chem 2017; 292:16760-16772. [PMID: 28842495 DOI: 10.1074/jbc.m117.802272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/15/2017] [Indexed: 01/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection afflicts millions worldwide, causing cirrhosis and liver cancer. HBV e-antigen (HBeAg), a clinical marker for disease severity, is a soluble variant of the viral capsid protein. HBeAg is not required for viral replication but is implicated in establishing immune tolerance and chronic infection. The structure of recombinant e-antigen (rHBeAg) was recently determined, yet to date, the exact nature and quantitation of HBeAg still remain uncertain. Here, to further characterize HBeAg, we used phage display to produce a panel of chimeric rabbit/human monoclonal antibody fragments (both Fab and scFv) against rHBeAg. Several of the Fab/scFv, expressed in Escherichia coli, had unprecedentedly high binding affinities (Kd ∼10-12 m) and high specificity. We used Fab/scFv in the context of an enzyme-linked immunosorbent assay (ELISA) for HBeAg quantification, which we compared with commercially available kits and verified with seroconversion panels, the WHO HBeAg standard, rHBeAg, and patient plasma samples. We found that the specificity and sensitivity are superior to those of existing commercial assays. To identify potential fine differences between rHBeAg and HBeAg, we used these Fabs in microscale immunoaffinity chromatography to purify HBeAg from individual patient plasmas. Western blotting and MS results indicated that rHBeAg and HBeAg are essentially structurally identical, although HBeAg from different patients exhibits minor carboxyl-terminal heterogeneity. We discuss several potential applications for the humanized Fab/scFv.
Collapse
Affiliation(s)
| | | | | | | | | | - Joni L Trenbeath
- Department of Transfusion Medicine, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Elif Eren
- Laboratory of Structural Biology Research, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| | - Christoph Rader
- the Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458
| | | |
Collapse
|
11
|
Peng H, Nerreter T, Chang J, Qi J, Li X, Karunadharma P, Martinez GJ, Fallahi M, Soden J, Freeth J, Beerli RR, Grawunder U, Hudecek M, Rader C. Mining Naïve Rabbit Antibody Repertoires by Phage Display for Monoclonal Antibodies of Therapeutic Utility. J Mol Biol 2017; 429:2954-2973. [PMID: 28818634 DOI: 10.1016/j.jmb.2017.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/01/2017] [Accepted: 08/06/2017] [Indexed: 01/25/2023]
Abstract
Owing to their high affinities and specificities, rabbit monoclonal antibodies (mAbs) have demonstrated value and potential primarily as basic research and diagnostic reagents, but, in some cases, also as therapeutics. To accelerate access to rabbit mAbs bypassing immunization, we generated a large naïve rabbit antibody repertoire represented by a phage display library encompassing >10 billion independent antibodies in chimeric rabbit/human Fab format and validated it by next-generation sequencing. Panels of rabbit mAbs selected from this library against two emerging cancer targets, ROR1 and ROR2, revealed high diversity, affinity, and specificity. Moreover, ROR1- and ROR2-targeting rabbit mAbs demonstrated therapeutic utility as components of chimeric antigen receptor-engineered T cells, further corroborating the value of the naïve rabbit antibody library as a rich and virtually unlimited source of rabbit mAbs.
Collapse
Affiliation(s)
- Haiyong Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Thomas Nerreter
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Jing Chang
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Junpeng Qi
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Xiuling Li
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | - Mohammad Fallahi
- Informatics Core, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jo Soden
- Retrogenix Ltd, Whaley Bridge, High Peak, SK23 7LY, United Kingdom
| | - Jim Freeth
- Retrogenix Ltd, Whaley Bridge, High Peak, SK23 7LY, United Kingdom
| | | | | | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
12
|
Weber J, Peng H, Rader C. From rabbit antibody repertoires to rabbit monoclonal antibodies. Exp Mol Med 2017; 49:e305. [PMID: 28336958 PMCID: PMC5382564 DOI: 10.1038/emm.2017.23] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022] Open
Abstract
In this review, we explain why and how rabbit monoclonal antibodies have become outstanding reagents for laboratory research and increasingly for diagnostic and therapeutic applications. Starting with the unique ontogeny of rabbit B cells that affords highly distinctive antibody repertoires rich in in vivo pruned binders of high diversity, affinity and specificity, we describe the generation of rabbit monoclonal antibodies by hybridoma technology, phage display and alternative methods, along with an account of successful humanization strategies.
Collapse
Affiliation(s)
- Justus Weber
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Haiyong Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| |
Collapse
|
13
|
Dennler P, Bailey LK, Spycher PR, Schibli R, Fischer E. Microbial transglutaminase and c-myc-tag: a strong couple for the functionalization of antibody-like protein scaffolds from discovery platforms. Chembiochem 2015; 16:861-7. [PMID: 25688874 DOI: 10.1002/cbic.201500009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Indexed: 12/30/2022]
Abstract
Antibody-like proteins selected from discovery platforms are preferentially functionalized by site-specific modification as this approach preserves the binding abilities and allows a side-by-side comparison of multiple conjugates. Here we present an enzymatic bioconjugation platform that targets the c-myc-tag peptide sequence (EQKLISEEDL) as a handle for the site-specific modification of antibody-like proteins. Microbial transglutaminase (MTGase) was exploited to form a stable isopeptide bond between the glutamine on the c-myc-tag and various primary-amine-functionalized substrates. We attached eight different functionalities to a c-myc-tagged antibody fragment and used these bioconjugates for downstream applications such as protein multimerization, immobilization on surfaces, fluorescence microscopy, fluorescence-activated cell sorting, and in vivo nuclear imaging. The results demonstrate the versatility of our conjugation strategy for transforming a c-myc-tagged protein into any desired probe.
Collapse
Affiliation(s)
- Patrick Dennler
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, OIPA10A, 5232 Villigen PSI, (Switzerland)
| | | | | | | | | |
Collapse
|
14
|
Genetic methods of antibody generation and their use in immunohistochemistry. Methods 2014; 70:20-7. [DOI: 10.1016/j.ymeth.2014.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 01/22/2014] [Accepted: 02/21/2014] [Indexed: 12/18/2022] Open
|
15
|
Bazan J, Całkosiński I, Gamian A. Phage display--a powerful technique for immunotherapy: 1. Introduction and potential of therapeutic applications. Hum Vaccin Immunother 2012; 8:1817-28. [PMID: 22906939 DOI: 10.4161/hv.21703] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
One of the most effective molecular diversity techniques is phage display. This technology is based on a direct linkage between phage phenotype and its encapsulated genotype, which leads to presentation of molecule libraries on the phage surface. Phage display is utilized in studying protein-ligand interactions, receptor binding sites and in improving or modifying the affinity of proteins for their binding partners. Generating monoclonal antibodies and improving their affinity, cloning antibodies from unstable hybridoma cells and identifying epitopes, mimotopes and functional or accessible sites from antigens are also important advantages of this technology. Techniques originating from phage display have been applied to transfusion medicine, neurological disorders, mapping vascular addresses and tissue homing of peptides. Phages have been applicable to immunization therapies, which may lead to development of new tools used for treating autoimmune and cancer diseases. This review describes the phage display technology and presents the recent advancements in therapeutic applications of phage display.
Collapse
Affiliation(s)
- Justyna Bazan
- Department of Medical Biochemistry; Wroclaw Medical University; Wroclaw, Poland.
| | | | | |
Collapse
|
16
|
Moreland NJ, Susanto P, Lim E, Tay MYF, Rajamanonmani R, Hanson BJ, Vasudevan SG. Phage display approaches for the isolation of monoclonal antibodies against dengue virus envelope domain III from human and mouse derived libraries. Int J Mol Sci 2012; 13:2618-2635. [PMID: 22489114 PMCID: PMC3317677 DOI: 10.3390/ijms13032618] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 02/14/2012] [Accepted: 02/20/2012] [Indexed: 11/17/2022] Open
Abstract
Domain III of the dengue virus envelope protein (EDIII, aa295-395) has an immunoglobulin fold and is the proposed receptor-binding domain of the virus. Previous studies have shown that monoclonal antibodies against EDIII can be neutralizing and have therapeutic potential. Here, cloned Fab-phage libraries of human and mouse origin were screened for DENV specific antibodies. Firstly, bacterially expressed EDIII or whole virus particles were used as bait in biopanning against a large naïve human Fab-phage library (>10 billion independent clones). Multiple panning strategies were employed, and in excess of 1000 clones were screened, but all of the antibodies identified bound the envelope in regions outside EDIII suggesting EDIII antibodies are virtually absent from the naïve human repertoire. Next, a chimeric Fab-phage library was constructed from a panel of EDIII specific mouse hybridomas by pooling the VH and VL chain sequences from the hybridomas and cloning these into the pComb3X phagemid vector with human CH and CL encoding sequences. Biopanning against EDIII identified a unique antibody (C9) that cross-reacts with EDIII from DENV1-3 and, in the IgG format, binds and neutralizes DENV2 in cell-based assays. Sequence analysis and saturation mutagenesis of complementary determining regions (CDR) in the C9 light chain suggest an antigen recognition model in which the LCDR3 is a key determinant of EDIII specificity, while modifications in LCDR1 and LCDR2 affect DENV serotype cross-reactivity. Overall, this study supports the current prevailing opinion that neutralizing anti-EDIII monoclonal antibodies can be readily generated in murine systems, but in humans the anti-DENV immune response is directed away from domain III.
Collapse
Affiliation(s)
- Nicole J. Moreland
- Duke-NUS Graduate Medical School, 8 College rd, Singapore; E-Mails: (N.J.M); (M.Y.F.T)
| | - Patricia Susanto
- Duke-NUS Graduate Medical School, 8 College rd, Singapore; E-Mails: (N.J.M); (M.Y.F.T)
| | - Elfin Lim
- Duke-NUS Graduate Medical School, 8 College rd, Singapore; E-Mails: (N.J.M); (M.Y.F.T)
| | - Moon Y. F. Tay
- Duke-NUS Graduate Medical School, 8 College rd, Singapore; E-Mails: (N.J.M); (M.Y.F.T)
| | | | - Brendon J. Hanson
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore; E-Mail:
| | - Subhash G. Vasudevan
- Duke-NUS Graduate Medical School, 8 College rd, Singapore; E-Mails: (N.J.M); (M.Y.F.T)
| |
Collapse
|
17
|
Abstract
This protocol describes the generation of human antibody libraries in Fab format from 2.5 × 10(7) human peripheral blood or bone marrow mononuclear cells for their subsequent selection by phage display. Although it can be applied to the mining of both human naïve and immune antibody repertoires, the procedure is primarily intended for the generation of fully human monoclonal antibodies from patients with endogenous antibody responses of interest and limited availability of clinical specimens.
Collapse
Affiliation(s)
- Christoph Rader
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
18
|
Expression and immunoaffinity purification of recombinant dengue virus 2 NS1 protein as a cleavable SUMOstar fusion. Protein Expr Purif 2011; 82:20-5. [PMID: 22100526 DOI: 10.1016/j.pep.2011.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 11/21/2022]
Abstract
Dengue virus (DENV) encoded nonstructural one (NS1) is a 352 amino acid protein that exists in multiple oligomeric states and is conserved within the flavivirus family. Although NS1 has been heavily researched for its diagnostic utility, there is a gap in the understanding of its role in a range of viral processes, including replication and development of clinical pathologies such as vascular leakage. Many of these functions involve unknown interactions with viral and host proteins. This study describes the generation of a mouse monoclonal antibody (mAb 56.2) that reacts with NS1 from DENV1 and 2, and the expression of recombinant SUMOstar-tagged DENV2 NS1 (DENV2 S∗-NS1) in baculovirus. This is the first time dengue NS1 has been produced as a SUMOstar fusion with the S∗-tag increasing protein solubility and secretion compared with a non-S∗-tagged NS1 construct. The protein was readily purified using a mAb 56.2 immunoaffinity column and untagged NS1 was obtained by treatment with tobacco etch virus protease to remove the S∗-tag. Size exclusion chromatography and glycosylation assays showed that both secreted S∗-NS1, and cleaved NS1, are hexameric and glycosylated, and will be useful tools in elucidating dengue NS1 protein interactions and functions.
Collapse
|
19
|
Yang J, Baskar S, Kwong KY, Kennedy MG, Wiestner A, Rader C. Therapeutic potential and challenges of targeting receptor tyrosine kinase ROR1 with monoclonal antibodies in B-cell malignancies. PLoS One 2011; 6:e21018. [PMID: 21698301 PMCID: PMC3115963 DOI: 10.1371/journal.pone.0021018] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/16/2011] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Based on its selective cell surface expression in chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), receptor tyrosine kinase ROR1 has recently emerged as a promising target for therapeutic monoclonal antibodies (mAbs). To further assess the suitability of ROR1 for targeted therapy of CLL and MCL, a panel of mAbs was generated and its therapeutic utility was investigated. METHODOLOGY AND PRINCIPAL FINDINGS A chimeric rabbit/human Fab library was generated from immunized rabbits and selected by phage display. Chimeric rabbit/human Fab and IgG1 were investigated for their capability to bind to human and mouse ROR1, to mediate antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), and internalization, and to agonize or antagonize apoptosis using primary CLL cells from untreated patients as well as MCL cell lines. A panel of mAbs demonstrated high affinity and specificity for a diverse set of epitopes that involve all three extracellular domains of ROR1, are accessible on the cell surface, and mediate internalization. The mAb with the highest affinity and slowest rate of internalization was found to be the only mAb that mediated significant, albeit weak, ADCC. None of the mAbs mediated CDC. Alone, they did not enhance or inhibit apoptosis. CONCLUSIONS AND SIGNIFICANCE Owing to its relatively low cell surface density, ROR1 may be a preferred target for armed rather than naked mAbs. Provided is a panel of fully sequenced and thoroughly characterized anti-ROR1 mAbs suitable for conversion to antibody-drug conjugates, immunotoxins, chimeric antigen receptors, and other armed mAb entities for preclinical and clinical studies.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antibody-Dependent Cell Cytotoxicity
- Apoptosis
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Molecular Sequence Data
- Rabbits
- Receptor Tyrosine Kinase-like Orphan Receptors/chemistry
- Receptor Tyrosine Kinase-like Orphan Receptors/immunology
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Jiahui Yang
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sivasubramanian Baskar
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ka Yin Kwong
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael G. Kennedy
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christoph Rader
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
20
|
Stahl SJ, Watts NR, Rader C, Dimattia MA, Mage RG, Palmer I, Kaufman JD, Grimes JM, Stuart DI, Steven AC, Wingfield PT. Generation and characterization of a chimeric rabbit/human Fab for co-crystallization of HIV-1 Rev. J Mol Biol 2010; 397:697-708. [PMID: 20138059 PMCID: PMC2851401 DOI: 10.1016/j.jmb.2010.01.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/25/2010] [Accepted: 01/26/2010] [Indexed: 11/30/2022]
Abstract
Rev is a key regulatory protein of human immunodeficiency virus type 1. Its function is to bind to viral transcripts and effect export from the nucleus of unspliced mRNA, thereby allowing the synthesis of structural proteins. Despite its evident importance, the structure of Rev has remained unknown, primarily because Rev's proclivity for polymerization and aggregation is an impediment to crystallization. Monoclonal antibody antigen-binding domains (Fabs) have proven useful for the co-crystallization of other refractory proteins. In the present study, a chimeric rabbit/human anti-Rev Fab was selected by phage display, expressed in a bacterial secretion system, and purified from the media. The Fab readily solubilized polymeric Rev. The resulting Fab/Rev complex was purified by metal ion affinity chromatography and characterized by analytical ultracentrifugation, which demonstrated monodispersity and indicated a 1:1 molar stoichiometry. The Fab binds with very high affinity, as determined by surface plasmon resonance, to a conformational epitope in the N-terminal half of Rev. The complex forms crystals suitable for structure determination. The ability to serve as a crystallization aid is a new application of broad utility for chimeric rabbit/human Fab. The corresponding single-chain antibody (scFv) was also prepared, offering the potential of intracellular antibody therapeutics against human immunodeficiency virus type 1.
Collapse
Affiliation(s)
- Stephen J. Stahl
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-2775, USA
| | - Norman R. Watts
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-2775, USA
| | - Christoph Rader
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1203, USA
| | - Michael A. Dimattia
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-8025, USA
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford Roosevelt Drive, Oxford OX3 7BN, UK
| | - Rose G. Mage
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | - Ira Palmer
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-2775, USA
| | - Joshua D. Kaufman
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-2775, USA
| | - Jonathan M. Grimes
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford Roosevelt Drive, Oxford OX3 7BN, UK
| | - David I. Stuart
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford Roosevelt Drive, Oxford OX3 7BN, UK
| | - Alasdair C. Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-8025, USA
| | - Paul T. Wingfield
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-2775, USA
| |
Collapse
|
21
|
Berry JD, Hay K, Rini JM, Yu M, Wang L, Plummer FA, Corbett CR, Andonov A. Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology. MAbs 2010; 2:53-66. [PMID: 20168090 DOI: 10.4161/mabs.2.1.10788] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neutralizing antibody responses to the surface glycoproteins of enveloped viruses play an important role in immunity. Many of these glycoproteins, including the severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) protein form trimeric units in the membrane of the native virion. There is substantial experimental and pre-clinical evidence showing that the S protein is a promising lead for vaccines and therapeutics. Previously we generated a panel of monoclonal antibodies (mAbs) to whole inactivated SARS-CoV which neutralize the virus in vitro. Here, we define their specificity and affinity, map several of their epitopes and lastly characterise chimeric versions of them. Our data show that the neutralizing mAbs bind to the angiotensin-converting enzyme 2 (ACE2) receptor-binding domain (RBD) of the SARS S protein. Three of the chimeric mAbs retain their binding specificity while one conformational mAb, F26G19, lost its ability to bind the S protein despite high level expression. The affinity for recombinant S is maintained in all of the functional chimeric versions of the parental mAbs. Both parental mAb F26G18 and the chimeric version neutralize the TO R2 strain of SARS-CoV with essentially identical titres (2.07 and 2.47 nM, respectively). Lastly, a comparison with other neutralizing mAbs to SARS-CoV clearly shows that the dominance of a 33 amino acid residue loop of the SARS-CoV RBD is independent of repertoire, species, quaternary structure, and importantly, the technology used to derive the mAbs. In cases like this, the dominance of a compact RBD antigenic domain and the central role of the S protein in pathogenesis may inherently create immunoselection pressure on viruses to evolve more complex evasion strategies or die out of a host species. The apparent simplicity of the mechanism of SARS-CoV neutralization is in stark contrast to the complexity shown by other enveloped viruses.
Collapse
Affiliation(s)
- Jody D Berry
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
A human monoclonal antibody drug and target discovery platform for B-cell chronic lymphocytic leukemia based on allogeneic hematopoietic stem cell transplantation and phage display. Blood 2009; 114:4494-502. [PMID: 19667400 DOI: 10.1182/blood-2009-05-222786] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (alloHSCT) is the only potentially curative treatment available for patients with B-cell chronic lymphocytic leukemia (B-CLL). Here, we show that post-alloHSCT antibody repertoires can be mined for the discovery of fully human monoclonal antibodies to B-CLL cell-surface antigens. Sera collected from B-CLL patients at defined times after alloHSCT showed selective binding to primary B-CLL cells. Pre-alloHSCT sera, donor sera, and control sera were negative. To identify post-alloHSCT serum antibodies and subsequently B-CLL cell-surface antigens they recognize, we generated a human antibody-binding fragment (Fab) library from post-alloHSCT peripheral blood mononuclear cells and selected it on primary B-CLL cells by phage display. A panel of Fab with B-CLL cell-surface reactivity was strongly enriched. Selection was dominated by highly homologous Fab predicted to bind the same antigen. One Fab was converted to immunoglobulin G1 and analyzed for reactivity with peripheral blood mononuclear cells from B-CLL patients and healthy volunteers. Cell-surface antigen expression was restricted to primary B cells and up-regulated in primary B-CLL cells. Mining post-alloHSCT antibody repertoires offers a novel route to discover fully human monoclonal antibodies and identify antigens of potential therapeutic relevance to B-CLL and possibly other cancers. Trials described herein were registered at www.clinicaltrials.gov as nos. NCT00055744 and NCT00003838.
Collapse
|
23
|
Robak LA, Venkatesh K, Lee H, Raiker SJ, Duan Y, Lee-Osbourne J, Hofer T, Mage RG, Rader C, Giger RJ. Molecular basis of the interactions of the Nogo-66 receptor and its homolog NgR2 with myelin-associated glycoprotein: development of NgROMNI-Fc, a novel antagonist of CNS myelin inhibition. J Neurosci 2009; 29:5768-83. [PMID: 19420245 PMCID: PMC2779053 DOI: 10.1523/jneurosci.4935-08.2009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 11/10/2008] [Accepted: 03/12/2009] [Indexed: 01/17/2023] Open
Abstract
Myelin-associated glycoprotein (MAG) is a sialic acid-binding Ig-family lectin that functions in neuronal growth inhibition and stabilization of axon-glia interactions. The ectodomain of MAG is comprised of five Ig-like domains and uses neuronal cell-type-specific mechanisms to signal growth inhibition. We show that the first three Ig-like domains of MAG bind with high affinity and in a sialic acid-dependent manner to the Nogo-66 receptor-1 (NgR1) and its homolog NgR2. Domains Ig3-Ig5 of MAG are sufficient to inhibit neurite outgrowth but fail to associate with NgR1 or NgR2. Nogo receptors are sialoglycoproteins comprised of 8.5 canonical leucine-rich repeats (LRR) flanked by LRR N-terminal (NT) and C-terminal (CT)-cap domains. The LRR cluster is connected through a stalk region to a membrane lipid anchor. The CT-cap domain and stalk region of NgR2, but not NgR1, are sufficient for MAG binding, and when expressed in neurons, exhibit constitutive growth inhibitory activity. The LRR cluster of NgR1 supports binding of Nogo-66, OMgp, and MAG. Deletion of disulfide loop Cys(309)-Cys(336) of NgR1 selectively increases its affinity for Nogo-66 and OMgp. A chimeric Nogo receptor variant (NgR(OMNI)) in which Cys(309)-Cys(336) is deleted and followed by a 13 aa MAG-binding motif of the NgR2 stalk, shows superior binding of OMgp, Nogo-66, and MAG compared with wild-type NgR1 or NgR2. Soluble NgR(OMNI) (NgR(OMNI)-Fc) binds strongly to membrane-bound inhibitors and promotes neurite outgrowth on both MAG and CNS myelin substrates. Thus, NgR(OMNI)-Fc may offer therapeutic opportunities following nervous system injury or disease where myelin inhibits neuronal regeneration.
Collapse
Affiliation(s)
- Laurie A. Robak
- Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642
| | - Karthik Venkatesh
- Neurology, University of Michigan School of Medicine, The University of Michigan, Ann Arbor, Michigan 48109-2200
| | - Hakjoo Lee
- Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642
| | - Stephen J. Raiker
- Departments of Cell and Developmental Biology and
- Neurology, University of Michigan School of Medicine, The University of Michigan, Ann Arbor, Michigan 48109-2200
- Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642
| | - Yuntao Duan
- Departments of Cell and Developmental Biology and
- Neurology, University of Michigan School of Medicine, The University of Michigan, Ann Arbor, Michigan 48109-2200
| | - Jane Lee-Osbourne
- Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642
| | - Thomas Hofer
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1203
| | - Rose G. Mage
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892, and
| | - Christoph Rader
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1203
| | - Roman J. Giger
- Departments of Cell and Developmental Biology and
- Neurology, University of Michigan School of Medicine, The University of Michigan, Ann Arbor, Michigan 48109-2200
- Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642
| |
Collapse
|
24
|
Abstract
In this overview, the Fab molecule is introduced and discussed as the first generated antibody fragment, which still dominates basic research and clinical applications. The unit contains a concepts section and an applications section. In the concepts section, the two principal methods for producing Fab, as well as the generation and directed evolution of Fab by phage display, are described. The applications section discusses Fab in clinical applications, as well as their increasingly important role in the determination of the three-dimensional structures of transmembrane proteins.
Collapse
Affiliation(s)
- Christoph Rader
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Kwong KY, Rader C. E. coli expression and purification of Fab antibody fragments. ACTA ACUST UNITED AC 2009; Chapter 6:Unit 6.10. [PMID: 19235139 DOI: 10.1002/0471140864.ps0610s55] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Fab molecule was the first generated antibody fragment and still dominates basic research and clinical applications. This unit describes the E. coli expression and purification of Fab antibody fragments with and without a His tag, and is designed to yield sufficient protein for the evaluation and characterization of a panel of Fab selected from a Fab library by phage display.
Collapse
Affiliation(s)
- Ka Yin Kwong
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
26
|
Wu P, Shui W, Carlson BL, Hu N, Rabuka D, Lee J, Bertozzi CR. Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag. Proc Natl Acad Sci U S A 2009. [PMID: 19202059 DOI: 10.1073/pnas.08078201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
The properties of therapeutic proteins can be enhanced by chemical modification. Methods for site-specific protein conjugation are critical to such efforts. Here, we demonstrate that recombinant proteins expressed in mammalian cells can be site-specifically modified by using a genetically encoded aldehyde tag. We introduced the peptide sequence recognized by the endoplasmic reticulum (ER)-resident formylglycine generating enzyme (FGE), which can be as short as 6 residues, into heterologous proteins expressed in mammalian cells. Cotranslational modification of the proteins by FGE produced products bearing a unique aldehyde group. Proteins bearing this "aldehyde tag" were chemically modified by selective reaction with hydrazide- or aminooxy-functionalized reagents. We applied the technique to site-specific modification of monoclonal antibodies, the fastest growing class of biopharmaceuticals, as well as membrane-associated and cytosolic proteins expressed in mammalian cells.
Collapse
Affiliation(s)
- Peng Wu
- Department of Chemistry, University of California, Berkeley, CA 94720-1460, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Wu P, Shui W, Carlson BL, Hu N, Rabuka D, Lee J, Bertozzi CR. Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag. Proc Natl Acad Sci U S A 2009; 106:3000-5. [PMID: 19202059 PMCID: PMC2651276 DOI: 10.1073/pnas.0807820106] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Indexed: 01/19/2023] Open
Abstract
The properties of therapeutic proteins can be enhanced by chemical modification. Methods for site-specific protein conjugation are critical to such efforts. Here, we demonstrate that recombinant proteins expressed in mammalian cells can be site-specifically modified by using a genetically encoded aldehyde tag. We introduced the peptide sequence recognized by the endoplasmic reticulum (ER)-resident formylglycine generating enzyme (FGE), which can be as short as 6 residues, into heterologous proteins expressed in mammalian cells. Cotranslational modification of the proteins by FGE produced products bearing a unique aldehyde group. Proteins bearing this "aldehyde tag" were chemically modified by selective reaction with hydrazide- or aminooxy-functionalized reagents. We applied the technique to site-specific modification of monoclonal antibodies, the fastest growing class of biopharmaceuticals, as well as membrane-associated and cytosolic proteins expressed in mammalian cells.
Collapse
Affiliation(s)
- Peng Wu
- Departments of Chemistry and
| | | | | | | | | | | | - Carolyn R. Bertozzi
- Departments of Chemistry and
- Molecular and Cell Biology and
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720-1460; and
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-1460
| |
Collapse
|
28
|
Abstract
The rabbit antibody repertoire is an exceptional source for both polyclonal antibodies (pAbs) and monoclonal antibodies (mAbs) that combine high specificity with high avidity and affinity, respectively. In contrast to rabbit pAbs, which have been utilized for decades, rabbit mAbs are defined reagents with infinite supply, prompting considerable interest in recent years. Phage-display technology based on chimeric rabbit/human Fab libraries allows the selection of rabbit mAbs that cross-react with mouse and human antigens while maintaining high affinity and specificity.
Collapse
Affiliation(s)
- Christoph Rader
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Kwong KY, Baskar S, Zhang H, Mackall CL, Rader C. Generation, affinity maturation, and characterization of a human anti-human NKG2D monoclonal antibody with dual antagonistic and agonistic activity. J Mol Biol 2008; 384:1143-56. [PMID: 18809410 PMCID: PMC2659651 DOI: 10.1016/j.jmb.2008.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/29/2008] [Accepted: 09/03/2008] [Indexed: 11/16/2022]
Abstract
In humans, NKG2D is an activating receptor on natural killer (NK) cells and a costimulatory receptor on certain T cells and plays a central role in mediating immune responses in autoimmune diseases, infectious diseases, and cancer. Monoclonal antibodies that antagonize or agonize immune responses mediated by human NKG2D are considered to be of broad and potent therapeutic utility. Nonetheless, monoclonal antibodies to NKG2D that are suitable for clinical investigations have not been published yet. Here, we describe the generation, affinity maturation, and characterization of a fully human monoclonal antibody to human NKG2D. Using phage display technology based on a newly generated naïve human Fab library in phage display vector pC3C followed by a tandem chain shuffling process designed for minimal deviation from natural human antibody sequences, we selected a human Fab, designated KYK-2.0, with high specificity and affinity to human NKG2D. KYK-2.0 Fab blocked the binding of the natural human NKG2D ligands MICA, MICB, and ULBP2 as potently as a commercially available mouse anti-human NKG2D monoclonal antibody in immunoglobulin G (IgG) format. Conversion of KYK-2.0 Fab to IgG1 resulted in subnanomolar avidity for human NKG2D. KYK-2.0 IgG1 was found to selectively recognize defined subpopulations of human lymphocytes known to express NKG2D, that is, the majority of human CD8+, CD16+, and CD56+ cells as well as a small fraction of human CD4+ cells. In solution, KYK-2.0 IgG1 interfered with the cytolytic activity of ex vivo expanded human NK cells. By contrast, immobilized KYK-2.0 IgG1 was found to strongly induce human NK cell activation. The dual antagonistic and agonistic activity promises a wide range of therapeutic applications for KYK-2.0 IgG1 and its derivatives.
Collapse
Affiliation(s)
- Ka Yin Kwong
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sivasubramanian Baskar
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hua Zhang
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Crystal L. Mackall
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christoph Rader
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
30
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Baskar S, Kwong KY, Hofer T, Levy JM, Kennedy MG, Lee E, Staudt LM, Wilson WH, Wiestner A, Rader C. Unique Cell Surface Expression of Receptor Tyrosine Kinase ROR1 in Human B-Cell Chronic Lymphocytic Leukemia. Clin Cancer Res 2008; 14:396-404. [DOI: 10.1158/1078-0432.ccr-07-1823] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Chivatakarn O, Kaneko S, He Z, Tessier-Lavigne M, Giger RJ. The Nogo-66 receptor NgR1 is required only for the acute growth cone-collapsing but not the chronic growth-inhibitory actions of myelin inhibitors. J Neurosci 2007; 27:7117-24. [PMID: 17611264 PMCID: PMC6794578 DOI: 10.1523/jneurosci.1541-07.2007] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neuronal Nogo-66 receptor 1 (NgR1) has been proposed to function as an obligatory coreceptor for the myelin-derived ligands Nogo-A, oligodendrocyte myelin glycoprotein (OMgp), and myelin-associated glycoprotein (MAG) to mediate neurite outgrowth inhibition by these ligands. To examine the contribution of neuronal NgR1 to outgrowth inhibition, we used two different strategies, genetic ablation of NgR1 through the germline and transient short hairpin RNA interference (shRNAi)-mediated knock-down. To monitor growth inhibition, two different paradigms were used, chronic presentation of substrate-bound inhibitor to measure neurite extension and acute application of soluble inhibitor to assay growth cone collapse. We find that regardless of the NgR1 genotype, membrane-bound MAG strongly inhibits neurite outgrowth of primary cerebellar, sensory, and cortical neurons. Similarly, substrate-bound OMgp strongly inhibits neurite outgrowth of NgR1 wild-type and mutant sensory neurons. Consistent with these results, shRNAi-mediated knock-down of neuronal NgR1 does not result in a substantial release of L-MAG (large MAG) inhibition. When applied acutely, however, MAG-Fc and OMgp-Fc induce a modest degree of growth cone collapse that is significantly attenuated in NgR1-null neurons compared with wild-type controls. Based on our findings and previous studies with Nogo-66, we propose that neuronal NgR1 has a circumscribed role in regulating cytoskeletal dynamics after acute exposure to soluble MAG, OMgp, or Nogo-66, but is not required for these ligands to mediate their growth-inhibitory properties in chronic outgrowth experiments. Our results thus provide unexpected evidence that the growth cone-collapsing activities and substrate growth-inhibitory activities of inhibitory ligands can be dissociated. We also conclude that chronic axon growth inhibition by myelin is mediated by NgR1-independent mechanisms.
Collapse
Affiliation(s)
- Onanong Chivatakarn
- Interdepartmental Graduate Program in Neuroscience
- Center for Aging and Developmental Biology, Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Shinjiro Kaneko
- Division of Neuroscience, Children's Hospital and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Zhigang He
- Division of Neuroscience, Children's Hospital and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, and
| | | | - Roman J. Giger
- Center for Aging and Developmental Biology, Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|